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We consider the question of determining whether or not a given group
(especially one generated by involutions) is a right-angled Coxeter group.
We describe a group invariant, the involution graph, and we characterize
the involution graphs of right-angled Coxeter groups. We use this char-
acterization to describe a process for constructing candidate right-angled
Coxeter presentations for a given group or proving that one cannot exist.
We apply this process to a number of examples. Our new results imply sev-
eral known results as corollaries. In particular, we provide an elementary
proof of rigidity of the defining graph for a right-angled Coxeter group, and
we recover an existing result stating that if T satisfies a particular graph
condition (called no SILs), then Auto(Wr) is a right-angled Coxeter group.
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1. Introduction

Given a finite simple graph I, the right-angled Coxeter group defined by T is the
group W = Wr generated by the vertices of I'. The relations of Wr declare that the
generators all have order 2, and adjacent vertices commute with each other. Right-
angled Coxeter groups (commonly abbreviated RACG) have a rich combinatorial
and geometric history [Davis 2008]. The particular presentation specified by I'
is called a right-angled Coxeter system. When encountering a group generated
by involutions, a natural question is to ask whether or not this group might be a
right-angled Coxeter group, and if so, how to identify the preferred presentation.
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The main objective of this paper is the development of a recognition procedure
that successfully answers this question for certain families of groups. Although the
procedure may be applied more generally, our applications focus primarily on two
classes of examples. Given a right-angled Coxeter group W, we consider

(1) extensions of Wr by subgroups of OutO(Wr), and

(2) subgroups of W generated by chosen sets of involutions.

(Recall that Aut’(Wr) consists of the automorphisms of Wi which map each gen-
erator to a conjugate of itself, and OutO(Wr) is the quotient Aut’(Wr) / Inn(Wr).)
In each of these cases, we give examples of groups which are right-angled Coxeter
and examples which are not. For those cases which are right-angled Coxeter, our
procedure produces the preferred presentations. We show:

Theorem 1.1 (p. 57). Suppose xi1, ..., xx are pairwise commuting partial conju-
gations of the right-angled Coxeter group Wr such that whenever x; and x; have
the same acting letter, their domains don’t intersect. Then G = W X (X1, ..., X)
is a right-angled Coxeter group. Further, writing S; < {x1, ..., xx} for the set
comprising those partial conjugations with acting letter a;, we have

{all_[Xi,---aanl_[Xi}U{Xl»---an}

Xi€S1 Xi€Sn
is a Coxeter generating set for G.

If a group G has only 2-torsion, and G is not a right-angled Coxeter group, then
G is not a Coxeter group. So our procedure may in fact enable one to show that
a given group is not a Coxeter group. Cunningham [2015] has used some of the
methods described here to show that Out®(W,,) for n > 4 is not a Coxeter group. (W,
is the universal Coxeter group whose defining graph has n vertices and no edges.)

Given a group G, the involution graph Ag of G is the group invariant defined
as follows: the vertices in Ag correspond to the conjugacy classes of involutions
in G; vertices are adjacent when there exist commuting representatives of the
corresponding conjugacy classes. In general, this invariant is unwieldy. It may be
infinite, and even when it’s finite, it may be impossible to construct. Nevertheless,
for certain classes of groups the invariant promises insights. Like any invariant,
it can allow us to distinguish between groups. It also carries information on the
automorphism group of G. Since an automorphism must permute conjugacy classes
of involutions and must preserve commuting relations, Aut(G) acts naturally on Ag.
The kernel of this action is therefore a natural normal subgroup of Aut(G), and has
finite index in Aut(G) when A is finite.

The involution graph for a right-angled Coxeter group Wr is easily constructed
directly from I': the vertices in Ay correspond to cliques in I'; vertices are adjacent



RECOGNIZING RIGHT-ANGLED COXETER GROUPS USING INVOLUTIONS 43

when the union of the corresponding cliques is also a clique. When constructed in
this manner, we denote the graph I'x and call it the clique graph for T'. Tits [1988]
proved that the kernel of the action Aut(W) O Aw has a natural complement, which
is therefore a finite subgroup of Aut(Aw). Thus the involution graphs of right-
angled Coxeter groups are significantly more tractable than the involution graphs of
arbitrary groups, and may be more convenient for certain purposes than the defining
graph I'. Aaron Meyers, in his undergraduate thesis under the supervision of Piggott,
began to explore some properties of clique graphs and how to recover their base
graphs. (As this work is unpublished, new proofs are given in the following sections.)

The reader may compare our use of the clique graph and involution graph to
the use of the clique graph, extension graph, and commutation graph in [Kim and
Koberda 2013] in the context of right-angled Artin groups. Our use of the term
and notation for the clique graph comes from that reference. In addition, Kim and
Koberda define the extension graph I'¢ of I' and the commutation graph of a subset
S C A(I") of elements of the right-angled Artin group. The vertices of I' are the
words in the right-angled Artin group A(I") which are conjugate to a vertex of I,
and two such vertices are connected by an edge if they commute with one another.
More generally, the commutation graph of S has vertices given by the elements
of S, and two of these are connected by an edge if they commute with each other.

It is straightforward to define the extension and commutation graphs in the context
of right-angled Coxeter groups. Note that the vertices of ' are the individual
group elements, not conjugacy classes, so that I'* is infinite whereas Ay, is finite.
Moreover, I'¢ does not contain words that are only conjugate to a product of pairwise
commuting generators, so it is not the case that Ay, is a quotient graph of I'*.
[Kim and Koberda 2013, Theorem 1.3] states that, given graphs A and I, if A is
contained in ', then A(A) < A(T"). The analogous statement about right-angled
Coxeter groups is certainly false, and a counterexample is provided by

Do =Wo=(a,b|a*>=b*>=1).

