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ENTIRE SIGN-CHANGING SOLUTIONS
WITH FINITE ENERGY TO THE

FRACTIONAL YAMABE EQUATION

DANILO GARRIDO AND MONICA MUSSO

We show the existence of infinitely many finite energy sign-changing solu-
tions for the fractional Yamabe-type equation

(−1)su = |u|
4s

n−2s u in Rn,

where n ≥ 3 and s ∈
( 1

2 , 1
)
.

1. Introduction

We are interested in the existence of finite energy sign-changing solutions to the
fractional Yamabe-type equation in Rn,

(1) (−1)su = γ |u|p−1u in Rn,

where n ≥ 3 and p is the fractional critical Sobolev exponent p= (n+2s)/(n−2s).
In (1), γ > 0 is a constant chosen for normalization purposes as

γ =
0
( n+2s

2

)
0
( n−2s

2

) .
For any s ∈ (0, 1), (−1)s is the nonlocal operator defined as

(2) (−1)s(x)= c(n, s) P.V.
∫

Rn

u(x)− u(y)
|x − y|n+2s dy

= c(n, s) lim
ε→0+

∫
Rn\B(x,ε)

u(x)− u(y)
|x − y|n+2s dy,

where P.V. stands for the principal value and

c(n, s)= π−(2s+ n
2 )
0
( n

2 + s
)

0(−s)
.

This nonlocal operator in Rn can be expressed as a generalized Dirichlet-to-Neumann
map for a certain elliptic boundary value problem with local differential operators
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defined on the upper halfspace Rn+1
+ = {(x, t) : x ∈ Rn, t > 0}, as we learn from

Caffarelli and Silvestre [2007]: given a solution u = u(x) of (−1)su = f in Rn,
one can equivalently consider the dimensionally extended problem for u = u(x, t)
which solves {

div(t1−2s
∇u)= 0, in Rn+1

+ ,

− limt→0 ds t1−2s∂t u(x, t)= f, on ∂Rn+1
+ ,

where ds is the positive constant ds=22s−10(s)/0(1− s). By finite energy solutions
of (1), we mean the following. Consider the Schwartz space S of rapidly decaying
C∞ functions on Rn, and for any τ ∈ S we denote by

Fτ(ξ)=
1

(2π)n/2

∫
Rn

e−iξ ·xτ(x) dx

the Fourier transformation of τ . We look for solutions u of (1) in the energy space

D s(Rn)= {u ∈ L
2n

n−2s (Rn) : ‖(−1)
s
2 u‖L2(Rn) <∞},

where ‖(−1)
s
2 u‖L2(Rn) is defined by

(∫
Rn |ξ |

2s
|Fu(ξ)|2 dξ

) 1
2, endowed with the

norm ‖u‖D s(Rn) = ‖(−1)
s
2 u‖L2(Rn). These solutions correspond to critical points

of the functional

J (u)= 1
2

∫
Rn
|(−1)

s
2 u|2− γ n−2s

2n

∫
Rn
|u|

2n
n+2s , u ∈ D s(Rn).

Following the work by Lieb [1983] — see also [Frank and Lieb 2010; 2012;
Carlen and Loss 1990] for alternative proofs — positive solutions to (1) are given
by the family of functions defined by

(3) U(x)=
(

2
1+ |x |2

)n−2s
2

and µ−
n−2s

2 U
(

x − ξ
µ

)
for any µ > 0 and ξ ∈ Rn. Indeed these functions realize the Hardy–Littlewood–
Sobolev inequality, which states the existence of a positive number S such that for
all u ∈ C∞(Rn),

S‖u‖L2∗(Rn)
≤ ‖(−1)

s
2 u‖L2(Rn)

where 2∗ = p + 1 = 2n/(n − 2s). Indeed, these functions are the only positive
solutions to (1) under some decay conditions [Chen et al. 2006; Li 2004; Li and
Zhu 1995]. In particular, this is true if u ∈ L2n/(n−2s)

loc (Rn), as shown in [Chen et al.
2006].

On the other hand, (1) can be read on the sphere Sn
⊂Rn+1, after a stereographic

projection. Indeed, the inverse of the stereographic projection π : Rn
→ Sn

\ {S},
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where S = (0, . . . , 0,−1) ∈ Rn+1, defined by

π(y)=
(

2y
1+ |y|2

,
1− |y|2

1+ |y|2

)
is a conformal map and π∗g0 = U

4s
n−2s (y) dy, where g0 is the standard metric

on Sn and U is defined in (3). In Sn, the fractional Laplacian (−1)s reduces
to an elliptic pseudodifferential operator Pg0

s of order 2s with principal symbol
σ2s(P

g0
s )= |ξ |

2
g0

s. In [Chang and González 2011] a relation between this operator
and a Dirichlet-to-Neumann operator of uniformly nondegenerate elliptic boundary
value problems in the spirit of [Caffarelli and Silvestre 2007] is established. We
have π∗(Lg0

s v) = U−(n+2s)/(n−2s)(−1)s(U π∗v) for any v defined on Sn. Thus u
is a solution to (1) if and only if w, defined by u =U π∗w, solves

(4) 1g0w+ γ (|w|
4s

n−2sw−w)= 0 in Sn.

Positive solutions to (4) solve the so-called fractional Yamabe problem on the
sphere Sn. We refer to [González and Qing 2013] for a general formulation of the
fractional Yamabe problem and results concerning its solvability.

Finite energy sign-changing solutions to (1), or equivalently (4), are poorly
understood.

The purpose of this paper is to give a first example of finite energy sign-changing
solutions to (1), in all dimensions n ≥ 3, and for s ∈

( 1
2 , 1

)
: we build a solution

to (1) which looks like the solution U surrounded by k negative copies U properly
scaled and distributed along the vertices of a regular polygon with radius 1. Our
main result is the following theorem:

Theorem 1.1. Let n ≥ 3 and s ∈
( 1

2 , 1
)
. Write Rn

= C × Rn−2 and let ξ k
j =

(e2 jπ i/k, 0), j = 1, . . . , k. Then for any sufficiently large k, there is a finite energy
solution to Problem (1) of the form

uk(x)=U(x)−
k∑

j=1

µ
−

n−2s
2

k U
(
µ−1

k (x − ξj )
)
+ o(1),

where

µk =

(
k2 2

n−2s
2

∞∑
j=1

j2s−n
)−1

(1+ o(1))

Moreover,

(5) J (uk)= (k+ 1)J (U )+ O(1).

Here O(1) remains bounded and o(1)→ 0 uniformly as k→+∞.

The proof of the result consists in defining a first approximation and then showing
that a small perturbation of this approximation provides an actual solution to the
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problem. This is done by linearizing the equation around the approximation and
applying an invertibility theory for the linearized operator. In this step, we use the
nondegeneracy property of U proved in [Dávila et al. 2013], which states that all
bounded solutions of the linear problem

(−1)sφ− γ
n+2s
n−2s

U
4s

n−2s φ = 0

are linear combinations of

∂x j U(x), for j = 1, . . . , n,

and
n−2s

2
U(x)+ x · ∇U(x).

Indeed, the above functions belong to the kernel of the linearized operator, due to
the corresponding rigid motion under which (1) is invariant. These are the only
nontrivial elements of the kernel according to [Dávila et al. 2013].

A second ingredient we take advantage of to produce an invertibility theory is the
symmetry of the configuration. This reflects into the fact that our approximation,
as well as our final solution, satisfy the symmetries

u(y, y′)= u(e
2π j

k ı y, y′), j = 1, . . . , k− 1,(6)

u(y1, y2, . . . , yj , . . . , yn)= u(y1, y2, . . . ,−yj , . . . , yn) j = 2, . . . , n.(7)

Furthermore, they are invariant under Kelvin transform, namely

u(y)= |y|2s−n u
(

y
|y|2

)
.

