
Pacific
Journal of
Mathematics

Volume 284 No. 2 October 2016



PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Igor Pak
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pak.pjm@gmail.com

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2016 is US $440/year for the electronic version, and $600/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:pak.pjm@gmail.com
mailto:yang@math.princeton.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS
Vol. 284, No. 2, 2016

dx.doi.org/10.2140/pjm.2016.284.257

SPHERICAL CR DEHN SURGERIES

MIGUEL ACOSTA

Consider a three-dimensional cusped spherical CR manifold M and sup-
pose that the holonomy representation of π1(M) can be deformed in such a
way that the peripheral holonomy is generated by a nonparabolic element.
We prove that, in this case, there is a spherical CR structure on some Dehn
surgeries of M. The result is very similar to R. Schwartz’s spherical CR
Dehn surgery theorem, but has weaker hypotheses and does not give the
uniformizability of the structure. We apply our theorem in the case of the
Deraux–Falbel structure on the figure eight knot complement and obtain
spherical CR structures on all Dehn surgeries of slope −3+ r , for r ∈ Q+

small enough.

1. Introduction

The celebrated theorem of hyperbolic Dehn surgeries of Thurston [2002] says that all
but a finite number of Dehn surgeries of a one-cusped hyperbolic manifold M admit
complete hyperbolic structures with developing maps and holonomy representations
close to those of M. The same question arises for other geometric structures. We
focus here on spherical CR structures, i.e., structures modeled on the boundary at
infinity of the complex hyperbolic plane with group of automorphisms PU(2, 1).
Schwartz [2007] shows a spherical CR Dehn surgery theorem that gives, under
some convergence hypotheses, uniformizable spherical CR structures on some Dehn
surgeries on a cusped spherical CR manifold. In this paper, we prove a similar
theorem using techniques coming from (G, X)-structures and the geometry of
∂∞H

2
C instead of the alternative approach of discreteness of group representations

and actions on H
2
C. Theorem 3.23 has weaker hypotheses than Schwartz’s theorem,

but we obtain geometric structures on the surgeries for which we do not know
whether they are uniformizable.

For the reader, the example to keep in mind, treated in Section 4, is the Deraux–
Falbel structure on the figure-eight knot complement constructed in [Deraux and
Falbel 2015]. For this example, Deraux [2014] shows that there is a one-parameter
family of spherical CR uniformizations on the figure-eight knot complement with

MSC2010: 32V05, 57M25, 57M50.
Keywords: spherical CR, Dehn surgery, (G, X)-structures, figure-eight knot.

257

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2016.284-2
http://dx.doi.org/10.2140/pjm.2016.284.257


258 MIGUEL ACOSTA

parabolic peripheral holonomy containing this structure. Falbel, Guilloux, Koseleff,
Rouillier, and Thistlethwaite [Falbel et al. 2016] describe the SL3(C)-character
variety of the fundamental group of the figure-eight knot complement. They give
an explicit parametrization for the component in SU(2, 1) containing the holonomy
representation of the Deraux–Falbel structure. This component also gives rise to
spherical CR structures near the Deraux–Falbel structure. With this parametrization
and Theorem 3.23, we obtain the following theorem:

Theorem. Let M be the figure-eight knot complement. For the usual1 marking of
the peripheral torus of M :

(1) There exist infinitely many spherical CR structures on the Dehn surgery of M
of slope −3.

(2) There exists δ > 0 such that for all r ∈ Q ∩ ]0, δ[, there is a spherical CR
structure on the Dehn surgery of M of slope −3+ r .

In Section 2, we recall some properties about H
2
C, ∂∞H

2
C, and PU(2, 1) and set

some notation. We look in detail at the dynamics of one-parameter subgroups of
PU(2, 1) acting on ∂∞H

2
C. Understanding these dynamics will be crucial in the

proof of the surgery theorem. Section 3 deals with deformation of (G, X) structures
and fixes some notation and a marking of a peripheral torus in order to state the
main theorem of this paper, Theorem 3.23. In Section 4, we apply Theorem 3.23 in
the case of the Deraux–Falbel structure, by checking the hypotheses and looking
at the deformation space as given in [Falbel et al. 2016]. Finally, in Section 5, we
give a complete proof of the surgery theorem.

2. Generalities on H
2
C and its isometries

In this section we recall some facts about the hyperbolic complex plane H
2
C and

its boundary at infinity ∂∞H
2
C and set notation for them. We study the group

of holomorphic isometries of H
2
C, identified with PU(2, 1), by describing its one-

parameter subgroups. Almost all stated results can be found in the thesis of Genzmer
[2010] and in the book of Goldman [1999].

The space H
2
C and its boundary at infinity. We begin by giving a construction of

the hyperbolic complex plane. Let V be a complex vector space of dimension 3
endowed with a Hermitian product 〈 · , · 〉. Denote by 8 the associated Hermitian
form. We suppose that 8 has signature (2, 1). By setting

V− = {v ∈ V −{0} |8(v) < 0},
V0 = {v ∈ V −{0} |8(v)= 0},
V+ = {v ∈ V −{0} |8(v) > 0},

1For us, the usual marking is the one given in [Thurston 2002].
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the complex hyperbolic plane is defined as PV−, endowed with the Hermitian
metric induced by 8, and its boundary at infinity ∂∞H

2
C is defined as PV0.

Notation 2.1. We will denote with usual parentheses “(” and “)” the objects before
projectivization and with square brackets “[” and “]” the class of an object in the
projectivized space.

From now on, we will use two different models of the complex hyperbolic plane,
going from one to another by a conjugation. In both cases, the vector space is
V = C3. For the details in the construction, see [Goldman 1999].

Notation 2.2. Let

J1 =

1 0 0
0 1 0
0 0 −1

 and J2 =

0 0 1
0 1 0
1 0 0

.
They are the matrices of the Hermitian products 〈 · , · 〉1 and 〈 · , · 〉2 and they are

conjugate by Cayley’s matrix

C =
1
√

2

1 0 1
0
√

2 0
1 0 −1

.
Definition 2.3. By identifying V with C3 and 〈 · , · 〉 with 〈 · , · 〉1, we obtain the
ball model. We then have

H
2
C =

{[
Z1
Z2
1

]
∈ CP2

∣∣∣∣ |Z1|
2
+ |Z2|

2 < 1

}
and

∂∞H
2
C =

{[
Z1
Z2
1

]
∈ CP2

∣∣∣∣ |Z1|
2
+ |Z2|

2
= 1

}
.

With this model, we see that H
2
C is homeomorphic to the ball B4 and ∂∞H

2
C is

homeomorphic to the sphere S3. The other model that we will consider is the Siegel
model, more convenient for drawing pictures.

Definition 2.4. By identifying V with C3 and 〈 · , · 〉 with 〈 · , · 〉2, we obtain the
Siegel model, with

∂∞H
2
C =

{[
−

1
2

(
|z|2+ i t

)
z
1

] ∣∣∣∣ (z, t) ∈ C×R

}
∪

{[
1
0
0

]}
.
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We can then identify ∂∞H
2
C with (C×R)∪ {∞}. Removing the point at infinity,

we obtain the Heisenberg group, defined as C×R with multiplication

(w, s) ∗ (z, t)= (w+ z, s+ t + 2 Im(wz)).

We are also going to use complex geodesics, which are intersections of complex
lines of PV with H

2
C, and their boundaries at infinity, called C-circles.

Holomorphic isometries of H
2
C and invariant flows. We defined above the com-

plex hyperbolic space and have seen two of its models. The group of holomorphic
isometries of this space is PU(2, 1), as described below.

Notation 2.5. Let U(2, 1) be the group of matrices of GL3(C) such that A∗ J A= J
for J = J1 or J2 (according to the model in which we work). Let SU(2, 1) be the
subgroup of matrices of determinant 1 and PU(2, 1) its projectivization.

We state in detail a classification of the elements of PU(2, 1). We use the notations
and state the results of [Genzmer 2010, Chapter 1]. Isometries are classified by
their fixed points in H

2
C ∪ ∂∞H

2
C.

An isometry g 6= Id of H
2
C is called elliptic if it has at least one fixed point

in H
2
C, parabolic if it is not elliptic and has exactly one fixed point in ∂∞H

2
C, and

loxodromic if it is not elliptic and has exactly two fixed points in ∂∞H
2
C.

We can state this classification in terms of eigenvalues. The eigenvalues of an
element of PU(2, 1) are only defined up to multiplication by a cube root of 1 that
we denote by ω; we give a condition on the eigenvalues of a lift in SU(2, 1).

Proposition 2.6. Let U∈ SU(2, 1)−{Id}. Then U is in one of the three following
cases:

(1) U has an eigenvalue λ of modulus different from 1. Then [U ] is loxodromic.

(2) U has an eigenvector v ∈ V−. Then [U ] is elliptic and its eigenvalues have
modulus equal to 1 but are not all equal.

(3) All eigenvalues of U have modulus 1 and U has an eigenvector v ∈ V0. Then
[U ] is parabolic.

To refine this classification, we will consider different cases when there are
double eigenvalues. We give the following definition:

Definition 2.7. Let U ∈ SU(2, 1) − {Id}. We say that U is regular if its three
eigenvalues are different and unipotent if its three eigenvalues are equal (and so
equal to a cube root of 1).

The definition extends to PU(2, 1); we will speak of regular elements of PU(2, 1).
In that case the eigenvalues are well-defined up to multiplication by ω. Thanks to
the following remark, we know that regular elements are easier to manipulate.
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Remark 2.8. Let [U ] ∈ PU(2, 1) be a regular element. Then [U ] is determined by
its three eigenvalues α, β, γ and its three fixed points [u], [v], [w] in CP2.

It is possible to know if an element is regular only by knowing its trace, thanks
to the following proposition.

Proposition 2.9 [Goldman 1999]. For z∈C, let f (z)=|z|4−8 Re(z3)+18|z|2−27.
Let U ∈ SU(2, 1). Then U is regular if and only if f (tr(U )) 6= 0. Furthermore, if
f (tr(U ))<0 then [U ] is regular elliptic, and if f (tr(U ))>0 then [U ] is loxodromic.

Remark 2.10. It is suitable to make two remarks about the proposition:

(1) For ω ∈C satisfying ω3
= 1, we have f (z)= f (ωz). Therefore, we can define

the function f ◦ tr on PU(2, 1).

(2) For a parabolic element [U ], the equality f (tr(U )) = 0 holds, but there are
nonregular elliptic elements for which f (tr(U ))= 0.

In order to study spherical CR structures and their surgeries, we will use the
flows of vector fields associated to some elements of PU(2, 1). The geometric
objects that we are going to consider are invariant vector fields induced by elements
of PU(2, 1). We begin by looking at an infinitesimal level: an element of the Lie
algebra su(2, 1) defines a vector field on ∂∞H

2
C invariant under its exponential map.

Notation 2.11. Let X ∈ su(2, 1). It defines a vector field on ∂∞H
2
C invariant by

exp(X) given at a point x by

d
dt

∣∣∣
t=0

exp(t X) · x .

Let φX
t be the flow of this vector field, so φX

t (x) = exp(t X) · x . If there is no
ambiguity for X , we will only write φt .

Remark 2.12. If [U ] ∈ PU(2, 1) is close enough to a unipotent element, it defines a
vector field on ∂∞H

2
C. Indeed, possibly after changing the lift, we can suppose that

the eigenvalues of U are near 1, and consider the vector field associated to Log(U ).
Then, φLog(U )

1 has the same action as [U ].

Description of isometries and invariant flows. We are going to describe briefly
some elements of PU(2, 1), and classify each by its type and the dynamics of its
action on CP2.

We are going to study the dynamics of some flows of the form φLog(U )
t , where

U is close to a unipotent element. We describe here flows associated to regular
elliptic, loxodromic and unipotent elements.
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Regular elliptic flows. Consider a regular elliptic element in SU(2, 1), close to Id,
in the ball model. Perhaps after a conjugation, we can suppose that it is equal to

Eα,β,γ =

eiα 0 0
0 eiβ 0
0 0 eiγ

.
The flow of the associated vector field acts then on ∂∞H

2
C by

φLog(Eα,β,γ )
t

[
Z1
Z2
1

]
=

[
ei t (α−γ )Z1

ei t (β−γ )Z2
1

]
=

[
ei t (2α+β)Z1

ei t (2β+α)Z2
1

]
.

Remark 2.13. The flow stabilizes the two C-circles

C1 = [e1]
⊥
∩ ∂∞H

2
C =

{[
0

eiθ

1

] ∣∣∣∣ θ ∈ R

}
and

C2 = [e2]
⊥
∩ ∂∞H

2
C =

{[
eiθ

0
1

] ∣∣∣∣ θ ∈ R

}
,

on which it acts as rotations by angles 2β +α and 2α+β respectively.

Remark 2.14. The centralizer of Eα,β,γ is

C(Eα,β,γ )= {Eθ1,θ2,−(θ1+θ2) | (θ1, θ2) ∈ R2
}.

The orbits of this subgroup in ∂∞H
2
C are C1, C2, and the subsets Tr for r ∈ ]0, 1[,

defined by

Tr =

{[
Z1
Z2
1

]
∈ ∂∞H

2
C

∣∣∣∣ |Z2| = r, |Z1| =
√

1− r2

}
.

The orbits Tr are embedded tori in ∂∞H
2
C with core curves C1 and C2. They are

all invariant under the action of φLog(Eα,β,γ )
t . We can see an example in Figure 1.

Have a look now at the orbits of the flow φLog(Eα,β,γ )
t . Notice that the orbit of

a point is included in a unique torus Tr , and that every orbit included in Tr is the
image of a fixed orbit by an element Eθ1,θ2,−(θ1+θ2). Thus, the torus Tr is foliated
by these orbits. We fix r ∈ ]0, 1[, and consider two cases:

Case 1: α/β /∈Q. In this case, the angles of rotation in Tr for φt are (2α+β)t and
(2β +α)t . Since their quotient is irrational, an orbit is an injective immersion of a
line and it is dense in Tr .

Case 2: α/β ∈Q. In this case, the angles of rotation in Tr for φt are (2α+β)t and
(2β +α)t . Their quotient is rational; denote it by p/q in reduced form. The orbits
are periodic and of slope p/q in Tr : they are torus knots of type (p, q), knotted
around C1 and C2. We can see an example in Figure 2.
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Figure 1. Invariant subsets for an elliptic flow in the Siegel model:
invariant C-circles (left), and the invariant torus T4/5 (right).

Figure 2. Orbits of elliptic flows in the Siegel model: an orbit for
(2α+β)/(2β+α)= 7

11 , a torus knot of type (7, 11) (left), and an
orbit for (2α+β)/(2β +α)= 1

3 , an unknot (right).

Remark 2.15. If p are q are different from ±1, the orbit of a point of Tr is a torus
knot of type (p, q) and is knotted in ∂∞H

2
C. If p or q equals ±1, then the orbit

is unknotted; we can see an example in Figure 2. This remark will be crucial to
identify Dehn surgeries among the structures that we will construct by deformation.

Definition 2.16. Let n, p, and q be relatively prime integers with |p| ≥ |q|. We
say that an elliptic element U ∈ PU(2, 1) is of type (p/n, q/n) if U is conjugate to
Eα,β,γ with

α =
2p− q

3n
, β =

2q − p
3n

, and γ =−α−β =
−p− q

3n
.

In this case, (2α+ β)/(2β + α) = p/q and the orbits of the flow φLog(U )
t are its

two invariant C-circles and torus knots of type (p, q).

Remark 2.17. (1) Only some elliptic elements are of some type (p/n, q/n). We
will see later that elements of some type (p/n, q/n) are the ones for which our
construction happens to work.

(2) The trace of an elliptic element gives its three eigenvalues, but it is not enough
to determine the type of the element. Indeed, an element of the same trace as
an elliptic of type (p/n, q/n) will have the same eigenvalues but not necessarily
the same eigenvalue associated to its fixed point in H

2
C. Thus, elements of type

(p/n, q/n), (−p/n, (q − p)/n), and ((p− q)/n,−q/n) have the same trace but
are not conjugate.
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Loxodromic flows. Consider a loxodromic element in SU(2, 1) in the Siegel model.
Perhaps after a conjugation, we can suppose that it is

Tλ =

λ 0 0
0 λ/λ 0
0 0 1/λ

,
where λ∈C is of modulus greater than 1. We then have λ=reiα, with α∈R and r>1.
We suppose that α is small enough, so the series Log(Tλ) converges. In coordinates
(z, s) ∈ C×R, the action of the flow is given by φLog(Tλ)

t : (z, t) 7→ (µt z, |µt |
2s),

where µt = r t e−3iαt.

Remark 2.18. The flow φt fixes globally the points

[p0] =

[
0
0
1

]
and [p1] =

[
1
0
0

]
and stabilizes the C-circle joining them, which is called the axis of [Tλ]. Furthermore,
for all u ∈ ∂∞H

2
C not fixed by Tλ,

lim
t→+∞

φt(u)= [p1] and lim
t→−∞

φt(u)= [p0].

In the same way as in the elliptic case, we have flow-invariant objects, related to
the centralizer of Tλ.

Remark 2.19. The centralizer of Tλ is C(Tλ)= {Tµ | µ ∈ C∗}. The orbits of this
subgroup in ∂∞H

2
C are the two fixed points of Tλ, the two arcs of the C-circle

joining them, and the punctured paraboloids Pr for r ∈R, as in Figure 3, defined by

Pr =

{[
−

1
2 (|z|

2
+ is)

z
1

]
∈ ∂∞H

2
C

∣∣∣∣ s
|z|2
= r

}
.

Unipotent flows. Consider now a unipotent element of SU(2, 1) in the Siegel model.
Perhaps after a conjugation, we can assume that it is, for (z, s) ∈ C×R,

Pz,s =

1 −z −1
2(|z|

2
+ is)

0 1 z
0 0 1

.
The series Log(Pz,s) converges. In coordinates (z, s) ∈ C× R, the action of

the flow is given by φLog(Pz,s)
t : (z′, s ′) 7→ (z′ + t z, s ′ + ts − 2t Im(zz′)). In these

coordinates, the orbits of the flow are straight lines.

Remark 2.20. If z = 0, then [Pz,s] is called a vertical parabolic element and all
orbits of the flow are vertical lines. If not, then [Pz,s] is called a horizontal parabolic
element and the orbits of the flow are lines with different slopes.
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Figure 3. Orbits of loxodromic flows in the Siegel model: an
orbit of a loxodromic flow (left) and a cylinder invariant under a
loxodromic flow (right).

Some remarks on the convergence of regular elements. The projection

SU(2, 1)→ PU(2, 1)

is a covering of order 3; in order to study the convergence in PU(2, 1) we can focus
on the convergence in SU(2, 1).

Let (Un)n∈N be a sequence of regular elements of SU(2, 1) converging to U in
SU(2, 1)−C Id. If U is regular, then the convergence is given by the convergence
of eigenvectors and eigenvalues. We consider now the case where U is not regular.
The continuity of eigenvectors and eigenvalues gives the following lemma.

Lemma 2.21. Suppose that (Un)n∈N is a sequence of regular elements of SU(2, 1)
converging to U∈SU(2, 1)−C Id, and let (([un], αn), ([vn], βn), ([wn], γn)) be the
eigenvectors and eigenvalues of Un in some order. Then, perhaps after relabeling,
(([un], αn), ([vn], βn), ([wn], γn)) converges to (([u], α), ([v], β), ([w], γ )) in
(CP2

× C)3, where ([u], α), ([v], β), ([w], γ ) are (possibly equal) eigenvectors
and eigenvalues of U.

Consider the case where U is horizontal parabolic. Then, U has a unique
fixed point [p] ∈ CP2, which is in ∂∞H

2
C, and its eigenvalues can be chosen all

equal to 1. Using the above lemma, we deduce that (αn, βn, γn)→ (1, 1, 1) and
([un], [vn], [wn])→ ([p], [p], [p]). From a geometric point of view on H

2
C∪∂∞H

2
C

we make the two following remarks:

Remark 2.22. If the Un are loxodromic of axes ln then the ln leave every compact
subset of H

2
C ∪ ∂∞H

2
C−{[p]}.

Remark 2.23. If the Un are elliptic, they each have two invariant complex geodesics
l(1)n and l(2)n (the polar lines [vn]

⊥ and [wn]
⊥ if [un] is the fixed point of Un in H

2
C).

Then the l(i)n leave every compact subset of H
2
C ∪ ∂∞H

2
C−{[p]}.
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These two remarks will be crucial when understanding the geometry of deforma-
tions of spherical CR structures by considering a developing map.

3. Regular surgeries

The Ehresmann–Thurston principle. We are going to study spherical CR struc-
tures on a 3-manifold M. We begin by recalling the formalism of (G, X)-structures,
that will give us the language to use. In the definitions, X will be a smooth connected
manifold and G a subgroup of the diffeomorphisms of X acting transitively and
analytically on X . We will focus on the case where X = ∂∞H

2
C and G = PU(2, 1).

Definition 3.1. A (G, X)-structure on a manifold M is a pair (Dev, ρ), up to
isotopy, of a local diffeomorphism Dev : M̃ → X and a group homomorphism
ρ : π1(M)→ G such that for all x ∈ M̃ and all g ∈ π1(M) we have Dev(g · x)=
ρ(g) ·Dev(x) for the group actions of π1(M) on M̃ and of G on X .

We say that Dev is the developing map of the structure and ρ its holonomy.

Remark 3.2. We identify two structures if they are G-equivalent, i.e., if there is a
g ∈ G such that the developing maps Dev1 and Dev2 satisfy Dev2 = g ◦Dev1. In
this case, the holonomy representations are conjugate and satisfy ρ2 = gρ1g−1.

Remark 3.3. The definition we just gave is not the usual one. It is equivalent to
the usual definition of a (G, X)-structure as an atlas of charts of M taking values
in X and whose transition maps are given by elements of G. A couple (Dev, ρ)
immediately gives such an atlas, but the construction of (Dev, ρ) from an atlas
requires more work. See, for example, [Thurston 2002]. Nevertheless, we will use
both definitions: the first in order to deform a structure, and the second to construct
a new one.

We will also sometimes use manifolds with boundary, but the definition of
(G, X)-structure easily extends to this case. From now on, we consider a compact
three-dimensional manifold M with (possibly many) torus boundary components.
We are going to study spherical CR structures on M, where the model space X is
∂∞H

2
C and the group G is PU(2, 1).

Definition 3.4. A spherical CR structure is a (PU(2, 1), ∂∞H
2
C)-structure.

In order to deform the structure using the Ehresmann–Thurston principle that
we state below, the essential objects are the representations of π1(M) taking values
in PU(2, 1).

Notation 3.5. Let R(π1(M),G) be the set of representations of π1(M) taking
values in G, endowed with the topology of pointwise convergence.

We are going to work with deformations of some structures. In order to state the
results on a deformation, we will need to be “far enough from the boundary” or
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“close to the boundary”. We are going to consider the union of M with a thickening
of its boundary to be able to state the results precisely.

Notation 3.6. If s ∈ R+, denote by M[0,s[ the union of M with a thickening of its
boundary. Thus, M[0,s[ = (M ∪ (∂M × [0, s[))/∼, where we identify ∂M with
∂M ×{0}. We consider those manifolds as included into each other, in such a way
that if s1 ≤ s2, then M[0,s1[ ⊂ M[0,s2[.

Remark 3.7. The manifolds M[0,s[ are all homeomorphic to the interior of M. We
use these cuts in order to get a suitable convergence “far enough” from the boundary
of M for geometric structures.

We state the Ehresmann–Thurston principle, which says that we only need to
deform in R(π1(M),G) the holonomy of a (G, X)-structure to have a deformation
of the structure itself. A proof can be found in [Bergeron and Gelander 2004] or in
the survey [Goldman 2010].

Theorem 3.8 (Ehresmann–Thurston principle). Suppose that M[0,1[ is endowed
with a (G, X)-structure of holonomy ρ0. For all ε > 0, if ρ ∈ R(π1(M),G) is a
deformation close enough to ρ0, then there is a (G, X)-structure on M[0,1−ε[ with
holonomy ρ and close to the first structure on M[0,1−ε[ in the C1 topology.

Surgeries. As in the real hyperbolic case, we consider Dehn surgeries of M, which
are, from a topological point of view, a gluing of solid tori on the torus boundaries
of M. We attempt to extend a spherical CR structure on M to one of its surgeries. We
show a result very similar to the one showed by Schwartz [2007], but with some dif-
ferences. On the one hand, our hypotheses are weaker than Schwartz’s and we obtain
a geometric structure. On the other hand we do not know if the structure is obtained
as a quotient of an open set of ∂∞H

2
C by the action of a subgroup of PU(2, 1).

Thickenings and lifts. We begin by fixing notation for a torus boundary component,
one of its lifts, and the associated peripheral holonomy. We denote by M̃ the
universal cover of M and by π : M̃→ M its covering map. We state all results for
a single torus boundary component in order to avoid heavy notation, but the same
statements hold for several boundary components.

Notation 3.9. Let T be a fixed torus boundary component of M. For s ∈ [0, 1[, let
Ts = T ×{s} ⊂ M[0,1[, and, for an interval I ⊂ [0, 1[, let

TI =
⋃
s∈I

Ts = T × I ⊂ M[0,1[.

Let T̃[0,1[ denote some connected component of π−1(T[0,1[)⊂ M̃ [0,1[: it is a universal
cover of T[0,1[ embedded in M̃ [0,1[. Finally, for s ∈ [0, 1[, set T̃s = π

−1(Ts)∩ T̃[0,1[
and, for an interval I ⊂ [0, 1[, set T̃I =

⋃
s∈I T̃s .

We make some remarks on the choices made by using this notation:
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Remark 3.10. For all s ∈[0, 1[, we see that T̃s is homeomorphic to R2. Furthermore,
T̃I is homeomorphic to R2

× I .

Remark 3.11. The choice of T̃[0,1[ fixes an injection of the fundamental group of T
into the fundamental group of M by identifying π1(T ) with the stabilizer of T̃[0,1[
for the action of π1(M) on M̃ [0,1[. In the rest of the paper, we will use additive
notation for π1(T )'Z2, in order to use the standard notations and tools for a group
isomorphic to Z2. Nevertheless, the identification of π1(T ) with a subgroup of
π1(M) will lead to a slight abuse of notation: we will keep multiplicative notation
for π1(M), but when considering elements of π1(T ) we will use additive notation.

Notation 3.12. With the fixed injection of π1(T ) into π1(M), by restricting the
holonomy ρ of a (G, X)-structure we have a peripheral holonomy hρ : π1(T )→ G.

Notation 3.13. We denote by R1(π1(M),G) ⊂ R(π1(M),G) the set of repre-
sentations ρ such that the image of hρ is generated by a single element. When
ρ ∈R1(π1(M),PU(2, 1)) has [U ] ∈ PU(2, 1) as a preferred generator for its image,
we write φρt for φLog([U ])

t .

Horotubes. We use the definitions related to horotubes given in [Schwartz 2007]:

Definition 3.14. Let [P] ∈ PU(2, 1) be a parabolic element with fixed point
p ∈ ∂∞H

2
C. A [P]-horotube is an open set H of ∂∞H

2
C − {p}, invariant under

[P] and such that the complement of H/〈[P]〉 in (∂∞H
2
C−{p})/〈[P]〉 is compact.

In order to work with more regular objects, we often ask horotubes to be nice:

Definition 3.15. A [P]-horotube H is nice if ∂H is a smooth cylinder invariant by
the flow φLog([P])

t .

Figure 4. The boundary of a nice horotube in the Siegel model.
The horotube is outside the red surface.
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Remark 3.16. If H is a nice [P]-horotube, then ∂H is the orbit for φLog([P])
t of an

embedded circle of ∂∞H
2
C−{p}. We can see an example in Figure 4.

Shrinking the horotube if necessary, we may assume it is nice:

Lemma 3.17 [Schwartz 2007, Chapter 7]. Let H be a [P]-horotube. Then, there
is a nice [P]-horotube H ′ such that H ′ ⊂ H and (H − H ′)/〈[P]〉 is of compact
closure in (∂∞H

2
C−{p})/〈[P]〉.

From now on, we suppose that M[0,1[ has a spherical CR structure with developing
map Dev0 and holonomy ρ0. We also make two more hypotheses:

(1) The image of the peripheral holonomy hρ0 is unipotent of rank 1 and generated
by an element [U0] ∈ PU(2, 1).

(2) There is s ∈ [0, 1[ such that Dev0(T̃[s,1[) is a [U0]-horotube.

Marking of π1(T ). We are going to fix a marking of π1(T ) naturally deduced from
the structure given by Dev0 and ρ0. This marking will be useful to identify the
Dehn surgeries obtained when deforming the structure. It is essentially the same
marking as the one given in [Schwartz 2007, Chapter 8]; its definition uses the two
hypotheses given above.

Notation 3.18. Fix s ′ ∈ [s, 1[ and x0 ∈ Dev0(Ts′). Let l be the loop given by the
projection of t 7→ φρ0

t (x0). As hρ0(l)= [U0] generates the image of hρ0 and since a
unipotent subgroup of PU(2, 1) has no torsion, l is a primitive element of π1(T ).

Notation 3.19. Since hρ0 is unipotent of rank 1 and a unipotent subgroup of PU(2, 1)
has no torsion, its kernel is generated by a primitive element m. We orient m in
such a way that (l,m) is a direct basis of π1(T ) (for the orientation given by the
inside normal in the horotube).

Remark 3.20. The definition of l and m does not depend on the choice of s ′ nor
of x0. Nevertheless, we make a choice for orientations. The one for m is explicit,
but the orientation of l is given by the choice of [U0] or [U0]

−1 as a generator for
the image of hρ0 .

Remark 3.21. Schwartz [2007] gives a “canonical” choice for the orientations of l
and m (denoted β and α). It is almost the same choice as the one made above, but
he has a preferred choice for [U0]. Note that the marking (l,m) given here might
not be the usual one. If we have another marking of π1(T ), for example when M
is a knot complement, changing markings can be done easily when ρ0 is known
explicitly.

Definition 3.22. For two relatively prime integers p, q, we denote by M (p,q) the
manifold obtained by gluing a solid torus D2

× S1 on the boundary T of M such
that the loop pl + qm of T becomes trivial in D2

× S1. We refer to it as the Dehn
surgery of M of type (p, q) or of slope p/q .
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Figure 5. The curve m (in green) and the curve l (in yellow) in
the image of Dev0(T̃s′).

In the real hyperbolic case, deforming the complete hyperbolic structure on M
gives structures on all but a finite number of Dehn surgeries M (p,q) of M, as is
shown in [Thurston 2002]. The main idea to prove it is to deform the structure “far”
from the cusp, cut by T, look at the developing map near the boundary T, and then
notice that a solid torus can be glued to this boundary. What follows, stated in the
spherical CR case, is inspired by this technique. The deformation “far” from the
cusp gives rise to a developing map near T, and the manifolds that can be glued are
solid tori only in some cases.

A surgery theorem. We are now able to state a spherical CR surgery theorem. It
says that in a neighborhood of the structure (Dev0, ρ0), under some discreteness
conditions, spherical CR structures on M come from structures on Dehn surgeries
of M, and in some cases another kind of surgery.

Theorem 3.23. Let M be a three-dimensional compact manifold with torus bound-
ary components. Let T be one boundary torus of M. Suppose that there is a
spherical CR structure (Dev0, ρ0) on M[0,1[ such that:

(1) The image of the peripheral holonomy hρ0 corresponding to T is unipotent of
rank 1 and generated by an element [U0] ∈ PU(2, 1).

(2) There is s ∈ [0, 1[ such that Dev0(T̃[s,1[) is a [U0]-horotube.

Then there is an open set � of R1(π1(M),PU(2, 1)) containing ρ0 such that, for
all ρ ∈� for which the image of hρ is generated by a single element [U ] ∈ PU(2, 1),
there is a spherical CR structure on M with holonomy ρ. Furthermore, for the
marking (l,m) of π1(T ) described above:

(1) If [U ] is loxodromic, then the structure extends to a spherical CR structure on
the Dehn surgery of M of type (0, 1).
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(2) If [U ] is elliptic of type (p/n,±1/n), then the structure extends to a spherical
CR structure on the Dehn surgery of M of type (n,±p).

(3) If [U ] is elliptic of type (p/n, q/n) with |p|, |q|> 1, then the structure extends
to a spherical CR structure on the gluing of M with a compact manifold with
torus boundary V (p, q, n). Furthermore V (p, q, n) is a torus knot comple-
ment in the lens space L(n, α), where α ≡ p−1q mod n.

Remark 3.24. The existence of the spherical CR structure on M is a consequence
of the Ehresmann–Thurston principle. To extend the structure we need a local
surgery result, similar to the one given in [Schwartz 2007], and which is given in
Section 5.

Remark 3.25. If [U ] is parabolic, the theorem still holds, but the spherical CR struc-
ture extends to a thickening of M that is homeomorphic to M itself. We also exclude
from the discussion the case where [U ] is elliptic with irrational angle, for which
there is no reasonable filling for the structure, and the case where [U ] is nonregular
elliptic, for which the techniques used to prove Theorem 3.23 do not apply.

4. Deformations of the Deraux–Falbel structure
on the figure-eight knot complement

We are going to apply Theorem 3.23 in the case of the spherical CR structure on
the figure-eight knot given in [Deraux and Falbel 2015]. We will use some results
of [Deraux 2014], where Deraux describes a Ford domain for the structure, and
also some results of [Falbel et al. 2016], where the authors describe the irreducible
components of the SL3(C) character variety of the figure eight knot complement.

Notation 4.1. In the rest of this section, we denote by M the figure-eight knot
complement.

The Deraux–Falbel structure. We begin by recalling quickly the results in [Deraux
and Falbel 2015]. In that paper, the fundamental group of M is given by

π1(M)= 〈g1, g2, g3 | g2 = [g3, g−1
1 ], g1g2 = g2g3〉.

The authors construct a uniformizable spherical CR structure on M with unipotent
peripheral holonomy. The holonomy representation ρ0 is given by

ρ0(g1)= [G1] =

1 1 −1
2 −

√
7

2 i
0 1 −1
0 0 1

 and ρ0(g3)= [G3] =

 1 0 0
−1 1 0
−

1
2 +

√
7

2 i 1 1

.
Remark 4.2. This representation is in the component R2 of the character variety
of [Falbel et al. 2016]. For the notation from Section 5.2 of that reference, we have
A = g3 and B = g1. With this notation, the usual longitude-meridian pair (l0,m0)
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of the knot complement satisfies

m0 = g3 and l0 = g−1
1 g3g1g−2

3 g1g3g−1
1 .

Furthermore, we check easily that ρ0(m0)
3
= ρ0(l0), so ρ0(3m0− l0)= Id.

Notation 4.3. From now on, in order to have the same notation as [Deraux 2014], we
consider the pair (l1,m1) obtained by conjugation by g2, so that m1= g2g3g−1

2 = g1.
Let l=m0 and m= 3m0−l0. In this way, m generates ker(ρ0) and ρ(l) generates

Im(ρ0): this is a marking as in the one on page 269.

Checking the hypotheses. Recall the hypotheses of Theorem 3.23:

(1) The peripheral holonomy hρ0 is unipotent with image generated by a single
element [U0] ∈ PU(2, 1).

(2) There exists s ∈ [0, 1[ such that Dev0(T̃[s,1[) is a [U0]-horotube.

The first hypothesis is satisfied by the Deraux–Falbel structure: the peripheral
holonomy is unipotent, its image is generated by [G1] = ρ0(l) and ρ0(m)= [Id].

In order to check the second hypothesis, we use the results of [Deraux 2014].
In that paper, Deraux finds with a different technique the Deraux–Falbel structure
[2015]. He considers a Ford domain F in H

2
C for 0 = ρ0(π1(M)) (Theorem 5.1)

and then studies its boundary at infinity in ∂∞H
2
C (Section 8). The manifold M

is then obtained as a quotient of a G1-invariant domain E = ∂∞F, that is, in
∂∞H

2
C ' (C×R)∪ {∞}, the exterior of a G1-invariant cylinder C embedded in

C×R (Proposition 8.1). The domain E is a [G1]-horotube; so there exists s ∈ [0, 1[
such that the image by the developing map of T̃[s,1[ is a [G1]-horotube contained
in E . Thus, the second hypothesis is satisfied.

So, the conclusion of Theorem 3.23 holds. By changing coordinates in order to
have the usual marking for the fundamental group of the boundary of M, we get:

Proposition 4.4. There is an open set � of R1(π1(M),PU(2, 1)) such that, for all
ρ ∈� such that the image of hρ is generated by an element [U ] ∈ PU(2, 1), there
exists a spherical CR structure on M of holonomy ρ. Furthermore, for the usual
marking (l0,m0) of π1(T ):

(1) If [U ] is loxodromic, then the structure extends to a spherical CR structure on
the Dehn surgery of type (−1, 3) of M.

(2) If [U ] is elliptic of type (p/n,±1/n), then the structure extends to a spherical
CR structure on the Dehn surgery of type (−n,±p+ 3n) of M.

(3) If [U ] is elliptic of type (p/n, q/n) with |p|, |q|> 1, then the structure extends
to a spherical CR structure on the gluing of M to a compact manifold with torus
boundary V(p,q,n) along their boundaries. Furthermore, V(p,q,n) is the
complement of a torus knot in the lens space L(n,α), where α ≡ p−1q mod n.
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Remark 4.5. If [U ] is parabolic, then the theorem still holds, but the spherical CR
structure extends to a thickening of M. These structures are given in [Deraux 2014].

Remark 4.6. We wonder if Schwartz’s horotube surgery theorem [2007, Theo-
rem 1.2] can be applied in this case. For 0 = ρ0(π1(M)), the construction of
Deraux and Falbel [2015] states that the regular set �0 is nonempty and that �0/0
is homeomorphic to M, but we do not have any more information about �0 and
the limit set 30 = ∂∞H

2
C−�0. In order to apply the horotube surgery theorem,

we would have to check several nontrivial hypotheses. In particular we do not
know how to prove that the set 30 is porous. One of the main motivations of this
paper was to state a result with more simple hypotheses, even if we obtain weaker
conclusions when both theorems can be applied.

Deformations of the structure. It remains to see that the open set �⊂R1(π1(M))
is not reduced to a point to get interesting conclusions. The representation ρ0 is
in the component R2 of the SL3(C)-character variety described in [Falbel et al.
2016]. In Section 5 of that paper, the representations in R2 taking values in SU(2, 1)
are parametrized up to conjugacy, at least in a neighborhood of ρ0, by a complex
parameter u = tr(ρ(m0)). We denote by G(u)= ρ(m0) the corresponding matrix.

Setting v = u, 1= 4u3
+ 4v3

− u2v2
− 16uv+ 16, and

1′ =
−16+ 8uv− 2v3

− 4
√
1

8u2− 6uv2+ v4 ,

the parametrization is explicitly given by

[G−1
3 (u)] = ρ(a)=

 1
2v 1 −(1− i)1′

1
8(1+ i)(−2u+ v2) 1

4(1+ i)v 1
1
16(8− 4uv+ v3

− 2
√
1) 1

8(−4u+ v2) 1
4(1− i)v


and

[G−1
1 (u)] = ρ(b)=

 1
2v i (1+ i)1′

−
1
8(1+ i)(−2u+ v2) 1

4(1− i)v i
−

1
16(8− 4uv+ v3

− 2
√
1) − i

8(−4u+ v2) 1
4(1+ i)v

.
Recall that for this choice of generators the usual meridian m0 is given by m0= a−1.
The Hermitian form preserved by this representation is given by the matrix2

H =

 1
8(1− 16)(

√
1+ |u|2− 4) 0 0
0 16−1 0
0 0 8(

√
1+ 4)

.
2We write here the opposite of the matrix H appearing in [Falbel et al. 2016] in order to have

signature (2, 1) and not (1, 2).
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Figure 6. Domain parametrizing a component of the deformation
variety near ρ0.

Furthermore, in the whole component the relation ρ(l0) = ρ(m0)
3 holds, so

R1(π1(M)) ∩ R2 = R(π1(M)) ∩ R2. By projecting to PU(2, 1), we can apply
Theorem 3.23 on an open set containing 3= tr(ρ0(m0)) with these parameters.

Figure 6, taken from [Falbel et al. 2016], shows an open set of C where we have
representations. By noting tr(ρ0(m0))= x+iy, the component containing ρ0 admits
as parameters the regions with boundary the curve 1(x, y)= 0 and containing the
points 3, 3ω, and 3ω2, where

1(x, y)=−x4
− y4
− 2x2 y2

− 24xy2
+ 8x3

− 16x2
− 16y2

+ 16.

Now let us plot the curve C of traces of nonregular elements of SU(2, 1). It
is given by the zeroes of the function f (z) = |z|4 − 8 Re(z3)+ 18|z|2 − 27 (see
Proposition 2.9). The curve separates regular elliptic and loxodromic elements. It
has a singularity at the point u= 3: thus a neighborhood of this point contains points
corresponding to representations where the peripheral holonomy is loxodromic and
points where it is regular elliptic.

Remark 4.7. The parabolic deformations of the Deraux–Falbel structure given in
[Deraux 2014] correspond to the points of C.

We can therefore apply the first point of Proposition 4.4 to the space of holonomy
representations given by the parameters above. We obtain the following proposition:

Proposition 4.8. There exist infinitely many spherical CR structures on the Dehn
surgery of M of type (−1, 3).

Remark 4.9. This surgery is the unit tangent bundle to the hyperbolic orbifold
(3, 3, 4). It is a Seifert manifold of type S2(3, 3, 4). See, for example, Chapter 5
of the book of Cooper, Hodgson, and Kerckhoff [Cooper et al. 2000] or the paper
[Deraux 2015]. Deraux [2014, Section 4; 2015, Theorem 4.2] also remarks that the
image of ρ0 is a faithful representation of the even words of the (3, 3, 4) triangle
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group, generated by involutions I1, I2, I3. This identification satisfies G1= I2 I3 I2 I1,
G2 = I1 I2, G3 = I2 I1 I2 I3, and the triangle group relations: (G2)

4
= (I1 I2)

4
= Id,

(G1G2)
3
= (I2 I3)

3
= Id, and (G2G1G2)

3
= (I1 I3)

3
= Id. Furtheremore, the image

of the usual meridian m0 is G3.
This group is the fundamental group of a Seifert manifold of type S2(3, 3, 4).

Since the relation l0 = m3
0 holds in the whole component R2, the images of rep-

resentations in R2 are representations of this index-2 subgroup of the (3, 3, 4)
triangle group. Furthermore, Parker, Wang, and Xie [Parker et al. 2016] show that a
PU(2, 1) representation of the (3, 3, 4) triangle group is discrete and faithful if and
only if the image of I1 I3 I2 I3 is nonelliptic. Note that G1 I1 I3 I2 I3 = (I2 I3)

3
= Id,

so the representation of the triangle group is discrete and faithful if and only if the
corresponding peripheral holonomy is nonelliptic. They also give a one-parameter
family of such representations, corresponding to the parameters u ∈ R. Thus, there
exists δ > 0 such that all the spherical CR structures on the Dehn surgery of M of
type (−1, 3) with parameter u in the interval ]3, 3+ δ[ have discrete and faithful
holonomy.

Since the parameter is the trace of an element, we know that cases (2) and (3) of
Proposition 4.4 happen infinitely many times, but we can not distinguish at first
sight, for a given trace, if it is a Dehn surgery or a gluing of a V (p, q, n) manifold.
Nevertheless, using a computation with the explicit parametrization of [Falbel et al.
2016] and the continuity of eigenvalues we prove:

Proposition 4.10. There is δ > 0 such that, if p, n ∈N are relatively prime integers
such that p/n < δ, then the Dehn surgery of M of type (−n,−p+ 3n) admits a
spherical CR structure.

Proof. Let p, n ∈ N be relatively prime integers. Let

α =
−2p− 1

3n
, β =

2+ p
3n

, γ =
p− 1
3n

, and u = eiα
+ eiβ

+ eiγ.

Figure 7. Curve of nonregular elements in a component of the
deformation variety near ρ0 (left) and detail of same (right).
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We only need to show that if p/n is small enough, the eigenvalue of ρ(m)=G−1
3 (u)

corresponding to a negative eigenvector is eiγ, and so G3(u) is of type (p/n,−1/n).
Since eigenvectors and eigenvalues are continuous functions of u in the connected

component of regular elliptics, in R2, as in Figure 7, the statement is true for all
(p, n) if and only if it is true for a particular choice of (p, n). For the arbitrary choice
(p, n)= (3, 23) an explicit computation shows that G3(u) is of type

( 3
23 ,−

1
23

)
. �

5. Proof of Theorem 3.23

In this section, we are going to prove Theorem 3.23. We use the notation of Section 3.
We have a manifold M with a torus boundary T, endowed with a spherical CR
structure (Dev0, ρ0) such that the image of the holonomy hρ0 is unipotent of rank 1
and generated by an element [U0]∈PU(2, 1). We suppose that there is s∈[0, 1[ such
that Dev0(T̃[s,1[) is a [U0]-horotube. Recall that we work with a single boundary
component T to avoid heavy notation, but the proof works for several boundary
components.

In order to prove the theorem, we begin by rewriting the hypotheses to make them
easier to handle. The existence of a spherical CR structure on M for a deformation
of ρ0 will be a consequence of the Ehresmann–Thurston principle. To extend it to
a surgery of M, we need only a local surgery result by looking near the boundary
of M[0,1[. This surgery result is very similar, in cases (1) and (2), to the one given
in [Schwartz 2007, Chapter 8].

Rewriting the hypotheses. First of all, we rewrite the second hypothesis. Fix a
diffeomorphism ψ : R2

×[0, 1[ → T̃[0,1[, such that:

(1) ψ(R2
×{s})= T̃s for all s ∈ [0, 1[.

(2) ψ induces a diffeomorphism between R× S1
×[0, 1[ and T̃[0,1[/ ker(hρ0).

To avoid too much notation, we identify R2
×[0, 1[with T̃[0,1[ and R×S1

×[0, 1[with
T̃[0,1[/ ker(hρ0). In this case, the developing map Dev0 induces a diffeomorphism
between T̃[0,1[/ ker(hρ0) and Dev0(T̃[0,1[) that we will still call Dev0. We replace
hypothesis (2) of the theorem by hypotheses (2′) and (3) described below:

Hypothesis (2′): There are 0< s1 < s2 < 1 such that:

(1) Dev0({0}× S1
×{s}) is a circle transverse to the flow for all s ∈ [s1, s2].

(2) Dev0(t, ζ, s)= φρ0
t (Dev0(0, ζ, s)) for all (t, ζ, s) ∈ R× S1

×[s1, s2].

Remark 5.1. Thanks to Lemma 3.17, it is clear that hypothesis (2′) follows from
hypothesis (2). Perhaps after considering an isotopy and slightly increasing s, we
can suppose that the horotube Dev0(T̃[s,1[) is nice. We only need then to consider
the restriction to a segment T̃[s1,s2].
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Figure 8. Two views of surfaces bounding a region of the form Dev0(T̃[s1,s2]).

Hypothesis (2′) gives, in particular, that Dev0(T̃s2) separates ∂∞H
2
C−{p} in two

connected components: a solid cylinder Cs2 and the exterior of this cylinder, which
is homeomorphic to S1

×R×]0,+∞[. Hypothesis (3) tells us that the structure
of M is on the correct side of the tube:

Hypothesis (3): Dev0(T̃s1) is contained in Cs2 .

Remark 5.2. Hypothesis (2) is equivalent to hypotheses (2′) and (3). The implica-
tion from (2) to (2′) and (3) is clear, and, if we suppose (2′) and (3), the structure
can be extended to the outside in such a way that Dev0(T̃[s2,1[) is the horotube with
boundary Dev0(T̃s2).

Deforming the structure. We now prove Theorem 3.23. To begin, assume that the
rewritten hypotheses on page 276 are satisfied. Let ρ be a deformation close to ρ0

in R1(π1(M),PU(2, 1)) such that hρ(m)= Id. The image of hρ is then generated
by [U ] = ρ(l). We suppose that [U ] is a regular element.

Let ε > 0. By the Ehresmann–Thurston principle, if ρ is close enough to ρ0,
there is a spherical CR structure on M[0,s2+ε[ with holonomy map ρ. We then
have a developing map Devρ : M̃ [0,s2+ε[→ ∂∞H

2
C close to Dev0 in the C1 topology.

So, we can suppose that Devρ is still a diffeomorphism between the compact set
[−ε, 1+ ε]× S1

×[s1, s2] and its image.

Remark 5.3. We then have an atlas of charts on T[s1,s2] taking values in ∂∞H
2
C by

choosing lifts of T[s1,s2] in the space [−ε, 1+ε]× S1
×[s1, s2] ⊂ T̃[s1,s2]. Transition

maps are given by powers of [U ] = ρ(l).

Fix s1 < s ′1 < s ′2 < s2.

Lemma 5.4 (straightening). If ρ is close enough to ρ0, perhaps after taking an
isotopy of Devρ , we have, for all (t, ζ, s) ∈ R× S1

×[s ′1, s ′2],

Devρ(t, ζ, s)= φρt (Devρ(0, ζ, s)).
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Proof. The flows φρt and φρ0
t are close in the C1 topology when ρ is close to ρ0. We

deduce that the deformation from ρ0 to ρ induces a C1 deformation from φρ0
t ◦Dev0

to φρt ◦Devρ . First we restrict to the compact set [0, 1]× S1
×[s ′1, s ′2], which is in

the interior of [−ε, 1+ ε]× S1
×[s1, s2].

Since

Dev0([0, 1]× S1
×[s ′1, s ′2])=

⋃
t∈[0,1]

φρ0
t ({0}× S1

×[s ′1, s ′2]),

if ρ is close enough to ρ0, ⋃
t∈[0,1]

φρt ({0}× S1
×[s ′1, s ′2])

is contained in the interior of Devρ([0, 1]× S1
×[s1, s2]).

Since [U ]·φρt =φ
ρ

t+1 and [U ]·Devρ(t, ζ, s)=Devρ(t+1, ζ, s), we can straighten
Devρ by a [U ]-equivariant isotopy to have, for (t, ζ, s) ∈ R× S1

×[s ′1, s ′2],

Devρ(t, ζ, s)= φρt (Devρ(0, ζ, s)). �

From now on, we suppose that for all (t, ζ, s) ∈ R × S1
× [s ′1, s ′2] we have

Devρ(t, ζ, s)= φρt (Devρ(0, ζ, s)).

Lemma 5.5. Let C be a C-circle invariant by [U ]. Then C and the annulus
Devρ({0}× S1

×[s ′1, s ′2]) are not linked.

Proof. First, [U ] is a regular element close to the unipotent element [U0], which
has fixed point p0 ∈ ∂∞H

2
C. Thanks to Remarks 2.22 and 2.23, we know that C

leaves every compact subset of ∂∞H
2
C − {p0} when [U ] approaches [U0]. Since

Devρ({0}× S1
×[s ′1, s ′2]) stays in a fixed compact set when we deform ρ0 to ρ, we

deduce that C and the annulus Devρ({0}× S1
×[s ′1, s ′2]) are not linked. �

It only remains to establish a local surgery result, similar to the result contained
in [Schwartz 2007, Chapter 8].

Thanks to Lemma 5.4, we know that Devρ(T̃[s′1,s′2−ε]) is the orbit by φρt of the
annulus A = Devρ({0} × S1

× [s ′1, s ′2 − ε]). This orbit separates ∂∞H
2
C (if [U ]

is elliptic) or ∂∞H
2
C minus two points (if [U ] is loxodromic) into two connected

components C1 and C2, with respective boundaries Devρ(T̃s′1) and Devρ(T̃s′2). We
have a proper action of [U ] on C2, and so we can consider the quotient manifold
N = C2/〈[U ]〉. It is a compact manifold with a torus boundary, endowed with a
spherical CR structure which coincides with the structure of M[0,s′2[ on T]s′2−ε,s′2[.
Thus, the gluing M[0,s′2[ ∪ N/∼ has a spherical CR structure which extends the
structure (Devρ, ρ) of M.

We will show that if [U ] is loxodromic or elliptic of type (p/n, 1/n), then N is
a solid torus and that we have a spherical CR structure on a Dehn surgery of M of
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Figure 9. The orbit of A under φt (red) and the spheres S and
[U ] · S (green).

a certain slope. If [U ] is elliptic of type (p/n, q/n), we will see a description of N
as a complement of a torus knot in some lens space.

Case 1: [U ] is loxodromic. We work in the Siegel model, and we identify ∂∞H
2
C

with (C×R)∪ {∞}. Perhaps after conjugating, we can assume that there exists
λ ∈ C such that |λ|> 1 and

U = Tλ =

λ 0 0
0 λ/λ 0
0 0 1/λ

.
Note that [U ] has two fixed points: (0, 0) and∞. Let S be the sphere centered at

(0, 0) and of radius 1 in C×R. This sphere is a fundamental domain for the action of
the flow φρt . The subgroup generated by [U ] acts properly on (C×R)− (0, 0), and
the region

⋃
t∈[0,1] φ

ρ
t (S) with boundary components S and [U ] · S is a fundamental

domain for this action. The orbit of A under φρt intersects S in an annulus that
separates S into two disks D1 and D2, so that their orbits under φt are the connected
components C1 and C2 respectively. Figure 9 shows this situation.

The quotient manifold N =C2/〈[U ]〉 is obtained by identifying D2 and [U ] ·D2

in
⋃

t∈[0,1] φ
ρ
t (D2). Thus, it is a solid torus. But the curve of π1(T ) that becomes

trivial in C2 is the one homotopic to the boundary of D2: so it is m. We deduce
that the surgery is of type (0, 1).

Case 2: [U ] is elliptic of type (p/n,±1/n). By choosing [U0]
±1 instead of [U0]

as the generator of the peripheral holonomy, we can suppose that U is of type
(±p/n, 1/n). For ease of exposition, we write the proof for [U ] of type (p/n, 1/n).

We reason in the same way as in the loxodromic case. By Lemma 5.5, we know
that Devρ(T̃[s′1,s′2−ε]) is the orbit under φt of the annulus A=Devρ({0}×S1

×[s ′1, s ′2]),
which is not linked to any of the invariant C-circles of [U ].
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Figure 10. The orbit of A under φt (in red), the longitude l (yel-
low), and the meridian m (green).

The orbit of A under the flow φρt is then homeomorphic to S1
× S1
× [s ′1, s ′2].

Its complement in ∂∞H
2
C has two connected components; let C2 be the component

with boundary Devρ(T̃s′2). Following Remark 2.15, the orbits of the flow are not
knotted: the two connected components are solid tori, and [U ] acts properly on
each one. But the quotient of a solid torus by a proper action of a finite group is still
a solid torus. The quotient manifold N = C2/〈[U ]〉 is then a solid torus, and we
have a spherical CR structure on a Dehn surgery of M. It only remains to identify it.

Perhaps after a conjugation, we can assume that

U = e−2iπ(p+1)/(3n)

e2iπp/n 0 0
0 e2iπ/n 0
0 0 1


in the ball model. In the Siegel model, by identifying ∂∞H

2
C with (C×R)∪{∞}, we

have that [CUC−1
] stabilizes two C-circles: the circle C1 centered at 0 of radius

√
2

in C×{0} and C2 the axis {0}×R. A generic orbit of the flow turns once around C1

and p times around C2.
Let γ be the loop that follows the C-circle C2 and is oriented so that the meridian m

is homotopic to γ in the component C2. In this case, nl is homotopic, also in C2,
to −pγ . Thus nl + pm is a homotopically trivial loop in C2, which is a covering
of the solid torus N glued to M. So it is also a trivial loop in N. We deduce that the
surgery is of type (n, p).

Case 3: [U ] is elliptic of type (p/n, q/n). As in Cases 1 and 2 above, we know
that Devρ(T̃[s′1,s′2−ε]) is the orbit by φt of the annulus A=Devρ({0}× S1

×[s ′1, s ′2]),
which is not linked to any of the invariant C-circles of [U ].

The orbit of A under the flow φρt is homeomorphic to S1
× S1

× [s ′1, s ′2]. Its
complement in ∂∞H

2
C has two connected components. Let C2 be (again) the

component with boundary Devρ(T̃s′2) and C1 the one with boundary Devρ(T̃s′1).
According to Remark 2.15, generic orbits of the flow are torus knots of type (p, q):
C1 is then a tubular neighborhood of one of the orbits and C2 is homeomorphic to
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the complement of a torus knot of type (p, q). But [U ] acts properly on ∂∞H
2
C and

stabilizes C1 and C2.
Notice that, in the ball model, the action of the group generated by [U ] is the

same as the one of the group generated by

(z1, z2) 7→ (e2iπ/nz1, e2iπα/nz2),

where α ≡ p−1q mod n. The quotient ∂∞H
2
C/〈[U ]〉 is then homeomorphic to the

lens space L(n, α). Furthermore, C1/〈[U ]〉 is a solid torus knotted in ∂∞H
2
C/〈[U ]〉.

The quotient manifold V (p, q, n) = C2/〈[U ]〉 is the complement of a torus knot
in ∂∞H

2
C/〈[U ]〉 ' L(n, α). The spherical CR structure of M then extends to the

gluing of M and V (p, q, n) along their torus boundary components.
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DEGENERATE FLAG VARIETIES AND SCHUBERT VARIETIES:
A CHARACTERISTIC FREE APPROACH

GIOVANNI CERULLI IRELLI, MARTINA LANINI AND PETER LITTELMANN

We consider the PBW filtrations over Z of the irreducible highest weight
modules in type An and Cn. We show that the associated graded modules can
be realized as Demazure modules for group schemes of the same type and
doubled rank. We deduce that the corresponding degenerate flag varieties
are isomorphic to Schubert varieties in any characteristic.

Introduction

Introduced by Evgeny Feigin in 2010, degenerate flag varieties naturally arise from
a representation theoretic context. In fact, given a finite dimensional, highest weight
irreducible module V(λ) for a simple finite dimensional, complex Lie algebra, the
corresponding degenerate flag variety F`(λ)a is the closure of a certain highest
weight orbit in the projectivization of V(λ)a, a degenerate version of V(λ).

If the algebra one starts with is of type An or Cn , it was shown in [Cerulli Irelli and
Lanini 2015] that, surprisingly, degenerate flag varieties can be realized as Schubert
varieties in a partial flag variety of the same type and bigger rank. It is hence natural
to ask whether also the modules V(λ)a are isomorphic to some already investigated
objects. The aim of this paper is to address such a question and provide a positive
answer to it. Feigin’s degeneration procedure can be carried out over Z — see [Feigin
et al. 2013] — and it is in this generality that we decided to approach the problem.

Our main theorem is the realization of V(λ)a as a Demazure module for a
group scheme of the same type and doubled rank. This fact allows us to recover,
as a corollary, the above-mentioned realization of F`(λ)a as a Schubert variety.
While the arguments in [Cerulli Irelli and Lanini 2015] relied on a linear algebraic
description of the degenerate flag variety due to Feigin [2012], the proof we obtain
here only uses the definition of F`(λ)a as a closure of a highest weight orbit; hence
it is more conceptual.

In what follows, we describe in more detail the main results of this article.
For simplicity let us start with the complex algebraic group SLn(C) and its Lie

algebra g = sln . We fix a Cartan decomposition g = n− ⊕ h⊕ n+, where n is
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the subalgebra of strictly upper triangular matrices, h is the Cartan subalgebra
consisting of diagonal matrices and n− is the subalgebra of strictly lower triangular
matrices. Let b= h⊕n+ be the corresponding Borel subalgebra of g and let B ⊂G
be the Borel subgroup with Lie algebra b.

We use the notation B̃, b̃, ñ+, h̃, and ñ− for the corresponding subgroup of
G̃ = SL2n(C) and subalgebras of g̃ = sl2n . Let n−,a ⊂ sl2n and N−,a ⊆ SL2n(C)

be the following commutative Lie subalgebra and commutative unipotent subgroup,
respectively:

(1) n−,a :=

{(
0 N
0 0

)
∈ sl2n | N ∈ n−

}
, N−,a :=

{(
1I N
0 1I

)
∈ SL2n | N ∈ n−

}
.

We view n−,a as the abelianization of n−, i.e., we have the canonical vector space
isomorphism between the two vector spaces, but n−,a is endowed with the trivial
Lie bracket. The enveloping algebra of n−,a is S•(n−,a). The embedding n−,a ↪→ b̃

induces an embedding S•(n−,a) ↪→U(b̃), so any U(b̃)-module inherits in a natural
way the structure of a S•(n−,a)-module.

A well investigated class of U(b̃)-modules are the Demazure modules: let µ
be a dominant integral weight for g̃ and let Ṽ(µ) be the corresponding irreducible
representation. For an element w of the Weyl group W̃ of g̃, the weight space
Ṽ(µ)wµ of weight wµ is one-dimensional; fix a generator vwµ. Recall that the
Demazure submodule Ṽ(µ)w is by definition the cyclic U(b̃)-module generated
by vwµ, i.e., Ṽ(µ)w =U(b̃).vwµ, and the Schubert variety X (w) is the closure of
the orbit B̃.[vwµ] ⊆ P(Ṽ(µ)).

A special class of S•(n−,a)-modules has been investigated in [Feigin et al. 2011a;
2011b]. Let λ be a dominant integral weight for g, let V(λ) be the corresponding
irreducible representation and fix a highest weight vector vλ. The PBW filtration
on U(n−) induces a filtration on the cyclic U(n−)-module V(λ)=U(n−).vλ, and
the associated graded space V a(λ) := gr V(λ) becomes a module for the associated
graded algebra S•(n−) := gr U(n−)' S•(n−,a).

The action of n−,a on V a(λ) can be integrated to an action of N−,a. In analogy
with the classical case we call the closure of the orbit Fa

λ := N−,a .[vλ] ⊆P(V a(λ))

the degenerate flag variety.
The aim of this article is to connect these two constructions and extend the results

in [Cerulli Irelli and Lanini 2015] to an algebraically closed field k of arbitrary
characteristic. In fact, the results hold even over Z. For simplicity, we formulate
them in the introduction for an algebraically closed field k. In the following,
we consider the case G = SLn(k) and G̃ = SL2n(k), respectively G = Sp2m(k),
and G̃ = Sp4m(k), and we replace the irreducible module of highest weight λ
by the Weyl module of highest weight λ, using the same notation V(λ). For the
precise description of the highest weight 9(λ), see Definitions 2.1 and 5.3; for a
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description of the Weyl group element τ ∈ W̃, see Definitions 2.2 and 5.1; and for
the construction of the Lie algebra n−,a in the symplectic case, see Section 5. For a
dominant G-weight λ let λ∗ be the dual dominant weight, so for the symplectic case
we have λ=λ∗, and in the SLn case we have λ∗=

∑n−1
i=1 miωn−i for λ=

∑n−1
i=1 miωi

in the notation as in [Bourbaki 1968].