The defining graph I" consists of two vertices with no edges. The extension graph "¢
has countably many vertices and no edges, but D, cannot contain subgroups which
are free products of more than two copies of Z/2Z. If we replace the extension
graph with the involution graph Ay, in [Kim and Koberda 2013], the claim would
still be false: Aw, contains cliques which are larger than any clique in I'.

Finally, we note that the involution graph A of a group which is not a right-
angled Coxeter group may not be a commutation graph on any subset {gy, ..., g,} of
elements. A priori, it could be the case that there is no single collection of elements,
one from each conjugacy class, which simultaneously exhibit all commuting and
noncommuting relationships dictated by the involution graph. (When Wr is a
right-angled Coxeter group, Ay, is the commutation graph on the set of products
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of pairwise commuting generators.) It may be that the techniques of [Kim and
Koberda 2013] could be adapted to the case of right-angled Coxeter groups, but
as the current paper focuses on the recognition problem, we have not considered
questions of embeddability.

In Section 2, we summarize our recognition procedure, which attempts to con-
struct right-angled Coxeter presentations for a given group. This procedure relies
on many facts about clique graphs and involution graphs which, for clarity of
exposition, are only stated in that section. Detailed proofs have been relegated to
Section 4 at the end of the paper. Section 2 contains all necessary definitions and
results to understand the applications in Section 3.

In Section 3, we apply our procedure to several first examples of potential right-
angled Coxeter groups. Section 3A collects examples of families of groups which
are right-angled Coxeter. I" is said to contain a separating intersection of links
(SIL) if, for some pair of vertices v and w with d(v, w) > 2, there is a connected
component of I' \ (Lk(v) NLk(w)) which contains neither v nor w. Otherwise, we
say I' contains no SILs. Section 3A also gives a new, shortened proof of [Charney
et al. 2010, Theorem 3.6]: that Aut’(Wr) is right-angled Coxeter if I' contains no
SILs. Section 3B shows several examples of groups which we prove cannot be
right-angled Coxeter. This includes, in particular, an iterated extension

G
(Wr x Z/27) xZ/2Z
—_——

H

in which H is not right-angled Coxeter, but G is. We also note that Aut’(Ws) is
not right-angled Coxeter, answering a motivating question for the authors.

Section 3C states some results that essentially identify features of a given graph A
which indicate that W, has a semidirect product decomposition Wy = Wr x H,
where H < OutO(Wr). The results of this section follow from those in Section 3A
quite easily, and the semidirect product decompositions are certainly not unique.

Section 4 presents detailed proofs for many facts stated without proof in Section 2.
In this section, we present a characterization of those finite graphs which arise as
clique graphs (i.e., a characterization of those graphs which arise as the involution
graphs of right-angled Coxeter groups). We present a collapsing procedure to
recover I from 'k, and we establish the correctness of our recognition procedure
for constructing right-angled Coxeter presentations.

Finally, in Section 5 we give many follow-up questions which may be approach-
able using our recognition procedure. These include the question of characterizing
those subgroups H < Out’(Wr) such that Wr x H is again right-angled Coxeter,
and determining when the involution graph of a subgroup H < G can be calculated
easily from the involution graph of G.
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2. A summary of the recognition algorithm

In this section, we present the definitions and basic properties of the clique graph,
star poset, and involution graph constructions. We state one of our main theorems
characterizing those finite graphs which arise as clique graphs, and we describe a
procedure which recovers a graph I' from its clique graph I'x. Finally, we prove
several algebraic results about right-angled Coxeter groups which allow us to modify
this procedure to seek right-angled Coxeter presentations of a given group. Many
of the proofs of this section are elementary or nongeometric in nature, so they have
been pushed to Section 4 at the end of the paper, where the interested reader will
find all of the details. In this section, we present only the definitions and statements
of results necessary to understand the applications in Section 3.

A finite simple graph I' = (V, E) is an ordered pair of finite sets. We require
that V, the set of vertices, is nonempty and E, the set of edges, consists of 2-element
subsets of V. We say a, b € V are adjacent if {a, b} € E. All graphs we consider
in this paper will be undirected and have finitely many vertices, no loops, and no
parallel edges. We will use the notation

Lk(v) ={w e V | {v, w} € E}

for the link of v and
St(v) = Lk(v) U {v}

for the star of v.

Definition 2.1. Let I" be a graph. A cligue in I" is a nonempty subset of pairwise
adjacent vertices. The clique graph of T is the graph I'y = (Vg , Eg) whose vertices
correspond to the cliques of I'. Two vertices of I'x are adjacent if the union of the
corresponding cliques in I is also a clique. Figure 1 depicts an example.

The relation v ~ w when St(v) = St(w) is an equivalence relation on V (I").
Write [v] for the equivalence class of v. Declaring that [v] < [w] if St(v) C St(w)
we define a partial ordering, and we write P(I") for the poset of star-equivalence
classes of vertices in I.

{as, a3}
4 4 {ay, a2, az} (a0)
2 4 4
{ay, az}

as aq
{a1, a2} ( |
ai, as

{az}

{as}
Figure 1. A graph I' (left) and its corresponding clique graph I'x (right).
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Throughout this paper, we will write I', I, ..., I for the maximal cliques of I".
If1c{1,2,...,r}, then
I =T

is the corresponding intersection of maximal cliques.

