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We construct curves in moduli spaces of curves with prescribed intersection
with boundary divisors. As applications, we obtain families of curves with
maximal slope as well as extremal test curves for the weakly positive cone
of the moduli space.

1. Introduction

Let Mg be the moduli space of smooth curves of genus g over the field of complex
numbers C, and 10,11, . . ., 1[g/2] the boundary divisors of the Deligne–Mumford
compactification Mg. Denote by Hg the moduli space of smooth hyperelliptic
curves of genus g; then the restriction of 10 to the closure Hg breaks up into
40, 41, . . . , 4[(g−1)/2]. The restriction of 1i to Hg is often denoted by 2i for
i > 0; see [Harris and Morrison 1998].

A family of curves of genus g over a curve Y is a fibration f : X → Y whose
general fibers are smooth curves of genus g, where X is a smooth projective surface.
Let ωX/Y be the relative dualizing sheaf. If f is nontrivial, the slope of f is
ω2

X/Y / deg f∗ωX/Y . Let J f : Y → Mg denote the moduli map induced by f ; see
[Tan 2010].

Special curves in moduli spaces play an important rule in the study of birational
geometry of moduli spaces: for example, the ample cone, the nef cone and the Mori
cone of curves [Gibney 2009]. Before raising our problems, we firstly summarize
some interesting properties of curves in moduli spaces with prescribed intersection
with boundary divisors. In this paper, we always assume that curves in moduli
spaces are complete irreducible and are not contained in boundary divisors.

If C = J f (Y ) ⊂ Hg is a curve intersecting only 40 (resp. 1[g/2]), then the
semistable reduction of f has minimal (resp. maximal) slope; see [Liu 2016,
Remark 3.9] and [Liu and Tan 2013, Theorem 3.1]. We refer to [Tan 2010] for related
discussions. Moreover, if C = J f (Y )⊂Mg is disjoint from boundary divisors, then
the semistable reduction of f is a Kodaira fibration; see [Kodaira 1967].
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On the other hand, curves intersecting exactly one boundary divisor of Hg are the
extremal test curves of the weakly positive cone in Pic(Mg)⊗Q. Here the weakly
positive cone consists of weakly positive Q-Cartier divisors over Mg; see Section 1
in [Moriwaki 1998] for the definition of weakly positive divisors, and Section 4 of
that paper for this result.

Motivated by these properties, we want to study further properties of curves
that intersect given boundary divisors. In this paper we discuss the existence of
such curves.

Let C be a curve in Hg, and B = {21, . . . ,2[g/2], 40, 41, . . . , 4[(g−1)/2]} be
the set of boundary divisors of Hg. Denote by BC ⊂B the set of boundary divisors
of Hg that intersect C .

Problem 1.1. For any nonempty subset B′ ⊆ B, does there exist a curve C in
Hg such that the boundary divisors of Hg that intersect C are those in B′, i.e.,
BC =B′?

Let M̃0,n be the moduli space of stable unordered n-pointed rational curves. Let
Bk be the boundary divisor of M̃0,n whose general point parametrizes the union of
a k-pointed P1 and an (n−k)-pointed P1 for 2≤ k ≤ [n/2].

One can regard Hg as the Hurwitz space parametrizing genus g admissible
double covers of rational curves. Such a cover uniquely corresponds to a stable
(2g+ 2)-pointed rational curve by marking the branch points of the cover. Thus
Hg can be further identified as M̃0,2g+2. The natural isomorphism Hg ∼= M̃0,2g+2

induces the identifications 4i = B2i+2 and 2i = B2i+1. Also denote by B =

{B2, B3, . . . , B[n/2]} the set of boundary divisors of M̃0,n . Hence the existence of
curves in Hg in Problem 1.1 is the same as that in M̃0,n for n = 2g+ 2. For the
sake of completeness, we consider the existence of curves in M̃0,n . Precisely, we
consider the following problem.

Problem 1.2. For any nonempty subset B′ ⊆B, does there exist a curve C in M̃0,n

such that the boundary divisors of M̃0,n that intersect C are those in B′, i.e., such
that BC =B′?

The purpose of this paper is to answer these problems in a number of cases. We
have the following uniform solution for small n.

Theorem 1.3. Assume n ≤ 17. For any nonempty subset B′ of B, there exists a
curve C in M̃0,n such that BC =B′.

Unfortunately, our method is invalid for n = 18 (see Remark 6.1).

Corollary 1.4. For 2≤ g ≤ 7 and any nonempty B′ ⊂B, there exists a curve C in
Hg such that BC =B′.

Corollary 1.5. For 2≤ g ≤ 7 and any nonempty B′ ⊂1= {10,11, . . . ,1[g/2]},
there exists a curve C in Mg with BC =B′.
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In order to simplify the proof of the above theorem, we use the following two
partial solutions of Problem 1.2.

Theorem 1.6. Let B′ be a subset of the set B = {B2, . . . , B[n/2]} of boundary
divisors of M̃0,n .

(1) For |B′| = 1, if B′ = {Bi }, then there exists a curve C in M̃0,n such that
BC =B′.

(2) For |B′| = 2, if B′ = {Bi , Bi+1} or B′ = {Bi , Bi+2}, then there exists a curve
C in M̃0,n such that BC =B′.

(3) For |B′|=3, if B′ is one of {Bi , B j , Bi+ j+1}, {Bi , B j , Bi+ j }, {Bi , B j , Bi+ j−1},
or {Bi , B j , Bi+ j−2}, then there exists a curve C in M̃0,n such that BC =B′.

In particular, we recover the existence of a hyperelliptic family with maximal
slope from [Liu and Tan 2013], where the authors construct explicit polynomials to
define the family. As another application, we also give an alternative proof of the
existence of extremal test curves for the weakly positive cone from Appendix A in
[Moriwaki 1998], where the author uses the existence of a concrete linear system.
Here we reduce the problem to the existence of rational functions and then give a
unitive method. This new method greatly generalizes the former results.

Theorem 1.7. Let B′ be a subset of the set B = {B2, . . . , B[n/2]} of boundary
divisors of M̃0,n .

