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Dedicated to the memory of Alan Ross Elcrat

Consider a solution f ∈ C2(�) of a prescribed mean curvature equation

div
∇ f√

1+ |∇ f |2
= 2H(x, f ) in �,

where �⊂ R2 is a domain whose boundary has a corner at O = (0, 0) ∈ ∂�.
If supx∈� | f (x)| and supx∈� |H(x, f (x))| are both finite and � has a reen-
trant corner at O, then the (nontangential) radial limits of f at O,

R f (θ) := lim
r↓0

f (r cos θ, r sin θ),

are shown to exist, independent of the boundary behavior of f on ∂�, and to
have a specific type of behavior. If supx∈� | f (x)| and supx∈� |H(x, f (x))|
are both finite and the trace of f on one side has a limit at O, then the
(nontangential) radial limits of f at O exist, the tangential radial limit of
f at O from one side exists and the radial limits have a specific type of
behavior.

1. Introduction and statement of main theorems

Consider the prescribed mean curvature equation

(1) N f = 2H( · , f ) in �,

where � is a domain in R2 whose boundary has a corner at O ∈ ∂�, N f =
∇ ·T f = div(T f ), T f = (∇ f )/

√
1+ |∇ f |2, H :�×R→R and H satisfies one of

the conditions which guarantees that “cusp solutions” (e.g., [Lancaster and Siegel
1996a, §5; 1996b]) do not exist; for example, H(x, t) is strictly increasing in t
for each x or is real-analytic (e.g., constant). We will assume O = (0, 0). Let
�∗ = � ∩ Bδ∗(O), where Bδ∗(O) is the ball in R2 of radius δ∗ about O. Polar
coordinates relative to O will be denoted by r and θ . We assume that ∂� is
piecewise smooth and there exists α ∈ (0, π) such that ∂�∩ Bδ∗(O) consists of

MSC2010: 35B40, 53A10.
Keywords: prescribed mean curvature, radial limits.

341

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2016.283-2


342 MOZHGAN (NORA) ENTEKHABI AND KIRK E. LANCASTER

B

A

Figure 1. The domain �∗.

two arcs ∂+�∗ and ∂−�∗, whose tangent lines approach the lines L+ : θ = α and
L− : θ =−α, respectively, as the point O is approached (see Figure 1 of [Lancaster
and Siegel 1997] or Figure 1).

Suppose

(2) sup
x∈�
| f (x)|<∞ and sup

x∈�
|H(x, f (x))|<∞.

We shall prove

Theorem 1. Let f ∈ C2(�) satisfy (1) and suppose (2) holds and α ∈ (π/2, π).
Then for each θ ∈ (−α, α),

R f (θ) := lim
r↓0

f (r cos θ, r sin θ)

exists and R f ( · ) is a continuous function on (−α, α) which behaves in one of the
following ways:

(i) R f : (−α, α)→R is a constant function (so f has a nontangential limit at O).

(ii) There exist α1 and α2 so that−α≤α1<α2≤α and R f is constant on (−α, α1]

and [α2, α) and strictly increasing or strictly decreasing on (α1, α2).

(iii) There exist α1, αL , αR, α2 so that −α ≤ α1 < αL < αR < α2 ≤ α, αR =

αL + π , and R f is constant on (−α, α1], [αL , αR], and [α2, α) and either
strictly increasing on (α1, αL ] and strictly decreasing on [αR, α2) or strictly
decreasing on (α1, αL ] and strictly increasing on [αR, α2).

At a convex corner (i.e., α ∈ (0, π/2]), Theorem 1 is not applicable. The
additional assumption that the trace of f on one side (e.g., ∂−�∗) has a limit at O
implies the radial limits of f exist.

Theorem 2. Let f ∈ C2(�)∩C0(�∪ ∂−�∗ \ {O}) satisfy (1). Suppose (2) holds
and m = lim∂−�∗3x→O f (x) exists. Then for each θ ∈ (−α, α), R f (θ) exists and
R f ( · ) is a continuous function on [−α, α), where R f (−α) := m. If α ∈ (0, π/2],
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R f can behave as in (i) or (ii) in Theorem 1. If α ∈ (π/2, π), R f can behave as in
(i), (ii) or (iii) in Theorem 1.

