
Pacific
Journal of
Mathematics

QUANTIFYING SEPARABILITY
IN VIRTUALLY SPECIAL GROUPS

MARK F. HAGEN AND PRIYAM PATEL

Volume 284 No. 1 September 2016



PACIFIC JOURNAL OF MATHEMATICS
Vol. 284, No. 1, 2016

dx.doi.org/10.2140/pjm.2016.284.103

QUANTIFYING SEPARABILITY
IN VIRTUALLY SPECIAL GROUPS

MARK F. HAGEN AND PRIYAM PATEL

We give a new, effective proof of the separability of cubically convex-
cocompact subgroups of special groups. As a consequence, we show that
if G is a virtually compact special hyperbolic group, and Q ≤ G is a
K-quasiconvex subgroup, then any g ∈ G − Q of word length at most n
is separated from Q by a subgroup whose index is polynomial in n and
exponential in K . This generalizes a result of Bou-Rabee and the authors
on residual finiteness growth (Math. Z. 279 (2015), 297–310) and a result
of Patel on surface groups (Proc. Amer. Math. Soc. 142 (2014), 2891–2906).

Introduction

Early motivation for studying residual finiteness and subgroup separability was a
result of the relevance of these properties to decision problems in group theory.
An observation of Dyson [1964] and Mostowski [1966], related to earlier ideas
of McKinsey [1943], states that finitely presented residually finite groups have a
solvable word problem. The word problem is a special case of the membership
problem, i.e., the problem of determining whether a given g ∈ G belongs to a
particular subgroup H of G. Separability can produce a solution to the membership
problem in essentially the same way that a solution to the word problem is provided
by residual finiteness; see, e.g., the discussion in [Aschenbrenner et al. 2015]. A
subgroup H ≤ G is separable in G if, for all g ∈ G − H, there exists G ′ ≤f.i. G
with H ≤ G ′ and g 6∈ G ′. Producing an upper bound, in terms of g and H, on the
minimal index of such a subgroup G ′ is what we mean by quantifying separability
of H in G. Quantifying separability is related to the membership problem; see
Remark D below.

Recently, separability has played a crucial role in low-dimensional topology,
namely in the resolutions of the virtually Haken and virtually fibered conjectures
[Agol 2013; Wise 2011]. Its influence in topology is a consequence of the seminal
paper of Scott [1978], which establishes a topological reformulation of subgroup
separability. Roughly, Scott’s criterion allows one to use separability to promote
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(appropriately construed) immersions to embeddings in finite covers. Agol [2013]
proved the virtually special conjecture of Wise, an outstanding component of the
proofs of the above conjectures. Agol’s theorem shows that every word hyperbolic
cubical group virtually embeds in a right-angled Artin group (hereafter, RAAG).
Cubically convex-cocompact subgroups of RAAGs are separable [Hsu and Wise
2002; Haglund 2008] and Agol’s theorem demonstrates that word hyperbolic cubical
groups inherit this property via the virtual embeddings (separability properties
are preserved under passing to subgroups and finite index supergroups). In fact,
since quasiconvex subgroups of hyperbolic cubical groups are cubically convex-
cocompact [Haglund 2008; Sageev and Wise 2015], all quasiconvex subgroups
of such groups are separable. In this paper, we give a new, effective proof of the
separability of cubically convex-cocompact subgroups of special groups. Our main
technical result is:

Theorem A. Let 0 be a simplicial graph and let Z be a compact connected cube
complex, based at a 0-cube x , with a based local isometry Z → S0. For all
g ∈ A0 −π1 Z , there is a cube complex (Y, x) such that

(1) Z ⊂ Y,

(2) there is a based local isometry Y → S0 such that Z→ S0 factors as

Z ↪→ Y → S0,

(3) any closed based path representing g lifts to a nonclosed path at x in Y,

(4) |Y (0)| ≤ |Z (0)|(|g| + 1),

where |g| is the word length of g with respect to the standard generators.

Via Haglund–Wise’s canonical completion [2008], Theorem A provides the
following bounds on the separability growth function (defined in Section 1) of
the class of cubically convex-cocompact subgroups of a (virtually) special group.
Roughly, separability growth quantifies separability of all subgroups in a given class.

Corollary B. Let G ∼= π1 X , with X a compact special cube complex, and let QR be
the class of subgroups represented by compact local isometries to X whose domains
have at most R vertices. Then

SepQR
G,S(Q, n)≤ PR n

for all Q ∈ QR and n ∈ N, where the constant P depends only on the generating
set S. Hence, letting Q′K be the class of subgroups Q ≤ G such that the convex hull
of Qx̃ lies in NK (Qx̃) and x̃ ∈ X̃ (0),

SepQ′K
G,S(Q, n)≤ P ′ grX̃ (K )n,

where P ′ depends only on G, X̃ ,S, and where grX̃ is the growth function of X̃ (0).
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In the hyperbolic case, where cubically convex-cocompactness is equivalent to
quasiconvexity, we obtain a bound that is polynomial in the length of the word and
exponential in the quasiconvexity constant:

Corollary C. Let G be a group with an index-J special subgroup. Fixing a word
length ‖ − ‖S on G, suppose that (G, ‖ − ‖S) is δ-hyperbolic. For each K ≥ 1,
let QK be the set of subgroups Q ≤ G such that Q is K-quasiconvex with respect
to ‖−‖S . Then there exists a constant P= P(G,S) such that for all K ≥ 0, Q ∈QK,
and n ≥ 0,

SepQK
G,S(Q, n)≤ P grG(P K )J !n J !,

where grG is the growth function of G.