(1) If B′ = {B2, Bi1, . . . , Bik } and (i1 − 1)+ · · · + (ik − 1) ≤ n − 2, then there
exists a curve C in M̃0,n such that BC =B′.

(2) If B′ = {B2, Bk+1, Bk+2, . . . , B[n/2]} and 2 ≤ k ≤ [n/2], then there exists a
curve C in M̃0,n such that BC =B′.

(3) If B′ = {B3, Bi1, . . . , Bik } and (i1 − 1)+ · · · + (ik − 1) ≤ n − 3, then there
exists a curve C in M̃0,n such that BC =B′.

Now we explain the main idea of the proofs. In order to construct curves in
moduli spaces intersecting the given boundary divisors, we use the following three
different methods:

(i) We regard a rational function φ of degree n as a 1-dimensional family of
unordered n marked points in P1 in Section 3. Only the critical points of φ may
correspond to points in boundary divisors; see the correspondence (3-1). Then
we just need to construct rational functions with the desired critical points. The
existence of such rational functions is from the main Theorem of [Scherbak 2002].

(ii) The graph Gφ of φ is a smooth rational curve in P1
× E , where E ∼= P1.

Let p be the second projection and R the reducible curve consisting of Gφ and
certain sections of p. Then the restriction p|R is a branched cover over E , and
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this cover induces different 1-dimensional families of marked points in P1. The
correspondence (4-1) gives a relation between points in boundary divisors with
ramification points of p|R , i.e., between singular points of R and ramification points
of p|Gφ

. So we only need to construct curves R with suitable ramification points in
Section 4. This method generalizes method (i), and both methods are effective for
many cases.

On the other hand, if n is large, B′ may have so many elements that there is no
desired rational function, rendering the above two methods invalid; see Remark 6.1.
For this difficulty, we have the following method for special B′.

(iii) Taking the intersection of general very ample divisors of Hassett’s weighted
moduli spaces, we can obtain curves intersecting all the boundary divisors of these
spaces. The proper transforms of these curves in M̃0,n by the reduction morphism
are also the curves we need; see Section 5.

2. Existence of rational functions

Let φ(x)= f (x)/g(x) be a rational function of degree n; i.e., f (x) and g(x) are
polynomials without common roots and n = max{deg f (x), deg g(x)}. A point
z ∈ C is a critical point of multiplicity m if z is a root of the Wronskian W (x) of
f (x) and g(x) of multiplicity m, where

W (x)= g2(x)φ′(x)= f ′(x)g(x)− f (x)g′(x).

Let all the finite critical points of φ(x) be denoted z1, . . . , zl−1 with multiplicities
m1, . . . ,ml−1, respectively. According to the Riemann–Hurwitz formula, 2n− 2≥
m1+ · · ·+ml−1. Let zl be the point at infinity; then the difference

(2-1) ml = 2n− 2− (m1+ · · ·+ml−1)

is the multiplicity of φ(x) at infinity. If z1, . . . , zl−1 are in general position and
1≤ mi ≤ n− 1 for each 1≤ i ≤ l, then we say that φ(x) is a rational function of
type (n;m1, . . . ,ml).

Note that, up to the point at infinity, the types of rational functions here are the
same as in [Scherbak 2002].

If φ1(x) and φ2(x) are two rational functions satisfying

φ2(x)=
aφ1(x)+ b
cφ1(x)+ d

, ad − bc 6= 0,

then φ1(x) and φ2(x) have the same type, and we say that φ1(x) and φ2(x) are in
the same class of rational functions.
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Theorem 2.1 [Scherbak 2002]. Let l ≥ 3 and n ≥ 2 be integers, and also let
1 ≤ mi ≤ n − 1 for 1 ≤ i ≤ l be integers satisfying (2-1). Then the number
#(n;m1, . . . ,ml) of classes of rational functions of type (n;m1, . . . ,ml) is

(2-2) #(n;m1, . . . ,ml)=

l−1∑
q=1

(−1)l−1−q
∑

1≤i1<···<iq≤l−1

(mi1+· · ·+miq+q−n−1
l−3

)
,

and any nonempty class can be represented by the ratio of polynomials without
multiple roots.

Proof. Let m = (m1, . . . ,ml−1); then #(n;m1, . . . ,ml) is equal to #(n, l − 1;m)
in the main theorem in [Scherbak 2002], from which the result directly follows. �

As usual, we set
(a

b

)
= 0 for a < b.

Corollary 2.2.
(1) There exists a rational function φ(x) of type (n;m1, . . . ,ml−1,ml = n− 1).

(2) There exists a rational function φ(x) of type (n;m1,m2,m3).

Proof. (1) Since ml = n− 1, we have m1+ · · ·+ml−1 = n− 1, and the right side
of (2-2) is (

m1+· · ·+ml−1+l−1−n−1
l−3

)
=

(
l−3
l−3

)
= 1.

So the desired rational function exists by Theorem 2.1.

(2) If mi = n− 1 for some i , then the existence is from (1). We may assume that
mi ≤ n− 2 for i = 1, 2, 3. Then the right side of (2-2) is(

m1+m2+2−n−1
0

)
−

(
m1−n

0

)
−

(
m2−n

0

)
=

(
m1+m2−n+1

0

)
= 1. �

3. Curves from rational functions

Let φ(x) be a rational function of degree n; then it induces a degree n branched
cover D∼=P1

→ E ∼=P1. Varying a point t ∈ E , the union of the n preimage points
also varies in D; hence it provides a 1-dimensional family E of unordered n points
in P1. So we obtain a curve in M̃0,n . When t hits a branch point, suppose that over t
there is a ramification point zi locally of type y = φ(x) = xmi+1, i.e., a critical
point of φ(x) with multiplicity mi . Making a degree mi + 1 base change, we then
get an ordinary singularity of degree mi + 1. Blowing up the singularity separates
the mi + 1 sheets, and thus t corresponds to a point in the boundary component
Bmi+1 (or Bn−1−mi if mi ≥ [n/2], but not mi = n− 1 or n− 2, which correspond
to a point in the interior of M̃0,n). Hence, if φ(x) is of type (n;m1, . . . ,ml) and C
is its corresponding curve in M̃0,n , then

(3-1) BC = {Bmi+1 : 1≤ mi < [n/2]} ∪ {Bn−1−mi : [n/2] ≤ mi ≤ n− 3}.
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Theorem 3.1. Let B′={Bi1, . . . , Bik } be a subset of B={B2, B3, . . . , B[n/2]} with
(i1 − 1)+ · · · + (ik − 1) = n − 1; then there exists a curve C in M̃0,n such that
BC =B′. Moreover,

(1) if B′ = {B2, Bi1, . . . , Bik }, and (i1 − 1)+ · · · + (ik − 1) ≤ n − 2, then there
exists a curve C in M̃0,n such that BC =B′;

(2) if B′ = {B3, Bi1, . . . , Bik }, and n−1− (i1−1)−· · ·− (ik−1)= 2 j ≥ 2, then
there exists a curve C in M̃0,n such that BC =B′.