Definition 2.2. A vertex v € I' is called minimal if it is contained in a unique
maximal clique. Given J C {1,2,...,r}, we say v is J-minimal if there is no
J' D Jsuchthat Ty CTyandv € [y,

Theorem 2.3 (p. 64). Let I'" be a graph. There exists a graph T such that T' = Tk
if and only if the following three conditions are satisfied.:

(1) Maximal clique condition (MCC): For all I, there exists some k; such that
Ty =2k —1.
(2) Minimal vertex condition (MVC): Each nonempty intersection F} contains
some J-minimal vertex vj.
(3) Inclusion-exclusion condition (IEC): For each J,
D =DV <k,
12J

Moreover, if IV is a clique graph, then the graph I" such that I’ = I is unique.
The following procedure, which we call the collapsing procedure, recovers I'
from I'. We may write I' = C(I"').

Theorem 2.4 (p. 68). Let ' be a graph which satisfies the MCC, MVC, and IEC.
Then there is a unique (up to isomorphism) graph T such that T"' is isomorphic to
['x. Moreover, the following collapsing procedure produces the graph U if it exists.

(1) Initially, let V = {}.

(2) Let [w] € P(I"") be a class such that every class [v] with [w] < [v] has already
been considered. Write
se=J Il

[v]=[w]

Then there is some k such that |S,| = 2¥ — 1. Let k' be the number of vertices
of Sy which are already contained in V. Choose k — k' vertices of [w] to add to
the vertex set V.

(3) Repeat the previous step until all classes of P(I'") have been considered.
(4) Return the graph C(I'") which is the induced subgraph of T on the vertex set V.
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The set S, forms a clique in I'" which is an intersection of maximal cliques, so
its size has the desired form by the MCC. The details can be found in Section 4A.

Definition 2.5. Let G be a (finitely generated) group. The involution graph Ag
of G is defined as follows. The vertices are the conjugacy classes of involutions
in G. Two vertices [x] and [y] are connected by an edge if there exist representatives
gxg~ ! and hyh~! that commute with each other.

We make a few remarks. The particular conjugates which witness commutativity
are chosen for each edge individually. A system of representatives of each conjugacy
class which act as witnesses for every edge simultaneously is called a full system of
representatives. Such a system need not exist in general, but a right-angled Coxeter
group will always have a full system of representatives.

We have also said earlier that all graphs we consider do not have loops, although
the involution graph as defined here may contain a loop if an involution commutes
with a conjugate of itself. This may happen in general, but it will never happen in
a right-angled Coxeter group. So, if the involution graph of a given G contains a
loop, we may immediately conclude that G is not a right-angled Coxeter group.

Lemma 2.6. Let I" be a graph. Then Ay, = TI'k.

Proof. 1t is a well-known fact about right-angled Coxeter groups that the only
nontrivial torsion elements have order 2, and that any involution is conjugate to
some product of pairwise commuting generators. The set of products of pairwise
commuting generators forms a full system of representatives for the involution
graph (this follows essentially from the deletion condition), and two such products
commute if and only if all the generators involved in each product pairwise commute,
i.e., if the collection of all these generators forms a clique in I'. (]

We recover the rigidity of right-angled Coxeter groups as an immediate conse-
quence. This was originally proven in [Green 1990] (for a more general class of
groups), and many other proofs have been presented for different classes of groups
containing right-angled Coxeter groups as a subclass; see, for example, [Droms
1987; Laurence 1995; Radcliffe 2003].

Corollary 2.7. The defining graph of a right-angled Coxeter group Wr is unique
up to isomorphism.

Proof. The involution graph is an algebraic invariant (it does not depend on the
chosen right-angled Coxeter presentation). By the previous lemma, the involution
graph Ay, is a clique graph, and by Theorem 2.3 the collapsed graph C(Aw,) is
unique (up to isomorphism). (]

At this point, we can essentially describe our recognition procedure for seeking a

right-angled Coxeter presentation for a given group G. First, we form the involution
graph Ag. If this is not a clique graph, then G is not a right-angled Coxeter group.
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If it is, then we must find a full system of representatives for the vertices. If such
a system does not exist, then G is not a right-angled Coxeter group. If we find a
full system of representatives, then the collapsing procedure will produce a labeled
graph I' = C(Ag), which gives a map Wi — G by sending the generators of Wp
to the labels of the corresponding vertices. If we can show the candidate map is an
isomorphism, then G is a right-angled Coxeter group, and the labels of I" form a
right-angled Coxeter generating set. (On the other hand, if the candidate map is not
an isomorphism, we cannot conclude that G is not a right-angled Coxeter group.
We may have simply chosen the wrong full system of representatives for Ag.)
We must address one subtlety in this procedure. In Theorem 2.4, we chose
vertices from [w] to add to the vertex set V arbitrarily. It only mattered that we
had the right number of vertices from each intersection of maximal cliques. In the
algebraic setting, this is not sufficient, as the following simple example shows.

Example 2.8. Let I' be a triangle with vertices a, b, c. Then I'r = Ay, is a
clique of size 7 with the labels a, b, ¢, ab, ac, bc, abc. In the star poset P(I'x),
all vertices are equivalent, so there is only one [w] to consider. The collapsing
procedure says to choose 3 vertices from this class at random. If we choose, for
example, the vertices a, b, c, then the collapsing procedure recovers I'. If we choose
a, ab, abc, then we find a new right-angled Coxeter presentation for Wr. However,
if we pick a, b, ab, then we don’t get a right-angled Coxeter presentation (because
there is an additional relation between these vertices).