Corollary C says that if G is a hyperbolic cubical group, the subgroup Q ≤ G is
K-quasiconvex, and g ∈ G−Q, then g is separated from Q by a subgroup of index
bounded by a function polynomial in ‖g‖S and exponential in K.

The above results fit into a larger body of work dedicated to quantifying residual
finiteness and subgroup separability of various classes of groups; see, e.g., [Bou-
Rabee and Kaletha 2012; Bou-Rabee and McReynolds 2015; Kassabov and Matucci
2011; Buskin 2009; Patel 2014; 2013; Rivin 2012; Bou-Rabee 2011; Bou-Rabee and
McReynolds 2014; Kozma and Thom 2016]. When G is the fundamental group of a
hyperbolic surface, compare Corollary C to [Patel 2014, Theorem 7.1]. Combining
various cubulation results with [Agol 2013], the groups covered by Corollary C
include fundamental groups of hyperbolic 3-manifolds [Bergeron and Wise 2012;
Kahn and Markovic 2012], hyperbolic Coxeter groups [Haglund and Wise 2010],
simple-type arithmetic hyperbolic lattices [Bergeron et al. 2011], hyperbolic free-
by-cyclic groups [Hagen and Wise 2015], hyperbolic ascending HNN extensions
of free groups with irreducible monodromy [Hagen and Wise 2013], hyperbolic
groups with a quasiconvex hierarchy [Wise 2011], C ′

( 1
6

)
small cancellation groups

[Wise 2004], and hence random groups at low enough density [Ollivier and Wise
2011], among many others.

Bou-Rabee, Hagen and Patel [2015] quantified residual finiteness for virtually
special groups, by working in RAAGs and appealing to the fact that upper bounds
on residual finiteness growth are inherited by finitely generated subgroups and
finite index supergroups. Theorem A generalizes a main theorem of [loc. cit.], and
accordingly the proof is reminiscent of the one in that reference. However, residual
finiteness is equivalent to separability of the trivial subgroup, and thus it is not
surprising that quantifying separability for an arbitrary convex-cocompact subgroup
of a RAAG entails engagement with a more complex geometric situation. Our
techniques thus significantly generalize those of [loc. cit.].

Remark D (membership problem). If H is a finitely generated separable subgroup
of the finitely presented group G, and one has an upper bound on Sep{H}G,S(|g|) for
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some finite generating set S of G, then the following procedure decides if g ∈ H :
first, enumerate all subgroups of G of index at most Sep{H}G,S(|g|) using a finite
presentation of G. Second, for each such subgroup, test whether it contains g; if so,
ignore it, and if not, proceed to the third step. Third, for each finite index subgroup
not containing g, test whether it contains each of the finitely many generators of H ;
if so, we have produced a finite index subgroup containing H but not g, whence
g 6∈ H. If we exhaust the subgroups of index at most Sep{H}G,S(|g|) without finding
such a subgroup, then g ∈ H. In particular, Corollary C gives an effective solution to
the membership problem for quasiconvex subgroups of hyperbolic cubical groups,
though it does not appear to be any more efficient than the more general solution
to the membership problem for quasiconvex subgroups of (arbitrary) hyperbolic
groups recently given by Kharlampovich, Myasnikov and Weil [Kharlampovich
et al. 2014].

The paper is organized as follows. In Section 1, we define the separability growth
of a group with respect to a class Q of subgroups, which generalizes the residual
finiteness growth introduced in [Bou-Rabee 2010]. We also provide some necessary
background on RAAGs and cubical geometry. In Section 2, we discuss corollaries
to the main technical result, including Corollary C, before concluding with a proof
of Theorem A in Section 3.

1. Background

Separability growth. Let G be a group generated by a finite set S and let H ≤G be
a subgroup. Let�H ={1≤G : H ≤1}, and define a map D�H

G :G−H→N∪{∞}

by
D�H

G (g)=min{[G :1] :1 ∈�H , g 6∈1}.

This is a special case of the notion of a divisibility function defined in [Bou-Rabee
2010] and discussed in [Bou-Rabee and McReynolds 2015]. Note that H is a
separable subgroup of G if and only if D�H

G takes only finite values.
The separability growth of G with respect to a class Q of subgroups is a function

SepQ
G,S :Q×N→ N∪ {∞} given by

SepQ
G,S(Q, n)=max

{
D�Q

G (g) : g ∈ G− Q, ‖g‖S ≤ n
}
.

If Q is a class of separable subgroups of G, then the separability growth measures
the index of the subgroup to which one must pass in order to separate Q from an
element of G−Q of length at most n. For example, when G is residually finite and
Q= {{1}}, then SepQ

G,S is the residual finiteness growth function. The following
fact is explained in greater generality in [Bou-Rabee et al. 2015, Section 2]. (In the
notation of that reference, SepQ

G,S(Q, n)= RF�Q
G,S(n) for all Q ∈Q and n ∈ N.)
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Proposition 1.1. Let G be a finitely generated group and let Q be a class of
subgroups of G. If S,S ′ are finite generating sets of G, then there exists a constant
C > 0 with

SepQ
G,S ′(Q, n)≤ C ·SepQ

G,S(Q,Cn)

for Q ∈Q, n ∈N. Hence the asymptotic growth rate of SepQ
G,S is independent of S.

(Similar statements assert that upper bounds on separability growth are inherited
by finite index supergroups and arbitrary finitely generated subgroups but we do
not use, and thus omit, these.)