Proof. If (i1− 1)+ · · ·+ (ik − 1)= n− 1, set ik+1 = n; then there exists a rational
function φ(x) of type (n; i1− 1, . . . , ik − 1, ik+1− 1) by Corollary 2.2(1). Thus
the curve C ⊂ M̃0,n corresponding to φ(x) satisfies BC = {Bi1, . . . , Bik } by (3-1).

(1) Let h = n− 1− ((i1− 1)+ · · ·+ (ik − 1))≥ 1 and ik+1 = · · · = ik+h = 2; then
(i1− 1)+ · · ·+ (ik+h − 1)= n− 1, and hence there exists a curve C ⊂ M̃0,n with
BC = {B2, Bi1, . . . , Bik }.

(2) If we take ik+1 = · · · = ik+ j = 3, then (i1− 1)+ · · ·+ (ik+ j − 1)= n− 1, and
there exists a curve C ⊂ M̃0,n with BC = {B3, Bi1, . . . , Bik }. �

Theorem 3.2. Let B′ be a subset of B = {B2, B3, . . . , B[n/2]}. If B′ is one of
{Bi , Bi+1}, {Bi , Bi+2}, or {Bi , B j , Bi+ j+1}, then there exists a curve C in M̃0,n

with BC =B′.

Proof. If B′ = {Bi , Bi+1}, then there exists a rational function φ1(x) of type
(n; i, n−1− i, n−1) by Corollary 2.2(2). Then the curve C ⊂ M̃0,n corresponding
to φ1(x) satisfies BC = {Bi , Bi+1} by (3-1).

By the same reasoning, for B′={Bi , Bi+2}, there exists a rational function φ2(x)
of type (n; i + 1, n− 1− i, n− 2), and the curve C ⊂ M̃0,n corresponding to φ2(x)
satisfies BC = {Bi , Bi+2}.

Similarly, for B′ = {Bi , B j , Bi+ j+1}, there exists a rational function φ3(x) of
type (n; n−1− i, n−1− j, i+ j), and the curve C ⊂ M̃0,n corresponding to φ3(x)
satisfies BC = {Bi , B j , Bi+ j+1}. �

4. Curves from rational functions and sections

Let φ(x) be a rational function of type (n − s;m1, . . . ,ml), where s < n is a
nonnegative integer. Let Gφ be its graph in P1

× E , where E ∼= P1; then Gφ is a
smooth rational curve. We now consider the reducible curve

Rφ,01,...,0s = Gφ +01+ · · ·+0s,

where the 0i are sections of the second projection

p : P1
× E→ E, p((x, t))= t.
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So the restriction of p to Rφ,01,...,0s

p : Rφ,01,...,0s → E

is a cover of degree n. Similarly as in Section 3, varying a point t ∈ E , we obtain a
1-dimensional family of unordered n marked points in P1. Hence we get a curve C
in M̃0,n . Note that this construction is the same as that in Section 3 when s = 0.

Let S1 = (01 + · · · + 0s) ∩ Gφ , and let S2 = {z1, . . . , zl} be the set of all the
critical points of φ(x), including the point at infinity. Here we identify the critical
point zi of φ with its image (zi , φ(zi )) in Gφ .

If z ∈ S2 ∩ S1, then the local equation of p at z is x(xm+1
+ t)= 0, where m is

the multiplicity of z. Making a degree m+ 1 base change

t 7→ um+1,

we get an ordinary singularity of degree m + 2. Blowing it up, we then see that
p(z) ∈ E corresponds to a point in the boundary component Bm+2 (or Bn−2−m if
[n/2] − 1≤ m ≤ n− 4, but not if m = n− 3 or n− 2, corresponding to a point in
the interior of M̃0,n).

If z ∈ S2− S1, then the point in M̃0,n corresponding to p(z) has been considered
in Section 3. Hence we have that

(4-1) BC = {B2 : z ∈ S1\S2} ∪
{

Bmi+1 : 1≤ mi <
[ 1

2 n
]
, zi ∈ S2\S1

}
∪
{

Bn−1−mi :
[ 1

2 n
]
≤ mi ≤ n− 3, zi ∈ S2\S1

}
∪
{

Bmi+2 : 1≤ mi <
[ 1

2 n
]
− 1, zi ∈ S2 ∩ S1

}
∪
{

Bn−2−mi :
[ 1

2 n
]
− 1≤ mi ≤ n− 4, zi ∈ S2 ∩ S1

}
.

Since we have considered the case that B′ contains B2 in Theorem 3.1(1), we
now consider the case where each section passes through a critical point of φ(x),
that is, where S1 ⊂ S2.

Theorem 4.1. Let B′ = {B3, Bi1, . . . , Bik } be a subset of B= {B2, B3, . . . , B[n/2]}
with n− 1− ((i1− 1)+· · ·+ (ik − 1))= 2 j + 1≥ 3; then there exists a curve C in
M̃0,n such that BC =B′.

Proof. Set ik+1 = · · · = ik+ j = 3, then

(i1− 1)+ · · ·+ (ik − 1)+ (3− 1) j + ((n− 1)− 1)= 2((n− 1)− 1).