Essentially, at this step in the collapsing procedure we are choosing which
vertices of the involution graph represent generators and which represent products of
generators. There are (generally) many different ways that we can make this choice,
but we have to make use of some algebraic information to avoid choosing products
as if they were generators. The following results are certainly of independent
interest, but we will, in particular, use them to make intelligent choices during the
collapsing procedure.

Since we wish to avoid choosing vertices whose labels have a nontrivial product
relation, it would certainly help if we could solve the word problem in G. However,
depending on how G is presented, such a solution may or may not be evident (if it
even exists). For this reason, we pass to the abelianization G®, in which there is a
solution to the word problem. If G is a right-angled Coxeter group, then

G® = (z/272)",

and a product relation among involutions in G must also occur in G&.

From this point forward, for g € G, we will write g for the image of g in the
abelianization. An important fact about right-angled Coxeter groups is that the
abelianization is injective on conjugacy classes of involutions.
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Proposition 2.9. Let Wr be a right-angled Coxeter group. Let x, y € Wr such that
x2=y2=1.Thenx=yin Wfi‘b if and only if x and y are conjugate in Wr.

Proof. The “if” direction is trivial. Now, suppose x and y are not conjugate in Wr.
Since x, y are involutions, there are pairwise commuting generators ay, az, . . . , d,
pairwise commuting generators by, by, ..., by, and words g, i such that

X =gaay - -akg_1 and y=hbb,-- -bgh_l.

Without loss of generality, since x and y are not conjugate, there is a b; that does
not appear among the a;. But since it is a generator, there is a Z/2Z direct factor in
Wlﬂb corresponding to that b_J Therefore, y will have a 1 in this factor and x will
have a 0. Thus, X # y in Wl'ilb. O

Corollary 2.10. For a right-angled Coxeter group Wr, if H is a subgroup generated
by distinct, commuting involutions, then H = H® injects into Wlﬂb.

Proof. H is a finite subgroup of Wr and so is conjugate to a special subgroup H'.
Each element of H’ is a distinct product of commuting generators from W and so
each gets sent to a distinct element of Wfi*b. Thus, no two elements of H' can be
conjugate in Wr and so neither can any two elements of H. By Proposition 2.9,
H injects into W. O

Proposition 2.11 (p. 72). If Wr is a right-angled Coxeter group, then in step 2 of
the collapsing procedure in Theorem 2.4, we can choose the k — k' involutions of
Wr so that the chosen elements do not exhibit a nontrivial product relation.

This proposition, which is proved in Section 4B, makes use of the available
algebraic information to amend our collapsing procedure and avoid nontrivial
product relations. We can make further use of the available algebraic information to
improve upon the procedure. In general, we have no particular method (or hope of
finding a method) to construct Ag for an arbitrary G. Each of the following steps
seem to be generally insurmountable:

(1) Identify all involutions in G.
(2) Separate all involutions into their conjugacy classes.

(3) Determine the presence or lack of each edge in A (i.e., find a pair of commuting
representatives or prove that none exist).

(4) Find a full system of representatives.

(5) Identify a full system of representatives so that the candidate maps are isomor-
phisms.

For a right-angled Coxeter system, it happens that all of these steps are not just
possible, but straightforward.
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Proposition 2.12 (p. 74). If Wr is a right-angled Coxeter group, then two conjugacy
classes of involutions [x] and [y] are connected by an edge in Ay, if and only if
there exists another class |z] such that 7 = Xy in the abelianization.

If we are given a group G, supposing we can identify the conjugacy classes
of involutions (i.e., the vertices of Ag), we can identify hypothetical edges and
nonedges by looking for such Z in G®. If G is a right-angled Coxeter group, then
this will produce the correct involution graph, and the remainder of the procedure
will (hopefully, if we pick a good full system of representatives) identify a right-
angled Coxeter presentation. On the other hand, if this not-quite involution graph
of G is not a clique graph, we can be certain that G is not a right-angled Coxeter
group. At no point do we directly need to check that we have calculated the true
involution graph of G. We summarize this discussion with the following amended
collapsing procedure. For details (including a full description of how to do these
calculations in the abelianization), refer to Section 4B.

Theorem 2.13 (p. 74). Suppose G is a group whose only torsion elements all have
order 2, so that G*® = (Z/2Z)" for some n. If the following procedure returns TRUE,
then G is a right-angled Coxeter group (and the procedure indicates a right-angled
Coxeter presentation). If the procedure returns FALSE, then G is not a right-angled
Coxeter group.

(1) Determine all conjugacy classes of involutions in G, and let these be the vertices
of a graph T"'. If there are not finitely many, return FALSE.

(2) Apply Proposition 2.12 to construct the edges of T".
(3) If T is not a clique graph, return FALSE.

(4) Find a full system of representatives for the vertices of . If no such system
exists, return FALSE.

(5) Collapse as in Theorem 2.4, using Proposition 2.11 to ensure that nontrivial
product relations are avoided. Write C (') for the resulting graph.

(6) Let ' be a graph isomorphic to C(I'") with generic vertex labels ay, . .., a.
Let ¢ : Wr — G be the map which sends the generators of Wr to the word given
by the corresponding labels of vertices in C(I'). If ¢ is an isomorphism, return
TRUE.

(7) Otherwise, return UNKNOWN.

3. Applications and results

In this section, we apply the recognition procedure from Section 2 to seek out
right-angled Coxeter presentations for certain families of groups. We focus in
particular on
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(1) semidirect products of a given right-angled Coxeter group Wr by certain sub-
groups of Out’(Wr), and

(2) subgroups of a given Wr generated by chosen subsets of involutions.

In particular, we note that the families of groups that we consider are already
generated by involutions, have no torsion of order other than 2, and are usually
given by presentations which are nearly right-angled Coxeter.