Nonpositively curved cube complexes. We assume familiarity with nonpositively
curved and CAT(0) cube complexes and refer the reader to, e.g., [Hagen 2014;
Haglund 2008; Wise 2012; 2011] for background. We now make explicit some
additional notions and terminology, related to convex subcomplexes, which are
discussed in greater depth in [Behrstock et al. 2014]. We also discuss some basic
facts about RAAGs and Salvetti complexes. Finally, we will use the method of
canonical completion, introduced in [Haglund and Wise 2008], and refer the reader
to [Bou-Rabee et al. 2015, Lemma 2.8] for the exact statement needed here.

Local isometries, convexity, and gates. A local isometry φ : Y → X of cube com-
plexes is a locally injective combinatorial map with the property that, if e1, . . . , en

are 1-cubes of Y all incident to a 0-cube y, and the (necessarily distinct) 1-cubes
φ(e1), . . . , φ(en) all lie in a common n-cube c (containing φ(y)), then e1, . . . , en

span an n-cube c′ in Y with φ(c′) = c. If φ : Y → X is a local isometry and X
is nonpositively curved, then Y is as well. Moreover, φ lifts to an embedding
φ̃ : Ỹ → X̃ of universal covers, and φ̃(Ỹ ) is convex in X̃ in the following sense.

Let X̃ be a CAT(0) cube complex. The subcomplex K ⊆ X̃ is full if K contains
each n-cube of X̃ whose 1-skeleton appears in K. If K is full, then K is isometrically
embedded if K ∩

⋂
i Hi is connected whenever {Hi } is a set of pairwise-intersecting

hyperplanes of X̃ . Equivalently, the inclusion K (1) ↪→ X̃ (1) is an isometric em-
bedding with respect to the graph-metric. If the inclusion K ↪→ X̃ of the full
subcomplex K is a local isometry, then K is convex. Note that a convex subcomplex
is necessarily isometrically embedded, and in fact K is convex if and only if K (1)

is metrically convex in X̃ (1). A convex subcomplex K is a CAT(0) cube complex in
its own right, and its hyperplanes have the form H ∩ K, where K is a hyperplane
of X̃ . Moreover, if K is convex, then hyperplanes H1∩K , H2∩K of K intersect if
and only if H1 ∩ H2 6=∅. We often say that the hyperplane H crosses the convex
subcomplex K to mean that H ∩ K 6=∅ and we say the hyperplanes H, H ′ cross
if they intersect.

Hyperplanes are an important source of convex subcomplexes, in two related
ways. First, recall that for all hyperplanes H of X̃ , the carrier N (H) is a convex
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subcomplex. Second, N (H) ∼= H ×
[
−

1
2 ,

1
2

]
, and the subcomplexes H ×

{
±

1
2

}
of X̃ “bounding” N (H) are convex subcomplexes isomorphic to H (when H is
given the cubical structure in which its n-cubes are midcubes of (n+1)-cubes of X̃ ).
A subcomplex of the form H ×

{
±

1
2

}
is a combinatorial hyperplane. The convex

hull of a subcomplex S ⊂ X̃ is the intersection of all convex subcomplexes that
contain S; see [Haglund 2008].

Let K ⊆ X̃ be a convex subcomplex. Then there is a map gK : X̃ (0)
→ K such

that for all x ∈ X̃ (0), the point gK(x) is the unique closest point of K to x . (This
point is often called the gate of x in K ; gates are discussed further in [Chepoi 2000;
Bandelt and Chepoi 2008].) This map extends to a cubical map gK : X̃→ K, the
gate map. See, e.g., [Behrstock et al. 2014] for a detailed discussion of the gate
map in the language used here; we use only that it extends the map on 0-cubes and
has the property that for all x, y, if gK(x), gK(y) are separated by a hyperplane H,
then the same H separates x from y. Finally, the hyperplane H separates x from
gK(x) if and only if H separates x from K. The gate map allows us to define the
projection of the convex subcomplex K ′ of X̃ onto K to be gK ′(K ), which is the
convex hull of the set {gK(x) ∈ K : x ∈ K ′(0)}. Convex subcomplexes K , K ′ are
parallel if gK ′(K )= K ′ and gK(K ′)= K. Equivalently, K , K ′ are parallel if and
only if, for each hyperplane H, we have H ∩ K 6= ∅ if and only if H ∩ K ′ 6= ∅.
Note that parallel subcomplexes are isomorphic.

Remark 1.2. We often use the following facts. Let K , K ′ be convex subcomplexes
of X̃ . Then the convex hull C of K ∪ K ′ contains the union of K , K ′ and a convex
subcomplex of the form G K (K ′)× γ̂ , where G K (K ′) is the image of the gate map
discussed above and γ̂ is the convex hull of a geodesic segment γ joining a closest
pair of 0-cubes in K , K ′, by [Behrstock et al. 2014, Lemma 2.4]. A hyperplane H
crosses K and K ′ if and only if H crosses G K (K ′); the hyperplane H separates
K , K ′ if and only if H crosses γ̂ . All remaining hyperplanes either cross exactly
one of K , K ′ or fail to cross C . Observe that the set of hyperplanes separating K , K ′

contains no triple H, H ′, H ′′ of disjoint hyperplanes, none of which separates the
other two. (Such a configuration is called a facing triple.)

Salvetti complexes and special cube complexes. Let 0 be a simplicial graph and let
A0 be the corresponding right-angled Artin group (RAAG), i.e., the group presented
by

〈V (0) | [v,w], {v,w} ∈ E(0)〉,

where V (0) and E(0) respectively denote the vertex- and edge-sets of 0. The
phrase generator of 0 refers to this presentation; we denote each generator of A0
by the corresponding vertex of 0.

