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TROPICAL DIFFERENTIAL ALGEBRAIC GEOMETRY

FUENSANTA AROCA, CRISTHIAN GARAY AND ZEINAB TOGHANI

Let I be an ideal of the ring of Laurent polynomials K [x±1
1 , . . . , x±1

n ] with
coefficients in a real-valued field (K, v). The fundamental theorem of tropi-
cal algebraic geometry states the equality trop(V (I))= V (trop(I)) between
the tropicalization trop(V (I)) of the closed subscheme V (I) ⊂ (K ∗)n and
the tropical variety V (trop(I)) associated to the tropicalization of the ideal
trop(I).

In this work we prove an analogous result for a differential ideal G of the
ring of differential polynomials K [[t]]{x1, . . . , xn}, where K is an uncount-
able algebraically closed field of characteristic zero. We define the tropical-
ization trop(Sol(G)) of the set of solutions Sol(G) ⊂ K [[t]]n of G, and the
set of solutions Sol(trop(G)) ⊂ P(Z≥0)

n associated to the tropicalization of
the ideal trop(G). These two sets are linked by a tropicalization morphism
trop : Sol(G)→ Sol(trop(G)).

We show the equality trop(Sol(G))= Sol(trop(G)), answering a question
recently raised by D. Grigoriev.

1. Introduction

The first proof of the fundamental theorem of tropical algebraic geometry appeared
in 2003 in a preprint by Einsiedler, Kapranov and Lind [Einsiedler et al. 2006], and
was limited to hypersurfaces. Later, the theorem was established in full generality
in [Speyer and Sturmfels 2004]. Extensions to arbitrary codimension ideals and
arbitrary valuations have been done subsequently; see, for example, [Aroca et al.
2010; Jensen et al. 2008; Aroca 2010].

The tropical variety of a hypersurface is dual to a subdivision of the Newton
polyhedron of its defining function. The Newton polygon was introduced by
Puiseux [1850] for plane algebraic curves and extended to differential polynomials
by Fine [1889]. Both the extensions of the polygon and the polyhedron have served
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to prove existence theorems and to construct algorithms that compute solutions; see
for example [Grigoriev and Singer 1991; Cano 1993; Aroca and Cano 2001; Aroca
et al. 2003].

Grigoriev [2015] introduces the notion of tropical linear differential equations
in n variables and designs a polynomial complexity algorithm for solving systems of
tropical linear differential equations in one variable. In the same preprint, Grigoriev
suggests several lines for further research. One of his questions is whether a theorem
such as the fundamental theorem of tropical algebraic geometry holds in this context.

More precisely, Grigoriev notes that, for a differential ideal G in n independent
variables, we have the inclusion trop(Sol(G))⊂ Sol(trop(G)) and asks:

Is it true that for any differential ideal G and a family S1, . . . , Sn ⊂ Z≥0

being a solution of the tropical differential equation trop(g) for any g ∈G,
there exists a power series solution of G whose tropicalization equals
S1, . . . , Sn?

Here, we give a positive answer to this question when G is a differential ideal
of differential polynomials over the ring of formal power series K [[t]], K being
an uncountable algebraically closed field of characteristic zero. Our proof uses
techniques developed in the theory of arc spaces; see [Nash 1995].

In Section 2, the basic definitions of differential algebraic geometry are recalled.
In Sections 3, 4 and 5, we explain the tropicalization morphisms. Arc spaces
and their connection with sets of solutions of differential ideals are discussed in
Section 6. The main result is proved in the last two sections.

2. Differential algebraic geometry

We will begin by recalling some basic definitions of differential algebraic geometry.
The reference for this section is the book by J. F. Ritt [1950].

Let R be a commutative ring with unity. A derivation on R is a map d : R→ R
that satisfies d(a+ b)= d(a)+ d(b) and d(ab)= d(a)b+ ad(b) for all a, b ∈ R.
The pair (R, d) is called a differential ring. An ideal I ⊂ R is said to be a differential
ideal when d(I )⊂ I .

