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The unknotting number of a knot is the minimum number of crossings one
must change to turn that knot into the unknot. The algebraic unknotting
number is the minimum number of crossing changes needed to transform
a knot into an Alexander polynomial-one knot. We work with a generaliza-
tion of unknotting number due to Mathieu and Domergue, which we call the
untwisting number. The untwisting number is the minimum number (over
all diagrams of a knot) of right- or left-handed twists on even numbers of
strands of a knot, with half of the strands oriented in each direction, nec-
essary to transform that knot into the unknot. We show that the algebraic
untwisting number is equal to the algebraic unknotting number. However,
we also exhibit several families of knots for which the difference between
the unknotting and untwisting numbers is arbitrarily large, even when we
only allow twists on a fixed number of strands or fewer.

1. Introduction

It is a natural knot-theoretic question to seek to measure “how knotted up” a knot
is. One such “knottiness” measure is given by the unknotting number u(K ), the
minimum number of crossings, taken over all diagrams of K , one must change to
turn K into the unknot. By a crossing change we shall mean one of the two local
moves on a knot diagram given in Figure 1.

This invariant is quite simple to define but has proven itself very difficult to
master. Fifty years ago, Milnor conjectured that the unknotting number for the
(p, q)-torus knot was 1

2(p − 1)(q − 1); only in 1993, in two celebrated papers,
did Kronheimer and Mrowka [1993; 1995] prove this conjecture true. Hence, it is
desirable to look at variants of unknotting number which may be more tractable.
One natural variant (due to Murakami [1990]) is the algebraic unknotting number
ua(K ), the minimum number of crossing changes necessary to turn a given knot into
an Alexander polynomial-one knot. Alexander polynomial-one knots are significant
because they “look like the unknot” to classical invariants, knot invariants derived
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Figure 1. A positive and negative crossing change.

from the Seifert matrix. It is obvious that ua(K )≤ u(K ) for any knot K , and there
exist knots such that ua(K ) < u(K ) (for instance, any nontrivial knot with trivial
Alexander polynomial).

Mathieu and Domergue [1988] defined another generalization of unknotting
number. Livingston [2002] worked with this definition. He described it as follows:

“One can think of performing a crossing change as grabbing two parallel
strands of a knot with opposite orientation and giving them one full twist.
More generally, one can grab 2k parallel strands of K with k of the strands
oriented in each direction and give them one full twist.”

Following Livingston, we call such a twist a generalized crossing change. We
describe in Section 2A how a crossing change may be encoded as a ±1-surgery
on a nullhomologous unknot U ⊂ S3

− K bounding a disk D such that D ∩ K = 2
points. From this perspective, a generalized crossing change is a relaxing of the
previous definition to allow D ∩ K = 2k points for any k, provided lk(K ,U )= 0
(see Figure 2). In particular, any knot can be unknotted by a finite sequence of
generalized crossing changes.

One may then naturally define the untwisting number tu(K ) to be the minimum
length, taken over all diagrams of K , of a sequence of generalized crossing changes
beginning at K and resulting in the unknot. By tu p(K ), we will denote the min-
imum number of twists on 2p or fewer strands needed to unknot K ; notice that
tu1(K )= u(K ) and that

tu ≤ · · · ≤ tu p+1 ≤ tu p ≤ · · · ≤ tu1 = u.

...
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...... ... ...

...

= =

Figure 2. A right-handed, or positive, generalized crossing change.
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Figure 3. The generalized crossing change for V ⊂ S3 which
results in a knot K ⊂ S3 with tu(K ) 6= u(K ).

The algebraic untwisting number tua(K ) is the minimum number of generalized
crossing changes, taken over all diagrams of K , needed to transform K into an
Alexander polynomial-one knot. It is clear that tua(K )≤ tu(K ) for all knots K .

It is natural to ask how tu(K ) and u(K ) are related. We show that these invariants
are “algebraically the same” in the following sense:

Theorem 1.1. For any knot K ⊂ S3, tua(K )= ua(K ).

Therefore, tu and u cannot be distinguished by classical invariants. By using the
Jones polynomial, which is not a classical invariant, we can show that tu and u are
not equal in general:

Theorem 1.2. Let K be the image of V ⊂ S3 in the manifold M ∼= S3 resulting
from +1-surgery on the unknot U ⊂ S3 shown in Figure 3. Then tu(K ) = 1 but
u(K ) > 1.

Furthermore, using the fact that the absolute value of the Ozsváth–Szabó τ
invariant is a lower bound on unknotting number, we show in Section 5A that the
difference u− tu p can be arbitrarily large, and thus so can the difference u− tu.
Throughout this paper, K p,q will denote the (p, q)-cable of the knot K , where p
denotes the longitudinal winding and q the meridional winding.

