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Let α be a (finite or infinite) cardinal number. An ideal of a ring R is
called an α-generated ideal if it can be generated by a set with cardinality
at most α. A ring R is called an α-generated ring if every ideal of R is an
α-generated ideal. When α is finite, the class of α-generated rings has been
studied in literature by scholars such as I. S. Cohen and R. Gilmer. In this
paper, the class of α-generated rings when α is infinite (in particular, when
α=ℵ0, the smallest infinite cardinal number) is considered. Surprisingly, it
is proved that the concepts “ℵ0-generated ring” and “Noetherian ring” are
the same for the power series ring R[[X]]. In other words, if every ideal of
R[[X]] is countably generated, then each of them is in fact finitely generated.
This shows a strange behavior of the power series ring R[[X]] compared to
that of the polynomial ring R[X]. Indeed, for any infinite cardinal num-
ber α, it is proved that R is an α-generated ring if and only if R[X] is an
α-generated ring, which is an analogue of the Hilbert basis theorem stat-
ing that R is a Noetherian ring if and only if R[X] is a Noetherian ring.
Let O be the ring of algebraic integers. Under the continuum hypothesis,
we show that O[[X]] contains an |O[[X]]|-generated (and hence uncountably
generated) ideal which is not a β-generated ideal for any cardinal number
β < |O[[X]]| and that the concepts “ℵ1-generated ring” and “ℵ0-generated
ring” are different for the power series ring R[[X]].

1. Introduction

In this paper, a ring means a commutative ring with identity. Let R be a ring and let
n be a positive integer. An ideal I of R is called an n-generated ideal if I can be
generated by a set with cardinality ≤ n. We call R an n-generated ring if every ideal
of R is an n-generated ideal. This class of n-generated rings was first introduced
and studied by Cohen [1950]. Principal ideal rings are obviously 1-generated
rings. It is well known that Dedekind domains are 2-generated rings. For each
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integer n ≥ 2, Matson [2009] gave an example of an n-generated ring which is not
an (n−1)-generated ring. Cohen [1950] proved that if D is an n-generated integral
domain, then the Krull dimension of D is at most 1. An easy proof of this result
was later given by Gilmer [1973]. He further showed [1972b] that the result is valid
for n-generated rings (see also [Sally 1978, Theorem 1.2, p. 51]). By definition,
every n-generated ring is a Noetherian ring. However, the converse does not hold
[Cohen 1950]. Gilmer [1973] proved a nice result that if R is an n-generated ring,
then the integral closure of R is a Noetherian Prüfer ring. He also showed that a
Noetherian ring R is an n-generated ring (for some n) if and only if there exists a
positive integer m such that RM is an m-generated ring for each maximal ideal M
of R [Gilmer 1972a; 1972b]. For more on n-generated ideals and rings, we refer
the readers to [Ameziane Hassani et al. 1996; Cohen 1950; Gilmer 1972b; 1973;
Heinzer and Lantz 1983; Matsuda 1979; McLean 1982; Okon et al. 1992; Okon
and Vicknair 1992; 1993; Rush 1991; 1992; Sally 1978; Shalev 1986].

According to Cohen and Gilmer’s results, the class of n-generated rings is rather
small. It is a subclass of Noetherian rings with Krull dimension at most 1. We
generalize the definition of n-generated rings in a natural way as follows. Let α be a
(finite or infinite) cardinal number (e.g., α = 1, 2, . . . ,ℵ0,ℵ1, . . . ). An ideal I of a
ring R is called an α-generated ideal if I can be generated by a set with cardinality
at most α. R is called an α-generated ring if every ideal of R is an α-generated
ideal. In this paper, we mainly deal with the class of α-generated rings when α=ℵ0,
the smallest infinite cardinal number. By definition, an ℵ0-generated ring is a ring
whose ideals are countably generated. Trivial examples of ℵ0-generated rings are
those that have only countably many elements (so that each ideal has itself as a
countable generating set). Every Noetherian ring is obviously an ℵ0-generated ring.
However, the converse does not hold. Polynomial rings R[X1, X2, . . . , Xn, . . . ] in
countably infinite indeterminates over countable rings R, the ring O of algebraic
integers, the ring Int(Z) of integer-valued polynomials on Z, and 1-dimensional
nondiscrete valuation domains are good examples of ℵ0-generated rings that are
not Noetherian rings.