The final step in the proof consists in adjusting properly the parameter µk . A
detailed description of the scheme of the proof is given in Section 2.

Let us mention that a very similar construction for finite energy, sign-changing
solutions to the classic Yamabe-type problem in Rn:

1u+ |u|
4

n−2 u = 0 in Rn,

namely when s = 1 in (1), has been done in [del Pino et al. 2011; 2013]. Indeed,
our result extends to the case s ∈

( 1
2 , 1

)
, the construction done in [del Pino et al.

2011], from which we are inspired.
We learned recently of [Fang 2014], where the author constructs solutions to (1)

similar to ours, covering the whole range s ∈ (0, 1). Nevertheless, in that case,
the concentration parameter µk is of order k−3 [Fang 2014, (2.4)], while our
concentration parameter is µk ∼ k−2, as k→∞. It is not clear to us how this choice
of the parameter’s rate provides a real solution to (1). Indeed, it is this choice of
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the parameter’s rate, in terms of k, that allows the author of [Fang 2014] to cover
the whole range s ∈ (0, 1).

Our restriction on s is consequence of two inequalities: we need a certain power
of integrability q to be q < n in order to have a good first approximation when
estimated in proper norms, and at the same time we need q > n/(2s) to guarantee
enough regularity. These constraints restrict us to s ∈

( 1
2 , 1

)
. We believe that our

construction should work in the whole range s ∈ (0, 1), and in fact we think that
µk ∼ k−2, as k →∞, for the whole range s ∈ (0, 1), but an invertibility theory
on different weighted Sobolev spaces is needed. We will treat this problem in a
forthcoming paper.

The rest of the paper will be devoted to the proof of Theorem 1.1.

2. Ansatz for the solution and scheme of the proof

This section is devoted to define a first approximation for a solution to (1) and to
describe the scheme of the proof of our result.

We start reminding that U defined in (3) is invariant under Kelvin transform,
namely

U(y) := |y|2s−n U(|y|−2 y).

Even more, it can be proved that also the family of solutions

µ−
n−2s

2

( y−ξ
µ

)
is invariant under Kelvin transform if and only if

|ξ |2+µ2
= 1.

Let k be a positive integer and define, for any j = 1, . . . , k, the k points

ξj =
√

1−µ2
(
e2π i( j−1)/k, 0, . . . , 0

)
∈ R2
×Rn−2,

where µ > 0 is a positive number of the form

(8) µ=
δ

k2 , with c < δ < c−1

for a certain constant c > 0, independent of k, as k→∞. Define

(9) U∗(y)=U(y)−
k∑

j=1

Uj(y), where Uj (y)= µ−
n−2s

2 U(µ−1(y− ξj )).

For large values of k, which at the same time make the scaling parameters µ very
small, we shall show that U∗ is a good approximate solution for (1). Observe that
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the function U∗ satisfies the symmetry properties (6) and (7). Furthermore, U∗ is
invariant under Kelvin transform

U∗(y)= |y|2−nU∗

(
y
|y|2

)
.

This is consequence of a straightforward computation, using the fact that

µ2
+ |ξj |

2
= 1 for any j = 1, . . . , k.

We will show that (1) admits a solution of the form

u(y)=U∗(y)+φ(y)

where φ is small when compared with U∗. It satisfies the symmetry conditions (6)
and (7), and it is invariant under Kelvin transform. Then (1) can be rewritten in
terms of φ as

(10) (−1)sφ− pγ |U∗|p−1φ− E − γ N (φ)= 0,

where E is

(11) γ−1 E =
∣∣U −∑Uj

∣∣p−1 (U −∑Uj
)
−
(
U p
−

∑
U p

j

)
and

(12) N (φ)= |U∗+φ|p−1(U∗+φ)− |U∗|p−1
− |U∗|p−1U∗− p|U∗|p−1φ.

The size of the error term E defined in (11) turns out to be relatively small, as
the number k tends to infinity, when estimated with proper norms. Let us fix a
number q > n

2s ; we define the weighted Lq norm

‖h‖
∗∗
:= ‖(1+ |y|)n+2s−2n/qh‖Lq (Rn)

Let η> 0 be a small and fixed number, independent of k. The error can be estimated
separately in the exterior region

⋂
j

{
|y − ξj | >

η

k

}
and then in each of the inner

regions {|y− ξj |<
η

k }. Indeed, we shall prove that there exists a constant C such
that, for all k large enough,

(13) ‖(1+ |y|)n+2s−2n/q E‖Lq (
⋂

j {|y−ξj |>
η
k })
≤ Ck1−n/q .

Observe that, in order to have a small (in k) size for the error in the exterior domain,
we need q < n. On the other hand, for regularity issue we will discuss later, we
assume that q > n

2s . The set of possible values for q , n
2s < q < n, is not empty since

we are considering s in the range s ∈
( 1

2 , 1
)
.
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If we change scale Ẽ j (y) := µ
n+2s

2 E(ξj + µy), in |y| < η/(µk), for any j =
1, . . . , k, we have the following estimate for the error in each interior domain:

(14) ‖(1+ |y|)n+2s−2n/q Ẽ j (y)‖Lq {|y|< η
kµ }
≤ Ck−n/q .

We shall prove the validity of estimates (13) and (14) at the end of this section.
In order to solve in φ the nonlinear Equation (10), we use a gluing method. Let

ζ be a cutoff function defined as follows: ζ(t)= 1 for t < 1 and ζ(t)= 0 for t > 2.
We also defined ζ−(t)= ζ(2t). Then we set

ζ j (y)=
{
ζ
(
kη−1
|y|−2

∣∣y− ξj |y|
∣∣) if |y|> 1,

ζ(kη−1
|y− ξj |) if |y| ≤ 1.

Observe that
ζ j (y)= ζ j (|y|−2 y)

A function φ of the form

(15) φ =

k∑
j=1

φ̃ j +ψ.

is a solution of the problem (10), provided that we can solve the following coupled
system of elliptic equation in (φ̃1, φ̃2, . . . , φ̃k) and ψ :

(16) (−1)s(φ̃ j )− pγ |U∗|ζ j φ̃ j

− ζ j

(
pγ |U∗|p−1ψ + E + γN

(
φ̃ j +

∑
i 6= j

φ̃i +ψ
))
= 0,

where j = 1, 2, . . . , k and

(17) (−1)sψ − pγU p−1ψ

−

(
pγ
(
|U∗|p−1

−U p−1)(1−
k∑

j=1

ζ j

)
+ pγU p−1

k∑
j=1

ζ j

)
ψ

− pγ |U∗|p−1
∑

j

(1− ζ j )φ̃ j

−

(
1−

k∑
j=1

ζ j

)(
E + γ N

( k∑
j=1

φ̃ j +ψ

))
= 0

To solve the above coupled system, we follow the following strategy. First we
solve (17) in the unknown ψ , assuming that φ̃ j are fixed functions satisfying

φ̃ j (y, y′)= φ̃1(e
2π j

k ı y, y′), j = 1, 2, . . . , k− 1,(18)

φ̃1(y1, y2, . . . , yj , . . . , yn)= φ̃1(y1, y2, . . . ,−yj , . . . , yn) j = 2, . . . , n,(19)
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and the invariant condition under Kelvin’s transform,

(20) φ̃1 = |y|2s−nφ̃1(|y|−2 y).

Furthermore, we assume that

(21) ‖φ1‖∗ < ρ where φ1 = µ
n−2s

2 φ̃1(ξ1+µy).

