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GERSTENHABER BRACKETS
ON HOCHSCHILD COHOMOLOGY
OF QUANTUM SYMMETRIC ALGEBRAS
AND THEIR GROUP EXTENSIONS

SARAH WITHERSPOON AND GUODONG ZHOU

We construct chain maps between the bar and Koszul resolutions for a quan-
tum symmetric algebra (skew polynomial ring). This construction uses a
recursive technique involving explicit formulae for contracting homotopies.
We use these chain maps to compute the Gerstenhaber bracket, obtaining
a quantum version of the Schouten—Nijenhuis bracket on a symmetric al-
gebra (polynomial ring). We compute brackets also in some cases for skew
group algebras arising as group extensions of quantum symmetric algebras.

1. Introduction

Hochschild [1945] introduced homology and cohomology for algebras. Gersten-
haber [1963] studied extensively the algebraic structure of Hochschild cohomology
—its cup product and graded Lie bracket (or Gerstenhaber bracket) — and conse-
quently algebras with such structure are generally termed Gerstenhaber algebras.
Many mathematicians have since investigated Hochschild cohomology for various
types of algebras, and it has proven useful in many settings, including algebraic
deformation theory [Gerstenhaber 1964] and support variety theory [Erdmann et al.
2004; Snashall and Solberg 2004].

The graded Lie bracket on Hochschild cohomology remains elusive in con-
trast to the cup product. The latter may be defined via any convenient projective
resolution. The former is defined on the bar resolution, which is useful theoreti-
cally but not computationally, and one typically computes graded Lie brackets by
translating to another more convenient resolution via explicit chain maps. Such
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chain maps are not always easy to find. One would like to define the graded Lie
structure directly on another resolution or to find efficient techniques for producing
chain maps.

In this paper, we begin in Section 2 by promoting a recursive technique for
constructing chain maps. The technique is not new; for example it appears in a book
of Mac Lane [1975]. See also [Le and Zhou > 2016] for a more general setting.
We first use this technique to construct chain maps between the bar and Koszul
resolutions for symmetric algebras, reproducing in Theorem 3.5 the chain maps of
[Shepler and Witherspoon 2011] that had been obtained via ad hoc methods. We
then construct new chain maps more generally for quantum symmetric algebras
(skew polynomial rings) in Theorem 4.6. We generalize an alternative description,
due to Carqueville and Murfet [2016], of these chain maps for symmetric algebras
to quantum symmetric algebras in (4.8). We use these chain maps to compute the
Gerstenhaber bracket on quantum symmetric algebras, generalizing the Schouten—
Nijenhuis bracket on the Hochschild cohomology of polynomial rings (Theorem 5.1).
We then investigate the Hochschild cohomology of a group extension of a quantum
symmetric algebra, obtaining results on brackets in the special cases that the action
is diagonal (Theorem 7.1) or that the Hochschild cocycles have minimal degree as
maps on tensor powers of the algebra (Corollary 7.4). In the latter case, we thereby
obtain a new proof that all such Hochschild 2-cocycles are noncommutative Poisson
structures (cf. [Naidu and Witherspoon 2016], in which algebraic deformation theory
was used instead). Some results on brackets for group extensions of polynomial
rings were given in [Halbout and Tang 2010] and [Shepler and Witherspoon 2012].

Let K be a field. All algebras will be associative k-algebras with unity and tensor
products will be taken over K unless otherwise indicated.

2. Construction of comparison morphisms

Let A be aring and let M and N be two left A-modules. Let P, (respectively, Q,)
be a projective resolution of M (respectively, N). It is well known that given a
homomorphism of A-modules f : M — N, there exists a chain map f,: P, — Q,
lifting f* (and different lifts are equivalent up to homotopy). Sometimes in practice
we need an explicit construction of such a chain map, called a comparison morphism,
to perform computations. In this section, we recall a method to construct chain maps
under the condition that P, is a free resolution (see [Mac Lane 1975, Chapter IX,
Theorem 6.2]). A method for arbitrary projective resolutions will be presented in
[Le and Zhou > 2016].
Let us fix some notation and assumptions. Suppose that

ar dP

d¥ df
. Pn n Pn—l n—1 1

Py(—> M —0)
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is a free resolution of M, that is, for eachn > 0, P, = AXn) for some set X, n.
(The module A" is a direct sum of copies of A indexed by X;,,. We identify
each element of X, with the identity 14 in the copy of A indexed by that element.)
Suppose that a projective resolution of N,

d° d° ae
C > O Qg -

dQ
Qo (—=> N —0),

comes equipped with a chain contraction: a collection of set maps t, : O, — Q41
foreachn >0andz_1 : N — Qg such that for n > 0, we have t,,_ld,,Q +d, =
Idg, and dOQ t_1 =1Id. We use these next to construct a chain map, f; : P, — QOn
for n > 0, lifting f—, := f. As P, is free, we need only specify the values of f;,
on elements of X}, the generating set of P,.

At first glance, it may appear that f, defined below will be the zero map, since
it is defined recursively by applying the differential more than once. However, the
maps f, are not in general 4-module homomorphisms. The formula (2.1) is used
only to define f; on free basis elements, and f;, is then extended to an A-module
map. In our examples the maps ¢, will be K-linear, but for the construction, they are
only required to be maps of sets, since we apply them only to basis elements. In
this weaker setting, such a collection of maps may be called a weak self-homotopy
as in [Bian et al. 2009].

For n = 0, given x € Xy, define fo(x) = 71— d(f(x). Then dOQfo(x) =
d21_y fdf (x) = fdf (x).

Suppose that we have constructed f, ..., f;—1 such that for 0 <i <n—1,
dl.Qf,- = f,-_ldl.P. For x € X}, define
@.1) Jn(x) =ty fum1d (%)
Then

a2 fu(x) = d@ty_y fu—1df (x)
= fur1df (¥) —tn2d 2 | furdF (x)
= fu1dy (X) = tn—2 fu-2dl_ d; (x)
= fu—1dy (X).
This proves the following.

Proposition 2.2. The maps fy defined in (2.1) form a chain map from P, to Q,
lifting f : M — N.

In the next two sections, we use this formula (2.1) to find explicit chain maps
for symmetric and quantum symmetric algebras, and in the rest of this article we
use the chain maps thus found in computations of Gerstenhaber brackets for these
algebras and their group extensions.
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3. Chain contractions and comparison maps for polynomial algebras

Let N be a positive integer. Let V' be a vector space over the field K with basis
X1,...,XN, and let

S(V):=K[x1,...,xn]

be the polynomial algebra in N indeterminates. This is a Koszul algebra, so there
is a standard complex K,(S(V)) that is a free resolution of 4 := S(V) as an
A-bimodule (equivalently as an 4¢°-module where A° = A4 ® A°P). We recall this
complex next: for each p, let AP (V) denote the p-th exterior power of V. Then
K,(S(V)) is the complex

> ANV RAL AN (V)R 4L AR 4 (L 4 —>0);

that is, for 0 < p < N, the degree p term is K»(S(V)):= A ® N’ (V) ® A. The
differential d), is defined by

dp(18® (xj, A+ Axj,) ® 1)

p

= Z(_I)H_lxji ® (xj; Ao AXj Avee AXj,) ® 1

i=1 P
S DT (A ARG A A, ® ),

i=1
whenever 1 < j; <--- < j, < N and p > 0; the notation X;; indicates that the
factor x;j; is deleted. The map d is multiplication.

From now on, we will write £ = (£4,...,€5), an N-tuple of nonnegative
integers, x = (x1,...,xy) and gcg = xfl ‘e x]evN. We shall give a chain contraction
of K,(S(V)) consisting of maps7_; : 4 - A® A and

L AN V)@ A—- AN (V)® 4

for p > 0. These maps will be left A-module homomorphisms, and thus we need
only define them on choices of free basis elements of these free left A-modules.

To define 7_, it suffices to specify 7_;(1) = 1 ® 1 and extend it A-linearly. If
p=0and £ e NV define

]
01850 == 3 360 T ) 9 @ ol )
j=1r=1

If p = 1, it suffices to give

ty(1® (xj, A-- A Xj,) @ xb)
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for £ e NV and 1 < j; <+ < Jp =N, and we set

(1@ (xj; A Axj,) ® x5
bt
_ (_1\Pt+1 Ip+1 ]p-i-l+1 In
_( 1) Z Z ]p+l ]n+1+1 XN)
Jp+1=jp+1 r=1

) ) 12 61p+1—1 r—1
®(x11/\"'/\xjp+1)®(x1 X1 x]'p+1)'

In the case j, = N, the sum is empty, and so the value of 7, on such an element is 0.

