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We study the virtual rational Betti numbers of a nilpotent-by-abelian group
G, where the abelianization N/N ′ of its nilpotent part N satisfies certain
tameness property. More precisely, we prove that if N/N ′ is 2(c(n−1)−1)-
tame as a G/N-module, where c is the nilpotency class of N , then

vb j (G) := sup
M∈AG

dimQ H j (M, Q)

is finite for all 0 ≤ j ≤ n, where AG is the set of all finite-index subgroups
of G.

Introduction

The virtual rational Betti numbers of a finitely generated group studies the growth
of the Betti numbers of the group as one follows passage to subgroups of finite
index. Following [Bridson and Kochloukova 2015; Kochloukova and Mokari 2015],
we define the n-th virtual rational Betti number of a finitely generated group G as

vbn(G) := sup
M∈AG

dimQ Hn(M,Q),

where AG is the set of all subgroups of finite index in G.
Bridson and Kochloukova [2015] introduced and studied the first virtual rational

Betti number of a finitely generated group G and showed that if G is either a
finitely presented nilpotent-by-abelian group or an abelian-by-polycyclic group of
type FP3, then vb1(G) is finite. Moreover, they conjectured that this should be
true for all finitely presented soluble groups. As they have shown the finiteness
of the first virtual rational Betti numbers of a metabelian group G, with normal
abelian subgroup A and abelian quotient Q is closely related to the 2-tameness
of A as a Q-module, an invariant of metabelian groups introduced by Bieri and
Strebel [1980].
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Kochloukova and Mokari [2015] extended these results to higher virtual rational
Betti numbers of abelian-by-polycyclic groups, by replacing higher tameness with
finitely generatedness of high tensor powers of abelian normal subgroups. More
precisely, let A be a normal abelian subgroup of G such that the quotient group
Q :=G/A is polycyclic. If Q is not abelian, we assume that G is of type FP3. Then
it is shown in [Kochloukova and Mokari 2015, Theorem A] that if

⊗2n
Q (A⊗Z Q) is

finitely generated as a QQ-module via the diagonal action, then vb j (G) is finite for
0≤ j ≤ n. Note that if G is metabelian, then finitely generatedness of

⊗2n
Q (A⊗Z Q)

is equivalent to 2n-tameness of A as a Q-module (see Theorem 4.1).
Finitely generated soluble groups occurring in applications are often nilpotent

-by-abelian-by-finite, that is, any such group G contains subgroups N E H E G
such that N is nilpotent, H/N abelian and G/H finite. In this paper, we study
the virtual rational Betti numbers of nilpotent-by-abelian-by-finite groups. Since
vbn(G)=vbn(H) (Lemma 5.5), it is sufficient to study virtual rational Betti numbers
of nilpotent-by-abelian groups. Here is our main theorem.

Theorem 5.4 (see p. 396). Let N�G� Q be an exact sequence of groups, where
G is finitely generated, N is nilpotent of class c and Q is abelian. If N/N ′ is
2(c(n− 1)+ 1)-tame, then for any 0≤ j ≤ n, vb j (G) is finite.

As a motivation for the study of virtual rational Betti numbers, one can mention
a result of Lück which says that the L2-Betti numbers can be computed as a limit
involving the ordinary Betti numbers of subgroups of finite index. Here we show
that for these groups there is no growth, i.e., the sequences remain bounded. This
result therefore confirms Lück’s formula by establishing a stronger property for this
class of groups [Lück 1994].

To prove our main theorem we needed to study certain aspects of homology of
nilpotent groups. Nilpotent groups have a great deal of commutativity built into
their structure and they are groups that are “almost abelian”. So it is natural to
expect that some of the properties of homology of abelian groups, in some way,
may be shared by nilpotent groups. In this article, we will study two such properties.
For more similarity between homology of abelian and nilpotent groups we refer the
interested reader to [Dwyer 1975; Robinson 1976; Hilton et al. 1975].

The n-th homology of an abelian group A with rational coefficients is isomorphic
to
∧n

Q(A⊗Z Q). We prove the analogue of this result for nilpotent groups. More
precisely, if N is a nilpotent group of class c, then we show that there exists a
natural filtration of H j (N ,Q),

0= E0 ⊆ E1 ⊆ · · · ⊆ El−1 ⊆ El = H j (N ,Q),

such that for any 0 ≤ k ≤ l, Ek/Ek−1 is a natural subquotient of a vector space
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from the set { s⊗
Q

V
}

0≤s≤c( j−1)+1
,

where V := (N/N ′)⊗Z Q. When our group is free nilpotent, we show that the
above theorem is true even with integral coefficients. Although the existence of the
above filtration is not a surprise and can be obtain by easy induction, but the bound
c( j − 1)+ 1 is new and important for our applications. Furthermore, for groups
with small c we show that this bound is sharp. The proofs of these results occupy
Sections 1 and 2.

Let N be a nilpotent normal subgroup of a group G. If G acts nilpotently on
N/N ′, then Theorem 2.1 implies that G acts nilpotently on Hk(N ,Q). But with a
direct method we can prove a more general result. Let T be an RG-module, where
R is a commutative ring. In Section 3, we will show that if G acts nilpotently on
both N/N ′ and T , then G acts nilpotently on each Hk(N , T ) and H k(N , T ). As
an application, we show that if moreover G/N is finite and l-torsion and 1/ l ∈ R,
then the natural action of G/N on Hk(N , T ) and H k(N , T ) is trivial and therefore
the natural maps

corrG
N : Hk(N , T )→ Hk(G, T ), resG

N : H
k(G, T )→ H k(N , T )

are isomorphisms.
Both of these results about the homology of nilpotent groups are used in the

proof of our main theorem (Theorem 5.4).