We have the validity of the following result:

Proposition 2.1. There exist constants k0,C, ρ0 such that for all k ≥ k0, the fol-
lowing holds: Suppose that φ̃ j , j = 1, 2, . . . , k, satisfy conditions (18)–(21) with
ρ < ρ0. Then there exists a unique solution ψ = 9(φ1) to (17) that satisfies the
symmetries

ψ(y, y′)= ψ(e
2π j

k ı y, y′), j = 1, 2, . . . , k− 1,

ψ(y, . . . , yj , . . . , yn)= ψ(y, . . . ,−yj , . . . , yn), j = 3, . . . , n,

ψ = |y|2s−nψ(|y|−2 y),

‖ψ‖
∗
≤

C
kn/q−1 +C‖φ1‖

2
∗
.

Moreover, the operator 9 satisfies the Lipschitz condition

‖9(φ1
1)−9(φ

2
1)‖∗ ≤ C‖φ1

1 −φ
2
1‖∗.

Once we have the result of the above Proposition, under the assumption on φ̃ j

we have that all equations (16) reduce to just one, say that for φ̃1. Then we will
find a solution to our problem if we solve

(22) (−1)s φ̃1− pγ |U1|
p−1φ̃1− ζ1 E − γN(φ1)= 0 in Rn

where

N(φ1)= p
(
|U∗|p−1ζ1− |U1|

p−1)φ1

+ ζ1

(
p|U∗|p−19(φ1)+ N

(
φ̃1+

∑
i 6=1

φ̃i +9(φ1)

))
Rather than solving (22) directly, we shall first solve the corresponding projected

version of (22):

(23) (−1)s φ̃1− pγ |U1|
p−1φ̃1− ζ1 E + γN(φ)= cn+1U p−1

1 Z̃n+1 in Rn

where

(24) cn+1 =−

∫
Rn
(ζ1 E + γN(φ))Z̃n+1∫

Rn
U p−1

1 Z̃2
n+1

.
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and

(25) Z̃n+1(y)= µ−
n−2s

2 Zn+1(µ
−1(y− ξ1))

Proposition 2.2. There exist constants k0,C such that for all k ≥ k0, the following
holds: Let 9(φ1) the solution predicted by Proposition 2.1. Then there exists
a unique solution ψ1 = 8(δ), cn+1 = cn+1(δ) to (23) and (24), which depends
continuously on δ. Moreover,

‖8‖
∗
≤ Ck−

n
q and ‖N(φ)‖

∗∗
≤ Ck−

2n
q ,

for some fixed positive constant C.

To conclude our argument, we shall show the existence of a number δ in the
definition of µ in (8) so that the above constant cn+1 is equal to zero. In this
way, we constructed a solution to (1) with the qualitative properties predicted by
Theorem 1.1.

Scheme of the paper. In Section 3 we prove some basic results on linear problems
in Rn. These results will be applied to prove Propositions 2.1 and 2.2 in Section 4.
Section 5 is dedicated to show the existence of δ > 0 so that cn+1 = 0, concluding
in this way the proof of our theorem.

We finish this section with the proof of estimates (13) and (14).

Proof of (13). This is in the region
⋂

j {|y − ξj | >
η

k }. For any y in this exterior
region,

|E(y)| ≤ C

(
1

(1+ |y|2)2s +

∣∣∣∣ k∑
j=1

µ
n−2s

2

|y− ξj |
n−2s

∣∣∣∣ 4s
n−2s

)(
k∑

j=1

µ
n−2s

2

|y− ξj |
n−2s

)
,

for some positive constant C > 0. Since for any j fixed and |y− ξj | =
η

k we have

k∑
i=1

µ
n−2s

2

|y− ξi |
n−2s =

1
kn−2s kn−2s

+

k∑
i 6= j

µ
n−2s

2

|y− ξi |
n−2s ≤ 1+

k− 1
ckn−2s ,

then we conclude that

|E | ≤ C
µ

n−2s
2

(1+ |y|2)2s

k∑
j=1

1
|y− ξj |

n−2s .
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Thus a direct computation gives∥∥(1+ |y|)n+2s−2n/q E
∥∥

Lq (Ext)

≤ Cµ
n−2s

2

∥∥∥∥(1+ |y|)n+2s−2n/q)

(1+ |y|2)2s

k∑
j=1

1
|y− ξj |

n−2s

∥∥∥∥
Lq (Ext)

≤ Cµ
n−2s

2

k∑
j=1

(∫
|y−ξj |>

η
k

(1+ |y|)(n+2s)q−2n

(1+ |y|2)2sq

1
|y− ξj |

(n−2s)q dy
)1

q

≤ Cµ
n−2s

2 k
(∫ 1

η
k

tn−1

t (n−2s)q dt
)1

q

= Cµ
n−2s

2 k
(
k(n−2s)q−n

− 1
) 1

q

≤ Cµ
n−2s

2 k(n−2s)+1− n
q �

Proof of (14). This is in the inner region |y− ξj |<
η

k , for some j fixed. Observe
that if y is close to ξj , then

Uj ∼ O(µ−(n−2s)/2).

For any y in this region, there exists t ∈ (0, 1) such that

E = p
(
−Uj + t

(
−

∑
i 6= j

Uj +U
))p−1(

−

∑
i 6= j

Uj +U
)
−U p

+

∑
i 6= j

Uj .

We consider the change of scale Ẽ j (y) := µ
n+2s

2 E(ξj +µy), |y|< η

µk . Therefore,
we obtain that for some t ∈ (0, 1)

Ẽ j (y)= p
(
−U(y)+ t

(∑
i 6= j

U(y−µ−1(ξi − ξj ))+µ
n−2s

2 U(ξj +µy)
))p−1

×

(
−

∑
i 6= j

U(y−µ−1(ξi − ξj ))+µ
n−2s

2 U(ξj +µy)
)

+

∑
i 6= j

U p(y−µ−1(ξi − ξj ))−µ
n+2s

2 U p(ξj +µy).

Taking into account the configuration of the points ξj , we have

|ξi − ξj | ∼
|i − j |

k
.
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Furthermore, for i 6= j and |y|< η

kµ ,

U(y−µ−1(ξi − ξj ))≤ C
µn−2s

|ξj − ξi |
n−2s

(
|ξj − ξi |

2

µ2+ |µy− (ξj − ξi )|2

)n−2s
2

≤ C
µn−2skn−2s

|i − j |n−2s .

Moreover,∣∣∣∑
i 6= j

U(y−µ−1(ξi − ξj )

∣∣∣≤ Ckn−2sµn−2s and µ
n−2s

2 U(ξj +µy))≤ Cµ
n−2s

2

for some constant C > 0. Thus we conclude that

|Ẽ j (y)| ≤ C
(

kn−2sµn−2s

1+ |y|4s +µ
n+2s

2

)
,

and we have an estimate of the error in the inner region∥∥(1+ |y|)n+2s− 2n
q Ẽ j (y)

∥∥
Lq {|y|< η

kµ }

≤ C
∥∥∥∥(1+ |y|)n+2s− 2n

q

(
kn−2sµn−2s

1+ |y|4s +µ
n+2s

2

)∥∥∥∥
Lq {|y|< η

kµ }

.

Since ∥∥(1+ |y|)n−2s− 2n
q
∥∥q

Lq {|y|< η
kµ }
≤ C

∫ η
kµ

0
(1+ r)(n−2s)q−n−1 dr

≤ C
( 1

kµ

)(n−2s)q−n

and ∥∥(1+ |y|)n+2s− 2n
q
∥∥q

Lq {|y|< η
kµ }
≤ C

∫ η
kµ

0
(1+ r)(n+2s)q−n−1 dr

≤ C
( 1

kµ

)(n+2s)q−n

it follows that∥∥(1+ |y|)n+2s− 2n
q Ẽ j (y)

∥∥
Lq {|y|< η

kµ }
≤ Ck−

n
q (1+ k−4s).