Theorem. Let λ be a dominant G-weight.

(i) The Demazure submodule Ṽk(9(λ
∗))τ of the G̃-module Ṽk(9(λ

∗)) is isomor-
phic, as an n−,a-module, to the abelianized module V a(λ).

(ii) The Schubert variety X (τ )⊂P(Ṽ(9(λ∗))τ ) is isomorphic to the degenerate flag
variety Fa(λ), and this isomorphism induces an S•(n−,a)-module isomorphism

H 0(X (τ ),L9(λ∗))' (V a(λ))∗.

Using the isomorphism above, we deduce the defining relations for V a(λ) from
the defining relations of the Demazure module. Translated back into the language
of the abelianized algebras we get the following: in the SLn case, let R++ = R+

be the set of positive roots, and in the symplectic case, set

R++ = {εi − εj | 1≤ i < j ≤ m} ∪ {2εi | 1≤ i ≤ m}.

Corollary. The abelianized module V a(λ) is isomorphic as a cyclic S•(n−,a)-
module to S•(n−,a)/I (λ), where I (λ) is the ideal:

I (λ)= S•(n−,a)
(
U(n+) ◦ span{ f (〈λ,α

∨
〉+1)

α | α ∈ R++}
)
⊆ S•(n−,a).

The identification of the degenerate flag variety as a Schubert variety implies the
following corollary immediately; see also [Feigin and Finkelberg 2013; Feigin et al.
2014].

Corollary. The degenerate flag variety Fa(λ) is projectively normal, and it has
rational singularities.

1. Some special commutative unipotent subgroups

Let k be a field. Given a subspace N⊆ Mn(k) and a vector space automorphism
η :N→N, denote by Na

η ⊆ M2n(k) respectively N a
η ⊆GL2n(k) the following com-

mutative nilpotent Lie subalgebra of M2n(k), respectively commutative unipotent
subgroup of GL2n(k):

Na
η :=

{(
0 η(A)
0 0

) ∣∣∣∣ A ∈N
}
, N a

η :=

{(
1 η(A)
0 1

) ∣∣∣∣ A ∈N
}
.

If N⊆ Mn(k) is a Lie subalgebra, then we think of Na
η as an abelianized version

of N. Similarly one may think of N a
η as an abelianized version of a subgroup

N ⊆ GL2n(k). We will be more precise in the following examples.
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Example 1.1. Let k be an algebraically closed field of characteristic zero. We fix as
a maximal torus T ⊂ SLn the subgroup of diagonal matrices, and let B be the Borel
subgroup of upper triangular matrices. Let us denote by sln , b, and h the correspond-
ing Lie algebras and let g=n−⊕h⊕n+ be the Cartan decomposition. The choice of
a maximal torus and a Borel subgroup as above determines the set of positive roots
8+ and hence, according to the adjoint action of h, the root space decomposition
n− =

⊕
α∈8+ n

−

−α. In this example we set N= n−, and N =U− is the unipotent
radical of the opposite Borel subgroup B−. The map η is the identity map, so we
just omit it. Henceforth, we write n−,a for Na

⊂ sl2n(k) and N−,a for N a
⊂ SL2n .

Note that n−,a ⊂ sl2n is a Lie subalgebra of the Borel subalgebra b̃⊂ sl2n and
N−,a is an abelian subgroup of the Borel subgroup B̃ ⊂ SL2n (of upper triangular
matrices). We can think of N−,a as an abelianized version of U−.

The subgroup N−,a, as well as the Lie algebra n−,a, is stable under conjugation
with respect to the maximal torus T̃ ⊂SL2n , where T̃ ⊂SL2n consists of the diagonal
matrices. The group N−,a hence decomposes as a product of root subgroups of
the group SL2n , and n−,a decomposes into the direct sum of root subspaces for the
Lie algebra sl2n . We get an induced map φ :8+→ 8̃+ between the set of positive
roots of sln and the positive roots of sl2n , such that n−,a =

⊕
α∈8+ n

−,a
φ(α).

Example 1.2. Let k be an algebraically closed field of characteristic 0. Let
{e1, . . . , e2n} be the canonical basis of k2n, and fix a nondegenerate skew symmetric
form by the conditions 〈ei , ej 〉= δj,2n−i+1=−〈ej , ei 〉 for 1≤ i ≤ n, 1≤ j ≤ 2n. Let
Sp2m be the associated symplectic group. By the choice of the form we can fix as a
Borel subgroup B the subgroup of upper triangular matrices in Sp2m and let T be its
maximal torus consisting of diagonal matrices. Let us denote by sp2m , b, and h the
corresponding Lie algebras and let g= n−⊕ h⊕ n+ be the Cartan decomposition.

The choice of the torus and the Borel subgroup as above determines a set of
positive roots 8+ and hence, according to the adjoint action of h, the root space
decomposition n− =

⊕
α∈8+ n

−

−α. In this example we set N = n−, and N = U−

is the unipotent radical of the opposite Borel subgroup B−. Let η : n−→ n− be
the linear map sending a matrix (mi, j )1≤i, j≤2n to the matrix (m′i, j )1≤i, j≤2n , where
m′i, j = mi, j if i ≤ n or j ≤ n and m′i, j = −mi, j if both indices are strictly larger
than n. We write henceforth n−,aη for Na

η ⊂ sp4n(k) and N−,aη for N a
η ⊂ Sp4n .

Note that n−,aη ⊂ sp4n is a Lie subalgebra of the Borel subalgebra (of upper
triangular matrices) b̃⊂ sp4n and N−,aη is an abelian subgroup of the Borel subgroup
B̃ ⊂ Sp4n (of upper triangular matrices). We can think of N−,aη as an abelianized
version of U−.

The subgroup N−,aη is stable under conjugation with respect to the maximal torus
T̃ ⊂Sp4n , where T̃ ⊂Sp4n consists of the diagonal matrices. The group N−,aη hence
decomposes as a product of root subgroups of the group Sp4n and n−,a decomposes
into the direct sum of root subspaces for the Lie algebra sp4n . We get an induced
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map φ :8+→ 8̃+ between the set of positive roots of sp2n and the positive roots
of sp4n , such that n−,aη =

⊕
α∈8+ n

−,a
φ(α),η.

Example 1.3. To get a characteristic free approach for G as above, let GZ be a split
and connected simple algebraic Z-group of type An or Cn. For any commutative
ring A set GA = (GZ)A, and for a field set G = Gk , for this and the following;
see also [Jantzen 1987]. Then Gk is for any algebraically closed field a reduced
k-group, and it is connected and reductive. Its Lie algebra Lie(GZ) is a free Lie
algebra of finite rank and Lie Gk = Lie(GZ)⊗Z k. Let TZ ⊂ GZ be a split maximal
torus and set TA = (TZ)A for any ring A and T = Tk . We have a root space
decomposition Lie G = Lie T ⊕

⊕
α∈8(Lie G)α where (Lie G)α = (Lie GZ)α⊗Z k,

and corresponding root subgroups (defined over Z) xα : Ga → G such that the
tangent map dxα induces an isomorphism between the Lie algebra of the additive
group Ga and (Lie G)α. The functor which associates to any commutative ring A
the group xα(Ga(A))= xα(A) is a closed subgroup of G denoted by Uα, and we
have Lie(Uα)= (Lie G)α . Over Z we denote the corresponding subgroup by Uα,Z,
and over a field k we have Uα = (Uα,Z)k .

The construction described in Examples 1.1 and 1.2 makes (in this language)
sense over Z or over any field. As before, let G̃ be the group of the same type but
twice the rank, we denote the corresponding Borel subgroup, maximal torus, etc.
by B̃, T̃, etc. The construction in the examples above associates to every root α ∈8
a root φ(α) in the root system of G̃. For the Z-group GZ we have the subgroup
U−Z and the Lie algebra n−Z =

⊕
α∈8+ n

−

Z,−α, and we associate to this pair a new
pair given by a commutative subgroup N−,aη of the Z-group G̃Z and an abelian Lie
algebra n−,aZ,η . The first is the subgroup of the Borel subgroup B̃Z ⊂ G̃Z generated
by the commuting root subgroups Uφ(α),Z, α ∈8+, and the second is the abelian
Lie algebra n−,aZ,η =

⊕
α∈8+(Lie G)∼Z,φ(α) given as the sum of root subalgebras.

2. A special Schubert variety: the SLn case

We want to realize in the situation of Example 1.1 the abelianized representation
V(λ)a for N−,aη as a Demazure submodule of an irreducible representation for the
group SL2n .

2A. A special Weyl group element. Let W̃ be the Weyl group of SL2n(C); it is
the symmetric group S2n generated by the transpositions si , i = 1, . . . , 2n − 1.
Let h⊂ g= sln (respectively, h̃⊂ g̃= sl2n) be the Cartan subalgebra of traceless
complex diagonal matrices. For an element α ∈ h∗ and an element h ∈ h we denote
by 〈h, α〉 the evaluation of α in h. Let {ε1, . . . , εn} be the elements of the dual
vector space h∗ such that 〈h, εi 〉 is the i-th entry in the diagonal matrix h ∈ h. We
use the same notation 〈h̃, α̃〉 for elements h̃ ∈ h̃ and α̃ ∈ h̃∗, and the linear forms
{ε̃1, . . . , ε̃2n} in h̃∗ are defined as above.
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The roots of g (resp., g̃) are the elements αi, j := εi − εj (resp., α̃i, j = ε̃i − ε̃j ) for
i 6= j . We choose as a Borel subalgebra of g the subalgebra b of upper triangular
matrices. The corresponding simple roots are α1, · · · , αn−1 given by αi := αi,i+1.
For every root α, we denote by α∨ its coroot: this is the unique element of h such
that the reflection sα ∈ h∗ along α acts as sα(λ)=λ−〈α∨, λ〉α. Moreover we denote
by Eα the corresponding root vector. We denote by ωi = ε1+ · · ·+ εi (resp., ω̃i =

ε̃1+· · ·+ ε̃i ) the i-th fundamental weight of g (resp., g̃), where i = 1, 2, . . . , n− 1
(resp., i = 1, . . . , 2n− 1). They are characterized by the property 〈α∨i , ωj 〉 = δi, j .

Definition 2.1. Let 9 : h∗→ h̃∗ be the linear map defined on the weight lattice by

9

( n−1∑
i=1

aiωi

)
:=

n−1∑
i=1

ai ω̃2i .

Note that9 sends dominant weights to dominant weights. For every fundamental
weight ω̃k , we denote the corresponding parabolic subgroup by Pω̃k and by W̃ω̃k

the corresponding subgroup of W̃ which is the Weyl group of the semisimple part
of Pω̃k . Note that W̃ω̃k is generated by all the simple transpositions si but sk . Let
ρ =ω1+· · ·+ωn−1. Then 9(ρ)= ω̃2+ ω̃4+· · ·+ ω̃2n−2. The parabolic subgroup
Q = Pω̃2+···+ω̃2n−2 which is the stabilizer of 9(ρ) will play an important role. The
Weyl group of the semisimple part of Q is denoted by W̃ J.

Definition 2.2. We define in the Weyl group W̃ the element τ by

(2) τ = (snsn+1 · · · s2n−3s2n−2)(sn−1sn · · · s2n−4) · · · (s4s5s6)(s3s4)s2.

It is easy to see that the decomposition is reduced and τ is a minimal length
representative in its class in W̃/W̃ J. Another description of τ can be given by
viewing τ as a permutation of the set {1, . . . , 2n}:

(3) τ(t)=
{

n+ k if t = 2k,
k if t = 2k− 1,

for k = 1, 2, . . . , n. It follows now immediately from (3):

Lemma 2.3. In the irreducible SL2n(C)-representation Ṽ(ω̃2i )=
∧2i

C2n let v0 be
the highest weight vector v0 = e1 ∧ e2 ∧ · · · ∧ e2i . Then (up to a sign),

τ(v0)= vτ = e1 ∧ e2 ∧ · · · ∧ ei ∧ en+1 ∧ en+2 ∧ · · · ∧ en+i .

Let λ= b1ε1+ · · ·+ bn−1εn−1, with b1 ≥ · · · ≥ bn−1 ≥ 0, be a dominant weight
for SLn(C). The next result follows directly from Lemma 2.3.

Lemma 2.4. τ(9(λ))= b1ε̃1+ · · ·+ bn−1ε̃n−1+ b1ε̃n+1+ · · ·+ bn−1ε̃2n−1. �
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In Example 1.1 we have introduced a map φ :8+→ 8̃+ between the positive
roots of sln and the positive roots of sl2n . Note that the image of α = εi − εj ,
1≤ i < j ≤ n is the root φ(α)= ε̃j − ε̃n+i .

Lemma 2.5. (i) Let λ be a dominant weight for SLn(C), and let α̃ be a positive
SL2n-root. Then 〈α̃∨, τ (9(λ))〉< 0 only if the root space of α̃ lies in n−,a.

(ii) Let λ be a dominant SLn-weight, and let α = εi − εj be a positive SLn-root.
Then

〈α∨, λ〉 = −〈φ(α)∨, τ (9(λ))〉.

(iii) Let λ be a dominant weight for SLn(C), and let α̃ = ε̃p − ε̃q be a positive
SL2n-root. Then Eα̃vτ 6= 0 in Ṽ(9(λ)) only if α̃ is of the form α̃ = ε̃j − ε̃n+i ,
1≤ i < j ≤ n and 〈(εi − εj )

∨, λ〉> 0.

Proof. Let α̃= ε̃i−ε̃j be a positive root. By Lemma 2.4, for λ=b1ε1+· · ·+bn−1εn−1,
we get

〈α̃∨, τ (9(λ))〉 =


bi − bj ≥ 0 if 1≤ i < j ≤ n,

bi − bj−n ≥ 0 if 1≤ i ≤ n and n+ i ≤ j ≤ 2n,
bi − bj−n ≤ 0 if 1≤ i ≤ n and n+ 1≤ j < n+ i,

bi−n − bj−n ≥ 0 if n+ 1≤ i < j ≤ 2n,

which proves the lemma. �

The decomposition in (2) is reduced, but if we apply τ to a fundamental weight,
then it is possible to omit some of the reflections. A simple calculation shows:

Lemma 2.6. Let ω̃2i be the 2i -th fundamental weight for SL2n(C). Then

τ(ω̃2i )= (snsn+1 · · · sn+i−1) · · · (si+2 · · · s2i+1)(si+1 · · · s2i−1s2i )(ω̃2i ).

Let L(i) be the semisimple part of the Levi subgroup of SL2n(C) associated
with the simple roots α̃i+1, α̃i+2, . . . , α̃i+n−1, denote by l(i) the Lie algebra of L(i).
Note that L(i) is isomorphic to SLn(C). Let $1, . . . ,$n−1 be the fundamental
weights of L(i), the enumeration is such that the simple root α̃i+ j of L(i)⊆SL2n(C)

corresponds to $j .
The restriction of ω̃2i to L(i) is$i . Let W L(i) be the Weyl group of L(i), we can

identify it with the subgroup of the Weyl group of SL2n generated by the reflections
si+1, si+2, . . . , si+n−1. Using Lemma 2.6, it is easy to see:

Lemma 2.7. A reduced decomposition of the longest word of W L(i) modulo the
stabilizer W L(i)

$i
of $i in W L(i) is given by

(snsn+1 · · · sn+i−1) · · · (si+2 · · · s2i+1)(si+1 · · · s2i−1s2i ).
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3. The fundamental representations: the sln case

We switch now to Lie algebras and hyperalgebras over Z. Fix a Chevalley basis for
the Lie algebra gZ = sln,Z ⊂ sln,C:

{ fα, eα | α ∈8+} ∪ {h1, . . . , hn−1},

where fα ∈ gZ,−α , eα ∈ gZ,α , and hi ∈ hZ. For any m ∈Z≥1, we define the following
elements in U(g):

(4) e(m)α =
em
α

m!
, f (m)α =

f m
α

m!
,

(
hi

m

)
=

hi (hi − 1) · · · (hi −m+ 1)
m

,

and for m = 0 we set e(0)α = f (0)α =
(hi

0

)
= 1. Recall that the hyperalgebra UZ(sln)

of (SLn)Z is the Z-subalgebra of the complex enveloping algebra U(sln) generated
by the elements defined in (4). We will use capital letters to denote the Chevalley
basis elements for sl2n,Z (e.g., Eα̃, Fα̃, Hi ) and the generators of the hyperalgebra
UZ(sl2n) (e.g., E (m)α̃ , F (m)α̃ ,

(Hi
m

)
). Similarly, let UZ(b̃) be the subalgebra generated

by all E (m)α̃ for m≥0 and α̃ >0, and all
(Hi

m

)
for i =1, . . . , 2n−1 and m≥0. Denote

by UZ(l(i)) the hyperalgebra associated with l(i), i.e., the subalgebra generated by
all F (m)α̃ , E (m)α̃ for m ≥ 0 and α̃ > 0, a root of the Levi subgroup L(i), and by all(Hj

m

)
for j = i + 1, . . . , i + n− 1.

Let µ be a dominant integral weight for SL2n(C) and denote by Ṽ(µ) the irre-
ducible SL2n(C)-representation of highest weight µ. Fix a highest weight vector vµ;
the corresponding Z-form is ṼZ(µ)=UZ(sl2n)vµ. To define the Demazure module
ṼZ(µ)w, fix a representative w̌ of w in the simply connected Chevalley group
associated with sl2n,Z and set vw := w̌(vµ). The Demazure module ṼZ(λ)w is the
cyclic UZ(b̃)-subrepresentation UZ(b̃).vw ⊆ ṼZ(µ).

Lemma 3.1. The Demazure module ṼZ(`ω̃2i )τ contained in ṼZ(`ω̃2i ) is the Weyl
module VZ(`$i ) of highest weight `$i for UZ(l(i)).

Proof. Consider 9(`ωi )= `ω̃2i and recall that the restriction of ω̃2i to l(i) is $i .
So the UZ(l(i))-submodule UZ(l(i))v`ω̃2i ⊆ ṼZ(`ω̃2i ) is the Weyl module VZ(`$i )

of highest weight `$i for UZ(l(i)). Let UZ(b(i)) be the subalgebra of UZ(l(i))
generated by the E (m)α̃ for m ≥ 0 and α̃ > 0, a root of l(i), and all

(Hj
m

)
for j =

i + 1, . . . , i + n− 1.
The Weyl module VZ(`$i ) is a cyclic UZ(b(i))-module and is generated by a

lowest weight vector of the form w̌0,i (v`$i ), where w̌0,i is an appropriate represen-
tative (in the Chevalley group associated with l(i)) of the longest element w0,i of
the Weyl group W L(i) of l(i). Recall that W L(i) can be identified with the subgroup
of W̃ generated by si+1, . . . , sn+i−1. Now

ṼZ(`ω̃2i )τ =UZ(b̃)vτ =UZ(b̃)vw0,i =UZ(b(i))vw0,i = VZ(`$i )⊆ ṼZ(`ω̃2i )
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by Lemmas 2.5, 2.6, and 2.7. �

The previous result implies in particular:

Corollary 3.2. rank ṼZ(9(`ωi ))τ = rank VZ(`ωi ).

Let ι : sln → sln be the Chevalley involution defined by ι|h = −1 and that ι
exchanges eα and − fα. It follows that ι(n−Z ) = n+Z , and this map extends to an
isomorphism of the corresponding hyperalgebras ι : UZ(n

−)→ UZ(n
+) and the

associated graded versions obtained via the PBW filtration: ι : S•Z(n
−)→ S•Z(n

+).
Let λ =

∑
ajωj be a dominant weight and set λ∗ :=

∑
ajωn− j . Fix a highest

weight vector vλ ∈ VZ(λ) and a lowest weight vector vw0 ∈ VZ(λ), where w0 is the
longest word in the Weyl group of sln . We get two possible S•Z(n

−,a)-structures on
VZ(λ): one uses the PBW filtration on UZ(n

−) to induce, via the highest weight
vector, a PBW filtration on VZ(λ) and passes to the associated graded module.
One gets the module V a

Z (λ) discussed before. Now one can do the same also for
UZ(n

+), once the highest weight vector is replaced by the lowest weight vector.
We denote the cyclic S•Z(n

+)-module (generated by the lowest weight vector) by
V a,+

Z (λ). Now via ι this module also becomes naturally a S•Z(n
−)-module.

Lemma 3.3. As a S•Z(n
−)-module, V a,+

Z (λ) is isomorphic to V a
Z (λ
∗).

Proof. Note that twisting the representation map with the Chevalley involution makes
the lowest weight vector (the cyclic generator for the U(n+)-action) into a cyclic
generator for the U(n−)-action. Recall that the Chevalley involution is equal to −1
on h, so after the twist this is now a highest weight vector of weight λ∗ =−w0(λ),
where w0 is the longest word in W. Since the construction is compatible with the
PBW filtrations with respect to the two algebras, the result for the associated graded
modules follows immediately. �

Proposition 3.4. As SZ(n
−,a)-modules, ṼZ(9(`ωi ))τ ' V a

Z (`ωn−i ).

Proof. Let n−,ai ⊆ n−,a be the sum of all root subspaces of roots of the form
ε̃k− ε̃n+`, where 1≤ `≤ i ≤ k ≤ n and ` 6= k. This is a commutative Lie subalgebra,
which by Lemma 2.5 has the property

VZ(9(`ωi ))τ =U(b̃).vτ =U(n−,ai ).vτ = S•(n−,ai ).vτ .

Since n−,a is commutative, all root vectors in n−,a which are not in n−,ai act trivially
on VZ(9(`ωi ))τ .

Another way to describe n−,ai is as the intersection n−,a ∩ l(i). More precisely,
this intersection is the nilpotent radical of the maximal parabolic subalgebra of l(i)
associated with the fundamental weight $n−i . By Lemma 3.1, we know that
VZ(9(`ωi ))τ =U(b(i)).vτ ' VZ(`$i ), and since vτ is a lowest weight vector,

VZ(9(`ωi ))τ =U(n−,ai ).vτ ' VZ(`$i ).
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Set n+(i)= b(i)∩ ñ+. By the isomorphism between l(i) and sln we can identify m

with n+ ⊂ sln . Consider the associated PBW filtration on VZ(`$i ) by applying the
PBW filtration of U(n+(i)) to the lowest weight vector. Recall that after passing
to the associated graded algebra S•(n+(i)), all root vectors not contained in n−,ai
act trivially on V a,+

Z (`$i ). Remember that we add a “+” to indicate that this is
the associated graded space with respect to the filtration by the nilpotent radical
of the fixed Borel subalgebra and not, as usual, of the opposite nilpotent algebra.
Since $i and $n−i are cominuscule, n−,ai is commutative and the PBW filtration
on VZ(`$i ) is already a grading. It follows that the action of n−,ai on VZ(`$i ) and
V a,+

Z (`$i ) are the same, so the n−,ai actions on V a,+
Z (`$i ) and VZ(9(`ωi ))τ are

isomorphic; hence, so are the n−,a actions by trivial extension. The proposition
follows now by Lemma 3.3. �

4. The general case for sln

4A. We extend Proposition 3.4 to any dominant weight for sln . Recall that for a
dominant weight λ= a1ω1+· · ·+an−1ωn−1 we denote by λ∗ the dominant weight
given by λ∗ = an−1ω1+ · · ·+ a1ωn−1.

Theorem 4.1. Let λ be a dominant sln-weight. As an n−,aZ -module, the Demazure
submodule ṼZ(9(λ

∗))τ of the (sl2n)Z-module ṼZ(9(λ
∗)) is isomorphic to V a

Z (λ).

The proof of Theorem 4.1 will be given in Section 4G, and the strategy of proof
is explained in Section 4C. We deduce a useful corollary.

Corollary 4.2. In particular, V a
Z (λ) is free as a Z-module.

Proof of the corollary. The Demazure module ṼZ(9(λ
∗))τ is a direct summand of

the free Z-module ṼZ(9(λ
∗)) and hence free as Z-module. �

4B. The abelianized module V a
Z (λ) is a cyclic module over the algebra S•Z(n

−,a)

having as a generator the image of a highest weight vector vλ ∈ V(λ) in V a
Z (λ).

Hence the module is isomorphic to S•Z(n
−,a)/IZ(λ), where IZ(λ) is the annihilator

of vλ in S•Z(n
−,a).

We have an additional Lie algebra acting on S•Z(n
−,a) as well as on V a

Z (λ). Let
b be the Borel subalgebra of g= (sln)Z⊗C as in Example 1.1, so g= n−⊕h⊕n+.
As free Z-modules, UZ(n

−) ' UZ(g)/U+Z (h+ n+), so that the adjoint action of
UZ(b) on UZ(g) induces the structure of a UZ(b)-module on UZ(n

−) and hence
on S•Z(n

−,a). This action is compatible with the induced UZ(b)-action on V a
Z (λ)

[Feigin et al. 2013, Prop. 2.3.]. Recall that for a positive root α we have denoted
by fα the corresponding fixed Chevalley basis element in (sln)−α,Z. Using the
presentation of Demazure modules in terms of generators and relations by Joseph,
Mathieu and Polo (compare [Mathieu 1989, Lemme 26]), we get as a consequence
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of the proof of Theorem 4.1 the following description of the ideal IZ(λ); see [Feigin
et al. 2011a; 2013].

Corollary 4.3. As a cyclic SZ(n
−,a)-module, the abelianized module V a

Z (λ) is
isomorphic to S•Z(n

−,a)/IZ(λ), where

IZ(λ)= S•Z(n
−,a)

(
UZ(n

+) ◦ span{ f (〈α
∨,λ〉+m)

α | m ≥ 1, α > 0}
)
⊆ SZ(n

−,a).

4C. The proof of Theorem 4.1 will be given in Section 4G, but it needs some
preparation. The strategy of the proof is summarized by the following diagram
of S•Z(n

−,a)-modules. For a dominant weight λ = a1ω1 + · · · + an−1ωn−1 (so
λ∗ = an−1ω1+ · · · + a1ωn−1), we get the following natural maps (the details are
described below):

S•Z(n
−,a)/IZ(λ

∗)
'

h // V a
Z (λ
∗)

a
����

b // V a
Z (a1ω

∗

1)⊗ · · ·⊗ V a
Z (an−1ω

∗

n−1)

c

'

��
S•Z(n

−,a)/MZ(λ
∗)

f
OOOO

g

'

// ṼZ(9(λ))τ
� � d // ṼZ(a19(ω1))τ ⊗ · · ·⊗ ṼZ(an−19(ωn−1))τ .

Let us describe the diagram above and the strategy of the proof. We recall that, given
a tensor product of cyclic S•Z(n

−,a)-modules, the Cartan component of the tensor
product is, by definition, the cyclic S•Z(n

−,a)-submodule generated by the tensor
product of the cyclic generators. Further, recall that the isomorphism V a

Z (`ω
∗

j )'

ṼZ(`9(ωj ))τ sends the highest weight vector v`ω∗j to the extremal weight vector
vτ(`9(ωj )) and uses the Chevalley involution. The maps above are defined as follows:

• b is induced by the compatibility of the PBW filtration with the tensor product,
and it is surjective onto the Cartan component of this tensor product.

• IZ(λ
∗) is the annihilator in S•Z(n

−,a) of the image of the highest weight vector
vλ∗ in V a

Z (λ
∗) and h is the corresponding quotient map.

• c is the isomorphism given by Proposition 3.4.

• d is the isomorphism onto the Cartan component of the tensor product. The fact
that this is an isomorphism follows by standard monomial theory [Lakshmibai
et al. 1979] or Frobenius splitting [Ramanathan 1987].

• a equals c ◦ b after identifying ṼZ(9(λ))τ with its image under d .

• MZ(λ
∗) is the annihilator in S•Z(n

−,a) of the extremal weight vector vτ(9(λ)) in
ṼZ(9(λ))τ and g is the corresponding quotient map.

• f is going to be constructed in the proof.

In order to finish the proof we will show that MZ(λ
∗)⊆ IZ(λ

∗), and the inclusion
induces the surjective map f which in turn shows that the map a is an isomorphism.
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4D. We first determine MZ(λ
∗). By [Mathieu 1989, Lemme 26], the Demazure

module ṼZ(9(λ))τ is isomorphic to the algebra UZ(ñ
+) modulo the left ideal

ĨZ(τ9(λ)) generated for all m ≥ 1 by{
E (m)α̃ if 〈α̃∨, τ9(λ)〉 ≥ 0,
E (−〈α̃

∨,τ9(λ)〉+m)
α̃ otherwise.

4E. The annihilator MZ(λ
∗) is the intersection of UZ(n

−,a) ⊂ UZ(ñ
+) with the

ideal ĨZ(τ9(λ)). To determine the intersection, let us divide the positive roots of
SL2n into three families:

• α̃ is of the first type if α̃ = φ(α) for some positive SLn-root α.

• α̃ = ε̃k − ε̃l is of second type if 1≤ k < l ≤ n or n+ 1≤ k < l ≤ 2n.

• α̃ = ε̃k − ε̃l is of third type if 1≤ k ≤ n, n+ 1≤ l ≤ 2n and k < l − n.

1st
type

2nd
type

2nd
type

3rd
type


The Eα̃, with α̃ of second type, span a Lie subalgebra isomorphic to two copies
of bZ. Let b1

Z denote the first copy spanned by the Eα̃ , α̃= ε̃k−ε̃l , 1≤ k< l≤n, and
let b2

Z denote the second copy spanned by the Eα̃ , α̃ = ε̃k − ε̃l , n+ 1≤ k < l ≤ 2n.
Let ĨZ(∞)⊂UZ(ñ

+) be the left UZ(ñ
+)-submodule generated by the E (m)α̃ , with

m ≥ 1 and α̃ of second or third type. Then Lemma 2.5 and a PBW basis argument
show that we have the Z-module decomposition

UZ(ñ
+)=UZ(n

−,a)⊕ ĨZ(∞)= S•Z(n
−,a)⊕ ĨZ(∞) and ĨZ(∞)⊂ ĨZ(τ9(λ)).

By abuse of notation, we identify in the following S•Z(n
−,a) with UZ(ñ

+)/ ĨZ(∞).
So determining MZ(λ

∗)=UZ(n
−,a)∩ ĨZ(τ9(λ)) (the intersection taking place in

UZ(ñ
+)) is equivalent to determining the image of ĨZ(τ9(λ))/IZ(∞) in S•Z(n

−,a).
In the following we identify MZ(λ

∗) with ĨZ(τ9(λ))/IZ(∞).
Note that UZ(b

1
Z⊕ b2

Z) acts naturally via the adjoint action on ñ+Z and hence on
UZ(ñ

+). The span of the Eα̃, with α̃ of second or third type, is stable under this
adjoint action of b1

Z⊕b2
Z, so ĨZ(∞)⊂UZ(ñ

+)Z is a submodule with respect to this
adjoint action.
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We get an induced UZ(b
1
Z ⊕ b2

Z)-action on S•Z(n
−,a) which we denote by “◦”.

Moreover, since U+Z (b
1
Z⊕ b2

Z) (the set of elements without constant term) is con-
tained in ĨZ(∞), we see that MZ(λ

∗)= ĨZ(τ9(λ))/ ĨZ(∞) is a U+Z (b
1
Z⊕b2

Z)-stable
submodule with respect to the “◦”-action of UZ(b

1
Z ⊕ b2

Z). As a first step in the
proof of the theorem we show:

Lemma 4.4. The left S•Z(n
−,a)-submodule MZ(λ

∗)⊂ S•Z(n
−,a) is generated by

mZ(λ
∗) :=

〈
UZ(b

1
Z⊕ b2

Z) ◦ E (−〈α̃
∨,τ9(λ)〉+m)

α̃

∣∣ α̃ of first type and m ≥ 1
〉
Z
.

Proof. Let m be an element of MZ(λ
∗) and choose a representative m in ĨZ(τ9(λ)).

Since we are free to choose a representative modulo IZ(∞), we may assume (see
Section 4D) that m is a sum of monomials of the form r E (`)α̃ , where r is a monomial
in the E (q)

β̃
with q≥0 and β̃ of first, second, or third type, and `=−〈α̃∨, τ9(λ)〉+k

for some k ≥ 1 and α̃ of first type.
If γ̃ is a root of third type and β̃ is any other positive root, then [Eγ̃ , Eβ̃] = cEγ̃ ′ ,

where c ∈ Z and either c = 0 or γ̃ ′ is of third type. So if r has a factor E (p)γ̃ , with
p > 0 and γ̃ a root of third type, then we can rewrite the monomial r E (`)α̃ as a sum
of monomials of the form r ′E (p

′)
γ̃ , with p′ > 0. Since this sum is an element in

IZ(∞), without loss of generality we will assume in the following that r has only
factors of the form E (`)

β̃
, with β̃ of first or second type.

If γ̃ is of second type and β̃ is of first type, then [Eγ̃ , Eβ̃] = cEγ̃ ′ , where c ∈ Z

and either c= 0 or γ̃ ′ is of first or third type. So after reordering the factors we can
assume without loss of generality in the following that r E (`)α̃ is of the form r = r1r2,
where r1 is a monomial in the E (`)

β̃
, with β̃ of first type, and r2 is a monomial in

the E (`)γ̃ , with γ̃ of second type.
Recall that for γ̃ of second type,

Eγ̃ Eβ̃1
· · · Eβ̃m

≡

m∑
i=1

Eβ̃1
· · · Eβ̃i−1

(Eγ̃ Eβ̃i
− Eβ̃i

Eγ̃ )Eβ̃i+1
· · · Eβ̃m

mod IZ(∞)

≡

m∑
i=1

Eβ̃1
· · · Eβ̃i−1

(ad(Eγ̃ )(Eβ̃i
))Eβ̃i+1

· · · Eβ̃m
mod IZ(∞)

≡ ad(Eγ̃ )(Eβ̃1
· · · Eβ̃m

) mod IZ(∞).

An appropriate reformulation of the equality above holds also for the divided
powers of root vectors. It follows that r2 E (`)α̃ ∈ mZ(λ

∗); hence r E (`)α̃ = r1r2 E (`)α̃ ∈
S•Z(n

−,a)mZ(λ
∗), which implies that MZ(λ

∗) is generated by mZ(λ
∗) as a left

S•Z(n
−,a)-module. �

4F. To compare MZ(λ
∗) with IZ(λ

∗), we need a variant of the description of mZ(λ
∗).

Let 1(bZ) ⊂ b1
Z ⊕ b2

Z be the Lie subalgebra obtained as a diagonally embedded
copy of bZ. Let UZ(1(bZ))⊂UZ((b

1
Z)⊕ (b

2
Z)) be its hyperalgebra.
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Lemma 4.5. mZ(λ
∗)=

〈
UZ(1(bZ))◦E (−〈α̃

∨,τ9(λ)〉+m)
α̃

∣∣ α̃ of first type and m ≥ 1
〉
Z

.

Proof. We assume first that k is an algebraically closed field of arbitrary character-
istic. Let B be the subgroup of upper triangular invertible matrices in SLn(k), so
Lie B = b. Let B1

× B2
⊂ SL2n(k) be the subgroup with Lie algebra b1

⊕ b2 and
denote by 1(B)⊂ B1

× B2 the diagonally embedded group isomorphic to B.
Let q be the sum of the SL2n-root spaces corresponding to roots of second or

third type. Then ñ+ = n−,a⊕ q and we identify n−,a with ñ+/q. The adjoint action
of B1

× B2 on sl2n admits ñ+ as well as q as submodules, so we get an induced
(B1
×B2)-action on n−,a = ñ+/q. This action naturally extends to the commutative

hyperalgebra S•k(n
−,a).

If we replace the group action of B1
× B2 by the induced action of the hyperal-

gebra Uk(b
1
⊕ b2) of the group, then we get the action of Uk(b

1
⊕ b2) on Uk(ñ

+),
respectively on S•k(n

−,a) discussed above, and similarly for the action of 1(B) and
its hyperalgebra Uk(1(b)). Recall that for a root α̃ of type 1,

Uk(b
1
⊕ b2) ◦ E (m)α̃ = 〈Ad((b1, b2)) ◦ (Eα̃)(m) | (b1, b2) ∈ B1

× B2
〉,

i.e., the smallest Uk(b
1
⊕ b2) stable subspace containing (Eα̃)(m) is the linear span

of the (B1
× B2)-orbit. The same holds in the other case, so we have:

Uk(1(b)) ◦ E (m)α̃ = 〈Ad((b, b)) ◦ (Eα̃)(m) | b ∈ B〉.

Let d be the sum of the SL2n-root spaces corresponding to roots of first or third
type and let d3 be just the sum of the root spaces corresponding to roots of third
type, so d= n−,a⊕ d3. We identify d⊂ sl2n with Mn(k), formally this can be done
by the map

χ : d→ Mn(k), Ã =
(

0 A
0 0

)
7→ A,

where A is a n× n matrix. In the following we simplify the notation and omit the
map χ . We freely identify d with Mn(k), so we denote by A the n× n matrix as
well as the 2n× 2n-matrix Ã ∈ d. Note that for (b1, b2) ∈ B1

× B2 we get

Ad((b1, b2)) ◦ Ã =
(

b1 0
0 b2

)(
0 A
0 0

)(
b−1

1 0
0 b−1

2

)
=

(
0 b1 Ab−1

2
0 0

)
,

we just write Ad((b1, b2)) ◦ (A)= b1 Ab−1
2 and Ad((b, b)) ◦ (A)= b Ab−1. Recall

that χ is just a vector space isomorphism. If we equip in addition Mn(k) with
the trivial Lie bracket, then this becomes also a Lie algebra homomorphism. In
this sense we identify also the (commutative) Lie subalgebras n−,a and d3 with
subalgebras of Mn . An elementary calculation shows how the B1

×B2-orbit through
Eα̃ = Eεn−εn+1 breaks up into 1(B)-orbits. Recall that we identify d with Mn(k)
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and Eεn−εn+1 ∈ d corresponds to En,1:

{Ad((b1, b2)) ◦ (Eα̃) | (b1, b2) ∈ B1
× B2
} = {b1 En,1b−1

2 | b1, b2 ∈ B}

=

⋃
λ∈k

{b(En,1+ λE1,1)b−1
| b ∈ B}

⊂ Mn(k).

We conclude for the linear span,

Uk(b
1
⊕ b2) ◦ E (m)α̃ =

〈
Ad((b1, b2)) ◦ (Eα̃)(m)

∣∣ (b1, b2) ∈ B1
× B2〉

=
〈(

Ad((b1, b2)) ◦ (Eα̃)
)(m) ∣∣ (b1, b2) ∈ B1

× B2〉
=
〈
(b1 En,1b−1

2 )(m)
∣∣ b1, b2 ∈ B

〉
=

〈⋃
λ∈k

{b(En,1+ λE1,1)
(m)b−1

∣∣∣∣ b ∈ B}
〉
.

Let I (d3)⊂Uk(d) be the left ideal in the hyperalgebra generated by d3. Then

Uk(b
1
⊕ b2) ◦ E (m)α̃ ≡

〈⋃
λ∈k

{(b(En,1+ λE1,1)b−1)(m)
∣∣∣∣ b ∈ B}

〉
≡ 〈(bEn,1b−1)(m) | b ∈ B〉 mod I (d3)

because the E (`)1,1, with `≥ 1, lie in the 1(B)-stable ideal I (d3). It follows that

Uk(b
1
⊕ b2) ◦ E (m)α̃ ≡ 〈Ad((b, b))(Eα̃)(m) | b ∈ B〉

≡Uk(1(b)) ◦ E (m)α̃ mod I (d3).

Since I (d3)⊂ Ĩ k(∞), the equation holds in S•(n−,a)=Uk(ñ
+)/ Ĩ (∞) too, so

Uk(b
1
⊕ b2) ◦ E (m)α̃ =Uk(1(b)) ◦ E (m)α̃

in S•(n−,a). It is now easy to see that the same arguments prove the equality for
all E (m)α̃ , with α̃ of first type and m ≥ 1. Clearly,

UZ(b
1
⊕ b2) ◦ E (m)α̃ ⊇UZ(1(b)) ◦ E (m)α̃ .

Since we have equality after base change for fields of arbitrary characteristics, the
equality of the modules holds also over Z. In particular, the following equality
holds in S•Z(n

−,a):

mZ(λ
∗)=

〈
UZ(b

1
Z⊕ b2

Z) ◦ E (−〈α̃
∨,τ9(λ)〉+m)

α̃

∣∣ α̃ of first type and m ≥ 1
〉
Z

=
〈
UZ(1(bZ)) ◦ E (−〈α̃

∨,τ9(λ)〉+m)
α̃

∣∣ α̃ of first type and m ≥ 1
〉
Z
. �
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4G. Proof of Theorem 4.1. Recall the identification of the abelianized version
of n− ⊂ sln with n−,a ⊂ sl2n , which sends the image of a Chevalley generator fα
to Eφ(α). By Lemma 2.5 (see Lemma 3.3 for the twist λ ↔ λ∗) the elements
E (−〈α̃

∨,τ9(λ)〉+m)
α̃

, where α̃ is of first type and m ≥ 1 are elements of IZ(λ
∗). Now

the UZ(b)-module structure on S•Z(n
−,a) described in Section 4B is the same as the

one described above, so it follows that mZ(λ
∗)⊂ IZ(λ

∗) and hence MZ(λ
∗)⊂ IZ(λ

∗),
which, as explained in Section 4C, finishes the proof of the theorem. �

4H. Let ρ be the sum of all fundamental weights for SLn and set ρ̃ =9(ρ). Let
QZ ⊂ (SL2n)Z be the corresponding parabolic Z-subgroup. Recall that (N−,a)Z is
a commutative subgroup of the Borel subgroup B̃Z. For any SL2n-root α̃ let UZ,α̃

be the associated root subgroup.

Lemma 4.6. The orbit B̃Z .τ ⊂ (SL2n)Z/QZ is equal to N−,a .τ , and the map
N−,a→ N−,a .τ , u 7→ uτ , is a bijection.

Proof. We have B̃Z .τ =
∏
α̃>0 UZ,α̃ .τ , and the map

∏
α̃∈0 UZ,α̃→

∏
α̃∈0 UZ,α̃ .τ is

a bijection, where 0 is the set of all positive roots of SL2n such that τ−1(α̃) < 0 and
τ−1(α̃) is not an element of the root system of QZ. Now this condition is fulfilled if
and only if 〈τ−1(α̃∨), ρ̃〉< 0, or, equivalently, 〈α̃∨, τ (ρ̃)〉< 0. By Lemma 2.4 this
is only possible if α̃ = ε̃i − ε̃j is such that 1≤ i ≤ n, n+1≤ j ≤ 2n, and i > j −n.
But this implies that the root subgroup UZ,α̃ is a subgroup of N−,a, and all root
subgroups of (SL2n)Z contained in N−,a satisfy this condition. It follows that N−,a

is the product of all root subgroups corresponding to positive roots of SL2n in 0. �

Recall that the degenerate flag scheme F`(λ)aZ is the closure of the N−,aZ -orbit
through the highest weight vector in PP(V a

Z (λ)).

Theorem 4.7. Let λ be a dominant weight for SLn . The Schubert scheme XZ(τ )⊂

P(ṼZ(9(λ))τ ) is isomorphic to the degenerate partial flag scheme F`(λ∗)aZ for
(SLn)Z, and this map induces a module isomorphism H 0(XZ(τ),L9(λ))' (V a

Z(λ
∗))∗.

Proof. We consider only the case where λ is regular; the arguments in the general
case are similar. With respect to the isomorphism in Lemma 4.6, the orbit

B̃Z .τ ⊂ (SL2n)Z/(P̃λ)Z ↪→ P(Ṽ(9(λ))),

through the extremal weight vector, which is the same as the N−,a-orbit, is mapped
onto the N−,aZ -orbit through the highest weight vector in P(V a

Z (λ
∗)). By definition,

the Schubert scheme XZ(τ ) is the closure of the orbit B̃Z .τ and the degenerate
flag scheme F`(λ∗)aZ is the closure of the N−,aZ -orbit. It follows that the module
isomorphism induces an isomorphism between the Schubert scheme XZ(τ ) ⊆

P(ṼZ(9(λ))τ ) and the degenerate flag scheme F`(λ∗)aZ in P(V a
Z (λ)). Hence we

get induced isomorphisms

H 0(XZ(τ ),L9(λ))' (ṼZ(9(λ))τ )
∗
' (V a

Z (λ
∗))∗
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for the dual modules. �

Let k be an algebraically closed field of arbitrary characteristic and denote by
Vk(λ) = VZ(λ)⊗Z k, Uk(sln) = UZ(sln)⊗Z k, Uk(n

−) = UZ(n
−)⊗Z k, etc., the

objects obtained by base change. The PBW filtration

Vk(λ)` = 〈Y
(m1)
1 · · · Y (m N )

N vλ | m1+ · · ·+m N ≤ `, Y1, . . . , YN ∈ n
−

k 〉

and the associated graded space V a
k (λ) is defined in the same way as before, and by

Corollary 4.2, Vk(λ)`= VZ(λ)`⊗Z k and V a
k (λ)= V a

Z (λ)⊗Z k. The group N−,ak acts
on the abelianized representation V a

k (λ), and the degenerate flag variety F`(λ)ak is
the closure of the N−,ak -orbit through the highest weight vector in P(V a

k (λ)).
Now by the results of [Mathieu 1989; Mehta and Ramanathan 1988; Ramanathan

1987; Ramanan and Ramanathan 1985] one knows that for Demazure modules
we have Ṽk(9(λ))τ = ṼZ(9(λ))τ ⊗Z k, Xk(τ ) = XZ(τ ) ⊗Z k, etc., and that
the Schubert varieties are Frobenius split, projectively normal and have rational
singularities. It follows that V a

k (λ
∗) = Ṽ k(9(λ))τ and F`(λ∗)ak = Xk(τ ), so the

degenerate flag variety has in this case the same nice geometric properties as the
Schubert variety. For a dominant SLn-weight λ=

∑n−1
i=1 aiωi , let the support supp λ

of λ be the set {i | 1≤ i ≤ n− 1, ai 6= 0}.

Corollary 4.8. The degenerate partial flag variety F`(λ)ak depends only on supp λ.
It is a projectively normal variety, Frobenius split, with rational singularities.

Remark 4.9. Feigin and Finkelberg [2013] construct resolutions of the degenerate
flag varieties given by towers of P1-fibrations. The steps of the successive fibrations
are indexed by the set of positive roots, which had been totally reordered. In
fact, their varieties are Bott–Samelson varieties [Cerulli Irelli and Lanini 2015,
Appendix] and such an order (which actually should be thought of as an order on
the set of negative roots) is now natural since it corresponds to the subsequent steps
of the Bott–Samelson variety indexed by the reduced expression (2) of τ, under the
identification of −αi, j with α̃j,i+n .

5. A special Schubert variety: the Sp2m case

As for the SLn case, we want to realize for Example 1.2 the abelianized representa-
tion VZ(λ)

a for N−,aZ as a Demazure submodule in an irreducible representation
for the larger group Sp2(2m).

5A. A special Weyl group element. Let us keep the same notation as in the previous
sections and denote by h ⊂ sp2m (resp., h̃ ⊂ sp2(2m)) the Cartan subalgebra of
traceless complex diagonal matrices and by b⊂ sp2m (resp., b̃⊂ sp2(2m)) the Borel
subalgebra of traceless complex upper triangular matrices. Let {ε1, . . . , ε2m} (resp.,
{ε̃1, . . . , ε̃2(2m)}) be a basis of the dual vector space h∗ (resp., h̃∗). The choice of
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Cartan and Borel subalgebras we made determines the following set of positive
roots for Sp2m :

αi, j :=

{
εi − εj 1≤ i < j ≤ m,
εi + εj−m 1≤ i ≤ m < j and i + j ≤ 2m,

where the simple roots are {αi := αi,i+1 | 1 ≤ i ≤ m− 1} ∪ {αm := 2εm}. We will
write α̃i, j for the Sp2m-roots. The Weyl group of Sp2(2m) is denoted W̃ . This is the
group of linear transformations of h∗ generated by the elements {ri | 1≤ i ≤ 2m},
where ri denotes the reflection with respect to the simple root α̃i .

Definition 5.1. We define in W̃ a very special element:

τ = (r2m · · · rm+1) · · ·

(r2mr2m−1r2m−2)(r2mr2m−1)r2m(rm · · · r2m−2) · · · (r4r5r6)(r3r4)r2.

Any element of the Weyl group W̃ of Sp2(2m) can be identified with an element
of the symmetric group on 4m letters S4m , via ri = si s4m−i , for 1≤ i ≤ 2m−1, and
rn = s2m (where, as usual, si denotes the transposition exchanging i and i+1) and it
acts on the basis {ei | i = 1, . . . , 4m} of C4m by permuting the indices. It is an easy
check to see that under this identification τ equals the element τ of Definition 2.2
for n = 2m and we hence have the following (compare Lemma 2.3):

Lemma 5.2. In the irreducible Sp2(2m)-representation Ṽ(ω̃2i ) ⊂
∧2i

C4m , with
1≤ i ≤ 2m, let vω2i vω2i = e1∧ e2∧ . . .∧ e2i be the highest weight vector. Then (up
to sign),

τ(vω2i )= e1 ∧ e2 ∧ · · · ∧ ei ∧ e2m+1 ∧ e2m+2 ∧ · · · ∧ e2m+i .

We denote by {ωi | 1≤ i ≤m}, resp. {ω̃i | 1≤ i ≤ 2m}, the fundamental weights
of sp2m , resp., sp2(2m). They are characterized by the property 〈α∨i , ωj 〉 = δi, j .

Definition 5.3. Let 9 : h∗→ h̃∗ be the linear map defined on the weight lattice by

9

( n−1∑
i=1

aiωi

)
:=

n−1∑
i=1

ai ω̃2i .

Note: 9 sends dominant weights to dominant weights. Let λ= b1ε1+· · ·+bmεm ,
with b1 ≥ · · · ≥ bm ≥ 0, be a dominant weight for Sp2m .

Lemma 5.4. τ(9(λ))= b1ε̃1+· · ·+ bm ε̃m − bm ε̃m+1−· · ·− b1ε̃2m .

Proof. This equality follows directly from Lemma 5.2 above. �

As in the special linear case, we define a map from the set of negative roots of
Sp2m to the set of positive Sp2(2m)-roots by sending αi, j to α̃j,i+2m . The following
is the symplectic analogue of Lemma 2.5:
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Lemma 5.5. (i) Let λ be a dominant weight for Sp2m(C). For a positive Sp2(2m)-
root α̃, we have 〈α̃∨, τ (9(λ))〉< 0 only if the α̃-root space lies in Lie(U(n−)).

(ii) Let λ be a dominant Sp2m-weight, let α = αi, j be a positive Sp2m-root, and let
α̃ = α̃j,i+2m be the Sp2(2m) positive root associated with −α. Then

〈α∨, λ〉 = −〈α̃∨, τ (9(λ))〉.

(iii) Let λ be a dominant weight for Sp2m(C) and let α̃ be a positive Sp2(2m)-root.
Then Eα̃vτ 6= 0 in Ṽ(9(λ)) only if α̃ = α̃j,i+2m , where αi, j is a positive Sp2m-
root such that 〈α∨i, j , λ〉> 0.

Proof. Lemma 5.4 implies that for λ= b1ε1+ · · ·+ bm−1εm−1,

〈
(ε̃i − ε̃j )

∨, τ (9(λ))
〉
=


bi − bj ≥ 0 if 1≤ i < j ≤ m,

bi + b2m− j+1 ≥ 0 if 1≤ i ≤ m < j ≤ 2m,
−b2m−i+1+ b2m− j+1 ≥ 0 if m < i < j ≤ 2m,

and

〈
(ε̃i+ε̃j−2m)

∨, τ (9(λ))
〉
=



bi+bj−2m ≥ 0 if 1≤ i ≤ m
and 2m < j ≤ 3m,

bi−b4m− j+1 ≥ 0 if 1≤ i ≤ m
and 3m < j ≤ 4m−i+1,

−bi+b4m− j+1 ≥ 0 if 1≤ i ≤ m, 3m < j,
and 4m−i+1< j,

b2m−i+1+b2m− j+1 ≥ 0 if m < i ≤ 2m
and 3m < j,

where always i + j ≤ 4m. This proves the corollary. �

6. The fundamental representations: the sp2m case

Let n−,a,iZ be the direct sum of all root spaces of Lie (Sp2(2m))Z corresponding to
positive roots β such that 〈β∨, τ (ω̃2i )〉< 0 for all 1≤ i ≤ m. By Lemma 5.5, such
a space lies in Lie(U(n−Z )).

By [Mathieu 1989, Lemme 26], the Demazure module ṼZ(`ω̃2i )τ is isomorphic
to the algebra UZ(ñ) modulo the left ideal ĨZ(τ`ω̃2i ) generated for all m ≥ 1 by the{

E (m)k,l if 〈α̃∨k,l, τ ω̃2i 〉 ≥ 0,

E
(−〈α̃∨k,l ,τ`ω̃2i 〉+m)
k,l otherwise.

Therefore all the root vectors (and their divided powers) not lying in n−,a,iZ act
trivially on ṼZ(`ω̃2i )τ and hence in order to describe its structure as an n−,aZ -module
it suffices to consider only the n−,a,iZ -action. Recall that vτ = τ(v0) denotes the
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generator of ṼZ(9(`ωi ))τ . Then the above discussion can be summarized as

(5) ṼZ(`ω̃2i )τ =UZ(ñ).vτ =UZ(n
−,a).vτ =UZ(n

−,a,i ).vτ .

Recall that we embed in (SL2(2m))Z a copy L(i)Z of (SL2m)Z so that we can iden-
tify the SL2(2m)-Demazure module Ṽ SL2(2m)

Z (`ω̃2i )τ generated by τ(v0)= τ(v0)= vτ

with the Weyl module V L(i)
Z (`$i ) for L(i)Z.

For 1 ≤ k, l ≤ 4m, denote by Xk,l the 4m × 4m-matrix having a 1 in position
(k, l) and whose all other entries 0 (for k 6= l, this is the SL2(2m)-root operator
corresponding to the SL2(2m)-root αk,l), so that

n−,a,i = span{Xr,s + X4m−s+1,4m−r+1 | i + 1≤ r ≤ 2m and 2m < s ≤ 2m+ i}.

It is then immediate:

Lemma 6.1. Every element y ∈n−,a,iZ can be written in a unique way as y= y1+y2,
with y1 ∈ n−,a,i ∩ Lie L(i)Z and y2 ∈ span{Xk,l | l > 2m + k}. Moreover, y2 is
uniquely determined by y1.

By the previous lemma, the projection p : (SL2(2m))Z → L(i)Z induces an
isomorphism of vector spaces n−,a,iZ ' p(n−,a,iZ ). Let us write n−,a,iZ for p(n−,a,i ).
Since the Lie algebras are commutative, we see that p : n−,a,iZ → n−,a,iZ is not only
an isomorphism of vector spaces, but it is in fact a Lie algebra isomorphism.

Corollary 6.2. ṼZ(9(`ωi ))τ =UZ(n
−,a,i ).vτ .

Proof. Let y ∈ n−,a,iZ . By Lemma 6.1 we can write y= p(y)+ y2 with y2 in the span
of the matrices X i, j with j > 2m+ i . Therefore, y2 acts trivially on ṼZ(9(`ωi ))τ ,
and we conclude

ṼZ(9(`ωi ))τ )=UZ(n
−,a,i ).vτ =UZ(n

−,a,i ).vτ . �

For 0≤ i ≤m−1, let Sp2m(i)Z be a copy of (Sp2m)Z sitting inside L(i)Z, defined
with respect to the form given by the matrix

0 Jm−i 0 0
−Jm−i 0 0 0

0 0 0 Ji

0 0 −Ji 0

,
where Jr denotes the r×r antidiagonal matrix with entries (1, 1, . . . , 1). Moreover,
denote (Spstd

2m)Z := Sp2m(0)Z.
Let σ be the permutation in W L(i) such that Lie Sp2m(i)Z = σ Lie(Spstd

2m)Zσ
−1.

The permutation σ fixes 2m + 1, . . . , 2m + i and moves 2m − i + 1, . . . , 2m in
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front of i + 1, . . . , 2m− i , so that

(6) σ(e1 ∧ e2 ∧ · · · ∧ ei ∧ e2m+1 ∧ e2m+2 ∧ · · · ∧ e2m+i )

= e1 ∧ e2 ∧ · · · ∧ ei ∧ e2m+1 ∧ e2m+2 ∧ · · · ∧ e2m+i .

Let bZ ⊂ Lie(Spstd
2m)Z be the Borel subalgebra of upper triangular matrices. Let

pi
Z ⊂ Lie(Spstd

2m)Z be the maximal parabolic subalgebra associated with $i , and pi,n
Z

its nilpotent radical. Write Spi,n
Z for σpi,n

Z σ
−1
⊂ Lie Sp2m(i)Z.

Lemma 6.3. VZ(`$i )=UZ(Spi,n).vτ .

Proof. By (6), vτ is a lowest weight vector for Sp2m(i), as well as for L(i), and
the module generated by this vector is UZ(Lie Sp2m(i)).vτ = VZ(`$i ). Since it
is generated by a lowest weight vector, it is enough to consider the action of the
nilpotent radical

UZ(Lie Sp2m(i)).vτ =UZ(σbσ
−1).vτ =UZ(Spi,n).vτ . �

Observe that since n−,a,iZ ⊆ Spi,n
Z , the Weyl module VZ(`$i ) is naturally equipped

with a structure of n−,a,i -module. It is easy to check that:

Lemma 6.4. Every element x ∈ Spi,n
Z can be written in a unique way as x = x1+x2,

with x1 ∈ n−,a,i and x2 ∈ span{Xk,l | 2m − i < k ≤ 2m and i + 1 < l < 2m}.
Moreover, x2 is uniquely determined by x1.

As in Section 3, we consider the Chevalley involution ι : sp2m→ sp2m such that
ι|h=−1 and ι exchanges eα and− fα . It induces an isomorphism S•Z(n

−)→ S•Z(n
+),

which by abuse we also call ι.
For a dominant weight λ, fix a highest weight vector vλ ∈ VZ(λ) and a lowest

weight vector vw0 ∈ VZ(λ), where w0 is the longest word in the Weyl group of sp2m .
Recall that considering the PBW filtration on UZ(n

−) and on UZ(n
+) provides

VZ(λ) with two possible S•Z(n
−,a)-structures: in the first case, looking at the PBW

filtration on VZ(λ) induced by the action of UZ(n
−) on the highest weight vector

and taking the associated graded space provides the abelianized module V a
Z (λ),

while in the second case, looking at the PBW filtration on VZ(λ) induced by the
action of UZ(n

+) on the lowest weight vector and taking the associated graded space
produces a module that we denote by V a,+

Z (λ). Now via ι this module also becomes
naturally a S•Z(n

−)-module and Lemma 3.3 holds in the symplectic case too:

Lemma 6.5. As a S•Z(n
−)-module, V a,+

Z (λ) is isomorphic to V a
Z (λ).

Observe that in the symplectic case there is no need of replacing λ by λ∗ since
they coincide.

Lemma 6.6. The Demazure module ṼZ(9(`ωi ))τ contained in ṼZ(9(`ωi )) and
VZ(`ωi )

a are isomorphic as S•Z(n
−)-modules.



304 GIOVANNI CERULLI IRELLI, MARTINA LANINI AND PETER LITTELMANN

Proof. By Lemma 6.4, the projection q : Spi,n
Z → n−,a,i is an isomorphism of vector

spaces. Moreover, if we write x ∈ Spi,n
Z as x = q(x)+ x2, then x2 lies in the span

of the matrices X i, j with i + 1< j < 2m; hence, x2 .vτ = 0. Now, by [Feigin et al.
2014, Proposition 3.1], the PBW filtrations on VZ(`ωi ) with respect to the actions
of Spi,n

Z and n−,a,iZ are compatible, and

gr VZ(`$i )= gr UZ(Sp
i,n
Z ).vτ ' gr UZ(n

−,a,i ).vτ .

On the other hand, when we consider in ṼZ(9(`ωi ))τ the PBW filtration with
respect to the action of Spi,n

Z and go to the associated graded module, then the
action of (Spi,n

Z )
a is isomorphic to the action of n−,a,iZ on ṼZ(9(`ωi ))τ . �

The previous result implies in particular:

Corollary 6.7. rank ṼZ(9(`ωi ))τ = rank VZ(`ωi ).

7. The general case for sp2m

We come now to the general case (notation as in Example 1.2):

Theorem 7.1. Let λ be a dominant sp2m-weight. As an N−,aZ,η -module, the Demazure
submodule ṼZ(9(λ))τ of the (Sp2(2m))Z-module ṼZ(9(λ)) is isomorphic to the
abelianized module V a

Z (λ).

As in the type A case, the proof of the above theorem will provide us with a
description of V a

Z (λ) as an S•Z(n
−,a
η )-module in terms of generators and relations.

The abelianized module V a
Z (λ) is a cyclic module over the algebra S•Z(n

−,a
η ) with

the image of a highest weight vector vλ ∈ V(λ) in V a
Z (λ) as a generator; see [Feigin

et al. 2013, Proposition 2.3]. Hence the module is isomorphic to S•Z(n
−,a
η )/IZ(λ)

where IZ(λ) is the annihilator of vλ in SZ(n
−,a
η ). As a consequence of the proof of

Theorem 7.1, we obtain the description of the ideal IZ(λ) in terms of generators given
in [Feigin et al. 2011a; 2013] from Mathieu’s generator and relation presentation of
Demazure modules.

Let b be the Borel subalgebra of sp2m = (sp2m)Z ⊗ C as in Example 1.1(b),
so sp2m = n− ⊕ h⊕ n+. As free Z-modules, UZ(n

−) ' UZ(g)/U+Z (h+ n+), so
that the adjoint action of UZ(b) on UZ(g) induces the structures of a U+Z (b)- and
a BZ-module on UZ(n

−), hence on SZ(n
−,a
η ). This action is compatible with the

BZ-action on V a
Z (λ) [Feigin et al. 2013, Proposition 2.3.]. Recall that for a positive

root α we have denoted by fα the corresponding fixed Chevalley basis element in
(sp2m)−α,Z. Let us set

R++ = {εi − εj | 1≤ i < j ≤ m} ∪ {2εi | 1≤ i ≤ m}

As a consequence of the proof of Theorem 7.1 we get the following description of
the ideal IZ(λ):



DEGENERATE FLAG VARIETIES AND SCHUBERT VARIETIES 305

Corollary 7.2. As a cyclic S•Z(n
−,a
η )-module, the abelianized module V a

Z (λ) is
isomorphic to S•Z(n

−,a
η )/IZ(λ), where

IZ(λ)= S•Z(n
−,a
η )

(
UZ(n

+) ◦ span{ f (〈λ,α
∨
〉+m)

α | m ≥ 1 and α ∈ R++}
)
⊆ S•Z(n

−,a
η ).