1. Differentials of the Lyndon–Hochschild–Serre spectral sequence

Let G be a group, A an abelian normal subgroup of G and Q := G/A. Let

ME2
p,q = Hp(Q, Hq(A,M))⇒ Hp+q(G,M)

be the Lyndon–Hochschild–Serre spectral sequence associated to the exact sequence
of groups

A� G� Q,

where here M is either Z or Q with the trivial action of G. In this section, we would
like to give an explicit formula for the differentials

d2
2,q : QE2

2,q → QE2
0,q+1,

for any q ≥ 0, when A is central, i.e., A ⊆ Z(G).
Let φ : A⊗Z Hq(A,M)→ Hq+1(A,M) be the natural product map [Brown

1994, Chapter V, §5], say induced by the shuffle product on the bar resolution, and
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consider the following composition

H 2(Q, A)⊗Z Hp(Q, Hq(A,M))
−∩−
−−−→ Hp−2(Q, A⊗Z Hq(A,M))(1-1)

Hp−2(idQ ,φ)
−−−−−−−→ Hp−2(Q, Hq+1(A,M)),

where −∩− is the cap product [Brown 1994, Chapter V, §3].
Let ρ be the element of H 2(Q, A) associated to A� G � Q [Brown 1994,

Chapter IV, Theorem 3.12] and set

1(ρ) := Hp−2(idQ, φ) ◦ (ρ ∩−) : Hp(Q, Hq(A,M))→ Hp−2(Q, Hq+1(A,M)).

Proposition 1.1 [André 1965, p. 2670]. Let an exact sequence A� G � Q be
given as in above. Then

d2
p,q = d ′2p,q +1(ρ),

where d ′2p,q is the differential of the Lyndon–Hochschild–Serre spectral sequence
associated to the semidirect product extension A� Ao Q� Q.

Now let A be a central subgroup of G. Then the conjugate action of Q on A is
trivial and thus A o Q = A× Q. It is well-known and easy to prove that in this
case, for any p and q , d ′2p,q = 0 and therefore

d2
p,q =1(ρ).(1-2)

Moreover, since A is central, the action of Q on Hq(A,M) is trivial. Thus for
M =Q, the universal coefficient theorem implies that

QE2
p,q = Hp(Q,Z)⊗Z Hq(A,Q)' Hp(Q,Z)⊗Z

∧q
Q
(A⊗Z Q).

If p = 2, then (1-1) finds the following form

H 2(Q, A)⊗Z H2(Q,Z)⊗Z Hq(A,Q)
(−∩−)⊗id
−−−−−−→ A⊗Z Hq(A,Q)

φ
→ Hq+1(A,Q),

where
−∩− : H 2(Q, A)⊗Z H2(Q,Z)→ A

is the cap product. Therefore from formula (1-2), we obtain the following explicit
formula

d2
2,q : QE2

2,q = H2(Q,Z)⊗Z

∧q
Q
(A⊗Z Q)→ QE2

0,q+1 =
∧q+1

Q
(A⊗Z Q),

x ⊗ (a1 ∧ · · · ∧ aq) 7→ (ρ ∩ x)∧ a1 ∧ · · · ∧ aq .

Thus we have proved the following proposition.
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Proposition 1.2. Let G be a group, A a central subgroup of G and Q := G/A. Let

QE2
p,q = Hp(Q, Hq(A,Q))⇒ Hp+q(G,Q)

be the Lyndon–Hochschild–Serre spectral sequence associated to the extension
A� G� Q. Then for any q ≥ 0, the differential

d2
2,q : QE2

2,q = H2(Q,Z)⊗Z

∧q
Q
(A⊗Z Q)→ QE2

0,q+1 =
∧q+1

Q
(A⊗Z Q),

is given by the formula x ⊗ (a1 ∧ · · · ∧ aq) 7→ (ρ ∩ x) ∧ a1 ∧ · · · ∧ aq . Here
ρ is the element of H 2(G, A) associated to the above extension and the map
−∩− : H 2(Q, A)⊗Z H2(Q,Z)→ A is the cap product. If A is torsion free, then
the same result is true for

d2
2,q : ZE2

2,q → ZE2
0,q+1.

The following corollary will be needed in the next section.

Corollary 1.3. Let G, A, Q and QE2
p,q be as in Proposition 1.2. If A ⊆ Z(G)∩G ′,

then

d2
2,q : QE2

2,q → QE2
0,q+1

is surjective for any q ≥ 0 and therefore

QE∞0,q = QE3
0,q = 0.

Moreover, if A is torsion free, then the same results hold for

d2
2,q : ZE2

2,q → ZE2
0,q+1.

Proof. The spectral sequence ME2
p,q , gives us the five term exact sequence

H2(G,M)→ H2(Q,M)
d2

2,0
−→ H1(A,M)Q→ H1(G,M)→ H1(Q,M)→ 0,

[Brown 1994, Chapter VII, Corollary 6.4]. Clearly H1(G,Z)' H1(Q,Z)' G/G ′.
Since the action of Q on A is trivial, we have H1(A,Z)Q ' H1(A,Z)= A. Thus
from the above exact sequence, we obtain the surjective map

d2
2,0 : H2(Q,Z)� A.

However, from the above, we know that this map is given by the formula x 7→
ρ ∩ x . Now by Proposition 1.2, d2

2,q is surjective and this immediately implies that
E∞0,q = E3

0,q = 0. �
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2. Homology of nilpotent groups

Let N be a nilpotent group of class c and consider its lower central series,

1= γc+1(N )⊂ γc(N )⊂ · · · ⊂ γ2(N )⊂ γ1(N )= N .

From the exact sequence

γc(N )� N � N/γc(N ),

we obtain the Lyndon–Hochschild–Serre spectral sequence

(2-1) E2
p,q = Hp(N/γc(N ), Hq(γc(N ), T ))⇒ Hp+q(N , T ),

where T is an N-module.
Since γc+1(N )=[γc(N ), N ]=1, it follows that γc(N )⊆ Z(N ). So the conjugate

action of N/γc(N ) on γc(N ) is trivial. This also implies that the action of N/γc(N )
on Hq(γc(N ), T ) is trivial, provided that the action of N on T is trivial.

Theorem 2.1. Let N be a nilpotent group of class c. Then there exists a natural
filtration of H j (N ,Q),

0= E0 ⊆ E1 ⊆ · · · ⊆ El−1 ⊆ El = H j (N ,Q),

such that for any 0 ≤ k ≤ l, Ek/Ek−1 is a natural subquotient of a vector space
from the set { s⊗

Q

V
}

0≤s≤c( j−1)+1
,

where V := (N/N ′)⊗Z Q.