This gives the proof of (14). �

3. Some linear problems

Let L0 be the linear operator defined by

L0(φ) := (−1)
s(φ)− pγU p−1φ in Rn.
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As we know from [Dávila et al. 2013], the set of bounded solutions of the
homogeneous equation L0(φ)= 0 is spanned by the n+ 1 functions defined by

Zi = ∂xi U, i = 1, . . . , n, and Zn+1 =
1
2(n− 2s)U + x · ∇U.

We now establish a solvability result for the linear problem

L0(φ)= h in Rn,

under proper orthogonality conditions on h and φ. For this purpose, we introduce
the norm

(26) ‖φ‖
∗
:= ‖(1+ |y|n−2s)φ‖

∞
.

Lemma 3.1. Assume q ∈ ( n
2s ,

n
s ). Let h be such that ‖h‖

∗∗
<∞ and∫

Rn
U p−1 Zlh dx = 0 for all l = 1, 2, . . . , n+ 1.

Then the equation

(27) (−1)sφ− pU p−1φ = h in Rn

has a unique solution φ with ‖φ‖
∗
<+∞ such that∫

Rn
U p−1 Zlφ dx = 0 for all l = 1, 2, . . . , n+ 1.

Furthermore, there exists a constant C > 0, depending only on q, s, and n, such

(28) ‖φ‖
∗
≤ C‖h‖

∗∗
.

Proof. Let H s be the completion of C∞0 (R
n) equipped with the norm

‖φ‖H s =

√∫
Rn
|φ|2+

∫
Rn

∫
Rn

|φ(x)−φ(y)|2

|x − y|n+2s dx dy,

and let (H s, 〈 · , · 〉H s ) be a Hilbert space with the product

〈 f, g〉H s =

∫
R2n

( f (x)− f (y))(g(x)− g(y))
|x − y|n+2s dx dy.

Let us consider the subspace

H =
{
φ ∈ H s(Rn) such that

∫
U p−1 Zlφ dx = 0, l = 1, 2, . . . , n+ 1

}
.

We consider the problem of finding φ ∈ H such that∫
Rn
(−1)

s
2φ(−1)

s
2 τ dx − pγ

∫
Rn

U p−1φτ +

∫
Rn

hτ = 0 for all τ ∈ H ;
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this variational formulation makes sense if we consider for instance h ∈ L
2n

n+2s , since
H s(Rn) ↪→ L

2n
n−2s (Rn) continuously; see, for instance, [Di Nezza et al. 2012].

Let f ∈ L
2n

n+2s (Rn). By Riesz’s theorem there exist a unique φ ∈ H such that∫
Rn
(−1)

s
2φ(−1)

s
2 τ dx +

∫
Rn

f τ dx = 0 for all τ ∈ H.

Thus A( f )= φ defines a linear operator between L
2n

n+2s (Rn) and H. By the local
compactness of Sobolev embedding [Di Nezza et al. 2012] and the decay at infinity
of U p−1, we have that the map H → L

2n
n+2s , φ 7→ U p−1φ is compact. Hence,

Fredholm’s alternative applies to the problem

(29) φ− A(pγU p−1φ)= A(h).

For h = 0, we have L0(φ)= 0 and φ ∈ H . Thus (−1)sφ = pU p−1φ in Rn; hence,

φ(x)= σn,s pγ
∫

Rn

U p−1(y)φ(y)
|x − y|n−2s ,

for some explicit positive constant σn,s . We claim that φ is bounded. Indeed, let
δ > 0 be a fixed positive small number and write

(30)
∫

Rn

U p−1φ(y)
|x − y|n−2s =

∫
|x−y|<δ

U p−1φ(y)
|x − y|n−2s +

∫
|x−y|>δ

U p−1φ(y)
|x − y|n−2s := I1+ I2.

We have

(31) I1 ≤ C‖φ‖
∞

∫
|x−y|<δ

1
|x − y|n−2s dy ≤ Cδ2s

‖φ‖
∞

and, using the Holder inequality repeatedly,

I2 ≤

(∫
|x−y|>δ

(
1

|x − y|n−2s

) 2n
n−2s

)n−2s
2n
(∫
|x−y|>δ

(
U p−1φ

) 2n
n+2s

)n+2s
2n

≤ C
(∫
|x−y|>δ

φ
2n

n−2s

)n−2s
2n
(∫
|x−y|>δ

U (p−1) 2n
4s

)4s
2n

≤ C‖φ‖L2n/(n−2s)

Choosing δ properly small, we obtain that φ is bounded. We can now apply the
result in [Dávila et al. 2013] and conclude that φ is a linear combination of the
functions Zl , l = 1, . . . , n + 1. Since φ ∈ H we have that φ ≡ 0. Fredholm’s
alternative implies that, for any h satisfying the orthogonality condition, a function
φ ∈ H solution to (29) exists.

Assume now that φ solves (27), we shall now show the a priori bound (28). We
first show that φ is bounded. First we have

‖φ‖L2n/(n−2s)(Rn)
≤ ‖φ‖H s(Rn) ≤ ‖h‖L2n/(n−2s)(Rn)

≤ ‖(1+ |y|)n+2s−2n/qh‖Lq (Rn).
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Observe now that

φ(x)= σn,s p
∫

Rn

U p−1φ(y)
|x − y|n−2s + σn,s

∫
Rn

h(y)
|x − y|n−2s .

Fixing a small δ > 0, we get∫
Rn

h(y)
|x − y|n−2s dy =

∫
|x−y|<δ

h(y)
|x − y|n−2s dy+

∫
|x−y|<δ

h(y)
|x − y|n−2s dy = J1+ J2

with

J1 ≤

∫
|x−y|<δ

(
1

|x − y|(n−2s)q ′

)q ′

‖h‖Lq (Rn) ≤ C‖h‖Lq (Rn)

since q > n
2s , and

J2 ≤

(∫
|x−y|>δ

1
|x − y|2n

)n−2s
2n

‖h‖L2n/(n+2s) ≤ C‖h‖L2n/(n+2s) .

Thus, thanks also to (30) and (31), for all x ∈ Rn,

|φ(x)| ≤ Cδ2s
‖φ‖

∞
+C

(
‖φ‖L2n/(n−2s)(Rn)

+‖h‖Lq (Rn)+‖h‖L2n/(n+2s)

)
.

Choosing δ small, we conclude that φ is bounded since

(32) ‖φ‖
∞
≤ C

(
‖φ‖L2n/(n−2s)(Rn)

+‖h‖Lq (Rn)+‖h‖L2n/(n+2s)

)
.

Next we show the decay rate at infinity of φ. Consider

φ̃(y)= |y|2s−nφ(|y|−2 y) and h̃(y)= |y|−n−2sh(|y|−2 y).

A direct computation shows that

(−1)s φ̃− pγU p−1(y)φ̃ = h̃ on Rn
\ {0},

and

‖φ̃‖H s(Rn)+‖φ̃‖L2n/(n−2s)(Rn)
= ‖φ‖H s(Rn)+‖φ‖L2n/(n−2s)(Rn)

,

‖h̃‖Lq (Rn) = ‖(1+ |y|)
n+2s−2n/qh‖Lq (Rn) = ‖h‖∗∗.

Applying the estimate (32) to φ̃, we get

‖φ̃‖L∞(B(0,1)) ≤ ‖φ̃‖L∞(Rn) ≤ C
(
‖φ̃‖L2n/(n−2s)(Rn)

+‖h̃‖Lq (Rn)+‖h̃‖L2n/(n+2s)

)
≤ C

(
‖φ‖L2n/(n−2s)(Rn)

+‖h̃‖Lq (Rn)+‖h‖L2n/(n+2s)

)
≤ C

(
‖h‖
∗∗
+‖h̃‖Lq (Rn)

)
= C‖h‖

∗∗
.