7A. The proof of the theorem will be only sketched, since the strategy is the
same as for the type A case. We reproduce here the diagram of S•(n−,aη )-modules
summarizing the main idea: for a dominant weight λ = a1ω1 + · · · + amωm , we
have the natural maps

S•Z(n
−,a
η )/IZ(λ)

'

h // V a
Z (λ)

a
����

b // V a
Z (a1ω1)⊗ · · ·⊗ V a

Z (amωm)

c

'

��
S•Z(n

−,a
η )/MZ(λ)

f
OOOO

g

'

// ṼZ(9(λ))τ
� � d // ṼZ(a19(ω1))τ ⊗ · · ·⊗ ṼZ(am9(ωm))τ.

where in the top row the action on the modules is twisted by the Chevalley involution
so the cyclic generators are lowest weight vectors, and the maps c, d , a, and g arise
as in the proof of Theorem 4.1 so that again the main difficulty of the proof consists
in producing the map f .

7B. The first step consists in determining MZ(λ). By [Mathieu 1989, Lemme 26],
the Demazure module ṼZ(9(λ))τ is isomorphic to the algebra UZ(ñ) modulo the
left ideal ĨZ(τ9(λ)) generated for all m ≥ 1 by the elements{

E (m)k,l if 〈α̃∨k,l, τ9(λ)〉 ≥ 0,

E (−〈α̃
∨
k,l ,τ9(λ)〉+m)

k,l otherwise.

7C. The annihilator MZ(λ) is the intersection of UZ(n
−,a
η )⊂UZ(ñ

+) with the ideal
ĨZ(τ9(λ)). To determine such an intersection, we fix a PBW basis and divide the
positive roots in three families, exactly as in the proof of Theorem 4.1.

7D. By Lemma 5.5(i), 〈α̃∨k,l, τ9(λ)〉 ≥ 0 if α̃k,l is of third type. As in type A, we
may hence proceed with the calculation modulo the left ideal generated by the
divided powers of the corresponding Ek,l . Modulo such an ideal, by Lemma 5.4
and Lemma 5.5, ĨZ(τ9(λ)) is generated by the E (m)k,l with m ≥ 1 and α̃k,l of second
type, and the

E (−〈α̃
∨
k,l ,9(λ)〉+m)

k,l with m ≥ 1 and α̃k,l of first type.

7E. Thus, we consider the subalgebra a generated by the E (m)k,l , for α̃k,l of second
type. Let bZ,sl2m be the Borel subalgebra of sl2m consisting of traceless upper
triangular matrices and let bZ be the corresponding symplectic Borel subalgebra (of
(Spstd

2m)Z). Let us embed bZ in bZ,sl2m ⊕bZ,sl2m via A 7→ (A,−A), where A denotes
the matrix which is skew-transposed to A, and let 1−(bZ) be its image. Also a
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is embedded in bZ,sl2m ⊕ bZ,sl2m , once we identify the latter with the Lie algebra
generated by the divided powers of the SL4m-root vectors of second type. The
image of such an embedding contains 1−(bZ). By taking fixed points with respect
to the outer automorphism of sl2m and sl4m induced by the symmetry of the Dynkin
diagram, it follows from Lemma 4.5 that

(7) UZ(1
−(bZ))

〈
{E (m)i, j | αi, j of first type, m ≥ 1}

〉
=UZ(a)

〈
{E (m)i, j | αi, j of first type, m ≥ 1}

〉
.

Therefore,

ĨZ(τ9(λ))∩ S•Z(n
−,a
η )

' S•Z(n
−,a
η ) ◦UZ(1

−(bZ)) span{ f 〈α
∨,λ〉+`

i, j | α ∈ R++ and `≥ 1} =: MZ(λ).

7F. Proof of Theorem 7.1. Since the roots of first type are precisely the ones
coming from the elements fi, j with αi, j ∈ R++ and since{

f (〈α
∨
i, j,λ〉+m)

i, j

∣∣ αi, j ∈ R++ and m ≥ 1
}
⊆ IZ(λ),

we get a surjective morphism

(8) ṼZ(9λ)τ
g
' S•Z(n

−,a
η )/MZ(λ)

f
→ S•Z(n

−,a
η )/IZ(λ)' VZ(λ)

a.

This concludes the proof of the theorem. �

7G. Let ρ be the sum of the fundamental weights for Sp2m and let ρ̃ = 9(ρ)
be the corresponding dominant weight for Sp2(2m). Let QZ ⊂ (Sp2(2m))Z be the
corresponding parabolic subgroup. Recall that N−,aZ,η is a commutative subgroup
of the Borel subgroup B̃Z. For any Sp2(2m)-root α̃, let UZ,α̃ be the associated root
subgroup.

Lemma 7.3. The orbit B̃Z .τ ⊂ (Sp2(2m))Z/QZ is nothing but N−,aZ,η .τ , and the map
N−,aZ,η → N−,aZ,η .τ , given by u 7→ uτ is a bijection.

Proof. We have B̃Z .τ =
∏
α̃>0 UZ,α .τ , and the map

∏
α̃∈0 UZ,α̃→

∏
α̃∈0 UZ,α̃ .τ is

a bijection, where 0 is the set of all positive roots of Sp2(2m) such that τ−1(α̃) < 0
and τ−1(α̃) is not an element of the root system of QZ. Now this condition is
fulfilled if and only if 〈τ−1(α̃∨), ρ̃〉 < 0, or, equivalently, 〈α̃∨, τ (ρ̃)〉 < 0. By
Lemma 5.4 this is not possible if α̃ is of the form α̃ = ε̃i − ε̃j , with 1≤ i < j ≤ 2m.
For the long roots, this is only possible if α̃ = 2ε̃j , with j =m+1, . . . , 2m, and for
the roots α= ε̃i+ ε̃j , with 1≤ i < j ≤ 2m; this is only possible if either i, j ≥m+1
or 1≤ i ≤ m and j = 2m+ 1− k is such that 1≤ k < i .

But this implies that the root subgroup UZ,α̃ is a subgroup of N−,aZ,η , and all
root subgroups of (Sp2(2m))Z contained in N−,aZ,η satisfy this condition. It follows
that N−,aZ,η .τ is the product of all root subgroups corresponding to positive roots of
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Sp2(2m) such that τ−1(α̃) < 0 and τ−1(α) is not an element of the root system of
QZ and hence N−,aZ,η .τ = B̃Z .τ ⊂ (Sp2(2m))Z/QZ. �

Corollary 7.4. The degenerate flag variety F`(λ)ak depends only on supp λ. It is a
projectively normal variety, Frobenius split, with rational singularities.
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SOLITONS FOR THE INVERSE MEAN CURVATURE FLOW

GREGORY DRUGAN, HOJOO LEE AND GLEN WHEELER

We investigate self-similar solutions to the inverse mean curvature flow in
Euclidean space. Generalizing Andrews’ theorem that circles are the only
compact homothetic planar solitons, we apply the Hsiung–Minkowski inte-
gral formula to prove the rigidity of the hypersphere in the class of compact
expanders of codimension one. We also establish that the moduli space
of compact expanding surfaces of codimension two is large. Finally, we
update the list of Huisken–Ilmanen’s rotational expanders by constructing
new examples of complete expanders with rotational symmetry, including
topological hypercylinders, called infinite bottles, that interpolate between
two concentric round hypercylinders.

1. Main results

In this paper, we study self-similar solutions to the inverse mean curvature flow
in Euclidean space. After a brief introduction, we present the definitions of the
homothetic and translating solitons and discuss the one-dimensional examples. We
prove that families of cycloids are the only translating solitons (Theorem 8), and
we show how to construct translating surfaces via a tilted product of cycloids.

Next, we consider the rigidity of homothetic solitons. In the class of closed
homothetic solitons of codimension one, we prove that round hyperspheres are
rigid (Theorem 10). For the higher codimension case, we observe that any minimal
submanifold of the standard hypersphere is an expander, so in light of Lawson’s
construction [1970] of minimal surfaces in S3, there exist compact embedded
expanders for any genus in R4.

We conclude with an investigation of homothetic solitons with rotational sym-
metry. First, we construct new examples of complete expanders with rotational
symmetry, called infinite bottles (see Figure 1), which are topological hypercylinders
that interpolate between two concentric round hypercylinders (Theorem 14). Then,
we show how the analysis in the proof of Theorem 14 can be used to construct other
examples of complete expanders with rotational symmetry, including the examples
of Huisken and Ilmanen [1997a].

MSC2010: 53C44.
Keywords: inverse mean curvature flow, self-similar solutions.
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Figure 1. A numerical approximation of the part of a curve whose
rotation about the horizontal axis is the self-expanding infinite
bottle in R3.

2. Inverse mean curvature flow: history and applications

Round hyperspheres in Euclidean space expand under the inverse mean curvature
flow (IMCF) with an exponentially increasing radius. This behavior is typical for
the flow. Gerhardt [1990] and Urbas [1990] showed that compact, star-shaped initial
hypersurfaces with strictly positive mean curvature converge under IMCF, after
suitable rescaling, to a round sphere.

Strictly positive mean curvature is an essential condition. For the IMCF to
be parabolic, the mean curvature must be strictly positive. Huisken and Ilmanen
[2008] proved that smoothness at later times is characterized by the mean curvature
remaining bounded strictly away from zero; see also Smoczyk [2000]. Within
the class of strictly mean-convex surfaces, however, a solution to inverse mean
curvature flow will, in general, become singular in finite time. For example, starting
from a thin embedded torus with positive mean curvature in R3, the surface fattens
up under IMCF and, after finite time, the mean curvature reaches zero at some
points [Huisken and Ilmanen 2001, p. 364]. Thus, the classical description breaks
down, and any appropriate weak definition of inverse mean curvature flow would
need to allow for a change of topology.

Huisken and Ilmanen [2001] used a level-set approach and developed the notion
of weak solutions for IMCF to overcome these problems. They showed existence
for weak solutions and proved that Geroch’s monotonicity [1973] for the Hawking
mass carries over to the weak setting. This enabled them to prove the Riemannian
Penrose inequality, which also gave an alternative proof for the Riemannian positive
mass theorem. For a summary, we refer the reader to Huisken and Ilmanen [1997a;
1997b]. The work of Huisken and Ilmanen also shows that weak solutions become
star-shaped and smooth outside some compact region and thus, by the results of
Gerhardt [1990] and Urbas [1990], round in the limit. Using a different geometric
evolution equation, Bray [2001] proved the most general form of the Riemannian
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Penrose inequality. An overview of the different methods used by Huisken, Ilmanen,
and Bray can be found in [Bray 2002]. An approach to solving the full Penrose
inequality involving a generalized inverse mean curvature flow was proposed in
[Bray et al. 2007]. To our knowledge, the full Penrose inequality is still an open
problem.

Finally, let us mention some other applications and new developments in IMCF.
Using IMCF, Bray and Neves [2004] proved the Poincaré conjecture for 3-manifolds
with σ -invariant greater than that of RP3; see also [Akutagawa and Neves 2007].
Connections with p-harmonic functions and the weak formulation of inverse mean
curvature flow are described in [Moser 2007], where a new proof for the existence
of a proper weak solution is given, and in [Lee et al. 2011], where gradient bounds
and nonexistence results are proved. Recently, Kwong and Miao [2014] discovered
a monotone quantity for the IMCF, which they used to derive new geometric
inequalities for star-shaped hypersurfaces with positive mean curvature.

3. Definitions and one-dimensional examples

Definition 1 (homothetic solitons of arbitrary codimension). A submanifold 6n of
RN with nonvanishing mean curvature vector field

−→

H is called a homothetic soliton
for the inverse mean curvature flow if there exists a constant C ∈R−{0} satisfying

(1) −
1

|
−→

H |2
−→

H = CX⊥ on 6,

where the vector field X⊥ denotes the normal component of X . Notice that, for any
constant λ 6= 0, the rescaled immersion λX is a soliton with the same value of C .

Remark 2. On a homothetic soliton 6n
⊂ RN, we observe that the condition (1)

implies
|
−→

H |2 = 〈
−→

H,
−→

H〉 = 〈−C |
−→

H |2 X⊥,
−→

H〉 = −C |
−→

H |2〈X,
−→

H〉.

Since the mean curvature vector field
−→

H is nonvanishing, this shows

−〈
−→

H, X〉 = 1
C

or −〈4g X, X〉 = 1
C

or 4g|X |2 = 2
(

n− 1
C

)
,

where g denotes the induced metric on 6.

Proposition 3 (homothetic solitons of codimension one). Let 6n
⊂ Rn+1 be a

hypersurface with nowhere vanishing mean curvature vector field
−→

H =4g X. Then,
it becomes a homothetic soliton to the inverse mean curvature flow if and only if
there exists a constant C ∈ R−{0} satisfying

(2) −〈
−→

H, X〉 = 1
C

or equivalently, −〈4g X, X〉 = 1
C
.

Proof. According to the observation in Remark 2, the vector equality in (1) implies
the scalar equality in (2). To see that (2) implies (1), let N denote a unit normal
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vector, and let H =−(div6 N) be the corresponding scalar mean curvature. Then
−→

H =4g X = H N , and the condition (2) becomes

−〈H N, X〉 = 1
C
,

which implies

CX⊥ = 〈N,CX〉N =− 1
H

N =− 1
H 2

−→

H. �

Remark 4. A complete classification of the homothetic solitons for the inverse
curve shortening flow in the plane was established by J. Urbas [1999]. If a plane
curve C is a solution to (2), then its curvature function κ satisfies the Poisson
equation

4C
1
κ2 = 2(C − 1),

and this guarantees the existence of constants α1, α2 ∈ R such that

κ2
=

1
(C − 1)s2+α1s+α2

,

where s denotes an arc length parameter on the curve C. It is a straightforward
exercise to find explicit parametrizations of these homothetic solitons; for instance,
see [Castro and Lerma 2016, Section 4]. Examples include circles, involutes of
circles, classical logarithmic spirals, epicycloids, and hypocycloids.

Definition 5 (translators of arbitrary codimension). A submanifold 6n
⊂ RN with

nonvanishing mean curvature vector field
−→

H is called a translator for the inverse
mean curvature flow if there exists a nonzero constant vector field V satisfying

(3) −
1

|
−→

H |2
−→

H = V⊥ on 6,

where the vector field V⊥ denotes the normal component of V. We say that V is
the velocity of the translator 6.

Proposition 6 (translators of codimension one). Let 6n
⊂ Rn+1 be a hypersurface

with nonvanishing mean curvature vector field
−→

H = 4g X , where g denotes the
induced metric on 6. Then 6n is a translator to the inverse mean curvature flow if
and only if there exists a nonzero constant vector field V satisfying

(4) 〈V ,
−→

H〉 = −1.

Proof. We first observe that the condition (3) implies the equality

−1=
〈
−

1

|
−→

H |2
−→

H,
−→

H
〉
= 〈V⊥,

−→

H〉 = 〈V,
−→

H〉.

It remains to check that the scalar equality (4) implies the vectorial equality in (3).
Let N denote a unit normal vector and H =−(div6 N) its scalar mean curvature, so
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that
−→

H =4g X = H N . Then the condition (4) becomes −1= 〈V,
−→

H〉 = H〈V, N〉,
which implies

V⊥ = 〈V, N〉N =− 1
H

N =− 1
H 2

−→

H. �

Corollary 7 (height function on translating hypersurfaces). A submanifold 6n

of Rn+1 with nonvanishing mean curvature is a translator to the inverse mean
curvature flow with velocity V = (0, . . . , 0, 1) if and only if

(5) −1=46xn+1 on 6.

Now we prove that cycloids are the only one-dimensional translators in R2.

Theorem 8 (classification of translating curves in R2). Any translating curves with
unit speed for the inverse mean curvature flow in the Euclidean plane are congruent
to cycloids generated by a circle of radius 1

4 .

Proof. Let the connected curve C be a translator in the xy-plane with unit velocity
V = (0, 1). Adopt the parametrization X (s)= (x(s), y(s)), where s denotes the arc
length on C, and introduce the tangential angle function θ(s) such that the tangent
dX/ds = (cos θ, sin θ) and the normal N (s) = (− sin θ, cos θ). The translator
condition reads

−
1
κ
= cos θ.

Now, we integrate(dx
dθ
,

dy
dθ

)
=

( ds
dθ

dx
ds
,

ds
dθ

dy
ds

)
=

( 1
κ

cos θ, 1
κ

sin θ
)
= (−cos2θ,− cos θ sin θ)

to recover, up to translation, the curve

(x, y)= 1
4(−2θ − sin(2θ), 1+ cos(2θ)).

After introducing the new variable t =−π + 2θ , we have

(x, y)= 1
4(−π − t + sin t, 1− cos t).

Reflecting about the x-axis and then translating along the (1, 0) direction, the
translator is congruent to the cycloid represented by 1

4(t−sin t, 1−cos t). Therefore,
we conclude that C is congruent to the cycloid through the origin, generated by a
circle of radius 1

4 . �

Example 9 (tilted cycloid products: one-parameter family of translators with the
same speed in R3). We can use cycloids (one-dimensional translators in R2) to
construct a one-parameter family of two-dimensional translators with velocity
(0, 0, 1) in R3. Let (α(s), β(s)) denote a unit speed patch of the translating curve
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C with velocity (0, 1) in the αβ-plane, so that β ′′(s)=−1 on the translator C. For
each constant µ ∈

(
−
π
2 ,

π
2

)
, we introduce orthonormal vectors

v1 = (cosµ, 0,− sinµ), v2 = (0, 1, 0), v3 = (sinµ, 0, cosµ),

and associate the product surface 6µ = R×
1

cosµ
C defined by the patch

X(s, h)= hv1+
α(s)
cosµ

v2+
β(s)
cosµ

v3.

A straightforward computation yields

〈46µ X, (0, 0, 1)〉 =
〈 1
cosµ

(α′′(s)v2+β
′′(s)v3), (0, 0, 1)

〉
= β ′′(s)=−1,

which guarantees that 6µ becomes a translator with velocity (0, 0, 1) in R3.

4. Rigidity of hyperspheres and spherical expanders

We first prove that hyperspheres, as homothetic solitons to the inverse mean cur-
vature flow, are exceptionally rigid. This is a higher-dimensional generalization
of Andrews’ result [2003, Theorem 1.7] that circles centered at the origin are the
only compact homothetic solitons in R2. We then explain that the moduli space of
spherical expanders of higher codimension is large. Hereafter, we assume n ≥ 2.

Theorem 10 (uniqueness of spheres as compact solitons). Let 6n be a homothetic
soliton hypersurface for the inverse mean curvature flow in Rn+1. If 6 is closed,
then it is a round hypersphere (centered at the origin).

Proof. Since 6 is a compact hypersurface with nonvanishing mean curvature
vector, there exists an inward pointing unit normal vector field N along 6. Then
−→

H = 4g X = H N , where the scalar mean curvature H = − div6 N is positive.
Since 6 is a homothetic soliton, we have

(6) 1
C
=−〈X,

−→

H〉 = −H〈X, N〉,

for some constant C 6= 0. The Hsiung–Minkowski formula [Hsiung 1956] gives

0=
∫
6

(
1+ 1

n
〈
X,

−→

H
〉)

d6 =
(

1− 1
nC

) ∫
6

1 d6.

It follows that C = 1/n. Let κ1, . . . , κn be principal curvature functions on 6. In
terms of

σ2 =
2

n(n−1)

∑
1≤i< j≤n

κiκ j =
H 2

n2 −
1

n2(n−1)

∑
1≤i< j≤n

(κi − κ j )
2,
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we have the classical symmetric means inequality

H 2

n2 − σ2 =
1

n2(n−1)

∑
1≤i< j≤n

(κi − κ j )
2
≥ 0.

Applying the Hsiung–Minkowski formula again, we obtain the integral identity

0=
∫
6

(H
n
+
σ2
H
〈X,

−→

H〉
)

d6 =
∫
6

(H
n
−

nσ2
H

)
d6 =

∫
6

n
H

(H 2

n2 − σ2

)
d6.

Hence, H 2/n2
− σ2 vanishes on 6, which implies that κ1 = · · · = κn on 6. Since

6n is a closed umbilic hypersurface in Euclidean space, it is a hypersphere. It
follows from (6) that this hypersphere is centered at the origin. �

Lemma 11. A minimal submanifold of the hypersphere Sq≥2 is an expander for
the inverse mean curvature flow in Rq+1.

Proof. Let 6 p≥1 be a minimal submanifold of the hypersphere Sq
⊂ Rq+1, and let

X denote the position vector field in Rq+1. On the one hand, since X is already
normal to the hypersphere Sq

⊂ Rq+1, we observe the equality

X⊥ := X⊥(6⊂Rq+1)
= X.

On the other hand, according to the minimality of 6 p in Sq, we obtain

(7) 4g X + pX = 0,

where g denotes the induced metric on 6 p. Thus, we have

(8)
−→

H :=
−→

H6⊂Rq+1(X)=4g X =−pX and |
−→

H | = p|X | = p.

Combining the four equalities on 6 and taking C = 1
p
> 0, we get

−
1

|
−→

H |2
−→

H = C X⊥,

which indicates that 6 is an expander for the inverse mean curvature flow. �

Theorem 12. For any integer g ≥ 1, there exists at least one two-dimensional
compact embedded expander of genus g in R4.

Proof. For any integer g, Lawson [1970] showed that there exists a compact
embedded minimal surface 6 of genus g in S3. Lemma 11 shows that 6 becomes
an expander to the inverse mean curvature flow in R4. �

Remark 13. Castro and Lerma [2016] proved that the converse of Lemma 11 holds.
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5. Expanders with rotational symmetry

In this section, we investigate homothetic solitons in Rn+1 with rotational symmetry
about a line through the origin. To a profile curve C parametrized by (r(t), h(t)) for
t ∈ I in the half-plane {(r, h) | r > 0, h ∈R}, we associate the rotational hypersurface
in Rn+1 defined by

6n
=
{

X = (r(t) p, h(t)) ∈ Rn+1
| (r(t), h(t)) ∈ C, p ∈ Sn−1

⊂ Rn}.
The rotational hypersurface 6 satisfies the homothetic soliton (2) if and only if the
profile curve (r(t), h(t)) satisfies the ODE

(9) −

(
ṙ ḧ− ḣr̈

(ṙ2+ ḣ2)
3/2 +

n− 1

(ṙ2+ ḣ2)
1/2 ·

ḣ
r

)
−ḣr + ṙ h

(ṙ2+ ḣ2)
1/2 =

1
C

for some constant C > 0. We observe:

i. As long as the quantity r ḣ− hṙ is nonzero, we may write (9) as

ṙ ḧ− ḣr̈
ṙ2+ ḣ2

=−
(n− 1)

r
ḣ+

ṙ2
+ ḣ2

C(r ḣ− hṙ)
.

ii. The ODE (9) is invariant under the dilation (r, h) 7→ (λr, λh), unlike the profile
curve equation for shrinkers or expanders for the mean curvature flow.

iii. Spheres are expanders. The half-circle (r(t), h(t)) = (R cos t, R sin t) with
t ∈

(
−
π
2 ,

π
2

)
having the origin as its center obeys the ODE (9) with C = 1/n.

iv. Cylinders become expanders. The lines r(t) = constant are solutions to the
ODE (9) when C = 1/(n− 1).

v. We outline a way to deduce the ODE (9) using the homothetic soliton equation

4g|X |2 = 2
(

n− 1
C

)
.

We observe that 6 is a homothetic soliton with rotational symmetry if and
only if

(10) 2
(

n− 1
C

)
=4g(r2

+h2)=
1

rn−1
(
ṙ2+ḣ2

)1/2 d
dt

(
rn−1(

ṙ2+ḣ2
)1/2 d

dt
(r2
+h2)

)
,

which is equivalent to (9).

5.1. Construction of expanding infinite bottles. Writing the profile curve C as a
graph (r(h), h), we have the second-order nonlinear differential equation

(11) r ′′

1+r ′ 2
=

n−1
r
−

1+r ′ 2

C(r−hr ′)
.
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When C = 1/(n− 1), this equation becomes

(12) r ′′

1+r ′ 2
= (n− 1)

(
1
r
−

1+r ′ 2

r−hr ′

)
.

Observe that r(h)= constant is a solution to (12), which corresponds to a round
hypercylinder expander. Moreover, if r(h) is a solution to (12) with r ′(a)= 0 for
some a ∈R, then r(h)≡ r(a). Consequently, any nonconstant solution to (12) must
be strictly monotone.

In this section, we construct new examples of entire solutions to (12), which
correspond to hypercylinder expanders that interpolate between two concentric
round hypercylinders.

Theorem 14 (construction of infinite bottles). Let r0, h0, and r ′0 be constants
satisfying r0 > 0, h0 < 0, and r ′0 ∈ (0,−h0/r0), and let r(h) be the unique solution
to (12) satisfying the initial conditions r(h0) = r0 and r ′(h0) = r ′0. Then r(h) is
an entire solution, and there are constants 0 < rbot < rtop < ∞ such that r(h)
interpolates between rbot and rtop. More precisely, r(h) is strictly increasing,
limh→−∞ r(h)= rbot, limh→∞ r(h)= rtop, and there exists a point h1 ∈ (h0, 0) such
that r ′′(h1)= 0 and r ′′(h) has the same sign as (h1− h) when h 6= h1.

Proof. We separate the proof into two parts. First, we show that the solution is
entire and increasing, and there is a unique point where the concavity changes
sign. Second, we establish estimates that bound the solution between two positive
constants. We note that the rotation of the profile curve about the h-axis has
the appearance of an infinite bottle, which interpolates between two concentric
cylinders.

Part 1: Existence of expanding infinite bottles.

Notice that the condition r ′(h0)= r ′0 > 0 shows that r is a nonconstant solution
and guarantees that r ′(h) > 0. Also, observe that the assumption r ′0 ∈ (0,−h0/r0)

coupled with the defining initial conditions for r(h) shows that h+ r ′r is negative
at h = h0. In fact, by assumption, the terms r ′, −h − r ′r , r , and r − hr ′ are all
positive at h = h0. So, writing (12) as

(13) r ′′ = (n− 1)(1+ r ′ 2)r
′(−h−r ′r)
r(r−hr ′)

,

we see that r ′′(h0) > 0.
In the following lemma, we show that the concavity of r(h) changes sign exactly

once when r(h) is a maximally extended solution.

Lemma 15 (existence of a unique inflection point). Let r : (hmin, hmax)→ R+ be
a maximally extended solution. Then there exists a point h1 ∈ (h0, 0) such that
r ′′(h1)= 0. Furthermore, r ′′(h) has the same sign as (h1− h) when h 6= h1.
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Proof. Step A. We claim that there exists a point h1 ∈ (h0, 0) such that r ′′(h1)= 0.
We first treat the case where hmax ≤ 0. In this case, proving the claim is equivalent
to showing there is a point h1 ∈ (h0, hmax) such that r ′′(h1) = 0. Suppose to the
contrary that

r ′′(h) > 0 for all h ∈ (h0, hmax).

As hmax ≤ 0 and both r and r ′ are positive, we have (r−hr ′) > 0 for h ∈ (h0, hmax).
In fact, since (d/dh)(r−hr ′)=−hr ′′> 0, we see that (r−hr ′) > r0−h0r ′0. Using
(13) and the positivity of the functions r , r ′, (r − hr ′), and r ′′, we arrive at the
inequality (−h− rr ′) > 0, which leads to the estimate

0< r ′(h) <−
h
r
<−

h0

r0
for all h ∈ (h0, hmax).

Now, returning to (13), we have the estimate

0≤ r ′′(h)= (n− 1)(1+ r ′ 2)r
′(−h−r ′r)
r(r−hr ′)

≤ (n− 1)
(

1+
(h0

r0

)2)(−h0/r0)(−h0)

r0(r0−h0r ′0)

for h ∈ (h0, hmax). These estimates contradict the finiteness of the maximal endpoint
hmax, and we conclude that the claim is true in the case where hmax ≤ 0.

It still remains to prove the claim in the case where hmax > 0. However, in this
case the solution r(h) is defined when h = 0, and (12) implies

r ′′(0)=−(n− 1)r
′(0)2

r(0)
(1+ r ′(0)2) < 0.

It follows that there exists a point h1 ∈ (h0, 0) such that r ′′(h1)= 0.
Step B. We claim that r ′′(h) has the same sign as h1 − h. Taking a derivative

of (11), we have

r ′′′

1+r ′ 2
=

2r ′(r ′′)2

(1+r ′ 2)2
−

n−1
r2 r ′− 2r ′r ′′

C(r−hr ′)
−

1+r ′ 2

C(r−hr ′)2
hr ′′.

At the point h1, we obtain

r ′′′(h1)

1+r ′(h1)2
=−(n− 1) r ′(h1)

r(h1)
2 < 0,

which shows that r ′′(h) has the same sign as h1−h in a neighborhood of h1. In fact,
at any point h̄ where r ′′(h̄)= 0, we have r ′′′(h̄) < 0. This property tells us that the
sign of r ′′ can only change from positive to negative, and consequently r ′′ vanishes
at most once. Thus, r ′′(h) has the same sign as h1− h for all h ∈ (hmin, hmax). �

Next, we prove that the profile curves corresponding to the infinite bottles come
from entire graphs.

Lemma 16 (existence of entire solutions). We have hmin =−∞ and hmax =∞.
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Proof. Step A. We claim that hmax =∞. First, we show that hmax > 0. To see this,
notice that 0≤ r ′(h)≤ r ′(h1), r(h)≥ r0, and r − hr ′ ≥ r0 whenever h1 ≤ h ≤ 0. It
follows from (12) that the solution r(h) can be extended past h ≤ 0. Thus, hmax > 0.
Next, we show that hmax =∞. Since h1 < 0, we have (d/dh)(r−hr ′)=−hr ′′ ≥ 0
when h ≥ 0 so that (r − hr ′)≥ r(0) when h ≥ 0. We also have 0≤ r ′(h)≤ r ′(h1)

and r(h) ≥ r0 when h ≥ 0. As before, it follows from (12) that the solution r(h)
can be extended past any finite point.

Step B. We claim that hmin = −∞. Suppose to the contrary that hmin > −∞.
Then at least one of the functions r ′, 1/r , or 1/(r − hr ′) must blow up at the finite
point h = hmin. Since r ′′ > 0 on (hmin, h1), the positive function r ′ is increasing,
and we have r ′(h) ≤ r ′(h0) = r ′0 for all h ∈ (hmin, h0). So, the function r ′ does
not blow up at hmin. If the function 1/r is bounded above on (hmin, h0), then the
inequality 0 < r(h) < r(h)− hr ′(h) (when h ≤ 0) guarantees that 1/(r − hr ′) is
also bounded above on (hmin, h0), in which case, the solution can be extended prior
to hmin. Therefore, the function 1/r must blow up at h = hmin. In other words,

lim
h→hmin

+

r(h)= 0.

Observing this and using 0 < r ′(h) < r ′0 on (hmin, h0), we can find a sufficiently
small δ > 0 so that r ′(h)r(h) ≥ −h0/2 for all h ∈ (hmin, hmin + δ]. Also, the
inequality (d/dh)(r − hr ′)=−hr ′′ > 0 guarantees that

0< r(h)− hr ′(h)≤ ε1 := r(hmin+ δ)− (hmin+ δ)r ′(hmin+ δ).

It follows from these estimates and (12) that

d
dh
(arctan r ′)= r ′′

1+r ′ 2
= (n− 1)−(h+r ′r)

r−hr ′
·

r ′

r
≥ ε2

d
dh
(ln r),

where

ε2 =
(n−1)(−h0/2)

ε1
> 0

is a constant. Hence, the function F(h) := arctan(dr/dh)− ε2 ln r(h) is increasing
on (hmin, hmin+ δ]. Thus, we have the estimate

ε2 ln r(h)≥−F(hmin+ δ)+ arctan r ′ >−F(hmin+ δ).

Taking the limit as h→ hmin
+ and using limh→hmin

+ r(h)= 0 leads to a contradiction.
We conclude that hmin =−∞. �

So far, we have proved the existence of an entire bottle solution r(h) to (12). In
the next part of the proof we will establish estimates that squeeze the ends of the
infinite bottles between two cylinders.
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Part 2: Squeezing infinite bottles by two hypercylinders.

To establish upper and lower bounds for the solution r(h), we study the profile
curve C by writing it as a graph over the axis of rotation: (r, h(r)). Then, we have
the second-order nonlinear differential equation

(14) h′′

1+h′ 2
=−

(n−1)
r

h′+ 1+h′ 2

C(rh′−h)
,

or equivalently,

(15) h′′

1+h′ 2
=
(n− 1)hh′+ 1

C r
r(rh′− h)

+

( 1
C
− (n− 1)

) h′ 2

(rh′−h)
.

Throughout this section, we take C = 1/(n− 1), so that (14) takes the form

(16) h′′

1+h′ 2
=−(n− 1)

(
h′

r
−

1+h′ 2

rh′−h

)
=

n−1
r
·

r+hh′

rh′−h
.

Now, let h(r) be a maximally extended solution to (16) defined on (rbot, rtop).
Lemma 15 tells us that there is a point r1 ∈ (rbot, rtop) such that h′(r) > 0 and
h′′(r) > 0 for all r ∈ (r1, rtop) and that r1h′(r1)− h(r1) > 0.

Lemma 17 (existence of the outside cylinder barrier). We have

rtop <∞, lim
r→rtop−

h′(r)=∞, and lim
r→rtop−

h(r)=∞.

Proof. We introduce the angle functions θ, φ : (r1, rtop)→
(
0, π2

]
, defined by

θ(r)= arctan dh
dr

and φ(r)= arctan h
r
,

to rewrite the profile curve (16) as

(17) dθ
dr
=

n−1
r ·tan(θ−φ)

.

Combining this and 0 < tan(θ − φ) ≤ tan θ , we have dθ/dr ≥ (n− 1)/(r · tan θ),
which implies

d
dr

( tan θ
rn−1

)
≥

n−1
rn tan θ

≥ 0.

This tells us that the continuous function (tan θ)/rn−1 is increasing for r > r1. Set
θ1 = θ(r1). According to the estimate

d
dr

(
h−

tan θ1

nrn−1
1

rn
)
= tan θ −

tan θ1

rn−1
1

rn−1
=

(
tan θ
rn−1 −

tan θ1

rn−1
1

)
rn−1
≥ 0,

we see that the function
h−

tan θ1

nrn−1
1

rn
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is increasing. In particular, we have the height estimate

h ≥ h1+
tan θ1

nr1n−1 (r
n
− rn

1 ).

Observe that
1

tan(θ−φ)
=

1+tan θ tanφ
tan θ−tanφ

≥ tanφ.

Combining this with (17), we have

1
n− 1

dθ
dr
≥

tanφ
r
=

h
r2 ≥

1
r2

(
h1+

tan θ1

nr1n−1 (r
n
− rn

1 )

)
,

which implies

d
dr

(
θ

n−1
+

(
h1−

tan θ1

n
r1

)
1
r
−

tan θ1

n(n− 1)rn−1
1

rn−1
)
≥ 0.

Therefore, the function

F(r)= θ

n−1
+

(
h1−

tan θ1

n
r1

)
1
r
−

tan θ1

n(n− 1)rn−1
1

rn−1

is increasing, and for all r ∈ (r1, rtop), we have

θ

n−1
≥ F(r1)−

(
h1−

tan θ1

n
r1

)
1
r
+

tan θ1

n(n− 1)rn−1
1

rn−1.

Since the left-hand side is bounded above, and the right-hand side becomes arbitrarily
large as r goes to∞, we conclude that rtop <∞. It then follows that the increasing,
concave up function h(r) satisfies limr→rtop− h′(r) =∞. If h(r) has a finite limit
as r approaches rtop, then by the uniqueness of the cylinder r(h)≡ rtop, we get a
contradiction. Therefore, we also have limr→rtop− h(r)=∞. �

Next, we prove the following lemma, which shows that a solution with h < 0,
h′ > 0, and h′′ < 0 cannot approach the axis of rotation.

Lemma 18 (existence of the inside cylinder barrier). We have

rbot > 0, lim
r→rbot+

h′(r)=∞, and lim
r→rbot+

h(r)=−∞.

Proof. We first observe that h−rh′<0 and hh′<0. We introduce three well-defined
functions θ : (rbot, r0] →

(
0, π2

]
and 91, 92 : (rbot, r0] → R defined by

θ(r)= arctan dh
dr
, 91(r)=

−hh′

rh′−h
, and 92(r)=

r+hh′

hh′
,

and we rewrite the profile curve (16) as

(18) dθ
dr
=−

n−1
r
9192.
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Using the estimate

d91
dr
=
−r(h′)3+h((h′)2+hh′′)

(h−rh′)2
≤ 0,

we see that 91 is decreasing on (rbot, r0], and setting ε1 =91(r0), we have

(19) 91(r)≥ ε1 > 0.

Observing (hh′)′= h′2+h′′h > 0 and defining a constant ε2=−h(r0)h′(r0) > 0,
we have the estimate hh′ ≤−ε2 for all r ∈ (rbot, r0]. It follows that

(20) 92(r)= 1+ r
hh′
≥ 1− r

ε2
.

Combining (18), (19), and (20), we have

d
dr

(
θ

(n−1)ε1
+ ln r − r

ε2

)
≤ 0.

Therefore, the function 9(r)= θ

(n−1)ε1
+ ln r − r

ε2
is decreasing, and for all

r ∈ (rbot, r0], we have

θ

(n−1)ε1
≥− ln r + r

ε2
+9(r0).

Since the left-hand side is bounded above, and the right-hand side becomes arbitrarily
large as r goes to 0, we conclude that rbot > 0. It then follows that the increasing,
concave down function h(r) satisfies limr→rbot+ h′(r)=∞. If h(r) has a finite limit
as r approaches rbot, then by comparison with the cylinder r(h) ≡ rbot, we get a
contradiction. Therefore, we also have limr→rbot+ h(r)=−∞.

This completes the proof of both the lemma and Theorem 14. �

5.2. Other examples of complete solitons. Huisken and Ilmanen [1997a] used a
phase-plane analysis to exhibit complete, rotationally symmetric expanders for
the inverse mean curvature flow which are topological hyperplanes. For each
C > 1/n, they showed there exists a half-entire solution to (11) which intersects
the h-axis perpendicularly, and they provided numeric descriptions of these profile
curves. For C > 1/n and C 6= 1/(n − 1), they also indicated the existence of
entire solutions to (11) which are symmetric about the r-axis and correspond to
topological hypercylinders. (We note that the rotational expander constructed in
Theorem 14 is nonsymmetric in the sense that its profile curve is not symmetric
about the r -axis.) In this section, we explain how the techniques from Section 5.1
can be used to recover the examples and numeric pictures presented in [Huisken
and Ilmanen 1997a].
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Hyperplane expanders. We begin by considering the initial value problem where
we shoot perpendicularly to the axis of rotation. For C > 0, let h(r) be a solution
to (14) with h(0) = h0 < 0 and h′(0) = 0. This singular shooting problem is
well-defined (see [Baouendi and Goulaouic 1976] and [Drugan 2015]), and the
solution satisfies h′′(0)=−1/(nCh0) > 0. Differentiating (14) and analyzing the
equation for h′′′(r) shows that, under the above conditions, we have h′′(r) > 0 and
h′(r) > 0, for r > 0, as long as the solution is defined. The global behavior of the
solution ultimately depends on the value of C .

When h(r) is a solution to the above shooting problem, the graph (r, h(r)) is
part of a profile curve C, which corresponds to a rotational expander for the inverse
mean curvature flow. Applying the techniques from the proof of Theorem 14 to the
profile curve C leads to a description of the global behavior of this expander, which
ultimately depends on the value of C > 1/n. In terms of the profile curve C written
as a graph over the h-axis, we have the following result.

Theorem 19. For C > 1/n and h0 < 0, there exists a half-entire solution r(h)
to (11) that is defined for h > h0, and such that the curve (h, r(h)) intersects the
h-axis perpendicularly when h = h0. The solution r(h) has three types of behavior,
depending on the value of C :

(1) If C = 1/(n− 1), then r ′ > 0, r ′′ < 0, and there exists 0< rtop <∞ such that
limh→∞ r(h)= rtop.

(2) If C > 1/(n− 1), then r ′ > 0, r ′′ < 0, and limh→∞ r(h)=∞.

(3) If 1/n < C < 1/(n− 1), then there exists a point h1 such that r ′′(h) has the
same sign as (h− h1), and limh→∞ r(h)= 0.

Proof. When C = 1/(n− 1), the convexity of h(r) along with the analysis from
Lemma 17 shows that there is a point rtop <∞ such that limr→rtop− h′(r)=∞ and
limr→rtop− h(r)=∞. Written as a graph over the h-axis, this shows that there is a
solution r(h) to (11), defined for h> h0, which intersects the h-axis perpendicularly
at h0 and satisfies r ′ > 0, r ′′ < 0, and limh→∞ r(h)= rtop.

Next, when C > 1/(n − 1), we claim that the solution h(r) must exist for all
r > 0. To see this, suppose to the contrary that h′ increases to∞ at a point rtop<∞.
Then, since C > 1/(n− 1), (14) forces h ≥ εrh′ when r is close to rtop, for some
ε > 0. However, integrating this inequality shows that h′ does not blow up at a finite
point; hence the solution exists for all r > 0. Therefore, the solution h(r) exists
for all r > 0, and using h′′ > 0 and h′ > 0, we have limr→∞ h(r) =∞. Written
as a graph over the h-axis, this shows that there is a solution r(h) to (11), defined
for h > h0, which intersects the h-axis perpendicularly at h0 and satisfies r ′ > 0,
r ′′ < 0, and limh→∞ r(h)=∞.

Finally, when 1/n < C < 1/(n− 1), the factor 1
C − (n− 1) in (15) is positive

and the analysis in Lemma 17 can be used to show that h(r) does not exist for all
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r > 0. Moreover, using the positivity of 1
C − (n− 1) and integrating (14), we arrive

at an inequality that provides an upper bound for h. In terms of the profile curve
written as a graph over the h-axis, this says that the solution r(h) achieves a global
maximum at a finite point. Reading (9) in polar coordinates, we can show that r(h)
is defined for h > h0. This forces the concavity of r(h) to change sign at a finite
point, and as in the proof of Lemma 15, it follows that there is a point h1 such that
r ′′(h) has the same sign as (h− h1). Then, an argument similar to the one in the
previous paragraph shows that r(h) is not bounded below by a positive constant,
and we conclude that limh→∞ r(h)= 0. �

We remark that when 1/n < C < 1/(n− 1), the analogue of Lemma 17 holds,
but as we saw in the proof of the previous theorem, the analogue of Lemma 18 is
not true. Similarly, if C > 1/(n− 1), then the analogue of Lemma 18 holds, but
the analogue of Lemma 17 does not.

Hypercylinder expanders. We finish this section with a result on the construction
of rotational expanders that are topological hypercylinders.

Theorem 20. For C > 1/n and r0 > 0, there is a unique solution r(h) to (11) that
is symmetric about the r-axis and satisfies the initial condition r(0)= r0, r ′(0)= 0.
The solution r(h) has three types of behavior, depending on the value of C :

(1) If C=1/(n−1), then r(h)≡r0 (which corresponds to the round hypercylinder).

(2) If C > 1/(n − 1), then r(h) has a global minimum at h = 0, and there ex-
ists a point h1 > 0 such that r ′′(h) has the same sign as (h1 − |h|). Also,
limh→∞ r(h)=∞.

(3) If 1/n < C < 1/(n− 1), then r(h) has a global maximum at h = 0, and there
exists a point h1 > 0 such that r ′′(h) has the same sign as (|h| − h1). Also,
limh→∞ r(h)= 0.

Proof. It follows from (11) that the condition r ′(0) = 0 forces the solution to be
constant when C=1/(n−1), to have a global minimum at h=0 when C>1/(n−1),
and to have a global maximum at h= 0 when 1/n<C < 1/(n−1). To see that there
is a finite point h1> 0 where the concavity of r(h) changes sign when C > 1/(n−1),
we first observe that r(h) is increasing when h > 0, and consequently, it is defined
for all h > 0. An analysis of (14) shows that a positive solution h(r) cannot satisfy
h′′(r) < 0 and h′(r) > 0 for all r > 0 when C > 1/(n− 1); hence, there is a finite
point h1 > 0 where the concavity of r(h) changes sign. When 1/n<C < 1/(n−1),
the analysis in the proof of Theorem 19 can be used to show that the concavity of
r(h) changes sign at a finite point h1 > 0. The proofs of the remaining properties
are similar to the proofs given for Theorems 14 and 19. �
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BERGMAN THEORY OF CERTAIN
GENERALIZED HARTOGS TRIANGLES

LUKE D. EDHOLM

The Bergman theory of domains {|z1|
γ < |z2| < 1} in C2 is studied for cer-

tain values of γ , including all positive integers. For such γ , we obtain a
closed form expression for the Bergman kernel Bγ . With these formulas, we
make new observations relating to the Lu Qi-Keng problem and analyze the
boundary behavior of Bγ (z, z).

1. Introduction

For a domain�⊂Cn, the Bergman space is the set of square-integrable, holomorphic
functions on�. The Bergman kernel is a reproducing integral kernel on the Bergman
space that is indispensable to the study of holomorphic functions in several complex
variables. The purpose of this paper is to understand Bergman theory for a class of
bounded, pseudoconvex domains in C2. Define the generalized Hartogs triangle of
exponent γ > 0 to be the domain

(1.1) Hγ = {(z1, z2) ∈ C2
: |z1|

γ < |z2|< 1}.

H1 is the “classical” Hartogs triangle, a well-known pseudoconvex domain with
nontrivial Nebenhülle. When γ > 1, we call Hγ a fat Hartogs triangle, and when
0< γ < 1, we call Hγ a thin Hartogs triangle. Our main results are the following
two computations.

Theorem 1.2. Let s := z1w1, t := z2w2, and k ∈ Z+. The Bergman kernel for the
fat Hartogs triangle Hk is given by

(1.3) Bk(z, w)=
pk(s)t2

+ qk(s)t + sk pk(s)
kπ2(1− t)2(t − sk)2

,

where pk and qk are the polynomials

pk(s)=
k−1∑
l=1

l(k− l)sl−1, qk(s)=
k∑

l=1

(l2
+ (k− l)2sk)sl−1.

MSC2010: 32A25, 32A36, 32W05.
Keywords: Bergman kernel, fat Hartogs triangle, Bell’s transformation formula, Lu Qi-Keng.
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Theorem 1.4. Let s = z1w1, t = z2w2, and k ∈ Z+. The Bergman kernel for the
thin Hartogs triangle H1/k is given by

(1.5) B1/k(z, w)=
tk

π2(1− t)2(tk − s)2
.

There has been an extensive amount of research devoted to understanding
Bergman kernels of various classes of domains, and there are several instances
in which explicit formulas for the kernel have been obtained. The most common
method involves summing an infinite series, which is done in [D’Angelo 1978;
1994; Park 2008]. In [Boas et al. 1999], explicit formulas for the Bergman kernel
are produced using other techniques which avoid infinite series altogether. But
these situations are exceptional, and in most cases it is impossible to express the
Bergman kernel in closed form.

Despite the difficulty of producing explicit formulas, powerful estimates on
the Bergman kernel have been given for many classes of pseudoconvex domains.
Fefferman [1974] develops an asymptotic expansion of the kernel on smoothly
bounded, strongly pseudoconvex domains in Cn. Useful estimates also exist for
large classes of smoothly bounded, weakly pseudoconvex domains. See [Catlin
1989; McNeal 1989; 1994; Nagel et al. 1989] for some of the principal results on
finite type domains, and [Fu 2014] for domains with locally smooth boundaries and
constant Levi-rank.

At present, there are no general theorems about the behavior of the Bergman
kernel on pseudoconvex domains near unsmooth boundary points, which adds to
the intrigue of Theorems 1.2 and 1.4. Each generalized Hartogs triangle defined
by (1.1) has two very different kinds of boundary irregularities: the “corner points”
which occur at the intersection of the two bounding real hypersurfaces, and the
origin singularity, near which bHk cannot be expressed as the graph of a continuous
function.

|z2|

|z1|

|z2|

|z1|

This is one of several recent papers to study holomorphic function theory on
domains with similar kinds of boundary singularities. Chakrabarti and Shaw [2013]
investigate the Sobolev regularity of the ∂̄-equation on the classical Hartogs triangle.
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Chakrabarti and Zeytuncu [2016] study the L p-mapping properties of the Bergman
projection on the classical Hartogs triangle, and Chen [2013] studies L p-mapping
of the Bergman projection on analogous domains in higher dimensions. Zapałowski
[2016] characterizes proper maps between generalizations of the Hartogs triangle
in Cn. This author and McNeal investigate the Bergman projection on fat Hartogs
triangles in [Edholm and McNeal 2016]. It can be hoped that by understanding the
Bergman theory on example domains with boundary singularities such as Hγ , we
can gain deeper insight into the situation on more general domains.

2. Preliminaries

Bergman theory. Here we highlight some basic facts about Bergman theory that
are used throughout this paper. See [Krantz 1992] for a more detailed treatment. If
�⊂Cn is a domain, let O(�) denote the holomorphic functions on �. The standard
L2 inner product is denoted by

(2.1) 〈 f, g〉 =
∫
�

f · ḡ dV,

where dV denotes Lebesgue measure on Cn. L2(�) denotes the measurable func-
tions f such that 〈 f, f 〉 = ‖ f ‖2 <∞. We define the Bergman space A2(�) :=

O(�)∩ L2(�).
A2(�) is a Hilbert space with inner product (2.1), and for all z ∈�, the evaluation

functional evz : f 7→ f (z) is continuous. Therefore, the Riesz representation theorem
guarantees the existence of a function B� :�×�→ C satisfying

(2.2) f (z)=
∫
�

B�(z, w) f (w) dV (w), f ∈ A2(�).

We call B� the Bergman kernel, and when context is clear we may omit the
subscript. In addition to reproducing functions in the Bergman space via (2.2), the
Bergman kernel is conjugate symmetric and for each fixed w ∈�, B( ·, w)∈ A2(�).

Given an orthonormal Hilbert space basis {φα}α∈A for A2(�), the Bergman
kernel is given by the formula

(2.3) B(z, w)=
∑
α∈A

φα(z)φα(w),

which is independent of the choice of the basis.
Finally, the Bergman kernel transforms under biholomorphisms in the following

way: Let F :�→ �̃ be a biholomorphic map of domains in Cn. Then

(2.4) B�(z, w)= det F ′(z) ·B�̃(F(z), F(w)) · det F ′(w).
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The Bergman kernel of H1. The formula for the Bergman kernel of the classical
Hartogs triangle has been known for quite some time, at least since Bremermann’s
[1955] paper. Following the spirit of Bremermann’s argument, we use formula (2.4)
to compute BH1 . The map given by ψ(z1, z2)= (z1/z2, z2) is a biholomorphism of
H1 onto D× D∗, where D is the unit disc and D∗ is the punctured disc. It’s easy
to see that the Bergman kernel of D× D∗ is the same as that of D× D, which is
well known and given by

(2.5) BD×D(z, w)=
1

π2(1− z1w1)2(1− z2w2)2
= BD×D∗(z, w).

Seeing that detψ ′(z)= 1/z2, (2.4) says

(2.6) BH1(z, w)=
z2w2

π2(1− z2w2)2(z2w2− z1w1)2
.

Because of this computation, Theorems 1.2 and 1.4 only need to be proved for
integers k ≥ 2. Note the polynomial p1(s) in (1.3) is vacuously equal to 0.

Distance to the boundary and asymptotic growth rates. The following notation
will be used in and around Theorem 4.9. Given any z ∈�, define the distance to
the boundary of � by the function

δ�(z) :=min{‖z− ζ‖ : ζ ∈ b�},

where ‖ · ‖ denotes Euclidean distance. When the context is clear, we may omit the
subscript. We will also use the following notation to write inequalities. If A and
B are functions depending on several variables, write A . B to mean that there
is a constant K > 0, independent of relevant variables, such that A ≤ K · B. The
independence of which variables will be clear in context. Also write A ≈ B to
mean that A . B . A.

3. Bell’s transformation rule and derivation of the kernel

Equation (2.4) says that the Bergman kernels of two biholomorphic domains are
related by a simple formula. But applications of this transformation rule remain
limited by the fact that it’s rare to expect two domains in Cn to be biholomor-
phic. There is, however, a more general version of this transformation rule. Bell
[1982] proves a generalization which applies whenever we have two domains and
a proper holomorphic map from one onto the other. The statement of this more
general transformation rule appears below, and it will be essential to our proof of
Theorem 1.2.

Recall the classical fact that any holomorphic, proper map of � onto �̃ is
necessarily a branched covering of finite order.
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Theorem 3.1 (Bell’s transformation rule). Let � and �̃ be domains in Cn with
respective Bergman kernels B and B̃, and suppose φ is a proper holomorphic map
of order k from � onto �̃. Let u := det[φ′], and let 81,82, . . . , 8k be the branch
inverses of φ defined locally on �̃−V , where V := {φ(z) : u(z)= 0}. Finally, write
Uj := det[8′j ]. Then

(3.2) u(z)B̃(φ(z), w)=
k∑

j=1

B(z,8j (w))Uj (w).

We’re now ready to compute the Bergman kernel of fat Hartogs triangles with
integer exponents. For the rest of this paper, we’ll denote the Bergman kernel of
Hγ by Bγ .

Proof of Theorem 1.2. First we need to define the map φ and its local inverses
81, . . . , 8k . For each integer k ≥ 2, the function φ : H1→ Hk given by

φ(z)= (z1, zk
2) := (φ1(z), φ2(z))

is a branched cover of order k, since

|φ1(z)|k < |φ2(z)|< 1 ⇐⇒ |z1|
k < |zk

2|< 1

⇐⇒ |z1|< |z2|< 1.

We note u(z)= kzk−1
2 , so V is the set {z2 = 0}, which is disjoint from Hk . For

each j = 1, . . . , k, the map 8j (z)=
(
z1, ζ

j z1/k
2

)
defines a local inverse of φ, where

ζ = e2π i/k and z1/k
2 is taken to mean the root with argument in the interval [0, 2π/k).

From this we see Uj (z)=
(
ζ j z1/k−1

2

)
/k. We now apply Bell’s rule (3.2):

(3.3) Bk
(
(z1, zk

2), (w1, w2)
)
=

z2w
1/k
2

k2zk
2w2

k∑
j=1

B1
(
(z1, z2), (w1, ζ

jw
1/k
2 )

)
ζ̄ j

=
z2

2w
2/k
2

π2k2zk
2w2

k∑
j=1

ζ̄ 2 j(
1− z2w

1/k
2 ζ̄ j

)2(z2w
1/k
2 ζ̄ j − z1w1

)2

=
a2−k

π2k2

k∑
j=1

ζ̄ 2 j(
1− aζ̄ j

)2(aζ̄ j − s
)2 ,

where a = z2w
1/k
2 and s = z1w1. Define f j (a, s) := (ζ j

−a)2(a−sζ j )2 and notice
that

∏k
j=1 f j (a, s)=

∏k
j=1(ζ

j
− a)2 ·

∏k
j=1(a− sζ j )2 = (1− ak)2(ak

− sk)2.
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Now, it follows that

(3.4) (3.3)= a2−k

π2k2

k∑
j=1

ζ 2 j

f j (a, s)
=

a2−k ∑k
j=1 Fj (a, s)ζ 2 j

π2k2(1− ak)2(ak − sk)2
,

where Fj (a, s) := (1−ak)2(ak
−sk)2/ f j (a, s). Notice each Fj (a, s) can be written

as a polynomial in a of degree 4k− 4, so the numerator of (3.4) takes the form

(3.5) a2−k
k∑

j=1

Fj (a, s)ζ 2 j
=

3k−2∑
j=2−k

g j (s)a j
:= G(a, s).

We now wish to calculate the coefficient polynomials g j (s). Toward this goal,
observe that G(ζma, s)= G(a, s) for all m ∈ Z. This follows because

G(ζma, s)= (ζma)2−k
k∑

j=1

Fj (ζ
ma, s)ζ 2 j

= a2−k
k∑

j=1

(1− ak)2(ak
− sk)2

f j−m(a, s)
ζ 2 j−2m

= G(a, s).

Here, we’ve used the facts that

f j (ζ
ma, s)= ζ 4m f j−m(a, s) and f j (a, s)= f j+mk(a, s)

for all m ∈ Z. Because G has this invariance, we conclude that

(3.6) G(a, s)= a2−k
k∑

j=1

Fj (a, s)ζ 2 j
= g2k(s)a2k

+ gk(s)ak
+ g0(s).

It remains to calculate g2k(s), gk(s) and g0(s), and these polynomials are obtained
in the following lemma. But to avoid disrupting the flow of the paper with several
pages of algebra, we postpone its proof until Section 5.

Lemma 3.7. The coefficient polynomials g2k(s), gk(s) and g0(s) are given by

g2k(s)= k
k−1∑
l=1

l(k− l)sl−1
= kpk(s),(3.8)

gk(s)= k
k∑

l=1

(l2
+ (k− l)2sk)sl−1

= kqk(s),(3.9)

g0(s)= k
k−1∑
l=1

l(k− l)sk+l−1
= ksk pk(s).(3.10)

Using this lemma and letting t := ak
= zk

2w2, we see from (3.4) that
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Bk
(
(z1, zk

2), (w1, w2)
)
=

pk(s)t2
+ qk(s)t + sk pk(s)

kπ2(1− t)2(t − sk)2
.

This is the desired formula for Bk , except that both sides are a function of zk
2. This

is remedied by formally replacing the variable zk
2 with z2. This concludes the proof

of Theorem 3.1 �

Remark 3.11. It’s also true that the Bergman kernel of Hm/n is a rational function
whenever m, n ∈Z+. Indeed, the map (z1, z2) 7→ (z1zn−1

2 , zm
2 ) is a proper map from

H1 onto Hm/n , so Bell’s formula gives Bm/n as a finite sum. Zapałowski [2016]
characterizes the proper maps between fat Hartogs triangles. He shows there is a
proper map F : Hm/n→ Hp/q if and only if there are a, b ∈ Z+ such that

aq
p
−

bn
m
∈ Z.

Zapałowski’s description of proper maps shows that the methods employed in this
paper aren’t able to say anything about fat Hartogs triangles Hγ , for irrational γ .

Remark 3.12. Ramadanov’s theorem says that if {�k} is an increasing family
of domains such that �k → � b Cn , then B�k (z, w) → B�(z, w) absolutely
and uniformly on compact subsets of � × �. See [Ramadanov 1967] for the
first appearance of this fact, and [Boas 1996] for a generalization in the smoothly
bounded, pseudoconvex case. Notice that {Hk} is an increasing family and that Hk→

D× D∗ as k→∞. Ramadanov’s theorem shows that Bk(z, w)→ BD×D∗(z, w),
which is given in (2.5). This is difficult to see from direct computation.

Biholomorphism classes of domains. Let

ψ(z)= (ψ1(z), ψ2(z)) := (z1/z2, z2).

On page 330, we used the fact that ψ : H1 → D × D∗ is a biholomorphism to
compute the Bergman kernel of H1. We’ll give a very similar argument to prove
Theorem 1.4. Let 9(z)= (z1z2, z2), and see that 9 : D× D∗→ H1 is the inverse
of ψ . Now, notice that ψ :H1/(k+1)→H1/k is also a biholomorphism for all k ∈Z+,
because

|ψ1(z)|1/k < |ψ2(z)|< 1 ⇐⇒ |ψ1(z)|< |ψ2(z)|k < 1

⇐⇒ |z1/z2|< |z2|
k < 1

⇐⇒ |z1|< |z2|
k+1 < 1

⇐⇒ |z1|
1/(k+1) < |z2|< 1.

Letψk
:=ψ◦· · ·◦ψ be k copies ofψ composed together, soψk(z) := (z1z−k

2 , z2).
This gives a biholomorphism from H1/k to D× D∗ with inverse 9k

:= (z1zk
2, z2).
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We illustrate this chain of biholomorphisms below:

9 9 9 9 9
D× D∗ 
 H1 
 H1/2 
 · · · 
 H1/k 
 · · · .

ψ ψ ψ ψ ψ

Proof of Theorem 1.4. Using the biholomorphism ψk
: H1/k→ D× D∗ we easily

obtain the desired formula. Indeed, since det[(ψk)′](z)= z−k
2 ,

B1/k(z, w)=
1

zk
2w

k
2

B1(ψk(z), ψk(w))=
zk

2w
k
2

π2(1− z2w2)2(zk
2w

k
2− z1w1)2

. �

Remark 3.13. For m, n ∈ Z+, the map ψ(z) = (z1/z2, z2) also gives a biholo-
morphism from Hm/(n+m) onto Hm/n . Applying this map recursively, we see that
Hm/(n+km) and Hm/n are biholomorphic for all k ∈ Z+.

4. Consequences of the kernel formulas

The Lu Qi-Keng problem. One of the long-standing open problems in Bergman
theory is to classify the domains for which the Bergman kernel is nowhere vanishing.
This question was first raised by Lu Qi-Keng [1966]. We say that a domain �⊂Cn

is Lu Qi-Keng when it has zero-free Bergman kernel, and the investigation of which
domains have a zero-free Bergman kernel is known as the Lu Qi-Keng problem.
See [Boas 2000] for a good historical survey, a few key points of which we now
summarize.

The situation in the complex plane is relatively straightforward. When �⊂ C is
simply connected, the Riemann mapping theorem together with (2.4) show that �
is a Lu Qi-Keng domain, since the Bergman kernel of the unit disc is nonvanishing.
But a finitely connected domain in C with at least two nonsingleton boundary
components is not Lu Qi-Keng. See [Rosenthal 1969; Skwarczyński 1969] when �
is an annulus, and [Bell 1992] for a more general class of domains.