Proposition 3.1. The above-defined maps t,, p > —1, form a chain contraction for
the resolution K,(S(V)).

Proof. Tt is easy to verify that dgt—_; = Id. We need to show that for p > 0,
ty—1dp +dpy 1ty =1d. We first let p = 0, and show that 7_;do + d 1ty = 1d.
For £ € NV, we have t_1do(1®xY) = 1_1(x¥) =xt* ® 1, and

N &
O _ —r 514—1 AN . & A1 _r—1
hio(1@ 38 =i (= 30 D05 T xky @ @l x5
j=1r=1
_ —r+1 EH—I In {1 i1 _r—1
__ZZ Xiyr XN ®Xp XX
=1r=1
A N ¢
UANI RS 1_._ j=1,r
+ZZ Y Y ) ®x Y=Y
j=1r=1
N ¢i—1
_ Li—r €]+1 LN 41 i1 _r
__Z Zx Xigp XN ®X XX
j=1r=0
A ¢ ¢
—-r ]+l‘ 61_” j—1_r
j=1r=1
_ 4 it IN 4 £j—1
e ] j+1 ...xN ®x1 ...xj_l
j=1
Liv1 In 4 i1 &
+Z Xipp XN ®X XL X
N P N+1 P
_ il N 4y J—l LN & i
= ij dx, +Zx Xy ®x Xy
Jj=1

= xt®l+1ext
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We thus obtain (r_;do + d1t0)(1 @ xt) =xt @1 -xt @1+ 1@ xt =1®x¢ and
therefore confirm the equality. Note that in the above proof, there are many terms
which cancel one another.

The proof of the equality 7,_1dp +dp4 11, =1d for p > 1 is similar to the above
case p = 0, but is much more complicated. As in the case p = 0, for the cases
p = 1 we must change indices several times in order to cancel many terms. O

Now we can use the chain contraction of Proposition 3.1 to give formulae for
comparison morphisms between the normalized bar resolution and the Koszul
resolution. Such comparison morphisms were found in [Shepler and Witherspoon
2011] by ad hoc methods.

For any K-algebra A associative with unity, denote by 4 = A/(k- 1) a k-vector
space. The normalized bar resolution of A has p-thterm B,(4A) =A® A®P ® A
and differentials 6, : 4 ® A®PP @ A - AQ A®(P~1) @ A4 given by

p
Splag®a1 @ ®ap Rapy1) = Z(_l)lao®"'®a_iai+1®"'®ap+l
i=0
forag,...,ap41 € A, where an overline indicates an image in A. We shall see that

this resolution is suitable for computation using the method from Section 2.
There is a standard chain contraction of the normalized bar resolution,

sp AQAPP @4 —> A® A®PTD @ 4,
given by
32 (1T ® QG+ =DI"ea® - 0a, a1 1® 1.

Each s, is then extended to a left A-module homomorphism. For convenience, we
shall from now on abuse notation and write a; in place of a;.

A chain map from the Koszul resolution to the normalized bar resolution is given
by the standard embedding: for p > 0, define

D, AN (V)®A—> AR APP @ 4
by

(B.3) Pp(I®(xj; A---AXj,)® 1) = Z SENTT ® Xjr () B+ ® Xj () ® 1

7w €Sym,,

for 1 < j; <---<jp =N, where Sym, denotes the symmetric group on p symbols.
The other direction is much more complicated. We shall define ¥, : A® A®P®4
— A NP(V)® A for each p > 0. Let W, be the identity map. For p > 1,
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define W, by

G4 V,(1ext @--@x"®1)
— Z Z XQ(;I ..... ) ' . ® (xj;, Ao AXj)
= 2 J1 Jp

1<j1<-<jp=<N 0=<ry=<f$ —1 Al P ip)
s=1,..., D ®x (ry.....rp) ,
where, as in [Shepler and Witherspoon 2011], the N-tuple Q(Z p)’j tendn) g
defined by
(Q(e >e ’ ’]1, 5]17)) — rj+€]1+"'+£j_l ifj:jS’
1o N VSR if js <J < Js+1.
,,,,, L5 j1seesdp)

and where the N -tuple Q(r
Q(ﬁ' AP J1seesdp) "
(rl I 7rl7)

) is defined to be complementary to

in the sense that

@€l tPijp.ip) A€ P dp)

Q(r rp) (r rp)
15D X 1:--5tDP le...x]p

Zl

=x ---gcgp eklxy,...,xn]

Theorem 3.5 [Shepler and Witherspoon 2011]. Let ®, and WV, be as defined in
(3.3) and (3.4). Then

(1) the map @, is a chain map from the Koszul resolution to the normalized bar
resolution;

(ii) the map WV, is a chain map from the normalized bar resolution to the Koszul
resolution;

(iii) the composition ¥, o D, is the identity map.
Proof. (i) We check that this standard map follows from the method in Section 2,
in order to illustrate the method. We proceed by induction, applying (2.1) to the
chain contraction s, of the normalized bar resolution defined in (3.2).

The case p = 0 is trivial. Now suppose that for p > 0, ®,: A ® NV)RA—
A® A®P ® A is given by (3.3). We compute D,y 1 (1@ (xjy Ao AXjL ) ® 1),
where @, is defined by (2.1) in terms of ®,. We have

Pp+1(1® (xjy Ar oA X, ,) B 1)
= 8pPpdp+1(1® (xjy A+ A X)) @ 1)

p+1
= SP‘DP( DD @ (g A AR A AN, ® 1)
i=1

p+1
—SPCDP(Z(—I)’+1 ®(Xj1 /\---/\fcj'l. /\---/\xjp+1)®x,',.).

i=1
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Notice that the value of s, on

p+1
CDP( Z(_I)H_lxji ® (Xj; A+ AXj; N AXjpiy) ® 1)

i=1

is 0, since the rightmost tensor factor is 1, and we work with the normalized bar
resolution. For a permutation 7 € Sym,, that ﬁers some letter i, 1 <i < p+1,
consider the permutation 7 of the set {1,...,i—1,i,i+1,..., p+1} corresponding
to 7 via the bijection

(,....i—=lii+1,....pt~{1,...i—1ii+1,....p+1}

sending jto jforl <j<i—1landtoj+1fori <j<p.
Define a new permutation 7 € S, by imposing

7(j) for j <1,
a(j)=qa(j+1) fori<j<p+1,
i forj=p+1.

Then we have sgn 7 = (—1)?~i*1 sgn 7, and so

q)p+1(1 ®(.Xj1 A"'/\ij+1)® 1)

p+1
= _SP(DP( Z(_I)I—H ® (j; Ae s AXjp A AXj ) ®xji)

i=1

p+1
= _Sp( Z (-1t Z (=Pt SN T QX ()R- - '®xjﬁ(p)®xjﬁ(p+1))

i=1 TESH+1
a(p+1)=i
p+1
= —(-DP*! Z(_l)i+l Z (_1)p_i+1 SENTT @ Xjz 1)
i=1 TESH 11
Hptn=i ® B Xja(p) @ Xja(py® 1

= Z SENTT @ Xj (1) @+ ® Xjz () ® Xjz 41y ® 1.

freSpH

This completes the proof of (i).