Proof. We prove the claim by induction on c. All filtrations, homomorphisms
and subquotients that will be considered in this proof are natural. If c = 1, then
N ′ = γ2(N )= 1. Thus N is abelian and by [Brown 1994, Theorem 6.4, Chapter V]
we have

H j (N ,Q)' (
∧ j

Z N )⊗Z Q'
∧ j

Q
V .

Clearly
∧ j

Q
V is of the form

(⊗ j
Q

V
)
/T , for some subspace T of

⊗ j
Q

V . Since
j = 1( j − 1)+ 1= c( j − 1)+ 1, our claim is valid for c = 1.

Now let c ≥ 2 and assume that the claim of the theorem is true for all nilpotent
groups of class d , 1≤ d ≤ c− 1. The spectral sequence (2-1) gives us

0= F−1 H j ⊆ F0 H j ⊆ · · · ⊆ F j−1 H j ⊆ F j H j = H j (N ,Q),

a filtration of H j (N ,Q), such that E∞i, j−i ' Fi H j/Fi−1 H j , 0 ≤ i ≤ j . By
Corollary 1.3, E∞0, j = 0, so

F0 H j = F0 H j/F−1 H j ' E∞0, j = 0.
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We know that E∞i, j−i is a subquotient of

E2
i, j−i ' Hi (N/γc(N ),Q)⊗Q H j−i (γc(N ),Q).

The group γc(N ) is abelian, so

H j−i (γc(N ),Q)'
∧ j−i

Q
(γc(N )⊗Z Q).

There is a natural surjective map
⊗c

Z(N/N ′)� γc(N ), which induces a surjective
map ∧ j−i

Q

( c⊗
Q

V
)
�
∧ j−i

Q
(γc(N )⊗Z Q),

and clearly from this we obtain a surjective map

c( j−i)⊗
Q

V � H j−i (γc(N ),Q).(2-2)

This implies that Fi H j/Fi−1 H j is a subquotient of

(2-3) Hi (N/γc(N ),Q)⊗Q

c( j−i)⊗
Q

V .

On the other hand, since N/γc(N ) is nilpotent of class c − 1, by the induction
hypothesis, for any 1≤ i ≤ j , we have a filtration of Hi (N/γc(N ),Q),

0= G0,i ⊆ G1,i ⊆ · · · ⊆ Gki−1,i ⊆ Gki ,i = Hi (N/γc(N ),Q),

such that for any 0≤ t ≤ ki , G t,i/G t−1,i is a subquotient of some
⊗st,i

Q
V , where

0 ≤ st,i ≤ (c− 1)(i − 1)+ 1. (Note that (N/γc(N ))/(N/γc(N ))′ = N/N ′). This
together with (2-3) imply that Fi H j/Fi−1 H j is a subquotient of some

⊗si
Q

V , where

0≤ si ≤ (c− 1)(i − 1)+ 1+ c( j − i)= c( j − 1)− i + 2≤ c( j − 1)+ 1.

This finishes the induction step and so the proof of the theorem. �

With some restriction on N , one can obtain similar results for integral homology.

Proposition 2.2. Let N be a free nilpotent group of class c. Then there exists a
natural filtration of H j (N ,Z),

0= E0 ⊆ E1 ⊆ · · · ⊆ El−1 ⊆ El = H j (N ,Z),

such that for any 0≤ k ≤ l, Ek/Ek−1 is a natural subquotient of a Z-module from
the set { s⊗

Q

V
}

0≤s≤c( j−1)+1
, where V := N/N ′.
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Proof. Since N is a free nilpotent group, γc(N ) is torsion free. Thus

Hn(γc(N ),Z)'
∧n

Zγc(N )

(see [Brown 1994, Theorem 6.4, Chapter V]) and so it is torsion free. This implies
that

E2
i, j−i ' Hi (N/γc(N ),Z)⊗Z H j−i (γc(N ),Z).

Now the proof is similar to the proof of Theorem 2.1. �

Remark 2.3. We believe that c( j − 1)+ 1 is a sharp bound for the existence of a
filtration with the above property for H j (N ,Q). At least this is true for the extreme
cases c= 1 (abelian N ) or j = 1 (first homology group case). Also the above proof
shows that E1 = F1 H j is a quotient of

c( j−1)+1⊗
Z

V .

This gives an evidence for the fact that the bound c( j − 1)+ 1 in Theorem 2.1 is
sharp.

Remark 2.4. If N is a nilpotent group of class c, then the above theorem also is
true for H2(N ,Z). By this we mean that there exist a natural filtration of H2(N ,Z),

0= E0 ⊆ E1 ⊆ · · · ⊆ El−1 ⊆ El = H2(N ,Z),

such that for any 0≤ k ≤ l, Ek/Ek−1 is a natural subquotient of a Z-module from
the set { s⊗

Z

(N/N ′)
}

0≤s≤c+1
.

This follows from the above proof, using the facts that for an abelian group A,
H2(A,Z)' A∧ A and also for 0≤ i ≤ 2,

E2
i,2−i ' Hi (N/γc(N ),Z)⊗Z H2−i (γc(N ),Z).

If c = 2, the complete structure of H2(N ,Z) is established in [Kochloukova 1997].
This description is simple if N is torsion-free. In this case N/γ2(N ) is torsion-free
and we obtain a filtration

0⊆ F1 H2 ⊆ F2 H2 = H2(N ,Z)

such that

F1 H2 '
(N/N ′)⊗Z N ′

〈x N ′⊗[y, z] + yN ′⊗[z, x] + zN ′⊗[x, y] | x, y, z ∈ N 〉
,

F2 H2/F1 H2 ' ker
(
(N/N ′)∧ (N/N ′)−→ N ′, x N ′ ∧ yN ′ 7→ [x, y]

)
.
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Remark 2.5. Let N be a free nilpotent group of finite rank and of class c= 2. Then
by [Kuz’min and Semenov 1998, p. 532], the differential

d2
p,q : E

2
p,q =

∧p
Z(N/N ′)⊗Z

∧q
Z N ′→E2

p−2,q+1 =
∧p−2

Z (N/N ′)⊗Z

∧q+1
Z N ′

of the spectral sequence (2-1) is given by the formula

d2
p,q(a1 N ′ ∧ · · · ∧ ap N ′⊗ x1 ∧ · · · ∧ xq)

=

∑
k<l

(−1)k+l−1a1 N ′∧ . . . âk N ′ . . . âl N ′ · · · ∧ ap N ′⊗[ak, al] ∧ x1 ∧ · · · ∧ xq .