There is no such simple characterization of the situation known in higher dimen-
sions. In [Boas et al. 1999], it’s shown there are smoothly bounded, strongly convex
domains with real analytic boundary that are not Lu Qi-Keng in Cn, when n ≥ 3.
Contrary to previous expectations, Boas [1996] shows that “most” pseudoconvex
domains (with respect to a certain topology on the set of domains in Cn) have
vanishing Bergman kernel. Nevertheless, it is still desirable to understand why
domains from certain classes have zero-free Bergman kernels, while domains from
closely related classes may not. We now address this problem in the case of the
domains Hγ , where γ ∈ Z+ and γ−1

∈ Z+.
Using the explicit formulas for the Bergman kernels computed in the previous

section, we can check whether or not these domains are Lu Qi-Keng. The following
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corollary is immediate from (1.5), whose numerator vanishes if and only if at least
one of z2 or w2 equals zero.

Corollary 4.1. Let k be a positive integer. The thin Hartogs triangle H1/k is a Lu
Qi-Keng domain.

For fat Hartogs triangles with integer exponent k ≥ 2, we deduce the following
corollary from (1.3).

Corollary 4.2. Let k ≥ 2 be an integer. The fat Hartogs triangle Hk is not a Lu
Qi-Keng domain.

Proof. First consider the case k≥3. Let z=
(
0, i/
√

k− 1
)

andw=
(
0,−i/

√
k− 1

)
.

Then z, w ∈ Hk . Since pk(0) = k − 1 and qk(0) = 1, we see that Bk(z, w) = 0.
When k = 2, let z =

(
i/
√

2,
(√

7+ i
)
/4
)

and w =
(
−i/
√

2,
(√

7− i
)
/4
)
. It is

easily checked that z, w ∈ H2 and that B2(z, w)= 0. �

It’s immediate from (2.4) that a nonvanishing Bergman kernel is a biholomorphic
invariant. Corollary 4.2 lets us deduce the following:

Corollary 4.3. Let k ≥ 2 be an integer. Hk is not biholomorphic to D× D∗.

Remark 4.4. Using Ramadanov’s theorem in conjunction with Hurwitz’s theorem
on zeroes of holomorphic functions, we see that for each integer k ≥ 2, there is
an sk ∈ [k − 1, k) such that for all γ ∈ (sk, k], the Bergman kernel Bγ of Hγ has
zeroes. It seems plausible to conjecture that sk = k − 1, i.e., that no fat Hartogs
triangle of exponent γ > 1 is Lu Qi-Keng.

Remark 4.5. As was mentioned in Remark 3.12, Hk→ D× D∗ as k→∞. The
Bergman kernel BD×D∗ is zero free, so for any fixed compact subset K ⊂ D× D∗,
Ramadanov’s theorem tells us that the Bergman kernel Bk restricted to K is zero
free for all k sufficiently large. We see this happen as the zero of Bk provided in the
proof of Corollary 4.2 is pushed to the origin. It would be interesting to do further
analysis of the zero set of the polynomial in the numerator of Bk .

Diagonal boundary behavior. The asymptotic behavior of B�(z, z) as z tends to
the boundary has been studied for many classes of smoothly bounded, pseudoconvex
domains. [Hörmander 1965; Fefferman 1974] are two seminal papers dealing with
the strongly pseudoconvex case. Results also exist for many classes of smoothly
bounded, weakly pseudoconvex domains. See [McNeal 1989; Catlin 1989; Nagel
et al. 1989] for finite-type domains in C2, and [McNeal 1994] for finite-type, convex
domains in Cn. Refer to [Fu 2014] for analogous results on smoothly bounded
domains with constant Levi rank. But all these estimates are for classes of domains
with boundary smoothness, and there are presently no general theorems about the
behavior of B�(z, z) for pseudoconvex domains near singular boundary points.

Using the explicit formulas for the Bergman kernel, we establish the following:
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Lemma 4.6. Let k ∈ Z+. We have the following behavior of the Bergman kernel
restricted to the diagonal:

(4.7) Bk(z, z)≈
1

(1− |z2|)2(|z2| − |z1|k)2
, z ∈ Hk .

Proof. In this proof we are concerned with Bk(z, z), so write s := |z1|
2 and t := |z2|

2.
From Theorem 1.2 we see that

Bk(z, z)=
pk(s)t2

+ qk(s)t + sk pk(s)
kπ2(1− t)2(t − sk)2

,(4.8)

where pk(s) and qk(s) are given in the statement of Theorem 1.2. We now estimate
the numerator of (4.8). Notice that qk(s)≥ 1 for all s ∈ [0, 1), and so

t ≤ pk(s)t2
+ qk(s)t + sk pk(s) < t[2pk(1)+ qk(1)]. t,

since sk< t . Now estimate the terms in the denominator. It’s easy to see that both

(1− t)2 ≈ (1− |z2|)
2,

(t − sk)2 ≈ |z2|
2(|z2| − |z1|

k)2.

Here, we’ve used the fact that |z2|
2
≤ (|z2|+|z1|

k)2< 4|z2|
2. Putting these estimates

together, we obtain (4.7). �

Let � ⊂ C2 be a bounded domain and ζ ∈ b� a smooth, Levi-flat boundary
point. It can be shown that B�(z, z)≈ δ�(z)−2 as z→ ζ . See [Fu 2014] for more
information. The domains Hk are Levi-flat at all smooth boundary points, because
the smooth parts of the boundary can be locally foliated by analytic discs. We
explicitly see this asymptotic behavior from estimate (4.7). In fact, this estimate also
lets us determine the asymptotic growth rate of Bk(z, z) as z tends to the boundary
singularity at the origin. When z is sufficiently close to 0, it’s straightforward to see
|z2| − |z1|

k
≈ δk(z), the distance of z to the boundary of Hk . From this, we deduce:

Theorem 4.9. Let k ∈ Z+ and δk(z) be the distance of z to bHk . Then

Bk(z, z)≈ δk(z)−2 as z→ 0.

Remark 4.10. Following steps analogous to those in Lemma 4.6, we can show

B1/k(z, z)≈
1

(1− |z2|)2(|z2|k − |z1|)2
, z ∈ H1/k .

This estimate can be used to determine the asymptotic growth rate of B1/k(z, z) as
z tends to the boundary singularity at the origin. When z is sufficiently close to 0,
it’s straightforward to check that |z2|

k
− |z1| ≈ δ1/k(z), the distance of z to bH1/k .

From this we conclude that B1/k(z, z)≈ δ1/k(z)−2 as z→ 0.
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5. Proof of Lemma 3.7

Equation (3.6) tells us that

(5.1) a2−k
k∑

j=1

Fj (a, s)ζ 2 j
= g2k(s)a2k

+ gk(s)ak
+ g0(s).

We prove Lemma 3.7 by splitting the calculation of g2k(s), gk(s) and g0(s) into
two separate lemmas.

Lemma 5.2. Let

hl(s) :=
l∑

r=0

sr.

For each j = 1, . . . , k, the respective coefficient functions of the a3k−2, a2k−2 and
ak−2 terms of Fj (a, s)ζ 2 j are equal to the following:

a3k−2
:

k−2∑
l=0

hl(s)hk−2−l(s),

a2k−2
: 2

k−2∑
l=0

sk−1−lhl(s)2+ hk−1(s)2,

ak−2
: sk

k−2∑
l=0

hl(s)hk−2−l(s).

In particular, note that these expressions have no j dependence.

Proof. In this calculation of the coefficient functions of the a3k−2, a2k−2 and ak−2

terms appearing in Fj (a, s)ζ 2 j, we’ll often write θ := ζ j to cut down on superscripts.

(5.3) Fj (a, s)=
(1− ak)2(ak

− sk)2

f j (a, s)
=

(ak
−1

a−θ

)2(ak
−sk

a−sθ

)2

=

( k∑
m=1

ak−mθm−1
)2( k∑

n=1

ak−n(sθ)n−1
)2

=

( k∑
m=1

k∑
n=1

a2k−m−nθm+n−2sn−1
)2

.

To better understand the double sum inside the parentheses of (5.3) above, we
split this sum into three pieces, A, B and C , depending on the value of m+ n. Let
A be the sum of the terms with 2 ≤ m + n ≤ k, B be the sum of the terms with
m+ n = k+ 1, and C be the sum of the terms with k+ 2≤ m+ n ≤ 2k.



338 LUKE D. EDHOLM

We rewrite A by letting l = m+ n− 2 be the index of summation. Then

A =
k−2∑
l=0

a2k−l−2θ lhl(s).

For B, only include those terms with m+ n = k+ 1, so we don’t have an outside
sum. Therefore,

B = ak−1θ k−1hk−1(s).

For C , let l = m+ n− k− 2 be the index of summation. Then

C =
k−2∑
l=0

ak−2−lθ k+lsl+1hk−2−l(s).

So we have

(5.3)=
( k−2∑

l=0

a2k−2−lθ lhl(s)+ ak−1θ k−1hk−1(s)+
k−2∑
l=0

ak−2−lθ k+lsl+1hk−2−l(s)
)2

= (A+ B+C)2

= A2
+ B2

+C2
+ 2AB+ 2BC + 2AC.

I emphasize that as a polynomial in a, A has powers of a ranging from a2k−2

to ak, B only has an ak−1 term, and C has terms ranging from ak−2 to a0. This
observation greatly simplifies the computations below.

Computation of the a3k−2 coefficient. For the coefficient of the a3k−2 term in
Fj (a, s)θ2, it is sufficient to consider the coefficient function of a3k−2 in A2θ2:

A2θ2
=

( k−2∑
m=0

a2k−2−mθmhm(s)
)( k−2∑

n=0

a2k−2−nθnhn(s)
)
θ2

= θ2
k−2∑
m=0

k−2∑
n=0

a4k−4−m−nθm+nhm(s)hn(s).

Letting m+n = k− 2, we find that the coefficient function of a3k−2 is independent
of θ (since θ k

= 1), and therefore independent of j . This function is given by

(5.4)
k−2∑
l=0

hl(s)hk−2−l(s).

Computation of the a2k−2 coefficient. For the coefficient of the a2k−2 term in
Fj (a, s)θ2, it is sufficient to consider the coefficient of a2k−2 in (2AC + B2)θ2:
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(2AC + B2)θ2

=

[
2
( k−2∑

m=0

a2k−2−mθmhm(s)
)( k−2∑

n=0

ak−2−nθ k+nsn+1hk−2−n(s)
)

+ (ak−1θ k−1hk−1(s))2
]
θ2

=

[
2

k−2∑
m=0

k−2∑
n=0

a3k−4−m−nθ k+m+nsn+1hm(s)hk−2−n(s)+ a2k−2θ2k−2hk−1(s)2
]
θ2.

Letting m+n = k− 2, we find that the coefficient function of a2k−2 is independent
of θ (since θ2k

= 1), and therefore independent of j . This function is given by

(5.5) 2
k−2∑
l=0

sk−1−lhl(s)2+ hk−1(s)2.

Computation of the ak−2 coefficient. For the coefficient of the ak−2 term, it is
sufficient to determine the coefficient of ak−2 in C2θ2:

C2θ2
=

( k−2∑
m=0

ak−2−mθ k+msm+1hk−2−m(s)
)( k−2∑

n=0

ak−2−nθ k+nsn+1hk−2−n(s)
)
θ2

= θ2
k−2∑
m=0

k−2∑
n=0

a2k−4−m−nθ2k+m+nsm+n+2hk−2−m(s)hk−2−n(s).

Letting m+ n = k− 2, we find that the coefficient function of ak−2 is independent
of θ (since θ3k

= 1), and therefore independent of j . This function is given by

(5.6) sk
k−2∑
l=0

hl(s)hk−2−l(s). �

Now we rewrite (5.4), (5.5) and (5.6) as simpler polynomials:

Lemma 5.7. Again, let hl(s)=
∑l

r=0 sr. Then we have the following equalities:

k−2∑
l=0

hl(s)hk−2−l(s)=
k−1∑
l=1

l(k− l)sl−1,(5.8)

2
k−2∑
l=0

sk−1−lhl(s)2+ hk−1(s)2 =
k∑

l=1

(l2
+ (k− l)2sk)sl−1.(5.9)

Proof. Focus on (5.8) first. Notice that

hl(s)hk−2−l(s)=
( l∑

m=0

sm
)( k−2−l∑

n=0

sn
)
=

k−2∑
r=0

sr
+

k−3∑
r=1

sr
+ · · · +

k−2−L∑
r=L

sr,
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where L =min{l, k− 2− l}. Using this, we see

(5.10) (5.4)=
k−2∑
l=0

hl(s)hk−2−l(s)

=

k−2∑
l=0

( k−2∑
r=0

sr
+

k−3∑
r=1

sr
+ · · · +

k−2−L∑
r=L

sr
)

= (k− 1)
k−2∑
r=0

sr
+ (k− 3)

k−3∑
r=1

sr
+ · · · + (k− 2K − 1)

k−2−K∑
r=K

sr,

where K =
⌊1

2(k− 2)
⌋

. From here, we compute that the coefficient of sl in (5.4) is
given by

L∑
m=0

(k− 2m− 1)= (L + 1)(k− 1)− 2
L∑

m=0

m

= (L + 1)(k− L − 1)= (l + 1)(k− l − 1).

Therefore,

(5.4)=
k−2∑
l=0

hl(s)hk−2−l(s)=
k−2∑
l=0

(l + 1)(k− l − 1)sl
=

k−1∑
l=1

l(k− l)sl−1,

where we’ve re-indexed the sum in the last equality, obtaining the form of (5.8).
Now we’ll establish (5.9). Note that

hr (s)2 = 1+ 2s+ · · · + rsr−1
+ (r + 1)sr

+ rsr+1
+ · · · + 2s2r−1

+ s2r.

Using this, write the pieces of (5.5) = 2
∑k−2

l=0 sk−1−lhl(s)2 + hk−1(s)2 in the
following way:

sk−1h0(s)2 = sk−1

sk−2h1(s)2 = sk−2
+ 2sk−1

+ sk

sk−3h2(s)2 = sk−3
+ 2sk−2

+ 3sk−1
+ 2sk

+ sk+1

...
...

hk−1(s)2 = 1+ · · · + (k− 1)sk−2
+ ksk−1

+ (k− 1)sk
+ · · ·+ s2k−2.

The coefficient of sl in (5.5) can be obtained by considering the vertical columns
above. Notice the coefficients of sl and s2k−2−l are always the same. When
0≤ l ≤ k− 1, we have that the coefficient of sl is given by

2
l∑

r=1

r + (l + 1)= (l + 1)2.
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Therefore,

(5.5)=
k−1∑
l=0

(l + 1)2sl
+

k−2∑
l=0

(k− (l + 1))2sk+l

=

k−1∑
l=0

(
(l + 1)2+ (k− l − 1)2sk)sl

=

k∑
l=1

(
l2
+ (k− l)2sk)sl−1,

where we have re-indexed the sum in the last equality to obtain the form of (5.9). �

Proof of Lemma 3.7. Lemmas 5.2 and 5.7 together give us (3.8), (3.9) and (3.10).
�
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TRANSFERENCE OF CERTAIN MAXIMAL
HILBERT TRANSFORMS ON THE TORUS

DASHAN FAN, HUOXIONG WU AND FAYOU ZHAO

Using transference techniques, we show that L p(Rn) estimates for many
operators may be transferred to the L p(Tn) estimates on the n-torus Tn

via measure-preserving actions of Rn. These operators include the maximal
bilinear Hilbert transform, the oscillation, and the variation and short vari-
ation operators of the Hilbert transform on the torus T. As an extension, we
study the (maximal) bilinear Riesz transforms on the n-torus Tn.

1. Introduction

Let C be the complex plane and R2
+

the upper half plane

R2
+
= {(x, y)= x + iy ∈ C : y > 0}.

The boundary of R2
+

is the real line R. Consider the boundary condition f ∈ L p(R),
where f is real-valued and 1≤ p <∞. It is well known that the Poisson integral

u(x, y)= Py( f )(x)= 1
π

∫
R

f (t)
y

(x − t)2+ y2 dt

is the solution of the Dirichlet problem on R2
+

. Precisely, u is a harmonic function
on R2

+
and u(x, y) tends to f (x) nontangentially for almost all x ∈ R as y→ 0+.

There is a (unique) harmonic function

v(x, y)= Q y( f )(x)= 1
π

∫
R

f (t) x−t
(x−t)2+y2 dt

such that
F(z)= u(x, y)+ iv(x, y)

is an analytic function on R2
+

. This function Q y( f )(x) is called the conjugate
Poisson integral of f . From [Stein and Weiss 1971, p. 186], we know that the
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function F(z), with z = x + iy, has the nontangential limit f (x)+ i
π

H f (x) for
almost all x ∈ R. Here H is the Hilbert transform defined by

(1) H f (x)= lim
ε→0

Hε f (x)

and

Hε f (x)=
∫
|t |>ε

f (x − t)
t

dt.

To study the pointwise convergence of H f (x), one then needs to study the truncated
maximal Hilbert transform

H∗ f (x)= sup
ε>0
|Hε f (x)|.

Let
D = {z = x + iy ∈ C : |z|< 1}

be the unit disc. Its boundary T= ∂D is the one-dimensional torus. Without loss of
generality, we may identify the torus T with its fundamental interval

[
−

1
2 ,

1
2

)
. The

Dirichlet problem on D with the boundary condition f̃ ∈ L p(T) similarly raises an
analytic function F̃(z)= ũ(x, y)+ i ṽ(x, y). The function F̃(z), for z = x+ iy ∈ D,
has the nontangential limit f̃ (x)+ i

π
H̃ f̃ (x) for almost all points x ∈ T. Here H̃ is

the periodic version of the Hilbert transform defined by

H̃ f̃ (x)= lim
ε→0

H̃ε f̃ (x)

and

(2) H̃ε f̃ (x)=
∫
ε<|t |<1

2

f̃ (x − t) cot(π t) dt.

By computing the Fourier coefficients, one can see that H̃ f̃ (x) has the Fourier
series

H̃ f̃ (x)=
∞∑

k=−∞

i sgn(k)ake2π ikx

for any

f̃ (x)=
∞∑

k=−∞

ake2π ikx

(see also [Edwards and Gaudry 1977]). It is known that
∑
∞

k=−∞ sgn(k)ake2π ikx

(up to a constant multiplier) is the conjugate Fourier series of f̃ .
The bilinear Hilbert transform H( f, g) and the maximal bilinear Hilbert transform

H∗( f, g) are defined respectively as

(3) H( f, g)(x)= lim
ε→0

∫
|t |>ε

f (x − t)g(x + t)
t

dt
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and

H∗( f, g)(x)= sup
ε>0

∣∣∣∣∫
|t |>ε

f (x − t)g(x + t)
t

dt
∣∣∣∣.

The operator H( f, g) is not merely a formal extension from the Hilbert transform.
It has deep roots in the study of certain harmonic analysis and PDE problems. The
study of the bilinear Hilbert transform H( f, g) was initiated by Calderón when he
studied certain Cauchy integrals Cγ ( f ) along the Lipschitz curves. In order to obtain
the L2 boundedness of Cγ ( f ), Calderón introduced a commutator (now known as
the first Calderón commutator) and raised a famous conjecture, which says that H
is a bounded operator from L∞× L2

→ L2; see [Jones 1994]. The conjecture was
solved in a more general setting by Lacey and Thiele in their celebrated theorem:

Theorem A1 [Lacey and Thiele 1997]. Let 1< q , r ≤∞, and 2
3 < p <∞. Then

‖H( f, g)‖L p(R) � ‖ f ‖Lq (R)‖g‖Lr (R),

provided 1
p =

1
q +

1
r .

The notation A � B for A, B > 0 means that there exists a constant c > 0
independent of all essential variables such that A ≤ cB. We also use the notation
A ' B when A � B and B � A.

The proof of the theorem by Lacey and Thiele involves a very elegant method of
time-frequency analysis. The essence of the matter lies in their formulation and
proof of certain almost orthogonal results on the phase space. Maximal forms of
these results must be proved. These maximal inequalities rely in an essential way on
a novel maximal inequality of Bourgain [1989; 1990]. By refining these maximal
bilinear estimates and Bourgain’s lemma, Lacey further obtained the following
remarkable theorem:

Theorem A2 [Lacey 2000]. Let 1< q , r ≤∞ and 1
p =

1
q +

1
r . If 2

3 < p <∞, then

‖H∗( f, g)‖L p(R) � ‖ f ‖Lq (R)‖g‖Lr (R).

Based on Theorems A1 and A2, it is natural to expect to establish analogous
theorems for the periodic bilinear Hilbert transform on the torus. Here, the bilinear
Hilbert transform and its maximal operator on the torus are defined, initially on
C∞(T), by

H̃( f̃ , g̃)(x)= p.v.
∫
|t |<1

2

f̃ (x − t)g̃(x + t) cot(π t) dt

and

H̃∗( f̃ , g̃)(x)= sup
ε>0

∣∣∣∣∫
ε<|t |<1

2

f̃ (x − t)g̃(x + t) cot(π t) dt
∣∣∣∣.
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However, it seems quite difficult to adopt the time-frequency method used in [Lacey
and Thiele 1997]. Thus, in [Fan and Sato 2001], the authors used a “transference”
method to reduce the boundedness of H̃( f̃ , g̃) to the boundedness of H( f, g)
by estimating an error term. The method of transference is a useful tool for
obtaining norm estimates independent of the dimension for classical operators acting
on L p(Rn) (see [Auscher and Carro 1994; Blasco and Gillespie 2009; Coifman
and Weiss 1977; Gillespie and Torrea 2004; Rubio de Francia 1989]). Fan and
Sato [2001] proved the de Leeuw-type theorems (see [de Leeuw 1965]) for the
transference of multilinear operators on Lebesgue spaces from Rn to the n-torus.
In particular, they proved:

Theorem B. Let 1< q , r ≤∞ and 1
p =

1
q +

1
r . If 2

3 < p <∞, then

‖H̃( f̃ , g̃)‖L p(T) � ‖ f̃ ‖Lq (T)‖g̃‖Lr (T).

Note that

H̃( f̃ , g̃)(x)'
∑
k1∈Z

∑
k2∈Z

sgn(k1− k2)ak1ak2e2π i(k1+k2)x ,

where
f̃ (x)=

∑
k1∈Z

ak1e2π ik1x and g̃(x)=
∑
k2∈Z

ak2e2π ik2x .

In [Fan and Sato 2001], the authors also studied the boundedness of the maximal
multiplier operator

T̃ ∗∗( f̃ , g̃)(x)= sup
ε>0

∣∣∣∣∑
k1∈Z

∑
k2∈Z

m(εk1, εk2)ak1ak2e2π i(k1+k2)x
∣∣∣∣,

where m is a bounded and continuous function (see also [Berkson et al. 2006;
2007; Blasco et al. 2005; Grafakos and Honzík 2006] for transference methods on
maximal bilinear operators). For the bilinear Hilbert transform, clearly we have

H̃( f̃ , g̃)(x)= H̃∗∗( f̃ , g̃)(x),

since∑
k1∈Z

∑
k2∈Z

sgn(εk1−εk2)ak1ak2e2π i(k1+k2)x =
∑
k1∈Z

∑
k2∈Z

sgn(k1−k2)ak1ak2e2π i(k1+k2)x .

This observation indicates

H̃∗( f̃ , g̃)(x) 6= H̃∗∗( f̃ , g̃)(x).

Since the boundedness of H̃∗( f̃ , g̃) still remains open, the first aim of this paper is
to solve this problem by establishing the following analog of Lacey’s theorem.
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Theorem 1.1. Let 1< q , r ≤∞ and 1
p =

1
q +

1
r . If 2

3 < p <∞, then

‖H̃∗( f̃ , g̃)‖L p(T) � ‖ f̃ ‖Lq (T)‖g̃‖Lr (T).

We adopt the method in [Fan and Sato 2001] to prove the theorem, in which
the main issue is to estimate error terms in order to reduce the boundedness of
Lq(T)× Lr (T)→ L p(T) to the known result for Lq(R)× Lr (R)→ L p(R). This
method additionally allows us to treat other operators related to the maximal
Hilbert transform. Recall that the limits (1) and (3) mentioned above exist almost
everywhere. Motivated by probability and ergodic theory [Bourgain 1989; Jones
1997; 1998], in order to obtain extra information on their convergence rate, as well
as an estimate on the number of λ-jumps they can have, Campbell, Jones, Reinhold
and Wierdl [Campbell et al. 2000] studied the oscillation and variation of the family
(Hε) as ε approaches 0 as follows.

For each fixed sequence (tk)↘ 0, define the oscillation and variation operators by

O(H∗ f )(x)=
( ∞∑

k=1

sup
tk+1≤εk+1<εk≤tk

|Hεk f (x)− Hεk+1 f (x)|2
)1

2
,(4)

V%(H∗ f )(x)= sup
(εk)↘0

( ∞∑
k=1

|Hεk f (x)− Hεk+1 f (x)|%
)1
%

,(5)

respectively. Also, define

Vk(H∗ f )(x)= sup
(ε j )↘0

( ∑
1

2k <ε j+1<ε j≤
1

2k−1

|Hε j f (x)− Hε j+1 f (x)|2
)1

2
,

where the supremum is taken over all decreasing sequences (ε j ). Then the “short
variation operator” is defined by

(6) SV (H∗ f )(x)=
( ∞∑

k=−∞

Vk(H∗ f (x))2
)1

2
.

For convenience, all the integrals are defined on the Schwartz class.
We recall the following results from [Campbell et al. 2000].

Theorem C. The oscillation operator O(H∗) satisfies

‖O(H∗ f )‖L p(R) ≤ cp‖ f ‖L p(R)

for 1< p <∞ and |{x ∈ R : O(H∗ f )(x) > λ}| ≤ (c/λ)‖ f ‖L1(R)
.

Theorem D. If % > 2, then the variation operator V%(H∗) satisfies

‖V%(H∗ f )‖L p(R) ≤ c(p, %)‖ f ‖L p(R)

for 1< p <∞ and |{x ∈ R : V%(H∗ f )(x) > λ}| ≤ (c(%)/λ)‖ f ‖L1(R)
.
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Theorem E. The short variation operator SV (H∗) satisfies

‖SV (H∗ f )‖L p(R) ≤ cp‖ f ‖L p(R)

for 1< p <∞ and |{x ∈ R : SV (H∗ f )(x) > λ}| ≤ (c/λ)‖ f ‖L1(R).

Our second aim is to use the transference method to study the analogs of these
operators on the torus. For each fixed sequence (tk)↘ 0, define the oscillation and
variation operators on the torus by

O(H̃∗ f̃ )(x)=
( ∞∑

k=1

sup
tk+1≤εk+1<εk≤tk

|H̃εk f̃ (x)− H̃εk+1 f̃ (x)|2
)1

2
,

V%(H̃∗ f̃ )(x)= sup
(εk)↘0

( ∞∑
k=1

|H̃εk f̃ (x)− H̃εk+1 f̃ (x)|%
)1
%

,

respectively. Also, define the operator Vk(H̃∗) on the torus by

Vk(H̃∗ f̃ )(x)= sup
(ε j )↘0

( ∑
1

2k <ε j+1<ε j≤
1

2k−1

|H̃ε j f̃ (x)− H̃ε j+1 f̃ (x)|2
)1

2
,

where the supremum is taken over all decreasing sequences (ε j ). Then define the
“short variation operator” on the torus by

SV (H̃∗ f̃ )(x)=
( ∞∑

k=−∞

(Vk(H̃∗ f̃ (x))2
)1

2
.

For simplicity, we define these operators on the space C∞(T).
We establish the following theorems.

Theorem 1.2. The oscillation operator O(H̃∗) satisfies

‖O(H̃∗ f̃ )‖L p(T) ≤ cp‖ f̃ ‖L p(T)

for 1< p <∞ and |{x ∈ T : O(H̃∗ f̃ )(x) > λ}| ≤ (c/λ)‖ f̃ ‖L1(T)
.

Theorem 1.3. If % > 2, then the variation operator V%(H̃∗) satisfies

‖V%(H̃∗ f̃ )‖L p(T) ≤ c(p, %)‖ f̃ ‖L p(T)

for 1< p <∞ and |{x ∈ T : V%(H̃∗ f̃ )(x) > λ}| ≤ (c(%)/λ)‖ f̃ ‖L1(T)
.

Theorem 1.4. The short variation operator SV (H̃∗) satisfies

‖SV (H̃∗ f̃ )‖L p(T) ≤ cp‖ f̃ ‖L p(T)

for 1< p <∞ and |{x ∈ T : SV (H̃∗ f̃ )(x) > λ}| ≤ (c/λ)‖ f̃ ‖L1(T)
.
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As we mentioned, the method in [Fan and Sato 2001] shows that L p(Rn) estimates
for many linear operators may be transferred to their corresponding L p estimates
on the torus via measure-preserving actions of Rn . As a further application and
extension, we consider the bilinear Riesz transform on the n-torus. Recall that the
bilinear singular integral with rough kernel on Rn is defined by

(7) T�( f, g)(x)= lim
ε→0

∫
|y|>ε

f (x − y)g(x + y)�(y
′)

|y|n
dy,

where �(y′) is a function defined on the unit sphere Sn−1 in Euclidean space
Rn and whose integral over Sn−1 is zero. One then obtains the bilinear Riesz
transform by taking �(x)= x j/|x |, where x j is the j -th component of x . Using the
same transference method, we also can transfer the L p-boundedness of the maximal
bilinear Riesz transform from Rn to Tn . This fact is discussed in the last two sections.

Throughout this article, we use the letter c to denote a positive constant, which is
independent of the main parameters and not necessarily the same at each occurrence.

2. Proof of Theorems 1.1–1.4

In this section we give the proof of Theorems 1.1–1.4. As is well known, Euler
discovered two remarkable expressions for circular functions, one as an infinite
product and the other as an infinite series. For the sine function he established the
formula

sin(πx)= πx
∞∏

k=1

(
1− x2

k

)
= πx

∏
k∈Z\{0}

(
1+ x

k

)
(see [Varadarajan 2007]). By logarithmic differentiation one obtains

(8) cot(πx)= p.v. 1
π

∑
k∈Z

( 1
x+k

)
,

where p.v. means the Cauchy principal value, that is, that the sum has to be inter-
preted as the limit

(9) lim
N→+∞

N∑
k=−N

1
x+k

=
1
x
+

∞∑
k=1

( 1
x+k

−
1

x−k

)
, N ∈ Z+.

Let χA(t) be the characteristic function of the set A= {t ∈ R : |t |> 1}. To prove
Theorem 1.1, we need the following lemma.

Lemma 2.1. For ε < |t | ≤ 1
2 , we have

cot(π t)χA

( t
ε

)
=

1
π

∑
k∈Z

1
t+k

χA

( t+k
ε

)
−

1
π

∑
k∈Z\{0}

1
t+k

χAC

( t
ε

)
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and the estimate ∣∣∣∣ ∑
k∈Z\{0}

1
t+k

χAC

( t
ε

)∣∣∣∣� |t |χAC

( t
ε

)
,

where AC is the complement of the set A.

Proof. Using (8), we write the term cot(π t)χA(t/ε) as

cot(π t)χA

( t
ε

)
=

1
π

∑
k∈Z

1
t+k

χA

( t
ε

)
=

1
π

∑
k∈Z\{0}

1
t+k

χA

( t
ε

)
+

1
π t
χA

( t
ε

)
.

Since χA is the characteristic function of the set {t ∈ R : |t |> 1}, it is easy to see
that for ε < |t | ≤ 1

2 and k ∈ Z \ {0}, we have

χA

( t+k
ε

)
= 1.

The fact above leads to

1
π t
χA

( t
ε

)
=

1
π t
χA

( t
ε

)
+

1
π

∑
k∈Z\{0}

1
t+k

χA

( t+k
ε

)
−

1
π

∑
k∈Z\{0}

1
t+k

.

Hence we have

cot(π t)χA

( t
ε

)
=

1
π

∑
k∈Z

1
t+k

χA

( t+k
ε

)
−

1
π

∑
k∈Z\{0}

1
t+k

χAC

( t
ε

)
.

It now remains to estimate ∑
k∈Z\{0}

1
t+k

χAC

( t
ε

)
.

From (9), we know

∑
k∈Z\{0}

1
t+k

χAC

( t
ε

)
=

∞∑
k=1

( 1
t+k
+

1
t−k

)
χAC

( t
ε

)
= 2t

∞∑
k=1

1
t2−k2χAC

( t
ε

)
.

Using this yields ∣∣∣∣ ∑
k∈Z\{0}

1
t+k

χAC

( t
ε

)∣∣∣∣� |t |χAC

( t
ε

)
,

which completes the proof. �
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Proof of Theorem 1.1. For simplicity, we introduce some notation. Denote by

R(t)= χA(t)
t

, Rε(t)=
1
ε
R
( t
ε

)
,(10)

R̃ε(t)=
1
ε

∑
k∈Z

R
( t+k
ε

)
, rε(t)=

∑
k∈Z\{0}

1
t+k

χAC

( t
ε

)
.(11)

Then we have

Hε( f, g)(x)=
∫

R

f (x − t)g(x + t)Rε(t) dt.

Let

H̃ε( f̃ , g̃)(x)=
∫
|t |<1

2

f̃ (x − t)g̃(x + t)R̃ε(t) dt.

Because of Lemma 2.1, one has

H̃∗( f̃ , g̃)(x)≤ 1
π

sup
ε>0

∣∣H̃ε( f̃ , g̃)(x)
∣∣+ 1

π
M( f̃ , g̃)(x),

where

M( f̃ , g̃)(x)= sup
ε>0

∣∣∣∣∫
|t |< 1

2

f̃ (x − t)g̃(x + t)rε(t) dt
∣∣∣∣.

By Lemma 2.1, the Minkowski integral inequality and Hölder’s inequality, we
see that, for p ≥ 1,

‖M( f̃ , g̃)‖L p(T) �

∫ 1
2

−
1
2

‖ f̃ (x − t)g̃(x + t)‖L p(T,dx)|t | dt

� ‖ f̃ ‖Lq (T)‖g̃‖Lr (T).

On the other hand, using Hölder’s inequality, we have∥∥∥∥∫ 1
2

−
1
2

f̃ (x − t)g̃(x + t)rε(t) dt
∥∥∥∥

L1/2(T)

�

∥∥∥∥∫ 1
2

−
1
2

| f̃ (x − t)g̃(x + t)rε(t)| dt
∥∥∥∥

L1(T)

� ‖ f̃ ‖L1(T)
‖g̃‖L1(T)

.

Then an interpolation yields that, for all 1
2 ≤ p <∞,

‖M( f̃ , g̃)‖L p(T) � ‖ f̃ ‖Lq (T)‖g̃‖Lr (T).

Thus, to prove the theorem, we only need to show that∥∥∥sup
ε>0

∣∣H̃ε( f̃ , g̃)
∣∣∥∥∥

L p(T)
� ‖ f̃ ‖Lq (T)‖g̃‖Lr (T).
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It is easy to compute that the Fourier coefficients of R̃ε(t) are

(12) cm,ε =

∫ 1
2

−
1
2

∑
k∈Z

1
ε
R
( t+k
ε

)
e−i2πmt dt

=

∫
R

R(t)e−i2πmtε dt =−i
∫
|t |>1

sin(2πmtε)
t

dt

=−π i sgn(εm)+ i
∫
|t |≤2π

sin(εmt)
t

dt.

Clearly, cm,ε is uniformly bounded on ε > 0 and m ∈ Z. On the other hand, it is
not difficult to check that∫

|t |<1
2

f̃ (x − t)g̃(x + t)R̃ε(t) dt =
∞∑

m=−∞

∞∑
n=−∞

ambncm−n,εe2π i(n+m)x ,

where

f̃ (x)=
∞∑

m=−∞

ame2π imx and g̃(x)=
∞∑

n=−∞

bne2π inx .

Now pick 9 ∈ S (R) satisfying 9(x) = 1 on
[
−

1
2 ,

1
2

]
, supp(9) ⊂

[
−

3
4 ,

3
4

]
and

0≤9(x)≤ 1. For any positive N , denote the function 9N by

(13) 9N (x)=9(x/N ).

Consider the error term given by

EN ,ε( f̃ , g̃)(x)=9(x/N )2H̃ε( f̃ , g̃)(x)−Hε

(
9N f̃ , 9N g̃

)
(x).

The error term EN ,ε( f̃ , g̃)(x) roughly gives the difference of Hε on R and H̃ε on
the torus. By checking the Fourier transform, we have

Hε

(
9N f̃ , 9N g̃

)
(x)=

∞∑
m=−∞

∞∑
n=−∞

ambne2π i(n+m)x

×

∫
R

Rε(t)9
( x+t

N

)
9
( x−t

N

)
e2π i(n−m)t dt.

The definition of the inverse Fourier transform on the space of Schwartz functions
shows that∫

R

Rε(t)9
( x+t

N

)
9
( x−t

N

)
e2π i(n−m)t dt

=

∫
R

Rε(t)
∫

R

∫
R

9̂(u)9̂(v)e2π iu(x+t)/N e2π iv(x−t)/N du dv e2π i(n−m)t dt

=

∫
R

∫
R

9̂(u)9̂(v)e2π i x(u+v)/N
(∫

R

Rε(t)e2π i(u−v)t/N e2π i(n−m)t dt
)

du dv.
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Therefore, we obtain that

EN ,ε( f̃ , g̃)(x)=
∞∑

m=−∞

∞∑
n=−∞

ambne2π i(n+m)x

×

∫
R

∫
R

9̂(u)9̂(v)(cm−n,ε − cm−n+(v−u)/N ,ε)e2π i x(u+v)/N du dv.

If m = n, then∫
R

∫
R

9̂(u)9̂(v)(cm−n,ε − cm−n+(v−u)/N ,ε)e2π i x(u+v)/N du dv

= i
∫

R

∫
u>v
9̂(u)9̂(v)

(∫
|t |>1

sin ε2π t (v−u)/N
t

dt
)

e2π i x(u+v)/N du dv

− i
∫

R

∫
v>u
9̂(u)9̂(v)

(∫
|t |>1

sin ε2π t (u−v)/N
t

dt
)

e2π i x(u+v)/N du dv

= 0.

If m 6= n, for any sufficiently small δ > 0, we choose an L > 0 such that∣∣∣∣∫
u2+v2>L

9̂(u)9̂(v)(cm−n,ε − cm−n+(v−u)/N ,ε)e2π i x(u+v)/N du dv
∣∣∣∣< δ.

Now we let N be sufficiently large so that, for u2
+ v2
≤ L ,

sgn(m− n)= sgn(m− n+ (v− u)/N ).

By this choice, for all 0< ε < 1
2 , we have∣∣∣∣∫

u2+v2≤L
9̂(u)9̂(v)(cm−n,ε − cm−n+(v−u)/N ,ε)e2π i x(u+v)/N du dv

∣∣∣∣
�

∫
u2+v2≤L

∣∣∣∣9̂(u)9̂(v)∫
|t |<2π

sin(εt (m−n))−sin(εt (m−n+(v−u)/N ))
t

dt
∣∣∣∣ du dv

= o(1) as N →∞.

Since (an) and (bm) are rapidly decreasing sequences, it is easy to see that

lim
N→∞

sup
0<ε<1/2

|EN ,ε( f̃ , g̃)(x)| = 0.

Applying that

sup
0<ε<1/2

∣∣H̃ε( f̃ , g̃)(x)
∣∣

is a periodic function, together with Theorem A2, we now have, as N →∞,
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∥∥∥ sup
0<ε<1/2

∣∣H̃ε( f̃ , g̃)
∣∣∥∥∥

L p(T)
=

(∫ 1
2

−
1
2

(
sup

0<ε<1/2

∣∣H̃ε( f̃ , g̃)(x)
∣∣)p

dx
)1

p

=
1

N 1/p

(∫ N
2

−
N
2

sup
0<ε<1/2

9(x/N )2
∣∣H̃ε( f̃ , g̃)(x)

∣∣p dx
)1

p

� o(1)+ 1
N 1/p

(∫
R

sup
0<ε<1/2

∣∣Hε

(
9N f̃ , 9N g̃

)
(x)
∣∣p dx

)1
p

� o(1)+ 1
N 1/p ‖9

N f̃ ‖Lq (R)‖9
N g̃‖Lr (R)

� o(1)+‖ f̃ ‖Lq (T)‖g̃‖Lr (T).

Thus we get the desired result by letting N →∞. �

We again will use the transference method to prove Theorems 1.2–1.4. To this
end, we need a key lemma in order to estimate error terms.

Lemma 2.2. Let Rε, R̃ε and 9 be as defined in (10), (11) and (13), respectively.
For k ∈ Z+, set

H̃εk ,εk+1( f̃ )(x)=
(
R̃εk − R̃εk+1

)
∗ f̃ (x),

Hεk ,εk+1( f )(x)=
(
Rεk −Rεk+1

)
∗ f (x).

For fixed N ∈ Z+, define the error term

EN ,εk ,εk+1( f̃ )(x)=9N (x)H̃εk ,εk+1( f̃ )(x)− Hεk ,εk+1(9
N f̃ )(x).

Let 1≤ p <∞. As N →∞, we have:

(i) For each fixed sequence (tk)↘ 0,∥∥∥∥( ∞∑
k=1

sup
tk+1≤εk+1<εk≤tk

∣∣EN ,εk ,εk+1( f̃ )(x)
∣∣2)1

2
∥∥∥∥

L p(T)

= o(1).

(ii) If 1
2k ≤ εk+1 < εk ≤

1
2k−1 , then for % > 2,∥∥∥∥ sup

(εk)↘0

( ∞∑
k=1

∣∣EN ,εk ,εk+1( f̃ )(x)
∣∣%)1

%
∥∥∥∥

L p(T)

= o(1).

Proof. By the previous calculation (12), we know that the Fourier coefficients of
R̃ε(t) are

(14) cl,ε =

∫
R

R(t)e−iε2π`t dt =−i
∫
|t |>1

sin(ε2π`t)
t

dt, ` ∈ Z.
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Note that ∫
|t |<1

2

R̃εk (t) f̃ (x − t) dt =
∞∑

m=−∞

amcm,εk e2π imx .

For fixed N ∈ Z+, we have

9(x/N )H̃εk ,εk+1( f̃ )(x)=
∞∑

m=−∞

ame2π imx
∫

R

9̂(u)(cm,εk − cm,εk+1)e
2πux/N du.

Also, by a similar estimate as in Theorem 1.1, we obtain

Hεk ,εk+1(9
N f̃ )(x)=

∞∑
m=−∞

ame2π imx
∫

R

9̂(u)(cm+u/N ,εk − cm+u/N ,εk+1)e
2πux/N du.

Consequently,

EN ,εk ,εk+1( f̃ )(x)=
∞∑

m=−∞

ame2π imx

×

∫
R

9̂(u)((cm,εk − cm,εk+1)− (cm+u/N ,εk − cm+u/N ,εk+1))e
2πux/N du.

In order to simplify the notation, we denote by CN (u) the term

(cm,εk − cm,εk+1)− (cm+u/N ,εk − cm+u/N ,εk+1).

To evaluate the inner integral above, we first deal with the term CN (u). From the
second expression of (14),

CN (u)= 2i
∫ εk

εk+1

sin(2πmt)−sin(2π(m+u/N )t)
t

dt.

We consider two cases: m = 0 and m 6= 0.
If m = 0, one has

(15) |CN (u)| =
∣∣∣∣−2i

∫ εk

εk+1

sin(2π tu/N )
t

dt
∣∣∣∣≤ 4π |u| 1

N
(εk − εk+1).

If m 6= 0, it follows from trigonometric identities that

(16) |CN (u)| ≤ 2
∫ εk

εk+1

| sin(π tu/N )|
t

dt ≤ 2π |u| 1
N
(εk − εk+1).
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Applying the above estimates, we have∥∥∥∥( ∞∑
k=1

sup
tk+1≤εk+1<εk≤tk

∣∣EN ,εk ,εk+1( f̃ )(x)
∣∣2)1

2
∥∥∥∥

L p(T)

�
1
N

∥∥∥∥( ∞∑
k=1

(tk − tk+1)
2
)1

2
∥∥∥∥

L p(T)

�
1
N
.

Therefore we obtain that, as N →∞,∥∥∥∥( ∞∑
k=1

sup
tk+1≤εk+1<εk≤tk

∣∣EN ,εk ,εk+1( f̃ )(x)
∣∣2)1

2
∥∥∥∥

L p(T)

= o(1).

Similarly, we have for % > 2,∥∥∥∥ sup
(εk)↘0

( ∞∑
k=1

∣∣EN ,εk ,εk+1( f̃ )(x)
∣∣%)1

%
∥∥∥∥

L p(T)

�
1
N

∥∥∥∥ sup
(εk)↘0

( ∞∑
k=1

(εk − εk+1)
%

)1
%
∥∥∥∥

L p(T)

�
1
N

∥∥∥∥ sup
(εk)↘0

( ∞∑
k=1

(εk − εk+1)

)∥∥∥∥
L p(T)

�
1
N
.

Thus we obtain that, as N →∞,∥∥∥∥ sup
(εk)↘0

( ∞∑
k=1

∣∣EN ,εk ,εk+1( f̃ )(x)
∣∣%)1

%
∥∥∥∥

L p(T)

= o(1). �

Proof of Theorem 1.2. With the previous notation, by the definition of H̃ε( f̃ ) in (2),
we rewrite H̃εk f̃ − H̃εk+1 f̃ as

H̃εk f̃ (x)− H̃εk+1 f̃ (x)= 1
π

∫
|t |<1

2

f̃ (x − t)
(
R̃εk (t)− R̃εk+1(t)

)
dt

+
1
π

∫
|t |<1

2

f̃ (x − t)(rεk+1(t)− rεk (t)) dt,

with the help of Lemma 2.1.
Recall again that χA is the characteristic function of the set |t |> 1. It is easy to

see that for εk+1 < εk < |t | ≤ 1
2 , we have that for all j ∈ Z \ {0},

χA

(
t + j
εk+1

)
= χA

(
t + j
εk

)
= 1.

This leads to
rεk+1(t)− rεk (t)= 0.
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It now suffices to consider

O(H̃∗ f̃ )(x)=
( ∞∑

k=1

sup
tk+1≤εk+1<εk≤tk

∣∣∣∣∫
|t |<1

2

f̃ (x − t)
(
R̃εk (t)− R̃εk+1(t)

)
dt
∣∣∣∣2)1

2
.

By (i) of Lemma 2.2, the basic properties of operators on the torus and Theorem C,
we conclude that as N →∞,

‖O(H̃∗ f̃ )‖p
L p(T) =

1
N

∫ N
2

−
N
2

( ∞∑
k=1

sup
tk+1≤εk+1<εk≤tk

∣∣∣9( x
N

)
H̃εk ,εk+1( f̃ )(x)

∣∣∣2)p
2

dx

� o(1)+ 1
N

∫ N
2

−
N
2

( ∞∑
k=1

sup
tk+1≤εk+1<εk≤tk

∣∣Hεi ,εi+1(9
N f̃ )(x)

∣∣2)p
2

dx

� o(1)+ 1
N

∫
R

∣∣∣9( x
N

)
f̃ (x)

∣∣∣p
dx � ‖ f̃ ‖L p(T)+ o(1).

We next show that the oscillation operator O(H̃∗) is of weak type (1, 1), that is,
for any λ > 0, ∣∣{x ∈ T : |O(H̃∗ f̃ )(x)|> λ}

∣∣≤ c
λ
‖ f̃ ‖L1(T)

.

By the basic properties of operators on the torus, we find that for N ∈ Z+,∣∣{x ∈
[
−

1
2 ,

1
2

)
: |O(H̃∗ f̃ )(x)|> λ

}∣∣= N−1∣∣{x ∈
[
−

N
2 ,

N
2

)
: |O(H̃∗ f̃ )(x)|> λ

}∣∣
= N−1∣∣{|x | ≤ N

2 :
∣∣9( x

N

)
O(H̃∗ f̃ )(x)

∣∣> λ}∣∣.
As in the proofs of (15) and (16), we know that EN ,εk ,εk+1( f̃ )(x)→ 0 uniformly
in x as N →∞. For any λ1 such that 0< λ1 < λ, choose N large enough that∣∣{x ∈

[
−

1
2 ,

1
2

)
: |O(H̃∗ f̃ )(x)|> λ

}∣∣≤ N−1∣∣{x ∈R : |O(H∗(9N f̃ ))(x)|> λ−λ1}
∣∣.

Theorem C implies that the last term above can be controlled by

cN−1

λ−λ1
‖9N f̃ ‖L1(R)

=
cN−1 N
λ−λ1

‖ f̃ ‖L1(T)
=

c
λ−λ1

‖ f̃ ‖L1(T)
.

Since λ1 > 0 is arbitrary, we get the desired result. This completes the proof of
Theorem 1.2. �

Proof of Theorem 1.3. Using the same argument as in Theorem 1.2, it is enough to
study

V%(H̃∗ f̃ )(x)= sup
(εk)↘0

( ∞∑
k=1

∣∣∣∣∫
|t |< 1

2

f̃ (x − t)
(
R̃εk (t)− R̃εk+1(t)

)
dt
∣∣∣∣%)1

%

.

Now by checking the proof for the oscillation operator O(H̃∗), it suffices to show

‖V%(H̃∗ f̃ )‖L p(T) � ‖ f̃ ‖L p(T).
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Write
Hεk ,εk+1( f )(x)= Hεk f (x)− Hεk+1 f (x),

H̃εk ,εk+1( f̃ )(x)=
(
R̃εk − R̃εk+1

)
∗ f̃ (x).

For any large integer N , we define the error term

EN ,εk ,εk+1( f̃ )(x)=9(x/N )H̃εk ,εk+1( f̃ )− Hεk ,εk+1(9
N f̃ )(x).

Using (ii) of Lemma 2.2, we obtain that as N →∞,∥∥∥∥ sup
(εk)↘0

( ∞∑
k=1

∣∣EN ,εk ,εk+1( f̃ )(x)
∣∣%)1

%
∥∥∥∥

L p(T)

= o(1).

Finally, applying Theorem D, analogously to the proof of Theorem 1.2 we obtain

‖V%(H̃∗ f̃ )‖p
L p(T) =

1
N

∫ N
2

−
N
2

sup
(εk)↘0

( ∞∑
k=1

∣∣∣9( x
N

)
H̃εk ,εk+1( f̃ )(x)

∣∣∣%)p
%

dx

� o(1)+ 1
N

∫
R

sup
(εk)↘0

( ∞∑
k=1

∣∣Hεk ,εk+1(9
N f̃ )(x)

∣∣%)p
%

dx

� o(1)+ 1
N

∫
R

∣∣∣9( x
N

)
f̃ (x)

∣∣∣p
dx � ‖ f̃ ‖L p(T)+ o(1).

Letting N →∞, we conclude that the variation operator V%(H̃∗) is of strong type
(p, p) for 1< p <∞.

The same argument as in the proof of Theorem 1.2 works for the weak type
(1, 1) for the variation operator V%(H̃∗). We omit the details. �

Proof of Theorem 1.4. The proof of Theorem 1.4 is similar to that of Theorem 1.3.
The only change is to consider two different cases: p′ > 2 and p′ ≤ 2 in place
of the symmetric differentiation operator used above. We leave the details to the
interested reader. �

3. Extension to Riesz transforms

In this section we study the (maximal) bilinear Riesz transforms as n-dimensional
extensions.

We start with the maximal bilinear singular integral with rough kernel

(17) T ∗�( f, g)(x)= sup
ε>0
|T�,ε( f, g)(x)|,

where T�,ε is the truncated bilinear operator defined by

T�,ε( f, g)(x)=
∫
|y|>ε

f (x − y)g(x + y)
|y|n

�(y′) dy for ε > 0.
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Following the standard rotation method by Calderón and Zygmund (see also [Fan
and Zhao ≥ 2016; Grafakos and Torres 2002]), we have the following result on Rn .

Theorem 3.1. Let 1< q, r ≤∞, 1≤ p <∞ and 1
p =

1
q +

1
r . If � ∈ L∞(Sn−1) is

an odd function, then

‖T ∗�( f, g)‖L p(Rn) � ‖ f ‖Lq (Rn)‖g‖Lr (Rn).

If �(x)= x j/|x |, j = 1, 2, . . . , n, then (7) and (17) are reduced to the bilinear
Riesz transforms and their maximal operators in Euclidean space Rn:

R j ( f, g)(x)= Cn lim
ε→0

∫
|y|>ε

f (x − y)g(x + y)
y j

|y|n+1 dy,

R∗j ( f, g)(x)= Cn sup
ε>0

∣∣∣∣∫
|y|>ε

f (x − y)g(x + y)
y j

|y|n+1 dy
∣∣∣∣, 1≤ j ≤ n,

where y j is the j-th component of y and Cn = 0((n+ 1)/2)π−(n+1)/2.

Corollary 3.2. Let 1< q, r ≤∞, 1≤ p <∞ and 1
p =

1
q +

1
r . Then

‖R∗j ( f, g)‖L p(Rn) � ‖ f ‖Lq (Rn)‖g‖Lr (Rn).

As an application, we consider analogous operators on the n-dimensional torus
Tn
=
[
−

1
2 ,

1
2

)n .
For C∞(Tn) functions f̃ , g̃, write their Fourier series

f̃ (x)=
∑

k1∈Zn

ak1e2π i〈k1,x〉, g̃(x)=
∑

k2∈Zn

bk2e2π i〈k2,x〉,

where 〈 · , · 〉 denotes the dot product.
Let

Q =
{

x = (x1, x2, . . . , xn) ∈ Rn
: −

1
2 ≤ x j <

1
2 for j = 1, 2, . . . , n

}
be the fundamental cube on which∫

Tn
f̃ (x) dx =

∫
Q

f̃ (x) dx

for all functions f̃ on the torus Tn . For N ∈ Z+, let NQ denote a cube with the
same center as Q and side length N times the side length of Q. Denote by Qε the
set given by

Qε = {x ∈ Q : |x |> ε} for 0< ε < 1
2 .

Let
E = {x ∈ Rn

: |x |> 1}
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and χE(x) be the characteristic function of E . For 1 ≤ i ≤ n, let xi and mi be
the i-th components of x = (x1, . . . , xn) and m = (m1, . . . ,mn), respectively. For
any x 6= 0, the kernel of the j-th Riesz transform on Rn is

K j (x)=
x j

|x |n+1 .

Then the kernel of the j-th Riesz transform on the torus is defined, in the sense of
Cauchy principle value, by

(18) K̃ j (x)=
∑

m∈Zn

x j +m j

|x +m|n+1 .

We now define the bilinear Riesz transform R̃ j and its maximal operator R̃∗j on the
torus Tn , for f̃ , g̃ ∈ C∞(Tn), by

R̃ j ( f̃ , g̃)(x)= lim
ε→0

R̃ j,ε( f̃ , g̃)(x),

R̃∗j ( f̃ , g̃)(x)= sup
0<ε<1/2

|R̃ j,ε( f̃ , g̃)(x)|,

where R̃ j,ε is defined by

R̃ j,ε( f̃ , g̃)(x)=
∫

Qε

K̃ j (y) f̃ (x − y)g̃(x + y) dy

=

∫
Q

K̃ j (y)χE

( y
ε

)
f̃ (x − y)g̃(x + y) dy.

Our result can be stated as follows:

Theorem 3.3. Let 1< q, r ≤∞, 1≤ p <∞ and 1
p =

1
q +

1
r . Then

‖R̃∗j ( f̃ , g̃)‖L p(Tn) � ‖ f̃ ‖Lq (Tn)‖g̃‖Lr (Tn).

By checking the proof of Theorem 1.1, it suffices to show an easy lemma to
obtain Theorem 3.3.

Lemma 3.4. For 0< ε < 1
2 and y ∈ Q, we have the estimate

K̃ j (y)χE

( y
ε

)
=

1
εn

∑
m∈Zn

K j

( y+m
ε

)
χE

( y+m
ε

)
−

∑
m∈Zn\{0}

K j (y+m)χEC

( y
ε

)
and ∣∣∣∣ ∑

m∈Zn\{0}

K j (y+m)χEC

( y
ε

)∣∣∣∣� |y|χEC

( y
ε

)
,

where EC is the complement of the set E.
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Proof. The first equality above follows the method of Lemma 2.1. Now we estimate
the second inequality. Write

D+j = {m ∈ Zn
\ {0} : m j > 0}, D0

j = {m ∈ Zn
\ {0} : m j = 0},

and
y∗ = (y1, y2, . . . , y j−1,−y j , y j+1, . . . , yn).

Then we have∑
m∈Zn\{0}

y j +m j

|y+m|n+1χEC

( y
ε

)
= χEC

( y
ε

) ∑
m∈D+j

(
y j +m j

|y+m|n+1 +
y j −m j

|y∗+m|n+1

)
+χEC

( y
ε

)∑
m∈D0

j

y j

|y+m|n+1

= χEC

( y
ε

)
y j

∑
m∈D+j

( 1
|y+m|n+1 +

1
|y∗+m|n+1

)

+χEC

( y
ε

) ∑
m∈D+j

m j

( 1
|y+m|n+1 −

1
|y∗+m|n+1

)

+χEC

( y
ε

)
y j

∑
m∈D0

j

( 1
|y+m|n+1

)
.

It is trivial to get that∣∣∣χEC

( y
ε

)∑
m∈D0

j

y j

|y+m|n+1

∣∣∣� χEC

( y
ε

)
|y j |

and ∣∣∣∣χEC

( y
ε

)
y j

∑
m∈D+j

( 1
|y+m|n+1 +

1
|y∗+m|n+1

)∣∣∣∣� χEC

( y
ε

)
|y j |.

Using the mean value theorem,

| f (x)− f (y)| ≤max
z∈I
|∇ f (z)||x − y|,

where I is the line segment between x and y. This leads to∣∣∣∣χEC

( y
ε

) ∑
m∈D+j

m j

( 1
|y+m|n+1 −

1
|y∗+m|n+1

)∣∣∣∣� χEC

( y
ε

)
|y j |,

completing the proof. �

From the theorem, we obtain the following corollary.
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Corollary 3.5. Let 1< q, r ≤∞, 1≤ p <∞ and 1
p =

1
q +

1
r . Then

‖R̃ j ( f̃ , g̃)‖L p(Tn) � ‖ f̃ ‖Lq (Tn)‖g̃‖Lr (Tn).

This corollary corresponds to a result by Blasco and Gillespie [2009, The-
orem 1.12] which says that the bilinear Riesz transform R j is bounded from
Lq(Rn)× Lr (Rn) to L p(Rn), provided 1< q, r ≤∞, 1≤ p <∞ and 1

p =
1
q +

1
r .

4. Final remarks

We want to further illustrate that our method works for many operators. In this
section, we provide another example. For ε > 0, define

R j,ε( f )(x)= Cn

∫
|y|>ε

f (x − y)
y j

|y|n+1 dy for j = 1, 2, . . . , n.

Gillespie and Torrea [2004] introduced the oscillation, variation and short vari-
ation operators of the Riesz transform R j in Rn . The definitions of these three
operators can be expressed in forms similar to (4), (5) and (6) with Hε replaced by
R j,ε in place of the symmetric differentiation operator used above. Gillespie and
Torrea also established the L p(Rn)-boundedness of these operators for 1< p <∞.

For C∞(Tn) functions f̃ , write their Fourier series

f̃ (x)=
∑
k∈Zn

ake2π i〈k,x〉.

We define the periodic version of R̃ j,ε by

R̃ j,ε( f̃ )(x)=
∫

Qε

K̃ j (y) f̃ (x − y) dy,

where K̃ j is defined as in (18).
We now define the oscillation operator O(R̃ j ) on the torus by

O(R̃ j f̃ )(x)=
( ∞∑

k=1

sup
tk+1≤εk+1<εk≤tk

∣∣R̃ j,εk f̃ (x)− R̃ j,εk+1 f̃ (x)
∣∣2)1

2

and the variation operator V%(R̃ j ) on the torus by

V%(R̃ j f̃ )(x)= sup
(εk)↘0

( ∞∑
k=1

∣∣R̃ j,εk f̃ (x)− R̃ j,εk+1 f̃ (x)
∣∣%)1

%

.

Define the operator Vk(R̃ j ) on the torus by

Vk(R̃ j f̃ )(x)= sup
(ε j )↘0

( ∑
1

2k <ε j+1<ε j≤
1

2k−1

∣∣R̃ j,εk f̃ (x)− R̃ j,εk+1 f̃ (x)
∣∣2)1

2

,
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where the supremum is taken over all decreasing sequences (ε j ). Define the “short
variation operator” on the torus by

SV (R̃ j f̃ )(x)=
( ∞∑

k=−∞

(
Vk(R̃ j f̃ (x)

)2
)1

2

.

Applying the same techniques as in the proof of Theorem 1.2, we can easily transfer
those results in [Gillespie and Torrea 2004] from Rn to the torus Tn .
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THE TURAEV AND THURSTON NORMS

STEFAN FRIEDL, DANIEL S. SILVER AND SUSAN G. WILLIAMS

In 1986, W. Thurston introduced a (possibly degenerate) norm on the first
cohomology group of a 3-manifold. Inspired by this definition, Turaev intro-
duced in 2002 an analogous norm on the first cohomology group of a finite
2-complex. We show that if N is the exterior of a link in a rational homology
sphere, then the Thurston norm agrees with a suitable variation of Turaev’s
norm defined on any 2-skeleton of N .

1. Introduction

W. Thurston [1986] introduced a seminorm for 3-manifolds N with empty or toroidal
boundary. It is a function xN : H 1(N ;Q)→Q≥0 which measures the complexity
of surfaces that are dual to cohomology classes. We adopt the custom of referring
to xN as the Thurston norm. It plays a central role in 3-manifold topology and
we recall its definition in Section 2A, where we will also review several of its key
properties.

Later, V. Turaev [2002] introduced an analogously defined seminorm for 2-
complexes. For any finite 2-complex X with suitably defined boundary ∂X , Turaev
defined tX : H 1(X, ∂X;Q)→ Q≥0 using complexities of dual 1-complexes. In-
spired by work of C. McMullen [2002], Turaev gave lower bounds for tX in terms
of the multivariable Alexander polynomial whenever the boundary of X is empty.
The precise definition of ∂X will be recalled in Section 2B. For the purpose of the
introduction it suffices to know that if N is a compact triangulated 3-manifold, then
the 2-skeleton N (2) is a finite 2-complex with empty boundary.

A homotopy equivalence induces a canonical isomorphism of homology and
cohomology groups which we use to identify the groups. Examples given in [Turaev
2002, p. 143] show that tX is not invariant under homotopy. We therefore introduce
the following variation: For any finite 2-complex X with empty boundary, we define
the Turaev complexity function as follows. If φ ∈ H 1(X;Q) = Hom(π1(X),Q),
then

t X (φ) := inf
{

tY (φ ◦ f )
∣∣∣∣ Y is a finite 2-complex with ∂Y =∅ and

f : π1(Y )→ π1(X) is an isomorphism

}
.
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Clearly t X depends only on the fundamental group of X . Since the minimum of
two norms need not satisfy the triangle inequality, the Turaev function is not a
seminorm, as we will see later in Proposition 4.2.