Since ‖|y|n−2sφ‖L∞{|y|>1} = ‖φ̃‖L∞(B(0,1)), we conclude that ‖φ‖
∗
≤ C‖h‖

∗∗
. �
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Under further symmetry conditions on h and φ, (27) can be solved without the
orthogonality conditions. For a general function ψ defined in Rn, consider the
symmetries

(33) ψ(y, y′)= ψ(e
2π j

k ı y, y′), j = 1, 2, . . . , k− 1,

and

(34) ψ(y, . . . , yj , . . . , yn)= ψ(y, . . . ,−yj , . . . , yn), j = 3, . . . , n,

together with invariance under the Kelvin transform

(35) ψ(y)= |y|2s−nψ(|y|−2 y).

Lemma 3.2. Assume that h satisfies (33), (34), and ‖h‖
∗∗
<∞. Furthermore, we

assume that
h(y)= |y|−n−2sh(|y|−2 y).

Then (27) has a unique bounded solution φ = T (h) that satisfies symmetries (33),
(34), and (35). Moreover, there exists C depending only on q, s, and n such that

‖φ‖
∗
≤ ‖h‖

∗∗
.

The proof of this result is very close to the proof of [del Pino et al. 2011, (4.19)].
We refer the interested reader to that reference.

For a later purpose, we need to establish a result like the one in Lemma 3.1 for a
linear operator more general then L0.

Lemma 3.3. Let 2s <ν < n. There exist numbers δ, C , depending on ν, n such that
the following holds: If g, a, and φ are functions such that ‖(1+ |y|ν)g‖

∞
<+∞,

‖(1+ |y|ν−2s)φ‖
∞
<+∞, and ‖(1+ |y|2s)a‖

∞
< δ, and

(36) L0(φ)+ a(y)φ = g(y)+
n+1∑
l=1

clU p−1 Zl in Rn,

where

(37)
∫

Rn
U p−1 Zlφ = 0 for all l = 1, . . . , n+ 1

and

(38) cl

∫
Rn

U p−1 Z2
l =

∫
Rn
(a(y)φ− g(y))Zlφ for all l = 1, . . . , n+ 1,

then

(39) ‖(1+ |y|ν−2s)φ‖
∞
≤ C‖(1+ |y|ν)g‖

∞
.
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Proof. By contradiction, let us assume the existence of functions φn , an , gn and
constants cn

l such that (36)–(38) hold, and

(40) ‖(1+ |y|ν)gn‖∞→ 0, ‖(1+ |y|ν−2s)φn‖∞ = 1, ‖(1+ |y|2s)an‖∞→ 0.

Clearly, ‖(1+|y|ν)angn‖∞→ 0 and cn
l → 0, so without loss of generality we may

assume that an ≡ 0 and cn
l = 0. We claim first that

‖φn‖∞→ 0.

Assume the opposite: there are numbers γ, R > 0 and points xn such that

|φn(xn)| ≥ γ, |xn| ≤ R.

Passing to a subsequence, and arguing like in the proof of Lemma 3.1, we find
that φn converges in the energy space and locally uniformly over compact sets to a
bounded function φ0 6= 0 with

L0(φ0)= 0, and
∫

Rn
U p−1φZl = 0 for all l,

which gives φ0 = 0. This is a contradiction due to the result in [Dávila et al. 2013].
Thus we have that ‖φn‖∞→ 0.

Next we shall show that ‖(1+|y|ν−2s)φn‖∞→ 0, thus getting to a contradiction
with (40), and the proof of the Lemma. Using the equation, we have that

(41) φn(x)= σn,s pγ
∫

Rn

U p−1(y)φn(y)
|x − y|n−2s dy+ σn,s

∫
Rn

gn(y)
|x − y|n−2s dy

for some explicit positive constant σn,s . Since 2s < ν < n, and taking into account
that ‖(1+ |y|ν)gn‖∞→ 0, as well as the behavior of U p−1 at infinity, there exists
a positive constant C , independent of n, such that

|φn(x)| ≤ C
(
‖φn‖∞

(1+ |x |2s)
+

o(1)
(1+ |x |ν−2s)

)
for some o(1)→ 0, as n→∞. Replacing the above estimate in (41) and repeating
the same procedure a finite number of times, we get that

|φn(x)| ≤ C
‖φn‖∞+ o(1)
(1+ |x |ν−2s)

. �

4. Proof of Propositions 2.1 and 2.2

Proof of Proposition 2.1. Let us fix functions φ̃ j and we assume that they satisfy
the symmetry assumptions (6), (7) and the invariance under Kelvin transform

φ̃1 = |y|2s−nφ̃1(|y|−2 y).
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Finally, we assume

(42) ‖φ1‖∗ < ρ, where φ1 = µ
n−2s

2 φ̃1(ξ1+µy).

for a small, fixed ρ > 0.
We next solve (17). To do so, we write it in the form

(−1)s(ψ)− pγU p−1(y)ψ − γ V(y)ψ − pγ |U∗|p−1
k∑

j=1

(1− ζ j )φ̃ j −M(ψ)︸ ︷︷ ︸
:=h

= 0,

where

V (y) := p(|U∗|p−1
−U p−1)

(
1−

k∑
j=1

ζ j

)
︸ ︷︷ ︸

:=V1

+ pU p−1
k∑

j=1

ζ j︸ ︷︷ ︸
:=V2

:= V1+ V2

and

M(ψ) :=
(

1−
k∑

j=1

ζ j

)(
E + γ N

( k∑
j=1

φ̃ j +ψ

))
A basic observation is that the function h as defined above satisfies the conditions
(33), (34), and ‖h‖

∗∗
<∞. Furthermore, we have that

h(y)= |y|−n−2sh(|y|−2 y).

Hence, we can define the linear operator T in the Lemma 3.2 and we can write our
problem (17) in fixed point as

(43) ψ =−T
(

Vψ + pγ |U∗|p−1
∑

j

(1− ζ )φ̃ j +M(ψ)
)
=:M(ψ)

We notice that M is well defined in space X of continuous functions ψ with
‖ψ‖

∗
≤∞, and satisfying

ψ(y, y′)= ψ(e
2π j

k ı y, y′), j = 1, 2, . . . , k− 1,

ψ(y, . . . , yj , . . . , yn)= ψ(y, . . . ,−yj , . . . , yn), j = 3, . . . , n,

ψ = |y|2s−nψ(|y|−2 y).

We claim that

(44) ‖Vψ(y)‖
∗∗
≤ Ck1− n

q ‖ψ‖
∗

and

(45)
∥∥∥pγ |U∗|p−1

k∑
j=1

(1− ζ j )φ̃ j

∥∥∥
∗∗

≤ Ck1− n
q ‖ψ‖

∗
.
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We claim that if

‖ψ‖
∗
+‖φ1‖∗ ≤ 2ρ,

then

(46) ‖M(ψ)‖
∗∗
≤ C

(
k1− n

q + k1− n
q ‖φ1‖

2
∗
+‖ψ‖2

∗

)
.

Furthermore, for ψ1, ψ2 in X ,

‖M(ψ1)−M(ψ2)‖∗∗ ≤ Cρ‖ψ1−ψ2‖∗

We can thus conclude that, for ρ small enough, the operator M defines a contraction
map in the set of functions ψ ∈ X with

(47) ‖ψ‖
∗
≤ C

(
‖φ1‖

2
∗
+ k1− n

q
)
.

From the estimate (47), we get the Lipschitz dependence

‖9(φ1
1)−9(φ

2
1)‖∗ ≤ C‖φ1

1 −φ
2
1‖∗.

We shall next show the validity of (44), (45), and (46).