The RAAG A0 is isomorphic to the fundamental group of the Salvetti complex S0,
introduced in [Charney and Davis 1995], which is a nonpositively curved cube
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complex with one 0-cube x , an oriented 1-cube for each v ∈ V (0), labeled by v,
and an n-torus (an n-cube with opposite faces identified) for every n-clique in 0.

A cube complex X is special if there exists a simplicial graph 0 and a local
isometry X→ S0 inducing a monomorphism π1 X→ A0 and a π1 X -equivariant
embedding X̃ → S̃0 of universal covers whose image is a convex subcomplex.
Specialness allows one to study geometric features of π1 X by working inside
of S̃0, which has useful structure not necessarily present in general CAT(0) cube
complexes; see the next section. Following Haglund and Wise [2008], a group G
is (virtually) [compact] special if G is (virtually) isomorphic to the fundamental
group of a [compact] special cube complex.

Cubical features particular to Salvetti complexes. Let 0 be a finite simplicial
graph and let 3 be an induced subgraph of 0. The inclusion 3 ↪→ 0 induces a
monomorphism A3→ A0. In fact, there is an injective local isometry S3→ S0
inducing A3→ A0. Hence each conjugate Ag

3 of A3 in A0 is the stabilizer of a
convex subcomplex gS̃3 ⊆ S̃0. A few special cases warrant extra consideration.

When 3⊂ 0 is an n-clique, for some n ≥ 1, then S3 ⊆ S0 is an n-torus, which
is the Salvetti complex of the sub-RAAG isomorphic to Zn generated by n pairwise-
commuting generators. In this case, S3 is a standard n-torus in S0. (When n = 1,
S3 is a standard circle.) Each lift of S̃3 to S̃0 is a standard flat; when n = 1, we
use the term standard line; a compact connected subcomplex of a standard line is a
standard segment. The labels and orientations of 1-cubes in S0 pull back to S̃0; a
standard line is a convex subcomplex isometric to R, all of whose 1-cubes have the
same label, such that each 0-cube has one incoming and one outgoing 1-cube.

When Lk(v) is the link of a vertex v of 0, the subcomplex SLk(v) is an immersed
combinatorial hyperplane in the sense that S̃Lk(v) is a combinatorial hyperplane
of S̃0. There is a corresponding hyperplane, whose carrier is bounded by S̃Lk(v)

and v S̃Lk(v), that intersects only 1-cubes labeled by v. Moreover, S̃Lk v is contained
in S̃St(v), where St(v) is the star of v, i.e., the join of v and Lk(v). It follows that

S̃St(v) ∼= S̃Lk(v)× S̃v,

where S̃v is a standard line. Note that the combinatorial hyperplane S̃Lk(v) is parallel
to vk S̃Lk(v) for all k ∈ Z. Likewise, S̃v is parallel to gS̃v exactly when g ∈ A3, and
parallel standard lines have the same labels. We say S̃v is a standard line dual
to S̃Lk(v), and is a standard line dual to any hyperplane H such that N (H) has S̃Lk(v)

as one of its bounding combinatorial hyperplanes.

Remark 1.3. We warn the reader that a given combinatorial hyperplane may cor-
respond to distinct hyperplanes whose dual standard lines have different labels;
this occurs exactly when there exist multiple vertices in 0 whose links are the
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same subgraph. However, the standard line dual to a genuine (noncombinatorial)
hyperplane is uniquely determined up to parallelism.

Definition 1.4 (frame). Let K ⊆ S̃0 be a convex subcomplex and let H be a
hyperplane. Let L be a standard line dual to H. The frame of H is the convex
subcomplex H ′× L ⊆ S̃0 described above, where H ′ is a combinatorial hyperplane
bounding N (H). If K ⊆ S̃0 is a convex subcomplex, and H intersects K, then the
frame of H in K is the complex K ∩ (H × L). It is shown in [Bou-Rabee et al.
2015] that the frame of H in K has the form (H ∩ K )× (L ∩ K ), provided that L
is chosen in its parallelism class to intersect K. Note that the frame of H is in fact
well-defined, since all possible choices of L are parallel.

2. Consequences of Theorem A

Assuming Theorem A, we quantify separability of cubically convex-cocompact
subgroups of special groups with the proofs of Corollaries B and C, before proving
Theorem A in the next section.

Proof of Corollary B. Let 0 be a finite simplicial graph so that there is a local
isometry X→ S0. Let Q ∈QR be represented by a local isometry Z→ X . Then
for all g ∈ π1 X −π1 Z , by Theorem A, there is a local isometry Y → S0 such that
Y contains Z as a locally convex subcomplex, g 6∈ π1Y, and |Y (0)| ≤ |Z (0)|(|g|+1).
Applying canonical completion [Haglund and Wise 2008] to Y → S0 yields a
cover Ŝ0→ S0 in which Y embeds; this cover has degree |Y (0)| by [Bou-Rabee
et al. 2015, Lemma 2.8]. Let H ′ = π1 Ŝ0 ∩ π1 X , so that π1 Z ≤ H ′, g 6∈ H ′, and
[π1 X : H ′] ≤ |Z (0)|(|g| + 1). The first claim follows.