Also in [Kuz’min and Semenov 1998, Theorem 4], it is shown that

H j (N ,Z)'

j⊕
i=1

E3
i, j−i

(note that E3
0, j = 0). This means that the filtration of H j (N ,Z) induced by the

spectral sequence,

0= F0 H j ⊆ F1 H j ⊆ · · · ⊆ F j−1 H j ⊆ F j H j = H j (N ,Z),

has the form

Fi H j/Fi−1 H j ' E3
i, j−i ⊆

(∧i
Z(N/N ′)⊗Z

∧ j−i+1
Z N ′

)
/Ti, j−i ,

where Ti, j−i is generated by the elements∑
k<l

(−1)k+l−1 y1 ∧ · · · ∧ ŷk ∧ · · · ∧ ŷl ∧ · · · ∧ yi+2⊗[yk, yl] ∧ x1 ∧ · · · ∧ x j−i−1,

where yh ∈ N/N ′, xg ∈ N ′. This shows that F1 H j ' E3
1, j−1 from the filtration is a

quotient of
⊗2 j−1

Z (N/N ′) and is nontrivial. So the bound 2 j −1= c( j −1)+1 in
Theorem 2.1 is sharp.

Corollary 2.6. Let N � G � Q be an exact sequence of groups, where N is
nilpotent of class c. Then there exist a natural filtration of QQ-submodules of
H j (N ,Q),

0= E0 ⊆ E1 ⊆ · · · ⊆ El−1 ⊆ El = H j (N ,Q),

such that for any 0 ≤ k ≤ l, Ek/Ek−1 is a natural subquotient of a QQ-module
from the set { s⊗

Q

V
}

0≤s≤c( j−1)+1
,

where V := (N/N ′) ⊗Z Q, and
⊗s

Q V is considered as a QQ-module via the
diagonal action of Q.
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Proof. We have a natural action of Q on Hq(γc(N ),Q) and Hp(N/γc(N ),Q).
From these we obtain a natural action of Q on the Lyndon–Hochschild–Serre
spectral sequence

E2
p,q = Hp(N/γc(N ), Hq(γc(N ),Q))⇒ Hp+q(N ,Q).

This means that the groups E2
p,q are QQ-modules and the differentials d2

p,q are
homomorphisms of QQ-modules. This implies that we have a filtration of QQ-
submodules of H j (N ,Q)

0= F−1 H j ⊆ F0 H j ⊆ · · · ⊆ F j−1 H j ⊆ F j H j = H j (N ,Q),

such that each E∞i, j−i ' Fi H j/Fi−1 H j , 0≤ i≤ j , is an isomorphism of QQ-modules.
It is also easy to see that if

⊗c
Z(N/N ′) is considered as ZQ-module via the

diagonal action of Q, then the natural map
⊗c

Z(N/N ′)→γc(N ) is a homomorphism
of ZQ-modules. Now if we follow the proof of Theorem 2.1, we see that in all
steps of the proof the QQ-structure is preserved. This means that all subquotients
considered in the proof of Theorem 2.1 are QQ-subquotients (i.e., the subquotient
structure commutes with the Q-action) and the maps are QQ-homomorphisms, etc.
Therefore, as in the proof of Theorem 2.1, we obtain the desired filtration. �

3. Nilpotent action on the homology of nilpotent groups

We say that a group G acts nilpotently on a G-module T , if T has a filtration of
G-submodules

0= T0 ⊆ T1 ⊆ · · · ⊆ Tk−1 ⊆ Tk = T,

such that the action of G on each quotient Ti/Ti−1 is trivial.
Corollary 2.6 shows that if Q = G/N acts nilpotently on N/N ′, then it act

nilpotently on H j (N ,Q) for any j ≥ 0. This fact can be generalized as follows.

Theorem 3.1. Let G be a group, N a nilpotent normal subgroup of G and let T
be a G-module. If G acts nilpotently on N/N ′ and T , then, for any k ≥ 0, G acts
nilpotently on Hk(N , T ) and H k(N , T ).

Proof. We prove the claim for the homology functor. The proof for the cohomology
functor is similar. The proof is in three steps.

Step 1. N is abelian and T is a trivial G-module: Let

0= N0 ⊆ N1 ⊆ · · · ⊆ Nn = N

be a filtration of N such that G acts trivially on each quotient Ni/Ni−1. We prove
this step by induction on the length of the filtration of N , i.e., on n. If n = 1, then
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the action of G on N = N1 is trivial. So the action of G on Hk(N , T ) also is trivial.
From the exact sequence of groups

N1� N � N/N1,

we obtain the Lyndon–Hochschild–Serre spectral sequence

E ′2p,q = Hp(N/N1, Hq(N1, T ))⇒ Hp+q(N , T ).

By above, G acts trivially (and so nilpotently) on Hq(N1, T ). Since G/N1 acts
nilpotently on N/N1 and N/N1 has a filtration of length n−1, by induction hypoth-
esis G/N1, and so G, acts nilpotently on each E ′2p,q . Since E ′∞p,q is a subquotient
of E ′2p,q , G acts nilpotently on it too. Moreover, G acts naturally on the above
spectral sequence which means that each E ′2p,q is a G-module and the differentials
d ′2p,q are homomorphisms of G-modules. This implies that we have a filtration of
G-submodules

0= F−1 Hk ⊆ F0 Hk ⊆ · · · ⊆ Fk−1 Hk ⊆ Fk Hk = Hk(N , T ),

such that each isomorphism E ′∞i,k−i ' Fi Hk/Fi−1 Hk is an isomorphism of G-
modules. Thus G acts nilpotently on each quotient Fi Hk/Fi−1 Hk . This implies
that G acts nilpotently on Hk(N , T ).