(i1) As in (i), we apply the method in Section 2 to the chain contraction ¢, of
Proposition 3.1 to show that W, as defined in (3.4) is indeed the resulting chain
map. We proceed by induction on p.
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Suppose that W, is given by (3.4). Let us apply (2.1) and show that W, 1 | results.
First notice that we can write

(1 ®(xj; A=A X)) ®gc£)

e.
b1 N Pl iy 5 in D)
=(-1) Z xX=r ® Xjy A+ AXj, AXj, & X" .

jp+]=jp+1 r=1
We have

dpr1(10x ®--0x"" 1)

p . .
— ' ext g ex o1+ ()P ext @ ex T g .ax" 01
- gptl

+(_1)P+1 ®2€€1 ®®2€£p®2€-
Now consider

\I/p(zcgl ®2€£2 ® . ®2€€n+1® 1)

= Z Z EEIEQ&I ..... rp)

Isji<e=<ip=N j<po<eit!
s

1=s=<p

A2, PTG .. .
However, QE;I ) Jtomesdp ), by definition, has no terms of the form x; with
Z(Fyeenlp

u > jp. Thus, we have tp\IJp(gcﬁ1 ®g€£2 ®:-- ®gc£p+l® 1)=0.
Similarly we can prove that for 1 <i < p,

Wy (1 ®2€g1 ®...®E€i+ﬁi+l®...®gﬁ"+l® 1) =0.
The only term left is £, W, ((—1)?*1 ®gc£1 ®z€£2 - '®2€U®36€p+1). We obtain

ZP\DP((_l)JJH ®2€£1 ®2€£2®”-®2C£p®26£p+1)

. Q(gl ..... eP:j1.ip)
=(nrtt oy > ap(xCrrew ® Xj At AXG,
1<ji1<-<jp=<N 1srsse;s
1<s<p
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p+l
N Jp+1 @l

4 p; Jp) E:ip+1)
= E E E E xg(rl ..... p) ererl

1<ji<=<jp<N lﬁrsfljs.s]p+l_]p+1 r=1
1<s=<p

where
Q L 5.119 :jp)+£p+l

Now notice that

a, 7]17 ,Jp) (E _] +1) £P+1;j1,"',jp+l)
90, ) = off

Tp+1 Tp+1)
and
A(ﬁ;]’erl): ,\(el ep-l— ST ,]p-l—l)
Q’p+1 Q(rl, Fp+1)
We have the desired result:
1 p+1
tpUpdpr1(1®xE @ @xt" @)
1 p p+1
=, (-D M @yt @ @x @xt")
Qiel ..... ePJrl) ..... Jp+1)
= ) DDE SR @ Xjy A AXjppy
1=j1<=<jp+1=N 1=<ry=<tj
1<s<p+1
§=p Q(ﬁl ,,,, 22k PR ip+1)
®_x,(r1 ,,,,, 'p4+1)
1 p+1
=¥, (10xt ®---ext" e,

(iii) For 1 <i; <---<ip < N, we have

Vp®p(1® (X3 Ao AXi,) ®1)

= q"p( Z SENTT @ X1y @+ & Xip(,) @ 1)

7 €Sym,,
Q(ein(l) """
= E sgn E Z X=1-0p)
7 €Sym,, 1<ji<+<jp<N OSrss(ein(s))js_l
s=1,...,p ~
®xj1 /\.../\xjp ®2(jg

where e, is the u-th canonical basis vector (0,...,0,1,0,...,0), the 1 in the u-th
position, and

’\(elﬂ(l)a 7617.[(1,)5 ]l I 7jp)

_Q Q(rl,
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Notice that QEe’n(l)’;)"e’ﬂ(D);jl """ I») oecurs in the sum only if (1) Im(p) =
. . ool . . (@i (qysems e; 3 J1se-5Jp)
(J1.---. Jp). Here, m is the identity, ry =---=rp, =0and Q , l”(lfrp o ’

is the zero vector. Therefore,
Vp®p(1®@xi Ao AX;, ®1) = 1R X Ave-AXj, @ 1. O

For comparison, we give an alternative description of the maps ¥, due to
Carqueville and Murfet [2016]: for each 7, let 7; : S(V)¢ — S(V)¢ be the k-linear
map that is defined on monomials as follows. (We denote application of the map t;
by a left superscript.)

ti(x{I...x)lvN®xil ...xlN)

j1 Jim1 Ji+1 _ _JN Lo o it it In
=xqp e ey @ g g G el

Define difference quotient operators dj;1 : S(V) — S(V)¢ foreachi, 1 <i <N,
as in [Carqueville and Murfet 2016, (2.12)] by

TS @1)-TTE(f R 1)
Xi®1—1®x; '

I (f) =
For example, tl(xfxz RI=x® xlz, so that

x12x2®1—x2 ®xf
X1®1-1®x;

a[1](9612?Cz)= =X1X2®14+x, ®x1.

Similarly, d[y; (xfxz) =1® xf.

Identify elements in S(V)¢® A’ (V) with elements in S(V)R AP (V)®S (V) via
the canonical isomorphism between these two spaces. Then W, may be expressed
as in [Carqueville and Murfet 2016, (2.22)]:

vaext e ext" en= Y (ﬁ a[js](zcw)) ® Xjy Attt AXj,.
1<j1<+<jp=<N “s=1
For example, if N = 2, then
V(1®x2x0 1) =x1x®10x + 80X ®x +1Qx2®x,.
We may similarly express the chain contraction 7, as

N
tp(1@xj A AXG, ®xY) = (DT 3" a1 @ X, A Ay
Jp+1=Jp+1



234 SARAH WITHERSPOON AND GUODONG ZHOU

4. Chain contractions and comparison maps for quantum symmetric
algebras

Let N be a positive integer, and for each pair i, j € {1,2,..., N}, letg; j be a
nonzero scalar in the field K such that ¢; ; = 1 and g; ; = q;. Jl for all i, j. Denote
by ¢ the corresponding tuple of scalars, ¢ := (g;,j)1<i,j<n. Let V be a vector
space with basis xq,...,xy, and let

4.1) Sq(V):=k(xy,...,xn | xixj = qi jxjx; forall 1 <i, j <N},

be the quantum symmetric algebra determined by ¢. This is a Koszul algebra,
and there is a standard complex K.(S4(V')) that is a free resolution of S, (V)
as an S, (V)-bimodule (see, e.g., [Wambst 1993, Proposition 4.1(c)]). Setting
A = 84(V), the complex is

> AN R AL AN (V)@ A4 A0 A (L 4 —0),
with differential d), defined by

%O@WMw%mﬂ@D

_Z( 1)l+1(1_[qlvh)xh®(le AR A AXG)

i=1
_Z( 1)l+1(1_[qh Js) ®(xfl /\"'/\)ACJ';‘ /\"'/\xjp)®xji

i=1

whenever 1 < j; <--- < j, <N and p > 0; the map d is multiplication.
As in the previous section, we write £ = (£1,...,€yN), x = (x1,...,xn) and

xt = xfl -~~x]<,N. We shall give a chain contraction of K,(S4 (1)),

i AN (V)@A— AN (V)24

for p>0and?_;: A4 — A® A, which are moreover left A-module homomorphisms
(cf. [Wambst 1993)]).

Lett_;(1) = 1® I and extend 7_; to be left A-linear. For p >0, £ € NV and
1<ji<---+<jp=N,let

(1@ (xj, A= Axj,) ®x)
RN (g ) b —r £
— (_1\P+1 J1sesdp) _“ip41 Ip+1t+l AN
=1 Z Z Jp41r Vgt Vipg1+1 N
Jp+1=Jjp+1 r=1

. . 44 Cipp1—1 _r—1
Q Xjy A v  AXjp (@ X "o Xy Ly Xy
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where

s j1seeesdp)
Jp+1,F

Jp4+1— e r=1, P Gy iy p+1 ‘
(T T ) (Teten) (M N(TT 1T 6t)
s=1 t=jp41 t=1 =1 s=1t=jp41+1

Compared with the maps in the previous section for polynomial algebras, the
only difference is that now there is a new coefficient. This (rather complicated)
coefficient )\(*’ jll’r »7) can be obtained as follows: in the right side of the formula
for 7, in compérison to its argument 1 ® xj; A+ A Xj, ® xt on the left side,
whenever a factor x; of x¢ has changed positions so that it is now to the left of a
factor x; with i > j (including factors of the exterlor product), one should include
one factor of ¢ ;. One can verify easily that A T0nTn) o the given form. We

Jp+1.7
shall call this rule the twisting principle and we use it several times later.

Proposition 4.2. The above-defined maps t,, p > —1, form a chain contraction
over the resolution K,(Sq(V)).

Proof. One needs to verify that for n > 0, we have t,_1d, + dy+1t, = 1d and
dot—1 = Id. Notice that the computation used in the above equalities is the same as
that for polynomial algebras, except that now for quantum symmetric algebras, we
have some extra coefficients. One needs to show that these extra coefficients do not
cause any problem.