Hence there exists a rational function φ(x) of type (n−1; i1−1, . . . , ik+ j−1, n−2)
by Corollary 2.2(1). Let 0 be the section passing through the critical point zk+ j+1,
where the multiplicity of zk+ j+1 of φ(x) is n−2. Thus the reducible curve Rφ,0 =
Gφ +0 induces a curve C ⊂ M̃0,n with BC =B′ = {B3, Bi1, . . . , Bik } by (4-1). �
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Corollary 4.2. If B′={B3, Bi1, . . . , Bik }, and n−3−((i1−1)+· · ·+(ik−1))≥ 0,
then there exists a curve C such that BC =B′.

Proof. If n− 3− ((i1− 1)+ · · · + (ik − 1)) is even, then it follows directly from
Theorem 3.1(2); if n − 3 − ((i1 − 1) + · · · + (ik − 1)) is odd, then it is from
Theorem 4.1. �

Theorem 4.3. Let B′ be a subset of B= {B2, B3, . . . , B[n/2]}. If B′ is one of {Bi },
{Bi , B j , Bi+ j−2}, {Bi , B j , Bi+ j }, or {Bi , B j , Bi+ j−1}, then there exists a curve C
in M̃0,n such that BC =B′.

Proof. Let φ1(x) be a rational function of type (n−1; i−1, n− i−1, n−2) and 01

the section passing through the critical point z3 of φ1(x). Then the curve C ⊂ M̃0,n

induced by Rφ1,01 satisfies BC = {Bi } by (4-1).
Let φ2(x) be a rational function of type (n−3; n− i−2, n− j−2, i+ j−4) and

02i the section passing through the critical point zi (i = 1, 2, 3) of φ2(x). Then the
curve C ⊂ M̃0,n induced by Rφ2,021,022,023 satisfies BC = {Bi , B j , Bi+ j−2} by (4-1).

Let φ3(x) be a rational function of type (n−2; n−2− i, n−2− j, i+ j−2) and
03i the section passing through the critical point zi (i = 1, 2) of φ3(x). Then the
curve C ⊂ M̃0,n induced by Rφ3,031,032 satisfies BC = {Bi , B j , Bi+ j−1} by (4-1).

Let φ4(x) be a rational function of type (n− 1; n− 1− i, n− 1− j, i + j − 2)
and 04 the section passing through the critical point z3 of φ4(x). Then the curve
C ⊂ M̃0,n induced by Rφ4,04 satisfies BC = {Bi , B j , Bi+ j } by (4-1). �

Proof of Theorem 1.6. It follows directly from Theorem 3.2 and Theorem 4.3. �

5. Curves from birational geometry of moduli spaces

Let M0,n be the moduli space of stable n-pointed rational curves. The space M0,n

has a natural Sn action by reordering the marked points. Let ρ :M0,n→ M̃0,n be
the finite quotient morphism via Sn .

A weight datum A= (a1, . . . , an) is a sequence of rational numbers such that
0< ai ≤ 1. Given a weight datum A satisfying 2g−2+

∑n
i=1 ai > 0, an n-pointed

curve (C; p1, . . . , pn) of genus g is A-stable if

(1) C has, at worst, ordinary double points as singularities, and p1, . . . , pn are
smooth points of C ;

(2) ωC
(∑n

i=1 ai pi
)

is ample;

(3) multx
(∑n

i=1 ai pi
)
≤ 1 for any x ∈ C .

For any weight datum A such that 2g−2+
∑n

i=1 ai > 0, there exists a projective
coarse moduli space Mg,A [Hassett 2003, Theorem 2.1] of weighted n-pointed
A-stable curves. Note that Mg,A =Mg,n when a1 = · · · = an = 1.
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Let A1 = (a1, . . . , an) and A2 = (b1, . . . , bn) be two weight data and suppose
that ai ≥ bi for all i = 1, 2, . . . , n. Then there exists a reduction morphism [Hassett
2003, Theorem 4.1]

ϕA1,A2 :M0,A1 →M0,A2 .

If (C, p1, . . . , pn) ∈M0,A1 , then ϕA1,A2(C, p1, . . . , pn) is obtained by collapsing
components of C on which ωC +

∑
bi pi fails to be ample.

Theorem 5.1. Let B′ = {B2, Bk+1, Bk+2, . . . , B[n/2]} for 2≤ k ≤ [n/2]; then there
exists a curve C ⊂ M̃0,n such that BC =B′.

Proof. If k = [n/2], then B′ = {B2}, and existence was proved in Theorem 3.1(1).
If k = 2, then B′ =B= {B2, B3, . . . , B[n/2]}. Taking the intersection of n− 4

general very ample divisors of M̃0,n , we obtain a curve C in M̃0,n that intersects all
the boundary divisors; that is, BC =B.

In the following, we assume that 3≤ k ≤ [n/2]− 1. Let A(k)= {1/k, . . . , 1/k}
be the symmetric weight datum that assigns 1/k to each marked point. Then∑n

i=1 ai = n · (1/k) > 2. Let M̃0,A(k) be the quotient of the weighted moduli space
M0,A(k) via the natural Sn action. Denote by fk : M̃0,n→ M̃0,A(k) the corresponding
reduction morphism. Since three points on P1 (the two marked points and the
attaching node) have no nontrivial moduli, fk does not contract B2. The degree of
the total weight on a rational tail with j (3≤ j ≤ k) marked points is (1/k) · j+1≤
2 = − deg KP1 , where the +1 comes from the attaching node. Hence it violates
the stability condition. So fk contracts the boundary divisors B j for 3 ≤ j ≤ k.
Furthermore, we see that fk contracts only these boundary divisors. Now taking
the intersection of n − 4 general very ample divisors, we obtain a curve C in
M̃0,A(k) that is disjoint with fk(B j ) for 3 ≤ j ≤ k and that intersects all the other
(not contracted) boundary divisors B2, Bk+1, . . . , B[n/2] in the loci where fk is an
isomorphism. Then the proper transform C ′ of C in M0,n satisfies BC ′ = B′ =

{B2, Bk+1, . . . , B[n/2]}. �

Proof of Theorem 1.7. It follows from Theorems 3.1 and 5.1 and Corollary 4.2. �

6. Proof of Theorem 1.3

Let us first introduce some notation. Below, {i1, . . . , ik} stands for {Bi1, . . . , Bik }.
If B′= {i1, . . . , ik} is one of the sets in Theorem 1.6, we call B′ of type Ti1,...,ik . For
example, if B′ = {2, 3, 5}, we call B′ of type T2,3,5. If B′ = {2, i1, . . . , ik} is one
of the sets in Theorem 1.7(1)–(2), we call B′ of type T2,∗. If B′ = {3, i1, . . . , ik} is
one of the sets in Theorem 1.7(3), we call B′ of type T3,∗.