Even though the class of ℵ0-generated rings is strictly larger than the class of
Noetherian rings, we show that, when restricted to power series rings, they are
actually the same. In other words, the concepts “ℵ0-generated ring” and “Noetherian
ring” are the same for the power series ring R[[X ]] (Theorem 13). This means if
every ideal of R[[X ]] is countably generated, then each of them is in fact finitely
generated. This shows a strange behavior of the power series ring R[[X ]] compared
to that of the polynomial ring R[X ]. Indeed, for any infinite cardinal number α,
we prove that R is an α-generated ring if and only if R[X ] is an α-generated ring
(Theorem 22), which is an analogue of the Hilbert basis theorem stating that R
is a Noetherian ring if and only if R[X ] is a Noetherian ring. We show under
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the continuum hypothesis that (1) O[[X ]] contains an |O[[X ]]|-generated (and hence
uncountably generated) ideal which is not a β-generated ideal for any cardinal
number β < |O[[X ]]| (Corollary 16) and that (2) O[[X ]] is an ℵ1-generated ring that
is not an ℵ0-generated ring (Corollary 17). In fact, these two results hold if O is
replaced by any non-Noetherian countable ring R. As a consequence, it is shown
that the concepts “ℵ1-generated ring” and “ℵ0-generated ring” are different (while
the concepts “ℵ0-generated ring” and “Noetherian ring” are the same) for the power
series ring R[[X ]].

2. Some examples of α-generated rings

For each integer n ≥ 2, Matson [2009] gave an example of an n-generated ring
which is not an (n−1)-generated ring. For an infinite cardinal number α, we give
an example of an α-generated ring that is not a β-generated ring for any cardinal
number β < α.

Proposition 1. For an infinite cardinal number α, there exists an α-generated ring
that is not a β-generated ring for any cardinal number β < α.

Proof. Let R be any ring with cardinality < α and let {Xλ}λ∈3 be a set of inde-
terminates over R, where 3 is a set of cardinality α. Then the polynomial ring
R[{Xλ}λ∈3] is clearly an α-generated ring since it has cardinality α. We now show
that the ideal J of R[{Xλ}λ∈3] generated by {Xλ}λ∈3 is not a β-generated ideal for
any cardinal number β <α. Let β be any cardinal number such that β <α. If J is a
β-generated ideal, then J = ({ fµ}) for some fµ ∈ J such that |{ fµ}|≤β. Since each
fµ involves only finitely many indeterminates, ({Xλ}λ∈3)= J = ({ fµ})⊆ ({Xλ}λ∈0)
for some subset 0 of 3 such that |0|< |3| = α, a contradiction. �

In the next section, we are going to prove that the concepts “ℵ0-generated
ring” and “Noetherian ring” are the same for the power series ring R[[X ]]. We
however note that these two concepts are different in general. We give here some
examples of (finite-dimensional or infinite-dimensional) ℵ0-generated rings that are
not Noetherian rings.

Example 2. Let R1 := R[X1, X2, . . . , Xn, . . .] be the polynomial ring in count-
ably infinite indeterminates over a countable ring R. Then R1 is an ℵ0-generated
ring since it is countable. It is easy to see that the ideal of R1 generated by
X1, X2, . . . , Xn, . . . is not a finitely generated ideal and hence R1 is not a Noether-
ian ring.

In Example 2, the (Krull) dimension of R1 is infinite. We now give examples of
finite-dimensional ℵ0-generated rings that are not Noetherian rings.

Example 3. Let O be the ring of algebraic integers (an algebraic integer is a
complex number that is integral over Z). It is well known that O is a 1-dimensional
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non-Noetherian Bézout domain (for example, see p. 72 of [Kaplansky 1974]).
However, since O is countable, it is an ℵ0-generated ring.

Example 4. Let Int(Z) be the ring of integer-valued polynomials on Z, i.e.,

Int(Z) := { f ∈Q[X ] | f (Z)⊆ Z}.

By [Cahen and Chabert 1997, Proposition V.2.7], Int(Z) is a 2-dimensional non-
Noetherian domain. However, since Int(Z) is countable, it is an ℵ0-generated
ring.

So far, the given examples of ℵ0-generated rings are all countable. We finally
show that there do exist uncountable ℵ0-generated rings that are not Noetherian
rings (see Example 6).

Proposition 5. If V is a 1-dimensional nondiscrete valuation domain, then V is an
ℵ0-generated ring that is not a Noetherian ring.

Proof. Since V is a 1-dimensional valuation domain, its value group is (isomorphic
to) a subgroup of R, the (additive) group of real numbers. This implies that every
ideal of V is countably generated, i.e., V is an ℵ0-generated ring. Since V is
nondiscrete, it is not a Noetherian ring. �

Example 6. Let K be a field and let V be the valuation ring of the field K (X;R),
which is the quotient field of the group ring K [X;R] of R over K , associated with
the valuation v defined by

v

( n∑
i=0

ari X ri

)
:=min{ri | i = 0, 1, . . . , n}.