The conclusions of these theorems were first obtained in [Lancaster 1985] for min-
imal surfaces satisfying Dirichlet boundary conditions and then for nonparametric
prescribed mean curvature surfaces satisfying Dirichlet [Elcrat and Lancaster 1986;
Lancaster 1988] or contact angle [Lancaster and Siegel 1996a] boundary conditions;
see also [Jin and Lancaster 1997; Lancaster 1991]. Notice that Theorem 1 applies
to a solution of a capillary surface problem whose domain has a reentrant corner
even when the contact angle equals 0 and/or π on some (or all) of ∂�∗.

Remark. The assumption that � has a reentrant corner at O ∈ ∂� or that the trace
of f from one side of ∂� is continuous at O is critical here; the nonexistence of
radial limits at (1, 0) when �= B1(O) and the boundary data is symmetric with
respect to the horizontal axis is demonistrated in [Lancaster 1989] and in Theorem 3
of [Lancaster and Siegel 1996a]. In [Lancaster 1987], it was conjectured that the
existence of radial limits at corners for bounded solutions of Dirichlet problems for
the minimal surface equation in R2, independent of boundary conditions. Although
[Lancaster 1989] proved this conjecture false, Theorems 1 and 2 show it is true in
many cases.

2. Proof of Theorem 1

Since f ∈C2(�) (and so in C0(�)), we may assume that f is uniformly continuous
on {x ∈�∗ : |x|> δ} for each δ ∈ (0, δ∗); if this is not true, we may replace � with
U , U ⊂�, such that ∂�∩ ∂U = {O} and ∂U ∩ Bδ∗(O) consists of two arcs ∂+U
and ∂−U , whose tangent lines approach the lines L+ : θ = α and L− : θ = −α,
respectively, as the point O is approached. Set

S∗0 =
{
(x, f (x)) : x ∈�∗

}
and 0∗0 =

{
(x, f (x)) : x ∈ ∂�∗ \ {O}

}
;

the points where ∂Bδ∗(O) intersect ∂� are labeled A ∈ ∂−�∗ and B ∈ ∂+�∗. From
the calculation on page 170 of [Lancaster and Siegel 1996a], we see that the area
of S∗0 is finite; let M0 denote this area. For δ ∈ (0, 1), set

p(δ)=

√
8πM0

ln(1/δ)
.

Let E = {(u, v) : u2
+ v2 < 1}. As in [Elcrat and Lancaster 1986; Lancaster and

Siegel 1996a], there is a parametric description of the surface S∗0 ,

(3) Y (u, v)=
(
a(u, v), b(u, v), c(u, v)

)
∈ C2(E : R3),

which has the following properties:
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(a1) Y is a diffeomorphism of E onto S∗0 .

(a2) Set G(u, v)=
(
a(u, v), b(u, v)

)
, (u, v) ∈ E . Then G ∈ C0(E : R2).

(a3) Let σ = G−1(∂�∗ \ {O}); then σ is a connected arc of ∂E and Y maps σ
strictly monotonically onto 0∗0 . We may assume the endpoints of σ are o1 and
o2 and there exist points a, b ∈ σ such that G(a)= A, G(b)= B, G maps the
(open) arc o1b onto ∂+�, and G maps the (open) arc o2a onto ∂−�. (Note
that o1 and o2 are not assumed to be distinct at this point; Figures 4a and 4b
of [Lancaster and Siegel 1997] illustrate this situation.)

(a4) Y is conformal on E : Yu · Yv = 0, Yu · Yu = Yv · Yv on E .

(a5) 4Y := Yuu + Yvv = H(Y )Yu × Yv on E .

Here by the (open) arcs o1b and o2a we mean the component of ∂E \ {o1, b}
which does not contain a and the component of ∂E \{o2, a} which does not contain
b respectively. Let σ0 = ∂E \ σ .

There are two cases we wish to consider:

(A) o1 = o2.