Recall that in the proof of Proposition 3.1, the concrete computation is simplified
by many terms which cancel one another. For example, this occurs in the verification
of the equation 7_;dy + d1t9 = Id in the proof of Proposition 3.1. For polynomial
algebras, the proof works due to these cancelling terms.

For quantum symmetric algebras, things are not so easy. However, the twisting
principle always holds; that is, when we apply a differential or chain contraction,
once we produce a monomial (always in lexicographical order) or tensor of monomi-
als, we need to include a coefficient before this monomial according to the twisting
principle. Thus, if two terms cancel each other for polynomial algebras, as we have
included the same coefficient, they still cancel for quantum symmetric algebras. [

Now we can use (2.1) and the chain contraction of Proposition 4.2 to give
formulae for comparison morphisms between the normalized bar resolution and the
Koszul resolution.

A chain map from the Koszul resolution to the normalized bar resolution is
induced from the standard embedding of the Koszul resolution into the (unnormal-
ized) bar resolution. See also [Wambst 1993, Lemma 5.3 and Theorem 5.4] for
a more general setting. We give the formula as it appears in [Naidu et al. 2011,
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§2.2(3)]. For p > 0, we define
D, AN (V)®A— AR A®? ® A
by

43) Dp(1®(xj, A-AX;,)®D) = > sgnm gy " ®x), @ QX ,®]
7w €Sym,,

.]lﬁ a_]p

for 1 < j; <--- < jp = N. In the above formula, the coefficients gz are the

scalars obtained from the twisting principle, that is,

_]l; 5]17 . . — PR .
4.4) dn Xjigy """ Xiny = Xj1 """ Xjp-

The other direction is much more complicated. We shall see that for quantum
symmetric algebras, the comparison morphism is a twisted version of that for a
polynomial ring given in the previous section, with certain coefficients included
according to the twisting principle.

We define the maps

U, AR A®? R4 - AN (V)® 4
as follows. Let Wy be the identity map. For p > 1, define ¥, by

45 v,(1ext @--@xt"®1)

@l tPijip)

_ (Zla ,Z”,]], 7.]F) Q(r _____ ;)
- Z Z 'U“(rl ..... rp) ! v

1=j1<<jp=N 0<ry<t] —1
s=1,...,p

®le/\.../\xjp®2€7(rl ~~~~ rp) ,

where, as before, we define the N -tuple Q(r1 m,ﬁ )’]1’ »Jp) by

(QU!wtstin)) Al e T =
Ernenry) U Ve if s < J < 1.

RO 2SN TP ) [ANN 2% O |
and where the N -tuple Q(rl’ o )’h’ ) and scalar [LE;I ’m’;p)’“’ J7) are defined
(uniquely) by
el..eP:jy.ip) AL tP i ip)
(e 5. 5 ’]ly a.] ) Q
(F1seees rp) ! reetr) Xjy oo Xj, X= T 1
=xt 2t e s, ).
. vk P j1seesdp) . .
The coefficient /“LE; ’ ’;p)’ Jt-0p) §5 obtained using the tw1st1ng principle in the

right side of the formula for W,, and Q(K """ Kp) J1:Jp) and Q(e """ gp)”'l """ Jr) are
the same as in the case of the polynomlal algebra K[xq,.. xn] For comparison,
we note that Wambst [1993, Lemma 6.7] gave such a chaln map in degree 1.
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Theorem 4.6. Let ©, and ¥, be as defined in (4.3) and (4.5). Then

(1) the map @, is a chain map from the Koszul resolution to the normalized bar
resolution;

(1) the map V, is a chain map from the normalized bar resolution to the Koszul
resolution;

(iii) the composition W, o @, is the identity map.

Proof. (1) One direct proof was given in [Naidu et al. 2011, Lemma 2.3]. (The
characteristic of k was assumed to be 0 in that paper; however, this assumption is
not needed in that proof.) Another proof can be given by applying (2.1) to a chain
contraction s, over the normalized bar resolution as in the proof of Theorem 3.5(i).
The twisting principle gives the coefficients.

(i1) One direct computational proof can be given by applying (2.1) to the chain
contraction ¢, of Proposition 4.2, as in the proof of Theorem 3.5(ii). Thus the same
proof as that of Theorem 3.5(ii) works, taking care with the coefficients, by the
twisting principle.

(iii) The same proof as that of Theorem 3.5(iii) works; by the twisting principle,
the coefficients on both sides of the equation coincide. O

We now give alternative descriptions of the maps 7, and W, in this case of
a quantum symmetric algebra. The description of W, will generalize that of
Carqueville and Murfet [2016] from S(V) to S, (V). To this end, it is conve-
nient to replace each term Sg (V) ® AP (V) ® Sq (V) of the Koszul resolution by
Sq(V)® Sq(V)® N (V), using the canonical isomorphism

0p:Sqg(V)@Sg(M QN (V)= Sg(V)@ N (V) ® Sg (V)

in which coefficients are inserted according to the twisting principle. For example,
for xt e Sg(V)and1 <j; <---<j, =N,

N »p
op(1 ® xt ® Xj; ArAXj,) = (1—[ qufjr) ® Xj, A+ AXj, ® xt.
s=1t=1
Via this isomorphism, consider #, as a map from Sz (V) ® Sg(V) ® N (V) to
Sg(V)®@S,(V)® NI (V). By abuse of notation, we still denote by 7, this new
map; the same rule applies to W,.
For 1 < j < N, define 7 : S4 (V)¢ — S, (V)¢ to be the operator that replaces
all factors of the form x; ® 1 with 1 ® x;, but with coefficient inserted according
to the twisting principle. For example, if xte Sq(V), then

N
e G\ ¢ Gy i 4 L
Tt e = (T o ot a0
s=j+1
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It is not difficult to see that for 1 <i # j < N, t;7; = tj7;. Define quantum differ-
ence quotient operators d[;1: Sg (V) — Sg (V) ® Sq (V) foreachi, 1 <i < N, by
4.7 () =i ®1=1@x) ("I @ 1) =H(f ®1)).

This definition should be understood as follows: by writing f as a linear combi-
nation of monomials, it suffices to define d[;; on each monomial xt. The difference
T ti-i(xt @ 1) — 71Ti(xt @ 1) may be divided by x; ® 1 — 1 ® x; on the left, by
first factoring out xfi RI-1® xfi on the left. Applying the twisting principle,
one sees that this is indeed always a factor. One must include a coefficient given
by the twisting principle, then use the identity

L
(xi®1—1®x,')_1(xfi ®1—1®xie") = foi_r ®x/1.
r=1
For example, for f = xlxg, let us compute dpy)( /). We have
Bx1x3 ® 1) = ¢ 33 ®x1 = ¢} ,(x3 @ (1 ®xy),
12 xi®1) = 1®x1x5 = qlz,z(l ®x3)(1® x1),
and so
Tl(xlxg ®1)— Tlrz(xlxg ®1)= qlz’z(xg ®1—-1 ®x§)(1 ® x1).
We obtain thus
dp)(/) = (2@ 1-1®x) " (] @D = "2(x1x; ® 1))
= (2®1-18x) (¢ ,(F®1-18x3)(1®x)
=qi,(2®1+1®x)(1 ®x1)
= 6112,2)62 & X1+ 4q1,2®X1X3.