Then V is a 1-dimensional nondiscrete valuation domain with value group R. Hence,
V is an ℵ0-generated ring that is not a Noetherian ring by Proposition 5. Since R is
uncountable, so is V.

3. Power series rings over α-generated rings

In this section, we prove that the power series ring R[[X ]] is an ℵ0-generated ring if
and only if R[[X ]] is a Noetherian ring (and hence) if and only if R is a Noetherian
ring. In order to prove this result, we only need to show that if R is a non-Noetherian
ring, then the power series ring R[[X ]] is not an ℵ0-generated ring since, if R is a
Noetherian ring, then R[[X ]] is also a Noetherian ring (for example, see [Kaplansky
1974, Theorem 71]) and hence an ℵ0-generated ring.

Suppose that R is a non-Noetherian ring. Our task is to construct an ideal J
of R[[X ]] that cannot be generated by any countable subset of J . The desired
uncountable generating set for J is indexed by the following special uncountable
set, which is called a fathomless set.
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3.1. Fathomless sets. Let N = {1, 2, . . . } be the set of positive integers, and let
U be the set of all subsets U of N such that U = {n, n+ 1, . . . } for some n ∈ N.
For two strictly increasing sequences s = {sn} and t = {tn} of positive integers, we
set s� t (we also write t � s) if for each positive integer k there is a set U ∈U

(depending on k) such that sn > ktn for each n ∈U, i.e., sn > ktn for all large n.
Let S be the collection of all A having the following properties:

(1) A is a nonempty collection of strictly increasing sequences s = {sn} of positive
integers.

(2) If s ∈A then s� b, where b is the sequence defined by bn := n for all n.

(3) If s, t ∈A and s 6= t , then s� t or t � s.

If u is the sequence defined by un := b2
n for each n, then it is easy to see that u is a

strictly increasing sequence of positive integers and that u� b. It follows that the
set S is nonempty. We order S by set-theoretic inclusion. By Zorn’s lemma, there
exists a maximal element in S. Let A be a maximal element in S. This choice of
A will be fixed through the rest of the article. For s, t ∈A, we define s� t if and
only if s = t or s� t . Then (A,�) becomes a totally ordered set.

Definition 7. A totally ordered set (Y,�) is called a fathomless set if, for every
nonempty countable subset C of Y, there exists an element y ∈ Y such that y� C,
i.e., y� c for all c ∈ C.

The following theorem tells us that the set (A,�) is a fathomless set (for the
proof, see [Kang et al. 2013, Theorem 5]).

Theorem 8. The set (A,�) is a fathomless set.

Remark 9. By definition, every fathomless set is an uncountable set. Hence, the
set (A,�) is uncountable.

3.2. Power series rings over ℵ0-generated rings. Using the above fathomless
set (A,�), we construct generators for an ideal J of R[[X ]] that is not countably
generated. The following observation is useful:

Proposition 10. For a ring R, the following are equivalent:

(1) R is a non-Noetherian ring.

(2) There exists a sequence a0, a1, . . . , am, . . . of elements in R such that

am 6∈ (a0, a1, . . . , am−1)

for each m ≥ 1.

Proof. (1)=⇒ (2) Suppose that R is a non-Noetherian ring. Then there exists an
ideal I of R such that I is not finitely generated. We will find the desired sequence
a0, a1, . . . , am, . . . of elements in R by using induction as follows. Choose an
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element a0 ∈ I . Since (a0)( I , there exists an element a1 ∈ I \ (a0). Suppose that
there exist elements a0, a1, . . . , am−1 in I (m ≥ 2) such that ai 6∈ (a0, a1, . . . , ai−1)

for each 1 ≤ i ≤ m − 1. Since (a0, a1, . . . , am−1) ( I , there exists an element
am ∈ I \ (a0, a1, . . . , am−1).

(2)=⇒ (1) The ideal (a0, a1, . . . , am, . . .) of R is not finitely generated. �

Let R be a non-Noetherian ring. By Proposition 10, there exists a sequence
a0, a1, . . . , am, . . . of elements in R such that

am 6∈ (a0, a1, . . . , am−1)

for each m ≥ 1. For each integer m ≥ 0, we let Im := (a0, a1, . . . , am). Then
am 6∈ Im−1 for each m ≥ 1. For each sequence s = {sn} ∈A, we define

fs := a0+ a1 X s1 + a2 X s2 + · · ·+ an X sn + · · · ∈ R[[X ]].