Let (R, d) be a differential ring and let R{x1, . . . , xn} be the set of polynomials
with coefficients in R in the variables {xi j : i = 1, . . . , n, j ≥ 0}. The derivation d
on R can be extended to a derivation d of R{x1, . . . , xn} by setting d(xi j )= xi( j+1)

for i = 1, . . . , n and j ≥ 0. The pair (R{x1, . . . , xn}, d) is a differential ring called
the ring of differential polynomials in n variables with coefficients in R.

A differential polynomial P ∈ R{x1, . . . , xn} induces a mapping from Rn to R
given by

(2-1) P : Rn
→ R, (ϕ1, . . . , ϕn) 7→ P|xi j=d jϕi

,
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where P|xi j=d jϕi is the element of R obtained by substituting xi j 7→ d jϕi in the
differential polynomial P .

The equality

(2-2) dk(P(ϕ))= (dkP)(ϕ)

holds for any P ∈ R{x1, . . . , xn} and ϕ ∈ Rn .
A zero or a solution of P ∈ R{x1, . . . , xn} is an n-tuple ϕ ∈ Rn such that P(ϕ)=0.

An n-tuple ϕ ∈ Rn is a solution of 6 ⊂ R{x1, . . . , xn} when it is a solution of every
differential polynomial in 6; that is,

Sol(6) := {ϕ ∈ Rn
: P(ϕ)= 0 for all P ∈6}.

The following result can be found in [Ritt 1950, p. 21].

Proposition 2.1. The solution of any infinite system of differential polynomials

6 ⊂ F{x1, . . . , xn},

where F is a differential field of characteristic zero, is the solution of some finite
subset of the system.

A differential monomial in n independent variables of order less than or equal
to r is an expression of the form

(2-3) EM :=
∏

1≤i≤n
0≤ j≤r

x Mi j
i j ,

where M = (Mi j )1≤i≤n, 0≤ j≤r is a matrix in Mn×(r+1)(Z≥0).
With this notation, a differential polynomial P ∈ R{x1, . . . , xn} is an expression

of the form

(2-4) P =
∑

M∈3⊂Mn×(r+1)(Z≥0)

ψM EM ,

with r ∈ Z≥0, ψM ∈ R and 3 finite.
The mapping induced by the monomial EM is given by

EM : Rn
→ R, (ϕ1, . . . , ϕn) 7→

∏
1≤i≤n
0≤ j≤r

(d jϕi )
Mi j ,

and the map (2-1) induced by the differential polynomial P in (2-4) is

(2-5) P : Rn
→ R, ϕ = (ϕ1, . . . , ϕn) 7→

∑
M∈3

ψM EM(ϕ).
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3. The differential ring of formal power series and tropicalization

In what follows, we work with the differential valued ring R = K [[t]] where K is an
uncountable algebraically closed field of characteristic zero. We set F = Frac(R).

The elements of R are expressions of the form

(3-1) ϕ =
∑

j∈Z≥0

a j t j

with a j ∈ K for j ∈ Z≥0.
The support of ϕ is the set

Supp(ϕ) := {i ∈ Z≥0 : ai 6= 0},

the valuation on R is given by

val(ϕ)=min Supp(ϕ)

and the derivative of ϕ is the element

dϕ =
∑

j∈Z≥0

ja j t j−1

of R. The bijection

9 : K Z≥0 → R, a = (a j ) j≥0 7→
∑
j≥0

1
j !

a j t j

between K Z≥0 and R allows us to identify points of R with points of K Z≥0 . Moreover,
the mapping 9 has the following property:

(3-2) ds9(a)=
∑
j≥0

as+ j

j !
t j ,

which implies

ds9(a)|t=0 = as, s ∈ Z≥0

and then

(3-3) a =
(
d j9(a)|t=0

)
j≥0.