In general, we have

j-1 -
o (xh) = ( [1 qsfj) Z(
s=1 =

N
L= £i—r iy N & A _r—1
X( [T a7 )/ i ey @ oo

J

s;} qf‘l) as well as the coefficient included

That is, one has an extra coefficient (
according to the twisting principle.
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The chain contraction
1 Sq(V)®Sg(M O N (V)= Sg(V)® Sg(V) o NH (V)
may be expressed as

tI,(I(Xch(}Z))Cj1 A=t AXj,)

N p
L
= (P! E (l—[ pt1:t )(H‘ljp+1,jt)a[jp+1](2€)®le/\"'/\xjp+1'
Jp+1=Jjp+1 t=1

This is justified by the fact that the coefficient in d[;, +1](x ) is nearly the coef-

ficient needed by the tw1st1ng principle. The discrepancy is that d[;, +1](x ) has
1

an extra factor ]_[J”+1 qt 5,1 and we still need to insert [Tr=j, 1+ quﬂ,

and ]_[t 1 4jps1.j; because the last factor in Xj; A== AXj, ., lies to the right of

Xj, A+ AXj, and of x; Ip1tl. xﬁ, in g, +1](x ) Altogether then, we need

p+1+1 N .
to include an extra factor of (TT,X, Al )(Ht=l 4j,+1,j,) in the coefficient in

04 11(X5)-
The chain map ¥, : Sy (V) ® Sg (V) ® Sg(V)®? — Sg(V) @S, (V)@ N (V)
may be expressed as

48) V,(1eloxt @ . .oxt")

D
@ eenl?) e
= > HGIT ( [Toua* )) ® Xji Aver AXjy,
s=1

15j1<"'<jp5N

where the scalar is defined according to the twisting principle by

..... Lp
4.9) gcz = M(h, ,]p))( l_[ B[h](x )) Xj, - Xj, € Sq(V).

Here the factor ( le a[js]@@ )) is understood as follows: if d[;, ](gc )= as ® by
(symbolically), then the product ([T2_, B[Js](gceY ) is ([T as) (I, bs) €

5. Gerstenhaber brackets for quantum symmetric algebras

The Schouten—Nijenhuis (Gerstenhaber) bracket on Hochschild cohomology of
the symmetric algebra S(V') is well known. In this section, we generalize it
to the quantum symmetric algebras S, (V). First we recall the definition of the
Gerstenhaber bracket on Hochschild cohomology as defined on the normalized bar
resolution of any K-algebra A (associative with unity).
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Let / € Homye(A® A®? ® A, A) and [’ € Homye (A ® A®1® A, A). Define
their bracket, [/, /'] € Homye (4 @ APT4=D @ A, A), by

[f. /1= i(—l)“f—”("—”fok [/ =(=np=Dla=b i(—l)“’—”‘k—“ﬁ o f-

k=1 k=1

where

(fokf,)(1®al ®"'®ap+q—]®1)
Qptq @ ®dpyg—1®1).

In the above definition, the image of an element under f or f” is understood in A,
whenever required.

Let /\qfl (V*) be the quantum exterior algebra defined by the tuple g —!; that
is, /\g—1(V*) is the algebra generated by the dual basis {dxy,...,dxy} of V*
with respect to the basis {x1,...,xx} of V, subject to the relations (dx;)*> = 0
and dx; dx; = —ql._’jl dx;j dx; for all 7, j. We denote the product on /\q—1 (V™)
by A. It is convenient to use abbreviated notation for monomials in this algebra:

if I is the p-tuple I = (iy,...,ip), denote by dxj the element dx;; A---Adx;, of
/\q—l (V*). We also write x"! for Xi, A+ A Xj,. Another notation we shall use
is dxp, defined for any b in {0, I}N to be dx;; A--- Adx;,, where iy, ... i, are

the positions of the entries 1 in b, all other entries being 0. In this case we say the
length of b is p, and write |b| = p.

In [Naidu et al. 2011, Corollary 4.3], the Hochschild cohomology of S, (V) is
given as the graded vector subspace of S, (V) ® /\q_1 (V*) that in degree m is

HH"(S,(V)= @ D Spamiix? ®dxy).

be{0,1}V genN
|b|=m a—beC

where
N
C= {ye(NU{—l})N‘foreachi e{l,....N}L [lqr=1ory =—1}.
s=1

We wish to compute the bracket of two elements
a=x?®dx; and B=xt®dxy,

where J = (ji,...,jp) and L = (/1,...,l;). We fix some notations. We denote
by J U L the reordered disjoint union of J and L (multiplicities counted if there
are equal indices), so dxyr = 0if J N L # @ and the entries of J LU L are in
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increasing order. For 1 <k < p, set

I = (jl,...,jk_l,ll,...,lq,jk_H,...,jp),

although we do not have j; <--- < jx_1 <I; <---<ly < jg41 <--- < jp in general.

I . . . .
So we have dxj, =sgnm g5 dxj ur, where Jx = (J1... ., Jk—1s Jk+1:---» Jp)-
Similarly for 1 < k <gq, set

o= ket Jie s oo Lt 1)

Once we know the bracket of two elements of this form, others may be computed
by extending bilinearly. The scalars arising in each term from the twisting principle
are potentially different, so it is more convenient to express brackets in terms of
these basis elements of Hochschild cohomology.

Theorem 5.1. The graded Lie bracket of « = x? ® dxj and B = x2 ® dxp is

. fl= > (=@ DED 2L G (x8)) 38 @ dx gz

1<k<p
— — - - L,J
—(=)PTDED R T PTDEDpE @y (v) - xP @ dx i
1<k=q
for certain scalars p;’ bLL ind pk L.J , where 8[],]()6 ) is defined in (4. 7) and

a[,k](xb) - x% is given by the A°-module structure over A, that is, lfa[Jk](x ) =
Y iUuiQui € A® A, then 8[Jk](gc ) x4 =3 uix%v;.

Proof. We denote by - the composition of two maps instead of o, in order to avoid
confusion with the circle product. We compute the bracket using the formula

o, Bl =[o- Wp, B-Wg]- Ppyg—1.

The element @ = x4 ®dx ; as amap from AQ ARQ /N’ (V) to A sends 1®1®@x"
to 67yx4 for I = (iy,...,ip); similarly the element 8 = x2 ® dxy as a map from
AR AR N (V) to Asends 1 ® 1 ® x™ to 877 x2. By formula (4.8) for W, the
mapa-W,: AQ A® A®? — A® A® \P(V) — A is given by

p
1 K
w018 182" ©037) =l ([T ) x
s=1

where the scalar coefficient is defined by (4.9). We have a similar formula for g -W,.
For 1 < k < p,themap (a-W¥p)or (B-Vy): 4 QAR A®PTI~T 5 4 sends
11Qx™ @---®@xm" " 1o

(m',...m® = mk mkta, omPtaTly  (mF L mEtaT

1229257 - - 1238
1 k=1 =k Kk+q +a—1
(O &™) - O 1 O ) ) B )X
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where 1 and /¥ are defined by ppx™" = (T17_, (8[1t]gcm[+k_l)) -xb.
For I = (iy,....ip4g—1) With I <ij <--- <ipy, 1 < N, let us compute
(- Wp)op (B-Wy)) Ppig—1(11 ®x”). Indeed, by (4.3) and our identifications,

Qpig-1(1Q 1®xM) = Z sgnnq,{@ L® Xy ()@ ® Xig (g g1y
TESym, 4 4
Now for a fixed w € Sym,, _,_, as input into the formula of the previous paragraph,
we have
mPta-1

1 _ . — 5.
m =Ciqy> - = Cin(ptq—1)°

wheree; =(0,...,0,1,0,...,0), with the I in the i-th position, and since df j1(x;) =
dij ® 1, the factor

1 k—1 ~k
(O ™) - O™ )AL (™) (7

vanishes unless

k+ +q—1
a mpta ))-gca

) . 3[jp](267

JU=lIgqys oo Jk—1 = lxk—1)
i =ig@y, v lg=igl+q—1);
Jk+1 =lgtk+q)ys - Jp = lin(p+g—1):

that is, when Iy = n(I) := (iz(1),.--ix(p+q—1)) OF equivalently I = Ji U L.
As long as Ji N L = &, there exist a unique / and permutation 77z € Sym,,, ,_;
satisfying this property. In this case,

q
i~k t+q—1
pex™ = (| [ o2 ™ ))-zcb =x?,
=1

so that iz = 1 and ¥ = b. Consequently, the map ((« - Yp)ok (B-¥g)) - Ppig—1
sends 1 @ 1 ® x™ to 81,J,uL pi’J’La[jk](gcb) -x2, where

b;J’L I (ejly“-’ejl _l’baejk_;'_ly"-aejp) (egl,...,egq)
Py =Sen T qn Ky ) Ky

is determined by the permutation 7z as described above and the scalars defined by
(4.4) and (4.9). Therefore,

b,J,K
(@ p) ok (B-Wg) - Ppg—1 =" 1 (x2) - x* @ dx g

The formula in the statement can be obtained accordingly. O

6. Gerstenhaber brackets for group extensions of quantum symmetric
algebras

Let G be a finite group for which |G| # 0 in K, acting linearly on a finite dimen-
sional vector space V, thus inducing an action on the symmetric algebra S(V') by
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automorphisms. When the action preserves the relations on the quantum symmetric
algebra S, (V) as defined by (4.1), there is also an action on this algebra. This is
always the case, for example, if G acts diagonally on the chosen basis xq,..., Xy
of V. We shall first recall the definition of a group extension, Sg (V) %G, of Sg(V),
and explain how the Koszul resolution of Sg (V') x G is related to that of Sg (V). In
fact this works for an arbitrary Koszul algebra, as we shall explain next. Although
this is well known, we include details for completeness.