Theorem 1.3. Let K be a knot in S3 such that u(K )= 1. If τ(K ) > 0 and p, q > 0,
then

u(K p,q)− tu p(K p,q)≥ p− 1.

In particular, if we take q = 1, then tu p(K p,q)= 1, while u(K p,q)≥ p.

It may seem that the above examples are “cheating” in some sense, as in each of
them the number of strands of K passing through the ±1-framed unknot U in the
generalized crossing change diagram is increasing along with u(K ). The following
theorem shows that u(K ) can be arbitrarily larger than tu(K ) even when we restrict
to doing q-generalized crossing changes for any fixed integer q ≥ 1.
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Theorem 1.4. For any knot K with u(K )= 1 and τ(K ) > 0, the infinite family of
knots J q

p := # p Kq,1 satisfies

u(J q
p )− tuq(J q

p )≥ p

for any integers p > 1, q > 0.

So far, all of the families of knots we have worked with are quite complicated,
in the sense that they are (p, q)-cables for large p or connected sums of such
cables. One may wonder whether it is possible to find a “simpler” knot K for
which tu(K ) < u(K ). One measure of “knot simplicity” is topological sliceness;
a knot K is topologically slice if there exists a locally flat disk D ⊂ B4 such that
∂D = K ⊂ S3

= ∂B4.

Theorem 1.5. For any knot K with τ(K ) > 0, let D+(K , 0) denote the positive-
clasped, untwisted Whitehead double of K . Then the knots Sq

p := # p
(D+(K , 0))q,1

are topologically slice and satisfy

u(Sq
p)− tuq(Sq

p)≥ p

for all integers p > 0, q > 0.

This paper is organized as follows. First, we will review the operations of Dehn
surgery on knots and knot cabling and define the untwisting number more precisely.
Next, we will give some background on the Blanchfield form which is necessary to
prove that tua = ua . Finally, we will prove that each of the above families of knots
gives arbitrarily large gaps between u and tu.

Convention. In this paper, all manifolds are assumed to be compact, orientable,
and connected.

2. Preliminaries

2A. Dehn surgery. In this section, we will describe the operation of Dehn surgery
on knots.

Definition 2.1. Let K ⊂ S3 be an oriented knot and U ⊂ S3 be an unknot with
lk(K ,U ) = 0. Let W be a closed tubular neighborhood of U in S3. Let λ be a
longitude of W , and letµ be a meridian of W such that lk(µ, λ)=1. The 3-manifold

M = (S3
− W̊ )∪h W,

where h : ∂W→ ∂W is a homeomorphism taking a meridian of W onto±µ+λ⊂W ,
is the result of ±1-surgery on U , and U is said to be ±1-framed. In this situation,
we define a generalized crossing change diagram for K to be a diagram of the
link K ∪U with the number ±1 written next to U , indicating that U is ±1-framed.
Figure 3 is an example of a generalized crossing change diagram for the unknot V .
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Figure 4. A right-handed twist about an unknotted component.

In the general case, note that the complement of N̊ ⊃ U in S3 is a solid torus,
which we may modify with a meridional twist. This alters K as follows: if D is a
disk bounded by U such that k strands of K pass through D in straight segments,
then each of the k straight pieces is replaced by a helix which screws through a
neighborhood of D in the right-hand sense (see Figure 4).

If U is −1-framed, the knot obtained by erasing U and twisting the strands of K
that pass through U as in Figure 4 represents the image of K under the −1-surgery
on U [Rolfsen 1976]. If instead U has framing +1, the knot obtained by erasing U
and giving K a left-handed meridional twist represents the image of K under the
+1-surgery on U . The process of performing a ∓-meridional twist on the comple-
ment of a±1-framed unknot U , then erasing U from the resulting diagram, is called
a blow-down on U . The inverse process of introducing an unknotted component U
to a surgery diagram consisting of a knot K , then performing a ±-meridional twist
on the complement of U to link it with K , is known as a blow-up on U and results
in a diagram consisting of K and the ∓1-framed unknot U , where lk(K ,U )= 0.

Now, it can be easily verified that blowing down the +1-framed unknot on the
left side of Figure 5 transforms the crossing labeled + into the crossing labeled −.
The inverse process of introducing an unknot to the right side of Figure 5 and
performing a −-meridional twist on its complement yields the positive crossing.

2B. Untwisting number. We define a ±-generalized crossing change on K as the
process of blowing down the ±1-framed unknot in a generalized crossing change
diagram for K . In this situation, K must pass through U an even number of times,
for otherwise lk(K ,U ) 6= 0. If at most 2p strands of K pass through U in a

+ −

blow down

blow up+1

Figure 5. Crossing changes as blow-downs of ±1-framed unknots.
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generalized crossing change diagram, we may call the associated ±-generalized
crossing change a ±p-generalized crossing change on K .