(B) o1 6= o2.

These correspond to Cases 5 and 3 respectively in Step 1 of the proof of The-
orem 1 in [Lancaster and Siegel 1996a]. Let us first assume that (A) holds and
set o= o1 = o2. Let h denote a function on the annulus A = {x : r1 ≤ |x| ≤ r2}

which vanishes on the circle |x| = r2 and whose graph is an unduloid surface with
constant mean curvature −H0 which becomes vertical at |x| = r1 and at |x| = r2

(see Figure 2) for suitable r1 < r2 (e.g., [Lancaster and Siegel 1996a, pp. 170–171]).
Let q denote the modulus of continuity of h (i.e., |h(x1)− h(x2)| ≤ q(|x1− x2|)).

For each p ∈ R2 with | p| = r1, set A( p) = {x : r1 ≤ |x − p| ≤ r2} and define
h p :A( p)→ R by h p(x)= h(x− p).

Figure 2. The graph of h over A.
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y1(δ0)
y1(δ)

y2(δ)

Figure 3. �∗ ∩A( p1), C ′ρ(δ) (blue curve), Bη(δ)(O)∩A( p1) (yellow).

For r > 0, set Br = {u ∈ E : |u− o| < r}, Cr = {u ∈ E : |u− o| = r} and let
lr be the length of the image curve Y (Cr ); also let C ′r = G(Cr ) and B ′r = G(Br ).
From the Courant–Lebesgue lemma (e.g., [Courant 1950, Lemma 3.1]), we see that
for each δ ∈ (0, 1), there exists a ρ = ρ(δ) ∈ (δ,

√
δ) such that the arclength lρ of

Y (Cρ) is less than p(δ). For δ > 0, let k(δ)= infu∈Cρ(δ) c(u)= infx∈C ′ρ(δ) f (x) and
m(δ)= supu∈Cρ(δ) c(u)= supx∈C ′ρ(δ)

f (x); notice that m(δ)− k(δ)≤ lρ < p(δ).
For each δ ∈ (0, 1) with

√
δ < min{|o− a|, |o− b|}, there are two points in

Cρ(δ) ∩ ∂E ; we denote these points as e1(δ) ∈ ob and e2(δ) ∈ oa and set y1(δ)=

G(e1(δ)) and y2(δ) = G(e2(δ)). Notice that C ′ρ(δ) is a curve in � which joins
y1 ∈ ∂

+�∗ and y2 ∈ ∂
−�∗ and ∂�∩C ′ρ(δ) \ { y1, y2} = ∅; therefore there exists

η = η(δ) > 0 such that Bη(δ)(O)= {x ∈� : |x|< η(δ)} ⊂ B ′ρ(δ) (see Figure 3).
Fix δ0 ∈ (0, δ∗) with

√
δ0 <min{|o− a|, |o− b|}. Let p1 ∈ R2 satisfy | p1| = r1

and | p1− y1(δ0)| = r1 such that p1 lies below (and to the left of) the line through
O and y1(δ0). Let p2 ∈ R2 satisfy | p2| = r1 and | p2 − y2(δ0)| = r1 such that p2

lies above (and to the left of) the line through O and y2(δ0). Set �0 = {x ∈ �∗ :
|x− p1|> r1} ∪ {x ∈�∗ : |x− p2|> r1} (see Figure 4).

Claim. f is uniformly continuous on �0.

Proof. Let ε>0. Choose δ∈ (0, δ0) such that p(δ)+q(p(δ))< 1
4ε and p(δ)<r2−r1.

Pick a point w ∈ C ′ρ(δ) and define b±j :A( p j )→ R by

b±j (x)= f (w)± p(δ)± h p j (x), x ∈A( p j )

for j ∈ {1, 2}. Notice that

b−j (x) < f (x) < b+j (x) for x ∈ B ′ρ(δ) ∩A( p j ), j ∈ {1, 2}.
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Figure 4. �0.