We let J be the ideal of R[[X ]] generated by all fs with s ∈A.

Remark 11. The generators fs of J are constructed by stretching out the coef-
ficients of the power series

∑
∞

n=0 an Xn so that its coefficient at X sn (sn is much
greater than n for all large n since s � b) is still an . This property will play a
crucial role in showing that J is not a countably generated ideal.

An ideal I of a ring R is called an uncountably generated ideal if it is not a
countably generated ideal. If R is a non-Noetherian ring, then so is the power
series ring R[[X ]]. Hence, R[[X ]] has some ideals that are not finitely generated.
These ideals can be either countably generated or uncountably generated. However,
we show that R[[X ]] has at least one uncountably generated ideal if R is a non-
Noetherian ring.

Theorem 12. If R is a non-Noetherian ring, then the power series ring R[[X ]] has
at least one uncountably generated ideal.

Proof. It suffices to show that the ideal J constructed above is not a countably
generated ideal. Suppose on the contrary that J is countably generated. Then there
exists a countable subset B of A such that J is generated by { fs | s ∈B}. Since A

is a fathomless set, there exists a sequence v ∈A such that v�B. Since fv ∈ J ,
fv is a finite sum of elements of the form h(s) fs ,

fv =
∑

s

h(s) fs,(1)

where h(s) ∈ R[[X ]] and s ∈ B. Since v � B, by taking a finite intersection of
members of U, we can find a set U ∈U such that vm < sm for each m ∈U and for
each s appearing in the finite sum (1). Choose any number m ∈U. Since vm < sm ,
the coefficient of fs at X j belongs to Im−1 for all j ≤ vm . It follows that the
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coefficient of h(s) fs at Xvm belongs to Im−1. This holds for every s appearing in
the finite sum (1). Therefore, the coefficient of

∑
s h(s) fs at Xvm belongs to Im−1.

This is a contradiction since the coefficient of fv =
∑

s h(s) fs at Xvm is am and
am 6∈ Im−1. �

We can now obtain the main result of the paper.

Theorem 13. For a ring R, the following are equivalent:

(1) R[[X ]] is an ℵ0-generated ring.

(2) R[[X ]] is a Noetherian ring.

(3) R is a Noetherian ring.

Proof. We only need to prove that (1) implies (3). However, this follows from
Theorem 12. �

Since a ring R is a Noetherian ring if and only if every countably generated ideal
is finitely generated, we have the following corollary.

Corollary 14. For a ring R, the following are equivalent:

(1) Every ideal of R[[X ]] is countably generated.

(2) Every countably generated ideal of R[[X ]] is finitely generated.

Corollary 15. If R is an ℵ0-generated ring, then the power series ring R[[X ]] is
not necessarily an ℵ0-generated ring.

Proof. Let R be any ℵ0-generated ring which is not a Noetherian ring (see
Proposition 5 and Examples 2, 3, and 4). Then R[[X ]] is not an ℵ0-generated
ring by Theorem 13. �

Corollary 16. Let O be the ring of algebraic integers and let α = |O[[X ]]|. Then,
under the continuum hypothesis, O[[X ]] contains an α-generated ideal that is not a
β-generated ideal for any cardinal number β < α.

Proof. We have α = |O[[X ]]| = 2ℵ0 = ℵ1 under the continuum hypothesis. By
Theorem 12, O[[X ]] has an uncountably generated ideal J . Obviously, J is an
α-generated ideal since |J | ≤ |O[[X ]]| = α. But, since J is not countably generated,
it is not a β-generated ideal for any cardinal number β < ℵ1 = α. �

The following corollary shows that the concepts “ℵ1-generated ring” and “ℵ0-
generated ring” are different for the power series ring R[[X ]].

Corollary 17. Under the continuum hypothesis, O[[X ]] is an ℵ1-generated ring but
not an ℵ0-generated ring.

Proof. Since |O[[X ]]| = ℵ1, O[[X ]] is an ℵ1-generated ring. The fact that O[[X ]] is
not an ℵ0-generated ring follows from Corollary 16. �
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Remark 18. Corollaries 16 and 17 hold for any non-Noetherian countable ring
(see Examples 2, 3, and 4).

In the rest of this section, we consider power series rings over n-generated rings,
where n is a positive integer. We first note that, for the power series ring R[[X ]] to
be an n-generated ring, it is necessary that the ring R be zero-dimensional.

Proposition 19. If the power series ring R[[X ]] is an n-generated ring for some
positive integer n, then dim R = 0.