The mapping that sends each series in R to its support set (a subset of Z≥0) will
be called the tropicalization map

trop : R→ P(Z≥0), ϕ 7→ Supp(ϕ)

where P(Z≥0) denotes the power set of Z≥0.
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For fixed n, the mapping from Rn to the n-fold product of P(Z≥0) will also be
denoted by trop:

trop : Rn
→P(Z≥0)

n, ϕ= (ϕ1, . . . , ϕn) 7→ trop(ϕ)= (Supp(ϕ1), . . . ,Supp(ϕn)).

Given a subset T of Rn , the tropicalization T is its image under the map trop:

trop(T ) := {trop(ϕ) : ϕ ∈ T } ⊂ P(Z≥0)
n.

Example 3.1. Set T := {(a+5t+bt2, 2+at−8t2
+ ct3) : a, b, c ∈ K } ⊂ K [[t]]2.

We have

trop(T )=
{
({1}, {0, 2}), ({0, 1}, {0, 1, 2}),

({1, 2}, {0, 2}), ({1}, {0, 2, 3}), ({0, 1, 2}, {0, 1, 2}),

({0, 1}, {0, 1, 2, 3}), ({1, 2}, {0, 2, 3}), ({0, 1, 2}, {0, 1, 2, 3})
}
.

Since K is of characteristic zero, for every ϕ ∈ R, we have

trop(d jϕ)= {i − j : i ∈ trop(ϕ)∩Z≥ j }

then
val(d jϕ)=min(trop(ϕ)∩Z≥ j )− j.

The above equality justifies the following definition:

Definition. A subset S ⊆ Z≥0 induces a mapping ValS : Z≥0→ Z≥0 ∪ {∞} given
by

(3-4) ValS( j) :=
{

s− j with s =min{α ∈ S : α ≥ j},
∞ when S ∩Z≥ j =∅.

Example 3.2. Consider the set S := {1, 3, 4}. We have

(1) ValS(2)=min{s ∈ S : s ≥ 2}− 2= 3− 2= 1 and

(2) ValS(5)=∞.

4. Tropical differential polynomials

We denote by T the (idempotent) semiring T = (Z≥0 ∪ {∞},⊕,�), with a⊕ b =
min{a, b} and a� b = a+ b.

Definition. A tropical differential monomial in the variables x1, . . . , xn of order
less than or equal to r is an expression of the form

(4-1) εM := x�M
=

⊙
1≤i≤n
0≤ j≤r

x�Mi j
i j ,

where M = (Mi j )1≤i≤n, 0≤ j≤r is a matrix in Mn×(r+1)(Z≥0).
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Definition. A tropical differential polynomial in the variables x1, . . . , xn of order
less than or equal to r is an expression of the form

(4-2) φ = φ(x1, . . . , xn) =
⊕

M∈3⊂Mn×(r+1)(Z≥0)

aM � εM ,

where aM ∈ T and 3 is a finite set.

The set of tropical differential polynomials will be denoted by T{x1, . . . , xn}. A
tropical differential monomial εM induces a mapping from P(Z≥0)

n to Z≥0 ∪ {∞}

given by

εM(S1, . . . , Sn) :=
⊙

1≤i≤n
0≤ j≤r

ValSi ( j)�Mi j =

∑
1≤i≤n
0≤ j≤r

Mi j ·ValSi ( j),

where ValSi ( j) is defined as in (3-4).

Remark 4.1. Note that εM(S1, . . . , Sn) = 0 if and only if j ∈ Si for all i, j with
Mi j 6= 0.

A tropical differential polynomial φ as in (4-2) induces a mapping from P(Z≥0)
n

to Z≥0 ∪ {∞} given by

φ(S)=
⊕
M∈3

aM � εM(S)= min
M∈3
{aM + εM(S)}.

Definition. An n-tuple S = (S1, . . . , Sn) ∈ P(Z≥0)
n is said to be a solution of the

tropical differential polynomial φ in (4-2) if either

(1) there exist M1,M2 ∈ 3 with M1 6= M2 such that φ(S) = aM1 � εM1(S) =
aM2 � εM2(S), or

(2) φ(S)=∞.