If x1, x2 ∈�0 satisfy |x1|< η(δ) and |x2|< η(δ), then there exist x3 ∈A( p1)∩

A( p2) with |x3|< η(δ) such that |x1− x3|< η(δ) and |x2− x3|< η(δ) and so

(4) | f (x1)− f (x2)|≤ | f (x1)− f (x3)|+| f (x1)− f (x3)|< 4p(δ)+4q(p(δ))< ε.

Since f is uniformly continuous on {x ∈ �∗ : |x| ≥ 1
2η(δ)}, there exists a

λ > 0 such that if x1, x2 ∈ �
∗ satisfy |x1 − x2| ≥

1
2η(δ) and |x1 − x2| < λ, then

| f (x1)− f (x2)| < ε. Now set d = d(ε) = min{λ, 1
2η(δ)}. If x1, x2 ∈ �0, |x1 −

x2| < d(ε) ≤ 1
2η(δ) and |x1| <

1
2η(δ), then |x1| < η(δ) and |x2| < η(δ); hence

| f (x1)− f (x2)|<ε by (4). Next, if x1, x2 ∈�0, |x1−x2|< d(ε)≤ λ, |x1| ≥
1
2η(δ)

and |x2| ≥
1
2η(δ), then | f (x1)− f (x2)| < ε. Therefore, for all x1, x2 ∈ �0 with

|x1− x2|< d(ε), we have | f (x1)− f (x2)|< ε. �

If
{(

r cos(θ−(δ0)), r sin(θ−(δ0))
)
: r ≥ 0

}
is the tangent ray to ∂A( p2) at O,{(

r cos(θ+(δ0)), r sin(θ+(δ0))
)
: r ≥ 0

}
is the tangent ray to ∂A( p1) at O and

θ−(δ0), θ
+(δ0) ∈ (−α, α), then it follows from the claim that f ∈ C0(�0), the

radial limits R f (θ) of f at O exist for θ ∈ [θ−(δ0), θ
+(δ0)] and the radial limits

are identical (i.e., R f (θ)= f (O) for all θ ∈ [θ−(δ0), θ
+(δ0)].) Since

(5) lim
δ0↓0

θ−(δ0)= −α and lim
δ0↓0

θ+(δ0)= α,

Theorem 1 is proven in this case.
Next assume that (B) holds. For r>0 and j ∈{1, 2}, set B j

r ={u∈ E : |u−o j |<r},
C j

r = {u ∈ E : |u− o j | = r}, and let l j
r be the length of the image curve Y (C j

r );
also let C j,′

r = G(C j
r ) and B j,′

r = G(B j
r ). From the Courant–Lebesgue lemma, we

see that for each δ ∈ (0, 1) and j ∈ {1, 2}, there exists a ρ j = ρ j (δ) ∈ (δ,
√
δ) such

that the arclength l j,ρ of Y (C j
ρ j ) is less than p(δ).

We will only consider δ ≤ δ0, where δ0 is small enough that the endpoints of
C j
ρ j (δ)

lie on σ0 ∪ σ
j

N for j ∈ {1, 2} and C1√
δ0
∩ C2√

δ0
= ∅, where σ 1

N = o1b and
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G

Figure 5. E \ (B1
ρ1(δ)
∪ B2

ρ2(δ)
) and �1.

σ 2
N = o2a. For each δ ∈ (0, δ0), the fact that l j, ρ j (δ) is finite for j ∈ {1, 2} implies

that
lim

C j,′
ρ j (δ)
3x→O

f (x) exists for j ∈ {1, 2}.

If we set �1 = G(E \ (B1
ρ1(δ)
∪ B2

ρ2(δ)
)) and define φ : ∂�1→ R by φ = f , then φ

has (at worst) a jump discontinuity at O. If we consider φ to be the Dirichlet data
for the boundary value problem

div(T h)= 2H( · , f ) in �1,(6)

h = φ on ∂�1 \ {O},(7)

then h = f is the unique solution of this boundary value problem and so we may
parametrize the graph of f over �1 in isothermal coordinates as above and the
arguments in [Elcrat and Lancaster 1986; Lancaster 1988; Lancaster and Siegel
1996a] can be used to show that c is uniformly continuous on�1 and so extends to be
continuous on�1. That is, let k : E\(B1

ρ1(δ)
∪B2

ρ2(δ)
)→ E be a conformal map. From

the works just cited we see that c◦k−1
∈C0(E) and so c∈C0(E \ (B1

ρ1(δ)
∪ B2

ρ2(δ)
)).