Proof of Theorem 1.3. For n ≤ 11, it is easy to check that the result follows directly
from Theorem 1.6 and Theorem 1.7. In the following we always assume that
12≤ n ≤ 17. Then we have the following three cases.
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Case 1. If B′ is one of the sets in Theorems 1.6 and 1.7, we are done.

Case 2. If n = 14 and B′ = {4, 7}, then there exists a rational function φ1(x) of
type (13; 3, 3, 6, 12) by Corollary 2.2(1). Denote by 01 the section passing through
the critical point z4 of φ1(x), where the multiplicity of z4 is 12. Then the curve C1

in M̃0,14 corresponding to Rφ1,01 satisfies BC1 = {4, 7} by (4-1).
If n = 17 and B′ = {4, 7}, then there exists a rational function φ2(x) of type

(16; 3, 6, 6, 15) by Corollary 2.2(1). Denote by 02(x) the section passing through
the critical point z4 of φ2(x), where the multiplicity of z4 is 15. Then the curve C2

in M̃0,17 corresponding to Rφ2,02 satisfies BC2 = {4, 7} by (4-1).

Case 3. We discuss the remaining B′ case by case using the method in Section 3.
Let B′= {i1, . . . , ik} be a set of boundary divisors of M̃0,n . If there is a sequence

(m1, . . . ,ml) satisfying

(i) m1+ · · ·+ml = 2n− 2,

(ii) for any 1≤ t ≤ l, mt ∈{i1−1, . . . , ik−1, n−1−i1, . . . , n−1−ik, n−1, n−2},

(iii) for any 1≤ j ≤ k, there is 1≤ t j ≤ l such that i j = mt j + 1 or n− 1−mt j ,

(iv) the right side of (2-2) is positive,

then there exists a rational function of type (n;m1, . . . ,ml) by Theorem 2.1. Thus
we get a curve C in M̃0,n such that BC =B′ by (3-1). So we finish the proof of the
theorem by giving a sequence (m1, . . . ,ml) satisfying (i)–(iv) for each n and B′;
see Table 1–Table 10.

We now show the meaning of these tables. If B′ is in Case 1, we give its type in
the tables. If B′ is in Case 3, we give a sequence (m1, . . . ,ml) satisfying (i)–(iv)
in the tables. For example, if B′ = {2, 3}, then (m1, . . . ,ml) is T2,∗ in Table 1; by

B′ (m1, . . . ,ml) B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3} T2,∗ {2, 4} T2,∗ {2, 5} T2,∗

{2, 6} T2,∗ {3, 4} T3,∗ {3, 5} T3,∗

{3, 6} T3,∗ {4, 5} T4,5 {4, 6} T4,6

{5, 6} T5,6

{2, 3, 4} T2,∗ {2, 3, 5} T2,∗ {2, 3, 6} T2,∗

{2, 4, 5} T2,∗ {2, 4, 6} T2,∗ {2, 5, 6} T2,∗

{3, 4, 5} T3,4,5 {3, 4, 6} T3,4,6 {3, 5, 6} T3,5,6

{4, 5, 6} (4, 5, 6, 7)

{2, 3, 4, 5} T2,∗ {2, 3, 4, 6} T2,∗ {2, 3, 5, 6} (2, 5, 6, 9)
{2, 4, 5, 6} T2,∗ {3, 4, 5, 6} (3, 5, 6, 8)

Table 1. M̃0,12.
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B′ (m1, . . . ,ml) B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3} T2,∗ {2, 4} T2,∗ {2, 5} T2,∗

{2, 6} T2,∗ {3, 4} T3,∗ {3, 5} T3,∗

{3, 6} T3,∗ {4, 5} T4,5 {4, 6} T4,6

{5, 6} T5,6

{2, 3, 4} T2,∗ {2, 3, 5} T2,∗ {2, 3, 6} T2,∗

{2, 4, 5} T2,∗ {2, 4, 6} T2,∗ {2, 5, 6} T2,∗

{3, 4, 5} T3,4,5 {3, 4, 6} T3,4,6 {3, 5, 6} T3,5,6

{4, 5, 6} (3, 6, 7, 8)

{2, 3, 4, 5} T2,∗ {2, 3, 4, 6} T2,∗ {2, 3, 5, 6} T2,∗

{2, 4, 5, 6} T2,∗ {3, 4, 5, 6} (2, 3, 4, 6, 9)

Table 2. M̃0,13.

this we mean that there is a curve C in M̃0,12 of type T2,∗ with BC = {B2, B3}. If
B′ = {4, 5, 6}, then (m1, . . . ,ml) = (4, 5, 6, 7) in Table 1; by this we mean that
there exists a curve C in M̃0,12 with BC ={4, 5, 6}, where C is induced by a rational
function of type (12; 4, 5, 6, 7).

Note that only the cases of B′ with |B′| = 1 and |B′| = [n/2] − 1 are not
contained in these tables, since the theorem for such B′ holds true for any n; see
Theorem 4.3(1) and Theorem 5.1 for k = 2. �

Remark 6.1. Assume that n = 18 and B′ = {B3, B4, . . . , B9}. Suppose that there
exists a sequence (m1, . . . ,ml) satisfying (i)–(iv) for B′. From (ii) and (iii), we
know that

m1+ · · ·+ml ≥

9∑
i=3

(i − 1)= 35> 2n− 2= 34,

which contradicts (i). Hence the method in Section 3 is invalid for M̃0,18. Similarly,
we know that the method in Section 4 is also invalid.