For any 3-manifold N , we further define

t N (φ) := t N (2)(φ),

where N (2) is the 2-skeleton of a triangulation of N . It is clear from the definition
of t that t N does not depend on the choice of a triangulation.

Given a 3-manifold N , it is natural to compare xN and t N on H 1(N ;Q). In
general, they do not agree. Indeed in Section 4A we will see that there exist
many examples of closed 3-manifolds N and classes φ ∈ H 1(N ;Z) such that
t N (φ) > xN (φ). The underlying reason is quite obvious: the Thurston norm is
defined using complexities of surfaces, whereas the Turaev function is defined using
complexities of graphs. However, the complexity of a closed surface is lower by at
least one than the complexity of any underlying 1-skeleton.

It is therefore reasonable to restrict ourselves to the class of 3-manifolds where
Thurston norm-minimizing surfaces can always be chosen to have no closed com-
ponent. In Lemma 4.5 we will see that if N =63

\ νL is the exterior of a of a link
L in a rational homology sphere 6, then N has this property. For simplicity of
exposition we henceforth restrict ourselves to this type of 3-manifolds.

Using explicit and elementary constructions of 2-complexes, we prove the fol-
lowing.

Theorem 1.1. Let N be the exterior of a link in a rational homology sphere. Then

t N (φ)≤ xN (φ) for any φ ∈ H 1(N ;Q).

It is natural to ask whether the extra freedom provided by working with 2-
complexes instead of 3-manifolds allows us to get lower complexities. Our main
theorem says that this is not the case, at least if we restrict ourselves to irreducible
link exteriors. (Note that it follows from the definitions and from Schönflies theorem
that the exterior of a link L in S3 is irreducible if and only if L is nonsplit.)

Theorem 1.2. Let N be the exterior of a link in a rational homology sphere. If N
is irreducible, then

t N (φ)= xN (φ) for any φ ∈ H 1(N ;Q).

We will prove the inequality t X (φ)≥ xN (φ) by studying the Alexander norms
of finite covers of X and N , and by applying the recent results of I. Agol [2008;
2013], D. Wise [2009; 2012b; 2012a], P. Przytycki and D. Wise [2014; 2012] and
Y. Liu [2013]. We do not know of an elementary proof of Theorem 1.2.
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Theorem 1.2 fits into a long sequence of results showing that minimal-genus
Seifert surfaces and Thurston norm-minimizing surfaces are “robust” in the sense
that they “stay minimal” even if one relaxes some conditions. Examples of this
phenomenon have been found by many authors, see, for example, [Gabai 1983;
1987; Kronheimer 1999; Friedl and Vidussi 2014; Nagel 2014; Friedl et al. 2015].

The paper is organized as follows. In Section 2 we recall the definition of the
Thurston and Turaev norms, and we introduce the Turaev complexity function. In
Section 3 we discuss the Alexander norm for 3-manifolds and 2-complexes, and we
recall how they give lower bounds on the Thurston norm and Turaev complexity
function, respectively. In Section 4A, we first show that the Turaev complexity
function of the 2-skeleton can be greater than the corresponding Thurston norm. We
then show in Section 4B that the Thurston norm of any irreducible 3-manifold with
nontrivial toroidal boundary is detected by the Alexander norm of an appropriate
finite cover. Finally, in Section 4C we put everything together to prove Theorem 1.2.

Conventions. All 3-manifolds are compact, orientable and connected, and all 2-
complexes are connected, unless it says specifically otherwise.

2. The definition of the Thurston norm and the Turaev norm

2A. The Thurston norm and fibered classes. Let N be a 3-manifold with empty
or toroidal boundary. The Thurston norm of a class φ ∈ H 1(N ;Z) is defined as

xN (φ)=min{χ−(6) |6 ⊂ N properly embedded surface dual to φ}.

Here, χ−(6) is the complexity of a surface 6 with connected components

61, . . . , 6k,

given by

χ−(6)=

k∑
i=1

max{−χ(6i ), 0}.

Thurston [1986] showed that xN defines a (possibly degenerate) norm on H 1(N ;Z).
Note that any norm on H 1(N ;Z) extends uniquely to a norm on H 1(N ;Q), which
we denote by the same symbol.

We say that a class φ ∈ H 1(N ;Q) is fibered if there exists a fibration p : N→ S1

such that φ lies in the pull-back of H 1(S1
;Q) under p. By [Tischler 1970], a class

φ ∈ H 1(N ;Q) is fibered if and only if it can be represented by a nondegenerate
closed 1-form.

Thurston [1986] showed the Thurston norm ball

{φ ∈ H 1(N ;Q) | xN (φ)≤ 1}
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is a polyhedron. This implies that if C is a cone on a face of the polyhedron, then
the restriction of xN to C is a linear function. To put differently, for any α, β ∈ C
and nonnegative r, s ∈ Q≥0, the linear combination rα + sβ also lies in C , and
xN (rα+ sβ)= r xN (α)+ sxN (β).

Thurston [1986] also showed that any fibered class lies in the open cone on a
top-dimensional face of the Thurston norm ball. Furthermore, any other class in
that open cone is also fibered. Consequently, the set of fibered classes is the union
of open cones on top-dimensional faces of the Thurston norm ball. We will refer to
these cones as the fibered cones of N. A class φ ∈ H 1(N ;Q) in the closure of a
fibered cone is quasifibered.

2B. The Turaev norm and the Turaev complexity function for 2–complexes. As
in [Turaev 2002], a finite 2–complex is the underlying topological space of a finite
connected 2-dimensional CW-complex such that each point has a neighborhood
homeomorphic to the cone over a finite graph. Examples of finite 2-complexes
are given by compact surfaces (see [Turaev 2002, p. 138]), 2-skeletons of finite
simplicial spaces, and the products of graphs with a closed interval.

The interior of X , denoted Int X , is the set of points in X that have neighborhoods
homeomorphic to R2. Finally the boundary ∂X of X is the closure in X of the set
of all points of X \ Int X that have open neighborhoods in X homeomorphic to R

or to R× R≥0. Note that ∂X is a graph contained in the 1-skeleton of the CW-
decomposition of X. For example, if X is a compact surface, then ∂X is precisely
the boundary of X in the usual sense.

Following [Turaev 2002], we say that a graph 0 in a finite 2-complex is regular
if 0 ⊂ X \ ∂X and if there exists a closed neighborhood in X \ ∂X homeomorphic
to 0 × [−1, 1] so that 0 = 0 × 0. A coorientation for a regular graph 0 with
components 01, . . . , 0k is the choice of a component of 0i ×[−1, 1] \0i , for each
i = 1, . . . , k. A cooriented regular graph 0 ⊂ X canonically defines an element
φ0 ∈ H 1(X, ∂X;Z). Given any φ ∈ H 1(X, ∂X;Z), there exists a cooriented regular
graph 0 with φ0 = φ. (We refer to [Turaev 2002] for details.)

Let X be a finite 2-complex with ∂X = ∅, and let φ ∈ H 1(X;Z). The Turaev
norm of φ is

tX (φ) :=min{χ−(0) |0 ⊂ X cooriented regular graph with φ0 = φ},

where χ−(0) is the complexity of a graph 0 with connected components 01, . . . , 0k ,
given by

χ−(0) :=

k∑
i=1

max{−χ(0i ), 0}.
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Turaev [2002] showed that tX : H 1(X;Z)→ Z≥0 is a (possibly degenerate) norm,
and, as in the previous section, tX extends to a norm

tX : H 1(X;Q)→Q≥0.

In Theorem 5.1 we will show that in general one has to allow disconnected graphs
0 to minimize the Turaev norm.

As we already mentioned in the introduction, Turaev [2002, p. 143] showed that
tX is in general not invariant under homotopy equivalence. (In fact Turaev showed
that tX is not even invariant under simple homotopy.) We therefore introduce a
variation of the Turaev norm: if X is a finite 2-complex with ∂X =∅, then given
φ ∈ H 1(X;Q)= Hom(π1(X),Q) the Turaev complexity function of φ is

t X (φ) := inf
{

t0(φ ◦ f )
∣∣∣∣0is a finite 2-complex with ∂0 =∅ and

f : π1(0)→ π1(X) is an isomorphism

}
.

We make the following observations:

(i) It is clear that t X is invariant under homotopy equivalence. In fact t X depends
only on the fundamental group of X .

(ii) Since t X is the infimum of continuous homogeneous functions (i.e., functions
with f (λx)= λ f (x) for λ> 0), t X is upper semicontinuous and homogeneous.

(iii) The complexity function t X is defined as the infimum of norms. Note that
the minimum of two norms is in general no longer a norm. For example, the
infimum of the two norms a(x, y) := |x | and b(x, y) := |y| on R2 is not a
norm. We will see in Proposition 4.2 that t X (φ) is, in general, not a norm.

(iv) From the definition, it follows immediately that

t X (φ)≤ tX (φ),

for any φ ∈ H 1(X;Q).

(v) For any finite 2-complex X , Turaev [2002, Section 1.6] shows that tX is
algorithmically computable. We do not know whether this is also the case for
the Turaev complexity function t X .

2C. An inequality between the Thurston norm and the Turaev complexity func-
tion. The goal of this section is to prove the following inequality between the
Thurston norm and the Turaev complexity function.

Proposition 2.1. Let N be a 3-manifold and let φ ∈ H 1(N ;Z). If φ is dual to a
properly embedded Thurston norm minimizing surface with r closed components,
then

t N (φ)≤ xN (φ)+ r.

Proof. Let φ ∈ H 1(N ;Z) and let 6 = 61 ∪ · · · ∪ 6s be a surface dual to φ
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of minimal complexity such that 61, . . . , 6r are closed and 6r+1, . . . , 6s have
nonempty boundary.

For i = 1, . . . , r we pick an embedded graph 0i ⊂6i with χ(0i )= χ(6i )− 1
and such that π1(0i ) surjects onto π1(6i ). Furthermore, for i = r + 1, . . . , s we
pick an embedded graph 0i ⊂6i with χ(0i )= χ(6i ) and such that π1(0i ) surjects
onto π1(6i ).

Next we select pairwise disjoint product neighborhoods

61×[−1, 1], . . . , 6s ×[−1, 1]

such that the product orientations match the orientation of N . We equip

M := N \
s⋃

i=1

6i × (−1, 1)

with a triangulation such that each 0i ×{±1} is a subspace of M (1). Consider

Y := M (2)
∪

s⋃
i=1

0i × (−1, 1).

It is straightforward to see that Y is a finite 2-complex with ∂Y = ∅, and the
inclusion map Y → N induces an isomorphism of fundamental groups. By slight
abuse of notation we denote the restriction of φ to Y again by φ.

For i = 1, . . . , s, we identify 0i with 0i ×0. It is clear that 0 := 01∪· · ·∪0s is
a regular graph on Y . Furthermore, with the obvious coorientation, we have φ0 = φ.
It follows that

t N (φ)≤ tY (φ)≤ χ−(0)=
r∑

i=1

max{−χ(0i ), 0}+
s∑

i=r+1

max{−χ(0i ), 0}

≤

r∑
i=1

max{−χ(6i )+ 1, 0}+
s∑

i=r+1

max{−χ(6i ), 0}

≤ χ−(6)+ r

= xN (φ)+ r. �

Theorem 1.1. Let N be the exterior of a link in a rational homology sphere. Then
for any φ ∈ H 1(N ;Q), we have

t N (φ)≤ xN (φ).

Proof. Let N be the exterior of a link in a rational homology sphere. We write
X=N (2). Since t and xN are homogeneous, it suffices to show that t X (φ)≤ xN (φ)

for every φ ∈ H 1(N ;Z). Assume that φ ∈ H 1(N ;Z). By Lemma 4.5 (see
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Section 4A) there exists a Thurston norm-minimizing surface dual to φ such
that each component has nonempty boundary. The desired inequality follows
immediately from Proposition 2.1. �

3. Lower bounds on the norms coming from Alexander polynomials

3A. The Alexander polynomial. Let X be a compact CW-complex, and let

ϕ : H1(X;Z)→ H

be a homomorphism onto a free abelian group. We denote by X̃ϕ the cover of
X corresponding to ϕ : π1(X) → H1(X;Z) → H . The group H is the deck
transformation group of X̃ϕ

→ X , and it acts on H1(X̃ϕ
;Z). Thus we can view

H1(X̃ϕ
;Z) as a Z[H ]-module. Since Z[H ] is a Noetherian ring, it follows that

H1(X̃ϕ
;Z) is a finitely presented Z[H ]-module. This means that there exists an

exact sequence

Z[H ]r
A
−→ Z[H ]s→ H1(X̃ϕ

;Z)→ 0.

After possibly adding columns of zeros, we can assume that r ≥ s. Define the
Alexander polynomial of (X, ϕ) to be

1X,ϕ := gcd of all s× s-minors of A.

We refer to [Fox 1954; Turaev 2001; Hillman 2012] for the proof of the classical
fact that 1X,ϕ is well-defined up to multiplication by a unit in Z[H ], i.e., up to
multiplication by an element of the form εh, where ε ∈ {−1, 1} and h ∈ H .

If ϕ : H1(X;Z) → H := H1(X;Z)/torsion is the canonical projection, then
we write 1X := 1X,ϕ , and we refer to it as the Alexander polynomial 1X of X .
Furthermore, if φ ∈ H 1(X;Z)= Hom(π1(X),Z), then we view the corresponding
Alexander polynomial 1X,ϕ as an element in Z[t±1

] under the canonical identifica-
tion of the group ring Z[Z] with the Laurent polynomial ring Z[t±1

].

3B. The one-variable Alexander polynomials. In this section we relate the de-
grees of one-variable Alexander polynomials to the Thurston norm and to the
Turaev complexity function.

In the following, given a nonzero polynomial p(t)=
∑s

i=r ai t i with ar 6= 0 and
as 6= 0, we write

deg(p(t))= s− r.

Note that the degree of a nonzero one-variable Alexander polynomial is well-defined.
The following proposition is well known, see, for example, [Friedl and Kim

2006] for a proof.
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Proposition 3.1. Let N be a closed 3-manifold and let φ ∈ H 1(N ;Z) be primitive.
If 1N ,φ 6= 0, then

xN (φ)≥ deg(1N ,φ)− 2.

Furthermore, equality holds if φ is a fibered class and if N 6= S1
× S2.

We prove the following.

Proposition 3.2. Let X be a finite 2-complex with ∂X =∅, and let be φ∈H 1(N ;Z)
primitive. If 1X,φ 6= 0, then

t X (φ)≥ deg(1X,φ)− 1.

Proof. Let Y be a finite 2-complex with ∂Y =∅, and let ψ ∈ H 1(Y ;Z) be primitive.
If 1Y,φ 6= 0, then it follows from Claim 2 of [Turaev 2002, p. 152] that

tY (ψ)≥ deg(1Y,ψ)− 1.

The desired inequality
t X (φ)≥ deg(1X,φ)− 1

is an immediate consequence of this fact and the observation that the Alexander
polynomial depends only on the fundamental group of X . �

3C. The Alexander norm. Let X be a compact connected CW-complex. We write
H := H1(X;Z)/torsion and also 1X =

∑
h∈H ahh. Let

φ ∈ H 1(X;Q)= Hom(π1(X),Q)= Hom(H,Q).

Following [McMullen 2002], we define the Alexander norm of φ by

aX (φ) :=max{φ(h)−φ(g) | ag 6= 0 and ah 6= 0}.

It is straightforward to see that aX is indeed a norm on H 1(X;Q). As in the proof
of Proposition 3.2, we use that fact that the Alexander polynomial and thus the
Alexander norm depend only on the fundamental group of X . More precisely,
if f : Y → X is a map of compact connected CW-complexes that induces an
isomorphism of fundamental groups, then

f∗(1Y )=1X ∈ Z[H1(X;Z)/torsion],

and thus, for any f ∈ H 1(X;Q)= Hom(π1(X),Q), we have

(1) aY (φ ◦ f ∗)= aX (φ).

We begin with the following theorem due to McMullen [2002].
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Theorem 3.3. Let N be a 3-manifold with empty or toroidal boundary and with
b1(N )≥ 2. Then

aN (φ)≤ xN (φ) for any φ ∈ H 1(N ;Q).

Furthermore, equality holds for quasifibered classes.

Proof. Let N be a 3-manifold with empty or toroidal boundary and with b1(N )≥ 2.
McMullen [2002, Theorem 1.1] showed that

aN (φ)≤ xN (φ) for any φ ∈ H 1(N ;Q)

and that equality holds for all integral fibered classes. Since aN and xN are homo-
geneous, it follows immediately that equality also holds for all fibered classes and,
in fact, for all quasifibered classes. �

The following analogous theorem, which says that the Alexander norm also gives
lower bounds on the Thurston norm and the Turaev complexity function, is due to
Turaev [2002].

Theorem 3.4. Let X be a finite 2-complex with b1(X)≥ 2 and such that ∂X =∅.
Then

aX (φ)≤ t X (φ)≤ tX (φ) for any φ ∈ H 1(X;Q).

Proof. Let Y be a finite 2-complex with b1(Y )≥ 2 and such that ∂Y =∅. Then by
[Turaev 2002, Theorem 3.1], we have

aY (ψ)≤ tY (ψ) for any ψ ∈ H 1(Y ;Q).

The theorem now follows immediately from combining this result with the definition
of t X (φ) and (1). �

4. Proofs

4A. The Thurston norm and the Turaev complexity function for closed 3-mani-
folds. The combination of Propositions 3.1, 3.2 and 2.1 gives us the following
theorem showing that the Thurston norm of a closed 3-manifold need not agree
with Turaev complexity function of its 2-skeleton.

Theorem 4.1. Let N 6= S1
× S2 be a closed 3-manifold and let φ ∈ H 1(N ;Z) be a

primitive fibered class. Then

t N (φ)= xN (φ)+ 1.

We also prove:

Proposition 4.2. There exists a finite 2-complex X with ∂X =∅ such that t X does
not satisfy the triangle inequality, i.e., t X is not a norm.
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Proof. Let N be a fibered 3-manifold with b1(N )= 2. We write X = N (2) for some
triangulation of N . As we mentioned in Section 2A, by [Thurston 1986] there exists
an open 2-dimensional cone C ⊂ H 1(N ;Q) such that all classes in C are fibered
and such that xN is a linear function on C .

Given φ ∈ H 1(N ;Z) we denote by

div(φ) :=max{k ∈ N | there exists ψ ∈ H 1(N ;Z) with φ = kψ}

the divisibility of φ. It follows from Theorem 4.1 and the homogeneity of the
Thurston norm and the Turaev complexity function that

(2) t X (φ)= xN (φ)+ div(φ) for anyφ ∈ H 1(N ;Z)∩C.

We prove the following claim.

Claim. There exist α, β ∈ C with div(α)+ div(β) < div(α+β).

Pick two primitive vectors φ,ψ ∈ C which are not collinear. Since φ and ψ lie
in the cone C , it follows that any nonnegative linear combination of φ and ψ also
lies in C .

Select a coordinate system for H 1(N ;Z), that is, choose an identification of
H 1(N ;Z) with Z2. Since φ is primitive, we can assume that φ = (1, 0). Since ψ is
also primitive, we know that ψ = (x, y) for some coprime x and y. Since φ and ψ
are not collinear, y 6= 0. Choose a prime p > 1+ |y|. We consider α = (1, 0) and
β = (px + (p− 1), py). Note that p can not divide px + p− 1= p(x + 1)− 1. It
follows that div(β)= gcd(px + (p− 1), py)≤ |y|. Evidently div(α)= 1. Now

div(α+β)= div(px+ p, py)= gcd(px+ p, py)≥ p> 1+|y| ≥ div(α)+div(β).

This concludes the proof of the claim.
If we combine the claim and the linearity of xN on C with equality (2), then we

obtain that

t X (α+β)= xN (α+β)+ div(α+β)= xN (α)+ xN (β)+ div(α+β)

> xN (α)+ div(α)+ xN (β)+ div(β)

= t X (α)+ t X (β).

We have shown that t X does not satisfy the triangle inequality. �

4B. The Alexander norm of finite covers of 3-manifolds. We begin with the fol-
lowing theorem. We state it in slightly greater generality than we actually need,
since the result has independent interest.

Theorem 4.3. Let N 6= S1
×D2 be an aspherical 3-manifold with empty or toroidal

boundary. If N is neither a Nil-manifold nor a Sol-manifold, there exists a finite
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cover p : Ñ → N such that b1(Ñ )≥ 2 and such that

aÑ (p
∗φ)= x Ñ (p

∗φ) for any φ ∈ H 1(N ;Q).

The proof of the theorem will require the remainder of Section 4B. The theorem
was proved for graph manifolds by Nagel [2014]. We will therefore restrict ourselves
to the case of manifolds that are not (closed) graph manifolds. The main ingredient
in our proof of Theorem 4.3 will be the following theorem, a consequence of the
seminal work of Agol [2008; 2013], Wise [2009; 2012b; 2012a], Przytycki and
Wise [2014; 2012] and Liu [2013]. We summarize the main points of the proof for
the convenience of the reader.

Theorem 4.4. Let N be an irreducible 3-manifold with empty or toroidal boundary
that is not a closed graph manifold. Then there exists a finite cover p : Ñ→ N such
that, for any φ ∈ H 1(N ;Q), the pull-back p∗φ is quasifibered.

Proof. Let N be an irreducible 3-manifold that is not a closed graph manifold. It
follows from [Agol 2013; Wise 2009; 2012b; 2012a; Przytycki and Wise 2014; 2012;
Liu 2013] that π1(N ) is virtually RFRS, i.e., π1(N ) admits a finite index subgroup
which is RFRS (residually finite rationally solvable). The precise definition of
RFRS, references for which can be found in [Aschenbrenner et al. 2015], is not of
concern to us. What matters is that Agol [2008, Theorem 5.1] (see also [Friedl and
Kitayama 2014, Theorem 5.1]) showed that if ψ lies in H 1(N ;Q) and if N is an
irreducible 3-manifold such that π1(N ) is virtually RFRS, then there exists a finite
cover p : N̂ → N such that p∗ψ lies in the closure of a fibered cone of N̂ .

By picking one class in each cone of the Thurston norm ball of N and iteratively
applying Agol’s theorem, one can easily show that there exists a finite cover
p : Ñ → N such that for any φ ∈ H 1(N ;Q) the pull-back p∗φ lies in the closure
of a fibered cone of Ñ . We refer to [Friedl and Vidussi 2015, Corollary 5.2] for
details. �

If N is a graph manifold with nonempty boundary, then the conclusion of
Theorem 4.4 also follows from facts that are more classical. This argument is not
used anywhere else in the paper, but since it is perhaps of independent interest we
give a very quick sketch of the argument.

Proof of Theorem 4.4 if N is a graph manifold. Let N be a graph manifold with
boundary. It follows from [Wang and Yu 1997, Theorem 0.1] and classical arguments
(see e.g., [Aschenbrenner and Friedl 2013, Section 4.3.4.3] and [Hempel 1987]) that
there exists a finite cover Ñ of N that is fibered and such that if {Nv}v∈V denotes
the set of JSJ components of Ñ , then each Nv is of the form S1

×6v for some
surface 6v. (For the meaning of JSJ components, see [Aschenbrenner et al. 2015,
Section 1.6].)
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For each v ∈ V we write tv = S1
× Pv , where Pv ∈6v is a point. It follows from

[Eisenbud and Neumann 1985, Theorem 4.2] that a class φ ∈ H 1(Ñ ;Q) is fibered
if and only if φ(tv) 6= 0 for all v ∈ V . Since Ñ is fibered it now follows that all
classes in H 1(Ñ ;Q) outside of finitely many hyperplanes are fibered. Hence all
classes in H 1(Ñ ;Q) are quasifibered. �

We can now move on to the proof of Theorem 4.3. Note that arguments similar
to the proof of Theorem 4.3 were also used in [Friedl and Vidussi 2014; 2015].

Proof of Theorem 4.3. Let N 6= S1
× D2 be an irreducible 3-manifold with empty

or toroidal boundary that is not a closed graph manifold. Since we assumed that
N 6= S1

× D2, it now follows from Agol’s theorem [2013] and classical 3-manifold
topology that N has a finite cover with b1 at least two. (We refer to [Aschenbrenner
et al. 2015] for details.) We can therefore assume that we already have b1(N )≥ 2.

By Theorem 4.4 there exists a finite cover p : Ñ → N such that for any φ
in H 1(N ;Q), the pull-back p∗φ is quasifibered. Note that Betti numbers never
decrease by going to finite covers, i.e., we have b1(Ñ ) ≥ b1(N ) ≥ 2. It follows
from Theorem 3.3 that

aÑ (p
∗φ)= x Ñ (p

∗φ) for any φ ∈ H 1(N ;Q).

This concludes the proof of the theorem. �

4C. Proof of Theorem 1.2. Before we turn to the proof of Theorem 1.2 we prove
the following well-known lemma.

Lemma 4.5. If N is the exterior of a link in a rational homology sphere, then any
class φ ∈ H 1(N ;Z) is dual to a surface 6 of minimal complexity such that all
components of 6 have nonempty boundary.

Proof. Let N be the exterior of a link in a rational homology sphere. It follows
from a Mayer–Vietoris argument that the map H1(∂N ;Q)→ H1(N ;Q) is sur-
jective. It follows from Poincaré duality and the Universal Coefficient Theorem
that the boundary map ∂ : H2(N , ∂N ;Z)→ H1(∂N ;Z) has finite kernel. Since
H2(N , ∂N ;Z)∼= H 1(N ;Z)∼=Hom(H1(N ;Z),Z) is torsion-free it follows that the
boundary map ∂ : H2(N , ∂N ;Z)→ H1(∂N ;Z) is in fact injective. In particular
this implies that closed surfaces represent the trivial homology class in (N , ∂N ).
Now let φ ∈ H 1(N ;Z), and let 6 be a properly embedded minimal-complexity
surface dual to φ. By the above observation, the closed components of 6 are
null-homologous. It follows that the union of the components of 6 with nontrivial
boundary represents the same homology as 6. Since removing components can
never increase the complexity, we have shown that φ is dual to a surface 6 of
minimal complexity such that all components of 6 have nonempty boundary. �
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In the previous sections we collected all the tools that now allow us to finally
complete the proof of Theorem 1.2.

Theorem 1.2. Let N be the exterior of a link in a rational homology sphere. If N
is irreducible, then for any φ ∈ H 1(N ;Q) we have

t N (φ)= xN (φ).

Proof. It remains to prove that t N (φ)≥ xN (φ). Let N be the exterior of a link in a
rational homology sphere. Suppose that N is irreducible. Let φ ∈ H 1(N ;Q). It suf-
fices to show that if Y is a finite 2-complex Y with ∂Y =∅ and if f : π1(Y )→π1(N )
is an isomorphism, then

tY (φ ◦ f )≥ xN (φ).

So let Y and f be as above. By a slight abuse of notation we denote φ◦ f : π1(Y )→Q

by φ as well.
By Theorem 4.3 there exists a finite cover p : Ñ → N such that b1(Ñ )≥ 2 and

such that
aÑ (p

∗φ)= x Ñ (p
∗φ).

We write π = π1(N ) and π̃ := π1(Ñ ), and we denote by p : Ỹ → Y the finite cover
corresponding to f −1(π̃). Note that Ỹ is also a finite 2-complex with ∂Ỹ =∅. It
follows immediately from the definitions that

x Ñ (p
∗φ)≤ [π : π̃ ] · xN (φ) and tỸ (p

∗φ)≤ [π : π̃ ] · tY (φ).

In fact, Gabai [1983, Corollary 6.13] showed that the above is an equality for the
Thurston norm, i.e., we have the equality:

x Ñ (p
∗φ)= [π : π̃ ] · xN (φ).

Combining the above results with Theorem 3.4, we see that

[π : π̃ ] · tY (φ)≥ tỸ (p
∗φ)≥ aÑ (p

∗φ)= x Ñ (p
∗φ)= [π : π̃ ] · xN (φ).

This concludes the proof the theorem. �

4D. Fundamental group complexity. Let X be a finite 2-complex with ∂X =∅,
and φ ∈ H 1(X;Z)=Hom(π1(X),Z). Turaev [2002] describes a method by which
we can compute tX (φ) using cocycles. We start by orienting edges (i.e., open
1-cells) of X , and then select a Z-valued cellular cocycle k on X representing φ.
We let

|k| =
∑

e

(ne/2− 1)|k(e)|,

where e ranges over all edges in X , k(e) ∈ Z is the value of k on e, and ne is the
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number of 2-cells adjacent to e, counted with multiplicity. (Note that ne ≥ 2 since
∂X =∅.) Turaev [2002, Section 1.6] proves that tX (φ) is the minimum value of
|k| as k ranges over all cellular cocycles representing φ.

When the 0-skeleton of X consists of a single vertex, the 2-complex determines
a group presentation P for π1(X), and hence |k| can be defined on the level of
presentations.

Given a finite presentation P=〈x1, . . . , xm |r1, . . . , rn〉, following [Turaev 2002],
we denote by #(xi ) the number of appearances of x±1

i in the words r1, . . . , rn .
We say that P is a good presentation if each #(xi ) ≥ 2. We are interested in
good presentations, since it is straightforward to see that the canonical 2-complex
corresponding to a good presentation has empty boundary. Also note that any
finitely presented group admits a good presentation. Indeed, if #(xi )= 1, then we
can eliminate xi using a Tietze move. If #(xi )= 0, then we can add a trivial relator
xi x−1

i .
Now let P = 〈x1, . . . , xm | r1, . . . , rn〉 be a good presentation for a group π , and

let φ be a homomorphism φ : π→ Z. We define

tP(φ)=
∑

i

(#(xi )/2− 1) |φ(xi )|.

Furthermore we define t̄π (φ) to be the minimum of tP(φ) as P ranges over all
good presentations of π . We extend the definition in the usual way for rational
cohomology classes φ ∈ H 1(X;Q).

Lemma 4.6. Let X be a finite 2-complex with ∂X = ∅ and φ ∈ H 1(X;Q). We
write π = π1(X). Then

t X (φ)≤ t̄π (φ).

Proof. Given a good presentation P for π , we construct the canonical finite 2-
complex Y with π1(Y ) ∼= π . Let k be the unique 1-cocycle representing φ. A
straightforward argument shows that t X (φ)≤ |k| = tP(φ); see also [Turaev 2002,
Section 1.8]. Since this is true for any good presentation of π1(X), we have
t X (φ)≤ tπ (φ). �

Example 4.7. Let π the fundamental group of the exterior of a knot K in the
3-sphere. Let φ be the abelianization homomorphism, mapping a meridian to 1.
If P is a Wirtinger presentation corresponding to a diagram for K , then one sees
easily that tP(φ) is the number of crossings of the diagram.

It is usually possible to find presentations yielding a smaller value tP(φ). Let 6
be a Seifert surface for K having minimal genus g. By splitting π along π1(6),
we obtain an HNN-decomposition for π of the form

〈A, x | µ(b)= xbx−1 for all b ∈ π1(6)〉,
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where A is the fundamental group of the knot exterior split along 6, and

µ : π1(6)→ A

is injective. For such a presentation P , we have tP(φ)= 2g− 1. It follows by the
next result that this value is the smallest possible; i.e., tπ (φ)= 2g− 1.

Theorem 4.8. Let N be the exterior of a link in a rational homology sphere with
group π . If N is irreducible, then for any φ ∈ H 1(N ;Q) such that 1N ,φ 6= 0, we
have

t N (φ)= tπ (φ)= xN (φ).

Remark. Turaev [2002] gives several examples of knot groups and presentations
of minimal complexity. He states that it would be interesting to find other examples.
Theorem 4.8 shows how to construct presentations of minimal complexity for any
knot in a rational homology sphere.

Proof. By Lemma 4.6 and Theorem 1.2, it suffices to prove that t̄π (φ)≤ xN (φ), for
any φ ∈ H 1(N ;Q). By the homogeneity of the Turaev function and the Thurston
norm we may assume that φ is an integral primitive cohomology class.

Consider a Thurston norm-minimizing surface6⊂ N for φ. Our assumption that
1N ,φ is not identically zero ensures that the first Betti number of Ker(φ) is finite. By
a short argument in the beginning of the proof of McMullen [2002, Proposition 6.1],
the surface 6 is connected. Its boundary is nonempty by Lemma 4.5. Splitting π
along π1(6), as above, we obtain a presentation P with complexity 2g− 1, where
g is the genus of 6. Since tN (φ)= 2g− 1, we are done. �

We conclude this section with the following conjecture:

Conjecture 4.9. Let X be a finite 2-complex with ∂X =∅. Then

t X (φ)= t̄π1(X)(φ) for any φ ∈ H 1(X;Q).

Note that an affirmative answer to this question together with Theorems 1.1
and 1.2 would show that the conclusion of Theorem 4.8 holds for any irreducible
link complement N , without any assumptions on φ.

5. Disconnected minimal dual graphs

It is natural to ask whether one can always realize the Turaev norm of a primitive
cohomology class by a connected graph. In this final section of the paper we will
see that this is not the case. More precisely, we have the following theorem.

Theorem 5.1. Given any n there exists a 2-complex X with ∂X =∅ and a primitive
class φ ∈ H 1(π;Z) such that for any 2-complex Y with π1(Y ) = π1(X) and with
∂Y =∅ the following holds: any graph 0 in Y that represents φ with t X (φ)=χ−(0)

has at least n components.
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Proof. We consider the good presentation

P = 〈a1, . . . , an, x1, . . . , xn | [xi , ai ], i = 1, . . . , n〉,

and we denote by X the corresponding 2-complex, which is just the join of n tori
T1, . . . , Tn . Clearly ∂X =∅.

We write π = π1(X). The group π is the free product of n free abelian groups
〈ai , xi | [ai , xi ]〉, i = 1, . . . , n of rank two. We consider the epimorphism φ : π→Z

that is defined by φ(ai )= 0, i = 1, . . . , n and φ(xi )= 1, i = 1, . . . , n. It is clear
that on each torus Ti there exists a circle, disjoint from the gluing point, such that
the union of these circles is dual to φ. We thus see that t X (φ)= 0.

Now let Y be a 2-complex with π1(Y )= π and with ∂Y =∅. Let 0 be a graph
on Y which is dual to φ with χ−(0) = 0. We will show that 0 has at least n
components. Note that χ−(0)= 0 implies that any component of 0 is either a point
or a circle. We denote by m the number of components of 0 that are circles. We
will see that m ≥ n.

Claim. The module H1(Y ;Q[t±1
]) is isomorphic to

Q[t±1
]
n−1
⊕

n⊕
i=1

Q[t±1
]/(t − 1).

We first note that H1(Y ;Q[t±1
])=H1(X;Q[t±1

]). A straightforward application
of Fox calculus (see [Fox 1953]) shows that

H1(X;Q[t±1
])∼=Q[t±1

]
n−1
⊕

n⊕
i=1

Q[t±1
]/(t − 1).

This concludes the proof of the claim.

Now we write W = Y \0× (−1, 1). The usual Meyer–Vietoris sequence with
Q[t±1

]-coefficients corresponding to Y =W ∪0×[−1, 1] gives rise to the exact
sequence

· · · → H1(0;Q[t±1
])

ι−−tι+
−−−−→ H1(W ;Q[t±1

])→

H1(Y ;Q[t±1
])→ H0(0;Q[t±1

])→ · · ·

Note that φ vanishes on0 and W . It follows that H∗(0;Q[t±1
]) and H∗(W ;Q[t±1

])

are free Q[t±1
]-modules. Furthermore, by the above discussion of 0 we know

that H1(0;Q[t±1
]) ∼= Q[t±1

]
m . It follows immediately from the above exact

sequence and the classification of modules over PIDs that the torsion submodule of
H1(Y ;Q[t±1

]) is generated by m elements.
On the other hand, we had just seen that the torsion submodule of H1(Y ;Q[t±1

])

is isomorphic to ⊕n
i=1Q[t±1

]/(t − 1). It follows from the classification of modules
over the PID Q[t±1

] that the minimal number of generators of the torsion submodule
of H1(Y ;Q[t±1

]) is n. Putting everything together we deduce that m ≥ n. �
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A NOTE ON NONUNITAL ABSORBING EXTENSIONS

JAMES GABE

Elliott and Kucerovsky stated that a nonunital extension of separable
C∗-algebras with a stable ideal is nuclearly absorbing if and only if the
extension is purely large. However, their proof was flawed. We give a
counterexample to their theorem as stated, but establish an equivalent for-
mulation of nuclear absorption under a very mild additional assumption
to being purely large. In particular, if the quotient algebra is nonunital,
then we show that the original theorem applies. We also examine how this
affects results in classification theory.

1. Introduction and a counterexample

A (unital) extension of C∗-algebras 0→ B→ E→ A→ 0 is called (unitally)
weakly nuclear if there is a (unital) completely positive splitting σ : A→ E which
is weakly nuclear, i.e., for every b ∈ B the map bσ(−)b∗ : A→ B is nuclear.
Such an extension is called trivial if we may take the weakly nuclear splitting to
be a ∗-homomorphism. An extension is called (unitally) nuclearly absorbing if it
absorbs every trivial, (unitally) weakly nuclear extension, i.e., the Cuntz sum of our
given extension e with any trivial, (unitally) weakly nuclear extension is strongly
unitarily equivalent to e. A remarkable result of Elliott and Kucerovsky [2001]
shows that a unital, separable extension with a stable ideal is unitally nuclearly
absorbing if and only if the extension is purely large. Recall that an extension
0→B→ E→ A→ 0 of C∗-algebras with B stable is called purely large if for
any x ∈ E \B, the hereditary C∗-subalgebra xBx∗ of B contains a stable, σ -unital
C∗-subalgebra D which is full in B. Note that we have added the requirement that
D be σ -unital, since this was implicitly used in [op. cit., Lemma 7] and since this
is automatic in the separable case, which is our main concern.

In their paper, Elliott and Kucerovsky use the unital version above to obtain a
nonunital version of this result, i.e., that a nonunital extension is nuclearly absorbing
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if and only if it is purely large. Unfortunately this is not true. We provide a
counterexample below.

A stable C∗-algebra is said to have the corona factorisation property if all full
multiplier projections are Murray–von Neumann equivalent, or equivalently, all
norm-full multiplier projections are properly infinite. As is shown in [Kucerovsky
and Ng 2006a], any full extension by a σ -unital, stable C∗-algebra with the corona
factorisation property is purely large in the sense of [Elliott and Kucerovsky 2001].
Here full means that the Busby map is full, i.e., that it maps nonzero elements to
full elements in the corona algebra.

It is known that C∗-algebras which do not have the corona factorisation property
have rather exotic properties; see, e.g., [Kucerovsky and Ng 2006b]. It follows by
[Robert 2011, Corollary 1] that any σ -unital, stable C∗-algebra with finite nuclear
dimension, or, more generally, nuclear dimension less than ω, has the corona
factorisation property. Thus for classification purposes, the corona factorisation
property is not really any restriction.

After receiving an early version of this note, Efren Ruiz constructed a counterex-
ample to [Eilers et al. 2014, Theorem 4.9]. In fact, by using results from this note,
Ruiz has constructed two graphs such that the induced C∗-algebras have exactly
one nontrivial ideal, have isomorphic six-term exact sequences in K -theory with
order and scale, but for which the C∗-algebras are nonisomorphic. This implies
that we do not have a complete classification of graph C∗-algebras with exactly
one nontrivial ideal using the above K -theoretic invariant, as opposed to what was
previously believed. The counterexample is provided in Section 4. Fortunately, all
recent classification results of stable graph C∗-algebras are unaffected by the issues
addressed in this note, and hence stand as given.

As for general notation in this note we let π denote the quotient map from the
multiplier algebra of some C∗-algebra to its corona algebra, and we consider an
essential extension algebra as a C∗-subalgebra of the multiplier algebra of the ideal.
When referring to full elements in a multiplier algebra, we always mean with respect
to the norm topology, and not the strict topology.

A counterexample to [Elliott and Kucerovsky 2001, Corollary 16] could be as
follows.

Example 1.1. Let A = C, B = K⊕K, and consider the trivial extension E with
splitting σ(1) = P ⊕ 1 ∈M(K)⊕M(K) ∼=M(B), where P is a full projection
in M(K) such that 1− P is also full. The extension E is clearly full, and since B

has the corona factorisation property, this implies that E is a nonunital, purely large
extension. However, it does not absorb the zero extension, i.e., the extension with
the zero Busby map. This is easily seen by projecting to the second coordinate in
the corona algebra π2 : Q(B) ∼= Q(K)⊕Q(K)→ Q(K), since π2(τ (1)) = 1 and
π2((τ ⊕ 0)(1)) is a nontrivial projection, where τ denotes the Busby map.
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The flaw in the original proof is the claim that a nonunital extension E is purely
large if and only if its unitisation E† is purely large. The sufficiency is trivial but
the necessity is incorrect.

Lemma 1.2. There exists a nonunital purely large extension such that the unitisation
is not purely large.

Proof. Let 0→ B→ E→ A→ 0 denote the extension of Example 1.1. The
unitisation E† has Busby map τ †

: C⊕C→Q(K)⊕Q(K) given by

τ †(1⊕ 0)= π(P)⊕ 1 and τ †(0⊕ 1)= π(1− P)⊕ 0.

Since π(1− P)⊕ 0 is not full in Q(K)⊕Q(K), τ † is not a full homomorphism
and thus the extension can not be purely large. �

2. Fixing the theorem

We will start by showing that the original theorem still holds, if we assume that the
quotient is nonunital.

Theorem 2.1. Let 0→B→E→A→ 0 be an extension of separable C∗-algebras
with B stable. Suppose that A is nonunital. Then the extension is nuclearly
absorbing if and only if it is purely large.

Proof. As in [Elliott and Kucerovsky 2001, Section 16] the extension is nuclearly
absorbing if and only if the unitised extension is unitally nuclearly absorbing, which
in turn is equivalent to the unitised extension being purely large. Thus it suffices
to show that this is equivalent to the nonunitised extension being purely large. We
use the same proof as in the original paper. Clearly the extension is purely large
if the unitisation is purely large. Assume that the nonunital extension is purely
large. Note, in particular, that the Busby map τ is injective. It suffices to show that
(1− x)B(1− x)∗ contains a stable C∗-subalgebra which is full in B for any x ∈ E.
Suppose that (1−x)E⊂B. Then π(x) is a unit for π(E)= τ(A)⊂Q(B). However,
this contradicts the fact that A is nonunital, since the Busby map τ is injective.
Hence we may find x ′ ∈ E such that (1− x)x ′ /∈B. Since

(1− x)x ′B((1− x)x ′)∗ ⊂ (1− x)B(1− x)∗

and since the nonunital extension is purely large, the former of these contains a
stable C∗-subalgebra which is full in B. �

To prove a stronger result, where the assumption that the quotient being unital is
removed, we will use the following lemma.

Lemma 2.2. Let B be a stable, separable C∗-algebra, and let P ∈M(B) be a full,
properly infinite projection. Then the trivial extension of C by B with splitting σ
given by σ(1)= P is purely large.
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Proof. If P = 1 then the extension is the canonical unitisation extension

0→ B→ B†
→ C→ 0,

which is clearly self-absorbing. It follows from [Elliott and Kucerovsky 2001] that
it is purely large.

It is well known, since B is stable, that P is full and properly infinite exactly
when it is Murray–von Neumann equivalent to 1. Let v be an isometry such that
vv∗ = P and let t1, t2 ∈M(B) be such that t1t∗1 + t2t∗2 = P = t∗1 t1 = t∗2 t2. Then
s1 := t1v and s2 := t2+ (1− P) are the canonical generators of a unital copy of O2

in M(B), for which P = s1s∗1 + s2 Ps∗2 . Hence,

π(σ(1))= π(s1)1π(s1)
∗
+π(s2)π(P)π(s2)

∗,

which implies that our extension is the Cuntz sum of the unitisation extension and
itself. It follows from [op. cit., Lemma 13] that our extension is purely large. �

Now for the stronger case where we allow the quotient to be unital.

Theorem 2.3. Let 0→B→E→A→ 0 be an extension of separable C∗-algebras
with B stable. The extension is nuclearly absorbing if and only if it is purely large
and there is a full, properly infinite projection P ∈M(B) such that PE⊂B.

Proof. Assume that the extension is nuclearly absorbing. Then it absorbs the zero
extension so we may assume that the Busby map is of the form τ ⊕ 0, where
the symbol ⊕ denotes a Cuntz sum. Let P = 0⊕ 1. Then PE ⊂B since π(P)
annihilates the image of the Busby map. Moreover, the extension absorbs some
purely large extension and is thus itself purely large by [loc. cit.].

Now suppose that the extension is purely large and that P is a full, properly
infinite projection such that PE ⊂B. As in the proof of Theorem 2.1 it suffices
to show that the unitised extension is purely large. It is enough to show that
(1− x)B(1− x)∗ contains a stable C∗-subalgebra which is full in B for any x ∈ E.
Observe that

(1− x)PBP(1− x)∗ ⊂ (1− x)B(1− x)∗.

Since (1− x)P = P − x P and x P ∈B, it suffices to show that the extension

0→B→B+CP→ C→ 0

is purely large. This follows from Lemma 2.2. �

Note that an extension must be nonunital in order to satisfy the equivalent
conditions in the above theorem. We immediately get the following corollary.

Corollary 2.4. Let 0→B→E→A→0 be an extension of separable C∗-algebras
with B stable. Then the extension is nuclearly absorbing if and only if it is purely
large and absorbs the zero extension.
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When we assume that the ideal has the corona factorisation property, then we get
a perhaps more hands-on way of checking if a full extension is nuclearly absorbing.
To exhibit this we introduce the following definition.

Definition 2.5. Let 0→B→E→A→ 0 be an extension of C∗-algebras. We say
that the extension is unitisably full if the unitised extension 0→B→E†

→A†
→ 0

is full.

It is clear that if an extension is unitisably full, then it is full and nonunital. If the
quotient algebra A is unital, then the extension is unitisably full if and only if the
extension is full and 1Q(B)− τ(1A) is full, where τ denotes the Busby map. Note
that this case is our main concern due to Theorem 2.1.

Theorem 2.6. Let 0→B→E→A→ 0 be an extension of separable C∗-algebras,
such that B is stable and has the corona factorisation property. Then the extension
is nuclearly absorbing if and only if the extension is unitisably full.

Proof. As in the proof of Theorem 2.1 the extension is nuclearly absorbing if and
only if the unitised extension is purely large. Since B has the corona factorisation
property, this is the case if and only if the extension is unitisably full. �

We will end this section by showing that, in the absence of the corona factorisation
property, there are purely large, unitisably full extensions which are not nuclearly
absorbing. We will need a converse of Lemma 2.2.

Proposition 2.7. Let B be a stable, separable C∗-algebra, and let P ∈M(B) be
a full projection. Then the trivial extension of C by B with splitting σ given by
σ(1)= P is purely large if and only if P is properly infinite.

Proof. One direction is Lemma 2.2. Suppose that the extension is purely large. It
suffices to show that the Cuntz sum P ⊕ 0 is properly infinite. The extension with
splitting σ ′(1)= P⊕0 is purely large and absorbs the zero extension, and thus it is
absorbing by Corollary 2.4. Since the extension with splitting σ0(1)= 1⊕ 0 is also
absorbing, there is a unitary U ∈M(B) such that U∗(P ⊕ 0)U − 1⊕ 0 ∈B. Pick
an isometry V ∈M(B) such that V ∗(1⊕ 0)V = 1. Then

V ∗(U∗(P ⊕ 0)U − 1⊕ 0)V = (U V )∗(P ⊕ 0)U V − 1 ∈B.

Since B is stable, we may find an isometry W such that

‖(U V W )∗(P ⊕ 0)U V W − 1‖ = ‖W ∗((U V )∗(P ⊕ 0)U V − 1)W‖< 1.

This implies that P ⊕ 0, and thus also P, is properly infinite. �

We can now extend our class of counterexamples to include purely large, unitis-
ably full extensions 0→B→E→A→0 which are not nuclearly absorbing. In fact,
such an extension can be made for any B without the corona factorisation property.
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Proposition 2.8. Let B be a stable, separable C∗-algebra which does not have the
corona factorisation property. Then there is a purely large, unitisably full extension
of C by B which is not nuclearly absorbing.

Proof. Let Q be a full multiplier projection which is not properly infinite, but where
P := 1− Q is properly infinite and full. Such a projection can be obtained by
taking any full multiplier projection Q′ which is not properly infinite, and letting
Q = Q′⊕ 0 be a Cuntz sum. In fact, P = 1− Q will be properly infinite since it
majorises the properly infinite, full projection 0⊕ 1. Consider the trivial extension
E of C by B with splitting σ(1) = P . The unitised extension has a splitting
σ1 : C⊕C→M(B) given by σ1(1⊕ 0) = P and σ1(0⊕ 1) = Q. Since both P
and Q are full and orthogonal, the unitised extension is full.

By Proposition 2.7 the extension is purely large. Such an extension is nuclearly
absorbing exactly when its unitisation is purely large [Elliott and Kucerovsky 2001].
If the unitisation was purely large, then (Q− b)B(Q− b)∗ would contain a stable
C∗-subalgebra full in B, for every b ∈ B. However, this would imply that the
extension of C by B with splitting σ0(1) = Q is purely large, which it is not by
Proposition 2.7. Hence the extension is not nuclearly absorbing. �

3. How this affects classification results

In the classification of nonsimple C∗-algebras, a popular result has been a result
of Kucerovsky and Ng, which says that under the mild condition of the corona
factorisation property on a stable, separable C∗-algebra B, KK 1(A,B) is the group
of unitary equivalence classes of full extensions E of A by B for any nuclear
separable C∗-algebra A. This is unfortunately not the case. The theorem only
remains true if one adds the condition that the extensions are unitisably full as in
Definition 2.5. See Theorem 3.2 below.

A counterexample of the original result could be as follows.

Example 3.1. Let 0→B→ E→A→ 0 be the extension from Example 1.1 with
Busby map τ . Then B has the corona factorisation property and the extension is
full. As seen in Example 1.1, τ and τ ⊕ 0 are both nonunital and are not unitarily
equivalent. However, they define the same element in KK 1(A,B).

The closest we get to fixing the theorem would be the following.

Theorem 3.2. Let B be a separable, stable C∗-algebra. Then the following are
equivalent:

(i) B has the corona factorisation property.

(ii) For any separable C∗-algebra A, KK 1
nuc(A,B) is the group of strong unitary

equivalence classes of all full, weakly nuclear extensions of A by B which
absorb the zero extension.
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(iii) For any separable C∗-algebra A, KK 1
nuc(A,B) is the group of strong unitary

equivalence classes of all full, weakly nuclear extensions E of A by B, for
which there is a full projection P ∈M(B) such that PE⊂B.

(iv) For any separable C∗-algebra A, KK 1
nuc(A,B) is the group of strong unitary

equivalence classes of all unitisably full, weakly nuclear extensions E of A

by B.

Proof. It is well-known that KK 1
nuc(A,B) is (isomorphic to) the group of strong

unitary equivalence classes of weakly nuclear extensions of A by B which are
nuclearly absorbing. This is proved in [Kirchberg 2000, Sections 3 and 4], though
in a much more general setting. Alternatively, one can prove this exactly as one
proves that KK 1(A, B)∼= Ext−1(A, B), and then note that the latter can be viewed
as strong unitary equivalence classes of semisplit extensions of A by B which are
absorbing. Note that weakly nuclear extensions are automatically semisplit. Thus
(i)⇒ (iv) by Theorem 2.6, and (iv)⇒ (i) follows from Proposition 2.8.

If B has the corona factorisation property, then any full extension by B is purely
large. Thus (i)⇒ (iii) follows from Theorem 2.3.

Clearly (iii) is equivalent to the condition that for any C∗-algebra A, any full,
weakly nuclear extension E of A by B, for which there is a full projection P ∈M(B)

such that PE⊂B, is nuclearly absorbing. If the extension E has Busby map τ ⊕0,
then (0⊕ 1)E⊂B, and thus (iii)⇒ (ii).

It remains to show (ii)⇒ (i). Let P ∈M(B) be a full projection, and let P ⊕ 0
be the Cuntz sum. Note that Q ∼ Q⊕0 for any projection Q. By (ii), the extension
with the Busby map τ :C→Q(B) given by τ(1)=π(P⊕0) is nuclearly absorbing.
In particular, it absorbs the unitisation extension of B. Consider the lift ρ(1)= P⊕0
of τ and the canonical lift of the unitisation extension of B. We may find a unitary
u ∈M(B) such that u∗(P ⊕ 0⊕ 0)u − 0⊕ 0⊕ 1 ∈B. If v is an isometry such
that vv∗ = 0⊕ 0⊕ 1, then (uv)∗(P ⊕ 0⊕ 0)uv − 1 ∈ B. Thus we may pick an
isometry w such that

‖w∗((uv)∗(P ⊕ 0⊕ 0)uv− 1)w‖ = ‖s∗(P ⊕ 0⊕ 0)s− 1‖< 1,

where s is the isometry uvw. Hence P is Murray–von Neumann equivalent
to s∗(P ⊕ 0⊕ 0)s, which is equivalent to 1. �

Remark 3.3. It clearly follows from the proof above that we could restrict our
attention only to nuclear C∗-algebras A if desired. In this case we can remove the
weakly nuclear condition, since all extensions of a separable, nuclear C∗-algebra
are weakly nuclear by the lifting theorem of Choi and Effros [1976], and also we
would have KK 1

nuc(A,B)= KK 1(A,B).

We still get some nice results for classification. This follows from the above
theorem and Theorem 2.1.
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Corollary 3.4. Let B be a separable, stable C∗-algebra with the corona factorisa-
tion property and let A be a nonunital, separable C∗-algebra. Then KK 1

nuc(A,B) is
the group of strong unitary equivalence classes of all full, weakly nuclear extensions
of A by B.

Corollary 3.5. Let B be a separable, stable C∗-algebra with the corona factorisa-
tion property and let A be a separable C∗-algebra. Let Ei be full, weakly nuclear
extensions of A by B, with Busby maps τi , for i=1, 2. If [τ1]=[τ2]∈KK 1

nuc(A,B),
then E1⊗K ∼= E2⊗K.

Proof. Given a Busby map τ : A→Q(B), let τ s be the composition

A⊗K
τ⊗id
−−→Q(B)⊗K ↪→Q(B⊗K).

It is well known that the map KK 1
nuc(A,B)→ KK 1

nuc(A⊗K,B⊗K) given by
[τ ] 7→ [τ s

], is an isomorphism (the proof is identical to the similar result in classical
KK-theory). Thus τ s

1 and τ s
2 are strongly unitarily equivalent by Corollary 3.4, and

since their corresponding extension algebras are E1⊗K and E2⊗K respectively, it
follows that E1⊗K ∼= E2⊗K. �

Remark 3.6. Every result in this note holds with the ideal B being σ -unital instead
of separable. The quotient A should still be separable. This is a special case of a
much more general result in [Gabe and Ruiz 2015].

4. The counterexample of Ruiz

Definition 4.1. Let E = (E0, E1, r, s) be a (countable, directed) graph. The graph
C∗-algebra C∗(E) is the universal C∗-algebra generated by mutually orthogonal
projections pv for v ∈ E0, and isometries se for e ∈ E1, which satisfy the relations

• s∗e sf = δe f pr(e) for all e, f ∈ E1,

• se s∗e ≤ ps(e) for all e ∈ E1,

• pv =
∑

e∈s−1({v}) se s∗e for all v ∈ E0 satisfying 0< |s−1({v})|<∞.

Example 4.2 (the counterexample). Theorem 4.9 of [Eilers et al. 2014] states
that if C∗(E) and C∗(F) are nonunital and both have exactly one nontrivial, two-
sided, closed ideal, and the induced six-term exact sequences in K-theory are
isomorphic, such that the isomorphisms on all K0-groups preserve order and scale,
then C∗(E)∼= C∗(F). We will provide a counterexample to this result.

Let E and F be the respective graphs

v
yy%%

��

w
xx&&

��
v0

2 // v1
2 // v2

2 // · · · · · · // w−1 // w0
2 // w1

2 // w2
2 // · · ·
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Both C∗(E) and C∗(F) are nonunital, full extensions of the Cuntz algebra O2 by
the stabilisation of the CAR algebra M2∞ ⊗K. The six-term exact sequences of
the induced extensions, where we write the K0-groups with order and scale as
(K0(A), K0(A)

+, 6K0(A)), are both isomorphic to

(
Z
[ 1

2

]
,Z
[ 1

2

]
+
,Z
[1

2

]
+

) (id,ι,ι) // (Z[ 1
2

]
,Z
[ 1

2

]
,Z
[ 1

2

])
// (0, 0, 0)

��
0

OO

0oo 0oo

where Z
[ 1

2

]
+
=Z

[ 1
2

]
∩[0,∞) and ι :Z

[ 1
2

]
+
↪→Z

[ 1
2

]
is the canonical inclusion. To

compute the order and scale of K0(C∗(E)) and K0(C∗(F)) we simply use that both
C∗(E) and C∗(F) contain full, properly infinite projections, pv and pw, respectively,
and apply [Rørdam 2002, Proposition 4.1.4]. That pv and pw are properly infinite
follows since v and w both support two loops, so it follows easily from the defining
relations that they are properly infinite. Thus if [Eilers et al. 2014, Theorem 4.9]
were true, it should follow that C∗(E)∼= C∗(F). We will show that this is not the
case, by showing that one extension with C∗(F) is nuclearly absorbing, but that
the extension with C∗(E) is not.

The extension with C∗(F) is nuclearly absorbing. Recall that F∗ denotes the
set of paths in F, and that if α = e1 · · · en ∈ F∗ then sα := se1 · · · sen , and that
r(α)= r(en) and s(α)= s(e1). Let IF denote the unique nontrivial ideal in C∗(F),
which is isomorphic to M2∞ ⊗K. By [Ruiz and Tomforde 2014], we may describe
IF as

IF = span{sαs∗β : α, β ∈ F∗, r(α)= r(β)= wn for some n ∈ Z}.

Let P=
∑
∞

n=1w−n which is easily seen to converge strictly in the multiplier algebra
of IF . We clearly have that PC∗(F) ⊂ IF . Thus, if P is a full, properly infinite
projection in M(IF ), then it follows from Theorem 2.3 that the extension with
C∗(F) is nuclearly absorbing. Since IF has the corona factorisation property, it
suffices to show that P is full.

Note that M2∞ ∼= pw0 IF pw0 . Let ρ denote the unique tracial state on pw0 IF pw0 ,
and ρ∞ denote the induced trace function on M(IF )+. It follows from [Rørdam
1991, Theorem 4.4] that P is full if and only if ρ∞(P)=∞. Since pw−n for n > 0
is Murray–von Neumann equivalent to pv0 , it follows that ρ(pw−n )= ρ(pv0)= 1
and thus ρ∞(P)=

∑
∞

n=1 ρ(pw−n )=∞. Thus the extension

0→ IF → C∗(F)→ C∗(F)/IF → 0

is nuclearly absorbing.
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The extension with C∗(E) is not nuclearly absorbing. Let IE denote the unique
nontrivial ideal in C∗(E), which is isomorphic to M2∞ ⊗K. As above, we may
describe IE as

IE = span{sα s∗β : α, β ∈ E∗ and r(α)= r(β)= vn for some n ≥ 0}.

To show that the extension e :0→IE→C∗(E)→O2→0 is not nuclearly absorbing,
it suffices to show that the unitised extension e†

: 0→ IE→C∗(E)†→O2⊕C→ 0
is not full. Let σ : C∗(E)→M(IE) be the canonical ∗-homomorphism. Then
C∗(E)† ∼= σ(C∗(E))+C1M(IE ). Note that 1− σ(pv) is a lift of (0, 1) ∈ O2⊕C

(under the obvious identifications), so if e† is full, we should have that 1−σ(pv)+IE

is full in Q(IE) by [Kucerovsky and Ng 2006a, Proposition 3.3]. Since IE is stable,
fullness of 1− σ(pv)+ IE is equivalent to fullness of 1− σ(pv) in M(IE).

The corner in IE generated by 1− σ(pv) is easily seen to be

span{sα s∗β : s(α) 6= v 6= s(β)},

which has an approximate unit
(∑k

n=0 pvn

)∞
k=1. Thus 1− σ(pv)=

∑
∞

n=0 pvn . As
above, M2∞ ∼= pv0 IE pv0 , so let ρ be the unique tracial state and ρ∞ be the induced
trace function on M(IE)+. We have that ρ(pvn )= 2−n so

ρ∞(1− σ(pv))=
∞∑

n=0

2−n <∞.

It follows that 1− σ(pv) is not full, and thus e is not nuclearly absorbing.
In particular, C∗(E)� C∗(F).
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ON NONRADIAL SINGULAR SOLUTIONS
OF SUPERCRITICAL BIHARMONIC EQUATIONS

ZONGMING GUO, JUNCHENG WEI AND WEN YANG

We develop a gluing method for fourth-order ODEs and construct infinitely
many nonradial singular solutions for a biharmonic equation with super-
critical exponent.

1. Introduction

In this paper we are concerned with positive singular solutions of the biharmonic
equation

(1-1) 12u = u p in Rn, n ≥ 6,

where p > (n+ 4)/(n− 4).
Equation (1-1) arises in both physics and geometry. In recent decades there has

been much research into classifying solutions to (1-1). When 1< p≤ (n+4)/(n−4),
all nonnegative solutions to (1-1) have been completely classified [Lin 1998; Wei
and Xu 1999]: if p < (n+ 4)/(n− 4), then (1-1) admits no nontrivial nonnegative
regular solution, while for p = (n+ 4)/(n− 4), i.e., the critical case, any positive
regular solution of (1-1) can be written in the form

uλ,ξ =
(
n(n− 4)(n− 2)(n+ 2)

)− 1
8 (n−4)

(
λ

1+ λ2|x − ξ |2

)1
2 (n−4)

, ξ ∈ Rn.

However, the question of the complete classification of positive regular solutions of
(1-1) in the supercritical case, i.e., p > (n+ 4)/(n− 4), remains largely open.