Since ⋃
δ∈(0,1)

(E \ (B1
ρ1(δ)
∪ B2

ρ2(δ)
))= E,

we see c ∈ C0(E \ {o1, o2}).
As at the end of Step 1 of the proof of Theorem 1 of [Lancaster and Siegel 1996a],

we define X : B→R3 by X=Y◦g and K : B→R2 by K =G◦g, where B={(u, v)∈
R2
: u2
+v2< 1, v > 0} and g : B→ E is an indirectly conformal (or anticonformal)

map from B onto E such that g(1, 0)= o1, g(−1, 0)= o2 and g(u, 0) ∈ o1o2 for
each u ∈ [−1, 1]. Notice that K (u, 0) = O for u ∈ [−1, 1] (see Figure 6). Set
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Figure 6. L(α2), K−1(L(α2)) (blue curves); L(α1), K−1(L(α1))

(green curves).

x = a ◦ g, y = b ◦ g and z = c ◦ g, so that X (u, v)= (x(u, v), y(u, v), z(u, v)) for
(u, v) ∈ B. Now, from Step 2 of the proof of Theorem 1 of [Lancaster and Siegel
1996a],

X ∈ C0(B \ {(±1, 0)} : R3)
∩C1,ι(B ∪ {(u, 0) : −1< u < 1} : R3)

for some ι ∈ (0, 1) and X (u, 0) = (0, 0, z(u, 0)) cannot be constant on any non-
degenerate interval in (−1, 1). Define 2(u) = arg(xv(u, 0)+ iyv(u, 0)). From
equation (12) of [Lancaster and Siegel 1996a], we see that

α1 = lim
u↓−1

2(u) and α2 = lim
u↑1

2(u);

here α1 < α2. As in Steps 2–5 of the proof of Theorem 1 of [Lancaster and Siegel
1996a], we see that R f (θ) exists when θ ∈ (α1, α2),

G−1(L(α2))∩ ∂E = {o1}
(
and K−1(L(α2))∩ ∂B = {(1, 0)}

)
if α2<α,

G−1(L(α1))∩ ∂E = {o2}
(
and K−1(L(α1))∩ ∂B = {(−1, 0)}

)
if α1>−α,

where L(θ)=
{
(r cos θ, r sin θ) ∈� : 0< r < δ∗

}
, and one of the following cases

holds:

(a) R f is strictly increasing or strictly decreasing on (α1, α2).

(b) There exist αL , αR so that α1<αL <αR<α2, αR=αL+π , and R f is constant
on [αL , αR] and either increasing on (α1, αL ] and decreasing on [αR, α2) or
decreasing on (α1, αL ] and increasing on [αR, α2).

If α2 = α and α1 =−α, then Theorem 1 is proven. Otherwise, suppose α2 < α

and fix δ0 ∈ (0, δ∗) and �0 (see Figure 4) as before in case (i).

Claim. Suppose α2 < α. Then f is uniformly continuous on �+0 , where

�+0 :=
{
(r cos θ, r sin θ) ∈�0 : 0< r < δ∗, α2 < θ < π

}
.
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Figure 7. �∗ ∩A( p1) (blue, yellow and red regions), ∂Bη(δ)(O)
(blue circle).

Proof. Suppose α − α2 < π (see the blue region in Figure 6). Let ε > 0.
Choose δ ∈ (0, δ0) such that p(δ) + q(p(δ)) < 1

4ε and p(δ) < r2 − r1. Let
Cr =

{
(u, v) ∈ B : |(u, v)− (1, 0)| = r

}
and let lr be the arclength of the image

curve X (Cr ). The Courant–Lebesgue lemma implies that for each δ ∈ (0, 1), there
exists a ρ(δ) ∈ (δ,

√
δ) such that lρ(δ) < p(δ). Denote the endpoints of Cρ(δ)

as (u1(δ), v1(δ)) and (u2(δ), 0), where (u1(δ))
2
+ (v1(δ))

2
= 1, v1(δ) > 0 and

u2(δ) ∈ (−1, 1). Notice 2(u2(δ)) < α2; let us assume that δ is small enough that
α−2(u2(δ)) < π .