Let H ⊂ T{x1, . . . , xn} be a family of tropical differential polynomials. An
n-tuple S ∈ P(Z≥0)

n is a solution of H when it is a solution of every tropical
polynomial in H ; that is,

Sol(H) := {S ∈ (P(Z≥0))
n
: S is a solution of φ for every φ ∈ H}.

Example 4.2. Consider the tropical differential polynomial

φ(x) := 1� x ′⊕ 2� x (3)⊕ 3.

Since φ(S) 6= ∞ for every S ⊂ P(Z≥0), the set S is a solution of φ if one of the
following holds:

(1) 1+ValS(1)= 3≤ 2+ValS(3),

(2) 1+ValS(1)= 2+ValS(3)≤ 3,

(3) 2+ValS(3)= 3≤ 1+ValS(1).
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The first condition never holds. The second condition holds when S= B∪{2, 3}∪C
and B ⊂ {0}, min C ≥ 4. The third condition holds when S = {4} ∪C ∪ B with
min C ≥ 5 and B ⊂ {0}. Thus,

Sol(P)=
{

B∪{2, 3}∪C : B⊂{0}, min C≥4
}
∪
{

B∪{4}∪C : min C≥5, B⊂{0}
}
.

5. Tropicalization of differential polynomials

Let P be a differential polynomial as in (2-4). The tropicalization of P is the
tropical differential polynomial

(5-1) trop(P) :=
⊕
M∈3

val(ψM)� εM .

Remark 5.1. Let P be a differential polynomial in R{x1, . . . , xn}. We have that
trop(tP)(S)≥ 1 for any S ∈ P(Z≥0)

n .

Definition. Let G ⊂ R{x1, . . . , xn} be a differential ideal. Its tropicalization
trop(G) is the set of tropical differential polynomials {trop(P) : P ∈ G}.

Proposition 5.2. Let G be a differential ideal in the ring of differential polynomials
R{x1, . . . , xn}. If ϕ ∈ Sol(G), then trop(ϕ) ∈ Sol(trop(G)).

Proof. Given a differential monomial EM and ϕ ∈ Rn , we have that

val(EM(ϕ))= εM(trop(ϕ)).

It follows that if ϕ ∈ Rn is a solution to the differential polynomial

P =
∑
M∈3

ψM EM ,

then trop(ϕ) ∈ (P(Z≥0))
n is a solution to trop(P). So, if ϕ ∈ Rn is a solution to

every differential polynomial P in a differential ideal G, then trop(ϕ) is a solution
to every tropical differential polynomial trop(P) ∈ trop(G). �

We can now clearly state the question posed in [Grigoriev 2015]. The latter result
allows us to define a mapping trop : Sol(G)→ Sol(trop(G)) for any differential
ideal G ⊂ R{x1, . . . , xn}. The question is whether or not this map is surjective.

Example 5.3. Let P ∈ R{x} be the differential polynomial

P := x ′′− t.

The set of solutions of P is the same as the set of solutions of the differential ideal
generated by P:

Sol(P)=
{
c1+ c2t + 1

6 t3
: c1, c2 ∈ K

}
.
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The tropicalization of the set of solutions of P is

trop(Sol(P))=
{
{0, 1, 3}, {0, 3}, {1, 3}, {3}

}
.

Now, the tropicalization of P induces the mapping

trop(P) : P(Z≥0)→ Z≥0, S 7→min{ValS(2), 1}.

Since trop(P)(S) 6= ∞ for every S ⊂ P(Z≥0), the set of solutions of trop(P) is

Sol(trop(P))= {S ⊂ P(Z≥0) : 2 /∈ S and 3 ∈ S}.

Differentiating P , we have that d2P = x (4) is in the differential ideal generated
by P . Its tropicalization induces the mapping

trop(d2P) : P(Z≥0)→ Z≥0, S 7→ ValS(4).