The result of a ±-generalized crossing change on K is defined to be the image
of K under the blow-down. The untwisting number tu(K ) of K is the minimum
length of a sequence of generalized crossing changes on K such that the result
of the sequence is the unknot, where we allow ambient isotopy of the diagram in
between generalized crossing changes. Note that by the reasoning on page 58 of
[Adams 1994], this definition is equivalent to taking the minimum length, over all
diagrams of K , of a sequence of generalized crossing changes beginning with a
fixed diagram of K such that the result of the sequence is the unknot, where we do
not allow ambient isotopy of the diagram in between generalized crossing changes.

For p = 1, 2, 3, . . . , we define the p-untwisting number tu p(K ) to be the mini-
mum length of a sequence of ±p-generalized crossing changes on K resulting in
the unknot, where we allow ambient isotopy of the diagram in between generalized
crossing changes.

It follows immediately that we have the chain of inequalities

(2-1) tu(K )≤ · · · ≤ tu p+1(K )≤ tu p(K )≤ · · · ≤ tu2(K )≤ tu1(K )= u(K ).

2C. Cabling. In this section, we define satellite and cable knots.

Definition 2.2. A closed subset X of a solid torus V ∼= S1
× D2 is called geometri-

cally essential in V if X intersects every PL meridional disk in V .
Let P ⊂ V ⊂ S3 be a knot which is geometrically essential in an unknotted solid

torus V . Let C ⊂ S3 be another knot and let V1 be a tubular neighborhood of C
in S3. Let h : V → V1 be a homeomorphism and let K be h(P). Then P is called
the pattern for the knot K , C is the companion of K , and K is called a satellite
of C with pattern P , or just a satellite knot for short.

If the homeomorphism h takes the preferred longitude and meridian of V , respec-
tively, to the preferred longitude and meridian of V1, then h is said to be faithful.
If P is the (p, q)-torus knot just under ∂V and h is faithful, then K is called the
(p, q)-cable based on C , denoted C p,q , or simply a cable knot.

Throughout this paper, we will denote the (p, q)-torus knot by Up,q since it is
the (p, q)-cable of the unknot U .

2D. The Blanchfield form. Let K ⊂ S3 be a knot. By 3 we shall denote the ring
Z[t±1

], and by � we will denote the field Q(t).

Twisted homology, cohomology groups, and Poincaré duality. Following [Borodzik
and Friedl 2014], let X be a manifold with infinite cyclic first homology, and fix
a choice of isomorphism of H1(X) with the infinite cyclic group generated by
the indeterminate t . Let π : X̃ → X be the infinite cyclic cover of X . Given a
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submanifold Y of X , let Ỹ = π−1(Y ). Since Z is the deck transformation group
of X̃ , 3 acts on the relative chain group C∗(X̃ , Ỹ ;Z). If N is any 3-module, we
may define

H∗(X, Y ; N ) := H∗(Hom3(C∗(X̃ , Ỹ ;Z), N ))

and

H∗(X, Y ; N ) := H∗
(

C∗(X̃ , Ỹ ;Z)⊗3 N
)
.

Here, if H is any 3-module, H denotes the module with the involuted 3-structure:
multiplication by p(t) ∈ 3 in H is the same as multiplication by p(t−1) in H .
When Y =∅, we just write H∗(X; N ) or H∗(X; N ).

Since � :=Q(t) is flat over 3, we have isomorphisms

H∗(X, Y ;�)∼= H∗(X, Y ;3)⊗3�

and

H∗(X, Y ;�)∼= H∗(X, Y ;3)⊗3�.

If X is an n-manifold, and N is a 3-module, Poincaré duality gives 3-module
isomorphisms

Hi (X, ∂X; N )∼= H n−i (X; N ).

The Blanchfield form. As above, let3=Z[t, t−1
] and�=Q(t). Let A be an n×n

invertible hermitian matrix with entries in 3. We define λ(A) to be the pairing

λ(A) :3n/A3n
×3n/A3n

→�/3

sending the pair of column vectors (a, b) to āt A−1b. Note that λ(A) is a nonsingular,
hermitian pairing.

Let X (K ) = S3
− N (K ) denote the exterior of K . Consider the sequence of

maps
8 : H1(X (K );3)

π∗
−→ H1(X (K ), ∂X (K );3)
PD
−→ H 2(X (K );3) δ

←− H 1(X (K );�/3)
ev
−→Homλ(H1(X (K );3),�/3).