B′ (m1, . . . ,ml) B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3} T2,∗ {2, 4} T2,∗ {2, 5} T2,∗

{2, 6} T2,∗ {2, 7} T2,∗ {3, 4} T3,∗

{3, 5} T3,∗ {3, 6} T3,∗ {3, 7} T3,∗

{4, 5} T4,5 {4, 6} T4,6 {4, 7} see Case 2
{5, 6} T5,6 {5, 7} T5,7 {6, 7} T6,7

Table 3. M̃0,14 for |B′| = 2.
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B′ (m1, . . . ,ml) B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3, 4} T2,∗ {2, 3, 5} T2,∗ {2, 3, 6} T2,∗

{2, 3, 7} T2,∗ {2, 4, 5} T2,∗ {2, 4, 6} T2,∗

{2, 4, 7} T2,∗ {2, 5, 6} T2,∗ {2, 5, 7} T2,∗

{2, 6, 7} T2,∗ {3, 4, 5} T3,4,5 {3, 4, 6} T3,4,6

{3, 4, 7} T3,4,7 {3, 5, 6} T3,5,6 {3, 5, 7} T3,5,7

{3, 6, 7} T3,6,7 {4, 5, 6} (4, 5, 8, 9) {4, 5, 7} T4,5,7

{4, 6, 7} (3, 3, 5, 6, 9) {5, 6, 7} (5, 6, 7, 8)

{2, 3, 4, 5} T2,∗ {2, 3, 4, 6} T2,∗ {2, 3, 4, 7} T2,∗

{2, 3, 5, 6} T2,∗ {2, 3, 5, 7} T2,∗ {2, 3, 6, 7} (1, 2, 6, 7, 10)
{2, 4, 5, 6} T2,∗ {2, 4, 5, 7} (1, 4, 6, 6, 9) {2, 4, 6, 7} (1, 5, 5, 6, 9)
{2, 5, 6, 7} T2,∗ {3, 4, 5, 6} (3, 5, 8, 10) {3, 4, 5, 7} (3, 3, 4, 6, 10)
{3, 4, 6, 7} (3, 6, 7, 10) {3, 5, 6, 7} (2, 5, 5, 6, 8) {4, 5, 6, 7} (4, 6, 7, 9)

B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3, 4, 5, 6} (1, 2, 3, 4, 5, 11) {2, 3, 4, 5, 7} (1, 2, 3, 4, 6, 10)
{2, 3, 4, 6, 7} (1, 2, 3, 5, 6, 9) {2, 3, 5, 6, 7} (1, 2, 4, 5, 6, 8)
{2, 4, 5, 6, 7} T2,∗ {3, 4, 5, 6, 7} (2, 3, 4, 5, 6, 6)

Table 4. M̃0,14 for 3≤ |B′| ≤ 5.

B′ (m1, . . . ,ml) B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3} T2,∗ {2, 4} T2,∗ {2, 5} T2,∗

{2, 6} T2,∗ {2, 7} T2,∗ {3, 4} T3,∗

{3, 5} T3,∗ {3, 6} T3,∗ {3, 7} T3,∗

{4, 5} T4,5 {4, 6} T4,6 {4, 7} (6, 6, 6, 10)
{5, 6} T5,6 {5, 7} T5,7 {6, 7} T6,7

{2, 3, 4} T2,∗ {2, 3, 5} T2,∗ {2, 3, 6} T2,∗

{2, 3, 7} T2,∗ {2, 4, 5} T2,∗ {2, 4, 6} T2,∗

{2, 4, 7} T2,∗ {2, 5, 6} T2,∗ {2, 5, 7} T2,∗

{2, 6, 7} T2,∗ {3, 4, 5} T3,4,5 {3, 4, 6} T3,4,6

{3, 4, 7} T3,4,7 {3, 5, 6} T3,5,6 {3, 5, 7} T3,5,7

{3, 6, 7} T3,6,7 {4, 5, 6} (4, 5, 9, 10) {4, 5, 7} T4,5,7

{4, 6, 7} (3, 7, 8, 10) {5, 6, 7} (4, 7, 8, 9)

{2, 3, 4, 5} T2,∗ {2, 3, 4, 6} T2,∗ {2, 3, 4, 7} T2,∗

{2, 3, 5, 6} T2,∗ {2, 3, 5, 7} T2,∗ {2, 3, 6, 7} T2,∗

{2, 4, 5, 6} T2,∗ {2, 4, 5, 7} T2,∗ {2, 4, 6, 7} (1, 3, 5, 7, 12)
{2, 5, 6, 7} T2,∗ {3, 4, 5, 6} T3,∗ {3, 4, 5, 7} (2, 7, 9, 10)
{3, 4, 6, 7} (3, 6, 8, 11) {3, 5, 6, 7} (2, 4, 5, 6, 11) {4, 5, 6, 7} (3, 4, 5, 6, 10)

Table 5. M̃0,15 for 2≤ |B′| ≤ 4.
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B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3, 4, 5, 6} (1, 2, 3, 4, 8, 10) {2, 3, 4, 5, 7} (2, 3, 4, 7, 12)
{2, 3, 4, 6, 7} (2, 3, 5, 6, 12) {2, 3, 5, 6, 7} (1, 4, 5, 7, 11)
{2, 4, 5, 6, 7} T2,∗ {3, 4, 5, 6, 7} (2, 4, 5, 7, 10)

Table 6. M̃0,15 for |B′| = 5.