If D is a union of connected components of I" \ St(a;) for some i, then the
automorphism of Wr determined by

Xi.p(a)) = {a""f'““ “ €D
a;, otherwise,

is called the partial conjugation with acting letter a; and domain D. (Note that this
terminology is not entirely consistent in the literature. Other papers have reserved
partial conjugation for the case in which D is a single connected component
[Gutierrez et al. 2012; Charney et al. 2010], while Laurence [1995] used the term
locally inner automorphism before the term partial conjugation became common.
We have preferred here to allow for multiple connected components in the domain of
a partial conjugation, and we would propose the term elementary partial conjugation
for the case in which D consists of a single connected component.) The partial
conjugations generate Out’(Wr).

In Section 3A, we present families of groups which our procedure shows to be
right-angled Coxeter. One example is worked out in full detail to demonstrate the
procedure. For the remaining results, we simply state the resulting right-angled
Coxeter group and the isomorphism determined by our procedure. The reader is
left to verify the details. Most of these results are about split extensions of a given
Wr by a finite subgroup of Out’(Wr) generated by (pairwise commuting) partial
conjugations.

In Section 3B, we present families of groups which our procedure shows cannot
be right-angled Coxeter. Again, one example is worked out in full detail. We note
one example which is of particular interest: we find a group Wr with two elements
x,y € Out’(Wr) such that G = Wr x (x, y) is a right-angled Coxeter group, but
H = Wr x (xy) is not. In particular, we can realize G as the iterated semidirect

product
G = (Wr X (xy)) % (x),

where each extension has degree 2. So this gives, to our knowledge, the first
example in which the existence of a right-angled Coxeter presentation is lost and
then recovered by semidirect product extensions.

Finally, in Section 3C, we note that many of our examples of right-angled
Coxeter families arise as semidirect products. By analyzing the properties of
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the defining graphs of the groups arising from these semidirect products, we can
identify semidirect product decompositions in many cases. Such decompositions
are generally not unique, and we cannot at the moment provide an exhaustive list
of graph features of I which indicate a semidirect product decomposition of Wr.

3A. Groups which are right-angled Coxeter.

Example 3.1. We begin with an explicit example in which we demonstrate the
recognition procedure in detail. Consider the defining graph in Figure 2.

Write x = x,(2) for the partial conjugation with acting letter a; and domain {a,}.
We consider the group G = Wr x (x), which has the presentation

2 2
G =(a1, a2, a3, a4, x | af = x> =1,[a1, as] = a2, as] = [az, as] = 1,

[a1, x] = [as, x] = [a4, x] = 1, xaox = ayazay).
This is not quite a right-angled Coxeter presentation, so we apply our procedure to
see if we can find one.

First, we compute G (removing any relations that become trivial and under-
standing that group presentations with additive notation are assumed to be abelian):

= (a1) x (@) x (@) x (@) x (X) = (Z/22)".

The relation matrix

(>R ool )
[ ReNeN S Ne)
SO NNO O
SO OO
NO O OO

is already in Smith normal form, and so our canonical abelianization map G — G2
is given by g — g.

We now want to list all conjugacy classes of involutions in G. The classes of
involutions in Wr are evident by inspection of I': a; for each i, and a;ay4 for each
1 < j <3. The new generator x is also an involution, and the products of x with the
other generators that commute with it give new involutions: xai, xas, xas. There
are two remaining conjugacy classes of involutions, namely xaja; and xaasay.

a

ay

°
az as

Figure 2. The defining graph I.
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Figure 3. The involution graph Ag.

These are all of the conjugacy classes of involutions in G. We could try to prove
this directly, but it will also end up following from the fact that our procedure in
this case does in fact construct an explicit isomorphism with a right-angled Coxeter
group. Thus, we can omit the details.

We claim that the graph in Figure 3 is the involution graph Ag. The given system
of representatives is a full system, and the commuting relations are straightforward
to check. (If they weren’t as straightforward, we could easily construct the edge
relations given by Proposition 2.12.)

The brackets in the involution graph represent conjugacy classes. Since we now
have a full system of representatives, we may stop writing these brackets. For
the remainder of the calculation, brackets around a vertex label will denote its
star-equivalence class. Before calculating the star poset structure, we observe that
this graph clearly satisfies the MCC and MVC, and the IEC is straightforward to
verify.

The equivalence classes in the star poset are the following (identified by the
dashed ellipses in Figure 3):

la1] = {a1, a1a4}, [az] = {a2, ara4, xar1az, xa1a2a4},
lasz] = {a3, azas, xa3, xazaas}, [as] = {aa},
[x] = {x, xa4}, [xai] = {xay, xaia4}.

The Hasse diagram for this poset is depicted in Figure 4.

The element [a4] is maximal in the poset structure and contains a single element.
We add a4 to V. Next, we consider [x] (or [xaq]; the order in which we consider
these classes is irrelevant). The clique above [x] has size 3, so 2 of its vertices
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[a4]

[x] [xai]

[as] [a1] [a2]
Figure 4. The Hasse diagram for the poset P(Ag).

X xa by by
as ay ar bl b3 bS

Figure 5. The collapsed graph A (left) and an isomorphic graph
with generic labels (right).

must be added to V. We have already added 1, so we must pick one more from [x].
Examining the abelianization, (as, x) = (Z/ 27)? and either of x or xas will extend
as into a basis. So we choose to add x to V. Similarly, we consider [xa;] and add
xap to V.