Proof. If R[[X ]] is an n-generated ring, then dim R[[X ]] ≤ 1. It is easy to see that
dim R+1≤ dim R[[X ]]. Thus, dim R+1≤ dim R[[X ]]≤ 1 and hence dim R= 0. �

Proposition 20. Suppose that D is an integral domain. Then the following are
equivalent:

(1) D[[X ]] is an n-generated ring for some positive integer n.

(2) D[[X ]] is a 1-generated ring.

(3) D is a field.

Proof. (3)=⇒ (2)=⇒ (1) These are obvious.

(1)=⇒ (3) By Proposition 19, dim D = 0. Thus, D is a field by the assumption
that D is an integral domain. �

Remark 21. By Proposition 20, if D is an (n-generated) integral domain which is
not a field, then the power series ring D[[X ]] is never an m-generated ring for any
positive integer m. In particular, D[[X ]] has an ideal that is not an (n+1)-generated
ideal despite the fact that all prime ideals of D[[X ]] are (n+1)-generated ideals (see
[Kaplansky 1974, Theorem 70]).

4. Polynomial rings over α-generated rings

In this section, we prove that for any infinite cardinal number α, a ring R is an α-
generated ring if and only if the polynomial ring R[X ] is an α-generated ring, which
is an analogue of the Hilbert basis theorem, which states that R is a Noetherian
ring if and only if R[X ] is a Noetherian ring. We also note that the result fails if α
is a finite cardinal number.

Theorem 22. For any infinite cardinal number α, a ring R is an α-generated ring
if and only if the polynomial ring R[X ] is an α-generated ring.

Proof. We follow the standard proof of the Hilbert basis theorem. Any homomorphic
image of an α-generated ring is obviously an α-generated ring. Hence, if R[X ] is
an α-generated ring, then so is R.

For the converse, suppose that R is an α-generated ring and let J be an ideal
of R[X ]. We show that J is an α-generated ideal. For each n ≥ 0, let In be the
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set of r ∈ R such that r = 0 or r is the leading coefficient of a polynomial in J of
degree n. For each n ≥ 0, since R is an α-generated ring, In is an α-generated ideal.
Let

{rnλ | λ ∈3n}

be a generating set of In with cardinality at most α. For each rnλ, let fnλ ∈ J be a
polynomial of degree n with leading coefficient rnλ. We will show that the ideal J
of R[X ] is generated by the set

F := { fnλ | n ≥ 0, λ ∈3n},

which also has cardinality at most α. Denote by (F) the ideal of R[X ] generated
by F . Since F ⊆ J , we have (F) ⊆ J . Conversely, the polynomials of degree 0
in J are precisely the elements of I0 and hence are contained in (F). Proceeding
by induction, assume that (F) contains all polynomials of J of degree less than k
and let g ∈ J have degree k and leading coefficient r . Then

r =
m∑

i=1

sirkλi

for some si ∈ R and λi ∈3k . The polynomial
∑m

i=1 si fkλi also has degree k and
leading coefficient r . Hence,

g−
m∑

i=1

si fkλi ∈ J

has degree at most k− 1. By the induction hypothesis,

g−
m∑

i=1

si fkλi ∈ (F)

and hence g ∈ (F). Therefore, J = (F) is an α-generated ideal. �

Proposition 23. If the polynomial ring R[X ] is an n-generated ring for some
positive integer n, then dim R = 0.

Proof. As in the proof of Proposition 19, we have dim R+ 1≤ dim R[X ] ≤ 1 and
hence dim R = 0. �

As in the power series ring case, we can prove the following:

Proposition 24. Suppose that D is an integral domain. Then the following are
equivalent:

(1) D[X ] is an n-generated ring for some positive integer n.

(2) D[X ] is a 1-generated ring.

(3) D is a field.
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Remark 25. By Proposition 24, if D is an (n-generated) integral domain which
is not a field, then the polynomial ring D[X ] is never an m-generated ring for any
positive integer m. In particular, Theorem 22 always fails for any finite cardinal
number α.

Remarks 26. (1) For rings with zero-divisors, the polynomial ring R[X ] may not
be a 2-generated ring even if the ring R is a 1-generated ring. For example, let
R = V/(a3), where V is a 1-dimensional discrete valuation domain (or equivalently,
a local principal ideal domain) with maximal ideal M= (a). Then R is a 1-generated
ring. However, if M denotes the maximal ideal M/(a3) of R, then M2

6= 0. By
[Matsuda 1979, (5.7)], R[X ] is not a 2-generated ring.

(2) More generally, for any integer n ≥ 2, let R = V/(an+1), where V is the same
as above. Then R is a 1-generated ring. However, by [Matsuda 1979, (5.13)], the
polynomial ring R[X ] is not an n-generated ring.
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