B′ (m1, . . . ,ml) B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3} T2,∗ {2, 4} T2,∗ {2, 5} T2,∗

{2, 6} T2,∗ {2, 7} T2,∗ {2, 8} T2,∗

{3, 4} T3,∗ {3, 5} T3,∗ {3, 6} T3,∗

{3, 7} T3,∗ {3, 8} T3,∗ {4, 5} T4,5

{4, 6} T4,6 {4, 7} (8, 11, 11) {4, 8} (3, 3, 3, 7, 7, 7)
{5, 6} T5,6 {5, 7} T5,7 {5, 8} (4, 4, 4, 4, 7, 7)
{6, 7} T6,7 {6, 8} T6,8 {7, 8} T7,8

{2, 3, 4} T2,∗ {2, 3, 5} T2,∗ {2, 3, 6} T2,∗

{2, 3, 7} T2,∗ {2, 3, 8} T2,∗ {2, 4, 5} T2,∗

{2, 4, 6} T2,∗ {2, 4, 7} T2,∗ {2, 4, 8} T2,∗

{2, 5, 6} T2,∗ {2, 5, 7} T2,∗ {2, 5, 8} T2,∗

{2, 6, 7} T2,∗ {2, 6, 8} T2,∗ {2, 7, 8} T2,∗

{3, 4, 5} T3,4,5 {3, 4, 6} T3,4,6 {3, 4, 7} T3,4,7

{3, 4, 8} T3,4,8 {3, 5, 6} T3,5,6 {3, 5, 7} T3,5,7

{3, 5, 8} T3,5,8 {3, 6, 7} T3,6,7 {3, 6, 8} T3,6,8

{3, 7, 8} T3,7,8 {4, 5, 6} (9, 10, 11) {4, 5, 7} T4,5,7

{4, 5, 8} T4,5,8 {4, 6, 7} (5, 6, 8, 11) {4, 6, 8} T4,6,8

{4, 7, 8} (6, 6, 7, 11) {5, 6, 7} (5, 6, 9, 10) {5, 6, 8} (4, 7, 9, 10)
{5, 7, 8} (6, 7, 7, 10) {6, 7, 8} (6, 7, 8, 9)

{2, 3, 4, 5} T2,∗ {2, 3, 4, 6} T2,∗ {2, 3, 4, 7} T2,∗

{2, 3, 4, 8} T2,∗ {2, 3, 5, 6} T2,∗ {2, 3, 5, 7} T2,∗

{2, 3, 5, 8} T2,∗ {2, 3, 6, 7} T2,∗ {2, 3, 6, 8} T2,∗

{2, 3, 7, 8} (2, 7, 8, 13) {2, 4, 5, 6} T2,∗ {2, 4, 5, 7} T2,∗

{2, 4, 5, 8} T2,∗ {2, 4, 6, 7} T2,∗ {2, 4, 6, 8} (1, 3, 5, 5, 7, 9)
{2, 4, 7, 8} (1, 3, 6, 7, 13) {2, 5, 6, 7} (1, 4, 6, 9, 10) {2, 5, 6, 8} (1, 4, 5, 7, 13)
{2, 5, 7, 8} (4, 6, 7, 13) {2, 6, 7, 8} T2,∗ {3, 4, 5, 6} (2, 3, 4, 9, 12)
{3, 4, 5, 7} (2, 2, 3, 4, 8, 11) {3, 4, 5, 8} (2, 7, 10, 11) {3, 4, 6, 7} (2, 8, 9, 11)
{3, 4, 6, 8} (3, 3, 5, 7, 12) {3, 4, 7, 8} (2, 2, 7, 8, 11) {3, 5, 6, 7} (2, 2, 4, 5, 8, 9)
{3, 5, 6, 8} (2, 2, 7, 9, 10) {3, 5, 7, 8} (2, 2, 4, 7, 7, 8) {3, 6, 7, 8} (5, 6, 7, 12)
{4, 5, 6, 7} (4, 6, 9, 11) {4, 5, 6, 8} (3, 4, 5, 7, 11) {4, 5, 7, 8} (4, 7, 8, 11)
{4, 6, 7, 8} (3, 5, 6, 7, 9) {5, 6, 7, 8} (5, 7, 8, 10)

Table 7. M̃0,16 for 2≤ |B′| ≤ 4.
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B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3, 4, 5, 6} (1, 2, 3, 5, 9, 10) {2, 3, 4, 5, 7} (1, 2, 3, 6, 8, 10)
{2, 3, 4, 5, 8} (1, 2, 3, 4, 7, 13) {2, 3, 4, 6, 7} (1, 2, 3, 5, 6, 13)
{2, 3, 4, 6, 8} (2, 3, 5, 7, 13) {2, 3, 4, 7, 8} (1, 1, 3, 6, 7, 12)
{2, 3, 5, 6, 7} (1, 2, 4, 5, 6, 12) {2, 3, 5, 6, 8} (1, 1, 4, 5, 7, 12)
{2, 3, 5, 7, 8} (1, 4, 6, 7, 12) {2, 3, 6, 7, 8} (1, 2, 5, 6, 7, 9)
{2, 4, 5, 6, 7} (1, 3, 4, 5, 6, 11) {2, 4, 5, 6, 8} (1, 3, 4, 5, 7, 10)
{2, 4, 5, 7, 8} (1, 3, 4, 6, 7, 9) {2, 4, 6, 7, 8} (1, 3, 5, 6, 7, 8)
{2, 5, 6, 7, 8} T2,∗ {3, 4, 5, 6, 7} (2, 3, 4, 5, 6, 10)
{3, 4, 5, 6, 8} (2, 3, 4, 5, 7, 9) {3, 4, 5, 7, 8} (2, 2, 4, 5, 6, 11)
{3, 4, 6, 7, 8} (2, 3, 5, 6, 7, 7) {3, 5, 6, 7, 8} (2, 5, 6, 7, 10)
{4, 5, 6, 7, 8} (3, 4, 5, 5, 6, 7)

{2, 3, 4, 5, 6, 7} (1, 2, 3, 4, 5, 6, 9) {2, 3, 4, 5, 6, 8} (1, 2, 4, 5, 7, 11)
{2, 3, 4, 5, 7, 8} (1, 1, 2, 3, 6, 7, 10) {2, 3, 4, 6, 7, 8} (1, 2, 3, 7, 8, 9)
{2, 3, 5, 6, 7, 8} (1, 2, 4, 5, 5, 6, 7) {2, 4, 5, 6, 7, 8} T2,∗

{3, 4, 5, 6, 7, 8} (2, 3, 3, 4, 5, 6, 7)

Table 8. M̃0,16 for 5≤ |B′| ≤ 6.