The remaining three classes are all minimal. Suppose we take [a>] next. The
clique above [a;] has size 7, so we must choose 3 elements from it. We have already
chosen 2, so we need to choose 1 more. Checking the abelianization again, we see
that any choice of the 4 elements in [a,] will extend to a basis, and so we add a,
to V. Similarly, from [a3], we add a3 to V.

Finally, we consider [a;]. The clique above [a;] has size 7, and we have al-
ready chosen 3 of these vertices, so we choose no more. This leaves us with
V ={ay, a3, as, x, xa}. We take the induced subgraph A of A on these vertices;
see Figure 5.

We now have a candidate map ¢ : Wy — G. It is straightforward to check that
the map  below is the inverse, and that ¢ and i are isomorphisms:

@ bl = as, b2|—>x, b3r—>a4, b4»—>xa1, b5|—>a2,
w: aj }—>b2b4, azl—>b5, a3r—>b1, a4r—>b3, X|—>b2.
Thus, G is a right-angled Coxeter group, completing the example.

In this example, we were extending a right-angled Coxeter group by a single
partial conjugation. It turns out that this will always yield a right-angled Coxeter
group, and in fact we can say much more.

Lemma 3.2. Suppose Wr is a right-angled Coxeter group. If oy, . . ., oy are partial
conjugations of W with the same acting letter and pairwise disjoint domains, then
G=Wx{ay,...,o) is aright-angled Coxeter group.
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Proof. Without loss of generality, we may assume each o; has acting letter a;. Let
D; denote the domain of ; for each 1 <i <k. Now G is generated by the elements

{ar, ..., an, a1, ..., o}
with the relations
(R1) al =1, for 1 <i <n,
(R2) [a;,aj]=1, for {a;,a;} € E(I'),
(R3) af =1, for 1 <i <k,
(R4)  [aj, 0] =1, for 1 <i<j<k,
RS [aj,aql=1, for a; ¢ D;,

(R6) o;a;a; = aia;ay, for a; € Dl’.
Let H be the group generated by
{bl’~-~abn7,817"'!13k}

with the relations

(S1) b?=1, for 1<i<n,

(S2) [bi,bj]1=1, for {a;,a;} € E(T'),

(S3) pr=1, for 1<i<k,

(S4) [Bi,Bil=1, for1=<i<j<k,

(S5) [Bi,bjl=1, for a; ¢ D;,

(S6) [b1,bi]=1, for2<i<nand q; € D;U---UDy.

We note that the given presentation for H is a right-angled Coxeter presentation.
We define maps

¢:{ai,...,an, 01, ...,0p) = {b1,..., by, B1,..., Br},
ai = b1 B,
aj = B (1=i=<k),
ai—>b; (2<i=<n,

Ui Abty oo by Bis ey Bl = ar, .. an, o, - ),
b= ajay - oy,
Bir> o (1<i<k),
bi—a; (2<i<n).

It is straightforward to check that ¢ and gﬁ preserve the relations (R1)-(R6) and
(S1)—(S6), respectively, so they induce homomorphisms ¢ : G — H and ¥ : H — G.
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(Note that the preservation of the relation (S6) uses the assumption that the domains
D; are pairwise disjoint.) Finally, it is straightforward to see that ¢ and i are
inverses to each other, hence G and H are isomorphic. That is, G is a right-angled
Coxeter group. ([

Suppose H < Out’(Wr) is generated by partial conjugations x1, .. ., xx. Having
shown that the semidirect product extension of Wr by any single partial conjugation
is again right-angled Coxeter, we might hope to show that W x H is right-angled
Coxeter by observing that this is isomorphic to taking the iterated semidirect
products, each by a single y;:

Wi H = (- (Wr < (1) 2 (x2) %3 ().

However, there is a subtlety that ruins this argument, namely, that x, will extend to
some automorphism of Wr X (1), but not necessarily to a partial conjugation. We
cannot extend inductively, since we cannot ensure that we are always extending
by single partial conjugations. The following lemma and theorem identify certain
cases in which this inductive argument works.

Lemma 3.3. Suppose W, T, ay, oy, ..., H, and G are as in the lemma and
proof above. Let y be a partial conjugation of W with acting letter ay # a; and
such that y commutes with each of the automorphisms o1, ...,ar. Then y acts
on G as a partial conjugation.

Proof. Without loss of generality we may assume y has acting letter a; and
domain D. Recall that a = b,. To show that y acts on G as a partial con-
jugation we consider the result of conjugation by y on each of the generators
bi,...,by, B1, ..., B Firstly we note: yB;y = p; for 1 <i <k; ybjy = b; for
l<i<nanda; ¢ D; yb;jy = bybib, for2 <i <mnanda; € D. If a; ¢ D, then
yb1y =yaiy = b,. Suppose a; € D. Since y commutes pairwise with o1, ..., o,
we have ap ¢ D1 U---U D;. We compute

ybiy =yaiay - oy
=yaryoy -0k
=maiaxay - - - g
=maaq - ay

= byb1bs.

Since y is an automorphism of G, and y takes each generator to either itself or the

conjugate of itself by b,, we may conclude that y is a partial conjugation of G.
Write ¢ : {ay, ...,a,} = {b1, ..., by} for the map ¢(a;) = b;. From the calcula-

tions above, the domain of y acting on G is ¢(D). [l
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Theorem 1.1. Suppose xi, ..., xx are pairwise commuting partial conjugations of
the right-angled Coxeter group Wr such that whenever x; and x; have the same
acting letter, their domains don’t intersect. Then G =W X {x1, ..., Xk) is a right-
angled Coxeter group. Further, writing S; C {x1, ..., xx} for the set comprising
those partial conjugations with acting letter a;,

{all_[Xh---,anl_[Xi}U{Xl’---vXk}

Xi€S1 Xi€Sn
is a Coxeter generating set for G.