Let G ∼= π1 X with X compact special, Q ≤ G, and let the convex hull of Qx̃
in X̃ lie in NK (Q X̃). Then the second claim follows since we can choose Z to be
the quotient of the hull of Qx̃ by the action of Q, and |Z (0)| ≤ grX̃ (K ). �

In general, the number of 0-cubes in Z is computable from the quasiconvexity
constant of a Q-orbit in X̃ (1) by [Haglund 2008, Theorem 2.28]. In the hyperbolic
case, we obtain Corollary C in terms of the quasiconvexity constant, without
reference to any particular cube complex:

Proof of Corollary C. We use Corollary B when J = 1, and promote the result to a
polynomial bound when J ≥ 1. Let Q ∈QK and let g ∈ G− Q.

The special case: Suppose J = 1 and let X be a compact special cube complex
with G ∼= π1 X . Let Z→ X be a compact local isometry representing the inclusion
Q → G. Such a complex exists by quasiconvexity of Q and [Haglund 2008,
Theorem 2.28], although we shall use the slightly more computationally explicit
proof in [Sageev and Wise 2015]. Let A′ ≥ 1, B ′ ≥ 0 be constants such that an orbit
map (G, ‖−‖S)→ (X̃ (1), d) is an (A′, B ′)-quasi-isometric embedding, where d is
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the graph-metric. Then there exist constants A, B, depending only on A′, B ′ and
hence on ‖−‖S , such that Qx is (AK + B)-quasiconvex, where x is a 0-cube in
Z̃ ⊂ X̃ . By the proof of of [op. cit., Proposition 3.3], the convex hull Z̃ of Qx lies
in the ρ-neighborhood of Qx , where

ρ = AK + B+
√

dim X + δ′
(

csc
(1

2
sin−1 1

√
dim X

)
+ 1
)

and δ′ = δ′(δ, A′, B ′). Corollary B provides G ′ ≤ G with g 6∈ G ′, and the bound
[G : G ′] ≤ |Z (0)|(|g| + 1). But |g| + 1 ≤ A′‖g‖S + B ′+ 1, while |Z (0)| ≤ grX̃ (ρ).
Thus [G : G ′] ≤ grX̃ (ρ)A

′
‖g‖S + grX̃ (ρ)B

′
+ grX̃ (ρ), so there exists P1 such that

SepQK
G,S(Q, n)≤ P1 grX̃ (P1K )n

for all K , Q ∈QK , n ∈ N, where P1 depends only on X .
The virtually special case: Now suppose that J ≥ 1. We have a compact special

cube complex X , and [G : G ′] ≤ J !, where G ′ ∼= π1 X and G ′ GG. Let Q ≤ G be
a K-quasiconvex subgroup. By Lemma 2.1, there exists C = C(G,S) such that
Q ∩G ′ is C J !(K + 1)-quasiconvex in G, and thus is P2C J !(K + 1)-quasiconvex
in G ′, where P2 depends only on G and S.

Let g ∈ G− Q. Since G ′ GG, the product QG ′ is a subgroup of G of index at
most J ! that contains Q. Hence, if g 6∈ QG ′, then we are done. We thus assume
g ∈ QG ′. Hence we can choose a left transversal {q1, . . . , qs} for Q ∩ G ′ in Q,
with s ≤ J ! and q1 = 1. Write g = qi g′ for some i ≤ s, with g′ ∈ G ′. Suppose that
we have chosen each qi to minimize ‖qi‖S among all elements of qi (Q ∩G ′), so
that, by Lemma 2.3, ‖qi‖ ≤ J ! for all i . Hence ‖g′‖S ≤ (‖g‖S + J !).

By the first part of the proof, there exists a constant P1, depending only on
G,G ′,S, and a subgroup G ′′ ≤ G ′ such that Q ∩G ′ ≤ G ′′ and g′ 6∈ G ′′, and

[G ′ : G ′′] ≤ P1 grG ′(P1 P2C J !(K + 1))‖g′‖S ≤ P1 grG(P1 P2C J !(K + 1))‖g′‖S .

Let G ′′′=
⋂s

i=1 qi G ′′q−1
i , so that g′ 6∈G ′′′ and Q∩G ′≤G ′′′ (since G ′ is normal),

and
[G ′ : G ′′′] ≤

(
P1 grG(P1 P2C J !(K + 1))‖g′‖S

)s
.

Finally, let H =QG ′′′. This subgroup clearly contains Q. Suppose that g=qi g′∈H.
Then g′ ∈ QG ′′′, i.e., g′ = ag′′′ for some a ∈ Q and g′′′ ∈ G ′′′. Since g′ ∈ G ′ and
G ′′′ ≤ G ′, we have a ∈ Q ∩G ′, whence a ∈ G ′′′, by construction. This implies that
g′ ∈ G ′′′ ≤ G ′′, a contradiction. Hence H is a subgroup of G separating g from Q.
Finally,

[G : H ] ≤ [G : G ′′′] ≤ J !
[
P1 grG(P1 P2C J !(K + 1))(‖g‖S + J !)

]J !
,

and the proof is complete. �
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Lemma 2.1. Let the group G be generated by a finite set S and let (G, ‖−‖S) be
δ-hyperbolic. Let Q ≤G be K-quasiconvex, and let G ′≤G be an index-I subgroup.
Then Q∩G ′ is C I (K +1)-quasiconvex in G for some C depending only on δ and S.