Proof of (44). Consider

f (t)=
∣∣∣∣U − t

k∑
j=1

Uj

∣∣∣∣p−1

.

By the mean value theorem,

|V1| ≤ p(p− 1)
∣∣∣∣U − s

k∑
j=1

Uj

∣∣∣∣p−2( k∑
j=1

Uj

)
≤ CU p−2

k∑
j=1

µ
n−2s

2

|y− ξj |
n−2s .

Thus, if for all j , |y− ξj |>
η

k , then

|V1ψ(y)| ≤ C‖ψ‖
∗
U p−1(y)

k∑
j=1

µ
n−2s

2

|y− ξj |
n−2s .

Since ζ j ≡ 1 on |y− ξj |<
η

k ,∥∥(1+ |y|)n+2s− 2n
q V1ψ

∥∥
Lq (Rn)

=
∥∥(1+ |y|)n+2s− 2n

q V1ψ
∥∥

Lq (Rn\
⋃

j B(ξj ,
η
k ))

≤ Ck
(∫

B(ξ1,
η
k )

c∩B(0,2)

µ
(n−2s)q

2

|y− ξj |
(n−2s)q dy

)1
q

‖ψ‖
∗

≤ Ckµ
n−2s

2 k(n−2s)− n
q ‖ψ‖

∗
,



ENTIRE FINITE ENERGY SIGN-CHANGING SOLUTIONS 103

for some positive constant C. Thus ‖V1ψ(y)‖∗∗ ≤Ck1− n
q ‖ψ‖

∗
. On the other hand,

‖V2ψ‖∗∗ = ‖(1+ |y|)
n+2s− 2n

q pU p−1
k∑

j=1

ζ jψ‖Lq (Rn)

≤ C
(∫

B(0,1)

(
(1+ |y|)n+2s− 2n

q U p−1
k∑

j=1

ζ jψ

)q

dy
)1

q

with(∫
B(0,1)

(
(1+ |y|)n+2s− 2n

q U p−1
k∑

j=1

ζ jψ

)q

dy
)1

q

≤ C
∑

j

(∫
B(ξj ,

2η
k )

U (p−1)q(1+ |y|)(n+2s)q−2n

(1+ |y|)(n−2s)q dy
)1

q

‖ψ‖
∗

≤ Ck1−n
‖ψ‖

∗
�

Proof of (45). Estimate (45) can be obtained arguing as in the proof of estimate
(44), after noticing that

|φ̃ j (y)| ≤ CU(y)‖φ1‖∗
µ

n−2s
2

|y− ξ |n−2s . �

Proof of (46). For the moment we shall assume that

‖ψ‖
∗
+‖φ1‖∗ ≤ 2ρ

for a ρ sufficiently small. Let us assume that |y− ξj |>
η

k for all j . First we recall
that∥∥∥∥(1+ |y|)n+2s− 2n

q

(
1−

k∑
j=1

ζ j

)
E
∥∥∥∥

Lq (Rn)

=
∥∥(1+ |y|)n+2s− 2n

q E
∥∥

Lq (Ext) ≤ Ck1− n
q

Then we find in this region∣∣∣∣N( k∑
j=1

φ̃ j +ψ

)∣∣∣∣≤ CU p−2
(∣∣∣∣ k∑

j=1

φ̃ j

∣∣∣∣2+ |ψ |2).
But

U p−2
∣∣∣∣ k∑

j=1

φ̃ j

∣∣∣∣2 ≤ C‖φ1‖
2
∗
U p

k∑
j=1

µn−2s

|y− ξj |
2(n−2s) , U p−2

|ψ |2 ≤U p
‖ψ‖2

∗
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Thus, we have∥∥∥∥(1+ |y|)n+2s− 2n
q

(
1−

k∑
j=1

ζ j

)(
γ N

( k∑
j=1

φ̃ j +ψ

))∥∥∥∥
Lq (Rn)

=

∥∥∥∥(1+ |y|)n+2s− 2n
q (γ N (φ))

∥∥∥∥
Lq (Ext)

≤ C ‖φ1‖
2
∗

∥∥∥∥(1+ |y|)n+2s− 2n
q U p

( k∑
j=1

µn−2s

|y− ξj |
2(n−2s) +ψ

)∥∥∥∥
Lq (Ext)

≤
Cµn−2s

k−2(n−2s)+ n
q−1
‖φ1‖

2
∗
+C‖ψ‖2

∗

Using the above inequalities, we get

‖M(ψ)‖
∗∗
≤ Ck1− n

q + k1− n
q ‖φ1‖

2
∗
+C‖ψ‖2

∗
, �

This concludes the proof of Proposition 2.1.

Proof of Proposition 2.2. In order to prove Proposition 2.2, we need to consider
the linear problem

(48) (−1)s φ̃1− pγU p−1
1 φ̃− h̃(y)= cn+1U p−1

1 Z̃n+1 in Rn

for a general function h̃, where

Z̃n+1(y)= µ−
n−2s

2 Zn+1(µ
−1(y− ξ1)) and cn+1 =

∫
Rn

h̃ Z̃n+1∫
Rn

U p−1
1 Z̃2

n+1

.

Lemma 4.1. Assume that h̃ is even with respect to each variable y2, . . . , yn and it
satisfies the invariance

h̃(y)= |y|−n−2sh(|y|−2 y)

Assume in addition that
h(y)= µ

n+2s
2 h̃(ξ1+µy)

satisfies ‖h‖
∗∗
≤∞. Then (48) has a unique solution φ̃ := T̃ (h̃) that is even with

respect to each of the variables y2, . . . , yn , invariant under Kelvin’s transformations

φ̃(y)= |y|2s−nφ̃(|y|−2 y),

where φ(y)= µ
n−2s

2 φ̃(ξ1+µy) and satisfies∫
Rn
φU p−1 Zn+1 = 0.
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Moreover, there exists C such that

‖φ‖
∗
≤ C‖h‖

∗∗
.

Proof. We consider φ and h such that

(−1)sφ− pγ |U |p−1φ = h(y) in Rn, and
∫

Rn
h̃ Z̃n+1 = 0.

The evenness of h in the last (n− 1) coordinates guarantees that∫
Rn

h Zl = 0, l = 2, . . . , n, n+ 1.

We have that to prove that
∫

Rn
h Z1 = 0. Let

I (t)=
∫

Rn
wµ(y− tξ1)h̃(y) dy.

We notice that

(49) (ξ1)1

∫
Rn

h Z1 = ∂t I (t)
∣∣
t=0 =−(ξ1)1

∫
Rn
∂y1wµ(y− ξ1)h(y) dy;

after a change of variable,

I (t)=
∫

Rn
wµ(|y|−2 y− tξ1)h̃(|y|−2 y)|y|−2n

=

∫
Rn
wµ(t)(y− a(t)ξ1)h̃(y) dy

where
µ(t)=

µt
µ2+ |ξ1|2t2 and s(t)=

t
µ2+ |ξ1|2t2 .

Hence,

(50) ∂t I (t)
∣∣
t=1 = µ

′(1)
∫

Rn
∂µwµ(y− ξ1)

∣∣
µ=1h̃(y) dy

− s ′(1)ξ1

∫
Rn
∂y1wµ(t)(y− ξ1)h(y) dy = 0.

We can check that∫
Rn
∂µwµ(y− ξ1)

∣∣
µ=1h̃(y) dy =

∫
Rn

Zn+1(y)h(y) dy = 0

and s ′(1) = 1− 2|ξ1|
2. Hence, using (49) and (50), we obtain

∫
Rn h Z1 = 0. It

follows from Lemma 3.1 that there exists a unique solution φ1 for (48) with∫
Rn

h Zl = 0, l = 1, . . . , n+ 1 and ‖φ‖
∗
≤ C‖h‖

∗∗
.