B′ (m1, . . . ,ml) B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3} T2,∗ {2, 4} T2,∗ {2, 5} T2,∗

{2, 6} T2,∗ {2, 7} T2,∗ {2, 8} T2,∗

{3, 4} T3,∗ {3, 5} T3,∗ {3, 6} T3,∗

{3, 7} T3,∗ {3, 8} T3,∗ {4, 5} T4,5

{4, 6} T4,6 {4, 7} see Case 2 {4, 8} (3, 3, 7, 7, 12)
{5, 6} T5,6 {5, 7} T5,7 {5, 8} (7, 7, 7, 11)
{6, 7} T6,7 {6, 8} T6,8 {7, 8} T7,8

{2, 3, 4} T2,∗ {2, 3, 5} T2,∗ {2, 3, 6} T2,∗

{2, 3, 7} T2,∗ {2, 3, 8} T2,∗ {2, 4, 5} T2,∗

{2, 4, 6} T2,∗ {2, 4, 7} T2,∗ {2, 4, 8} T2,∗

{2, 5, 6} T2,∗ {2, 5, 7} T2,∗ {2, 5, 8} T2,∗

{2, 6, 7} T2,∗ {2, 6, 8} T2,∗ {2, 7, 8} T2,∗

{3, 4, 5} T3,4,5 {3, 4, 6} T3,4,6 {3, 4, 7} T3,4,7

{3, 4, 8} T3,4,8 {3, 5, 6} T3,5,6 {3, 5, 7} T3,5,7

{3, 5, 8} T3,5,8 {3, 6, 7} T3,6,7 {3, 6, 8} T3,6,8

{3, 7, 8} T3,7,8 {4, 5, 6} (4, 5, 11, 12) {4, 5, 7} T4,5,7

{4, 5, 8} T4,5,8 {4, 6, 7} (5, 6, 9, 12) {4, 6, 8} T4,6,8

{4, 7, 8} (6, 6, 8, 12) {5, 6, 7} (5, 6, 10, 11) {5, 6, 8} (4, 7, 10, 11)
{5, 7, 8} (6, 7, 8, 11) {6, 7, 8} (6, 7, 9, 10)

Table 9. M̃0,17 for 2≤ |B′| ≤ 3.
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B′ (m1, . . . ,ml) B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3, 4, 5} T2,∗ {2, 3, 4, 6} T2,∗ {2, 3, 4, 7} T2,∗

{2, 3, 4, 8} T2,∗ {2, 3, 5, 6} T2,∗ {2, 3, 5, 7} T2,∗

{2, 3, 5, 8} T2,∗ {2, 3, 6, 7} T2,∗ {2, 3, 6, 8} T2,∗

{2, 3, 7, 8} T2,∗ {2, 4, 5, 6} T2,∗ {2, 4, 5, 7} T2,∗

{2, 4, 5, 8} T2,∗ {2, 4, 6, 7} T2,∗ {2, 4, 6, 8} T2,∗

{2, 4, 7, 8} (1, 3, 7, 9, 12) {2, 5, 6, 7} T2,∗ {2, 5, 6, 8} (1, 5, 7, 8, 11)
{2, 5, 7, 8} (4, 6, 8, 14) {2, 6, 7, 8} T2,∗ {3, 4, 5, 6} T3,∗

{3, 4, 5, 7} T3,∗ {3, 4, 5, 8} T3,∗ {3, 4, 6, 7} T3,∗

{3, 4, 6, 8} (2, 8, 10, 12) {3, 4, 7, 8} (3, 7, 9, 13) {3, 5, 6, 7} (2, 9, 10, 11)
{3, 5, 6, 8} (2, 4, 5, 8, 13) {3, 5, 7, 8} (2, 4, 6, 7, 13) {3, 6, 7, 8} (5, 6, 8, 13)
{4, 5, 6, 7} (4, 6, 10, 12) {4, 5, 6, 8} (3, 4, 5, 8, 12) {4, 5, 7, 8} (4, 7, 9, 12)
{4, 6, 7, 8} (3, 6, 6, 7, 10) {5, 6, 7, 8} (5, 7, 9, 11)

B′ (m1, . . . ,ml) B′ (m1, . . . ,ml)

{2, 3, 4, 5, 6} T2,∗ {2, 3, 4, 5, 7} T2,∗

{2, 3, 4, 5, 8} (1, 2, 3, 4, 8, 14) {2, 3, 4, 6, 7} (2, 2, 3, 5, 6, 14)
{2, 3, 4, 6, 8} (2, 3, 5, 8, 14) {2, 3, 4, 7, 8} (2, 3, 6, 7, 14)
{2, 3, 5, 6, 7} (1, 4, 5, 9, 13) {2, 3, 5, 6, 8} (2, 4, 5, 7, 14)
{2, 3, 5, 7, 8} (1, 4, 6, 8, 13) {2, 3, 6, 7, 8} (1, 5, 6, 7, 13)
{2, 4, 5, 6, 7} (3, 4, 5, 6, 14) {2, 4, 5, 6, 8} (1, 3, 7, 10, 11)
{2, 4, 5, 7, 8} (1, 3, 8, 9, 11) {2, 4, 6, 7, 8} (1, 5, 6, 8, 12)
{2, 5, 6, 7, 8} T2,∗ {3, 4, 5, 6, 7} (2, 4, 5, 9, 12)
{3, 4, 5, 6, 8} (3, 4, 5, 7, 13) {3, 4, 5, 7, 8} (2, 3, 7, 9, 11)
{3, 4, 6, 7, 8} (2, 5, 6, 7, 12) {3, 5, 6, 7, 8} (2, 5, 6, 8, 11)
{4, 5, 6, 7, 8} (3, 5, 6, 7, 11)

{2, 3, 4, 5, 6, 7} (1, 3, 4, 5, 6, 13) {2, 3, 4, 5, 6, 8} (1, 2, 4, 5, 8, 12)
{2, 3, 4, 5, 7, 8} (1, 2, 3, 4, 6, 7, 9) {2, 3, 4, 6, 7, 8} (1, 2, 3, 7, 9, 10)
{2, 3, 5, 6, 7, 8} (1, 2, 5, 6, 7, 11) {2, 4, 5, 6, 7, 8} T2,∗

{3, 4, 5, 6, 7, 8} (2, 3, 4, 6, 7, 10)

Table 10. M̃0,17 for 4≤ |B′| ≤ 6.
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