We have that S ⊂ P(Z≥0) is a solution of trop(d2P) if and only if S ⊂ {0, 1, 2, 3},
i.e.,

Sol(trop(d2P))= P({0, 1, 2, 3}).

In this example,

Sol(trop(P))∩Sol(trop(d2P))= trop(Sol(P)).

6. Arc spaces and the set of solutions of a differential ideal

The natural inclusion K [x1 0, . . . , xn 0] ⊂ R{x1, . . . , xn} lets us recognize the arc
space of the variety defined by an ideal I ⊂ K [x1, . . . , xn] as the space of solutions
of the differential ideal generated by I in R{x1, . . . , xn}. In this section we extend
some definitions and results developed in the theory of arc spaces; see for example
[Nash 1995; Bruschek et al. 2013].

Consider the bijection

9 :
(
K Z≥0

)n
→ Rn, a = (ai j )1≤i≤n, j≥0 7→

(∑
j≥0

1
j !

a1 j t j , . . . ,
∑
j≥0

1
j !

anj t j
)
.

Lemma 6.1. Given P ∈ R{x1, . . . , xn} and a ∈ (K Z≥0)n , we have

(6-1) P(9(a))=
∑
k≥0

ck tk

with

ck =
1
k!
(dk(P))

∣∣
t=0(a).
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Proof. For a = (ai j )1≤i≤n, j≥0 ∈
(
K Z≥0

)n , write 9(a)= (9(a)1, . . . , 9(a)n) and
P(9(a))=

∑
k≥0 ck tk for some ck ∈ K , k ≥ 0. Differentiating (6-1) and evaluating

at zero, we have

ck =
1
k!
[
dk(P(9(a)))

]
t=0

(2-2)
=

1
k!
[
(dkP)(9(a))

]
t=0

(2-1)
=

1
k!
[
(dkP)|xi j=9(a)

( j)
i

]
t=0

=
1
k!
[
(dkP)|xi j=9(a)

( j)
i |t=0

]
t=0

(3-3)
=

1
k!
[
(dkP)|xi j=ai j

]
t=0 =

1
k!
(dkP)|t=0(a). �

Let G be a differential ideal in R{x1, . . . , xn}. We can consider G as an infinite
system of differential polynomials in F{x1, . . . , xn}, where F = Frac(R) is a field
of characteristic zero. By Proposition 2.1, there exist f1, . . . , fs ∈ G such that

Sol(G)=
s⋂
`=1

Sol( f`).

For 1≤ `≤ s and k ∈ Z≥0, the (dk f`)|t=0 are polynomials in the variables xi j with
coefficients in K . Set

F`k := (dk f`)|t=0 ∈ K [xi j : 1≤ i ≤ n, j ≥ 0]

and

(6-2) A∞ := V
(
{F`k}1≤`≤s, k≥0

)
⊂
(
K Z≥0

)n
.

By Lemma 6.1,
Sol(G)=9(A∞).

We will now describe an extension to differential ideals of the definition of m-jet
of arc spaces; see for example [Mourtada 2011].

For each m ≥ 0, let Nm be the smallest positive integer such that

(6-3) F`k ∈ K [xi j : 1≤ i ≤ n, 0≤ j ≤ Nm] for all 1≤ `≤ s, 0≤ k ≤ m

and set

(6-4) Am := V
(
{F`k}1≤`≤s, 0≤k≤m

)
⊂
(
K Nm+1)n

.

For m ≥ m′ ≥ 0, denote by π(m,m′) the natural algebraic morphism

π(m,m′) : K n(Nm+1)
→ K n(Nm′+1).

Then
π(m,m′)(Am)⊂ Am′

and A∞ is the inverse limit of the system ((Am)m∈Z≥0, (π(m,m′))m≥m′∈Z≥0):

A∞ = lim
←−−

Am .
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When f1, . . . , fs are elements of K [x10, . . . , xn 0], the sets Am are the m-jets of
the space A∞. Otherwise, note that the construction depends strongly on the choice
of f1, . . . , fs .