Step 2. N is abelian and T is any G-module: Let

0= T0 ⊆ T1 ⊆ · · · ⊆ Tl = T

be a filtration of T , such that G acts trivially on each quotient Ti/Ti−1. In this case
we prove the theorem by induction on l, the length of the filtration of T . If l = 1,
then the action of G on T = T1 is trivial, so we arrive at Step 1. From the exact
sequence

0→ T1→ T → T/T1→ 0,

we obtain the long exact sequence

· · · → Hk(N , T1)→ Hk(N , T )→ Hk(N , T/T1)→ · · · .

We know that G acts nilpotently on Hk(N , T1) and by the induction hypothesis G
acts nilpotently on Hk(N , T/T1). Now the above exact sequence implies that G
acts nilpotently on Hk(N , T ).

Step 3. The general case: The proof of this step is by induction on the nilpotent
class c of N . If c = 1, then N is abelian and this is done in Step 2. Now assume
that the claim is true for all nilpotent groups of class d, 1 ≤ d ≤ c− 1. Consider
the lower central series of N ,

1= γc+1(N )⊂ γc(N )⊂ · · · ⊂ γ2(N )⊂ γ1(N )= N .
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Note that γc(N )⊆ Z(N ). The exact sequence of groups

γc(N )� N � N/γc(N ),

gives us the Lyndon–Hochschild–Serre spectral sequence

E2
p,q = Hp(N/γc(N ), Hq(γc(N ), T ))⇒ Hp+q(N , T ).

We have a natural surjective map
c⊗
Z

(N/N ′)� γc(N ),

which is a map of G-modules if we consider
⊗c

Z(N/N ′) as a G-module via the
diagonal action [Lennox and Robinson 2004, 1.2.11]. Since G acts nilpotently
on N/N ′, it also acts nilpotently on

⊗c
Z(N/N ′). Thus through the above sur-

jective map, G also acts nilpotently on γc(N ). By Step 2, G acts nilpotently on
Hq(γc(N ), T ). On the other hand, N/γc(N ) is of nilpotent class c− 1 and G acts
nilpotently on (N/γc(N ))/(N/γc(N ))′ ' N/N ′. So by the induction hypothesis,
G acts nilpotently on each E2

p,q . Thus G acts nilpotently on each E∞p,q . Finally by
the convergence of the spectral sequence, one can show, as in Step 1, that G acts
nilpotently on Hk(N , T ). This completes the proof of the theorem. �

If A is an abelian normal subgroup of G, then one can show that G is nilpotent
if and only if G/A is nilpotent and G acts nilpotently on A [Hilton et al. 1975,
Proposition 4.1, Chapter I]. One side of this fact can be generalized as follows.

Corollary 3.2. Let G be a nilpotent group, N a normal subgroup of G and let T be
a G-module. If G acts nilpotently on T , then for any k ≥ 0, G/N acts nilpotently
on Hk(N , T ) and H k(N , T ).

Proof. Since G/N ′ is nilpotent and N/N ′ is abelian, G/N ′, and so G, acts nilpo-
tently on N/N ′. Now the claim follows from Theorem 3.1. �

Lemma 3.3. Let G be a finite group, R a commutative ring and T an RG-module
such that G acts nilpotently.

(i) If 1/|G| ∈ R, then T is a trivial G-module.

(ii) If G is nilpotent, l-torsion and 1/ l ∈ R, then T is a trivial G-module.

Proof. (i) We know that the functor −⊗G Z= (−)G is right exact. First we show
that this is in fact an exact functor if it is considered as a functor from the category
of RG-modules to the category of R-modules. Consider the maps

αG : T G
→ TG, m 7→ m,

N : TG→ T G, m 7→ Nm,
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where N :=
∑

g∈G g∈ RG. Then clearly N◦α and α◦N coincide with multiplication
by |G|. Since 1/|G| ∈ R, αG is an isomorphism. This implies that (−)G is exact,
because (−)G is left exact. Next, let

0= T0 ⊆ T1 ⊆ · · · ⊆ Tk = T

be a filtration of T such that G acts trivially on each Ti/Ti−1. By applying the
exact functor (−)G to the exact sequence 0→ T1→ T2→ T2/T1→ 0 and using
the fact that G acts trivially on T1 and T2/T1, we see that

0→ T1→ (T2)G→ T2/T1→ 0

is exact. Therefore T2 ' (T2)G and so the action of G on T2 is trivial. In a similar
way and by induction on i , one can show that the action of G on each Ti is trivial.
Thus the action of G on Tk = T is trivial.

(ii) First we prove that (−)G is exact and we do this by induction on the size of
G. We may assume that G 6= 1. Since G is nilpotent, Z(G) 6= 1. Let H be a
nontrivial cyclic subgroup of Z(G). Then the map αG coincides with the following
composition of maps

T G '
−→ (T H )

G/H αH
−→ (TH )

G/H αG/H
−→ (TH )G/H

'
−→ TG .

Now the exactness of the functor (−)G follows from (i) and the induction step.
Finally, as in (i) we can prove that G acts trivially on T . �

Corollary 3.4. Let G be a nilpotent group and N a normal subgroup of G such
that G/N is finite and l-torsion. Let R be a commutative ring such that 1/ l ∈ R and
let T be an RG-module. If G acts nilpotently on T , then, for any k ≥ 0, the natural
action of G/N on Hk(N , T ) and H k(N , T ) is trivial and therefore the natural maps

corrG
N : Hk(N , T )→ Hk(G, T ), resG

N : H
k(G, T )→ H k(N , T )

are isomorphisms.

Proof. The claim follows from Corollary 3.2 and Lemma 3.3. �

Corollary 3.5. Let G be a nilpotent group and N a subgroup of G such that G/N
is finite and l-torsion. Let R be a commutative ring such that 1/ l! ∈ R and let T be
an RG-module. If G acts nilpotently on T , then, for any k ≥ 0, the natural maps

corrG
N : Hk(N , T )→ Hk(G, T ), resG

N : H
k(G, T )→ H k(N , T )

are isomorphisms.

Proof. It is well-known that N has a subgroup L such that L is normal in G and
[G : L] ≤ [G : N ]!. Now by Corollary 3.4, the maps

corrG
L : Hk(L , T )→ Hk(G, T ) and corrN

L : Hk(L , T )→ Hk(N , T )
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are isomorphisms. Therefore corrG
N : Hk(N , T )→ Hk(G, T ) is an isomorphism.