Proof. Since Q is K-quasiconvex in G, it is generated by a set T of q ∈ Q with
‖q‖S ≤ 2K + 1 by [Bridson and Haefliger 1999, Lemma III.0.3.5]. A standard
argument shows (Q, ‖ − ‖T ) ↪→ (G, ‖ − ‖S) is a (2K + 1, 0)-quasi-isometric
embedding. Lemma 2.3 shows that Q ∩G ′ is I -quasiconvex in (Q, ‖−‖T ), since
[Q : Q∩G ′]≤ I . Hence Q∩G ′ has a generating set making it ((2I+1)(2K+1), 0)-
quasi-isometrically embedded in (G, ‖−‖S). Apply Lemma 2.2 to conclude. �

The next lemma is standard, but we include it to highlight the constants involved:

Lemma 2.2. Let G be a group generated by a finite set S and suppose that
(G, ‖− ‖S) is δ-hyperbolic. Then there exists a (sub)linear function f : N→ N,
depending on S and δ, such that σ ⊆ Nf (λ)(γ ) whenever γ : [0, L] → G is a
(λ, 0)-quasigeodesic and σ is a geodesic joining γ (0) to γ (L).

Proof. See, e.g., the proof of [Bridson and Haefliger 1999, Theorem III.H.1.7]. �

Lemma 2.3. Let Q be a group generated by a finite set S and let Q′ ≤ Q be a
subgroup with [Q : Q′] = s <∞. Then there exists a left transversal {q1, . . . , qs}

for Q′ such that ‖qi‖S ≤ s for 1≤ i ≤ s. Hence Q′ is s-quasiconvex in Q.

Proof. Suppose that qk = sik · · · si1 is a geodesic word in S ∪S−1 and that qk is a
shortest representative of qk Q′. Let q j = si j · · · si1 be the word in Q consisting of the
last j letters of qk for all 1< j < k, and let q1=1. We claim that each q j is a shortest
representative for q j Q′. Otherwise, there would exist p with ‖p‖S < j such that
q j Q′= pQ′. But then sk · · · s j+1 pQ′=qk Q′, and thus qk was not a shortest represen-
tative. It also follows immediately that q j Q′ 6=q j ′Q′ for j 6= j ′. Thus, q1, q2, . . . , qk

represent distinct left cosets of Q′ provided k ≤ s, and the claim follows. �

Remark 2.4 (embeddings in finite covers). Given a compact special cube complex
X and a compact local isometry Z→ X , Theorem A gives an upper bound on the
minimal degree of a finite cover in which Z embeds; indeed, producing such an
embedding entails separating π1 Z from finitely many elements in π1 X . However, it
is observed in [Bou-Rabee et al. 2015, Lemma 2.8] that the Haglund–Wise canonical
completion construction [2008] produces a cover X̂→ X of degree |Z (0)| in which
Z embeds.

3. Proof of Theorem A

In this section, we give a proof of the main technical result.

Definition 3.1. Let S0 be a Salvetti complex and let S̃0 be its universal cover. The
hyperplanes H, H ′ of S̃0 are collateral if they have a common dual standard line



QUANTIFYING SEPARABILITY IN VIRTUALLY SPECIAL GROUPS 113

(equivalently, the same frame). Clearly collateralism is an equivalence relation, and
collateral hyperplanes are isomorphic and have the same stabilizer.

Being collateral implies that the combinatorial hyperplanes bounding the carrier
of H are parallel to those bounding the carrier of H ′. However, the converse is
not true when 0 contains multiple vertices whose links coincide. In the proof
of Theorem A, we will always work with hyperplanes, rather than combinatorial
hyperplanes, unless we explicitly state otherwise.

Proof of Theorem A. Let x̃ ∈ S̃0 be a lift of the base 0-cube x in S0, and let Z̃ ⊆ S̃0
be the lift of the universal cover of Z containing x̃ . Since Z→ S0 is a local isometry,
Z̃ is convex. Let Ẑ ⊂ Z̃ be the convex hull of a compact connected fundamental
domain for the action of π1 Z ≤ A0 on Z̃ . Denote by K the convex hull of Ẑ ∪{gx̃}
and let S be the set of hyperplanes of S̃0 intersecting K. We will form a quotient
of K, restricting to Ẑ→ Z on Ẑ , whose image admits a local isometry to S0.

The subcomplex bẐc. Let L be the collection of standard segments ` in K that map
to standard circles in S0 with the property that `∩ Ẑ has noncontractible image
in Z . Let bẐc be the convex hull of Ẑ ∪

⋃
`∈L `, so that Ẑ ⊆ bẐc ⊆ K.

Partitioning S. We now partition S according to the various types of frames in K.
First, let Z be the set of hyperplanes intersecting Ẑ . Second, let N be the set of
N ∈S−Z such that the frame (N∩K )×(L∩K ) of N in K has the property that for
some choice of x0 ∈ N (0), the segment ({x0}× L)∩ Ẑ maps to a nontrivial cycle of
1-cubes in Z . Let nN ≥ 1 be the length of that cycle. By convexity of Ẑ , the number
nN is independent of the choice of the segment L within its parallelism class. Note
that N is the set of hyperplanes that cross bẐc, but do not cross Ẑ . Hence each
N ∈N is collateral to some W ∈ Z. Third, fix a collection {H1, . . . Hk} ⊂S−Z

such that:

(1) For 1≤ i ≤ k− 1, the hyperplane Hi separates Hi+1 from bẐc.

(2) For 1≤ i < j ≤ k, if a hyperplane H separates Hi from Hj , then H is collateral
to H` for some ` ∈ [i, j]. Similarly, if H separates H1 from bẐc, then H is
collateral to H1, and if H separates Hk from gx̃ , then H is collateral to Hk .