Let RC V ® V be a G-invariant subspace. Let Ti (V') denote the tensor algebra
of V over k. Suppose that A = Tx(V)/(R) is a Koszul algebra over K, with the
induced action of G. That is, the complex K,(A4) in which Ky(4) = A ® A,
Ki(A)=4QV ® A4, and

i—2
Ki(A)= (4@ V® @ Re VI g 4)
=0

for i > 2 is a free A-bimodule resolution of A under the differential from the bar
resolution. In the case A = S, (V'), this can be shown to be equivalent to the Koszul
resolution given in Section 4. The group extension 4 x G of A, or skew group
algebra, is the tensor product 4 ® KG as a vector space, with multiplication given
by (a®g)(b®h)=a(®b)®ghforalla,b e A and g, h € G (where we have used
a left superscript to denote the group action). We shall denote elements of 4 x G
by af g, in place of a ® g, for a € A and g € G, to indicate that they are elements
of this skew group algebra. In this section we adapt and generalize the techniques
of [Halbout and Tang 2010; Shepler and Witherspoon 2012] from S(V) x G to
Sq (V) x G, explaining how to compute the Gerstenhaber bracket via the Koszul
resolution and our chain maps from Section 4. In the next section we focus on
some special cases to give explicit results.

We know that A x G is a Koszul ring over KG (see [Beilinson et al. 1996,
Definition 1.1.2 and Section 2.6]). In fact let V ® KG be the KG-bimodule under
the actions g-(v®h) =8vQ®ghand (Vv®h)-g =v®hg forallve Vand g,heG.
Then there is an algebra isomorphism

Tvwg(VRKG) ~ Tk (V)X G

sending (v1 ® g1) ®kG *** OkG (Um—1 ® Em—1) ®kG (Vim ® gm) 10 (V1 ® 81V, ®
< @E81T8m=ly, Vg - g, and the inverse isomorphism sends (v{ ®---Q vy i g
to (V1 ® eg) kG - AkG (Vm—1 Q eG) kG (Vm ® g), where we write eg or e for
the unit element of G. Via this isomorphism, R ® KG becomes a KG-subbimodule
of (V®KG)Qkg (V®KG) ~V ®V ®KG, and it induces an isomorphism of
algebras, A x G ~ Tyg(V ® kG) /(R Q@ kG).
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The Koszul resolution K,(A4 x G) of A x G as a Koszul ring over KG is related
to the Koszul resolution of A as follows:
Kog(AXxG)=(AxG)Rug (AxG)
~ AR AQKG
= Ko(4) ® kG,

Ki(AxG) =(AxG) Qs (V ®KG) ®kg (A% G)
~AQV ® AQRKG
= K;(4) ®kG,

and fori > 2,

i—2
Ki(AxG) = (4xG) &g [ (V @KkG)®C/ @6 (RQKG)

j=0 . ,
®ue (V @KG)BGU271D) @6 (A% G)
i—2
~ (A% G) Qg ( (V& @ReVEI2))g kG) kg (A% G)
j=0
i_z . . .
~ (A ® (VS @RV ) A) ® kG
j=0

~ Ki(A) ® kG.
Notice that the above isomorphism is induced by the map sending

(ao 1 20) ®kc (a1 ® g1) kG *** ®kG (ap ® &p)) Qké (Ap+188p+1)
to

(510 ® (goal R ® 80"'gn—1ap) ® gO"'gpap+1) R (go ... gp+1)-
The inverse isomorphism sends (a9 ® (@1 ® - ® ap) @ ap+1)f g to

(aptte) Qg ((a1 ®e) Qg -+ ke (ap ®e)) ®kg (ap+11g)-

One may check that this isomorphism commutes with the differentials. Therefore
as complexes of A x G-bimodules,

K,(AxG)~ K,(4)®KG.
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Under this isomorphism, the 4 x G-bimodule structure of K,(A4) ® kG, for each
p = 0, is given by

(bih) (a0 ® (a1 ® - ®ap) ®ap+1) ® g)(c 1k)
= (bt ® (*ay @ - ®"ap) @ "ay 1 "c) @ hgk.
Similar statements apply to the normalized bar resolution:
B.(AxG) ~ B,(A) ®KG,

where the former involves tensor products over KG, and the latter over K.

Now we consider the case of 4:= S, (1), under the condition that the action of G
on V preserves the relations of Sg (V). The differentials on K, (A4 xG) (respectively,
B.(A xG)) are those induced by the Koszul resolution (respectively, bar resolution)
of Sg(V), under the exact functor — ® KG. Therefore the contracting homotopy
and chain maps for S, (') may be extended to the corresponding complexes for
Sq(V)xG:

D, kG : K, (AxG) >~ K, (A) kG — B,(A) KG >~ B.,(AxG)
and

W, ®KG : B.(AxG) ~ B.(A) ®KG — K.(A)  KG =~ K.(AxG).

However, since ®, and W, are in general not G -invariant, there is no reason to expect
that &, ®KG and ¥, ® KG should be chain maps of complexes of (A x G)¢-modules.
Since |G| is invertible in k, we can apply the Reynolds operator (that averages over
images of group elements) to obtain chain maps of complexes of (AxG)¢-modules,
which are denoted by ®, and U, respectlvely We have thus quasi-isomorphisms

Hom 4G)e (K.(4) ®KG. 4% G) ? Hom(4G)e (B.(A) ®KG., A % G).
We shall use the complex on the left side to compute Lie brackets, via the chain
maps W* and ®°. Notice that for 4 = S;(V'), we have

Hom(4xg)e (K.(A) ® KG, A x G) >~ Homyge (N (V) ® kG, A x G)
~ Homyg (/\'(V), A X G)
~(A%xGQ® /\'(V*))G.
We wish to express the Lie bracket at the chain level, on elements of (A xG®

/\'(V*))G. The method consists of the following steps (see [Halbout and Tang
2010; Shepler and Witherspoon 2012]).

(i) Compute the cohomology groups of the complexes ((A xG)Q® /\'(V*))G. In
the case where the action of G on V' is diagonal, this computation is done in
[Naidu et al. 2011, Section 4].
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(i1) Give a precise formula for the chain map ® that is the composition
O: (A% G)® N (V)% =5 Hom(gc)e (K.(4) @ KG, A% G)
%, Hom4g)e (B.(4) ®KG. 4 G)
— Hom(4xG)e (B.(A xKG), A x G).
(iii) Give a precise formula for the chain map I' that is the composition
" : Hom( 4xG)e (B.(4A xKG), A x G) = Hom( 4xG)e (B.(4) @KG, A x G)
2% Hom(gugye (K.(4) ®KG, A% G)
5 ((AxG) @ N (VH)C.
(iv) Use the formulae in the previous two steps to compute the Lie bracket of two
cocycles given by Step ().
We obtain thus:

Theorem 6.1. Let a, 8 € ((A XG)® /\'(V*))G be two cocycles. Then the Lie
bracket of the two corresponding cohomological classes is represented by the
cocycle

[, B] = T'([©(), ©(B))).
We see that the actual computations are rather hard and we shall perform these
computations for the diagonal action case in the next section.

7. Diagonal actions

Assume now that G acts diagonally on the basis {x1,...,xy} of V, in which case
the action extends to an action of G on S, (V') by automorphisms. Let x; : G — K*
be the character of G corresponding to its action on x;, that is,

g-xi = xi(g)xi

forallge Gandi =1,...,N.For I = (iy,...,ip) with1 <i; <---<ip <N,

define x7(g) = ]_[11.’:1 Xi; (g), and for £ € N¥ define xe(@) =Ili<i<ny Xf" (g) for
g€q.