Here π∗ is induced by the quotient map C(X)→C(X)/C(∂X), PD is the Poincaré
duality map, δ is from the long exact sequence in cohomology obtained from
the coefficients 0→ 3→ �→ �/3→ 0, and ev is the Kronecker evaluation
map. It is well known (see [Hillman 2012, Section 2] for details) that π∗ and δ
are isomorphisms, PD is the Poincaré duality isomorphism, and ev is also an
isomorphism by the universal coefficient spectral sequence (see [Levine 1977,
Theorem 2.3] for details on the universal coefficient spectral sequence). Thus, the
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above maps define a nonsingular pairing

λ(K ) : H1(X (K );3)× H1(X (K );3)→�/3,

(a, b) 7→8(a)(b),

called the Blanchfield pairing of K . This pairing is hermitian.
Now, let V be any 2k×2k matrix which is S-equivalent to a Seifert matrix for K .

Recall that V − V T is antisymmetric with determinant ±1. It is well known that,
perhaps after replacing V by PV PT for some P ∈ GL2k(Z),

(2-2) V − V T
=

(
0 −Ik

Ik 0

)
,

where Ik denotes the k× k identity matrix. We define AK (t) to be the matrix(
(1−t−1)−1 Ik 0

0 Ik

)
V
(

Ik 0
0 (1−t)Ik

)
+

(
Ik 0
0 (1−t−1)Ik

)
V T
(
(1−t)−1 Ik 0

0 Ik

)
.

Using (2-2), we can write

V =
(

B C + I
CT D

)
.

One may then compute, as in the proof of [Borodzik and Friedl 2015, Lemma 2.2],
that

AK (1)=
(

B −Ik

−Ik 0

)
.

Thus, the matrix AK (t) is a hermitian matrix defined over3, and det(AK (1))=(−1)k.

Proposition 2.3 [Borodzik and Friedl 2015, Proposition 2.1]. Let K be a knot and
AK (t) be as above. Then λ(AK (t)) is isometric as a sesquilinear form to λ(K ).

2E. The twisted intersection pairing. Let W be a topological 4-manifold with
boundary M such that π1(W )= Z. Consider the maps

H2(W ;3)
π∗
−→ H2(W,M;3) PD

−→ H 2(W ;3) ev
−→Hom3(H2(W ;3),3),

where the first map is induced by the quotient, the second map is Poincaré duality,
and the third map is the Kronecker evaluation map. The second and third maps are
obviously isomorphisms, and the first map is an isomorphism by the long exact
sequence of the pair (W,M). Hence this composition defines a pairing

H2(W ;3)× H2(W ;3)→3,

which we call the twisted intersection pairing on W .
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3. Algebraic untwisting number equals algebraic unknotting number

Our proof that tua(K ) = ua(K ) generalizes [Borodzik and Friedl 2014; 2015].
Following [Borodzik and Friedl 2014], define a knot invariant n(K ) to be the
minimum size of a square hermitian matrix A(t) over Z[t±1

] such that λ(A) is
isometric to λ(K ) and A(1) is congruent over Z to a diagonal matrix which has only
±1 entries. Borodzik and Friedl showed that ua(K )=n(K ). Since tua(K )≤ua(K ),
it is obvious that tua(K )≤ n(K ) as well. After stating Borodzik and Friedl’s results,
we will show that n(K )≤ tua(K ); hence tua(K )= n(K )= ua(K ) for all knots K .
In fact, we will show something stronger.

Theorem 3.1. Let K ⊂ S3 be a knot. For every algebraic unknotting sequence for K
with u+ positive crossing changes and u− negative crossing changes, there exists an
algebraic untwisting sequence for K with u+ positive generalized crossing changes
and u− negative generalized crossing changes. In particular, ua(K )= tua(K ).

In order to prove Theorem 3.1, we must first recall some notation and results
used in [Borodzik and Friedl 2015]. The main theorem of that paper implies that
n(K )≤ ua(K ):

Theorem 3.2 [Borodzik and Friedl 2015, Theorem 1.1]. Let K be a knot which can
be changed into an Alexander polynomial-one knot by a sequence of u+ positive
crossing changes and u− negative crossing changes. Then there exists a hermitian
matrix A(t) of size u++ u− over 3 such that

(1) λ(A(t)) is isometric to λ(K );

(2) A(1) is a diagonal matrix such that u+ diagonal entries are equal to −1 and
u− diagonal entries are equal to 1.

In particular, n(K )≤ ua(K ).

We need one definition:

Definition 3.3. Let K be a knot and M(K ) the result of 0-surgery on K . A
4-manifold W tamely cobounds M(K ) if

(1) ∂W = M(K );

(2) the inclusion induced map H1(M(K );Z)→ H1(W ;Z) is an isomorphism;

(3) π1(W )= Z.