Proof. The proof is by induction, applying the lemmas above at each step. Let
ap, ..., o be those x; with acting letter 1. By assumption, they have pairwise
disjoint domains. By Lemma 3.2, Wr x (aq, ..., o, ) is a RACG.

Moreover, by Lemma 3.3, the remaining x; still act like partial conjugations,
and their domains do not intersect, since they didn’t before the extension. Now
take B, ..., Br, among the remaining x; to be those which have acting letter 2,
and extend by (B, ..., Bk,).

Continuing inductively, we extend at the i-th step by all remaining partial conju-
gations with acting letter i. The result follows. U

In [Gutierrez et al. 2012], the authors investigate the automorphism groups of
graph products of cyclic groups. In the case that W is a right-angled Coxeter group,
the authors recover a result of Tits [1988] which shows Aut(W) = Aut’(W) x
Aut' (W) with Aut' (W) finite. Thus Aut’(W) (sometimes denoted Aut™“(W)),
which is the subgroup of Aut(W) generated by all partial conjugations of W, is a
finite index subgroup of Aut(W). They also show that Aut’ (W) splits as Inn(W)
Out’(W). Finally, they give the following condition on I, called no SILs, which
characterizes exactly when Out’(W) is finite and is thus isomorphic to z;.

Definition 3.4. A graph I" has a separating intersection of links (SIL) if, for some
vertices v and w with d(v, w) > 2, there is a component of I" \ (Lk(v) N Lk(w))
which contains neither v nor w. Otherwise, I is said to have no SILs.

Inn(Wr) is known to be a right-angled Coxeter group. In the case that I has
no SILs, Aut’(Wr) is a finite extension of Inn(Wr). In [Charney et al. 2010], it is
shown that Aut’(Wr) is again a right-angled Coxeter group in that case. We arrive
at this same result as a direct application of the previous corollary.

Corollary 3.5. If T contains no SILs, then Aut®(W) is a right-angled Coxeter
group and thus Aut(W) contains a right-angled Coxeter group as a subgroup of
finite index.
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Proof. Without loss of generality we may assume W has trivial center. Suppose I
contains no SILs. Then

Aut’ (W) = Inn(W) x Out®(W) = W x Out’ (W),

and Out’(W) is generated by pairwise commuting partial conjugations which satisfy
the condition in the corollary above. U

In general, one should not expect Aut(W) to be right-angled Coxeter. The
elements of Aut' (W) include graph symmetries, which could then introduce torsion
elements of order other than 2. One should not generally expect that Aut®(W) is
a right-angled Coxeter group, but one might see the no SILs result as suggesting
that we restrict our attention to extensions of right-angled Coxeter groups by finite
subgroups of Out’ (W) (although Example 3.8 in the following section demonstrates
that even this restriction is not sufficient).

3B. Groups which are not right-angled Coxeter.

Example 3.6. As in the previous section, we begin with an explicitly worked out
example. Let G denote the group presented as

G={a,b,c,x,y | a2, bz, c2, xz, yz, xax =a, xbx =b, xcx =aca,

yay =a, yby =b, ycy = bcb).

LetW=(a,b,c)and H=(x,y). Then W=2/277/277 /27, H=7/27%7/27Z,
and G = W x H, where x and y act as a pair of noncommuting partial conjugations.

To construct Ag, we must understand the involutions in G. Since G =W x H,
each g € G may be written uniquely in the form g = wh, where w e W and h € H.
Further, g> = whwh = whw(h~'h)h = ww"™' hZ. Since every element in G can
be uniquely written as a product of an element of G and an element of H, if g
is an involution, then / is an involution and w" ' = w" = w~!. Because H is
a right-angled Coxeter group (in fact, Do), every nontrivial involution in H is
conjugate to either x or y; it follows that, up to conjugation, we may suppose g has
one of the forms

(1) w such that w? =1,

(2) wx such that w* = w~!, or

(3) wy such that w? = w™!.

Every element of the first type is conjugate to either a, b, or c. Now we’ll try to list
elements of the second type (elements of the third type will be analogous).
Suppose g = wx with w* = w~!. We further suppose that, within the collection
of words of this form in the conjugacy class of g, we choose the shortest possible w.
The element w can be written uniquely in the form uobub - - - u,,—1bu,,, where
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m > 0, each u; is a geodesic word in {a, c}*, and only u( and u,, may be trivial.
X X, X X x _ .,—1: . x _ ,,—1 -1

Then w* = ugbuib - --u, _bu,, =w™" implies that uj; = u,, m—1» and so

on. We now consider a few subcases.

If m > 0 and ug is not trivial, then

LUy =1u

-1 -1
uy (wx)ug=uy (ugbub---u,, _bu,x)ug,
— X
=bub---u,_ bu,uyx

=bub---u,_ ,bx.

This contradicts the minimality of the length of w, so either m = 0 or ug is trivial.
If ug is trivial and m > 1, then w begins and ends with b, so |b(wx)b| < |wx]|.
Again, this contradicts minimality, hence either m =0 or w = b.