Let us make precise the action of G on (4 x G) ® N\ (V*) occurring in the
isomorphism of the previous section,

Hom( gG)e (K.(4) ®KG, A% G) ~ (A x G) @ N'(V*))°.
Letting g, h € G, L eNN and [ = (i1 <--- < ip), we have

hxttg@dxr) ="xY 1 @Mdxr) = xo(h)xr (™ )xb g hgh™ @ dx;.
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In [Naidu et al. 2011, Section 4], the authors compute homology of this chain
complex (4 x G) ® /\'(V*) with the differential

dp(x* g ®dx)
— Z(_l)#{s:i5<i} (( l_[ Qis,i)xizcz _ ( l_[ Qi,is)lcz gxi) ﬁg ® dxl_"_el_ ,
igl stig<i Stig>i

where ¢; is the i-th element of the canonical basis of NV and T + e; is the sequence
of p + 1 integers obtained by inserting 1 in the 7-th position. Since the action
of G is diagonal, this differential is G-equivariant. So the Reynolds operator is
a chain map from (A xG) @ N (V*) to (4% G)® /\'(V*))G which realizes
(AxG)® /\'(V*))G as a direct summand of (4 xG)® /\'(V*) as complexes. We
shall see that in fact, the induced structure of ((A XG)® /\'(V*))G, as a complex,
is the same as the one induced from the isomorphism

Hom(4xg)e (K.(4) kG, A% G) ~ (A x G) @ N'(V))°.

We shall prove this fact in the first step below.
We follow the step-by-step outline given towards the end of Section 6. As we
shall use the result of the second step in the first one, we begin with the second step.

Step (ii). As shown in the previous section, we have a series of isomorphisms:

Hom( 4x¢)e (K.(A)QKG, AxG) >~ Homkg)e (/\.(V) QKkG, Ax G)
~ Homgg (/\.(V), A > G)
~ (AxG)®N(VH)°.
Amap f €Hom(gxg)e (Kp(A)®KG, AxG) corresponds to f; € Homyge (/\pV®kG,
AxG) via
M e =r1exM®1®y)
and

S(ao®x" ®api1®g) = (aote) fi(xM ® ) (¢ 'apiyte).

The map f; € Homyge (/A V ®KG, AxG) corresponds to f> € Homyg (/A V, AxG)
via

LMy = M ®e)
and

M @) = LMt e).
Finally, f € Homkg (/\”V, A% G) corresponds to f3 € (AxG)® NP (V*))C via

fi= ) LM ®dx,

[I|=p
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and for f3 =27 1=p D gec(arglig) ®dxy € (AxG® /\p(V*))G, the corre-
sponding f, € Homkg(/\PV, A > G) sends x to deG argfg.
Altogether then, /" € Hom(4xg)c(Kp(A4) ® KG, A x G) corresponds to f3 €
(AxG®NV*)Y via
fi= ) fAexM @l®e) ®dx,

[I|=p

and for f3 = Y| jj=p Ygeg dre 1 g ®dxy € (AxG @ N (VH)C,

fao®xN @aps1 ®g) =Y (aote)arsih(188)(E apprfe)
heG

=Y aoar;™(aps1) i hg.
heG

Now fora =aflg ®dxy € AxG ® /P (V*), the Reynolds operator
R:iAXG N (V*) > (A% G @ N (V*)®
gives

1 _ _
=G > xs Yt hgh™' @ dx;,
heG

and thus o corresponds to the map f* € Hom( 4xg)c (Kp(4) ® KG, A x G) sending
a0 ®xM®@ap11 ®k to

1 - -1 -
St 3 0 o "a) P ) gk
heG

We shall compute OR () € Homg((A4 x G)®?, A x G) corresponding to f with
a = xt, which is the composition

1
g @ ext g,

>l @) @ g g gy

1
= X¢2(g1) -+ xer (&1 "'gp—l)lcg ® - ®x g -+ &p

e (@) xer (@ gpm) Y. Y, wx2exMexleger g,

Il=p 0=<rg<tf —1
[I|=p s=sl,..l.fp (use \,)

1
'_>mng(gl)”'Xﬁl’(gl"'gp—l)Z P
heG 0<ry<t3 —1
s=1,...,p

< e xghgh™ st + 4 thgh™" gy - g,
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where, as in (4.5),

A AW LP1ep)
Q Z(F1,e.57p) ’
?) 1y.. —

This completes the second step.

Step (i). We identify the cohomology groups of the complexes (A XG® /\'(V*))G
with the computation in [Naidu et al. 2011, Section 4]. It suffices to see that the
map

AXG RNV B (AxG @ N (V)% =5 Hom(guc)e (K.(4) @ KG, A% G)

is a chain map, where 4 x G ® /\'(V*) is endowed with the differential given
in [Naidu et al. 2011, Section 4] and Hom( 4xg)c (K.(4) ® KG, A x G) with the
differential induced from that of K,(A4). We shall use the computations in the
second step to prove this statement.

In fact, given aff g ® dx; € AxG ® N\ (V*), by the second step, it corresponds
to the map f* € Hom(4xg)e (Kp(A4) ®KG, A% G) sending ag x" ®api1 ®k to

1 _ - _
161 Y Hr Do) ) g
heG

Now df is the composition (for k € G and L = (I1,...,[,41))

J
1_[ qlsslj)xlj ®2€/\(L—elj) 1Rk

s=1

p+1

1@x "t @l@ke Y (-1)77! ((
j=1

p+1

- ( I1 qzj,zs)l ®x " @y, ®k)
s=j
1 p+1 . j
~ @ Z Z(_l)]_l5I,L—elj Xl(h_l) (( 1_[ qls,lj)xlj hy
s=1

heG j=1

p+1
- ( Il ql,.,zs) 1, (hgh—1>haxl,.) $heh™ k.

s=j



250 SARAH WITHERSPOON AND GUODONG ZHOU

On the other hand, by [Naidu et al. 2011, Section 4],

dp(zcgﬁg®dm)
= Z(_l)#{s:iﬁi} (( l_[ qi,. )x,x ( l_[ qi ls) gx,) 1g®dxrye;,
iél siig<i Stig>i

which corresponds to the map sending 1 ® x " ® 1 ® k to

|G| > (=t M(( I qis,,-)xah—l)aL,He,.xz-(h)xiha

heG idl siig<i
—( 1_[ Qi,is))(i(hg)haxi) fthgh™'k.

Siig>i

One sees readily that these two expressions are the same.
Let us recall the result of [Naidu et al. 2011, Section 4]. For g € G, define

N
Cy = {g e (NU{—1HN { foreachi € {l,...,N}, ]_[1 qf‘s = yi(g)or¢; = —1}.
s§=

For g € G and y € (NU{—1})"V, Naidu et al. introduced certain subcomplexes K z.y
of (AxG)R N (V*) with (AxG)@ NP (V*) = ®D,., K3, They also proved
that if y € Cg, the subcomplex Kj , has zero differential, and if y & Cg, the
subcomplex K3 ., is acyclic. (We do not define K3 ,, here as we shall not need the
details.) Using th1s information, for m € N, [Na1du et al. 2011, Theorem 4.1] gives

H"((AxG)® N (V*)) ~ HH" (4, A% G)

~ @ @ GB Spany {x? ff g ® dxp}.

g€G pe{0,1}NV aenNN
|b|]=m a—beCq

We shall use these notations when expressing the Lie bracket of two cohomological
classes. This completes the first step.

Step (iii). Now given a map f € Homk((4 x G)®*, 4 x G), we compute the
corresponding I'( /) € ((A xG)® N (V*))G. Direct inspection gives

D)= Y Y senmqhf(Kipo, fe® @ xiy, fe)®dxp,

|I|=p meSym,,

where qn = q;,“ “7 5 defined in (4.4), and e denotes the identity group element.

Step (iv). We can now compute the Lie bracket of two cohomological classes.
Let
a=x%%g®dx; and B=xPHih®dxy
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for some group elements g, 1 € G, where J = (jy,..., jp)and L =(/y,...,l) and
such that @ —J € Cg and b — K € Cj,. Then o and B are cocycles for the complex
AxG® /N (V*), because the subcomplex Kj ,, of Homye (K.(4), A x G) is a
complex with zero differential whenever y € Cy (for details, see [Naidu et al. 2011,
Section 4]). Consequently, Ra and R are G-invariant cocycles where, as before, R
is the Reynolds operator. The bracket operation on Hochschild cohomology is
determined by its values on cocycles of this form.