The structure of positive radial solutions of (1-1) with p > (n+ 4)/(n− 4) has
been studied by Gazzola and Grunau [2006] and Guo and Wei [2010]. For the
fourth-order ODE

(1-2)
{
12u(r)= u p(r), r ∈ [0,∞),
u(0)= a, u′′(0)= b, u′(0)= u′′′(0)= 0,

MSC2010: primary 35B40, 35J91; secondary 58J55.
Keywords: nonradial solutions, biharmonic supercritical equations, gluing method.
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it is known from [Gazzola and Grunau 2006] that for any a > 0 there is a unique
b0 :=b0(a)<0 such that the unique solution ua,b0 of (1-2) satisfies ua,b0 ∈C4(0,∞),
u′a,b0

(r) < 0 and

lim
r→∞

rαua,b0(r)= K 1/(p−1)
0 ,

where α = 4/(p− 1) and

K0 =
8
(
(n−2)(n−4)(p−1)3+2(n2

−10n+20)(p−1)2−16(n−4)(p−1)+32
)

(p−1)4
.

This implies that ua,b0(r)>0 for all r>0 and ua,b0(r)→0 as r→∞. Moreover, it is
known from [Guo and Wei 2010] that if 5≤n≤12 or if n≥13 and (n+4)/(n−4)<
p < pc(n), then ua,b0 − K 1/(p−1)

0 r−α changes sign infinitely many times in (0,∞),
and if n≥ 13 and p≥ pc(n), then u(r)< K 1/(p−1)

0 r−α for all r > 0 and the solutions
are strictly ordered with respect to the initial value a = ua,b0(0). Here pc(n) refers
to the unique value of p > (n+ 4)/(n− 4) such that

pc(n)=


+∞ if 4≤ n ≤ 12,

n+ 2−
√

n2+ 4− n
√

n2− 8n+ 32

n− 6−
√

n2+ 4− n
√

n2− 8n+ 32
if n ≥ 13.

Very recently, Dávila, Dupaigne, Wang and Wei [Dávila et al. 2014] proved that all
stable or finite Morse index solutions of (1-1) are trivial provided 1< p < pc(n).
According to a result in [Guo and Wei 2010] and [Karageorgis 2009] all radial
solutions are stable when p≥ pc(n). Thus the result in [Dávila et al. 2014] is sharp.

We now turn to the singular solutions of (1-1). It is easily seen that

(1-3) us(x) := K 1/(p−1)
0 |x |−4/(p−1)

is a singular solution of (1-1). In other words, us satisfies the equation

(1-4) 12u = u p, u > 0 in Rn
\{0}.

As far as we know, the radial singular solution in (1-3) is the only singular solution
to (1-4) known so far. The question we shall address in this paper is whether or
not there are nonradial singular solutions to (1-4). To this end, we first discuss the
corresponding second-order Lane–Emden equation

(1-5) 1u+ u p
= 0, u > 0 in Rn,

which has been widely studied. We refer to [Budd and Norbury 1987; Bidaut-Véron
and Véron 1991; Dancer et al. 2011; Farina 2007; Guo 2002; Gidas and Spruck
1981; Gui et al. 1992; Johnson et al. 1993; Joseph and Lundgren 1972/73; Korevaar
et al. 1999; Zou 1995] and the references therein. Farina [2007] proved that if
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(n+2)/(n−2)< p< pc(n), the Morse index of any regular solution u of (1-5) is∞.
Here pc(n) is the Joseph–Lundgren exponent [Joseph and Lundgren 1972/73]:

pc(n)=


+∞ if 2≤ n ≤ 10,
(n− 2)2− 4n+ 8

√
n− 1

(n− 2)(n− 10)
if n ≥ 11.

In [Dancer et al. 2011], Dancer, Du and Guo showed that if �0 is a bounded domain
containing 0, then u is a solution of (1-5) in �0\{0}; if u has finite Morse index
and (n+ 2)/(n− 2) < p < pc(n), then x = 0 must be a removable singularity of u.
They also showed that if �0 is a bounded domain containing 0, u is a solution of
(1-5) in Rn

\�0 that has finite Morse index, and (n+2)/(n−2) < p < pc(n), then
u must be a fast decay solution. It is easily seen that (1-5) has a radial singular
solution

us(x) := us(r)=
(

2
p− 1

(
n− 2−

2
p− 1

))1/(p−1)

|x |−2/(p−1).

Recently, Dancer, Guo and Wei [Dancer et al. 2012] obtained infinitely many positive
nonradial singular solutions of (1-5) provided p ∈ ((n + 1)/(n − 3), pc(n − 1)).
The proof of that result is via a gluing of outer and inner solutions.

The main result in this paper is the following theorem.

Theorem 1.1. Let n ≥ 6. Assume that

n+ 3
n− 5

< p < pc(n− 1).

Then (1-1) admits infinitely many nonradial singular solutions.

The proof of Theorem 1.1 is via a gluing of inner and outer solutions, as in [Dancer
et al. 2012]. In the second-order case, one glues (u(r), u′(r)) at some intermediate
point. However, since (1-1) is of fourth order, we have to match the inner solution
and outer solution up to the third derivative (u(r), u′(r), u′′(r), u′′′(r)). Some
essential obstructions appear when matching the inner and outer solutions. As far as
we know this is the first paper on gluing inner and outer solutions for fourth-order
ODE problems.

In the following, we sketch the proof of Theorem 1.1. After performing a
separation of variables for a solution u of (1-1), u(x)= r−αw(θ), finding a nonradial
singular solution of (1-1) is equivalent to finding a nonconstant solution of the
equation

(1-6) 12
Sn−1w+ k1(n)1Sn−1w+ k0(n)w = w p,
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where
k0(n)= (n− 4−α)(n− 2−α)(2+α)α,

k1(n)=−
(
(n− 4−α)(2+α)+ (n− 2−α)α

)
.

It is clear thatw(θ)= (k0(n))1/(p−1) is the constant solution of (1-6), which provides
the radial singular solution of (1-1) that is given in (1-3).

In order to construct positive nonradial singular solutions of (1-1), we need to
find positive nonconstant solutions of (1-6), which is a fourth-order inhomogeneous
nonlinear ODE; therefore, we shall construct infinitely many positive nonconstant
radially symmetric solutions of (1-6), i.e., solutions that only depend on the geodesic
distance θ ∈[0, π). We only consider the simple casew(θ)=w(π−θ) for 0≤θ ≤ π

2 .
In this case, (1-6) can be written in the form

(1-7)

{
T1w(θ)+ k1(n)T2w(θ)+ k0(n)w = w p, w(θ) > 0, 0< θ < π

2 ,

w′(0), w′′′(0) exist, w′
(
π
2

)
= w′′′

(
π
2

)
= 0,

where T1, T2 are the differential operators defined by

T1w(θ)=
1

sinn−2 θ

d
dθ

(
sinn−2 θ

d
dθ

(
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dw(θ)
dθ

)))
and

T2w(θ)=
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dw(θ)
dθ

)
.

A key observation is that

(1-8) w∗(θ)= Ap(sin θ)−α, θ ∈
(
0, π2

]
,

with
Ap−1

p = (n− 5−α)(n− 3−α)(2+α)α (:= k0(n− 1)),

is a singular solution of (1-7) with a singular point at θ = 0. (Note that this is a
singular solution in one dimension less.) We will construct the inner and outer
solutions of (1-7) and glue them at some point close to 0, which gives solutions of
(1-7). The main difficulty is the matching of four parameters, which correspond to
matching u and its derivatives up to the third order.

This paper is organized as follows. In Section 2, we present some preliminaries.
In Section 3, we construct inner solutions of (1-7) by studying an initial value
problem of (1-7) with large initial values at θ = 0. In Section 4, we construct outer
solutions of (1-7). We first study an initial value problem of (1-7) with the initial
values at θ = π

2 , then we analyze the asymptotic behaviors of the solutions of this
initial value problem near θ = 0. Finally, in Section 5, we match the inner and outer
solutions constructed in Sections 3 and 4 to obtain solutions of (1-1). This completes
the proof of Theorem 1.1. We leave some computational results to the Appendix.
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2. Preliminaries

In this section, we present some known results which will be used subsequently.
Let u = u(r) be a positive radial solution of (1-1). Using the Emden–Fowler

transformation

(2-1) u(r)= r−αv(t), t = ln r,

we see that v(t) satisfies the equation

(2-2) v(4)(t)+K3v
′′′(t)+K2v

′′(t)+K1v
′(t)+K0v(t)= v p(t), t ∈ (−∞,∞),

where the coefficients K0, K1, K2, K3 are given in [Gazzola and Grunau 2006]:

K0 =
8

(p− 1)4
(
(n− 2)(n− 4)(p− 1)3+ 2(n2

− 10n+ 20)(p− 1)2

− 16(n− 4)(p− 1)+ 32
)
,

K1 =−
2

(p− 1)3
(
(n− 2)(n− 4)(p− 1)3+ 4(n2

− 10n+ 20)(p− 1)2

− 48(n− 4)(p− 1)+ 128
)
,

K2 =
1

(p− 1)2
(
(n2
− 10n+ 20)(p− 1)2− 24(n− 4)(p− 1)+ 96

)
,

K3 =
2

p− 1

(
(n− 4)(p− 1)− 8

)
.

By direct calculation it is easy to see that K0 = k0. The characteristic polynomial
(linearized at K 1/(p−1)

0 ) of (2-2) is

ν 7→ ν4
+ K3ν

3
+ K2ν

2
+ K1ν+ (1− p)K0

and the eigenvalues are given by

ν1 =
N1+

√
N2+ 4

√
N3

2(p− 1)
, ν2 =

N1−
√

N2+ 4
√

N3

2(p− 1)
,

ν3 =
N1+

√
N2− 4

√
N3

2(p− 1)
, ν4 =

N1−
√

N2− 4
√

N3

2(p− 1)
,

where

N1 := −(n− 4)(p− 1)+ 8,

N2 := (n2
− 4n+ 8)(p− 1)2,

N3 := (9n− 34)(n− 2)(p− 1)4+ 8(3n− 8)(n− 6)(p− 1)3

+ (16n2
− 288n+ 832)(p− 1)2− 128(n− 6)(p− 1)+ 256.

Let ν̃ j = ν j −α for j = 1, 2, 3, 4.
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Proposition 2.1 [Guo and Wei 2010]. For any n ≥ 5 and p > (n+ 4)/(n− 4),

(2-3) ν̃2 < 2− n < 0< ν̃1.

(1) For any 5 ≤ n ≤ 12 or n ≥ 13 and (n + 4)/(n − 4) < p < pc(n), we have
ν̃3, ν̃4 6∈ R and <(ν̃3)=<(ν̃4)=

1
2(4− n) < 0.

(2) For any n ≥ 13 and p = pc(n), we have ν̃3 = ν̃4 =
1
2(4− n).

(3) For any n ≥ 13 and p > pc(n), we have

(2-4) ν̃2 < 4− n < ν̃4 <
1
2(4− n) < ν̃3 < 0< ν̃1, ν̃3+ ν̃4 = 4− n.

Theorem 2.2 [Gazzola and Grunau 2006]. For any k ≥ 1,

(2-5) lim
t→∞

v(t)= K 1/(p−1)
0 , lim

t→∞
v(k)(t)= 0

Remark. We see that Ki (i = 0, 1, 2, 3) and ν j , ν̃ j ( j = 1, 2, 3, 4) above depend
on n and p. In the following, by abuse of notation, we use Ki , ν j , ν̃ j with the
dimension n replaced by n− 1 and write k0 = k0(n) and k1 = k1(n).

3. Inner solutions

In this section, we construct inner solutions of (1-7).
Let Q� 1 be a large constant and b̃ be a constant which will be given below.

We consider the initial value problem

(3-1)
{

T1w(θ)+ k1T2w(θ)+ k0w = w
p,

w(0)= Q, w′(0)= 0, w′′(0)= (b̃+µ)Q1+2/α, w′′′(0)= 0,

where µ> 0 is a small constant. Since Q� 1, we set Q = ε−4/(p−1) (:= ε−α) with
ε > 0 sufficiently small.

Let w(θ) = ε−αv(θ/ε). Then we have v(0) = 1, v′(0) = 0, v′′(0) = b̃ + µ,
v′′′(0)= 0 and v(r) (for r = θ/ε) satisfies the equation

(3-2) v(4)(r)+2(n−2)ε cot(εr)v′′′(r)

+

(
(n−2)(n−4)

ε2

sin2(εr)
−(n−2)2ε2

+k1ε
2
)
v′′

+

(
(n−2)k1ε

3 cot(εr)−(n−2)(n−4)ε3 cot(εr)

sin2(εr)

)
v′(r)+k0ε

4v(r)= v p(r)

with initial conditions

v(0)= 1, v′(0)= 0, v′′(0)= b̃+µ, v′′′(0)= 0.
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For ε > 0 sufficiently small, we have

ε cot(εr)=
1
r
−

1
3ε

2r +
∞∑

k=1

lkε
2k+2r2k+1,

ε2 sin−2(εr)=
1
r2 +

1
3ε

2
+

∞∑
k=1

mkε
2k+2r2k,

ε3 cot(εr) sin−2(εr)=
1
r3 +

∞∑
k=1

nkε
2k+2r2k−1.

So (3-2) can be written in the form
(3-3)

v(4)(r)+
(

2(n−2)
r
−

2
3(n−2)ε2r+

∞∑
k=1

l ′kε
2k+2r2k+1

)
v′′′(r)

+

(
(n−2)(n−4)

r2 +
( 1

3(n−2)(n−4)−(n−2)2+k1
)
ε2
+

∞∑
k=1

m′kε
2k+2r2k

)
v′′(r)

−

(
(n−2)(n−4)

r3 −(n−2)k1r−1ε2
+

∞∑
k=1

n′kε
2k+2r2k−1

)
v′(r)+k0ε

4v(r)= v p(r)

with initial conditions

v(0)= 1, v′′(0)= b̃+µ, v′(0)= v′′′(0)= 0.

The first approximation to the solution of (3-3) is the radial solution v0(r) of the
problem

(3-4) 12v = v p in Rn−1, v(0)= 1, v′(0)= 0, v′′(0)= b̃+µ, v′′′(0)= 0.

We write v0 = v01+ v02, where v01 satisfies

(3-5) 12v = v p, v(0)= 1, v′(0)= 0, v′′(0)= b̃, v′′′(0)= 0,

and v02 satisfies

(3-6) 12v = v
p
0 − v

p
01, v(0)= 0, v′(0)= 0, v′′(0)= µ, v′′′(0)= 0.

We now choose b̃< 0 to be the unique value such that the solution v01 is the unique
positive radial ground state of (3-5).

Lemma 3.1. Assume that v01(r) and v02(r) are the solutions to (3-5) and (3-6),
respectively. For (n+ 3)/(n− 5) < p < pc(n− 1), there exists R0� 1 such that
for r ≥ R0, the solution v01(r) satisfies

(3-7) v01(r)= Apr−α +
a0 cos(β ln r)+ b0 sin(β ln r)

r (n−5)/2 + O(r2σ−α),
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where β =
√

4
√

N3− N2/(2(p−1)) (with n being replaced by n−1 in N2 and N3)
and

√
a2

0 + b2
0 6= 0.

The solution v02(r) satisfies

(3-8) v02(r)= µBpr ν̃1 + O(µ2rν1+ν̃1 +µr ν̃1+α−(n−5)/2),

with Bp 6= 0 when µ = O(1/(rν1−σ )) for r in any interval [eT , e10T
] with T � 1

and σ = α− 1
2(n− 5).

Proof. The proof of this lemma is divided into two steps. We consider v01(r) in
the first step. The main arguments in the proof are similar to those in the proof of
Theorem 3.1 of [Guo 2014].

Using the Emden–Fowler transformation

(3-9) v01(r)= r−αv(t), t = ln r (r > 0),

and letting v(t)= Ap − h(t), we see that h(t) satisfies

(3-10) h(4)(t)+ K3h′′′(t)+ K2h′′(t)+ K1h′(t)+ (1− p)K0h(t)+ O(h2)= 0

for t > 1. Note that rαv01(r)→ Ap as r→∞ and hence h(t)→ 0 as t→∞. It
follows from Proposition 2.1 that ν̃3, ν̃4 6∈R and <(ν̃3)=<(ν̃4)=

1
2(5−n) < 0 and

ν̃2<3−n<0<ν̃1 provided (n+3)/(n−5)< p< pc(n−1). Let ν3=σ+iβ, where
β =

√
4
√

N3− N2/(2(p−1)) and σ =− 1
2(n−5)+α < 0 for p> (n+3)/(n−5).

We can write (3-10) as

(3-11) (∂t − ν4)(∂t − ν3)(∂t − ν2)(∂t − ν1)h(t)= H(h(t)),

where H(h(t)) = O(h2). We claim that for any T � 1, there exist constants Ai

and Bi (i = 1, 2, 3, 4) such that

h(t)= A1eσ t cosβt+A2eσ t sinβt+A3eν2t
+A4eν1t

+B1

∫ t

T
eσ(t−s) sinβ(t−s)H(h(s))ds+B2

∫ t

T
eσ(t−s) cosβ(t−s)H(h(s))ds

+B3

∫ t

T
eν2(t−s)H(h(s))ds+B4

∫ t

T
eν1(t−s)H(h(s))ds.

Moreover, each Ai depends on T and νi (i = 1, 2, 3, 4), while each Bi depends only
on νi (i = 1, 2, 3, 4). In fact, it follows from (3-11) and the theory of second-order
ODEs (see [Hartman 1982]) that

(3-12) (∂t − ν2)(∂t − ν1)h(t)

= A′1eσ t cosβt + A′2eσ t sinβt +
1
β

∫ t

T
eσ(t−s) sinβ(t − s)H(h(s)) ds,
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where A′1 and A′2 are constants depending on T , ν3 and ν4. Multiplying both sides
of (3-12) by e−ν2t and integrating it from T to t , we obtain

(∂t − ν1)h(t)= A′3eν2t
+

∫ t

T
eν2(t−s)(A′1eσ s cosβs+ A′2eσ s sinβs) ds

+
1
β

∫ t

T
eν2(t−s)

∫ s

T
eσ(s−ξ) sinβ(s− ξ)H(h(ξ)) dξ ds.

We now switch the order of integration and find that

(∂t−ν1)h(t)

= A′′1eσ t cosβt+A′′2eσ t sinβt+A′′3eν2t
+B ′1

∫ t

T
eσ(t−s) sinβ(t−s)H(h(s)) ds

+ B ′2

∫ t

T
eσ(t−s) cosβ(t−s)H(h(s)) ds+ B ′3

∫ t

T
eν2(t−s)H(h(s)) ds,

where A′′1 , A′′2 and A′′3 depend on T and νi (i = 2, 3, 4), and where the B ′i (i = 1, 2, 3)
depend only on νi (i = 2, 3, 4). Repeating the same argument once again, we obtain
our claim. Using the fact that

∫ t
T =

∫
∞

T −
∫
∞

t , we have

B4

∫ t

T
eν1(t−s)H(h(s)) ds = B4

∫
∞

T
eν1(t−s)H(h(s)) ds− B4

∫
∞

t
eν1(t−s)H(h(s)) ds

= B4eν1t
∫
∞

T
e−ν1s H(h(s)) ds−B4

∫
∞

t
eν1(t−s)H(h(s)) ds.

By combining B4eν1t
∫
∞

T e−ν1s H(h(s)) ds and A4eν1t , we can also write h(t) as

h(t)= A1eσ t cosβt + A2eσ t sinβt + A3eν2t
+M4eν1t

+ B1

∫ t

T
eσ(t−s) sinβ(t − s)H(h(s)) ds

+ B2

∫ t

T
eσ(t−s) cosβ(t − s)H(h(s)) ds

+ B3

∫ t

T
eν2(t−s)H(h(s)) ds− B4

∫
∞

t
eν1(t−s)H(h(s)) ds.

Since h(t)→ 0 as t→∞, we have M4 = 0 (note ν1 > 0). Setting

h1(t)= A1eσ t cosβt + A2eσ t sinβt + A3eν2t

and

h2(t)= B1

∫ t

T
eσ(t−s) sinβ(t−s)H(h(s)) ds+B2

∫ t

T
eσ(t−s) cosβ(t−s)H(h(s)) ds

+ B3

∫ t

T
eν2(t−s)H(h(s)) ds− B4

∫
∞

t
eν1(t−s)H(h(s)) ds
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and noting that H(h(t))= O(h2(t)), we see that

(3-13) |h2(t)| ≤ C(h̃1(t)+ h̃2(t)),

where C > 0 is independent of T and

h̃1(t)=max
{∫ t

T
eσ(t−s)

|h1(s)|2 ds,
∫ t

T
eν2(t−s)

|h1(s)|2 ds,
∫
∞

t
eν1(t−s)

|h1(s)|2 ds
}
,

h̃2(t)=max
{∫ t

T
eσ(t−s)

|h2(s)|2 ds,
∫ t

T
eν2(t−s)

|h2(s)|2 ds,
∫
∞

t
eν1(t−s)

|h2(s)|2 ds
}
.

We now show

(3-14) |h2(t)| = o(eσ t).

There are three cases to be considered:

(1) |h2(t)| ≤
(

h̃1(t)+
∫ t

T
eσ(t−s)

|h2(s)|2 ds
)

,

(2) |h2(t)| ≤ C
(

h̃1(t)+
∫ t

T
eν2(t−s)

|h2(s)|2 ds
)

,

(3) |h2(t)| ≤ C
(

h̃1(t)+
∫
∞

t
eν1(t−s)

|h2(s)|2 ds
)

.

We only consider cases (1) and (3); case (2) is similar. For case (1), we have

(3-15) |h2(t)| ≤ C
(

h̃1(t)+
∫ t

T
eσ(t−s)

|h2(s)|2 ds
)
.

Thus,

(3-16) |h2(t)| ≤ C
(

h̃1(t)+max
t≥T
|h2(t)|

∫ t

T
eσ(t−s)

|h2(s)| ds
)
.

Let m(t)=
∫ t

T e−σ s
|h2(s)| ds. Then it can be seen from (3-16) that

(3-17) m′(t)≤ Ch̃1(t)e−σ t
+C max

t≥T
|h2(t)|m(t).

For any ε > 0 sufficiently small, we can choose T sufficiently large so that 0 <
dT := C maxt≥T |h2(t)|< ε. It follows from (3-17) that

(3-18) m(t)≤ CedT t
∫ t

T
h̃1(s)e−σ se−dT s ds.

Substituting m(t) in (3-18) into (3-16), we see that

(3-19) |h2(t)| ≤ Ch̃1(t)+CdT e(σ+dT )t
∫ t

T
h̃1(s)e−σ se−dT s ds.
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Note that σ + dT < 0 for T sufficiently large. We can combine ν2 < σ with
h1(t)= O(eσ t) to get h̃1(t)= o(eσ t). On the other hand, from (3-19) we can obtain
that |h2(t)| = o(e(σ+dT )t). Substituting these into (3-15), we eventually have

(3-20) |h2(t)| = o(eσ t).

For case (3), we have

(3-21) |h2(t)| ≤ C
(

h̃1(t)+
∫
∞

t
eν1(t−s)

|h2(s)|2 ds
)
.

Thus,

(3-22) |h2(t)| ≤ Ch̃1(t)+C max
t≥T
|h2(t)|

∫
∞

t
eν1(t−s)

|h2(s)| ds.

Letting l(t)=
∫
∞

t e−ν1s
|h2(s)| ds, we see from (3-22) that

(3-23) −l ′(t)≤ Ch̃1(t)e−ν1t
+ dT l(t).

It follows from (3-23) that

(3-24) l(s)≤ Ce−dT t
∫
∞

t
h̃1(s)e−ν1sedT s ds.

Since h̃1(t)= o(eσ t), we obtain from (3-24) that

l(s)= o(e(σ−ν1)t).

Substituting this into (3-22), we also have

|h2(t)| = o(eσ t).

We now write h(t) as

h(t)= M1eσ t cosβt +M2eσ t sinβt + A3eν2t

− B1

∫
∞

t
eσ(t−s) sinβ(t − s)H(h(s)) ds

− B2

∫
∞

t
eσ(t−s) cosβ(t − s)H(h(s)) ds

+ B3

∫ t

T
eν2(t−s)H(h(s)) ds− B4

∫
∞

t
eν1(t−s)H(h(s)) ds.

Then, it follows from H(h(t)) = O(h2(t)), h1(t) = O(eσ t), h2(t) = o(eσ t) and
ν2 < 2σ that

(3-25) h(t)= M1eσ t cos(βt)+M2eσ t sin(βt)+ A3eν2t
+ O(e2σ t).
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This implies that (3-7) holds for some a0 and b0. By an argument similar to the one
used in the proof of [Guo and Wei 2010, Theorem 3.3], we can show a2

0 + b2
0 6= 0.

This completes the proof of the first step.
We now proceed to the second step. Setting v02 = µṽ02, we see that ṽ02(r)

satisfies

(3-26) 12ṽ02− pv p−1
01 ṽ02 = µ

−1((v01+µṽ02)
p
− v

p
01− pµv p−1

01 ṽ02
)

with initial conditions

ṽ02(0)= 0, ṽ′02(0)= 0, ṽ′′02(0)= 1, ṽ′′′02(0)= 0.

Using the Emden–Fowler transformation

ṽ02(r)= r−α v̂(t), t = ln r (r > 0),

and the expression obtained for v01(r), we see that v̂(t) satisfies

(3-27) v̂(4)+ K3v̂
′′′
+ K2v̂

′′
+ K1v̂

′
+ (1− p)K0v̂ = f (r, µ, v̂),

where

f (r, µ, v̂)= O(µv̂+ rα−(n−5)/2)v̂

provided that µv̂ = o(1) for t sufficiently large. It follows from (3-27) that

v̂(t)= Â1eσ t cosβt + Â2eσ t sinβt + Â3eν2t
+ Â4eν1t

+ B̂1

∫ t

T
eσ(t−s) sinβ(t − s) f (r, µ, v̂(s)) ds

+ B̂2

∫ t

T
eσ(t−s) cosβ(t − s) f (r, µ, v̂(s)) ds

+ B̂3

∫ t

T
eν2(t−s) f (r, µ, v̂(s)) ds+ B̂4

∫ t

T
eν1(t−s) f (r, µ, v̂(s)) ds,

where Âi = Âi (T, ν1, ν2, ν3, ν4) (i = 1, 2, 3, 4) and B̂i = B̂i (ν1, ν2, ν3, ν4). We
first show that ṽ02 is strictly increasing in (0,∞). Using the initial values, we can
find R ∈ (0,∞) such that ṽ02(r) > 0 for r ∈ (0, R). Writing (3-26) as

µ12ṽ02 = (v01+µṽ02)
p
− v

p
01,

we obtain that (1ṽ02)
′> 0, and hence1ṽ02>1ṽ02(0)= n−1 for r ∈ (0, R), which

implies that (ṽ02)
′(r) > 0 for r ∈ (0, R). Moreover, we can deduce that R =∞ and

ṽ′02(r) > 0 for r ∈ (0,∞). Therefore, v̂ is increasing in (0,∞). Next, we claim
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that Â4 6= 0 for any T � 1 sufficiently large. Indeed, for t ∈ [T, 10T ],

e−ν1t v̂(t)= Â4+ g̃(t)+ B̂1e(σ−ν1)t
∫ t

T
e−σ s sinβ(t−s) f (r, µ, v̂(s)) ds

+ B̂2e(σ−ν1)t
∫ t

T
e−σ s cosβ(t−s) f (r, µ, v̂(s)) ds

+ B̂3e(ν2−ν1)t
∫ t

T
e−ν2s f (r, µ, v̂(s)) ds+ B̂4

∫ t

T
e−ν1s f (r, µ, v̂(s)) ds

≤| Â4|+|g̃(t)|+
( 4∑

j=1

|B̂ j |

)
max

t∈[T,10T ]
(µv̂+e(α−(n−5)/2)t)

∫ t

T
e−ν1s v̂(s) ds,

where

g̃(t)= Â1e(σ−ν1)t cosβt + Â2e(σ−ν1)t sinβt + Â3e(ν2−ν1)t.

Since ( 4∑
j=1

|B̂ j |

)
max

t∈[T,10T ]
(µv̂+ e(α−(n−5)/2)t)= τ = o(1),

we have

(3-28) e−ν1t v̂(t)≤ | Â4| + |g̃(t)| + τ
∫ t

T
e−ν1s v̂(s) ds.

Let `(t)=
∫ t

T e−ν1s v̂(s) ds. We see that

(3-29) (e−τ t`(t))′ ≤ (| Â4| + |g̃(t)|)e−τ t.

Integrating (3-29) in [T, t], we obtain

`(t)≤
| Â4| +maxt∈[T,10T ] |g̃(t)|

τ
eτ(t−T ).

If we choose τ(t − T )≤ C for t ∈ [T, 10T ], i.e., τ = O(1/T ), we see that

(3-30) `(t)≤
(| Â4| +maxt∈[T,10T ] |g̃(t)|)C

τ
.

Substituting this into (3-28), we have

(3-31) e−ν1t v̂(t)≤ | Â4|(1+C)+ |g̃(t)| +C max
t∈[T,10T ]

|g̃(t)|.

Suppose Â4 = 0. We see from (3-31) and the expression of |g̃(t)| that

v̂(t)= o(1) for all t ∈ [T, 10T ].
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This contradicts the fact that v̂ is increasing in (0,∞). Therefore, Â4 6= 0 and our
claim holds. Moreover, it is known from (3-31) and the expression of v̂(t) that

(3-32) v̂(t)= Bpeν1t
+ O(µe2ν1t

+ e(σ+ν1)t)

with Bp 6= 0 and µ= O(e(−ν1+σ)t). Therefore,

v02(r)= µBpr ν̃1 + O(µ2rν1+ν̃1 +µr ν̃1+σ )

with Bp 6= 0 and µ= O(1/rν1−σ ). �

Lemma 3.2. Let p satisfy the conditions of Lemma 3.1 and v1(r) be the unique
solution of the equation

(3-33)



v
(4)
1 (r)+

2(n−2)
r

v′′′1 (r)+
(n−2)(n−4)

r2 v′′1 (r)−
(n−2)(n−4)

r3 v′1(r)

−
2
3(n−2)rv′′′0 (r)+

( 1
3(n−2)(n−4)−(n−2)2+k1

)
v′′0 (r)

+
(n−2)k1

r
v′0(r)= pv p−1

0 (r)v1(r),

v1(0)= 0, v′1(0)= 0, v′′1 (0)= 0, v′′′1 (0)= 0.

Then for r ∈ [eT , e10T
] with T � 1 and µ= O(1/rν1−σ ),

(3-34) v1(r)= C pr2−α
+ r2−(n−5)/2(a1 cos(β ln r)+ b1 sin(β ln r))

+µDpr2+ν̃1 + O(µ2r ν̃1+ν1+2
+µr ν̃1+σ+2)+ o(r2−(n−5)/2),

where C p satisfies

(3-35) E1C p − p Ap−1
p C p = F1 Ap,

with

E1 = (1+α)(1−α)(2−α)α− 2(n− 2)(2−α)(1−α)α

− (n− 2)(n− 4)(2−α)+ (n− 2)(n− 4)(2−α)(1−α),

F1 =
(
(n− 2)2− k1−

1
3(n− 2)(n− 4)

)
α(α+ 1)
−

2
3(n− 2)α(α+ 1)(α+ 2)+ k1(n− 2)α,

and where Dp satisfies

(3-36) E2 Dp = F2 Bp,
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with

E2 = (2+ ν̃1)(ν̃1+ n− 1)(ν̃1+ n− 3)ν̃1− p Ap−1
p ,

F2 =
2
3(n− 2)(ν̃1− 1)(ν̃1− 2)ν̃1+

(
(n− 2)2− k1−

1
3(n− 2)(n− 4)

)
(ν̃1− 1)ν̃1

− k1(n− 2)ν̃1+ p(p− 1)Ap−2
p C p,

and where (a1, b1) is the solution of{
Aa1− Bb1 = G,
Ba1+ Ab1 = H,

with

A = 1
16(n

4
− 12n3

+ 14n2
+ 132n− 135)− p Ap−1

p +
1
2(n

2
− 6n− 35)β2

+β4,

B = (2n2
− 12n− 6)β + 8β3,

G = p(p− 1)Ap−2
p C pa0+

1
12(n

4
− 11n3

+ 41n2
− 61n+ 30)a0

+
1
4(n

2
− 6n+ 5)k1a0+

1
6(4n2

+ 3n− n3
− 14)b0β − 2k1b0β

+
1
3(n

2
− 9n+ 14)a0β

2
+ a0k1β

2
−

2
3(n− 2)b0β

3,

H = p(p− 1)Ap−2
p C pb0+

1
12(n

4
− 11n3

+ 41n2
− 61n+ 30)b0

+
1
4(n

2
− 6n+ 5)k1b0−

1
6(4n2

+ 3n− n3
− 14)a0β + 2k1a0β

+
1
3(n

2
− 9n+ 14)b0β

2
+ b0k1β

2
+

2
3(n− 2)a0β

3.

Remark. We need to show that E2 6= 0 and that the 2× 2 matrix K =
[ A

B
−B

A

]
is

invertible. This will be proved in the Appendix.

Proof. The uniqueness of solutions to (3-33) follows from standard ODE theory
since all the initial conditions are zero and the inhomogeneous term is locally
Lipschitz. Analyzing the terms which contain v0 in (3-33) and using the Taylor
expansion for v p−1

0 for r ∈ [eT , e10T
], after direct computation we can find the

leading terms which are of the orders

r−2−α, r (1−n)/2 cos(β ln r), r (1−n)/2 sin(β ln r), µr ν̃1−2.

By the above observation, we can assume

v1(r)= C pr2−α
+ f̃ (r)r2−(n−5)/2

+µDpr2+ν̃1

+ o(r2−(n−5)/2)+ O(µ2r ν̃1+ν1+2
+µr ν̃1+σ+2),

where
f̃ (r)= a1 cos(β ln r)+ b1 sin(β ln r).

Using (3-7) and (3-8), we can get C p, Dp, a1 and b1 by direct calculation. �
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Furthermore, we can obtain the following proposition.

Proposition 3.3. Let
n+ 3
n− 5

< p < pc(n− 1)

and v(r) be a solution of (3-2). Then for ε > 0 sufficiently small,

v(r)= v0(r)+
∞∑

k=1

ε2kvk(r).

Moreover, for r ∈ [eT , e10T
] with T � 1 and µ= O(1/rν1−σ ),

(3-37) vk(r)=
k∑

j=1

dk
j r

2 j−α
+

k∑
j=1

ek
jr

2 j−(n−5)/2 sin(β ln r+ Ek
j )+

k∑
j=1

µ f k
j r2 j+ν̃1

+ O(µ2r ν̃1+ν1+2k
+µr ν̃1+σ+2k)+ o(r2k−(n−5)/2),

where dk
j , ek

j , f k
j , Ek

j ( j = 1, 2, . . . , k) are constants. Moreover,

d1
1 = C p, e1

1 =

√
a2

1 + b2
1, f 1

1 = Dp, sin E1
1 = a1/e1

1, cos E1
1 = b1/e1

1,

where C p, a1, b1, Dp are given in Lemma 3.2.

Proof. Substituting

v(r)= v0(r)+
∞∑

i=1

ε2ivi (r)

into (3-3), we expand (3-3) according to the order of ε. Considering the constant
order and the ε2 order, we get (3-4) and (3-33), respectively. We note that only
the terms v0, v1, . . . , vk carry ε2k . Suppose we have found vk−1. Then we can
determine vk by studying the equation of order ε2k in (3-3), i.e.,

v
(4)
k (r)+

2(n− 2)
r

v′′′k (r)+
(n− 2)(n− 4)

r2 v′′k (r)−
(n− 2)(n− 4)

r3 v′k(r)

−
2
3(n− 2)rv′′′k−1(r)+

( 1
3(n− 2)(n− 4)− (n− 2)2+ k1

)
v′′k−1(r)

+
(n− 2)k1

r
v′k−1(r)+

k−1∑
i=1

(
l ′ir

2i+1v′′′k−i−1(r)+m′ir
2iv′′k−i−1(r)

+ n′ir
2i−1v′k−i−1(r)

)
+ k0vk−1(r)=

dk

dtk

( k∑
i=0

t ivi

)p ∣∣∣∣
t=0
,

vk(0)= 0, v′k(0)= 0, v′′k (0)= 0, v′′′k (0)= 0,

where l ′i ,m′i , n′i are given in (3-3). Following our arguments in Lemma 3.2, we
find the leading order of the terms involving v0, v1, . . . , vk−1 in the above equation,
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and then we assume vk has the expansion in (3-37). By substituting (3-37) into
the equation of order ε2k and comparing each order, we can compute the terms
dk

j , ek
j , f k

j , Ek
j ( j = 1, 2, . . . , k). �

Theorem 3.4. Let
n+ 3
n− 5

< p < pc(n− 1)

and winn
ε,µ(θ) be the solution of (1-7) with

w(0)= ε−α, wθ (0)= 0, wθθ (0)= (b̃+µ)ε−α−2, wθθθ (0)= 0.

Then for any sufficiently small ε > 0, θ/ε ∈ [eT , e10T
] with T � 1, and µ =

O((ε/θ)ν1−σ ), there holds

winn
ε,µ(θ)

=
Ap

θα
+

C p

θα−2 + Bpµε
−ν1θ ν̃1 +

∞∑
k=2

k∑
j=1

dk
j ε

2(k− j)θ2 j−α

+ ε(n−5)/2−α

(
a0 cos

(
β ln θ

ε

)
+ b0 sin

(
β ln θ

ε

)
θ (n−5)/2 +

a1 cos
(
β ln θ

ε

)
+ b1 sin

(
β ln θ

ε

)
θ (n−5)/2−2

+

∞∑
k=2

( k∑
j=1

ek
jε

2(k− j)θ2 j−(n−5)/2 sin
(
β ln θ

ε
+Ek

j
)
+o(θ2k−(n−5)/2)

)

+ O(θ2−(n−5)/2)

)

+ ε−α
∞∑

k=1

( k∑
j=1

(µ f k
j ε

2k−2 j−ν̃1θ2 j+ν̃1)

+ O(µ2θ ν̃1+ν1+2kε−ν̃1−ν1 +µθ ν̃1+σ+2kε−ν̃1−σ )

+ O
(
µ2
(
θ

ε

)ν̃1+ν1
+µ

(
θ

ε

)ν̃1+σ
))
.

Proof. This is a direct consequence of Proposition 3.3 by setting r = θ/ε. �

We now obtain some useful lemmas.

Lemma 3.5. Let (n+ 3)/(n− 5) < p < pc(n− 1) and

v(Q, µ, θ)= Qv0(Q(p−1)/4θ).

Then for Q(p−1)/4θ ∈ [eT , e10T
] with T � 1,

µ= O
(

1
(Q(p−1)/4θ)ν1−σ

)
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and n = 0, 1, 2, we have that v(Q, µ, θ) satisfies

∂n

∂Qn (v(Q, µ, θ))

=
∂n

∂Qn

(
Ap

θα

)
+

∂n

∂Qn

(
Cθ−(n−5)/2 Q−((p−1)(n−5)/8−1) sin

(
β ln(Q(p−1)/4θ)+ κ

))
+ Q ν̃2/α+1−n O(θ ν̃2)+µBp Q ν̃1/α+1−nθ ν̃1

+ O
(
µ2 Q(ν̃1+ν1)/α+1−nθ ν̃1+ν1 +µQ(ν̃1+σ)/α+1−nθσ+ν̃1

)
,

∂n

∂Qn (v
′

θ (Q, µ, θ))

=
∂n

∂Qn

(
−α

Ap

θα+1

)
+

∂n+1

∂Qn∂θ

(
Cθ−(n−5)/2 Q−((p−1)(n−5)/8−1) sin

(
β ln(Q(p−1)/4θ)+ κ

))
+ Q ν̃2/α+1−n O(θ ν̃2−1)+µν̃1 Bp Q ν̃1/α+1−nθ ν̃1−1

+ O
(
µ2 Q(ν̃1+ν1)/α+1−nθ ν̃1+ν1−1

+µQ(ν̃1+σ)/α+1−nθσ+ν̃1−1),
∂n

∂Qn

(
∂2

∂θ2 v(Q, µ, θ)
)

=
∂n

∂Qn

(
α(α+ 1)

Ap

θα+2

)
+

∂n+2

∂Qn∂θ2

(
Cθ−(n−5)/2 Q−((p−1)(n−5)/8−1) sin

(
β ln(Q(p−1)/4θ)+ κ

))
+ Q ν̃2/α+1−n O(θ ν̃2−2)+µν̃1(ν̃1− 1)Bp Q ν̃1/α+1−nθ ν̃1−2

+ O
(
µ2 Q(ν̃1+ν1)/α+1−nθ ν̃1+ν1−2

+µQ(ν̃1+σ)/α+1−nθσ+ν̃1−2),
∂n

∂Qn

(
∂3

∂θ3 v(Q, µ, θ)
)

=
∂n

∂Qn

(
−α(α+ 1)(α+ 2)

Ap

θα+3

)
+

∂n+3

∂Qn∂θ3

(
Cθ−(n−5)/2 Q−((p−1)(n−5)/8−1) sin

(
β ln(Q(p−1)/4θ)+ κ

))
+ Q ν̃2/α+1−n O(θ ν̃2−3)+µν̃1(ν̃1− 1)(ν̃1− 2)Bp Q ν̃1/α+1−nθ ν̃1−3

+ O
(
µ2 Q(ν̃1+ν1)/α+1−nθ ν̃1+ν1−3

+µQ(ν̃1+σ)/α+1−nθσ+ν̃1−3),
where κ = tan−1(b0/a0) and C =

√
a2

0 + b2
0.
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For n = 0, 1, we have

∂n

∂µn (v(Q, µ, θ))

= µ1−n Bp Q ν̃1/α+1θ ν̃1 + O
(
µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1 +µ1−n Q(ν̃1+σ)/α+1θσ+ν̃1

)
,

∂n

∂µn

(
∂

∂θ
v(Q, µ, θ)

)
= µ1−n ν̃1 Bp Q ν̃1/α+1θ ν̃1−1

+ O
(
µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1−1

+µ1−n Q(ν̃1+σ)/α+1θσ+ν̃1−1),
∂n

∂µn

(
∂2

∂θ2 v(Q, µ, θ)
)

= µ1−n ν̃1(ν̃1− 1)Bp Q ν̃1/α+1θ ν̃1−2

+ O
(
µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1−2

+µ1−n Q(ν̃1+σ)/α+1θσ+ν̃1−2),
∂n

∂µn

(
∂3

∂θ2 v(Q, µ, θ)
)

= µ1−n ν̃1(ν̃1− 1)(ν̃1− 2)Bp Q ν̃1/α+1θ ν̃1−3

+ O
(
µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1−3

+µ1−n Q(ν̃1+σ)/α+1θσ+ν̃1−3),
while for n = 2, we have

∂2

∂µ2

(
∂m

∂θm v(Q, µ, θ)
)
= O(Q(ν̃1+ν1)/α+1θ ν̃1+ν1−m), m = 0, 1, 2, 3.

Proof. These estimates are obtained by the expansions of v01(r) and v02(r) given
above and direct calculation. �

Lemma 3.6. In the region

θ = |O(Qσ/((2−σ)α))|, µ= O(θ2−2ν1/σ ), σ =− 1
2(n− 5− 2α),

the solution w(Q, µ, θ) of (1-7) with

w(Q, µ, 0)= Q, wθ (Q, µ, 0)= 0,

wθθ (Q, µ, 0)= (b̃+µ)Q1+2/α, wθθθ (Q, µ, 0)= 0

satisfies

(1)
∣∣∣∣ ∂m+n

∂Qn∂θmw(Q, µ, θ)−
∂m+n

∂Qn∂θm v(Q, µ, θ)
∣∣∣∣

= Q−(n−5)(p−1)/8−(n−1) ∣∣o(θ−(n−5)/2−m)
∣∣,
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(2)
∣∣∣∣ ∂m+n

∂µn∂θmw(Q, µ, θ)−
∂n+m

∂µn∂θm v(Q, µ, θ)
∣∣∣∣

=
∣∣O(µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1−m)

∣∣.
Proof. This lemma can be obtained from Lemma 3.5 and Theorem 3.4. Note that

ε = Q−1/α, σ/α = 1
8(p− 1)(n− 5)− 1.

Moreover,
Q(p−1)/4θ ∈ [eT , e10T

]

provided that Q is sufficiently large. �

Now we write the inner solutions obtained in Theorem 3.4 in terms of the
parameters Q and µ.

Theorem 3.7. Let (n+ 3)/(n− 5) < p < pc(n− 1) and let winn
Q,µ(θ) be an inner

solution of problem (1-7) with w(0) = Q, wθ (0) = 0, wθθ (0) = (b̃+µ)Q1+2/α,
wθθθ (0) = 0. Then for any sufficiently large Q > 0 and θ = |O(Qσ/((2−σ)α))| =

|O(µσ/(2σ−2ν1))|,

winn
Q,µ(θ)=

Ap

θα
+

C p

θα−2+BpµQν1/αθ ν̃1+

∞∑
k=2

k∑
j=1

dk
j Q−(p−1)(k− j)/2θ2 j−α

+Qσ/α

(
a0 cos

(
β ln(Q(p−1)/4θ)

)
+b0 sin

(
β ln(Q(p−1)/4θ)

)
θ (n−5)/2

+
a1 cos

(
β ln(Q(p−1)/4θ)

)
+b1 sin

(
β ln(Q(p−1)/4θ)

)
θ (n−5)/2−2

+O(θ2−(n−5)/2)

+

∞∑
k=2

( k∑
j=1

ek
j Q−(p−1)(k− j)/2θ2 j−(n−5)/2

×sin
(
β ln(Q(p−1)/4θ)+Ek

j
)
+o(θ2k−(n−5)/2)

))

+Q
∞∑

k=1

( k∑
j=1

(
µ f k

j Q−(2k−2 j−ν̃1)/αθ2 j+ν̃1
)

+O
(
µ2 Q(ν̃1+ν1)/αθ ν̃1+ν1+2k

+µQ(ν̃1+σ)/αθ ν̃1+σ+2k)).
4. Outer solutions

In this section, we construct outer solutions for (1-7). Let w
∗
(θ) be the singular

solution given in (1-8).

Lemma 4.1. The equation

(4-1) T1φ(θ)+ k1T2φ(θ)+ k0φ = pw p−1
∗

(θ)φ(θ), 0< θ < π
2 ,
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admits a solution, which can be written as

(4-2) φ(θ)=θ−(n−5)/2(c1 cos
(
β ln θ

2

)
+c2 sin

(
β ln θ

2

))
+O(θ2−(n−5)/2) as θ→0,

where c1, c2 are constants such that c2
1+ c2

2 6= 0, and also admits another solution,
which can be written as

(4-3) ψ(θ)= c0θ
ν̃2 + O(θ ν̃2+2) as θ→ 0,

where c0 is a nonzero constant. Here T1 and T2 are differential operators defined
in (1-7).

Proof. For the equations

(4-4)

{
T1φ1(θ)+ k1T2φ1(θ)+ k0φ1(θ)= pw p−1

∗ (θ)φ1(θ), 0< θ < π
2 ,

φ1

(
π
2

)
= 1, φ′1

(
π
2

)
= 0, φ′′1

(
π
2

)
= 0, φ′′′1

(
π
2

)
= 0,

and

(4-5)

{
T1φ2(θ)+ k1T2φ2(θ)+ k0φ2(θ)= pw p−1

∗ (θ)φ2(θ), 0< θ < π
2 ,

φ2

(
π
2

)
= 0, φ′2

(
π
2

)
= 0, φ′′2

(
π
2

)
= 1, φ′′′2

(
π
2

)
= 0,

we claim that both φ1(θ) and φ2(θ) are strictly decreasing for θ ∈
(
0, π2

)
. We only

show the case of φ2(θ); the case of φ1(θ) can be treated similarly.
Let us set

A(θ)=
d

dθ

(
sinn−2 θ

dφ2(θ)

dθ

)
.

Before proving that φ2(θ) is decreasing, we first present a useful fact. If A(θ) > 0
for θ ∈

(
θ0,

π
2

)
, where θ0 ∈

(
0, π2

)
, then for θ ∈

(
θ0,

π
2

)
, we have φ′2(θ) < 0 and

φ2(θ) > 0. The proof of this fact is simple; thus we omit it here. Next, we show
that φ2(θ) is decreasing. By using the boundary condition of φ2 at θ = π

2 , we have
A
(
π
2

)
= 1 and find θ1 ∈

(
0, π2

)
such that A(θ)> 0 for θ ∈

(
θ1,

π
2

)
; then φ2(θ)> 0 for

θ ∈
(
θ1,

π
2

)
. Using the fact that k1(n) < 0 and the second conclusion in Lemma A.1,

we have

T1φ2(θ)= (pw p−1
∗
− k0)φ2(θ)− k1

A(θ)

sinn−2 θ
> 0 for θ ∈

(
θ1,

π
2

)
.

Now we are going to show that θ1 = 0. If not, θ1 ∈
(
0, π2

)
and A(θ1) = 0. For

θ ∈
(
θ1,

π
2

)
, we have

d
dθ

(
sinn−2 θ

d
dθ

(
A(θ)

sinn−2 θ

))
> 0.

Using this inequality and

d
dθ

(
A(θ)

sinn−2 θ

)∣∣∣∣
θ= π2

= 0,
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we have

(4-6)
d

dθ

(
A(θ)

sinn−2 θ

)
< 0 for θ ∈

(
θ1,

π
2

)
.

It follows from (4-6) that

(4-7)
A(θ)

sinn−2 θ
> 1 for θ ∈

(
θ1,

π
2

)
,

which contradicts the fact that A(θ1) = 0. Thus, A(θ) > 0 and φ′2(θ) < 0 for
θ ∈

(
0, π2

)
. Hence, we have proved the claim.

We now prove that there are D1 6= 0 and D2 6= 0 such that for θ near 0,

(4-8) φ1(θ)= D1θ
ν̃2 + O(θ2+ν̃2)

and

(4-9) φ2(θ)= D2θ
ν̃2 + O(θ2+ν̃2).

We only show (4-9). The proof of (4-8) is similar. Using the Emden–Fowler
transformation

φ̃(t)= (sin θ)αφ2(θ), t = ln
(
tan θ

2

)
,

we obtain that φ̃(t), for t ∈ (−∞, 0), satisfies the homogeneous equation

(4-10) φ̃(4)(t)+ a3(t)φ̃′′′(t)+ a2(t)φ̃′′(t)+ a1(t)φ̃′(t)+ a0(t)φ̃(t)= 0,

where
a3(t)= K3+ O(e2t), a2(t)= K2+ O(e2t),

a1(t)= K1+ O(e2t), a0(t)= (1− p)K0.

Therefore,

(4-11) φ̃(4)(t)+ K3φ̃
′′′(t)+ K2φ̃

′′(t)+ K1φ̃
′(t)+ (1− p)K0φ̃(t)

= O(e2t(φ̃′′′(t)+ φ̃′′(t)+ φ̃′(t))).

Following the arguments in the proof of Lemma 3.1, we can write the solutions of
(4-11) as (for any T �−1):

(4-12) φ̃(t)= A5eσ t cosβt + A6eσ t sinβt + A7eν2t
+ A8eν1t

+ B5

∫ t

−∞

eσ(t−s) sinβ(t − s)g(s, φ̃(s)) ds

+ B6

∫ t

−∞

eσ(t−s) cosβ(t − s)g(s, φ̃(s)) ds

+ B7

∫ t

−∞

eν2(t−s)g(s, φ̃(s)) ds+ B8

∫ t

T
eν1(t−s)g(s, φ̃(s)) ds,
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where g(t, φ̃(t)) is the right-hand side of (4-11), A8 depends on T and each Bi+4

depends only on νi (i = 1, 2, 3, 4). It is known from (4-12) that if A7 = 0, then
for |t | sufficiently large,

(4-13) φ̃(t)= A5eσ t cosβt + A6eσ t sinβt + O(e(2+σ)t)

with A2
5+ A2

6 6= 0 or

(4-14) φ̃(t)= A8eν1t
+ O(e(2+ν1)t)

with A8 6=0. Otherwise, if A2
5+A2

6=0 and A8=0, we know that φ̃(t)=O(e(2+ν1)t).
Substituting this into (4-12), we see that φ̃(t)=O(e(4+ν1)t); repeating this procedure,
we eventually obtain that φ̃(t)≡ 0. This is impossible. Therefore, for θ near 0,

φ2(θ)= A5θ
−(n−5)/2 cos

(
β ln θ

2

)
+ A6θ

−(n−5)/2 sin
(
β ln θ

2

)
+ O(θ2−(n−5)/2)

or
φ2(θ)= A8θ

ν̃1 + O(θ2+ν̃1).

But these contradict the fact that φ2(θ) is strictly decreasing for θ ∈
(
0, π2

)
. Thus,

we prove the claim and get (4-9).
Let φ(θ)= φ1(θ)− (D1/D2)φ2(θ). Then φ(θ) satisfies the problem

(4-15)

{
T1φ(θ)+ k1T2φ(θ)+ k0φ(θ)= pw p−1

∗ (θ)φ(θ), 0< θ < π
2 ,

φ
(
π
2

)
= 1, φ′

(
π
2

)
= 0, φ′′

(
π
2

)
=−D1/D2, φ

′′′
(
π
2

)
= 0.

We claim that for θ near 0,

(4-16) φ(θ)= θ−(n−5)/2(c1 cos
(
β ln θ

2

)
+ c2 sin

(
β ln θ

2

))
+ O(θ2−(n−5)/2)

with c2
1+ c2

2 6= 0. Using the Emden–Fowler transformation

(4-17) φ̂(t)= (sin θ)αφ(θ), t = ln
(
tan θ

2

)
,

(4-8) and (4-9), we obtain that for t near −∞,

(4-18) φ̂(t)= eσ t(c1 cos(βt)+ c2 sin(βt))+ c3eν1t
+ O(e(2+σ)t)

provided c2
1+ c2

2 6= 0 or

(4-19) φ̂(t)= c3eν1t
+ O(e(2+ν1)t)

provided c2
1+ c2

2 = 0 and c3 6= 0. (Note that if both c2
1+ c2

2 = 0 and c3 = 0, we can
obtain φ̂(t)≡ 0. This is impossible.) We now show that (4-19) cannot occur. On
the contrary, we see that for θ near 0,

φ(θ)= c3θ
ν̃1 + O(θ2+ν̃1).
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This implies that φ(θ)→ 0 as θ→ 0. Since

φ̂(t)= O(eν1t), φ̂′(t)= O(eν1t), φ̂′′(t)= O(eν1t), φ̂′′′(t)= O(eν1t),

we obtain from (4-17) that

φ′(θ)= O(θ ν̃1−1),

sinn−2 θ
dφ(θ)

dθ
= O(θn−3+ν̃1),

d
dθ

(
sinn−2 θ

dφ(θ)
dθ

)
= O(θn−4+ν̃1).

Similar arguments imply that

sinn−2 θ
d

dθ

(
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dφ(θ)
dθ

))
= O(θn−5+ν̃1).

If we define

e(θ)= sinn−2 θ
d

dθ

(
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dφ(θ)
dθ

))
,

we see that e(0)= 0. Then, we claim that φ changes sign in
(
0, π2

)
. Suppose that

this is not true. Without loss of generality, we assume φ > 0 in
(
0, π2

)
. Then it

follows from the equation of φ that for θ ∈
(
0, π2

)
,

(4-20)
d

dθ

(
e(θ)+ k1

(
sinn−2 θ

dφ(θ)
dθ

))
= sinn−2 θ(pw p−1

∗
− k0)φ(θ) > 0.

But integrating both sides of (4-20) in
(
0, π2

)
and using the boundary conditions

φ′
(
π
2

)
= φ′′′

(
π
2

)
= 0, we obtain∫ π

2

0
sinn−2 θ(pw p−1

∗
− k0)φ(θ) dθ = 0.

This is clearly impossible. Noticing that φ 6= 0 for θ near 0, we see that there is
a minimal zero point θ̂ ∈

(
0, π2

)
of φ. Without loss of generality, we assume that

φ > 0 in (0, θ̂ ). It follows from (4-20) that E(θ) := e(θ)+ k1 sinn−2 θ(dφ(θ)/dθ)
is increasing for θ ∈ (0, θ̂ ). Noticing E(0)= 0, we then obtain that E(θ) > 0 for
θ ∈ (0, θ̂ ). Therefore,

(4-21)
d

dθ

(
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dφ(θ)
dθ

)
+ k1φ(θ)

)
> 0 for θ ∈ (0, θ̂ ).

Moreover, by a similar argument, we have

(4-22)
d

dθ

(
sinn−2 θ

dφ(θ)
dθ

)
> 0 for θ ∈ (0, θ̂ ),
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and

(4-23)
dφ(θ)

dθ
> 0 for θ ∈ (0, θ̂ ).

But (4-23) implies φ(θ̂) > 0, which contradicts the fact that φ(θ̂)= 0. This contra-
diction implies that (4-19) cannot occur and thus (4-18) holds. As a consequence,
(4-16) holds and hence (4-2) holds.

Let ψ(θ)= φ1(θ). We easily see that (4-3) can be obtained from (4-8). �

For any sufficiently small δ > η > 0, we set ψ1(θ) to be the solution of the
problem

(4-24)


T1ψ1(θ)+ k1T2ψ1(θ)+ k0ψ1(θ)

= η−2
(
(w∗+8+9)

p
−w

p
∗ − pw p−1

∗ (8+ η2ψ)
)
,

(ψ1+ψ)
(
π
2

)
= 2, (ψ1+ψ)

′
(
π
2

)
= 0,

(ψ1+ψ)
′′
(
π
2

)
= D1δ

2/(D2η
2), (ψ1+ψ)

′′′
(
π
2

)
= 0,

where ψ(θ) is given in Lemma 4.1, 8= δ2φ(θ) and 9 = η2(ψ1(θ)+ψ(θ)). We
can see that 9 satisfies the problem

(4-25)

{
T19(θ)+ k1T29(θ)+ k09(θ)= (w∗+8+9)

p
−w

p
∗ − pw p−1

∗ 8,

9
(
π
2

)
= 2η2, 9 ′

(
π
2

)
= 0, 9 ′′

(
π
2

)
= D1δ

2/D2, 9
′′′
(
π
2

)
= 0.

This implies

(4-26)


T1(9 +8)+ k1T2(9 +8)+ k0(9 +8)= (w∗+8+9)

p
−w

p
∗ ,

(9 +8)
(
π
2

)
= 2η2

+ δ2, (9 +8)′
(
π
2

)
= 0,

(9 +8)′′
(
π
2

)
= 0, (9 +8)′′′

(
π
2

)
= 0.

Arguments similar to those in the proof of Lemma 4.1 imply that 9(θ)+8(θ) is
strictly decreasing. Then

(4-27) 9(θ)+8(θ) > 0 for θ ∈
(
0, π2

)
.

Setting ψ2(θ)= ψ(θ)+ψ1(θ), we easily see that ψ2 satisfies the problem

(4-28)


T1ψ2(θ)+ k1T2ψ2(θ)+ k0ψ2(θ)

= pw p−1
∗ ψ2+ η

−2
(
(w∗+8+ η

2ψ2)
p
−w

p
∗ − pw p−1

∗ (8+ η2ψ2)
)
,

ψ2

(
π
2

)
= 2, ψ ′2

(
π
2

)
= 0, ψ ′′2

(
π
2

)
= D1δ

2/(D2η
2), ψ ′′′2

(
π
2

)
= 0.

By the Emden–Fowler transformation

ψ̃2(t)= (sin θ)αψ2(θ), t = ln tan θ
2 ,
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we see that ψ̃2(t) satisfies the problem

(4-29)


ψ̃
(4)
2 (t)+ a3(t)ψ̃ ′′′2 (t)+ a2(t)ψ̃ ′′2 (t)

+a1(t)ψ̃ ′2(t)+ a0(t)ψ̃2(t)= G(ψ̃2(t)), −∞< t < 0,

ψ̃ ′2(0)= 0, ψ̃ ′′′2 (0)= 0,

where a0(t), a1(t), a2(t), a3(t) are defined in (4-10), and

G(ψ̃2(t))

= (sin θ)4+αη−2((w∗+8+ η2 sin−α θψ̃2)
p
−w p

∗
− pw p−1

∗
(8+ η2 sin−α θψ̃2)

)
.

Moreover, we can rewrite (4-29) in the following form (see the proof of Lemma 4.1):

(4-30) ψ̃
(4)
2 (t)+ K3ψ̃

′′′

2 (t)+ K2ψ̃
′′

2 (t)+ K1ψ̃
′

2(t)+ (1− p)K0ψ̃2(t)

= G(ψ̃2(t))+ g(t, ψ̃2(t)),

where
g(t, ψ̃2(t))= O

(
e2t(ψ̃ ′′′2 (t)+ ψ̃

′′

2 (t)+ ψ̃
′

2(t))
)

for t �−1. Therefore, for t < T with any T �−1,

(4-31) ψ̃2(t)= D5eν2t
+ D6eσ t cosβt + D7eσ t sinβt + D8eν1t

+ B5

∫ t

−∞

eσ(t−s) sinβ(t−s)(G(ψ̃2(s))+ g(s, ψ̃2(s))) ds

+ B6

∫ t

−∞

eσ(t−s) cosβ(t−s)(G(ψ̃2(s))+ g(s, ψ̃2(s))) ds

+ B7

∫ t

−∞

eν2(t−s)(G(ψ̃2(s))+ g(s, ψ̃2(s))) ds

+ B8

∫ t

T
eν1(t−s)(G(ψ̃2(s))+ g(s, ψ̃2(s))) ds,

where B5, B6, B7, B8 depend only on νi (i = 1, 2, 3, 4). Using the fact9(θ)+8(θ)
is strictly decreasing in

(
0, π2

)
and (4-2), we conclude that D5 6= 0. Letting φ(θ)=

sin−α θφ̃(t), we see that for t ∈ [10T, 2T ] and δ2
= O(e(2−σ)t), η2

= O(e(2−ν2)t),

(4-32) G(ψ̃2(t))= η−2O((δ2φ̃(t)+ η2ψ̃2(t))2)= O(e(2+ν2)t).