If m =0, then w = ug € (a, c) is geodesic and so is an alternating string of
a and c. If |[w| > 1 and |w| is odd, then w begins and ends with the same letter.
If w begins and ends with a, then |[awxa| = |awax| < |wx]|; if w begins and ends
with ¢ then w* begins and ends with a; hence w* # w~!. In either case, we have
a contradiction, so |w| = 1, in which case w = a or w = ¢, or else |w| is even.
If w=(ac)" and n > 1, then |aca(wx)aca| < |wx|; if w = (ca)" and n > 1, then
|cwxc| < |wx|. In both cases, we have a contradiction. Our only case left is m =0,
n = 1, which corresponds to w = ac or w = ca. Therefore, our only nontrivial
possibilities for w are w = b, a, c, ac, ca.

Note that a(cax)a = acx, so these cases fall into the same conjugacy classes. In
summary, we have that each involution of the form w.x is conjugate to exactly one of
the elements x, ax, bx, acx. (We observe that the final option cx is not, in fact, an
involution. In this case, w = ¢, and w* # w~!.) We also observe that none of these
involutions are conjugate to each other since they all map to distinct elements in G°.

Similarly, each involution of the form wy is conjugate to exactly one of the
elements y, ay, by, bcy. Therefore, the following is the complete list of conjugacy
classes in G, and hence serves as the list of vertex labels in Ag:

lal, [b], [c], [x], [ax], [bx], [acx], [y], [ay], [by], [bcyl.

We now consider pairs of distinct conjugacy classes, to see whether or not they
should be adjacent in Ag. By Proposition 2.12, we can just check the product
relations among the images of the involutions in G®. We omit the actual calculation
and show the resulting involution graph in Figure 6.

Now Ag is not a clique graph, since, for example, the IEC fails. (The reader
can check this directly for the maximal cliques labeled I3 and I’y in the figure.)

Example 3.7. Aut’(W3) is not a right-angled Coxeter group. The details are very
similar to the previous example (we extend by one further partial conjugation), and
are omitted here. The involution graph is shown in Figure 7.
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[ay]
[a] I [y]
r 3 1_‘4
[ax] & [x] Ts [b] » [by]
r [bx] o,
[acx] [;] [bey]

Figure 6. An involution graph which cannot be a clique graph.
The labeled triangles I are the maximal cliques.

lay]

la] [yl
[az] [chz]

[z] [cz]

[ax] e [x] (5] » [Dy]

[bx]

[acx] [Z] [bey]

Figure 7. The involution graph for Aut®(W3).

Here we must give the following warning. The proof above relies on finding a
portion of the involution graph which we know should not appear in any clique graph.
In the example, it is the “triangle of triangles” configuration (see Example 4.2). This
should not occur in the involution graph of a right-angled Coxeter group, essentially
because it means that all three vertices of the central triangle must be generators
(whereas, by construction of the involution graph in the case of right-angled Coxeter
groups, we should expect two of the vertices to be generators and the third to be
their product).

However, we must point out that, strictly speaking, there is no such thing as
a “poison pill” subgraph — a subgraph which, by its presence, prevents the given
graph from being a clique graph. Indeed, if I" is any graph, then I" is an induced
subgraph of I'x. In this way, any finite graph may appear as an induced subgraph
in some clique graph (even the “triangle of triangles”). In the example above, it



RECOGNIZING RIGHT-ANGLED COXETER GROUPS USING INVOLUTIONS 61

ai az

o ——————O
® [J [J [ J
as as as de

Figure 8. The defining graph I'.

is important that we know the central triangles I'; and I’y to be not just induced
subgraphs, but also maximal cliques.

In all of the previous results, we have only considered split extensions by sub-
groups H < Out’(Wr) which were generated by partial conjugations. In particular,
if the partial conjugations commuted pairwise, then H was finite and the extension
G = Wr x H was right-angled Coxeter. On the other hand, in the example above,
the partial conjugations did not commute, thus H was infinite and G was not
right-angled Coxeter. One might wonder whether the existence of a right-angled
Coxeter presentation for the extension G depends only on the finiteness of H. The
following example answers this question in the negative.

Example 3.8. Let I" be the graph shown in Figure 8. Let x be the partial conjugation
with acting letter a; and domain {a3, a4}, and let y be the partial conjugation with
acting letter a; and domain {as, as}. Since a; and a; commute, so do x and y.
Now write z = xy for the product, which is also an involution. It follows from
Theorem 1.1 that G = W x (x, y) is a right-angled Coxeter group. Consider the
subgroup H = Wr X (z) < G. The defining graph for G and the involution graph
for H are shown in Figure 9.

The reader could verify Ay in two ways —first, by directly calculating the
involutions and checking their commuting relations; and second, using the defining
graph of G to calculate Ag, and then picking out the subset of vertices in Ag
which are labeled by elements in the subgroup H. (Note that this latter method

ae

as ay

zaparas

as

Figure 9. The defining graph of G (left) and the involution graph
of H (right).
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of constructing the involution graph of a subgroup will not work in general. It
works for the current example because G is a right-angled Coxeter group and H is
normal.)

We can realize G as the iterated semidirect product

G =(Wr x(z))x{x)=H x {x).

This gives an example of a right-angled Coxeter group W with a degree-2 split
extension H which is not right-angled Coxeter. Moreover, taking a further degree-2
extension G, we recover the right-angled Coxeter property.

3C. Semidirect product decompositions. Here we present some results which are
unrelated to the problem of recognizing right-angled Coxeter groups. These results
fall naturally out of the applications in Section 3A, and they generally address
our ability to recognize semidirect product decompositions of W by identifying
features of I.

To give the basic idea of how to generate these results, we give the following
alternate description of Lemma 3.2. Suppose ay, ..., a, are the vertices of I
and «q, ..., o are partial conjugations as in the lemma. We will suppose that a;
is the acting letter and D; is the domain of «;. The lemma says that the group
G =Wr x{ay, ..., 