If, in addition, the intersection form on H2(W ;Z) is diagonalizable, we say that W
strictly cobounds M(K ).

Theorem 3.4 [Borodzik and Friedl 2015, Theorem 2.6]. Let K be a knot and let W
be a topological 4-manifold which tamely cobounds M(K ). Then H2(W ;3) is
free of rank b2(W ). Moreover, if B is an integral matrix representing the ordinary
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intersection pairing of W , then there exists a basis B for H2(W ;3) such that the
matrix A(t) representing the twisted intersection pairing with respect to B satisfies

(1) λ(A(t)) is isometric to λ(K );

(2) A(1)= B.

We generalize Theorem 3.2 as follows:

Theorem 3.5. Let K be a knot which can be changed into an Alexander polynomial-
one knot by a sequence of u+ positive and u− negative generalized crossing changes.
Then there exists a hermitian matrix of size u++ u− over 3 with the properties

(1) λ(A(t)) is isometric to λ(K );

(2) A(1) is a diagonal matrix such that u+ diagonal entries are equal to−1 and u−
diagonal entries are equal to 1.

In particular, n(K )≤ tua(K ).

The proof of Theorem 3.5 is similar to that of Theorem 3.2. By Theorem 3.4, in
order to prove Theorem 3.5, we only need to show the following proposition.

Proposition 3.6. Let K be a knot such that u+ positive generalized crossing
changes and u− negative generalized crossing changes turn K into an Alexander
polynomial-one knot. Then there exists an oriented topological 4-manifold W
which strictly cobounds M(K ). Moreover, the intersection pairing on H2(W ;Z)
is represented by a diagonal matrix of size u++ u− such that u+ entries are equal
to −1 and u− entries are equal to +1.

Proof. Let K be a knot such that u+ positive generalized crossing changes and u−
negative generalized crossing changes turn K into an Alexander polynomial-one
knot J . We write s = u+ + u− and ni = −1 for i = 1, . . . , u+ and ni = 1 for
i = u+ + 1, . . . , u+ + u−. Then there exist simple closed curves c1, . . . , cs in
S3
− N (J ) such that

(1) c1 ∪ · · · ∪ cs is the unlink in S3;

(2) the linking numbers lk(ci , K ) are zero for all i ;

(3) the image of J under the ni -surgeries is the knot K .

Note that the curves c1, . . . , cs lie in S3
− N (J ); hence we can view them as lying

in M(J ). The manifold M(K ) is then the result of ni -surgery on all the ci ⊂ M(J ),
where i = 1, . . . , s.

Since J is a knot with trivial Alexander polynomial, by Freedman’s theorem
[Freedman and Quinn 1990] J is topologically slice and there exists a locally flat
slice disk D ⊂ B4 for J such that π1(B4

− D)= Z. Let X := B4
− N (D). Then X

is an oriented topological 4-manifold such that

(1) ∂X ∼= M(J ) as oriented manifolds;



THE UNTWISTING NUMBER OF A KNOT 149

(2) π1(X)∼= Z;

(3) the inclusion induced map H1(M(J );Z)→ H1(X;Z) is an isomorphism;

(4) H2(X;Z)= 0.

Let W be the 4-manifold which is obtained by adding 2-handles along c1, . . . , cs ⊂

M(J ) with framings n1, . . . , ns to X . Then ∂W ∼= M(K ) as oriented mani-
folds. From now on, we write M := M(K ). Since the curves c1, . . . , cs are null-
homologous, the map H1(M;Z)→ H1(W ;Z) is an isomorphism and π1(W )∼= Z.
It thus remains to prove the following lemma:

Lemma 3.7. The ordinary intersection pairing on W is represented by a diagonal
matrix of size s = u++ u− with u+ diagonal entries equal to −1 and u− diagonal
entries equal to 1.

Recall that the curves c1, . . . , cs form the unlink in S3 and that the linking num-
bers lk(ci , J ) are zero. Therefore, the curves c1, . . . , cs are also nullhomologous
in M(J ). Thus we can now find disjoint surfaces F1, . . . , Fs in M(J )×[0, 1] such
that ∂Fi = ci × {1}. By adding the cores of the 2-handles attached to the ci , we
obtain closed surfaces C1, . . . ,Cs in W . It is clear that Ci ·C j = 0 for i 6= j and
Ci ·Ci = ni .

We argue using Mayer–Vietoris that the surfaces C1, . . . ,Cs present a basis for
H2(W ;Z). Write W := X ∪ H , where H ∼=

⊔s
i=1(B

2
× B2) is the set of 2-handles

attached to c1, . . . , cs . Then write Y := X ∩ H , so that

Y =
s⊔

i=1
N (ci )∼=

s⊔
i=1
(S1
× D2).