Arguing by uniqueness, as in proof of Lemma 3.2, we find that φ̃ satisfies the
corresponding symmetries. �
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We use the above lemma to solve (23) and (24). We consider the operator T̃
defined in the lemma. We are going to prove the existence of a solution to (23) by
a fixed point argument

(51) φ̃1 = T̃ (ζ1+ γN(φ1))=:M(φ1).

For any f we set f (y)= µ
n+2s

2 f (ξ +µy). Let

f1(y)= pζ1(|U∗|p−1
− |U1|

p−1)φ̃1.

For |y|< η

kµ ,

| f1(y)| ≤ C
(
µn−2skn−2s

k−1∑
j=1

1
jn−2s +µ

n−2s
2

)
U p−1

‖φ1‖∗

and so

‖ f1(y)‖∗∗ ≤ C
(
µn−2skn−2s

+µ
n−2s

2
)
(µk)−n+2s+ n

q ‖φ1‖∗ = Cµ
2n
q ‖φ1‖∗.

Analogously for f2 = (ζ1− 1)U p−1
1 φ̃1 in the region |y|< η

µk ,

| f 2(y)| ≤U p
‖φ1‖∗;

hence ‖ f 2‖∗∗≤Ck−
n
q ‖φ1‖∗. Now we consider f3= ζ1 p|U∗|p−19(φ1) on |y|< n

µk ,

| f 3| ≤ CU p−1µ
n−2s

2 ‖9(φ1)‖∞ ≤ CU p−1µ
n−2s

2 (‖φ1‖∗+ k1− n
q );

thus,
‖ f 3(y)‖∗∗ ≤ Cµ

n
2q (‖φ1‖∗+ k1− n

q ).

Now, for

f4 = ζ1 N
(
φ̃1+

∑
i=2

φ̃i

)
9(φ1)

we notice that
N (φ)= (V∗+ φ̂)p

− V p
∗
− pV p−1

∗
φ̂

where φ̂(y) := µ
n−2s

2 φ(ξ1+µy) and

V∗(y)=U(y)+
k∑

i=2

U (y+µ−1(ξ1− ξj ))−µ
n−2s

2 U(ξ1+µy)

with

φ = φ̃1+

k∑
i=2

φ̃i +9(φ1).

Therefore

| f 4| ≤ C
(
U p−1µ

n−2s
2 ‖φ1‖∗+U p−1µ

n−2s
2 (‖φ1‖∗+ k1− n

q )
)
,



ENTIRE FINITE ENERGY SIGN-CHANGING SOLUTIONS 107

and hence,
‖ f 4‖∗∗ ≤ C

(
µ

n
2q ‖φ1‖∗+µ

n
2q (‖φ1‖∗+ k1− n

q )2
)
.

Concerning f5 = ζ1 E , we recall that

‖ f 5‖∗∗ ≤ Cµ
n

2q .

The above estimates suggest that it is possible to apply a fixed point argument
of contraction type in the set of all continuous functions φ1 = 8(δ) such that
‖φ1‖∗ ≤ Cµ

n
2q . This gives the existence and the estimate for φ1, satisfying

‖8‖
∗
≤ Ck−

n
q ,

and
‖N(φ)‖

∗∗
≤ Ck−

2n
q .

Straightforward computations shows also the continuous dependence of φ1 =8(δ)

and cn+1 on the parameter δ. This concludes the proof of Proposition 2.2.

5. Conclusion

In this section we show the existence of δ > 0 such that cn+1(δ)= 0 in (23). Indeed
this fact guarantees that the function

U∗+φ,

where U∗ =U −
∑

Uj is defined in (9) and φ =
∑k

j=1 φ̃ j +ψ is defined in (15), is
a solution for the original problem (1). Let

Z̃n+1 = µ
−

n−2s
2 Zn+1(µ

−1(y− ξ1)).

We recall that
Zn+1(y)= y · ∇U + n−2s

2
U.

We need the existence of a δ such that

(52) cn+1 =

∫
Rn
(ζ1 E + γN(φ1))Z̃n+1 = 0.

Since we are assuming that s > 1
2 , we claim that

(53)
∫

Rn
ζ1 E Z̃n+1 = Aδk2s−n

(
−2

n−2s
2

( ∞∑
j=1

1
jn−2s

)
δ+ 1

)
+ k1−n2k(δ)

and

(54)
∫

Rn
γN(φ1)Z̃n+1 = k−(n−2s)k1− n

q 2k(δ),
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where 2k(δ) denotes a continuous function of δ, which is uniformly bounded, as
k →∞. Since n − 2s > 1 for any s ∈

(1
2 , 1

)
, from (53) and (54) we obtain the

existence of a unique δ solution to (52) with

δ =

(
2

n−2s
2

( ∞∑
j=1

1
jn−2s

))−1

(1+ O(k1−2s)).

What is left of this section is devoted to the proof of (53) and (54).

Proof of (53). We write∫
Rn
ζ1 E Z̃n+1 =

∫
Rn

E Z̃n+1+

∫
Rn
(ζ1− 1)E Z̃n+1.

Expanding the first term, we get∫
Rn

E Z̃n+1 =

∫
B1

E Z̃n+1+

∫
Rn\

⋃
Bj

E Z̃n+1+
∑
j 6=1

∫
Bj

E Z̃n+1 := I1+ I2+ I3,

where Bj = B(ξj ,
η

k ). With the scaling x = µy+ ξ1 and writing

Ẽ(y)= µ
n+2s

2 E(ξ1+µy),

we get ∫
B1

E Z̃n+1 =

∫
B(0, η

µk )

Ẽ1(y)Zn+1(y) dy.

Thus

I1 =

∫
B(0, η

µk )

Ẽ1 Zn+1(y) dy

=−γ p
∑
j 6=1

∫
B(0, η

µk )

U p−1U(y−µ−1(ξj − ξ1))Zn+1

+ γ pµ
n−2s

2

∫
B(0, η

µk )

U p−1U(ξ1+µy)Zn+1 dy

+ γ p
∫

B(0, η
µk )

(
(U(y)+ sV (y))p−1

−U p−1)V (y)Zn+1 dy

+ γ
∑
j 6=1

∫
B(0, η

µk )

U p(y−µ−1(ξj − ξ1))Zn+1

−µ
n+2s

2 γ

∫
B(0, η

µk )

U p(ξj +µy)Zn+1 dy,
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where

V (y)=
(
−

∑
j 6=1

U(y−µ−1(ξj − ξ1))+µ
n−2s

2 U(ξ1+µy)
)
.

For j 6= 1, and by Taylor expansion,

U(y+µ−1(ξ1− ξj ))=
2

n−2s
2 µn−2s

|ξ̂ j − ξ̂1|n−2s
(1+ O(µ2k2)),

where ξ̂1 = (1, 0, . . . , 0) and

ξ̂ j = e
2π( j−1)

k ξ̂1;

thus∫
B(0, η

µk )

U p−1U(y−µ−1(ξj − ξ1))Zn+1

=
2

n−2s
2 µn−2s

|ξ̂ j − ξ̂1|n−2s

∫
B(0, η

µk )

U p−1(1+ O(µ2k2))Zn+1

=
2

n−2s
2 µn−2s

|ξ̂ j − ξ̂1|n−2s

(∫
Rn

U p−1 Zn+1−

∫
Rn\B(0, η

µk )

U p−1 Zn+1

+ O(µ2k2)

∫
B(0, η

µk )

U p−1 Zn+1

)

=
2

n−2s
2 µn−2s

|ξ̂ j − ξ̂1|n−2s

(
C1+ O(µ2sk2s)+ O(µ2k2)

)
=

2
n−2s

2 µn−2s

|ξ̂ j − ξ̂1|n−2s
C1(1+ O(µ2sk2s)),

where

C1 =

∫
Rn

U p−1 Zn+1.