Now X (Cρ(δ)) is a curve whose tangent ray at O exists and has direction
θ = 2(u2(δ)) and ∂� ∩ X

(
Cρ(δ) \ {(u1(δ), v1(δ)), (u2(δ), 0)}

)
= ∅; hence there

exists η = η(δ) > 0 such that {x ∈�+0 : |x|< η(δ)} (the red region in Figure 7) is
a subset of �0 ∩ X

(
{(u, v) ∈ B : |(u, v)− (1, 0)|< ρ(δ)}

)
(the yellow region plus

the red region in Figure 7). From (4) and the arguments in the proof of the claim in
case (i), we see that f is uniformly continuous on �+0 .

If α−α2 ≥ π , we argue as in the proof of the claim in case (i) and see that f is
uniformly continuous on �+0 . �

Thus f ∈ C0(�+0 ); hence (5) implies that R f (θ) = limτ↑α2 R f (τ ) for all θ ∈
[α2, α). Suppose α1 >−α. Then, as above, f is uniformly continuous on

�−0 :=
{
(r cos θ, r sin θ) ∈�0 : 0< r < δ∗,−π < θ < α1

}
and f ∈ C0(�−0 ); hence (5) implies

R f (θ)= lim
τ↓α1

R f (τ ) for all θ ∈ (−α, α1].

Thus Theorem 1 is proven. �
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3. Proof of Theorem 2

The parametric representation (3) with properties (a1)− (a5) continues to be valid
and either case (A) or case (B) holds true.

Suppose case (A) holds. Let q1 denote the modulus of continuity of the trace of
f on the (closed) set ∂−�∗ (i.e., | f (x1)− f (x2)| ≤ q1(|x1− x2|) if x1, x2 ∈ ∂

−�∗).
Fix δ0 ∈ (0, δ∗) with

√
δ0 <min{|o− a|, |o− b|}. Let p1 ∈R2 satisfy | p1| = r1 and

| p1− y1(δ0)| = r1 such that p1 lies above (and to the left of) the line through O
and y1(δ0). Set �0 = {x ∈�∗ : |x− p1|> r1}.

Claim. f is uniformly continuous on �0.

Proof. Let ε > 0. Choose δ ∈ (0, δ0) such that p(δ)+q(p(δ))+q1(p(δ)) < 1
2ε and

p(δ) < r2− r1. Pick a point w ∈ C ′ρ(δ) and define b±1 :A( p1)→ R by

b±1 (x)= f (w)± p(δ)± h p1(x), x ∈A( p1).

Notice that
b−1 (x) < f (x) < b+1 (x) for x ∈ B ′ρ(δ) ∩A( p1).

Now there exists η = η(δ) > 0 such that {x ∈�0 : |x|< η(δ)} (the red regions in
Figure 8) is a subset of B ′ρ(δ) ∩A( p1) (the yellow regions plus the red regions in
Figure 8). Thus, for x1, x2 ∈�0 satisfying |x1|< η(δ), |x2|< η(δ), we have

| f (x1)− f (x2)|< 2p(δ)+ 2q(p(δ))+ 2q1(p(δ)) < ε.

The remainder of the proof of the claim follows as before.
The proof of Theorem 2 in this case now follows the proof of Theorem 1 in the

same case.
If case (B) holds, then the proof of Theorem 2 is essentially the same as the

proof of Theorem 1; the only significant difference is that z ∈ C0(B \ {(1, 0)}) (and
c ∈ C0(E \ {o1})) and hence R f (θ) exists for θ ∈ [−α, α). �

Figure 8. �0 ∩A( p1) (blue, yellow and red regions), ∂Bη(δ)(O)
(blue circle).
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