(3) For each i , the frame (Hi ∩ K )× L i of Hi in K has the property that for every
h ∈ H (0)

i , the image in Z of the segment ({h}×L i )∩ Ẑ is empty or contractible.
(Here, L i is a standard segment of a standard line dual to Hi .)

Let H be the set of all hyperplanes of S−Z that are collateral to Hi for some i .
Condition (3) above ensures that H∩N=∅, while H=∅ only if K =bẐc. Finally,
let B=S− (Z∪N∪H). Note that each B ∈B crosses some Hi . Figure 1 shows
a possible K and various families of hyperplanes crossing it.
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N1

N2

B1

B2

H1

H2

H3

Figure 1. Hyperplanes crossing K (the dark shaded area on the
left is Ẑ ).

Mapping bẐc to Z. We now define a quotient map q : bẐc → Z extending the
restriction Ẑ → Z of Z̃ → Z . Note that if N = ∅, then bẐc = Ẑ , and q is just
the map Ẑ→ Z . Hence suppose N 6=∅ and let N1, . . . ,Ns be the collateralism
classes of hyperplanes in N, and for 1≤ i ≤ s, let N′i be the collateralism class of
Ni in S, i.e., Ni together with a nonempty set of collateral hyperplanes in Z. For
each i , let L i be a maximal standard line segment of bẐc, each of whose 1-cubes
is dual to a hyperplane in N′i and which crosses each element of N′i . For each i ,
let Ni ∈Ni be a hyperplane separating Ẑ from gx̃ . Then Ni ∩ N j 6=∅ for i 6= j ,
since neither separates the other from Ẑ . We can choose the L i so that there is an
isometric embedding

∏k
i=1 L i →bẐc, since whether or not two hyperplanes of S̃0

cross depends only on their collateralism classes.
For each nonempty I ⊆{1, . . . , k}, a hyperplane W ∈Z crosses some U ∈

⋃
i∈I N

′

i
if and only if W crosses each hyperplane collateral to U. Hence, by Lemma 7.11
of [Hagen 2014], there is a maximal convex subcomplex Y (I ) ⊂ Ẑ , defined up
to parallelism, such that a hyperplane W crosses each U ∈

⋃
i∈I N

′

i if and only
if W ∩ Y (I ) 6= ∅. Let A(I ) be the set of hyperplanes crossing Y (I ). By the
definition of Y (I ) and the lemma just cited, there is a combinatorial isometric
embedding Y (I )×

∏
i∈I L i →bẐc, whose image we denote by F(I ) and refer to

as a generalized frame. Moreover, for any 0-cube z ∈ bẐc that is not separated from
a hyperplane in

⋃
i∈I N

′

i ∪A(I ) by a hyperplane not in that set, we can choose F(I )
to contain z; this follows from the proof of the same lemma of Hagen. Figures 2
and 3 show possible collateralism classes N′i and generalized hyperplane frames.

To build q, we will express bẐc as the union of Ẑ and a collection of generalized
frames, define q on each generalized frame, and check that the definition is compat-
ible where multiple generalized frames intersect. Let z ∈ bẐc be a 0-cube. Either
z ∈ Ẑ , or there is a nonempty set I ⊂ {1, . . . , k} such that the set of hyperplanes
separating z from Ẑ is contained in

⋃
i∈I N

′

i , and each N′i contains a hyperplane
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N′1

N′2

Figure 2. Collateral families N′1 and N′2 (left) and Y ({1})× L1 (right).

Figure 3. Y ({2})× L2 (left) and Y ({1, 2})× (L1× L2) (right).

separating z from Ẑ . If H ∈A(I )∪
⋃

i∈I N
′

i is separated from z by a hyperplane U,
then U ∈A(I )∪

⋃
i∈I N

′

i , whence we can choose F(I ) to contain z. Hence bẐc is
the union of Ẑ and a finite collection of generalized frames F(I1), . . . , F(It).

For any p ∈ {1, . . . , t}, we have F(Ip) = Y (Ip) ×
∏

j∈Ip
L j and we define

Y (Ip)= im(Y (Ip)→ Z). Also, let L j = im(L j ∩ Ẑ→ Z) be the cycle of length nNj

to which L j maps, for each j ∈ Ip. Note that Z contains F(Ip)= Y (Ip)×
∏

j∈IP
L j

and so we define the quotient map qp : F(Ip)→ Z as the product of the above
combinatorial quotient maps, namely, qp(y, (rj ) j∈IP )= (y, (rj mod nNj ) j∈Ip) for
y ∈ Y (Ip) and rj ∈ L j .

To ensure that qp(F(Ip)∩ F(Ij ))= q j (F(Ip)∩ F(Ij )) for all i, j ≤ t , it suffices
to show that

F(Ip)∩F(Ij ) :=

(
Y (Ip)×

∏
k∈Ip

Lk

)
∩

(
Y (Ij )×

∏
`∈Ij

L
)̀
= [Y (Ip)∩Y (Ij )] ×

∏
k∈Ip∩Ij

Lk .

This in turn follows from [Caprace and Sageev 2011, Proposition 2.5]. Hence,
the quotient maps qp are compatible and thus define a combinatorial quotient map
q : bẐc→ Z extending the maps qp.



116 MARK F. HAGEN AND PRIYAM PATEL

Observe that if H = ∅, i.e., K = bẐc, then we take Y = Z . By hypothesis,
Z admits a local isometry to S0 and has the desired cardinality. Moreover, our
hypothesis on g ensures that g 6∈ π1Y, but the map q shows that any closed combi-
natorial path in S0 representing g lifts to a (nonclosed) path in Z , so the proof of
the theorem is complete. Thus we can and shall assume that H 6=∅.