Note that
φ̃(t)= eσ t(c1 cos(βt)+ c2 sin(βt))+ O(e(2+σ)t)

and ψ̃2(t)= D5eν2t
+ O(e(2+ν2)t). Then

δ2φ̃(t)+ η2ψ̃2(t)= O(e2t).
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Therefore, it follows from (4-31) and (4-32) that

(4-33) ψ̃2(t)= D5eν2t
+ D6eσ t cosβt + D7eσ t sinβt + O(e(2+ν2)t)

provided δ2
= O(e(2−σ)t) and η2

= O(e(2−ν2)t). Hence, for θ near 0,

(4-34) 9(θ)=η2(D5θ
ν̃2+θ−(n−5)/2(D6 cos

(
β ln θ

2

)
+D7 sin

(
β ln θ

2

))
+O(θ2+ν̃2)

)
with D5 6= 0 provided that

θ = O(δ2/(2−σ))= O(η2/(2−ν2)).

Since ν̃2 < 3 − n, we easily see that ν̃2 + 2 < −(n − 5) < −(n − 5)/2. Thus,
θ−(n−5)/2

= o(θ2+ν̃2).
Now we can obtain the following theorem.

Theorem 4.2. For any δ > η > 0 sufficiently small, problem (1-7) admits outer
solutions wout

δ,η ∈ C4
(
0, π2

)
satisfying

(4-35) wout
δ,η(θ)= w∗(θ)+8(θ)+9(θ), θ ∈

(
0, π2

)
,

with (wout
δ,η)
′
(
π
2

)
= (wout

δ,η)
′′′
(
π
2

)
= 0. Moreover,

(4-36) wout
δ,η(θ)=

Ap

θα
+

2Ap

3(p− 1)
1

θα−2

+ δ2
(
ϑ1 cos

(
β ln θ

2

)
+ϑ2 sin

(
β ln θ

2

)
θ (n−5)/2 + O

(
1

θ (n−5)/2−2

))
+ η2(ϑ3θ

ν̃2 + O(θ ν̃2+2)
)

provided that
θ = O(δ2/(2−σ))= O(η2/(2−ν2)),

where ϑ1, ϑ2, ϑ3 are constants independent of δ, η such that ϑ2
1 +ϑ

2
2 6= 0, ϑ3 6= 0.

Proof. The proof can be obtained from the expressions of w∗(θ), 8(θ) and 9(θ)
given in (1-8), (4-16) and (4-34). �

5. Infinitely many solutions of (1-7) and proof of Theorem 1.1

In this section, we construct infinitely many regular solutions for (1-7) by matching
the inner and outer solutions.

We construct solutions of the problem

(5-1)

{
T1w+ k1T2w+ k0w = w

p, w(θ) > 0, 0< θ < π
2 ,

w(0)= Q (:= ε−α), w′
(
π
2

)
= 0, w′′(0)= (b̃+µ)ε−α−2, w′′′

(
π
2

)
= 0
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by matching the inner and outer solutions given in Theorems 3.7 and 4.2. To do so,
we will find 2 ∈

(
0, π2

)
with

2= O(Qσ/((2−σ)α)) (Q� 1)

such that the following identities hold:(
winn

Q,µ(θ)−w
out
δ,η(θ)

)∣∣
θ=2
= 0,(5-2) (

winn
Q,µ(θ)−w

out
δ,η(θ)

)′
θ

∣∣
θ=2
= 0,(5-3) (

winn
Q,µ(θ)−w

out
δ,η(θ)

)′′
θ

∣∣
θ=2
= 0,(5-4) (

winn
Q,µ(θ)−w

out
δ,η(θ)

)′′′
θ

∣∣
θ=2
= 0.(5-5)

These will be done by arguments similar to those in the proof of Lemma 6.1 of
[Budd and Norbury 1987] and Theorem 1.1 of [Dancer et al. 2012]. Then, we obtain
a C4 function w(θ) defined by w(θ)=winn

Q,µ(θ) for θ ≤2 and w(θ)=wout
δ,η(θ) for

θ ≥2 which is a solution to (5-1).
First, we observe that

(5-6)
2Ap

3(p− 1)
= C p

by (3-35), where Ap,C p are given in Section 3.
Define Q

∗
, δ2
∗
, η2
∗

and µ
∗

by

β ln Q(p−1)/4
∗

+ κ = β ln 2−1
+ω+ 2mπ,(5-7)

δ2
∗
=

√
a2

0 + b2
0

ϑ2
1 +ϑ

2
2

Qσ/α
∗
,(5-8)

η2
∗
= O(Q(2−ν2)σ/((2−σ)α)

∗
), µ

∗
= O(Q(2σ−2ν1)/((2−σ)α)

∗
),(5-9)

µ
∗

Bp Qν1/α
∗
= ϑ3η

2
∗
2ν̃2−ν̃1
∗

,(5-10)

where

κ = tan−1
(

a0

b0

)
, ω = tan−1

(
ϑ1

ϑ2

)
and m� 1 is an integer. The integer m is chosen such that the results in Sections 3
and 4 hold.
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Note that

O(δ2/(2−σ)
∗

)= O(Qσ/(α(2−σ))
∗

),

a0 cos(β ln(Q(p−1)/4θ))+ b0 sin(β ln(Q(p−1)/4θ))

=

√
a2

0 + b2
0 sin(β ln θ +β ln Q(p−1)/4

+ κ),

ϑ1 cos
(
β ln θ

2

)
+ϑ2 sin

(
β ln θ

2

)
=

√
ϑ2

1 +ϑ
2
2 sin(β ln θ +β ln 2−1

+ω).

We will see that the Q, µ, δ2 and η2 required to satisfy the matching conditions
(5-2)–(5-5) can be obtained as small perturbations of Q

∗
, µ
∗
, δ2
∗

and η2
∗

given in
(5-7)–(5-10), i.e.,

Q = Q
∗
(1+ O(Q2σ/((2−σ)α)

∗
)),(5-11)

µ= µ
∗
(1+ O(Q2σ/((2−σ)α)

∗
)),(5-12)

δ2
= δ2
∗
(1+ O(Q2σ/((2−σ)α)

∗
)),(5-13)

η2
= η2
∗
(1+ O(Q2σ/((2−σ)α)

∗
)).(5-14)

To show this we define the function F(Q, µ, δ, η) by

F(Q, µ, δ2, η2)=


2(n−5)/2(winn

Q,µ(2)−w
out
δ,η(2))

2
(
θ (n−5)/2(winn

Q,µ(θ)−w
out
δ,η(θ))

)′
θ

∣∣
θ=2

22
(
θ (n−5)/2(winn

Q,µ(θ)−w
out
δ,η(θ))

)′′
θ

∣∣
θ=2

23
(
θ (n−5)/2(winn

Q,µ(θ)−w
out
δ,η(θ))

)′′′
θ

∣∣
θ=2



T

.

Now, we regard δ2, η2 as new variables. Taking Q
∗
, µ
∗
, δ2
∗

and η2
∗
, we find a bound

for F(Q
∗
, µ
∗
, δ2
∗
, η2
∗
) by using the behaviors of winn

Q,µ(θ) and wout
δ,η(θ) given in The-

orems 3.7 and 4.2 respectively. Accordingly we find for some M > 1 suitably large,

(5-15)
∣∣2−(n−5)/2 F(Q

∗
, µ
∗
, δ2
∗
, η2
∗
)
∣∣≤ M24−σ−(n−5)/2

+ small terms.

We seek values of Q, µ, δ2, η2 which are small perturbations of Q
∗
, µ
∗
, δ2
∗
, η2
∗

and such that F(Q, µ, δ2, η2)= 0. As in [Dancer et al. 2012], we need to evaluate
the Jacobian of F at (Q

∗
, µ
∗
, δ2
∗
, η2
∗
):

∂F(Q, µ, δ2, η2)

∂(Q, µ, δ2, η2)
=


I1+ I3 I4 −D sin τ I5

β I2+ q1 I3 q1 I4 −βD cos τ q4 I5

I6 q2 I4 I8 q5 I5

I7 q3 I4 I9 q6 I5

+ higher-order terms,



424 ZONGMING GUO, JUNCHENG WEI AND WEN YANG

where

I1 = C
(
σ

α
sin τ +

β(p− 1)
4

cos τ
)

Qσ/α−1
∗

,

I2 = C
(
σ

α
cos τ −

β(p− 1)
4

sin τ
)

Qσ/α−1
∗

,

I3 =
ν1

α
Bpµ∗2

ν̃1+(n−5)/2 Qν1/α−1
∗

, I4 = Bp Qν1/α
∗

2ν̃1+(n−5)/2,

I5 =−ϑ32
ν̃2+(n−5)/2, I6 =−β

2 I1−β I2+ q2 I3,

I7 =−β
3 I2+ 3β2 I1+ 2β I2+ q3 I3, I8 = β

2 D sin τ +βD cos τ,

I9 = β
3 D cos τ − 3β2 D sin τ − 2βD cos τ,

q1 = ν̃1+
1
2(n− 5), q2 =

(
ν̃1+

1
2(n− 7)

)
q1, q3 =

(
ν̃1+

1
2(n− 9)

)
q2,

q4 = ν̃2+
1
2(n− 5), q5 =

(
ν̃2+

1
2(n− 7)

)
q4, q6 =

(
ν̃2+

1
2(n− 9)

)
q5,

C =
√

a2
0 + b2

0, D =
√
ϑ2

1 +ϑ
2
2 ,

and
τ = β ln2+β ln Q(p−1)/4

∗
+ κ = β ln2+β ln 2−1

+ω+ 2mπ.

We define the function G(x, y, z, w) by

G(x, y, z, w)

= F(Q
∗
+ x Q1−σ/α

∗
, µ
∗
+2−ν̃1−(n−5)/2 Q−ν1/α

∗
y, δ2
∗
+ z, η2

∗
+2−ν̃2−(n−5)/2w).

Using (5-15), (4-36) and the results in Lemmas 3.5 and 3.6, we express G(x, y, z, w)
in the form

G(x, y, z, w)= C +


I ′1+ I ′3 I ′4 −D sin τ I ′5

β I ′2+ q1 I ′3 q1 I ′4 −βD cos τ q4 I ′5
I ′6 q2 I ′4 I ′8 q5 I ′5
I ′7 q3 I ′4 I ′9 q6 I ′5

+ small terms




x
y
z
w


+ E(x, y, z, w, Q

∗
, µ
∗
, δ2
∗
, η2
∗
),

where

I ′1 = C
(
σ

α
sin τ +

β(p− 1)
4

cos τ
)
, I ′2 = C

(
σ

α
cos τ −

β(p− 1)
4

sin τ
)
,

I ′3 =
ν1

α
Bpµ∗2

ν̃1+(n−5)/2 Q(ν1−σ)/α
∗

, I ′4 = Bp,

I ′5 =−ϑ3, I ′6 =−β
2 I ′1−β I ′2+ q2 I ′3,

I ′7 =−β
3 I ′2+ 3β2 I ′1+ 2β I ′2+ q3 I ′3, I ′8 = β

2 D sin τ +βD cos τ,

I ′9 = β
3 D cos τ − 3β2 D sin τ − 2βD cos τ,
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and where C is a constant vector independent of (x, y, z, w)which is bounded above
by M24−σ , and |E| is bounded independently of x , y, z, w, Q, µ, δ and η. Thus,

G(x, y, z, w)= C + L


x
y
z
w

+ T (x, y, z, w),

where L is a linear operator which is invertible; we shall prove this fact in Lemma A.1.
If we define the operator J mapping R4 into itself by

J(x, y, z, w)=−(L−1C + L−1T (x, y, z, w)),

then, provided that Q∗ is sufficiently large, a direct calculation shows that J maps
the set I into itself, where I is the ball

(5-16) I = {(x, y, z, w) : (x2
+ y2
+ z2
+w2)1/2 ≤ 4M(det L)−124−σ

},

and det L is the determinant of L , which depends on
√

a2
0 + b2

0, β, D, α, Bp, ϑ3

and νi (i = 1, 2, 3, 4). We apply the Brouwer fixed point theorem to conclude that
J has a fixed point in I . This point (x, y, z, w) satisfies G(x, y, z, w)= 0 and

(x2
+ y2
+ z2
+w2)1/2 ≤ M ′24−σ,

where M ′ is a constant defined in (5-16) and is independent of Q
∗
, µ
∗
, δ
∗
, η
∗

and2.
By substituting for Q, µ, δ and η, then taking 2 to have the upper limiting value
of Qσ/((2−σ)α)

∗
, we obtain (5-11)–(5-14). Therefore, we can find a solution to (5-1)

such that (5-2)–(5-5) hold.
We have shown that (5-2)–(5-5) have a solution for each large fixed m. This

yields a solution of (5-1) and also gives the proof of Theorem 1.1. Hence we have:

Theorem 5.1. For m � 1 large and Q, µ, δ and η as given in (5-11)–(5-14),
problem (5-1) admits a classical solution wQ,µ,δ,η(θ). Moreover, there is 2 =
|O(Qσ/((2−σ)α))| such that (5-2)–(5-5) hold.

As a consequence, problem (1-7) admits infinitely many nonconstant positive
solutions. Hence, we have proved Theorem 1.1.

Appendix

We will prove a lemma which was used in the previous sections.

Lemma A.1. For the terms E2 and k0(n) and the matrices K and L , which were
defined in previous sections, we have

(1) E2 6= 0,
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(2) p ∈
(

n+ 3
n− 5

, pc(n− 1)
)
=⇒ pk0(n− 1)≥ k0(n),

(3) det K 6= 0,

(4) det L 6= 0.

Proof. First, we show that E2 6= 0. It is known that

(A-1) E2= (ν̃1+2)ν̃1(ν̃1+n−3)(ν̃1+n−1)− p(n−5−α)(n−3−α)(2+α)α.

For convenience, we use n instead of n− 1 and ν̃1(n) instead of ν̃1(n− 1); i.e., we
study the term

(A-2) E2 = (ν̃1+ 2)ν̃1(ν̃1+ n− 2)(ν̃1+ n)− p(n− 4−α)(n− 2−α)(2+α)α.

Let f (α)= p(n− 4−α)(n− 2−α)(2+α)α. Through a simple computation, we
get f (α) and its derivative f ′(α):

f (α)=α4
+(12−2n)α3

+(n2
−18n+52)α2

+(6n2
−52n+96)α+8(n−2)(n−4),

and

f ′(α)= 4α3
+ (36− 6n)α2

+ (2n2
− 36n+ 104)α+ (6n2

− 52n+ 96).

We compute the roots of f ′(α) to find its zero points: 1
2(n − 6±

√
n2+ 4) and

1
2(n− 6). It is easy to see that f (α) is strictly increasing for α ∈

(
0, 1

2(n− 6)
)

and
decreasing for α∈

( 1
2(n−6), 1

2(n−6+
√

n2+ 4)
)
. We know α=4/(p−1)< 1

2(n−4)
and 1

2(n−4)∈
(1

2(n−6), 1
2(n−6+

√
n2+ 4)

)
. As a consequence, we can conclude

f (α)≤ f
(1

2(n− 6)
)
=

1
16 n4
−

1
2 n2
+ 1 for all p ∈

(
n+ 4
n− 4

, pc(n)
)
.

Let g(x)= x(x+2)(x+n)(x+n−2)= x4
+2nx3

+(n2
+2n−4)x2

+(2n2
−4n)x .

We compute its derivative, g′(x) = 4x3
+ 6nx2

+ (2n2
+ 4n − 8)x + (2n2

− 4n),
and find g′(x) > 0 for x > 0 when n ≥ 5. On the other hand, using 4

√
N3 > N2 for

p ∈ ((n+ 4)/(n− 4), pc(n)), we find

ν̃1 >
1
2

(√
2(n2− 4n+ 8)− (n− 4)

)
.

Therefore,

(A-3) g(ν̃1)≥ g
( 1

2

(√
2(n2−4n+8)−(n−4)

))
= 96−40n+11n2

−
1
2 n3
+

1
16 n4
+
√

2(24−4n+n2)
√

8−4n+n2.

Comparing 1
16 n4
−

1
2 n2
+1 and the right-hand side of (A-3), by direct computation,

we can get

g
( 1

2

(√
2(n2− 4n+ 8)− (n− 4)

))
> 1

16 n4
−

1
2 n2
+ 1 for n ∈ (0,∞).
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As a result, g(ν̃1) > f (α). Hence, E2 is nonzero.
Next, we prove pk0(n−1)≥k0(n) for p∈ ((n+3)/(n−5), pc(n−1)). According

to the definition of k0(n), it is enough for us to show

(A-4) p(n− 5−α)(n− 3−α)≥ (n− 4−α)(n− 2−α).

Using the relation p = 4/α+ 1, it is equivalent to show (after computation)

(A-5) 6α2
+ (39− 10n)α+ 4n2

− 32n+ 60≥ 0.

It is known that (A-5) holds provided

α≥ 1
12

(
10n−39+

√
4n2− 12n+ 81

)
or α≤ 1

12

(
10n−39−

√
4n2− 12n+ 81

)
.

On the other hand, since p ∈ ((n+3)/(n−5), pc(n−1)), we have α < 1
2(n−5). It

is easy to show 1
2(n− 5)≤ 1

12

(
10n− 39−

√
4n2− 12n+ 81

)
when n ≥ 5. Hence,

(A-5) holds. Therefore (A-4) holds.
Then, to show K is invertible, it is enough for us to show B 6= 0 or A 6= 0. Recall

B = (2n2
− 12n− 6)β + 8β3

= (2(n− 3)2− 24)β + 8β3.

It is known that 2(n− 3)2− 24< 0 only when n = 6. Since β > 0, we have B 6= 0
when n ≥ 7. When n = 6, we find

A = β4
−

35
2 β

2
−

135
16 − (1−α)(3−α)(2+α)(4+α), B =−6β + 8β3.

If B 6= 0 for n = 6, we have that K is invertible, while if B = 0 for n = 6, then
A=−21− (1−α)(3−α)(2+α)(4+α) < 0 for α ∈

(
0, 1

2

)
and K is also invertible.

Therefore, we have proved the third conclusion.
Finally, we show the matrix L is invertible. Recall that L is given by

(A-6) L :=


I ′1+ I ′3 I ′4 −D sin τ I ′5

β I ′2+ q1 I ′3 q1 I ′4 −βD cos τ q4 I ′5
I ′6 q2 I ′4 I ′8 q5 I ′5
I ′7 q3 I ′4 I ′9 q6 I ′5

 ,
where

I ′1 = C
(
σ

α
sin τ +

β(p− 1)
4

cos τ
)
, I ′2 = C

(
σ

α
cos τ −

β(p− 1)
4

sin τ
)
,

I ′3 =
ν1

α
Bpµ∗2

ν̃1+(n−5)/2 Q(ν1−σ)/α
∗

, I ′4 = Bp,

I ′5 = ϑ3, I ′6 =−β
2 I ′1−β I ′2+ q2 I ′3,

I ′7 =−β
3 I ′2+ 3β2 I ′1+ 2β I ′2+ q3 I ′3, I ′8 = β

2 D sin τ +βD cos τ,

I ′9 = β
3 D cos τ − 3β2 D sin τ − 2βD cos τ.
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Using simple linear transformations, we see that
I ′1+ I ′3 I ′4 −D sin τ I ′5

β I ′2+ q1 I ′3 q1 I ′4 −βD cos τ q4 I ′5
I ′6 q2 I ′4 I ′8 q5 I ′5
I ′7 q3 I ′4 I ′9 q6 I ′5

∼


I ′1 I ′4 −D sin τ I ′5
β I ′2 q1 I ′4 −βD cos τ q4 I ′5

I ′6− q2 I ′3 q2 I ′4 I ′8 q5 I ′5
I ′7− q3 I ′3 q3 I ′4 I ′9 q6 I ′5



∼


I ′1 −D sin τ I ′4 I ′5
β I ′2 −βD cos τ q1 I ′4 q4 I ′5

I ′6− q2 I ′3 I ′8 q2 I ′4 q5 I ′5
I ′7− q3 I ′3 I ′9 q3 I ′4 q6 I ′5

∼


I ′1 −D sin τ I ′4 −I ′5
β I ′2 −βD cos τ q1 I ′4 −q4 I ′5
0 0 I ′10 I ′11
0 0 I ′12 I ′13,

,
where

I ′10 = q2 Bp+q1 Bp+β
2 Bp, I ′11 = q5ϑ3+q4ϑ3+β

2ϑ3,

I ′12 = q3 Bp+β
2q1 Bp−3β2 Bp−2q1 Bp, I ′13 = q6ϑ3+β

2q4ϑ3−3β2ϑ3−2q4ϑ3.

Here we use the first column minus I ′3/I ′4 times the second column in the first step,
change the places of the second and third columns in the second step, and in the end,
add the second row and β times the first row to the third row and add−3β2 times the
first row and β2

−2 times the second row to the fourth row. On the other hand, since

det
[

I ′1 −D sin τ
β I ′2 −βD cos τ

]
6= 0,

to show that L is invertible, it is enough for us to prove that the 2× 2 matrix

(A-7)
[

q2+q1+β
2 q5+q4+β

2

q3+β
2q1−3β2

−2q1 q6+β
2q4−3β2

−2q4

]
.

is invertible. It follows from the definitions of qi (i = 1, 2, 3, 4, 5, 6) and β that
q2+ q1+β

2
= q5+ q4+β

2
6= 0. Let

χ1 = q3+β
2q1− 3β2

− 2q1, χ2 = q6+β
2q4− 3β2

− 2q4.

Then

χ1−χ2= q3−q6−(q1−q4)(2−β2)

= (ν̃1−ν̃2)
(
(ν̃1+ν̃2)

2
−ν̃1ν̃2+

1
2(3n−21)(ν̃1+ν̃2)+

1
4(3n2

−42n+135)+β2)
= (ν̃1−ν̃2)

( 1
4(n

2
−10n+25)−ν̃1ν̃2+β

2),
where we are using the fact that ν̃1+ν̃2=−(n−5). It is known (from Section 2) that

ν̃1ν̃2 =
n2
− 10n+ 25

4
−

N2+ 4
√

N3

4(p− 1)2
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and β2
= (4
√

N3−N2)/(4(p−1)2), where N2 and N3 (with the dimension n being
replaced by n− 1) are defined in Section 2. Therefore,

χ1−χ2 = (ν̃1− ν̃2)
2
√

N3

(p− 1)2
6= 0.

Hence, (A-7) is invertible. �
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NATURAL COMMUTING OF VANISHING CYCLES
AND THE VERDIER DUAL

DAVID B. MASSEY

We prove that the shifted vanishing cycles and nearby cycles commute with
Verdier dualizing up to a natural isomorphism, even when the coefficients
are not in a field.

1. Introduction

In this short, technical, paper, we prove a result whose full statement is missing
from the literature, and which may be surprising even to some experts in the field.
To state this result, we need to use technical notions and notations; references
are [Kashiwara and Schapira 1990; Dimca 2004; Schürmann 2003; Massey 2003,
Appendix B]. We should remark immediately that the definition that we use (see
below) for the vanishing cycles is the standard one, which is shifted by one from
the definition in [Kashiwara and Schapira 1990].

We fix a base ring, R, which is a commutative, regular, Noetherian ring, with
finite Krull dimension (e.g., Z, Q, or C). Throughout this paper, by a topological
space, we will mean a locally compact space. When we write that A• is complex
of sheaves on a topological space, X , we mean that A• is an object in Db(X), the
derived category of bounded complexes of sheaves of R-modules on X . When X is
complex analytic, we may also require that A• is (complex) constructible, and write
A• ∈ Db

c (X). We remind the reader that constructibility includes the assumption
that the stalks of all cohomology sheaves are finitely generated R-modules (so
that, by our assumption on R, each stalk complex A•x , for x ∈ X , is perfect, i.e., is
quasi-isomorphic to a bounded complex of finitely generated projective R-modules).

We let D=DX denote the Verdier dualizing operator on Db
c (X). We will always

write simply D, since the relevant topological space will always be clear.
Suppose that f : X→ C is a complex analytic function, where X is an arbitrary

complex analytic space, and suppose that we have a complex of sheaves A• on X .
We let ψ f and φ f denote the nearby and vanishing cycle functors, respectively.
Henceforth, we shall always write these functors composed with a shift by −1,
that is, we shall write ψ f [−1] := ψ f ◦ [−1] and φ f [−1] := φ f ◦ [−1]. In order

MSC2010: 32B10, 32B15, 32C18, 32C35.
Keywords: vanishing cycles, nearby cycles, Verdier dual, constructible complexes.
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to eliminate any possible confusion over indexing/shifting: with the definitions
that we are using, if F f,p denotes the Milnor fiber of f at p ∈ f −1(0) inside the
open ball B̊ε(p) (using a local embedding into affine space), then, for all k ∈ Z,
H k(ψ f [−1]A•)p ∼= Hk−1(F f,p;A•) and H k(φ f [−1]A•)p ∼= Hk(B̊ε(p), F f,p;A•).

The questions in which we are interested are:

(i) Do isomorphisms D ◦ψ f [−1] ∼= ψ f [−1] ◦D and D ◦φ f [−1] ∼= φ f [−1] ◦D
exist even if R is not a field?

(ii) Do there exist such isomorphisms which are natural?

We show that the answer to both is yes.
Is this result known and/or surprising? Some references, such as [Brylinski and

Monteiro Fernandes 1986; Dimca 2004; Massey 2003, Appendix B], state that there
exist nonnatural isomorphisms, and require that the base ring is a field. Schürmann
[2003, Corollary 5.4.4] proves the natural isomorphism exists on the stalk level,
even when R is not a field.

In the l-adic algebraic context, Illusie [1994] proves that the Verdier dual and
nearby cycles commute, up to natural isomorphism. M. Saito [1988; 1989] proves
the analogous result in the complex analytic setting, with field coefficients. One
can obtain our full result by combining Proposition 8.4.13, Proposition 8.6.3, and
Exercise VIII.15 of [Kashiwara and Schapira 1990], though our proof here is
completely different. In fact, our proof is similar to the discussion on duality of
local Morse data following Remark 5.1.7 in [Schürmann 2003].

Recently, J. Schürmann proved in Proposition A.1 of the Appendix in [Brav
et al. 2015], that the duality isomorphism constructed here fits with a corresponding
(more complicated) duality isomorphism in Saito’s theory of mixed Hodge modules.

Furthermore, this duality result and the half-space description used for the
vanishing cycles have recently become very promising in the study of Donaldson–
Thomas invariants of suitable moduli spaces (as in [Brav et al. 2015] and [Kontsevich
and Soibelman 2011, Section 7]).

Our proof is relatively simple, and consists of three main steps: proving a
small lemma about pairs of closed sets which cover a space, using a convenient
characterization/definition of the vanishing cycles, and using that the stratified
critical values of f are locally isolated. The nearby cycle result follows as a quick
corollary of the result for vanishing cycles.

2. Two lemmas

We shall use ' to denote natural isomorphisms of functors. If A• is a bounded
complex, then, by supp A•, we mean, by definition, the closure of the union of the
support of all (nontrivial) cohomology sheaves.
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The following is an easy generalization of the fact that, if i is the inclusion of an
open set, then i∗ ' i ! (see, for instance, [Dimca 2004, Corollary 3.2.12]).

Lemma 2.1. Suppose Z is a locally compact subset of X , and let j : Z ↪→ X
denote the inclusion. Let Db

Z (X) denote the full subcategory of Db(X) of complexes
A• such that Z ∩ supp A• is an open subset of supp A•. Then, there is a natural
isomorphism of functors j ! ' j∗ from Db

Z (X) to Db(Z).

Proof. Let A• ∈ Db
Z (X). We will show that the natural map j !→ j∗ of functors

from Db(X) to Db(Z) yields an isomorphism j !A•→ j∗A•.
Let Y := supp A•. Let m : Y ↪→ X , m̂ : Z ∩ Y ↪→ Z and ̂ : Z ∩ Y ↪→ Y denote

the inclusions. Then,

j !A• ∼= j !m∗m∗A• ∼= m̂∗̂ !m∗A• ∼= m̂! ̂∗m∗A• ∼= j∗m!m∗A• ∼= j∗A•,

where we used, in order, that A• ∼= m∗m∗A•, since Y is the support of A•, Proposi-
tion 2.6.7 of [Kashiwara and Schapira 1990] on Cartesian squares, that m̂∗' m̂! and
̂ ! ' ̂∗, since m̂ is a closed inclusion and ̂ is an open inclusion, Proposition 2.6.7
of [Kashiwara and Schapira 1990] again, and that A• ∼= m!m∗A•. �

The lemma that we shall now prove certainly looks related to many propositions
we have seen before, and may be known, but we cannot find a reference. The
lemma tells us that, in our special case, the morphism of functors described in
Proposition 3.1.9(iii) of [Kashiwara and Schapira 1990] is an isomorphism.

Lemma 2.2. Let X be a locally compact space, and let Z1 and Z2 be closed subsets
of X such that X = Z1 ∪ Z2. Denote the inclusion maps by

j1 : Z1 ↪→ X, j2 : Z2 ↪→ X, ̂1 : Z1 ∩ Z2 ↪→ Z2,

̂2 : Z1 ∩ Z2 ↪→ Z1, m = j1̂2 = j2̂1 : Z1 ∩ Z2 ↪→ X.

Then, we have the following natural isomorphisms

(1) m∗ j2! j
!

2 ' ̂
∗

1 j !2 ' ̂
!

2 j∗1 ' m∗ j1∗ ̂2! ̂
!

2 j∗1 .

Proof. Let i1 : X − Z1 ↪→ X and i2 : X − Z2 ↪→ X denote the open inclusions.
We make use of Proposition 2.6.7 of [Kashiwara and Schapira 1990] on Cartesian
squares repeatedly. We also use repeatedly that, if j is a closed inclusion, then
j∗ ' j! and j∗ j∗ ' j∗ j! ' id.

We find
m∗ j2! j

!

2 = ( j2̂1)
∗ j2! j

!

2 ' ̂
∗

1 j∗2 j2! j
!

2 ' ̂
∗

1 j !2,

which proves the first isomorphism in (1).
We also find

m∗ j1∗̂2! ̂
!

2 j∗1 = ( j1 ̂2)
∗ j1∗̂2! ̂

!

2 j∗1 ' ̂
∗

2 j∗1 j1∗̂2! ̂
!

2 j∗1 ' ̂
∗

2 ̂2! ̂
!

2 j∗1 ' ̂
!

2 j∗1 ,
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which proves the last isomorphism in (1).
It remains for us to demonstrate the middle isomorphism.
Let l2 : X − Z2 = Z1− (Z1 ∩ Z2)→ X denote the (open) inclusion. Then, we

have the natural distinguished triangle

j2! j2
!
→ id→ l2∗l2

∗ [1]
−→,

which yields the distinguished triangle

̂ !2 j∗1 j2! j2
!
→ ̂ !2 j∗1 → ̂ !2 j∗1 l2∗l2

∗ [1]
−→ .

Now, ̂ !2 j∗1 j2! j2
!
' ̂ !2 ̂2! ̂

∗

1 j !2 ' ̂
∗

1 j !2 and so, if we can show that ̂ !2 j∗1 l2∗l2
∗
= 0,

then we will be finished.
This is easy. The support of l2∗ l2

∗ is contained in Z1; hence j∗1 l2∗l2
∗
' j !1l2∗l2

∗.
Therefore,

̂ !2 j∗1 l2∗ l2
∗
' ̂ !2 j !1 l2∗ l2

∗
' ̂ !1 j !2 l2∗ l2

∗,

and j !2l2∗ = 0. �

3. The main theorem

Let f : X→C be complex analytic, and let A• ∈ Db
c (X). For any real number θ , let

Zθ := f −1(eiθ
{v ∈ C | Re v ≤ 0})

and let
Lθ := f −1(eiθ

{v ∈ C | Re v = 0}).

Let jθ : Zθ ↪→ X and p : f −1(0) ↪→ X denote the inclusions.
By Lemma 1.3.2 of [Schürmann 2003], or following Exercise VIII.13 of [Kashi-

wara and Schapira 1990] (but reversing the inequality, and using a different shift),
we define (or characterize up to natural isomorphism) the shifted vanishing cycles
of A• along f to be

φ f [−1]A• := p∗R0Z0(A
•)' p∗ j0! j

!

0 A•.

In fact, for each θ , we define the shifted vanishing cycles of A• along f at the angle
θ to be

φθf [−1]A• := p∗ jθ ! j
!

θ A•.

There are the well-known natural isomorphisms T̃ θ
f : φ

0
f [−1] → φθf [−1], induced

by rotating C counterclockwise by an angle θ around the origin. The natural
isomorphism T̃ 2π

f : φ f [−1] → φ f [−1] is the usual monodromy automorphism on
the vanishing cycles.

In the proof of the main theorem below, we shall use that D ◦ (−)∗ ' (−)! ◦D
always holds; we shall also use that D ◦ (−)! ' (−)∗ ◦D holds in our context, but
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note that this uses biduality, i.e., that D ◦D ' id, for subanalytically constructible
complexes of sheaves (see of [Schürmann 2003, Corollary 2.2.7] or [Kashiwara and
Schapira 1990, Exercise VIII.3]), which uses the assumption that the commutative
base ring R is regular, Noetherian of finite Krull dimension, so that, for such a
subanalytically constructible complex of sheaves, all stalk complexes are perfect.

We now prove the main theorem.

Theorem 3.1. There is a natural isomorphism

φ f [−1] ◦D ' D ◦φ f [−1]

of functors from Db
c (X) to Db

c ( f −1(0)).

Proof. Let m denote the inclusion of L0 = Lπ into X . Now, apply Lemma 2.2 to
X = Z0 ∪ Zπ , and conclude that

m∗ j0! j
!

0 ' ̂
!

0 j∗π .

Dualizing, we obtain

(2) D(m∗ j0! j
!

0)' D(̂ !0 j∗π )' ̂
∗

0 j !πD ' m∗ jπ ! j
!

πD,

where the second isomorphism uses that D “commutes” with the standard operations,
and the last isomorphism results from using that m = jπ ̂0.

Let q denote the inclusion of f −1(0) into L0= Lπ , so that the inclusion p equals
mq. Applying q∗ to (2), we obtain

q∗D(m∗ j0! j
!

0)' q∗m∗ jπ ! j
!

πD ' p∗ jπ ! j
!

πD = φ
π
f [−1] ◦D ' φ f [−1] ◦D,

where, in the last step, we used the natural isomorphism
(
T̃ π

f

)−1.
As D(q !m∗ j0! j

!

0)' q∗D(m∗ j0! j
!

0), it remains for us to show that q !m∗ j0! j
!

0 is
naturally isomorphic to q∗m∗ j0! j

!

0 ' p∗ j0! j
!

0 ' φ f [−1]. This will follow from
Lemma 2.1, once we show that, for all A• ∈ Db

c (X), f −1(0)∩ supp(m∗ j0! j
!

0A•) is
an open subset of supp(m∗ j0! j

!

0A•).
Suppose that x ∈ f −1(0)∩ supp(m∗ j0! j

1
0 A•). We need to show that there exists

an open neighborhood W of x in X such that W ∩ supp(m∗ j0! j
1
0 A•)⊆ f −1(0).

Fix a Whitney stratification of X , with respect to which A• is constructible. Then,
select W so that all of the stratified critical points of f , inside W , are contained in
f −1(0). Suppose that there were a point y ∈W such that y ∈ f −1(L0)− f −1(0)
and the stalk cohomology of m∗ j0! j

!

0A• at y is nonzero. Then, by definition, y
would be a point in the support φ f− f (y)[−1]A•, which, again, is contained in the
stratified critical locus of f and, hence, is contained in f −1(0). This contradiction
concludes the proof. �

We continue to let p : f −1(0) ↪→ X denote the closed inclusion, and now let
i : X − f −1(0) ↪→ X denote the open inclusion. Consider the two fundamental
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distinguished triangles related to the nearby and vanishing cycles:

p∗[−1]
comp
−→ ψ f [−1]

can
−→ φ f [−1]

[1]
−→

and
φ f [−1]

var
−→ ψ f [−1] → p! [1]

[1]
−→ .

The morphisms comp, can, and var are usually referred to as the comparison map,
canonical map, and variation map. As p∗i!= 0= p!i∗ and as ψ f [−1] depends only
on the complex outside of f −1(0), the top triangle, applied to i!i ! and the bottom
triangle applied to i∗i∗ yield natural isomorphisms

α : ψ f [−1]
'
−→ φ f [−1]i! i ! and β : φ f [−1]i∗ i∗

'
−→ ψ f [−1].

Corollary 3.2. There is a natural isomorphism

ψ f [−1] ◦D ' D ◦ψ f [−1]

of functors from Db
c (X) to Db

c ( f −1(0)).

Proof. ψ f [−1] ◦D ' φ f [−1]i! i ! ◦D ' D ◦φ f [−1]i∗i∗ ' D ◦ψ f [−1]. �
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THE NEF CONES OF AND MINIMAL-DEGREE CURVES IN
THE HILBERT SCHEMES OF POINTS ON CERTAIN SURFACES

ZHENBO QIN AND YUPING TU

We determine the nef cones of the Hilbert schemes of points on certain
surfaces X with h1(X,OX) = 0. Then we apply the results to Hirzebruch
surfaces, and study the minimal-degree curves in the Hilbert schemes of
points on Hirzebruch surfaces. Our results generalize those in Li, Qin, and
Zhang (2003).

1. Introduction

Hilbert schemes are classical objects in algebraic geometry, and have been studied
extensively since their constructions by Grothendieck. Hilbert schemes of points on
smooth surfaces are known to be smooth and irreducible, and have deep connections
with combinatorics, representation theory and string theory. Ample divisors on
these Hilbert schemes were considered in [Beltrametti and Sommese 1991; 1993;
Catanese and Gœttsche 1990]. The nef cones of the Hilbert schemes of points on
smooth surfaces were first investigated in [Li et al. 2003] when the surface is the
projective plane. Recently, these nef cones were further understood in [Arcara et al.
2013; Bertram and Coskun 2013; Bolognese et al. 2015] via Bridgeland stability.

In this paper, we generalize the methods and results in [Li et al. 2003], and prove
a structure theorem for the nef cones of the Hilbert schemes of points on certain
surfaces. To state our result, let X be a smooth projective complex surface. The nef
cone of X is the span of the nef divisors on X . We use NE(X) to denote the cone
spanned by all the effective curves in X . It is well-known that NE(X) is dual to the
nef cone of X . Let X [n] be the Hilbert scheme of points in X . By [Fogarty 1968;
Iarrobino 1977], X [n] is a smooth irreducible variety of dimension 2n.

Theorem 1.1. Let n ≥ 2, and let the surface X satisfy h1(X,OX )= 0. Assume that
the nef cone of X is the span of the divisors F1, . . . , Ft , and the cone NE(X) is the

Qin partially supported by a grant from the Simons Foundation. Tu partially supported by NSFC grant
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span of the curves C1, . . . ,Ct with Fi ·C j = δi, j for all i and j . Assume further that

OX

(
(n− 1)

t∑
i=1

Fi

)
is (n− 1)-very ample. Then

(i) the nef cone of the Hilbert scheme X [n] is spanned by

(1-1) DF1 , . . . , DFt , (n− 1)
t∑

i=1

DFi − Bn/2;

(ii) the cone NE(X [n]) is spanned by the classes

(1-2) βC1 − (n− 1)βn , . . . , βCt − (n− 1)βn , βn.

In the above theorem, Bn denotes the boundary divisor of the Hilbert scheme X [n]

consisting of the elements ξ ∈ X [n] which are not smooth as subschemes of X [n],
and βn is the minimal curve class contracted by the Hilbert–Chow morphism
X [n]→ X (n) sending an element ξ ∈ X [n] to its support (with multiplicities) in the
n-th symmetric product X (n) of X . We refer to (2-4), (2-3) and Definition 2.1 for
the definitions of DF , βC and (n− 1)-very ampleness, respectively. Theorem 1.1
is proved in Section 2. Our main idea in the proof of Theorem 1.1 is to construct
curves in X [n] which provide us with information about the nef divisors in X [n].

In Section 3, we apply Theorem 1.1 to the case when X is a Hirzebruch surface,
and recover a result in [Bertram and Coskun 2013]. Moreover, when X is a
Hirzebruch surface, we classify all the curves in the Hilbert scheme X [n] whose
homology classes are contained in the list (1-2). These curves have minimal degree
in the sense that their intersection numbers with certain very ample divisors in X [n]

are all equal to 1. We compute the normal bundles of these curves, and prove that
their moduli spaces are unobstructed, i.e., are smooth with the expected dimensions.

Conventions. Let 0 ≤ k ≤ n and V be an n-dimensional vector space. We use
the Grassmannian G(V, k) to denote the set of all k-dimensional quotients of V ,
or equivalently, the set of all (n− k)-dimensional subspaces of V . Also, we take
P(V )= G(V, 1). So the set of lines in P(V ) is the Grassmannian G(V, 2).

2. The nef cones of the Hilbert schemes of points on certain surfaces

In this section, we study the nef cones of the Hilbert schemes of points on certain
surfaces with h1(X,OX )= 0. Our goal is to prove Theorem 1.1.

Let X be a smooth projective complex surface, and X [n] be the Hilbert scheme of
points in X . An element in X [n] is represented by a length-n 0-dimensional closed
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subscheme ξ of X . For ξ ∈ X [n], let Iξ be the corresponding sheaf of ideals and Oξ
the structure sheaf. The subset

(2-1) Bn = {ξ ∈ X [n] | | Supp (ξ)|< n}

is defined to be the boundary of X [n]. Let C be a real surface in X , and fix distinct
points x1, . . . , xn−1 ∈ X which are not contained in C . Define

βn = {ξ + x2+ · · ·+ xn−1 ∈ X [n] | Supp(ξ)= {x1}},(2-2)

βC = {x + x1+ · · ·+ xn−1 ∈ X [n] | x ∈ C},(2-3)

DC = {ξ ∈ X [n] | Supp(ξ)∩C 6=∅}.(2-4)

Note that βC is a curve, and DC a divisor, in X [n] when C is a smooth algebraic
curve in X . We extend the notions βC and DC to all the divisors C in X by linearity.

Nakajima [1997] and Grojnowski [1996] geometrically constructed a Heisenberg
algebra action on the cohomology of the Hilbert schemes X [n]. Let H∗(X) be the
total cohomology of X with C-coefficients. Denote the Heisenberg operators of
Nakajima and Grojnowski by am(α) where m ∈ Z and α ∈ H∗(X). Set

HX =

+∞⊕
n=0

H∗(X [n]).

Then the space HX is an irreducible representation of the Heisenberg algebra
generated by the operators am(α) with the highest weight vector being

|0〉 = 1 ∈ H∗(X [0])= C.

It follows that the n-th component H∗(X [n]) in the Fock space HX is linearly
spanned by the Heisenberg monomial classes

a−n1(α1) · · · a−nk (αk)|0〉,

where k ≥ 0, n1, . . . , nk > 0 and n1+ · · ·+ nk = n. We have

βn = a−2(x)a−1(x)n−2
|0〉,(2-5)

βC = a−1(C)a−1(x)n−1
|0〉,(2-6)

Bn =
1

(n−2)!
a−1(1X )

n−2a−2(1X )|0〉,(2-7)

DC =
1

(n−1)!
a−1(1X )

n−1a−1(C)|0〉,(2-8)

where x and 1X denote the cohomology classes corresponding to a point x ∈ X
and the surface X , respectively. Abusing notation, we also use C to denote the
cohomology class corresponding to the real surface C .
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The following important definition is from [Beltrametti and Sommese 1991].

Definition 2.1. Let n ≥ 1. A line bundle L on the surface X is (n− 1)-very ample
if the restriction H 0(X, L)→ H 0(X,Oξ ⊗ L) is surjective for every ξ ∈ X [n].

The concept of (n−1)-very ampleness relates X [n] to a Grassmannian as follows.
The surjective map in Definition 2.1 represents an element in G(H 0(X, L), n). So
if L is (n− 1)-very ample, then we obtain a morphism

(2-9) ϕn(L) : X [n]→ G(H 0(X, L), n).

Let h=h0(X, L), and letP :G(Ch, n)→P
((∧h−n

Ch
)∗) be the Plücker embedding.

Then we see from the Appendix of [Beltrametti and Sommese 1991] that

(2-10) (P ◦ϕn(L))∗H=OX [n](Dc1(L)− Bn/2),

where H is the hyperplane line bundle over the projective space P
((∧h−n

Ch
)∗).

Lemma 2.2. If L is (n− 1)-very ample, then the divisor Dc1(L)− Bn/2 is nef. If L
is n-very ample, then the divisor Dc1(L)− Bn/2 is very ample. �

The first statement in Lemma 2.2 follows immediately from (2-10), and the
second statement was proved in [Catanese and Gœttsche 1990].

In X [n]× X , we have the universal codimension-2 subscheme

(2-11) Zn = {(ξ, x) ∈ X [n]× X | x ∈ Supp (ξ)} ⊂ X [n]× X.

Define the incidence variety X [n−1,n]
= {(ξ, η) ∈ X [n−1]

× X [n] | ξ ⊂ η}. It is well-
known [Cheah 1998; Tikhomirov 1994] that X [n−1,n] is smooth and of dimension 2n.
Define

fn : X [n−1,n]
→ X [n−1] with fn(ξ, η)= ξ,

gn : X [n−1,n]
→ X [n] with gn(ξ, η)= η,

ρ : X [n−1,n]
→ X with ρ(ξ, η)= Supp(Iξ/Iη).

Set φn = ( fn, ρ) : X [n−1,n]
→ X [n−1]

× X . By Proposition 2.2 in [Ellingsrud and
Strømme 1998], φn is the blowing-up morphism of X [n−1]

× X along Zn−1.
Next, let C be an irreducible curve in X . Let ξ = x1 + · · · + xn−1 ∈ X [n−1],

where x1, . . . , xn−1 are distinct smooth points on C . Let (C + ξ) be the closure of
(C −Supp(ξ))+ ξ in X [n]. Alternatively, consider

(2-12)
C̃ξ ⊂ X̃ξ ⊂ X [n−1,n] gn

−→ X [n]y y yφn

{ξ}×C ⊂ {ξ}× X ⊂ X [n−1]
× X

where C̃ξ and X̃ξ are the strict transforms of {ξ} × C and {ξ} × X in X [n−1,n],
respectively. Since φn is the blowing-up morphism of X [n−1]

× X along Zn−1, it



NEF CONES AND MINIMAL-DEGREE CURVES IN HILBERT SCHEMES 443

follows that X̃ξ is isomorphic to the blowup of {ξ}× X ∼= X at x1, . . . , xn−1. For
1≤ i ≤ (n− 1), let Ei be the exceptional divisor in X̃ξ over xi . Then we obtain

(2-13) (φn|X̃ξ )
∗({ξ}×C)= C̃ξ +

n−1∑
i=1

Ei

in the Chow group A1(X̃ξ ). Notice that gn(C̃ξ )= (C + ξ) and

gn(Ei )= M2(xi )+ x1+ · · ·+ xi−1+ xi+1+ · · ·+ xn−1.

In fact, since gn|X̃ξ : X̃ξ → gn(X̃ξ ) is an isomorphism, we have

(2-14) (gn|X̃ξ )∗(C̃ξ )= (C + ξ) and (gn|X̃ξ )∗(Ei )= βn.

Lemma 2.3. With the above notation, (C + ξ)= βC − (n− 1)βn in A1(X [n]).

Proof. Choose two smooth curves C1 and C2 in X such that C =C1−C2 in A1(X)
and Supp(ξ)∩ (C1 ∪C2)=∅. Then in A1(X [n]), we have

(2-15) (gn|X̃ξ )∗(φn|X̃ξ )
∗({ξ}×C)

= (gn|X̃ξ )∗(φn|X̃ξ )
∗({ξ}×C1)− (gn|X̃ξ )∗(φn|X̃ξ )

∗({ξ}×C2)

= (C1+ ξ)− (C2+ ξ)

= βC1−βC2 = βC .

On the other hand, applying (2-13) and (2-14), we conclude that

(gn|X̃ξ )∗(φn|X̃ξ )
∗({ξ}×C)= (gn|X̃ξ )∗

(
C̃ξ +

n−1∑
i=1

Ei

)
= (C + ξ)+ (n− 1)βn.

Combining this with (2-15), we see that (C + ξ)= βC − (n− 1)βn in A1(X [n]). �

Lemma 2.4. Let F be a divisor on X. If DF − d(Bn/2) is nef , then d ≥ 0 and
F ·C ≥ d(n− 1) for every irreducible curve C ⊂ X. In particular, F is nef.

Proof. Note that DF ·βn = 0 and Bn ·βn =−2. Thus, we have

0≤ (DF − d(Bn/2)) ·βn = d.

Since DF ·βC = F ·C and Bn ·βC = 0, we conclude from Lemma 2.3 that

0≤ (DF − d(Bn/2)) · (βC − (n− 1)βn)= F ·C − d(n− 1). �

Lemma 2.5. Let F be a divisor in X. Let C be a smooth rational curve in X , and
consider the n-th symmetric product C (n)

= Hilbn(C)⊂ X [n]. Then

(i) every line in C (n) ∼= Pn is homologous to βC − (n− 1)βn;

(ii) OX [n](DF )|C (n) =OC (n)(C · F) and OX [n](Bn/2)|C (n) =OC (n)(n− 1).
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Proof. (i) Let x1, . . . , xn−1 ∈ C be distinct, and put γ = C + (x1 + · · · + xn−1).
Then γ is a line in the projective space C (n) ∼= Pn . By Lemma 2.3,

γ ∼ βC − (n− 1)βn,

where ∼ denotes homologous relation. So every line in C (n) ∼= Pn is homologous
to the class βC − (n− 1)βn .

(ii) Since γ · DF |C (n) = γ · DF = (βC − (n− 1)βn) · DF = C · F , we get

OX [n](DF )|C (n) =OC (n)(C · F).

Using a similar method, we obtain OX [n](Bn/2)|C (n) =OC (n)(n− 1). �

In the rest of the paper, we assume that h1(X,OX )= 0. Then

(2-16) Pic(X [n])∼= Pic(X)⊕Z · (Bn/2)

by [Fogarty 1973]. Under this isomorphism, the divisor DC ∈Pic(X [n]) corresponds
to C ∈ Pic(X). Let {α1, . . . , αs} be a linear basis of H 2(X). Then

(2-17) {Dα1, . . . , Dαs , Bn}

is a linear basis of H 2(X [n]). Represent α1, . . . , αs by real surfaces C1, . . . ,Cs ⊂ X ,
respectively. Then a linear basis of H2(X [n]) is given by

(2-18) {βC1, . . . , βCs , βn}.

We are now ready to prove our main result in this paper.

Theorem 2.6. Let n ≥ 2, and let the surface X satisfy h1(X,OX )= 0. Assume that
the nef cone of X is the span of the divisors F1, . . . , Ft , and the cone NE(X) is the
span of the curves C1, . . . ,Ct with Fi ·C j = δi, j for all i and j . Assume further
that OX

(
(n− 1)

∑t
i=1 Fi

)
is (n− 1)-very ample. Then

(i) the nef cone of the Hilbert scheme X [n] is spanned by

(2-19) DF1 , . . . , DFt , (n− 1)
t∑

i=1

DFi − Bn/2;

(ii) the cone NE(X [n]) is spanned by the classes

(2-20) βC1 − (n− 1)βn , . . . , βCt − (n− 1)βn , βn.

Proof. (i) For 1≤ j ≤ n, let p j : Xn
→ X be the projection to the j-th factor. Let

X (n) be the n-th symmetric product of X , and let υn : Xn
→ X (n) be the quotient

map. Let ρn : X [n]→ X (n) be the Hilbert–Chow morphism sending an element
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ξ ∈ X [n] to its support (with multiplicities) in X (n). For each Fi , there exists a
divisor Hi on X (n) such that

ρ∗n Hi = DFi , υ∗n Hi =

n∑
j=1

p∗j Fi .

It follows that since Fi is nef, the divisor DFi is nef as well. Since the line bundle
OX
(
(n − 1)

∑t
i=1 Fi

)
is (n − 1)-very ample, we conclude from Lemma 2.2 that

(n−1)
∑t

i=1 DFi−Bn/2 is a nef divisor. Thus, the cone C1 spanned by the divisors
in (2-19) is contained in the nef cone of X [n].

Conversely, assume that DF−d Bn/2 is a nef divisor on X [n]. Let F =
∑t

i=1 ai Fi .
By Lemma 2.4, d ≥ 0 and F ·C ≥ d(n− 1) for every irreducible curve C ⊂ X . So

ai = F ·Ci ≥ d(n− 1)

for every i . Now the nef divisor DF − d Bn/2 can be written as
t∑

i=1

ai DFi − d Bn/2=
t∑

i=1

(ai − d(n− 1))DFi + d
(
(n− 1)

t∑
i=1

DFi − Bn/2
)
.

Therefore, DF − d Bn/2 ∈ C1. It follows that C1 is the nef cone of X [n].

(ii) First of all, note that since the divisor Fi is nef and Fi ·Ci = 1, the curve Ci

contains at least one reduced irreducible component. So the curve βCi − (n− 1)βn

is well-defined, and the cone C2 spanned by the curves in (2-20) is contained
in the cone NE(X [n]). Conversely, assume that

∑t
i=1 biβCi + cβn is contained

in NE(X [n]). Then
(∑t

i=1 biβCi + cβn
)
· H ≥ 0 for every nef divisor H in X [n].

Letting H = DFi , we get bi ≥ 0 for every i . Letting H = (n−1)
∑t

i=1 DFi − Bn/2,
we obtain (n− 1)

∑t
i=1 bi + c ≥ 0. Therefore, we have

t∑
i=1

biβCi + cβn =

t∑
i=1

bi (βCi − (n− 1)βn)+

(
(n− 1)

t∑
i=1

bi + c
)
βn ∈ C2.

It follows that C2 coincides with the cone NE(X [n]). �

Corollary 2.7. Under the same assumptions as in Theorem 2.6, if γ is an irreducible
curve in the Hilbert scheme X [n], then γ is homologous to

t∑
i=1

bi (βCi − (n− 1)βn)+ cβn

for some nonnegative integers b1, . . . , bt , c not all equal to zero.

Proof. By Theorem 2.6 (ii), b1, . . . , bt , c are nonnegative and not all equal to 0.
Intersecting the curve γ with the divisors DF1, . . . , DFt and (n−1)

∑t
i=1 DFi−Bn/2,

respectively, we see that b1, . . . , bt , c must be integers. �
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3. Application to Hirzebruch surfaces

In this section, we apply Theorem 2.6 to the Hirzebruch surfaces and recover a
result in [Bertram and Coskun 2013]. Then we study the curves in the Hilbert
schemes of points on the Hirzebruch surfaces, which have the minimal degree. We
compute their normal bundles, and prove that their moduli spaces are unobstructed.

Let X denote the Hirzebruch surface Fe with e≥ 0. Let f be a fiber of the ruling
π : X→ P1, and σ ⊂ X be a section of π such that σ 2

=−e. Then

Pic(X)= Z · σ ⊕Z · f.

It is well-known that aσ +b f is nef if and only if a ≥ 0 and b ≥ ae. The following
lemma was proved in [Beltrametti and Sommese 1993].

Lemma 3.1. OX (aσ + b f ) is n-very ample if and only if a ≥ n and b ≥ n+ ae. �

Proposition 3.2. Let n ≥ 2, and let X be the Hirzebruch surface Fe. Then

(i) the nef cone of the Hilbert scheme X [n] is spanned by

(3-1) D f , Dσ + eD f , (n− 1)Dσ + (n− 1)(1+ e)D f − Bn/2;

(ii) the cone NE(X [n]) is spanned by the classes

(3-2) βσ − (n− 1)βn, β f − (n− 1)βn, βn.

Proof. The nef cone of X is the span of F1 = f and F2 = σ + e f , and the cone
NE(X) is the span of C1= σ and C2= f . Note that Fi ·C j = δi, j for all i and j . In
addition, by Lemma 3.1, the line bundle OX ((n−1)F1+ (n−1)F2) is (n−1)-very
ample. Hence our proposition follows from Theorem 2.6. �

Proposition 3.2 has been proved in [Bertram and Coskun 2013]. We now study
the curves in X [n] whose homology classes are contained in the list (3-2). Let

Ln = nσ + n(1+ e) f.

By Lemma 3.1, the line bundle OX (Ln) is n-very ample. By Lemma 2.2, the divisor

DLn − Bn/2= nDσ + n(1+ e)D f − Bn/2

in X [n] is very ample. Our next lemma characterizes the homology classes in (3-2).

Lemma 3.3. Let γ be a curve in X [n] with γ ·(nDσ+n(1+e)D f −Bn/2)=1. Then
γ is a smooth rational curve. Moreover, γ ∼ βn , β f − (n−1)βn or βσ − (n−1)βn .

Proof. Since nDσ +n(1+e)D f − Bn/2 is very ample, γ is a smooth rational curve.
By Corollary 2.7, γ ∼ a(βσ − (n − 1)βn)+ b(β f − (n − 1)βn)+ cβn for some
nonnegative integers a, b, c. Since γ · (nDσ + n(1+ e)D f − Bn/2)= 1, we obtain

a+ b+ c = 1.

Therefore, we have γ ∼ βn , β f − (n− 1)βn or βσ − (n− 1)βn . �
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The curves in X [n] homologous to βn have been classified in [Li et al. 2003].
In the rest of this section, we study the curves γ ⊂ X [n] which are homologous to
β f − (n− 1)βn or βσ − (n− 1)βn . By Lemma 3.1, the line bundle OX (Ln−1) is
(n− 1)-very ample. So by (2-9), we have the morphism

ϕ := ϕn(OX (Ln−1)) : X [n]→ G
(
H 0(X,OX (Ln−1)), n

)
.

Lemma 3.4. Let γ be an irreducible curve in X [n] satisfying

γ · ((n− 1)Dσ + (n− 1)(1+ e)D f − Bn/2)= 0.

Then γ ∼ β f − (n− 1)βn or βσ − (n− 1)βn . Moreover, γ is contracted by ϕ.

Proof. The first part of the lemma is proved by an argument similar to the proof of
Lemma 3.3. For the second part, we notice from (2-10) that

(P ◦ϕ)∗H=OX [n](DLn−1 − Bn/2)

=OX [n]((n− 1)Dσ + (n− 1)(1+ e)D f − Bn/2).

Therefore, the curve γ is contracted by the morphism P ◦ ϕ. Since P is an
embedding, the curve γ is contracted by the morphism ϕ. �

In the following, we fix a curve γ ⊂ X [n] homologous to β f − (n − 1)βn

or βσ −(n−1)βn . Let X (n) be the n-th symmetric product of X and υn : Xn
→ X (n)

the quotient map. Let ρn : X [n]→ X (n) be the Hilbert–Chow morphism sending an
element ξ ∈ X [n] to its support (with multiplicities) in X (n). Let p1 be the projection
from Xn to the first factor.

Definition 3.5. Define Cγ to be the union of all the curves in p1(υ
−1
n (ρn(γ ))).

Lemma 3.6. Let γ ∼ β f − (n− 1)βn or βσ − (n− 1)βn . Then Cγ ∼ σ or f .

Proof. First of all, we claim that Cγ 6=∅. Indeed, if Cγ =∅, then p1(υ
−1
n (ρn(γ )))

is a finite set of points in X . Since the divisor σ + (1+ e) f is very ample, we can
choose a smooth curve F ∈ |σ+(1+e) f | such that F∩ p1(υ

−1
n (ρn(γ )))=∅. Since

the elements of γ are supported in p1(υ
−1
n (ρn(γ ))), we must have γ ∩ DF =∅. It

follows that γ · DF = 0. However, this contradicts γ · DF = 1.
Next, assume that Cγ ·(σ+(1+e) f )≥ 2. Take a point ξ ∈ γ and a smooth point

x ∈Cγ such that x /∈ Supp(ξ). Since x ∈Cγ ⊂ p1(υ
−1
n (ρn(γ ))), there exists ξx ∈ γ

such that ρn(ξx)= nx x+ηx , where nx ≥ 1, ηx ∈ X (n−nx ) and x /∈ Supp(ηx). Choose
a smooth curve F ∈ |σ + (1+e) f | missing Supp(ηx)∪Supp(ξ), passing through x ,
and intersecting Cγ transversally. Then F ∩Cγ is a finite set. Since Cγ · F ≥ 2,
F∩Cγ contains one more point y 6= x . Hence there exists ξy ∈ γ with y ∈ Supp(ξy).
Thus ξx , ξy ∈ γ ∩ DF . Since y 6= x , y ∈ F and F misses Supp(ηx), we get

y /∈ {x} ∪Supp(ηx)= Supp(ξx).
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So ξx 6= ξy . Since Supp(ξ)∩F =∅, we have ξ 6∈ DF . Since ξ ∈ γ and γ is a smooth
rational curve, γ is not contained in DF . Therefore, γ ∩ DF is a finite set of points.
Since ξx , ξy ∈γ∩DF and ξx 6= ξy , we obtain γ ·DF ≥2, which contradicts γ ·DF =1.

It follows that Cγ · (σ + (1+ e) f )= 1. Since the cone NE(Fe) is spanned by σ
and f , we conclude that Cγ ∼ σ or f . �

By Lemma 3.6, Cγ ∼ σ or f . So Cγ is a smooth rational curve, and

OX (Ln−1)|Cγ
∼=OCγ (n− 1).

Let VCγ ⊂ H 0(X,OX (Ln−1)) be the image of the injection

H 0(X,OX (Ln−1−Cγ ))→ H 0(X,OX (Ln−1)),

which is induced by the exact sequence

(3-3) 0→OX (Ln−1−Cγ )→OX (Ln−1)→OCγ (n− 1)→ 0.

Similarly, for ξ ∈ γ , let Vξ ⊂ H 0(X,OX (Ln−1)) be the image of the injection

H 0(X,OX (Ln−1)⊗ Iξ )→ H 0(X,OX (Ln−1)).

Since OX (Ln−1) is (n− 1)-very ample, we obtain

(3-4) dim Vξ = h0(X,OX (Ln−1))− h0(Oξ )= h0(X,OX (Ln−1))− n.

Since the curve γ is contracted to a point by the morphism ϕ, the subspaces Vξ of
H 0(X,OX (Ln−1)) are independent of ξ ∈ γ . Set Vγ = Vξ where ξ ∈ γ .

Lemma 3.7. If n ≥ e+ 1, then VCγ = Vγ .

Proof. Since K X =−2σ−(2+e) f , the divisor Ln−1−Cγ −K X is ample if Cγ = σ .
Similarly, since n ≥ e+ 1, Ln−1−Cγ − K X is ample if Cγ = f . By the Kodaira
vanishing theorem, H 1(X,OX (Ln−1−Cγ ))= 0. So we see from (3-3) that

dim VCγ = h0(X,OX (Ln−1))− h0(Cγ ,OCγ (n− 1))= h0(X,OX (Ln−1))− n.

In view of (3-4), we conclude that

dim VCγ = dim Vξ = dim Vγ .