7. Intersections with tori

Let G ⊂ R{x1, . . . , xn} be a differential ideal, let f1, . . . , fs ∈ G be such that
Sol(G)=

⋂s
`=1 Sol( f`), and let A∞ be as in (6-2) and Am as in (6-4).

An n-tuple S = (S1, . . . , Sn) ∈ P(Z≥0)
n is in trop(Sol(G)) if and only if there

exists a ∈ A∞ with trop(9(a))= S, i.e., if Si = { j : ai j 6= 0} for i = 1, . . . , n. Set

V∗S :=
{
(xi j )1≤i≤n, j≥0 ∈

(
K Z≥0

)n
: xi j = 0 if and only if j /∈ Si

}
,

then S ∈ trop(Sol(G)) if and only if

(A∞)S := A∞ ∩V∗S

is not empty.
For m ≥ 0, consider the finite dimensional torus

(Vm)
∗

S :=
{
(xi j )1≤i≤n, 0≤ j≤Nm ∈ K n(Nm+1)

: xi j = 0 if and only if j /∈ Si
}
,

where Nm is the minimum such that (6-3) holds. We have (Vm)
∗

S ' (K
∗)Lm , with

Lm ≤ n(Nm + 1). Set
(Am)S := Am ∩ (Vm)

∗

S.

For m ≥ m′ ≥ 0, the inclusions

π(m,m′)((Vm)
∗

S)⊂ (Vm′)
∗

S and π(m,m′)((Am)S)⊂ (Am′)S

hold, and (A∞)S is the inverse limit of
(
((Am)S)m∈Z≥0, (π(m,m′))m≥m′∈Z≥0

)
:

(A∞)S = lim
←−−

(Am)S.

Set

(Bm)S :=

∞⋂
i=m

π(i,m)((Ai )S);

then
(A∞)S = lim

←−−
(Bm)S

and the projections
π(m,m′) : (Bm)S→ (Bm′)S

are surjective. Then (see, for example, [Bourbaki 1968, Proposition 5, p. 198]), the
set lim
←−−

(Bm)S is nonempty if and only if (B0)S is nonempty. In other words, we
have the following remark.
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Remark 7.1. The set (A∞)S is nonempty if and only if
⋂
∞

i=0 π(i,0)((Ai )S) is
nonempty.

By Chevalley’s theorem (see, for example, [Mumford 1999, p. 51]), each
π(m,0)((Am)S) is a constructible set. A constructible set is, by definition, a finite
union of locally closed sets. A set is locally closed when it is an open set of its
closure. The constructible sets form a Boolean algebra.

We recall the following statement about nested sequences of constructible sets:

Proposition 7.2. Let K be an uncountable algebraically closed field of character-
istic zero. Let {Eα}∞α=1 be an increasing family of constructible sets in K n with
K n
=
⋃
∞

α=1 Eα. Then there exists α such that K n
= Eα.

We are now ready to prove the result that will allow us, in the next section,
to work in the noetherian ring K [xi j : 1 ≤ i ≤ n, 0 ≤ j ≤ Nm] instead of the
nonnoetherian K [xi j : 1≤ i ≤ n, 0≤ j].

Proposition 7.3. The set (A∞)S is nonempty if and only if (Am)S is nonempty for
all m ∈ Z≥0.

Proof. Since the constructible sets form a Boolean algebra, the nested sequence of
constructible sets inside (K ∗)L0 ' (V0)

∗

S ,

(7-1) · · · ⊂ π(2,0)((A2)S)⊂ π(1,0)((A1)S)⊂ (A0)S ⊂ (K
∗)L0,

induces an increasing family of constructible sets

(7-2) ∅⊂ (K ∗)L0\(A0)S⊂ (K
∗)L0\π(1,0)((A1)S)⊂ (K

∗)L0\π(2,0)((A2)S)⊂· · · .