The cohomology case can be treated in a similar way. �

Example 3.6. In general, in Corollary 3.4 the condition that [G : N ] <∞ and
1/ l ∈ R can not be removed. In fact, if N is a noncentral abelian normal subgroup
of a nilpotent group G, e.g., G a nilpotent group of class c = 3 and N = G ′, then
clearly G does not act trivially on H1(N ,Z)= N .

4. Bieri–Strebel invariant

The main condition of our main Theorem 5.4, proved below, is closely related to
an invariant, introduced by Bieri and Strebel [1980], which has played a prominent
role in the study of soluble groups which are finitely presented.

Let Q be a multiplicative finitely generated abelian group. A homomorphism of
groups

v : Q→ R

is called a valuation on Q. If Q has rank n, then HomZ(Q,R)'Rn , so HomZ(Q,R)

can be regarded as a topological vector space. Two valuation v and v′ on Q are
called equivalent if v′= av for some a ∈R>0. We denote the equivalence class of v
by [v] and the set S(Q) of all equivalence classes of elements of HomZ(Q,R)\{0} is
called the valuation sphere, which can be identified with the unit sphere Sn−1

⊂Rn .
Notice that S(Q) is empty precisely when n = 0, that is, Q is finite. For any
valuation v on Q define

Qv := {q ∈ Q|v(q)≥ 0},

which is a submonoid of Q.
For a ring R, let RQv be the monoid ring, which clearly is a subring of RQ. For

a finitely generated RQ-module A, define

6A(Q) := {[v] ∈ S(Q) | A is finitely generated over RQv}.

A finitely generated RQ-module A is called m-tame if for any m elements

v1, . . . , vm ∈ HomZ(Q,R) \ {0}

with v1+ · · ·+ vm = 0, there is 1≤ i ≤ m such that [vi ] ∈6A(Q).

Theorem 4.1. Let Q be a finitely generated abelian group, K a field, A a finitely
generated K Q-module and m ≥ 2 an integer. Then the following statements are
equivalent:

(i) A is m-tame as K Q-module;

(ii)
⊗m

K A is finitely generated as K Q-module via the diagonal Q-action;
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(iii)
⊗i

K A are finitely generated as K Q-modules via the diagonal Q-action for
i = 2, . . . ,m;

(iv)
∧i

K A are finitely generated as K Q-modules via the diagonal Q-action for
i = 2, 3, . . . ,m;

(v)
∧m

K A is finitely generated as K Q-module via the diagonal Q-action.

Proof. See [Bieri and Groves 1982, Theorem C] and [Kochloukova 1999, Corol-
lary B]. �

Theorem 4.2. Let A� G� Q be a short exact sequence of groups with both A
and Q abelian and G finitely generated. If G is of type FPm , then A⊗Z K is m-tame
as a K Q-module for every field K .

Proof. See [Bieri and Groves 1982, Theorem D]. �

5. Virtual rational Betti numbers of nilpotent-by-abelian groups

The following two theorems are taken from [Bridson and Kochloukova 2015]
and [Kochloukova and Mokari 2015], respectively, which are very important for
the study of virtual rational Betti numbers of abelian-by-polycyclic groups. In
this section we will use them for the study of virtual rational Betti numbers of
nilpotent-by-abelian groups.

Theorem 5.1 (Bridson–Kochloukova). Let Q be a finitely generated abelian group
and B a finitely generated QQ-module. If B ⊗Q B is a finitely generated QQ-
module via the diagonal action of Q, then

sup
M∈AQ

dimQ(B⊗QM Q) <∞.

Proof. See [Bridson and Kochloukova 2015, Theorem 3.1]. �

Theorem 5.2 (Kochloukova–Mokari). Let Q be a finitely generated abelian group
and B a finitely generated QQ-module. If supm≥1 dimQ(B⊗QQm Q) <∞, then for
any i ≥ 0,

sup
m≥1

dimQ Hi (Qm, B) <∞.

Proof. See [Kochloukova and Mokari 2015, Theorem 2.4]. �

Lemma 5.3. Let Q be a finitely generated abelian group. Let V be a QQ-module
such that

⊗n
QV is a finitely generated QQ-module via the diagonal action of Q. If

supm≥1 dimQ

((⊗n
Q V

)
⊗QQm Q

)
<∞, then for any QQ-subquotient U of

⊗n
Q V ,

we have
sup
m≥1

dimQ(U ⊗QQm Q) <∞.
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Proof. First let us assume that U is a quotient of
⊗n

Q V , i.e., U =
(⊗n

Q V
)
/T , for

some QQ-submodule T of
⊗n

Q V . Then clearly

dimQ(U ⊗QQm Q)≤ dimQ

(( n⊗
Q

V
)
⊗QQm Q

)
,

and thus

sup
m≥1

dimQ(U ⊗QQm Q)≤ sup
m≥1

dimQ

(( n⊗
Q

V
)
⊗QQm Q

)
<∞.

Next let U be a QQ-submodule of some W :=
(⊗n

Q V
)
/T . Then W/U is of the

form
(⊗n

Q V
)
/T ′ for some QQ-submodule T ′ of

⊗n
Q V and so

sup
m≥1

dimQ(W ⊗QQm Q) <∞, sup
m≥1

dimQ((W/U )⊗QQm Q) <∞.

Now from the exact sequence 0→U→W→W/U→ 0, we obtain the long exact
sequence

· · · → torQQm

1 (W/U,Q)→U ⊗QQm Q→W ⊗QQm Q→ (W/U )⊗QQm Q→ 0,

which implies that

(5-1) dimQ(U ⊗QQm Q)≤ dimQ torQQm

1 (W/U,Q)+ dimQ(W ⊗QQm Q).

Since supm≥1 dimQ((W/U )⊗QQm Q) <∞, by Theorem 5.2 we obtain

(5-2) sup
m≥1

dimQ Hi (Qm,W/U ) <∞.

But torQQm

i (W/U,Q)= Hi (Qm,W/U ), thus by (5-1) and (5-2) we have

sup
m≥1

dimQ(U ⊗QQm Q) <∞. �

The next theorem is the main result of this paper.