We have the Mayer–Vietoris sequence

· · · →H2(X)⊕H2(H)
ψ∗
−→H2(W )

∂∗
−→H1(Y )

φ∗
−→H1(X)⊕H1(H)

ψ∗
−→H1(W )→0.

Now, since H1(Y ) is generated by all the S1-factors, or the longitudes c1, . . . , cs ,
and H1(H)= H2(H)= H2(X)= 0, the sequence becomes

0→ H2(W )
∂∗
−→〈c1, . . . , cs〉

i∗
−→ H1(X)

ψ∗
−→ H1(W )→ 0.

From [Livingston 1993, Lemma 8.12], for example, we have:

Lemma 3.8. Suppose that for some knot K in S3, there is a locally flat surface F
in B4 with F ∩ S3

= ∂F ∩ S3
= K . Then the inclusion map induces an isomorphism

H1(S3
− K )→ H1(B4

− F)∼= Z.

In our case, the inclusion S3
− K ↪→ X induces an isomorphism H1(S3

− K )→
H1(X). Since i∗ is induced by inclusion and the longitudes c1, . . . , cs are null-
homologous in S3

− K , we see that i∗ must be the zero map in X . Hence ∂∗ is an
isomorphism H2(W )∼= H1(Y ), and H2(W )= 〈C1, . . . ,Cs〉.
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In particular, the intersection matrix on W with respect to this basis is given by
(Ci ·C j ), i.e., it is a diagonal matrix such that u+ diagonal entries are equal to −1
and u− diagonal entries are equal to +1. This concludes the proof of Lemma 3.7.
Proposition 3.6 follows. Together with Theorem 3.4, this completes the proof of
Theorem 3.5. �

We have shown that, for every untwisting sequence for K with u+ positive
generalized crossing changes and u− negative generalized crossing changes, there
exists a hermitian matrix A(t) of size u+ + u− such that λ(A(t)) is isometric
to λ(K ) and A(1) is diagonal with u+ entries equal to −1 and u− entries equal
to 1. Borodzik and Friedl [2014] have already shown that, for every hermitian
matrix A(t) representing λ(K ) such that A(1) is diagonal with u+ −1’s and u−
+1’s, there exists an algebraic unknotting sequence for K consisting of u+ positive
and u− negative crossing changes. Theorem 3.1 follows.

4. Untwisting number does not equal unknotting number

Although the algebraic versions of tu and u are equal, tu 6= u in general. We use a
result of Miyazawa [1998] to give our first example of a knot K with tu(K )= 1
but u(K ) > 1.

Theorem 4.1. Let K be the knot resulting from blowing down the +1-framed
unknot U ⊂ S3

\V in Figure 3. Then tu(K )= 1 but u(K ) > 1.

From this point forward, we will denote the signature of any knot K by σ(K ).
In order to analyze the unknotting number of K , we will use the following theorem:

Theorem 4.2 [Miyazawa 1998]. If u(K )= 1 and σ(K )=±2, then

V (1)
K (−1)≡ 24a4(K )− 1

8σ(K )(det K + 1)(det K + 5) (mod 48),

where V (1)
K denotes the first derivative of the Jones polynomial of K and a4 is the

coefficient of z4 in the Conway polynomial ∇K (z)=
∑
∞

n=0 a2n(K )z2n .

We compute using the Mathematica package KnotTheory (http://katlas.org/wiki/
The_Mathematica_Package_KnotTheory) that σ(K )= 2; therefore Theorem 4.2
applies. We also compute using the KnotTheory package that the Jones polynomial
VK (q) for our knot K is

VK (q)= q − q2
+ 2q3

− q4
+ q6
− q7
+ q8
− q9
− q12

+ q13
;

hence V (1)
K (−1)= 8. The Conway polynomial of K is computed to be

∇K (z)=
∞∑

n=0

a2n(K )z2n
= 1+ z2

http://katlas.org/wiki/The_Mathematica_Package_KnotTheory
http://katlas.org/wiki/The_Mathematica_Package_KnotTheory
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(hence a4 = 0), and the determinant of K is 3. In our case, the right-hand side of
the congruence in Theorem 4.2 becomes

0− 1
4(4)(8)=−8

and 8 6≡−8 (mod 48). Hence K cannot have unknotting number one, although it was
constructed to have untwisting number one. Note that this also shows Miyazawa’s
Jones polynomial criterion does not extend to untwisting-number-one knots.

5. Arbitrarily large gaps between unknotting and untwisting numbers

5A. Arbitrarily large gaps between u and tu p. Now that we have shown that there
exists a knot K with tu(K ) < u(K ), it is natural to ask how large the difference
u(K )− tu(K ) can be. Recall that the (p, q)-cable of a knot K is denoted K p,q ; we
denote the (p, q)-torus knot by Up,q , the (p, q)-cable of the unknot. The knots we
will be working with are (p, q)-cables of knots K with u(K )= 1 and τ(K ) > 0,
where p, q > 0.