The set
⋂
∞

i=0 π(i,0)((Ai )S) is empty if and only if (K ∗)L0 \
⋂
∞

i=0 π(i,0)((Ai )S)

is (K ∗)L0 ; that is, if and only if

(K ∗)L0 =

∞⋃
i=0

(K ∗)L0 \π(i,0)((Ai )S).

Then, by Proposition 7.2, there exists m such that (K ∗)L0 \π(m,0)((Am)S)= (K ∗)L0 .
That is, there exists m such that (Am)S is empty.

The result follows from Remark 7.1. �

8. The fundamental theorem of differential tropical geometry

Theorem 8.1. Let G be a differential ideal in K [[t]]{x1, . . . xn}, where K is an
uncountable algebraically closed field of characteristic zero. The equality

Sol(trop(G))= trop(Sol(G))

holds.
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Proof. The inclusion trop(Sol(G))⊂ Sol(trop(G)) is just Proposition 5.2. Here we
will prove

Sol(trop(G))⊂ trop(Sol(G)).

Let S = (S1, . . . , Sn) ∈ P(Z≥0)
n be such that there is no solution of G whose

tropicalization is S. We will show that S cannot be a solution of the tropicalization
of G.

Suppose that Sol(G) =
⋂s
`=1 Sol( f`), for some f1, . . . fs ∈ G. For 1 ≤ ` ≤ s

and k ∈ Z≥0, we write F`k := (dk f`)|t=0.
As we have seen above, S /∈ trop(Sol(G)) implies that (A∞)S is empty. Then,

by Proposition 7.3 there exists m ∈ N such that (Am)S is empty.
Take m ∈N such that (Am)S is empty. Set F`k to be the image of F`k in the ring

K [xi j : 1≤ i ≤ n, 0≤ j ≤ Nm]/〈xi j : j /∈ Si 〉.

Since (Am)S is empty we have

V (F`k : 1≤ `≤ s, 0≤ k ≤ m)⊂ V
( ∏
{0≤i≤n, j∈Si : j≤Nm}

xi j

)
so by the Nullstellensatz, there exists α ≥ 1 such that

EM =

( ∏
{0≤i≤n, j∈Si : j≤Nm}

xi j

)α
∈ 〈F`k : 1≤ `≤ s, 0≤ k ≤ m〉.

Here EM is the differential monomial induced by the matrix M ∈Mn×(Nm+1)(Z≥0)

with entries Mi j = 0 for j /∈ Si and Mi j = α for j ∈ Si .
It follows that there exists

{G`k : 1≤ `≤ s, 0≤ k ≤ m} ⊂ K [xi j : 1≤ i ≤ n, j ∈ Si , j ≤ Nm]

such that

(8-1)
∑

1≤`≤s
0≤k≤m

G`k F`k = EM .

Then

(8-2)
∑

1≤`≤s
0≤k≤m

G`k F`k = EM + h

for some h ∈ 〈xi j : j /∈ Si , j ≤ Nm〉 ⊂ K [xi j : 1≤ i ≤ n, 0≤ j ≤ Nm].
Now, by definition of F`k , there exists λ in K [[t]]{x0, . . . , xn} such that

(8-3) g :=
∑

1≤`≤s
0≤k≤m

G`kdk f` = EM + h+ tλ.
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Since G is a differential ideal and f1, . . . fs ∈ G, the differential polynomial g is
in G.

We now have:

• By Remark 4.1, εM(S)= 0 and if h 6= 0, then trop(h)(S)≥ 1.

• By Remark 5.1, if tλ 6= 0, then trop(tλ)(S)≥ 1.

Thus, (trop(g))(S)= 0 and the minimum is attained only at the monomial εM , and
hence, S is not a solution of trop(g). So S is not a solution of the tropicalization
of G, which is what we wanted to prove. �
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