Theorem 5.4. Let N�G� Q be an exact sequence of groups, where G is finitely
generated, N is nilpotent of class c and Q is abelian. If N/N ′ is 2(c(n− 1)+ 1)-
tame, then for any 0≤ j ≤ n, vb j (G) is finite.

Proof. Let G1 be a subgroup of finite index in G. Let Q1 be the image of G1 in
Q and N1 := N ∩G1. Then clearly [Q : Q1] <∞, and [N : N1] <∞. From the
associated Lyndon–Hochschild–Serre spectral sequence

E2
p,q = Hp(Q1, Hq(N1,Q))⇒ Hp+q(G1,Q)
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of the extension N1� G1� Q1, we obtain

dimQ H j (G1,Q)=

j∑
p=0

dimQ E∞p, j−p ≤

j∑
p=0

dimQ E2
p, j−p.

Since [N : N1]<∞, by Corollary 3.4, for any k ≥ 0, we have

Hk(N1,Q)' Hk(N ,Q).

Thus E2
p,q ' Hp(Q1, Hq(N ,Q)). On the other hand, since [Q : Q1] <∞, there

exists m ∈N such that (Q/Q1)
m
= 1. Hence Qm

⊆ Q1. Since Q1/Qm is finite, we
have

Hp(Q1, H j−p(N ,Q))' Hp(Qm, H j−p(N ,Q))Q1/Qm ,

and this implies that

dimQ Hp(Q1, H j−p(N ,Q))≤ dimQ Hp(Qm, H j−p(N ,Q)).

So to prove the theorem it is sufficient to prove that

sup
m≥1

dimQ Hp(Qm, H j−p(N ,Q)) <∞.

By Corollary 2.6, H j−p(N ,Q) has a natural filtration of QQ-submodules

0= E0 ⊆ E1 ⊆ · · · ⊆ El−1 ⊆ El = H j−p(N ,Q),

such that for any 0 ≤ k ≤ l, Ek/Ek−1 is a natural subquotient of a QQ-module
from the set { s⊗

Q

V
}

0≤s≤c( j−p−1)+1
,

where V := (N/N ′) ⊗Z Q and
⊗s

Q V is considered as a QQ-module via the
diagonal action of Q. By Theorem 4.1,

⊗s
Q V is a finitely generated QQ-module

for 0≤ s ≤ 2c( j − p− 1)+ 2. Thus by Theorem 5.1,

sup
m≥1

dimQ

(( s⊗
Q

V
)
⊗QQm Q

)
<∞ for 0≤ s ≤ c( j − p− 1)+ 1.

Next, Lemma 5.3 implies that

sup
m≥1

dimQ((Ei/Ei−1)⊗QQm Q) <∞,

and by induction on i , one can show that, for any 1≤ i ≤ j − p

sup
m≥1

dimQ(Ei ⊗QQm Q) <∞.
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Therefore

sup
m≥1

dimQ(H j−p(N ,Q)⊗QQm Q)= sup
m≥1

dimQ(El ⊗QQm Q) <∞.

Now by Theorem 5.2, for any 0≤ p ≤ j ,

sup
m≥1

dimQ Hp(Qm, H j−p(N ,Q)) <∞.

This completes the proof of the theorem. �

Lemma 5.5. Let G be a group and H a subgroup of finite index in G. Then vbn(G)
is finite if and only if vbn(H) is finite. In fact, for any n ≥ 0, vbn(G)= vbn(H).

Proof. If H0 is a subgroup of finite index in H , then [G : H0]= [G : H ][H : H0]<∞.
So dimQ Hn(H0,Q)≤ vbn(G) and hence

vbn(H)≤ vbn(G).

If G0 is a subgroup of finite index in G, then [G0 : G0 ∩ H ] ≤ [G : H ]. So
there is a normal subgroup N of G0 such that N ⊆ G0 ∩ H and [G0 : N ] <∞.
Since Hn(G0,Q) ' Hn(N ,Q)G0/N , dimQ Hn(G0,Q) ≤ dimQ Hn(N ,Q). Now
from [H : N ]<∞, it follows that dimQ Hn(G0,Q)≤ dimQ Hn(N ,Q)≤ vbn(H).
Therefore

vbn(G)≤ vbn(H). �

Corollary 5.6. Let G be a nilpotent-by-abelian-by-finite group, i.e., we have a chain
of subgroups N E H EG, where N is nilpotent, H/N is abelian and [G : H ]<∞.
If N is of class c and H/N ′ is of type FP2c(n−1)+2, then vb j (G) is finite for any
0≤ j ≤ n.

Proof. Since H/N ′ is metabelian of type FP2c( j−p−1)+2, by Theorem 4.2 the Q-
module (N/N ′)⊗Z Q is 2(c( j − p− 1)+ 1)-tame. Now the claim follows from
Lemma 5.5 and Theorem 5.4. �

Remark 5.7. Theorem 5.4 and Corollary 5.6 generalize [Bridson and Kochloukova
2015, Theorem 5.3 and Corollary 5.4] to higher homology groups.

For the first virtual rational Betti number we can improve the above result a bit.

Proposition 5.8. Let N � G � Q be an exact sequence of groups, where N is
nilpotent and Q is polycyclic. Let G/N ′ be of type FP3 and let

⊗2
Z N/N ′ be finitely

generated as ZQ-module via the diagonal action. Then vb1(G) is finite.
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Proof. Let G1 be a normal subgroup of finite index in G. Let Q1 be the image of
the G1 in Q and N1 = N ∩G1. The associated Lyndon–Hochschild–Serre spectral
sequence of N1� G1� Q1, i.e.,

E2
p,q = Hp(Q1, Hq(N1,Q))⇒ Hp+q(G1,Q),

implies that

dimQ H1(G1,Q)≤ dimQ E2
0,1+ dimQ E2

1,0

= dimQ H0(Q1, H1(N1,Q))+ dimQ H1(Q1,Q).

Since any subgroup of a polycyclic group is polycyclic, by [Kochloukova and Mokari
2015, Lemma 3.2] we have dimQ H1(Q1,Q) ≤ h(Q), where h(Q) is the Hirsch
length of Q. Since [N : N1]<∞, by Corollary 3.5 we have H1(N1,Q)' H1(N ,Q).
So to prove the claim it is sufficient to prove that

sup
[Q:Q1]<∞

dimQ(N/N ′⊗Q1 Q) <∞.