To get a lower bound on u(K p,q) for such knots, we compute τ(K p,q) for all p, q .
For cables of alternating (or more generally, “homologically thin”) knots such as
the trefoil, Petkova [2013] gives a formula for computing τ . However, since we will
later compute τ for cables of nonalternating knots, we use a more general method
of computing τ(K p,q) using the ε-invariant ε(K ) ∈ {−1, 0, 1} introduced by Hom:

Theorem 5.1 [Hom 2014]. Let K ⊂ S3.

(1) If ε(K )= 1, then τ(K p,q)= pτ(K )+ 1
2(p− 1)(q − 1).

(2) If ε(K )=−1, then τ(K p,q)= pτ(K )+ 1
2(p− 1)(q + 1).

(3) If ε(K )= 0, then τ(K )= 0 and

τ(K p,q)= τ(Up,q)=

{
1
2(p− 1)(q + 1), q < 0,
1
2(p− 1)(q − 1), q > 0.

Theorem 5.2 [Ozsváth and Szabó 2003]. For the (p, q)-torus knot Up,q with
p, q > 0, τ equals the 3-sphere genus of Up,q , denoted g(Up,q):

τ(Up,q)= g(Up,q)=
1
2(p− 1)(q − 1).

Proposition 5.3 [Hom 2014]. Let K ⊂ S3 be a knot. If |τ(K )| = g(K ), then
ε(K )= sgn τ(K ).

Theorem 5.4. Let K be a knot in S3 with unknotting number one. If τ(K ) > 0 and
p, q > 0, then

u(K p,q)− tu p(K p,q)≥ p− 1.

In particular, tu p(K p,1)= 1, while u(K p,1)≥ p.
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Proof. Let V be the unknot that results from performing the unknotting crossing
change on K . Consider a generalized crossing change diagram for V together
with the ±1-framed surgery curve U that transforms V back into K . Then take
the (p, q)-cable Vp,q of V in this diagram, leaving U alone. The resulting Vp,q is
the (p, q)-torus knot before performing the ±1-surgery, but the image of V under
±1-surgery on U is K ; hence the image of Vp,q under the ±1-surgery on U is K p,q .
Therefore, blowing down the surgery curve U (through which Vp,q passes 2p times)
results in a diagram for K p,q in S3. Since K p,q and Vp,q differ by a single twist,

tu p(K p,q)≤ tu p(Vp,q)+ 1.

Since
tu p(Vp,q)≤ u(Vp,q)=

1
2(p− 1)(q − 1),

we get that
tu p(K p,q)≤

1
2(p− 1)(q − 1)+ 1.

In particular, this inequality shows that tu p(K p,1)= 1. If τ(K )> 0, then necessarily
ε(K ) 6= 0 by (3) of Theorem 5.1, so that ε(K )=±1. In this case,

τ(K p,q)= pτ(K )+ 1
2(p− 1)(q ∓ 1),

and thus

u(K p,q)≥ |τ(K p,q)| = pτ(K )+ 1
2(p− 1)(q ∓ 1)≥ p+ 1

2(p− 1)(q ∓ 1).

When q = 1, we get that u(K p,1)≥ p. Combining our estimates,

u(K p,q)− tu p(K p,q)≥
(

p+ 1
2(p− 1)(q ∓ 1)

)
−
(
1+ 1

2(p− 1)(q − 1)
)

≥
(

p+ 1
2(p− 1)(q − 1)

)
−
(
1+ 1

2(p− 1)(q − 1)
)

≥ p− 1. �

5B. Arbitrarily large gaps between u and tuq . The above examples {K p,1} show
that for every p there exists a knot K p,1 with u(K p,1)≥ p, even though tu p(K p,1)=1.
However, in order to untwist any such K p,1, we must twist at least 2p strands at
once. A natural follow-up question is whether there exists a knot K with u(K )≥ p
that can be untwisted by a single ±q-generalized crossing change, where q < p.
More generally, we may ask whether, for any fixed q, there is a family of knots
which give us arbitrarily large gaps between u and tuq . We answer this question in
the affirmative.

Theorem 5.5. Let K be a knot with u(K )= 1 and τ(K )> 0, and let J q
p := # p Kq,1.

For any p > 0 and q > 1, we have tuq(J
q
p )≤ p and u(J q

p )− tuq(J
q
p )≥ p.