Theorem 7.1. In the case where G acts diagonally on the basis x1,...,XpN, the
graded Lie bracket of Ra and R, where o« = x2fig ®@dxy and p = x28hQdxy , is

[Ro, RB]

—1)(s— 1 — -
= Y (-plhe “—|G|2 3 o2 Poyg(xt) - x tkgk T R @ dxgur
1<s=<p kleG

—1)(g— D=1 1
— (—=1)»—D@-1) _1)»—DG-1
(=1) > (D) TR

1=s=<q
x> pPoy(x) Xt gt kg ®@dx i,
kleG
o,B B,a

for certain coefficients pg’" and ps’ .

Remark 7.2. This formula generalizes Theorem 5.1 (the case G = 1) and [Shepler
and Witherspoon 2012, Corollary 7.3] (the case ¢;,; = 1 for all i, ;).

Proof. We may compute [R(x), R(B)] as T'([OR(x), OR(B)]).
Now by the third step,

F(OR@).ORBD = Y _ Y sgnmqi[O(Ra), O(RP)]
[I|=p+g—1 nGSymerq,l

X (Xipy B @+ @ Xiyyy gy €) ®diy.
Note that W,, when applied to an element of the form 1 ® x¢; ® --- ® x¢, ® 1, is
1®xe; Ao AXe, ®1if 1 <¢p <-+-<c¢p <N, and is 0 otherwise. This simplifies
considerably the computation of [OR(«), OR(B)](xXi,, fe @+ @ Xi, (g1, HE)-
For 1 <s < p, we have
(OR(a) o5 OR(B)) (Xip) e @+ ® Xj,(,, He) =
@R(Ol) (xin(l) ﬁe® : .®®R(ﬁ)(‘xin’(y) ﬁe® : '®xin(3+q_1) He)® : '®Xin(p+q_1) ﬁe)

By Step (ii), a simple computation shows that OR(8)(X;,, , fe ®- - ®Xi (1,1, fi€)
is nonzero only when

i]T(S):II7 ceey lﬂ.'(S-l—q—l):Zq,
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in which case it is equal to ﬁ D teg XL (Z_I)Xb (€)x2 1 £he=" . Therefore, when

in) =11, - v n(st+q—1) =lg>
we have

OR() (Xipp, e @+ @ OR(B) (Xipyy e ® -+ ® Xi(igury f1€)

® Xispq) HEQ @ Xir(ypgy e)

1 _ _
=®R(a)<xin(1)ﬁe®“'®(m§ xr(€ I)XLJ(E)ZC%MZ 1®xin(s+q)ﬁe)
leG

® @ Xin(pig) e)

1 _ _
- G| Z xr(t I)Xb(£)®R(O‘)(xin(1) fle®-- ®2€b fene! ® Xiysiq e
leG
® - ® Xiy(praei) ﬁe).

Applying Step (ii), in order that the above expression be nonzero, we must have

JU=inys  oos Js—1 Fla—1)s  Js+1 Tiais+q)s o0 Jp T in(prg-1)-
When
i) =l s imsra—1) = lgs
J1=lx@)s  oeer Js—1 = lx(s—1)»
Jst1 =lnGs+q)s o0 Jp = ln(prg-1)
we have

(OR() 05 OR(B)) (Xip, e ® - ® Xj,(,, H1e)
= % DO AU xe O Ky (CRETTY - xj, (ERLTT)

|G keG LeG
x> s (kT xa(k) x g eghk ™) x40 gk et
0<r=<bj;—1 B
where .
Q _r js+1 . bN
xE = ox N -
N A A

0 b
IU,QCQQCQ = le "'stilzC*XjH»l "'ij € S‘I(V)’

dx@yaxQ = yatbei Sq (V).
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We see that in this case we have I = J; LI L. Furthermore, if this is the case,
there is a unique permutation 7y € Sym, ,_; such that

J1=1lgy1)s s Js—1 =lggs—1)>
L =ig(s), - lg=ig(s+q—1)

Js+1 Zings+q)s v Jp = lng(p+g—1)s
that is, 7g(/) = Js U L as introduced before Theorem 5.1. We obtain that when
I=Js;ULandm =mngforl <s=<p,

(OR() 05 OR(B)) (i) 1 ® -8 Xigy 1) 1)

1 _ _
=g 2 APt 2 thek™ e
kleG

for a certain coefficient p?’ﬂ determined by the above data.
Finally

F([OR(a), OR(B)])

= Z Z sgn 1w q,’,

|[I|=p+q—1meSym, 1,
[O(Ra),O(RP)(Xiyy) e ® @ Xi iy ) ®dX]

1 - - — —
=G 2 2 DT oy 3 gkek T A @ dxy
kAleG 1<s<p

_(_1)(p—1>(q—1)|G1|2 Y Y (e

k,leG 1<s=<q
X P 1e, (x9) - x® g Lhe gk ™! @y, O

In this diagonal case, the following corollary is immediate, since the difference
operators in the bracket formula take 1 to 0. It generalizes [Shepler and Witherspoon
2012, Theorem 8.1].

Corollary 7.3. Assume G acts diagonally on the chosen basis x1,...,xN of V,
andleta =18gQ@dxyand p = 11h @ dxy,. Then [Ra, Rl =0 € HH* (4 x G).
In fact, this result can be seen to hold in the nondiagonal case as well, even

without an explicit description of Hochschild cocycles in that case. Nonetheless we
may still use a general argument for those cocycles having a particular form.

Corollary 7.4. Assume G acts on V, not necessarily diagonally. Let o and f8
be cocycles in (A XGQ® /\'(V*))G for which o (respectively, B) is a linear
combination of elements of the form 1§ g ® dxj (respectively, 1 t h ® dxr).
Then [a, B] = 0 € HH*(A x G). In particular, if « is a 2-cocycle, then it is a
noncommutative Poisson structure.
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Proof. The proof is similar to that of Theorem 7.1. However, rather than computing
explicitly, we shall only explain why the bracket is 0.

We compute [«, 8] using Theorem 6.1. Consider o as a homomorphism in
Hom( 4%G)e (K.(A)®KG, AxG); then it maps into K®KG C AxG. By Theorem 6.1

e B] = - W.. B W] B..

Here ®, and W, are chain maps of complexes of (4 x G)¢-modules obtained by
applying the Reynolds operator (that averages over images of group elements) to ®,
and W, respectively. So one needs to consider certain terms like (o -4W) o (8 - by
applied to ‘®(1® 1 ® x) fork > 1,and a,b,c € G.

Recall that, if I = (i,...,ip), then

o(1@lexM)= Y sgnmgnr " @ Xy ® - ® Xy, ® 1.
7w €Sym,,
S0 ¢®d(1®1®x") is a linear combination of terms of the form 1®xj, ®--Qxj,®1
for 1 < ji,...,jp = N. Inapplying (o - *W¥) o (B -b@) to each term above, one
first applies byto1® Xje® @ Xj o,y ® 1, if the degree of B is m. By (4.5),

"Ijm(l ®xjk®'“®xjk+m—1® 1) = M®xjk /\'”/\xjk-&-m—l@ 1

for some scalar i and 50 *W,, (1 Q@ xj, ® -+ ® Xji4m—1® 1) is a linear combination
of terms of the form 1 @ xy, A---Axy, ® 1 with 1 <€y <--- <{y, < N.

Applying B to the result, we obtain 0 unless L = ({1, ..., {;,) for some L for
which 1§/ ® dxy, has a nonzero coefficient in the expression 8, in which case we
obtain a nonzero scalar multiple of 1/ for that term. After factoring / to the right,
this becomes 0 as an element of the normalized bar resolution. The same argument
applies to each term in [«, B], and so [«, B] = 0.

For the last statement, recall that a noncommutative Poisson structure is simply
a Hochschild 2-cocycle whose square bracket is a coboundary. O

Compare to the proof of [Naidu and Witherspoon 2016, Theorem 4.6], of which
the above corollary is a consequence via the alternative route of algebraic deforma-
tion theory.
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