Let A = N/N ′ and H = G/N ′ and consider the exact sequence A� H � Q. If
we put A0 = [A, H ] and Q0 = H/A0 and if we follow the proof of Theorem A in
[Kochloukova and Mokari 2015], we obtain

sup
[Q0:Q2]<∞

dimQ(A0⊗Q2 Q) <∞.

From the exact sequence A0� A� A/A0, we obtain the exact sequence

A0⊗Q2 Q→ A⊗Q2 Q→ (A/A0)⊗Q2 Q→ 0,

which implies that

dimQ(A⊗Q2 Q)≤ dimQ(A0⊗Q2 Q)+ dimQ((A/A0)⊗Q2 Q).

Now consider the exact sequence A/A0� Q0
β
� Q and let Q1 = β(Q2). Since

the action of A/A0 over A is trivial, we have A⊗Q1 Q' A⊗Q2 Q. Since A/A0 is
a finitely generated abelian group,

sup
[Q0:Q2]<∞

dimQ((A/A0)⊗Q2 Q) <∞.

Therefore from the above relations we have

sup
[Q:Q1]<∞

dimQ(A⊗Q1 Q) <∞.

This completes the proof of the theorem. �
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Corollary 5.9. Let N � G � Q be an exact sequence of groups, where N is
nilpotent and Q is nilpotent of class c ≤ 2. If G/N ′ is of type FP3, then vb1(G) is
finite.

Proof. By Lemma 3.5 in the proof of Corollary B in [Kochloukova and Mokari
2015],

⊗2
Q(A0⊗Z Q) is finitely generated as QQ-module via the diagonal action,

where A0 is as in the proof of Proposition 5.8. Now we can proceed as in the proof
of Proposition 5.8. �

6. Some examples

6A. S-arithmetic groups. Unfortunately there is no classification of the nilpotent-
by-abelian groups of type FPn even in the case of n = 2, though the metabelian
case was solved in [Bieri and Strebel 1980]. In this case type FP2 turns out to be
equivalent to finite presentability. Still in the case of soluble S-arithmetic groups
there is a complete classification of finite presentability [Abels 1987, Theorem 7.5.2,
Remark 4, Chapter VII]. They are finitely presented if and only if are of type FP2.
Note that soluble S-arithmetic groups are nilpotent-by-abelian-by-finite.

By a theorem of Borel–Serre [Abels 1987, Theorem 0.4.4], any S-arithmetic
subgroup of a reductive group is of type FP∞ and thus for such soluble subgroups
the result of Corollary 5.6 is true for any j ≥ 0. But such a result can be proved for
other type of S-arithmetic groups.

The following example was considered in [Abels and Brown 1987]: Let p be a
prime and

0n ≤ GLn+1(Z[1/p]),

where 0n is the group of upper triangular matrices A with A1,1 = 1= An+1,n+1.

Theorem 6.1. The group 0n is of type FPn−1, but not of type FPn .

Proof. See [Abels and Brown 1987, Theorem A]. �

Let Nn be the subgroup of 0n containing all elements of 0n , where the main
diagonal contains only entries 1. Then Nn is nilpotent and

Qn = 0n/Nn ' Zn−1.

In this case the abelianization Vn = Nn/[Nn, Nn] is isomorphic to Z[1/p]n , so
Vn ⊗Z Q'Qn is finite dimensional over Q. Hence all tensor and exterior powers
of Vn are finitely generated over QQn . Thus Theorem 4.1 implies that Vn ⊗Z Q is
m-tame for any m ≥ 2. Now by Theorem 5.4 we obtain the following result.

Proposition 6.2. For any j ≥ 0, vb j (0n) is finite.
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6B. Groups of finite torsion-free rank. It is a well-known theorem of Mal’cev
that polycyclic groups are nilpotent-by-abelian-by-finite [Lennox and Robinson
2004, 3.1.14]. On the other hand, for a polycyclic group G, the group ring ZG
is (right) noetherian [Lennox and Robinson 2004, 4.2.3] and thus G is of type
FP∞. Now by Corollary 5.6, all virtual rational Betti numbers of G are finite. A
direct and much easier proof of this fact is given in [Kochloukova and Mokari 2015,
Lemma 3.2]

A polycyclic group is a special case of constructible groups. A soluble group is
called constructible if and only if it can be built from the trivial group in finitely
many steps by taking descending HNN-extensions and finite extensions. It is well-
known that the class of constructible soluble groups is closed with respect to taking
homomorphic images and subgroups of finite index [Baumslag and Bieri 1976,
Proposition 2, Theorem 4]. Moreover, they have finite Prüfer rank [Baumslag and
Bieri 1976, Section 3.3, Remark 2] and thus are nilpotent-by-abelian-by-finite. The
last part follows from the proof of [Robinson 1972, Theorem 10.38]. Furthermore,
constructible soluble groups are finitely presented and are of type FP∞ [Baumslag
and Bieri 1976, Proposition 1]. Thus by Corollary 5.6 all virtual rational Betti
numbers of these groups are finite.

Kochloukova and the second author gave a good bound for virtual rational
Betti numbers of a polycyclic group [Kochloukova and Mokari 2015, Lemma 3.2].
Their proof work even for the larger class of groups of finite torsion-free rank.
Polycyclic and constructible groups are of finite Prüfer rank and thus they are of
finite torsion-free rank.

A group G, not necessarily soluble, is said to be of finite torsion-free rank if it
has a series of subgroups

1= G0CG1C · · ·CGn = G,

such that each nontorsion factor Gi/Gi−1 is infinite cyclic. One can show that the
number of infinite cyclic factors is independent of the chosen series (see the proof
of [Lennox and Robinson 2004, 1.3.3]) which it is called either the torsion-free
rank or the Hirsch number of G and we denote it by h(G).

Proposition 6.3. Let G be a group of finite torsion-free rank. Then for any integer
j ≥ 0, dimQ H j (G,Q)≤

( h(G)
j

)
. In particular,

vb j (G)≤
(

h(G)
j

)
.

Proof. The proof is similar to that of the case of polycyclic groups given in
[Kochloukova and Mokari 2015, Lemma 3.2]. �
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