Quotients of H-frames. To extend q to the rest of K, we now describe quotient
maps, compatible with the map Ẑ→ Z , on frames associated to hyperplanes in H.
An isolated H-frame is a frame (H ∩ K )× L , where H ∈ H and H crosses no
hyperplane of Ẑ (and hence crosses no hyperplane of bẐc). An interfered H-frame
is a frame (H ∩K )× L , where H ∈H and H crosses an element of Z. Equivalently,
(H ∩ K )× L is interfered if gN (H)(Ẑ) contains a 1-cube and is isolated otherwise.

Define quotient maps on isolated H-frames by the same means as was used
for arbitrary frames in [Bou-Rabee et al. 2015]. Let (H ∩ K )× L be an isolated
H-frame. Let H be the immersed hyperplane in S0 to which H is sent by S̃0→ S0,
and let H ∩ K be the image of H ∩ K. We form a quotient YH = H ∩ K × L of
every isolated H-frame (H ∩ K )× L .

Now we define the quotients of interfered H-frames. Let Â = gN (H)(Ẑ) and let
A be the image of Â under Ẑ→ Z . There is a local isometry A→ S0, to which we
apply canonical completion to produce a finite cover

...
S0→ S0 where A embeds.

By [Bou-Rabee et al. 2015, Lemma 2.8], deg(
...
S0→ S0)= |

...
S (0)0 | = |A

(0)
| ≤ |Z (0)|.

Let H ∩ K = im(H ∩ K →
...
S0), and map the interfered H-frame (H ∩ K )× L to

YH = H ∩ K × L .

Constructing Y. We now construct a compact cube complex Y ′ from Z and the
various quotients YH. A hyperplane W in K separates H1 from Ẑ only if W ∈N.
Each H-hyperplane frame has the form (Hi ∩ K ) × L i = (Hi ∩ K ) × [0, mi ],
parametrized so that (Hi ∩ K )×{0} is the closest combinatorial hyperplane in the
frame to Ẑ . We form Y ′(1) by gluing YH1 to Z along the image of gẐ((H1∩K )×{0}),
enabled by the fact that the quotients of interfered H-frames are compatible with
Ẑ→ Z . In a similar manner, form Y ′(i) from Y ′(i − 1) and YHi by identifying the
image of (Hi−1∩K )×{mi−1}∩ (Hi ∩K )×{0} in YHi−1 ⊂ Y ′(i−1) with its image
in YHi . Let Y ′ = Y ′(k).

Let
K ′ = bẐc ∪

⋃
Hi∈H

(Hi ∩ K )× L i .

Since Hi ∩ Hj = ∅ for i 6= j , there exists a map (K ′, x̃)→ (Y ′, x) and a map
(Y ′, x)→ (S0, x) such that the composition is precisely the restriction to K ′ of the
covering map (S̃0, x̃)→ (S0, x).

If Y ′→ S0 fails to be a local isometry, then there exists i and nontrivial open
cubes e ⊂ Hi−1 ∩ K × {mi−1} (or Z if i = 1) and c ⊂ Hi ∩ K × {0} such that S0
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contains an open cube e × c, where e, c are the images of e, c under S̃0 → S0,
respectively. Moreover, since gẐ(Hi ∩ K )⊆ gẐ(Hi−1 ∩ K ), we can assume that c
is disjoint from each immersed hyperplane of S0 crossing Z . Hence the closure
Cl(c) is a standard torus. Glue Cl(e)×Cl(c) to Y ′, if necessary, in the obvious
way. Note that this gluing adds no new 0-cubes to Y ′. Indeed, every 0-cube of
Cl(e)×Cl(c) is identified with an existing 0-cube of Y ′ lying in Hi−1 ∩ K×{mi−1}.
Adding Cl(e)×Cl(c) also preserves the existence of a local injection from our
cube complex to S0. Either this new complex admits a local isometry to S0, or
there is a missing cube of the form e× c where Cl(c) is a standard torus and e lies
in Y ′. We add cubes of this type until we have no missing corners. That the process
terminates in a local isometry with compact domain Y is a consequence of the
following facts: at each stage, every missing cube has the form e× c where e lies
in Y ′ and Cl(c) is a standard torus, so the number of 0-cubes remains unchanged;
each gluing preserves the existence of a local injection to S0; each gluing increases
the number of positive dimensional cubes containing some 0-cube; cubes that we
add are images of cubes in K, which is compact.

There exists a combinatorial path γ in K ′ joining x̃ to gx̃ . It follows from the
existence of γ that the convex hull of K ′ is precisely equal to K. Hence, there exists
a based cubical map (K , x̃)→ (Y, x)→ (S0, x), so that the composition is the
restriction of the covering map (S̃0, x̃)→ (S0, x). Therefore, any closed path in S0
representing g lifts to a nonclosed path at x in Y. It is easily verified that the number
of 0-cubes in Y is bounded by |Z (0)|(m1+ · · ·+mk), where each mi is the length
of L i , and hence |Y (0)| ≤ |Z (0)|(|g| + 1). Thus, Y is the desired cube complex. �

Remark 3.2. When dim S0 = 1, arguing as above shows that Y can be chosen so
that |Y (0)| ≤ |Z (0)| + |g|. Hence, if F is freely generated by S, with |S| = r , then
SepQK

F,S(Q, n)≤ (2r)K
+ n.
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