Proof. First, we note that for any knot K , J q
p = # p Kq,1 can be unknotted by per-

forming p generalized crossing changes on at most 2q strands each, one generalized
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crossing change to unknot each copy of Kq,1. Therefore, tuq(J
q
p )≤ p. Since τ is

additive under connected sum,

τ(J q
p )= p · τ(Kq,1)≥ pq,

and hence u(J q
p )≥ pq for all p. Therefore,

u(J q
p )− tuq(J q

p )≥ pq − p = p(q − 1)≥ p, �

Note. In the case where K has σ(K )=±2, e.g., when K is a right-handed trefoil
knot, we can do better by computing tuq precisely. We use the fact that 1

2 |σ(K )|
is a lower bound for tuq(K ) for any q. First, recall that the Tristram–Levine
signature function of a knot K , σω(K ), is equal to the signature of the matrix
(1−ω)V + (1−ω)V T , where ω ∈ C has norm 1 and V is a Seifert matrix for K .
Note that

σ−1(K )= σ(2(V + V T ))= σ(V + V T )= σ(K ).

We use Litherland’s formula [1979] for Tristram–Levine signatures of cable knots
to compute that

σ−1(K p,q)= σ(−1)p(K )+ σ−1(Up,q)

and, since σ1 ≡ 0, while σ−1 = σ ,

σ(Kq,1)=

{
σ(K )+ σ(Uq,1)= σ(K ), q odd,
σ (Uq,1)= 0, q even,

since the (q, 1)-torus knot is the unknot for any q . Now, since the knot signature is
additive over connected sum,

σ(J q
p )= pσ(Kq,1)=

{
σ(K ) · p =±2p, q odd,
0, q even,

and therefore, when p is odd,

tuq(J q
p )≥

1
2 |σ(κ

q
p)| = p.

Since we already know tuq(J
q
p ) ≤ p, in fact we must have tuq(J

q
p ) = p for odd

p ≥ 1.

5C. Arbitrarily large gaps between u and tuq for topologically slice knots. Con-
sider the diagram of an unknot U (K ) in Figure 6, where K is any knot with
τ(K ) > 0. Let p ≥ 2 be an integer.

We take the (q, 1)-cable of U (K ), which is still an unknot. Then, we perform a
−1-twist on the +1-framed unknot, obtaining a knot Sq . Clearly, tuq(Sq)= 1.

Furthermore, Sq is the (q, 1)-cable of the knot D+(K , 0), the untwisted White-
head double of K . This is because U (K ) represents D+(K , 0) in the manifold
obtained from the +1-surgery, and the cabling operation converts this knot into the
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+1
−w

(K )

K

Figure 6. The knot U (K ) (an unknot), together with a +1-surgery curve.

(q, 1)-cable of D+(K , 0). Since untwisted Whitehead doubles are topologically
(but not necessarily smoothly) slice [Freedman and Quinn 1990], D+(K , 0) is
topologically concordant to the unknot. It is well known that, if K is concordant
to J , then Km,n is concordant to Jm,n for all integers m, n. Hence Sq,1 is also
topologically concordant to the unknot Uq,1, and therefore Sp is topologically slice
for all p.

Now, define Sq
p := # p D+(K , 0). Connected sums of topologically slice knots

are topologically slice; hence Sq
p is topologically slice. Moreover, as above, we

have that tuq(S
q
p)≤ p · tuq(Sq)= p.

We will now get a lower bound on u(Sq
p) and thus show that u(Sq

p)− tuq(S
q
p)

can be arbitrarily large. The Ozsváth–Szabó τ invariant gives such a lower bound.
Thus, we need to compute τ(Sq

p) for all p, q .
We show that ε(D+(K , 0))= 1 and hence, applying Theorem 5.1, that

τ(Sq)= qτ(D+(K , 0)).

We first compute τ(D+(K , 0)).

Theorem 5.6 [Hedden 2007]. Let D+(K , t) denote the positive t-twisted Whitehead
double of a knot K . Then

τ(D+(K , t))=
{

1, t < 2τ(K ),
0, otherwise.

Since τ(K ) > 0 in our case, t = 0 < 2 ≤ 2τ(K ), and so τ(D+(K , 0)) = 1.
Furthermore, as is the case with any Whitehead double, g(D+(K , 0)) = 1, so
|τ(D+(K , 0))| = 1= g(D+(K , 0)) and, by Proposition 5.3,

ε(D+(K , 0))= sgn τ(D+(K , 0))=+1.

We then apply Theorem 5.1 to Sq to get that

τ(Sq)= qτ(D+(K , 0)).
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Since τ(D+(K , 0)) = 1, we have that τ(Sq) = q and, hence, τ(Sq
p) = pq. Thus,

u(Sq
p)≥ pq. Therefore,

u(Sp)− tuq(Sp)≥ pq − p = p(q − 1)≥ p,

as desired.
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