For the second term,

µ
n−2s

2

∫
B(0, η

µk )

U p−1U(ξ1+µy)Zn+1 dy = µ
n−2s

2 C1(1+ O(µ2sk2s)).
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Furthermore,∣∣∣∣∫
B(0, η

µk )

(
(U(y)+ sV (y))p−1

−U p−1)V (y)Zn+1 dy
∣∣∣∣

≤

∣∣∣∣∑
i 6=1

∫
B(0, η

µk )

U p(y−µ−1(ξj − ξ1))Zn+1

∣∣∣∣
≤ C

∑
i 6=1

µn+2s

|ξ̂1− ξ̂i |
n+2s

∫
B(0, η

µk )

1
(1+ |y|)n−2s

≤ C(µk)−2s
∑
i 6=1

µn+2s

|ξ̂1− ξ̂i |
n+2s

and∣∣∣∣µ n+2s
2 γ

∫
B(0, η

µk )

U p(ξj +µy)Zn+1 dy
∣∣∣∣

≤ Cµ
n+2s

2

∫
B(0, η

µk )

1
(1+ |y|)n−2s dy ≤ Cµ

n−2s
2 k−2s.

Therefore, we conclude that

I1 = Aδk−(n−2s)
(
−2

n−2s
2

( ∞∑
j=1

1
jn−2s

)
δ+ 1

)
+ k−n2k(δ),

where 2k(δ) is a smooth function of δ, which is uniformly bounded as k→∞.
Now we are going to estimate I2. The Holder inequality gives∣∣∣∣∫

Rn\∪Bj

E Z̃n+1

∣∣∣∣
≤ C‖(1+ |y|)n+2s− 2n

q E‖Lq (Rn\∪Bj )

×
∥∥(1+ |y|)−n−2s+ 2n

q µ
n−2s

2 Zn+1(y+µ−1(ξj − ξ1))
∥∥

Lq/(q−1)(Rn\∪Bj )
.

A direct computation gives that∥∥(1+ |y|)−n−2s+ 2n
q µ

n−2s
2 Zn+1(y+µ−1(ξj − ξ1))

∥∥
Lq/(q−1)(Rn\∪Bj )

≤ Ck−n q−1
q

for some constant C > 0. Thus we conclude that

|I2| ≤ Ck1−n

since we have already proved — see (13) — that

‖(1+ |y|)n+2s− 2n
q E‖Lq (Rn\∪Bj )

≤ Ck1− n
q .
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Let j 6= 1 be fixed and Ẽ j (y)= µ
n+2s

2 E(ξj +µy). After the change of variable
x = µy+ ξj , we obtain∣∣∣∣∫

Bj

E Z̃n+1

∣∣∣∣= ∣∣∣∣µ n−2s
2

∫
B(0, η

µk )

Ẽ j Z̃n+1(µy+ ξj )

∣∣∣∣
≤ Cµ

n−2s
2 ‖(1+ |y|)n+2s− 2n

q Ẽ j‖Lq (B(0, η
µk ))

×
∥∥(1+ |y|)−n−2s+ 2n

qµ
n−2s

2 Zn+1(y+µ−1(ξj − ξ1))
∥∥

Lq/(q−1)(B(0, η
µk ))

.

We have∥∥(1+ |y|)−n−2s+ 2n
q µ

n−2s
2 Zn+1(y+µ−1(ξj − ξ1))

∥∥
Lq/(q−1)(B(0, η

µk ))

≤ C
µ

n−2s
2

|ξj − ξ1|n−2s

(∫ η
µk

1

tn−1

t (n+2s− 2n
q )

q
q−1

dt
)q−1

q

≤ C
µ

n−2s
2

|ξj − ξ1|n−2s (µk)2s− n
q

and ∥∥(1+ |y|)n+2s− 2n
q Ẽ j

∥∥
Lq (B(0, η

µk ))
≤ (µk)

n
q
(
1+ k−(n+2s)µ−

n−2s
2
)
.

Hence,

|I3| =

∣∣∣∣∑
j 6=1

∫
Bj

E Z̃n+1

∣∣∣∣
≤ µ

n−2s
2 (µk)

n
q
(
1+ k−(n+2s)µ−

n−2s
2
) k∑

j=1

µ
n−2s

2

|ξj − ξ1|n−2s (µk)2s− n
q

≤ Cµ
n−2s

2 k−2s

Finally, we conclude that

(55)
∫

Rn
E Z̃n+1 = Aδk−(n−2s)

(
−2

n−2s
2

( ∞∑
j=1

1
jn−2s

)
δ+ 1

)
+ k1−n2k(δ),

where 2k(δ) is a smooth function of δ, which is uniformly bounded as k→∞.
In order to complete the proof of (53), we first estimate:∣∣∣∣∫

Rn
(ζ1− 1)E Z̃n+1

∣∣∣∣≤ C
∣∣∣∣∫
|y−ξ1|>

η
k

E Z̃n+1

∣∣∣∣.
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Then we split the domain of integration:∫
|y−ξ1|>

η
k

E Z̃n+1 =

∫
⋂

j |y−ξj |>
η
k

E Z̃n+1+

k∑
j=2

∫
|y−ξj |<

η
k

E Z̃n+1

In the exterior region, we already proved that∫
⋂

j |y−ξj |>
η
k

E Z̃n+1 = k1−n2k(δ),

for some smooth function 2k of δ, which is uniformly bounded as k→∞. On the
another hand, to estimate

k∑
j=2

∫
|y−ξj |<

η
k

E Z̃n+1

we can argue like in the estimate of the term I3 above, thus concluding that∣∣∣∣ k∑
j=2

∫
|y−ξj |<

η
k

E Z̃n+1

∣∣∣∣≤ Ck−n

for some constant C > 0. �

Proof of (54). It is convenient to decompose

N(φ1)= Ñ (φ1)+ N (φ̃1)

where

Ñ (φ1)= p
(
|U∗|p−1ζ1−U p−1

1

)
φ̃1+ pζ1|U∗|p−19(φ1)

+ N
(
φ̃1+

∑
j 6=1

φ̃ j +9(φ1)

)
− N (φ̃1)

and
N (φ̃1)= |U∗+ φ̃1|

p−1(U∗+ φ̃1)− |U∗|p−1U∗− p|U∗|p−1φ̃1

We have that

I :=
∫

Rn
Ñ (φ1)Z̃n+1 = µ

n+2
2

∫
Rn

Ñ (φ1)(ξ1+µx)Zn+1(x) dx

so that, from the estimates found, we readily check

(56) |I | ≤ Ck2s−nk1− n
q

∫
Rn

U p−1
|Zn+1|.

On the other hand, if we let

II :=
∫

Rn
N (φ̃1)Z̃n+1,
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we find that
|II | ≤ ‖φ1‖∗

∫
Rn

U p−1
|φ1||Zn+1|.

Now, we notice that from (23), we can write

L0(φ1)+ aφ1 = g+
∑

l

clU p−1 Zl, where a = µ
n+2s

2 γ N (φ̃1)(ξ1+µy)

so that
|a| ≤ CU p−1

‖φ1‖∗ and |g| ≤ Cµ
n−2s

2 (1+ |y|)−4s.

Thus, applying Lemma 3.3 with ν = 4s, we find

|φ1| ≤ Cµ
n−2s

2 (1+ |y|)−2s

and we conclude that

|II | ≤ C‖φ1‖∗µ
n−2s

2 ≤ Ck2s−n− n
q .

Combining this with (56), we find∣∣∣∣∫
Rn
N(φ1)Z̃n+1

∣∣∣∣≤ Ck2s−nk1− n
q . �
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