Thus, to prove our lemma, it remains to prove that Vγ ⊂ VCγ . Indeed, let f ∈ Vγ
be a section. Let x ∈ Cγ . Since Cγ ⊂ p1(υ

−1
n (ρn(γ ))), there exists ξ ∈ γ such

that x ∈Supp(ξ). Since Vγ =Vξ , f vanishes at every point in Supp(ξ). In particular,
f vanishes at x . Hence, f vanishes along the smooth curve Cγ . Therefore, f ∈ VCγ .
It follows that Vγ ⊂ VCγ . �



NEF CONES AND MINIMAL-DEGREE CURVES IN HILBERT SCHEMES 449

Proposition 3.8. Let n ≥max(2, e+ 1). Then a curve γ ⊂ X [n] is homologous to
β f − (n− 1)βn or βσ − (n− 1)βn if and only if there is a curve C ⊂ X such that
C ∼ σ or f , and that γ is a line in Hilbn(C) ⊂ X [n]. Moreover, the curve C is
uniquely determined by the curve γ .

Proof. The “if” part of the proposition follows from Lemma 2.5 (i). To prove
the “only if” part, let γ ∼ β f − (n − 1)βn or βσ − (n − 1)βn . By Lemma 3.6,
C := Cγ ∼ σ or f . Fix a section f0 ∈ H 0(X,OX (C)) whose zero locus is C .
Let ξ ∈ γ . Since σ + e f is basepoint-free, so is the divisor Ln−1 − C . Thus
there exists f1 ∈ H 0(X,OX (Ln−1−C)) such that f1 does not vanish at any point
in Supp(ξ). Now, f0 ⊗ f1 ∈ VC . By Lemma 3.7, f0 ⊗ f1 ∈ Vγ = Vξ . Since f1

does not vanish at any point in Supp(ξ), f0 vanishes at ξ . Hence, ξ is a closed
subscheme of C . It follows that γ ⊂ Hilbn(C).

To show that γ is a line in Hilbn(C) ⊂ X [n], let F = σ + (e + 1) f . By
Lemma 2.5 (ii), OX [n](DF )|Hilbn(C) = OHilbn(C)(1). So viewing γ as a curve in
Hilbn(C), we obtain

γ · c1(OHilbn(C)(1))= γ · DF = 1.

Therefore, γ is a line in Hilbn(C)⊂ X [n].
Finally, the uniqueness of C follows from the observation that if ξ ∈ X [n]

and n ≥ 2, then ξ is contained in at most one curve C ⊂ X with C ∼ σ or f . �

Next, we determine the normal bundle of a curve γ in X [n] homologous to
β f − (n− 1)βn . By Proposition 3.8, there exists a unique fiber fγ in X such that γ
is a line in the n-th symmetric product f (n)γ = Hilbn( fγ )⊂ X [n]. In particular,

N
γ⊂ f (n)γ

∼=Oγ (1)⊕(n−1).

So we have the following exact sequence of normal bundles:

(3-5) 0→Oγ (1)⊕(n−1)
→ Nγ⊂X [n]→ Nf (n)γ ⊂X [n] |γ → 0.

Lemma 3.9. Let n ≥ max(2, e + 1). Let γ ⊂ X [n] be a curve homologous to
β f − (n− 1)βn , and fγ be the unique fiber in X such that γ is a line in f (n)γ . Then

(i) Nf (n)γ ⊂X [n]
∼=Of (n)γ

⊕Of (n)γ
(−1)⊕(n−1);

(ii) Nγ⊂X [n]
∼=Oγ (1)⊕(n−1)

⊕Oγ ⊕Oγ (−1)⊕(n−1).

Proof. (i) First of all, let C ⊂ X be a smooth irreducible curve. Let πn and qn

be the projections of X [n] × X to X [n] and X respectively. Recall the universal
codimension-2 subscheme Zn ⊂ X [n]× X from (2-11). By the results in [Altman
et al. 1977], we have the isomorphism

NC (n)⊂X [n]
∼= πn∗(q∗nOX (C)|Zn )|C (n) .
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Let Z̃n be the universal subscheme in C (n)
×C . Then we obtain

πn∗(q∗nOX (C)|Zn )|C (n) ∼= π̃n∗(q̃∗n (OX (C)|C)|Z̃n
),

where π̃n and q̃n are the projections from C (n)
×C to C (n) and C , respectively. So

(3-6) NC (n)⊂X [n]
∼= π̃n∗(q̃∗n (OX (C)|C)|Z̃n

).

Replacing C in (3-6) by fγ , we get Nf (n)γ ⊂X [n]
∼= π̃n∗OZ̃n

. It is known that
Z̃n ⊂ f (n)γ × fγ ∼= Pn

×P1 is defined by the equation

a0U n
+ a1U n−1V + · · ·+ anV n

= 0,

where a0, a1, . . . , an and U, V are the homogeneous coordinates on Pn and P1,
respectively. So the line bundle Of (n)γ × fγ

(Z̃n)∼=OPn×P1(Z̃n) is of type (1, n) in

Pic( f (n)γ × fγ )∼= Pic(Pn
×P1)∼= Z⊕Z.

Applying π̃n∗ to the exact sequence

0→Of (n)γ × fγ
(−Z̃n)→Of (n)γ × fγ

→OZ̃n
→ 0,

we obtain the exact sequence

0→Of (n)γ
→ π̃n∗OZ̃n

→Of (n)γ
(−1)⊕(n−1)

→ 0.

This exact sequence splits. Thus, π̃n∗OZ̃n
∼=Of (n)γ

⊕Of (n)γ
(−1)⊕(n−1). Hence

Nf (n)γ ⊂X [n]
∼= π̃n∗OZ̃n

∼=Of (n)γ
⊕Of (n)γ

(−1)⊕(n−1).

(ii) By (i) and (3-5), we obtain the exact sequence

0→Oγ (1)⊕(n−1)
→ Nγ⊂X [n]→Oγ ⊕Oγ (−1)⊕(n−1)

→ 0.

Since this exact sequence splits, the proof of (ii) is complete. �

Now we determine the normal bundle of a curve γ in X [n] homologous to
βσ − (n− 1)βn . Recall that the Hirzebruch surfaces Fe are deformation equivalent
to either F0 or F1. If X = F0 = P1

×P1, then σ is a fiber of one of the two rulings
on X , so the normal bundle of a curve γ in X [n] homologous to βσ − (n−1)βn has
been computed by Lemma 3.9 (ii). In the following, we concentrate on X = F1,
which is the blowup of the projective plane at a point.

Lemma 3.10. Let n ≥ 2 and X = F1. Let γ ⊂ X [n] be a curve homologous to
βσ − (n− 1)βn . Then, Nσ (n)⊂X [n]

∼=Oσ (n)(−1)⊕n and

(3-7) Nγ⊂X [n]
∼=Oγ (1)⊕(n−1)

⊕Oγ (−1)⊕n.
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Proof. The proof is similar to that of Lemma 3.9, so we adopt the notation in the
proof of Lemma 3.9. Since σ 2

=−1, we have OX (σ )|σ ∼=Oσ (−1). Replacing the
curve C in (3-6) by σ , we conclude that

Nσ (n)⊂X [n]
∼= π̃n∗(q̃∗nOσ (−1)|Z̃n

).

Applying π̃n∗ to the exact sequence

0→ q̃∗nOσ (−1)⊗Oσ (n)×σ (−Z̃n)→ q̃∗nOσ (−1)→ q̃∗nOσ (−1)|Z̃n
→ 0,

we obtain π̃n∗(q̃∗nOσ (−1)|Z̃n
)∼=Oσ (n)(−1)⊕n . Therefore, we get

(3-8) Nσ (n)⊂X [n]
∼=Oσ (n)(−1)⊕n.

By Proposition 3.8, γ is a line in σ (n) ∼= Pn . Using the exact sequence

0→Oγ (1)⊕(n−1)
→ Nγ⊂X [n]→ Nσ (n)⊂X [n] |γ → 0

and (3-8), we see that Nγ⊂X [n]
∼=Oγ (1)⊕(n−1)

⊕Oγ (−1)⊕n . �

Theorem 3.11. Let X be the Hirzebruch surface Fe with e ≥ 0, let f be a fiber of
the ruling on X , and let σ be a section to the ruling with σ 2

=−e.

(i) If n ≥ max(2, e + 1), then the moduli space M(β f − (n − 1)βn) of all the
curves in X [n] homologous to β f − (n− 1)βn is irreducible and unobstructed,
i.e., is smooth with the expected dimension.

(ii) If e = 1 and n ≥ 2, then the moduli space M(βσ − (n− 1)βn) of all the curves
in X [n] homologous to βσ − (n− 1)βn is irreducible and unobstructed.

Proof. Under the assumptions of (i) and (ii), we see from Lemma 3.9 (ii) and
(3-7) that H 1(γ, Nγ⊂X [n])= 0 if γ is a curve homologous to either β f − (n− 1)βn

or βσ − (n − 1)βn . This implies that the moduli spaces M(β f − (n − 1)βn) and
M(βσ − (n− 1)βn) are unobstructed. By Proposition 3.8, M(β f − (n− 1)βn) is
irreducible with dimension 2n − 1, and M(βσ − (n − 1)βn) is irreducible with
dimension 2n− 2. �

By (2-10), the composition P ◦ ϕn(Ln) : X [n] → PN (for a suitable positive
integer N ) is the embedding associated to the very ample divisor

DLn − Bn/2= nDσ + n(1+ e)D f − Bn/2.

By Lemma 3.3, a curve γ ⊂ X [n] is mapped to a line in PN if and only if γ is
homologous to βn , β f − (n− 1)βn or βσ − (n− 1)βn . Therefore, regarding X [n] as
a closed subvariety of PN , then the Hilbert scheme of lines in X [n] is the disjoint
union of M(βn), M(β f − (n− 1)βn) and M(βσ − (n− 1)βn).
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SMOOTH APPROXIMATION OF CONIC KÄHLER METRIC
WITH LOWER RICCI CURVATURE BOUND

LIANGMING SHEN

We apply methods in a paper of Tian (Comm. Pure Appl. Math. 68:7 (2015),
1085–1156) to prove that a conic Kähler metric with lower Ricci curvature
bound can be approximated by smooth Kähler metrics with the same lower
Ricci curvature bound. Furthermore, conic singularities here can be along
a simple normal crossing divisor.

1. Introduction

Recently, very important progress has been made on Kähler–Einstein metrics on
Fano manifolds (see [Tian 2015; Chen et al. 2015a; 2015b; 2015c]). The main
tool is an extension of Cheeger–Colding–Tian theory [Cheeger et al. 2002] to
conic Kähler–Einstein metrics. This extension allows one to establish a partial
C 0-estimate, which has long been known to be crucial in proving the existence of
Kähler–Einstein metrics. To extend Cheeger–Colding–Tian theory from the smooth
case to the conic case, Tian [2015] proved a sharp approximation theorem: any
conic Kähler–Einstein metric can be approximated by smooth Kähler metrics with
the same lower Ricci curvature bound in the Cheeger–Gromov sense.

The main idea for proving this sharp approximation came from [Tian 2000], which
gives a method of proving the equivalence of the C 0-estimate and the properness
of the Lagrangian of the corresponding complex Monge–Ampère equation. Let’s
describe this in more detail. First, we can define the so-called twisted Ding energy
F!.'/ and the twisted Mabuchi energy �!.'/ as in [Li and Sun 2014]; they are
Lagrangians of the corresponding complex Monge–Ampère equation for the conic
Kähler–Einstein metric. Then we can prove these two energies are both proper
with respect to the functional J!.'/. After that, we perturb this singular complex
Monge–Ampère equation, and prove that the corresponding energies are also proper
after such a perturbation. Then, we make use of the C 0-estimate in [Tian 2012]
to get a new C 0-estimate for the perturbed complex Monge–Ampère equation.
Finally, according to the compactness theorem, we can prove that the perturbed
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Kähler metrics converge to the original conic Kähler–Einstein metric in the Cheeger–
Gromov sense, and converge smoothly in the C1 sense outside the divisor.

Now a more general problem is to understand the structures of Kähler manifolds
with lower Ricci curvature bound. A natural question is whether we can also
approximate an arbitrary conic Kähler metric by smooth Kähler metrics with the
same lower Ricci curvature bound. We observe that the method in [Tian 2015]
applies if we can get suitable complex Monge–Ampère equations and define suitable
energies for them. Moreover, instead of multiple anticanonical divisors as in the
original proof, we can generalize our result to simple normal crossing divisors. A
divisor D is called a simple normal crossing divisor if it can be written as

D D

mX
iD1

Di ;

where each Di is an irreducible divisor, and they cross only in a transversal way.
Each point p 2 D lies in the intersection of k divisors, say D1; : : : ;Dk , and in
the local coordinate neighborhood U we can write Di D fzi D 0g. Assume that
our conic Kähler metric ! on the Kähler manifold M takes an angle 2�ˇi along
each Di , where 0<ˇi < 1. Then near the point p 2D which lies in the intersection
of all Di , the metric ! is asymptotically equivalent to the model conic metric

!0;p D
p
�1

� kX
iD1

dzi ^ d Nzi

jzi j
2.1�ˇi /

C

nX
iDkC1

dzi ^ d Nzi

�
:

We say a smooth Kähler metric !0 on M has a lower Ricci curvature bound � if
there exists a nonnegative .1; 1/-form �0 such that

(1-1) Ric!0 D �!0C�0:

And we say our conic Kähler metric ! has a lower Ricci curvature bound � if there
exists a nonnegative .1; 1/-form � such that

(1-2) Ric! D �!C
kX

iD1

2�.1�ˇi/ŒDi �C�

(we may assume that �¤ 0; otherwise we come back to the conic Kähler–Einstein
case). This equation is in the sense of currents on M and in the classic sense outside
the singular part D. Considering these equations and applying Tian’s methods for
conic Kähler–Einstein metrics, we can prove our main theorem.

Theorem 1.1. For a Kähler manifold .M;D/, where D is a simple normal crossing
divisor, assume that we have a smooth background Kähler metric !0 and a conic
Kähler metric ! D !0C

p
�1@N@' with cone angle 2�ˇi (0< ˇi < 1, 1� i �m)
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along each irreducible component Di of D and that ' is a smooth real function
on M nD. If the conic Kähler metric ! has a lower Ricci curvature bound �,
or ! is a conic Kähler–Einstein metric with Ricci curvature constant � and an
extra condition that M does not have holomorphic fields, then for any ı > 0, there
exists a smooth Kähler metric !ı with the same lower Ricci curvature bound �
which converges to ! in the Gromov–Hausdorff topology on M and in the smooth
topology outside D as ı tends to 0.

Note that here we can deal with all the cases for �. However, by work of Aubin
and Yau, the cases � < 0 and � D 0 are easy to handle. The difficulty will be
when � > 0, i.e., the Fano case. In the following section, we set up the complex
Monge–Ampère equation and perturb it, and derive a C 0-estimate for nonpositive �.
We deal with the case � > 0 in the remaining parts of this paper.

2. Basic setup and the case �� 0

First, comparing equations (1-1) and (1-2), we have

p
�1@N@ log !

n

!n
0

D��'C�0���

mX
iD1

.1�ˇi/
�
R.k � ki/C

p
�1@N@ logkSik

2
i

�
;

where ! D !0C
p
�1@N@' is the conic Kähler metric. As each Di is an irreducible

positive divisor, we set Si as its defining holomorphic section, with .k � ki/ as the
Hermitian product on the associated line bundle ŒDi �, and the curvature of this
bundle is defined as R.k � ki/ WD �

p
�1@N@ logk � k2i . Then we get the equation

above just from the Poincaré–Lelong equation

2�ŒD�D
p
�1@N@ logjS j2 D

p
�1@N@ logkSk2CR.k � k/:

Noting that the left-hand sides of (1-1) and (1-2) both lie in the cohomology class
c1.M /, we deduce that

(2-1) �0���

mX
iD1

.1�ˇi/R.k � ki/D
p
�1@N@h0;

where h0 is a smooth function on M , and we note that 1
2�

R.k � ki/ represents
c1.Di/. Then we get our complex Monge–Ampère equation:

(2-2)
�
!0C

p
�1@N@'

�n
D eh0��'�

Pm
iD1.1�ˇi / logkSik

2
i
Cc!n

0 ;

where the constant c is chosen so thatZ
M

�
eh0�

Pm
iD1.1�ˇi / logkSik

2
i
Cc
� 1

�
!n

0 D 0:
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As in [Tian 2015], we can choose such an approximation equation:

(2-3)
�
!0C

p
�1@N@'

�n
D ehı��'!n

0 ;

where

hı D h0�

mX
iD1

.1�ˇi/ log.ıCkSik
2
i /C cı

and the constant cı is chosen such thatZ
M

�
eh0�

Pm
iD1.1�ˇi / log.ıCkSik

2
i
/Ccı � 1

�
!n

0 D 0:

Here cı is uniformly bounded. If we have a solution 'ı for (2-3), then we get a
smooth Kähler metric !ı D !0C

p
�1@N@'ı with Ricci curvature given by

Ric!ı D Ric!0C�
p
�1@N@'ı �

p
�1@N@hı

D�!0C�0C�
p
�1@N@'ı�

p
�1@N@h0C

mX
iD1

.1�ˇi/
p
�1@N@ log.ıCkSik

2
i /

D l�!ıC�

C

mX
iD1

.1�ˇi/

�
R.k � ki/C

kSik
2
i

ıCkSik
2
i

p
�1@N@ logkSik

2
i C

ıDSi^DSi

.ıCkSik
2
i /

2

�

D �!ıC�C

mX
iD1

.1�ˇi/

�
ı

ıCkSik
2
i

R.k � ki/C
ıDSi ^DSi

.ıCkSik
2
i /

2

�
:

Note that kSik
2
i

p
�1@N@ logjSi j

2
i D kSik

2
i �2�ŒDi �D 0. We can see that if we have

a solution 'ı for small ı > 0, the Ricci curvature of !ı is always greater than �.
By the computation above, we have a corollary which asserts the openness of

the solvable set for the continuity path below.

Lemma 2.1. Consider the continuity path of (2-3),

(2-4)
�
!0C

p
�1@N@'

�n
D ehı�t'!n

0 ;

which corresponds to the equation

(2-5) Ric!t WD Ric
�
!0C

p
�1@N@'

�
D t!t C .�� t/!0C��

p
�1@N@hı;

and set the interval Iı as its solvable interval. Then 0 2 Iı and this interval is open.

Proof. That 0 2 Iı follows from the Calabi–Yau theorem. By the computation
above and [Tian 2015], it’s easy to see that �1.��t / is strictly larger than t . Then
the openness of Iı follows. �
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So now, to solve (2-3), we need to set up a C 0-estimate for 'ı . We first consider
the cases �D 0 and �< 0. Actually, by the Calabi–Yau theorem and Aubin’s work
(see [Yau 1978]), we can get C 0-estimates for these cases. The main difficulty lies
in the case � > 0, which we will deal with in the following sections.

3. Twisted functionals for complex Monge–Ampère equations,
bounded from below

Following [Berman 2013; Ding and Tian 1992; Jeffres et al. 2016; Tian 2000;
Li and Sun 2014], we can still define corresponding functionals for our complex
Monge–Ampère equation (2-2). First, we define generalized energy functionals.

Definition 3.1. We have

(1) J!0
.'/D

1

V

n�1X
iD0

iC1

nC1

Z
M

p
�1@' ^ N@' ^!i

0 ^!
n�i�1
' ;

(2) I!0
.'/D

1

V

Z
M

'.!n
0 �!

n
'/;

where V D
R

M !n
0

and !' D !0C
p
�1@N@'.

Note that these functionals are well defined even in the conic case. It’s easy to
check that

0�
nC1

n
J!0

.'/� I!0
.'/� .nC 1/J!0

.'/:

Next let’s define two functionals which are both Lagrangians of (2-2). For simplicity
here we set

H0 D h0�

mX
iD1

.1�ˇi/ logkSik
2
i C c;

and we can choose a family 't connecting 0 and '.

Definition 3.2. (1) We define the twisted Ding functional as

(3-1) F!0;�.'/D J!0
.'/�

1

V

Z
M

'!n
0 �

1

�
log
�

1

V

Z
M

eH0��'!n
0

�
:

(2) We define the twisted Mabuchi functional as

�!0;�.'/D�
n

V

Z 1

0

Z
M

P'

�
Ric!' ��!' �

mX
iD1

2�.1�ˇi/ŒDi ���

�
^!n�1

' dt

D
1

V

Z
M

log
!n
'

!n
0

!n
' C

1

V

Z
M

H0.!
n
0 �!

n
'/��.I!0

.'/�J!0
.'//

D
1

V

Z
M

log
!n
'

!n
0

!n
' C

1

V

Z
M

H0.!
n
0 �!

n
'/C�

�
F0
!0
.'/C

1

V

Z
M

'!n
'

�
;
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where

F0
!0
.'/D J!0

.'/�
1

V

Z
M

'!n
0 :

These definitions are similar to the smooth case [Tian 2012] and the conic Kähler–
Einstein case [Li and Sun 2014]. We can check that they are well defined for the
conic case. From those papers, we know that to get a C 0-estimate for 'ı , we need
to prove the corresponding twisted Ding functional is proper with respect to the
generalized energy J!0

.'/. Now let’s recall the definition of properness.

Definition 3.3. Suppose the twisted Ding functional F!;�.'/ (twisted Mabuchi
functional �!;�.'/) is bounded from below, i.e., F!;�.'/��c! (�!;�.'/��c!).
We say it is proper on Pc.M; !/ if there is an increasing function f W Œ�c! ;1/!R,
and limt!1 f .t/D1, such that for any ' 2 Pc.M; !/,

F!;�.'/� f .J!.'// .�!;�.'/� f .J!.'///;

where ' 2 Pc.M; !/ is a bounded function which is smooth on M nD, and such
that !' D !C

p
�1@N@' is a conic metric with the prescribed angles along each

component of D.

There are a lot of properties for these functionals, which are parallel to those in
[Tian 2012; Li 2012; Li and Sun 2014]. We just put two basic facts here; the proofs
are in [Tian 2012; Li and Sun 2014].

Proposition 3.4. (1) Given a path f'tg in Pc.M; !/, we have

d

dt
J!.'t /D�

1

V

Z
M

P't .!
n
' �!

n/;

d

dt
F0
!.'t /D�

1

V

Z
M

P't!
n
' :

(2) F!;�.'/, F0
!.'/ and �!;�.'/ satisfy the cocycle condition:

F!;�.'/CF!' ;�. �'/D F!;�. /;

F0
!.'/CF0

!'
. �'/D F0

!. /;

�!;�.'/C �!' ;�. �'/D �!;�. /:

In (2), the last two equations follow directly from differentiation. For F!' ;�, we
need to choose a corresponding function h' parallel to h0 in (2-1). Whenever !'
is smooth or conic along D, we can write Ric!' D �!' C �' or Ric!' D
�!'C

Pk
iD1 2�.1�ˇi/ŒDi �C�' , where�' is not necessarily nonnegative. Then

all the arguments in the smooth case will apply.
From (1) we have a useful corollary from W. Ding [1988].
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Corollary 3.5. For 0< t < 1, we have

J!.t'/� t .nC1/=nJ!.'/:

Proof. Consider the path ft'g0�t�1. Then we have

d

dt
J!.t'/D�

1

V

Z
M

'.!n
t' �!

n/D
I!.t'/

t
�

nC 1

n

J!.t'/

t
:

Integrate this inequality, and then the corollary follows. �

Now we discuss some relations among these functionals and their behaviors
under different background metrics. First we have a lemma on the generalized
energy J! ; see [Li and Sun 2014] for its proof.

Lemma 3.6. Suppose !2 D !1 C
p
�1@N@'. Then for any ' 2 Pc.M; !1/ \

Pc.M; !2/, we have

jJ!1
.'/�J!2

.'/j � C.!1; !2/:

From this lemma and the cocycle property of F!;�.'/ and �!;�.'/, we observe
that the properties of boundedness from below and properness are independent of
the choice of metrics in the same Kähler class.

Next we want to know the relation between F!;�.'/ and �!;�.'/. We want to
prove that these two properties of the two functionals are actually equivalent. These
are similar to the proofs by Berman [2013] and Li and Sun [2014], and we use the
proof in [Li 2012].

Lemma 3.7. (1) There exists a constant C > 0 such that

�!;�.'/� �F!;�.'/�C:

(2) Suppose  solves !n
 
D eH0��' by the Calabi–Yau theorem. Then we have

�F!;�.'/C
1

V

Z
M

H0!
n
� �!;�. /:

In particular, by (1) and (2) we know that F!;� being bounded from below is
equivalent to �!;� being bounded from below.

(3) In the case that �!;�.'/ � C1J!.'/ � C2, where C1;C2 > 0, there exist
constants c;C 0 > 0 such that

F!;�.'/� c�!;�.'/�C 0:
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Proof. (1) We modify the expression of the twisted Mabuchi functional in the
definition:

�!;�.'/D
1

V

Z
M

log
!n
'

!n
!n
' C

1

V

Z
M

H0.!
n
�!n

'/C�

�
F0
!.'/C

1

V

Z
M

'!n
'

�
D �F!;�.'/C

1

V

Z
M

H0!
n
C

1

V

Z
M

log
!n
'

!n
!n
'

�
1

V

Z
M

.H0��'/!
n
' C log

�
1

V

Z
M

eH0��'!n

�
D �F!;�.'/C

1

V

Z
M

H0!
n
C log

�
1

V

Z
M

eH0��'�log.!n
'=!

n/!n
'

�
�

1

V

Z
M

�
H0��' � log

!n
'

!n

�
!n
' :

Then (1) follows from the concavity of the logarithm.

(2) Still making use of the definition and the cocycle property, we have

�!;�. /D
1

V

Z
M

log
!n
 

!n
!n
 C

1

V

Z
M

H0.!
n
�!n

 /C�

�
F0
!. /C

1

V

Z
M

 !n
 

�
D

1

V

Z
M

.H0��'/!
n
 C

1

V

Z
M
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n
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 /C�

�
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!. /C

1

V

Z
M

 !n
 

�
D

1

V

Z
M

H0!
n
C�

�
F0
!.'/�F0

! 
.'� /C

1

V

Z
M

. �'/!n
 

�
D

1

V

Z
M

H0!
n
C�

�
F!;�.'/Clog

�
1

V

Z
M

eH0��'!n

�
�J! .'� /

�
:

Then (2) follows from eH0��'!n D !n
 

and J! .' � /� 0.

(3) From the assumption, we have a small ı >0 such that �!;�Cı.'/D�!;�.'/�
ı.I �J /!.'/ is bounded from below, and so is F!;�Cı.'/ by (2). Then

F!;�.'/D F0
!.'/�

�Cı
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�Cı
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�

�Cı

�1
n
�

J!.'/�C 0;

where the last inequality follows from Corollary 3.5. �
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To prove the properness of the functionals in the case of the existence of the
conic metric ! D !' , we need to verify that they are bounded from above.

Theorem 3.8. If the singular Monge–Ampère equation (2-2) has a solution ', i.e.,
there exists a conic Kähler metric !' D !0 C

p
�1@N@' satisfying (1-1), then '

attains the minimum of the functional F!0;� on the space Pc.M; !0/. In particular
F!0;� is bounded from above.

Proof. A parallel result is proved in [Li and Sun 2014], but we’d like to extend
Ding and Tian’s proof [Ding and Tian 1992; Tian 2000] to our conic case. Let’s
consider the continuity path of the complex Monge–Ampère equation

(3-2)
�
!0C

p
�1@N@'t

�n
D eH0�t't!n

0 :

We know that when tD� this equation is solvable. By [Brendle 2013], we know that
it is also solvable when t D 0. When 0< t <�, by the implicit function theorem, we
need to consider whether the linearized operator of (3-2), �t C t , is invertible. We
know that in the smooth case, by Bochner’s formula, as Ric!t > t!t , it is invertible
and we can prove the openness of the solvable set for t . However, in the conic
case, [Jeffres et al. 2016] gives a parallel result. By their argument, we have �t as
the Friedrichs extension of the Laplacian associated to !t D !0C

p
�1@N@'t and

�1.��t / > t , so the openness is true. We can set f'tg as a continuous family of
solutions of (3-2), and then we can do computations as [Tian 2000] in a weak sense.

First, taking the derivative of (3-2) with respect to t , we have

�t P't D�'t � t P't ;

where �t is in a weak sense as in [Jeffres et al. 2016]. As for all t , we haveR
M eH0�t't!n

0
D V , and taking the derivative with respect to t we getZ

M

.'t C t P't /e
H0�t't!n

0 D 0:

Making use of the formulas in the beginning of this section, we have
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From this, we have

(3-3) d

dt

�
t.I!0

.'t /�J!0
.'t //

�
� .I!0

.'t /�J!0
.'t //D�

d

dt

�
1

V

Z
M

't!
n
t

�
;

and integrating this from 0 to t , we have

t.I!0
.'t /�J!0

.'t //�

Z t

0

.I!0
.'s/�J!0

.'s// ds D�
t

V

Z
M

't!
n
t :

By the definition, it’s just

(3-4) �
Z t

0

.I!0
.'s/�J!0

.'s// ds D t

�
J!0

.'t /�
1

V

Z
M

't!
n
0

�
D tF0

!0
.'t /:

As we have
R

M eH0��'!n
0
D V , we can derive that F!0;�.'/� 0.

Now we choose ' such that !' D !0C
p
�1@N@' is a smooth Kähler metric.

Then we have

Ric!' D �!' C�' ;

where �' is not necessarily nonnegative. Comparing it with (1-1), we have�
!' C

p
�1@N@.' �'/

�n
D eh'��.'�'/�

Pm
iD1.1�ˇi / logkSik

2
i
Cc'!n

' ;

where we take

p
�1@N@h' D�' ���

mX
iD1

.1�ˇi/.R.k � ki/:

Then all the arguments are parallel and we have F!' ;�.' � '/ � 0. Now let’s
consider the case when !' is conic along D. Here we have the equation

Ric!' D �!' C
kX

iD1

2�.1�ˇi/ŒDi �C�' :

Comparing it with (1-1), we have�
!' C

p
�1@N@.' �'/

�n
D eh'��.'�'/Cc'!n

' ;

where we have
p
�1@N@h' D �' ��. In this case, all the arguments are similar

to those in the smooth case and we get the same conclusion. Now by the cocycle
condition, we have

F!0;�.'/D F!0;�.'/�F!' ;�.' �'/� F!0;�.'/: �
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4. log˛-invariant and properness of twisted energies

We want to prove the properness of the twisted Ding energy. First we introduce
the log ˛-invariant, and then see how to use this invariant to prove the properness
of the twisted Mabuchi energy in the case that � is small. Then we make use of
concavity of energies to prove the properness of energies in the general case.

Recall that the ˛-invariant in the smooth case was introduced by Tian [1987]. In
[Berman 2013; Jeffres et al. 2016] this invariant is generalized to conic case. We
introduce the so-called log ˛-invariant here, following [Li and Sun 2014].

Definition 4.1. Fix a smooth volume form vol. For any Kähler class Œ!�, we define
the log ˛-invariant by

˛.!;D/D sup
�
˛ > 0 W 9C˛ <1 such that

1

V

Z
M

e˛.sup'�'/ volQm
iD1jSi j

2.1�ˇi /
� C˛ for any '2Pc.M; !/

�
:

Berman [2013] has an estimate for the positive lower bound of the log ˛-invariant
in the conic case; i.e., there exists a positive number ˛0 such that ˛.!;D/� ˛0 > 0.
Using this estimate, we can prove that the twisted Mabuchi energy is proper when �
is small enough.

Theorem 4.2. Suppose

˛.!;D/� ˛0 >
n

nC1
� > 0:

Then we have
�!0;�.'/� �J!0

.'/�C;

where �;C are constants depending on ˛0; �.

Proof. Following [Jeffres et al. 2016; Li and Sun 2014; Tian 2000] and making use
of the logarithm property, for n

nC1
� < ˛ < ˛0 we have
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By the definition of twisted Mabuchi energy, we have
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�
J!0

.'/�C: �

Given the equivalence of the properness of the twisted Ding energy and the
Mabuchi energy, we have an easy corollary.

Corollary 4.3. When ˛.!;D/� ˛0 >
n

nC1
� > 0, we have

F!0;�.'/� �J!0
.'/�C;

where �;C are constants depending on ˛0; �.

Until now we only had the properness when � is small enough. For the general
case, we need to apply the continuity method and the concavity property of the
energy which is shown below to increase �. Here is a lemma which allows us to
increase �; see also [Li and Sun 2014].

Lemma 4.4. Suppose 0<�0<�1, and write �D .1�t/�0Ct�1, where 0� t � 1.
We have

�F!0;�.'/� .1� t/�0F!0;�.'/C t�1F!0;�.'/:

Proof. The inequality follows from the convexity of exponential functions. �

Now we can prove our main theorem in this section; similar results also appear
in [Li and Sun 2014; Tian 2015].

Theorem 4.5. For t 2 .0; �� and any ' 2 Pc.M; !0/ there exist constants �;C�
such that

(4-1) F!0;t .'/� �J!0
.'/�C�:

Proof. We apply the continuity path similar to [Jeffres et al. 2016], i.e., (3-2). In our
case, we may assume that �¤ 0. Then by that paper, we have that �1.��t / > t

for all t 2 .0; ��, which allows us to prove the openness at t D �. So now when
N� D �C ı, where ı is very small, we have a solution N' for (3-2), where � is
replaced by N�. By Theorem 3.8, F!0; N�.'/ is bounded from below. Since we have
the corollary above, which asserts that when t > 0 is very small F!0;t .'/ is proper,
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by the lemma above, we know that for all t 2 .0; �� the twisted Ding energy is
proper, i.e.,

(4-2) F!0;t .'/� �J!0
.'/�C�: �

5. C 0-estimate for approximating solution: the case �> 0

Recall that in Section 2 we set up the approximating complex Monge–Ampère
equation (2-3), which is expected to give us a smooth approximation of the conic
Kähler metric ! D !0 C

p
�1@N@'. We also proved a C 0-estimate for 'ı when

� � 0. In this section, we want to make use of the properness of corresponding
Lagrangians to prove the C 0-estimate when � > 0. The first step is to prove the
properness of the new approximating twisted Ding energy, which can be deduced
from Section 4.

Lemma 5.1. For t 2 .0; �� we introduce the new approximating twisted Ding energy

(5-1) Fı;t .'/D J!0
.'/�

1

V

Z
M

'!n
0 �

1

t
log
�

1

V

Z
M

ehı�t'!n
0

�
;

which is the Lagrangian of the approximating complex Monge–Ampère equation
(2-4) in the continuity path. Then we have

Fı;t .'/� �J!0
.'/�C.�; ı; t/:

Proof. At the end of Section 4, we proved that

F!0;t .'/� �J!0
.'/�C�:

Note that
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2
i C cı

DH0� cC cı:

We have
Fı;t .'/� F!0;t .'/C

c � cı

t
;

and the lemma follows very easily. �

Now we will follow [Tian 2000] to finish the C 0-estimate for 'ı. Similar to
(3-4), we have
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where 'ı;t solves (2-4). By this equation, we can estimate
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ı;t :

To finish the estimate, we need a useful lemma.

Lemma 5.2. k'ı;tkC 0 � C.1CJ!0
.'ı;t //.

Proof. First we note that Ric!ı;t > t , and the volume is preserved. Then we have
uniform Sobolev and Poincaré constants when t doesn’t tend to 0. We observe that
nC�0'ı;t > 0; then we get

0� sup'ı;t �
1

V

Z
M

'ı;t!
n
0 CC

by Green’s formula. On the other hand, we have n��ı;t'ı;t > 0; by Moser’s
iteration, we have

� inf'ı;t � �
C

V

Z
M

'ı;t!
n
ı;t CC:

By the normalization condition, when 'ı;t changes sign, we have

k'ı;tkC 0 � sup'ı;t � inf'ı;t � C.1C I!0
.'ı;t //� C.1CJ!0

.'ı;t //: �

In the proof we have

0� � inf'ı;t � �
C

V

Z
M

'ı;t!
n
ı;t CC I

then we have
1

V

Z
M

'ı;t!
n
ı;t � C;

which gives Fı;�.'ı;t / � C . Combining the two lemmas above, we have the
C 0-estimate for 'ı and get the following result.

Theorem 5.3. For each ı > 0, the approximating complex Monge–Ampère equa-
tion (2-3) has a unique smooth solution 'ı , which gives us a smooth Kähler metric
!ı D !0C

p
�1@N@'ı such that Ric!ı � �!ı.
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6. Convergence when ı tends to 0

In Section 5 we proved a C 0-estimate for 'ı . We also noted that in the approximating
complex Monge–Ampère equation (2-3), the constant cı is uniformly bounded.
Then the constant C.�; ı; t/ in Lemma 5.1 is uniform with respect to ı. According
to this observation, we conclude that our C 0-estimate for 'ı is uniform with respect
to ı, i.e., supj'ıj � C0. Based on this, we can give a C 2-estimate for 'ı by the
generalized Schwarz lemma first.

Lemma 6.1. We have

(6-1) C1!0 � !ı �
C2!0Qm

iD1.ıCkSik
2/.1�ˇi /

:

Proof. First we have supj'ıj � C0 and Ric!ı � �!ı. Take � as the Laplacian
for !ı and take a normal coordinate around a point p for !ı, i.e., gi N| .p/ D ıij ,
dgi N| .p/D 0. We may also take g0i N| .p/D g0iN{ıij , i.e., diagonal for !0. Then

� tr!ı !0 D giN{.gk Nlg
0k Nl
/iN{

D giN{.gk Nk/iN{ g
0k Nk
CgiN{gk Nk.g

0k Nk
/iN{

D giN{RiN{
k Nk.g/g

0k Nk
�giN{gk NkR

iN{k Nk
.g0/CgiN{gk Nkgl Nl.g

0k Nl
/i.g0l Nk

/N{

DRk Nkg
0k Nk
�giN{gk NkR

iN{k Nk
.g0/CgiN{

0 gk Nkgl Nl.g
0k Nl
/i.g0l Nk

/N{

� �giN{gk NkR
iN{k Nk

.g0/CgiN{
0 gk Nkgl Nl.g

0k Nl
/i.g0l Nk

/N{ ;

and the last inequality follows from Ric!ı � �!ı. Now we have

� log tr!ı !0 D
� tr!ı !0

tr!ı !0

�
jr tr!ı !0j

2

jtr!ı !0j
2

�
.tr!ı !0/g

iN{
0

gk Nkgl Nl.g
0k Nl
/i.g0l Nk

/N{ �giN{gk Nkgl Nl.g
0k Nk

/i.g0l Nl
/N{

jtr!ı !0j
2

�
giN{gk NkR

iN{k Nk
.g0/

tr!ı !0

� �a tr!ı !0;

where the bisectional curvature of !0 is less than a and the last inequality follows
from giN{

0
tr!ı !0�giN{ . As we have supj'ıj�C0, we take uD log tr!ı !0�.aC1/'ı .

Then we will have

�u� tr!ı !0� n.aC 1/D euCn.aC1/
� n.aC 1/:
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By the maximal principle u� C.a/, and we then get tr!ı !0 � C 0, which will give
us that C1!0 � !ı . For the other side, making use of the complex Monge–Ampère
equation (2-3) and the inequality we obtained, we can easily deduce that

!ı �
C2!0Qm

iD1.ıCkSik
2/.1�ˇi /

: �

From this lemma, by the C 3-estimate in [Yau 1978] (or see [Tian 2000]) and
regularity theory we can prove that for any l > 2 and compact set K 2M nD, there
exists a uniform constant C.l;K/ such that we have a high order estimate locally:

(6-2) k'ık � C.l;K/:

As we have all the estimates we need, we can prove the main theorem below,
following [Tian 2015].

Theorem 6.2. As ı tends to 0, the smooth Kähler metric !ı converges to the conic
Kähler metric ! in the Gromov–Hausdorff topology on M and in the smooth
topology outside the divisor D.

Proof. We first consider the case that D is an irreducible divisor. As we have
high order estimates (6-1) and (6-2) outside the divisor D, it suffices to prove !ı
converges to ! in the Gromov–Hausdorff topology. For all !ı we have Ric!ı � �,
Vol.M; !ı/D V ; to apply the compactness theorem of Cheeger–Gromov (e.g., see
Chapter 10 in [Petersen 2006]), we only need to bound the diameter for all !ı. In
the case that �> 0 we can get it directly by Meyer’s theorem. However, as we have
the estimate (6-1), it’s easy to control the length of arbitrary geodesics outside the
divisor. And in the neighborhood of some irreducible divisor, say D, we make use
of local coordinates and set r D jz1j, where fz1 D 0g locally defines the divisor D.
Now we know that kSk here is almost r near the divisor and we consider the length
of a short geodesic 
 transverse to D such that

L.
; !ı/� C

Z r0

0

dr

.ıC r2/
1�ˇ

2

� C

Z r0

0

dr

r1�ˇ
�

C r
ˇ
0

ˇ
:

Along the geodesics almost tangential to D we almost have dz1 D 0 so in all cases
the diameter with respect to !ı is uniformly bounded. Now by the compactness
theorem, without loss of generality, .M; !ı/ converges to a length space .M ; Nd/

in the Gromov–Hausdorff topology. To prove the theorem we need to prove that
.M ; Nd/ coincides with .M; !/. As we have high order estimate (6-2) outside the
divisor D, there exists an open set U in M which is equivalent to M nD, and the
equivalence i WM nD ! U induces an isometry between M nD, !jMnD and
.U; Nd/. Now we note that M nD is geodesically convex with respect to !, i.e.,
given any two points p; q 2M nD, there exists a minimal geodesic 
 �M nD
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joining them. Actually we only need to consider the case when p; q are in the
small neighborhood of o 2D. In this case we know that the metric ! is almost the
standard conic metric around a point o 2D, which behaves like

!o;c D
p
�1

�
dz1 ^ d Nz1

jz1j
2.1�ˇ/

C

nX
iD2

dzi ^ d Nzi

�
:

Now we assume that jz1.p/j D jz1.q/j D � and jzi.p/j; jzi.q/j � �, where � > 0

is small enough and 2 � i � n. First we choose the segment connecting p and q

across the point o 2D. By the estimate above we know that

d.p; o/C d.o; q/�
2�ˇ

ˇ
:

On the other hand we choose a segment 
 0 whose projection on the z1 coordinate is
almost a geodesic in the cone with angle ˇ; by standard computation we know that

L.
 0/� C�C 2 sin �ˇ
2

�ˇ

ˇ
:

As � is small and ˇ < 1, we conclude that the geodesic connecting p and q doesn’t
cross the point o 2D. In the general case we only need to choose p0; q0 as in the
case above to replace p; q and connect p;p0 and q; q0 respectively. Then the rest
of the argument follows.

As M nD is geodesically convex, by the C 2-estimate in (6-1), we can estimate
as above to show that for each point o 2D, a radical short line connecting o and a
point outside the divisor is always rectifiable and absolutely continuous with respect
to local coordinates; thus we can see that M is the metric completion of M nD.
Moreover, the equivalence i extends to a Lipschitz map from .M; !/ onto .M ; Nd/

(we still denote this map by i ) and the Lipschitz constant is 1. What remains to do
is to prove i is an isometry between .M; !/ and .M ; Nd/. As .M ; Nd/ is a metric
completion of M nD, we only need to prove that for p; q 2M nD,

d!.p; q/D Nd.i.p/; i.q//:

Observe that DD i.D/ is the Gromov–Hausdorff limit of D under the convergence
of .M; !ı/ to .M ; Nd/, whose Hausdorff measure is 0, by the C 2-estimate in (6-1).
Now we only need to prove that for any Np; Nq 2M nD there exists a minimizing
geodesic 
 �M nD joining Np; Nq. If not, we will have

Nd. Np; Nq/ < d!.p; q/;

where Np D i.p/, Nq D i.q/. Then there exists a small r > 0 such that

(1) Br . Np; Nd/\D D ∅, Br . Nq; Nd/\D D ∅, where Br . � ; Nd/ is a geodesic ball
in .M ; Nd/;
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(2) Nd. Nx; Ny/ < d!.x;y/, where Nx D i.x/ 2 Br . Np; Nd/ and Ny D i.y/ 2 Br . Nq; Nd/.

From these two we know that any minimizing geodesic 
 connecting Nx and Ny
intersects D. As r > 0 is small, and i is an isometry outside the divisor D, we have

Br . Np; Nd/D i.Br .p; !//; Br . Nq; Nd/D i.Br .q; !//:

Choose a small tubular neighborhood T of D in M whose closure is disjoint from
both Br .p; !/ and Br .q; !/. When the radius of such a tubular neighborhood is
small enough we can make Vol @T arbitrarily small. Now we can choose pı; qı 2M

and a neighborhood Tı of D with respect to !ı such that as ı! 0, pı; qı;Tı con-
verge to Np; Nq; i.T / in the Gromov–Hausdorff topology. By the volume convergence
theorem of Colding, limı!0CVol.@Tı; !ı/DVol.@T; !/, so Vol.@Tı; !ı/ can also
be arbitrarily small as ı ! 0. Also by convergence, when ı is small enough,
Br .pı; !ı/, Br .qı; !ı/ and Tı are mutually disjoint. By (2), any minimizing
geodesic 
ı connecting any w 2Br .pı; !ı/ and z 2Br .qı; !ı/ intersects Tı . Now
we need an estimate due to Gromov:

Lemma 6.3. We have

c.�/r2n
� Vol.Br .qı; !ı/; !ı/� C.L; �; n; r/Vol.@Tı; !ı/;

where LD Nd. Np; Nq/.

Proof. The first inequality follows from the Ricci lower bound and Gromov’s relative
volume comparison theorem directly. For the second inequality, by Chapter 9 in
[Petersen 2006], we set �.t; �/ as the volume density function, where t is the
distance from pı. We also set �k.t; �/ as the standard volume density function
of the space form with constant curvature k D �=.n � 1/. By the argument in
[Petersen 2006] we know that the map t ! �.t; �/=�k.t; �/ is nonincreasing in t .
In our case, we consider the geodesics from pı to z 2 Br .qı; !ı/. According to
the construction, we have r < d.pı; zT / < d.pı; z/, L� r < d.pı; z/ < LC r ,
where zT is the intersection point of the geodesics from pı to z and @Tı, and
L� d.pı/; qı/. Along @Tı, we have

�.zT /

�k.zT /
�
�.z/

�k.z/
:

Let S 2 S2n�1, let C.S/ denote the part where all the geodesics from pı to
z 2 Br .qı; !ı/ lie in the corresponding geodesic cone, and let t.�/ be the distance
from pı to each point of @Tı. Then we have

Vol @Tı �
Z
@Tı\C.S/

�.t; �/D

Z
S

t2n�1.�/�.t; �/ d�

�

Z
S

�.L0/
�k.t.�//

�k.L
0/

t2n�1.�/ d� � C

Z
S

�.L0/L02n�1 d�;
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where L� r <L0 <LC r . Taking the integral of this inequality yields

Vol @Tı �
2C

r

Z LCr

L�r

Z
S

�.L0/L02n�1 d� dt � C.L; �; n; r/Vol.Br .qı; !ı/; !ı/:

Then the lemma follows. �
Since we know that Vol.@Tı; !ı/ can also be arbitrarily small as ı tends to 0,

the lemma above leads to a contradiction. Then i can extend to an isometry from
.M; !/ onto .M ; Nd/, and the theorem follows when D is irreducible. In the case
that D is a simple normal crossing divisor, we observe that near the crossing point o,
the model metric can be rewritten as

!o;c D
p
�1

� mX
iD1

dzi ^ d Nzi

jzi j
2.1�ˇi /

C

nX
iDmC1

dzi ^ d Nzi

�

D
p
�1

� mX
iD1

dz
ˇi

i ^ d Nz
ˇi

i

ˇ2
i

C

nX
iDmC1

dzi ^ d Nzi

�
:

For 1 � i �m, if we take wi WD z
ˇi

i =ˇi , we can realize the original conic metric
as a Euclidean metric under these new coordinates. To find the minimal geodesic
we then only need to project two points in the original space to each coordinate
direction; if in each direction we can find a minimal geodesic, we are done. In this
case we deduce the problem to the one irreducible divisor case. Obviously, for the
conic metric along a simple normal crossing divisor, the minimal geodesic will
always lie in the regular part. Hence in the general case the theorem still follows. �
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MAPS FROM THE ENVELOPING ALGEBRA OF THE
POSITIVE WITT ALGEBRA TO REGULAR ALGEBRAS

SUSAN J. SIERRA AND CHELSEA WALTON

We construct homomorphisms from the universal enveloping algebra of the
positive (part of the) Witt algebra to several different Artin–Schelter reg-
ular algebras, and determine their kernels and images. As a result, we
produce elementary proofs that the universal enveloping algebras of the
Virasoro algebra, the Witt algebra, and the positive Witt algebra are neither
left nor right noetherian.

0. Introduction

Let k be a field of characteristic 0. All vector spaces, algebras, and tensor products
are over k, unless stated otherwise. In this work, we construct and study homomor-
phisms from the universal enveloping algebra of the positive part of the Witt algebra
to Artin–Schelter (AS-)regular algebras. The latter serve as homological analogues
of commutative polynomial rings in the field of noncommutative algebraic geometry.

To begin, consider the Lie algebras below.

Definition 0.1 (V , W , WC). We define the following Lie algebras:

(a) The Virasoro algebra is defined to be the Lie algebra V with basis fengn2Z[fcg

and Lie bracket Œen; c�D 0, Œen; em�D .m� n/enCmC
1

12
c.m3�m/ınCm;0.

(b) The Witt (or centerless Virasoro) algebra is defined to be the Lie algebra W

with basis fengn2Z and Lie bracket Œen; em�D .m� n/enCm.

(c) The positive (part of the) Witt algebra is defined to be the Lie subalgebra WC
of W generated by fengn�1.

For any Lie algebra g, we denote its universal enveloping algebra by U.g/.

Further, consider the following algebras.
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Notation 0.2 (S , R). Let S be the algebra generated by u; v; w, subject to the
relations

uv� vu� v2
D uw�wu� vw D vw�wv D 0:

Let R be the Jordan plane generated by u; v, subject to the relation uv�vu�v2D 0.

It is well known that R is an AS-regular algebra of global dimension 2. Moreover,
we see by Lemma 1.3 that S is also AS-regular, of global dimension 3.

This work focuses on maps that we construct from the enveloping algebra U.WC/

to both R and S , given as follows:

Definition 0.3 (�, �a). Let � WU.WC/!S be the algebra homomorphism induced
by defining

(0.4) �.en/D .u� .n� 1/w/vn�1:

For a2 k, let �a WU.WC/!R be the algebra homomorphism induced by defining

(0.5) �a.en/D .u� .n� 1/av/vn�1:

That � and �a are well defined is Lemma 1.5.

Our main result is that we understand fully the kernels and images of the maps
above, as presented below.

Theorem 0.6. We have the following statements about the kernels and images of
the maps � and �a.

(a) [Propositions 2.5, 2.8] ker�a is equal to the ideal .e1e3�e2
2
�e4/ if aD0; 1; or

is an ideal generated by one element of degree 5 and two elements of degree 6

(listed in Proposition 2.8) if a¤ 0; 1.

(b) [Proposition 2.1] �a.U.WC// is equal to kCuR if aD 0; is equal to kCRu

if aD 1; or contains R�4 if a¤ 0; 1. For all a, the image of �a is noetherian.

(c) [Theorem 5.1] ker� is equal to .e1e5� 4e2e4C 3e2
3
C 2e6/.

The image of � will be discussed later in the introduction, after Theorem 0.10.
The result above has a surprising application. In [Sierra and Walton 2014, Theo-

rem 0.5 and Corollary 0.6], we established that U.WC/, U.W /, U.V / are neither
left nor right noetherian through relatively indirect means, using the techniques of
[Sierra 2011]. In particular, we were not able to give an example of a non-finitely-
generated right or left ideal in any of these enveloping algebras. However, in the
course of proving Theorem 0.6, we produce an elementary and constructive proof
of [Sierra and Walton 2014, Theorem 0.5 and Corollary 0.6]. Namely, we obtain:

Theorem 0.7 (Proposition 2.5, Theorem 3.3). The ideal

ker�0 D ker�1 D .e1e3� e2
2 � e4/

is not finitely generated as either a left or a right ideal of U.WC/.
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We prove this theorem by noting that �0 factors through �, and by studying
B WD �.U.WC//. A key step is to compute I WD �.ker�0/, and to show that I is
not finitely generated as a left or right ideal of B.

Note that the map (0.5) can be extended to W to define a map, which we denote by

y�a W U.W /!RŒv�1�:

Theorem 0.8 ((3.10), Theorem 3.12). The ideal ker y�0 D ker y�1 is not finitely
generated as either a left or right ideal of U.W /.

We remark that RŒv�1� is isomorphic to the ring kŒx;x�1; @�, which is a familiar
localization of the Weyl algebra. To see this, set vDx and uDx2@, so @xDx@C1.
Then uv� vuD x2 D v2. We obtain

y�1.en/D v
n�1uD xnC1@:

Thus, y�1 is a well-known homomorphism.
We now compare Theorem 0.7 with our earlier proof (in [Sierra and Walton

2014]) that U.WC/ is not left or right noetherian. The earlier proof used a ring
homomorphism � with a more complicated definition:

Notation 0.9 (X , f , � , �). Take P3 WD P3
k with coordinates w;x;y; z. Let X D

V .xz�y2/� P3 be the projective cone over a smooth conic in P2.
Define an automorphism � of X by

�.Œw W x W y W z�/D Œw� 2xC 2z W z W �y � 2z W xC 4yC 4z�:

Denote the pullback of � on k.X / by ��, so that g� WD ��g D g ı � for g 2 k.X /.
Form the ring k.X /Œt I ��� with multiplication tg D g� t for all g 2 k.X /. Let

f WD
wC 12xC 22yC 8z

12xC 6y
;

considered as a rational function in k.X /. Now let � W U.WC/! k.X /Œt I ��� be
the algebra homomorphism induced by setting �.e1/D t and �.e2/D f t2.

That � is well defined is [Sierra and Walton 2014, Proposition 1.5]. The method
in that paper made a number of reductions to show that �.U.WC// is not left or
right noetherian. That proof can now be streamlined via the next result.

Theorem 0.10 (Theorem 4.1). We have that ker �D ker� D
T

a2k ker�a.

Since we show that �.U.WC// is not left or right noetherian in the course of
proving Theorem 0.7, we have by Theorems 0.6(c) and 0.10 that �.U.WC// Š
�.U.WC//ŠU.WC/=.e1e5�4e2e4C3e2

3
C2e6/ is neither left nor right noetherian.

We end by discussing an open question that was brought to our attention by
Lance Small.
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Question 0.11. Does U.WC/ satisfy the ascending chain condition on two-sided
ideals?

Our result here is only partial:

Proposition 0.12 (Proposition 6.6). The ring B WD �.U.WC// satisfies the ascend-
ing chain condition on two-sided ideals.

Of course, this yields no direct information on the question for U.WC/.
We have the following conventions throughout the paper. We take ND Z�0 to

be the set of nonnegative integers. If r is an element of a ring A, then .r/ denotes
the two-sided ideal ArA generated by r . If AD

L
n2Z An is a graded k-algebra

(or graded module), then we define the Hilbert series

hilb AD
X
n2Z

dimk Antn:

This article is organized as follows. We present preliminary results in Section 1,
including an alternative way of multiplying elements in S and in R (Lemma 1.3);
this method will be employed throughout, sometimes without mention. In Section 2,
we discuss the maps �a and prove parts (a) and (b) of Theorem 0.6. In Section 3
we use the map �0 to establish Theorem 0.7; we also prove Theorem 0.8.

Before proceeding to study the map �, we present its connection with the map �,
the key homomorphism of [Sierra and Walton 2014]. Namely, in Section 4, we
establish Theorem 0.10. Then in Section 5, we verify part (c) of Theorem 0.6. Our
last result, Proposition 0.12, is presented in Section 6. Proofs of computational
claims via Maple and Macaulay2 routines and a known result in ring theory to
which we could not find a reference are provided in the Appendix.

1. Preliminaries

The main focus of this paper is the universal enveloping algebra of the positive Witt
algebra, WC. To begin, we recall some basic facts about the algebra U.WC/.

Lemma 1.1. Recall Definition 0.1(c).

(a) We have the isomorphism

U.WC/Š
khe1; e2i�

Œe1; Œe1; Œe1; e2� � �C 6Œe2; Œe2; e1� �;

Œe1; Œe1; Œe1; Œe1; Œe1; e2� � � � �C 40Œe2; Œe2; Œe2; e1� � �

� :
(b) The set fei1

; ei2
; : : : ; eik

j k 2 N and 1 � i1 � i2 � � � � � ik 2 Ng forms a
k-vector space basis of U.WC/.

Proof. Part (a) is [Sierra and Walton 2014, Lemma 1.1], and part (b) is clear from
the definition of U.WC/. �
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Next, let us present some notation that we will use for the rest of the paper. We
will work with the algebras R and S defined in Notation 0.2; note that we can view
R as a subalgebra of S . In addition:

Notation 1.2 (Q). Take Q to be the subalgebra of S generated by u, v, and vw.

In our first result, we provide an easy way to multiply elements in S . Recall from
[Zhang 1996] that a Zhang twist of a graded algebra L, by an automorphism � of L,
is the algebra L�, where L�DL as graded vector spaces and L� has multiplication
`� `0 D `.`0/�

i

for ` 2Li and `0 2L.
Moreover, recall that an Artin–Schelter (AS-)regular algebra is a connected

graded algebra A of finite global dimension, of finite injective dimension d with
ExtiA.Ak;AA/Š ExtiA.kA;AA/Š ıi;dk (that is, A is AS-Gorenstein), and has finite
Gelfand–Kirillov dimension. These algebras are important in noncommutative ring
theory because they are noncommutative analogues of polynomial rings and share
many of their good properties.

Lemma 1.3 (�, �). Let � 2 Aut.kŒx;y; z�/ be defined by

�.x/D x�y; �.y/D y; �.z/D z:

Then S is isomorphic to the Zhang twist kŒx;y; z��. Further, � restricts to an
automorphism of kŒx;y;yz�, which we also denote by �, and to an automorphism �
of kŒx;y�. We have that RŠ kŒx;y�� and QŠ kŒx;y;yz�� as graded k-algebras.
As a consequence, S , R, and Q are AS-regular algebras.

Proof. To see that S Š kŒx;y; z��, we emphasize that

(1.4)

� the variables u; v; w of S have noncommutative multiplication,
� the variables x;y; z of kŒx;y; z� have commutative multiplication, and
� the symbol � denotes the noncommutative multiplication on kŒx;y; z��

defined by `� `0 D `.`0/�
i

for ` 2 kŒx;y; z�i and `0 2 kŒx;y; z�.

Now,

y �x D yx� D y.x�y/D .x�y/y D xy �y2
D xy��yy� D x �y �y �y;

z �x D zx� D z.x�y/ D .x�y/z D xz�yz D xz��yz� D x � z�y � z;

z �y D zy� D zy D yz D yz� D y � z:

Thus, if we identify u; v; w with x;y; z, respectively, then the relations of S hold
in kŒx;y; z��, and S Š kŒx;y; z�� as graded k-algebras.

That � restricts to automorphisms of kŒx;y� and kŒx;y;yz� is immediate, and the
other isomorphisms hold by a similar argument. Moreover, the last statement follows
as commutative polynomial rings are AS-regular and this property is preserved
under Zhang twisting by [Zhang 1996, Theorem 1.3(i)]. �
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Now we verify that the algebra homomorphisms �a and � from Definition 0.3
are well defined.

Lemma 1.5. The maps � and �a of Definition 0.3 are well-defined homomorphisms
of graded k-algebras.

Proof. We check that � respects the Witt relations given in Definition 0.1(b), by
using Lemma 1.3 and (1.4):

�.enem�emen/

D .u�.n�1/w/vn�1.u�.m�1/w/vm�1
�.u�.m�1/w/vm�1.u�.n�1/w/vn�1

D .x�.n�1/z/.x�.m�1/z/�
n

ynCm�2
�.x�.m�1/z/.x�.n�1/z/�

m

ynCm�2

D
�
.x�.n�1/z/.x�ny�.m�1/z/�.x�.m�1/z/.x�my�.n�1/z/

�
ynCm�2

D .m�n/xynCm�1
C.n.n�1/�m.m�1//ynCm�1z

D .m�n/.x�.nCm�1/z/ynCm�1

D .m�n/.u�.nCm�1/w/vnCm�1

D .m�n/�.enCm/:

So, the claim holds for �.
Similarly, we verify that �a respects the Witt relations:

�a.enem� emen/D .u� .n� 1/av/vn�1.u� .m� 1/av/vm�1

� .u� .m� 1/av/vm�1.u� .n� 1/av/vn�1

D
�
.x� .n� 1/ay/.x� ny � .m� 1/ay/

� .x� .m� 1/ay/.x�my � .n� 1/ay/
�
ynCm�2

D .m� n/.x� a.nCm� 1/y/ynCm�1

D .m� n/.u� a.nCm� 1/v/vnCm�1

D .m� n/�a.enCm/:

Thus, the claim holds for �a. �

Next, we define the key algebras A.a/ and B that we will use throughout.

Notation 1.6 (A.a/, B). Take a2k and let A.a/ denote the subalgebra �a.U.WC//

of R. Further, let B denote the subalgebra �.U.WC// of S .

We point out a useful observation.

Lemma 1.7. We have that B �Q.

Proof. We get that �.e1/ D u and �.e2/ D .u�w/v D uv � vw are in Q. By
Lemma 1.1(a), B is generated by these elements, so we are done. �
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2. The kernel and image of the maps �a

The goal of this section is to analyze the maps �a from Definition 0.3, which are
well defined by Lemma 1.5. In particular, we verify Theorem 0.6(a,b).

To proceed, recall Notations 0.2 and 1.6. We first compute the factor rings A.a/,
proving Theorem 0.6(b).

Proposition 2.1. We have that A.0/D kCuR (a right idealizer in R), that A.1/D

kCRu (a left idealizer in R), and that A.a/�4 DR�4 if a¤ 0; 1. For all a, the
ring A.a/ is noetherian.

Proof. Recall from Lemma 1.1(a) that U.WC/ is generated by e1 and e2. We have
that �0.e1/ D u and �0.e2/ D uv. These elements generate kC uR. Moreover,
�1.e1/D u and �1.e2/D .u�v/vD vu, and these elements generate kCRu. That
the rings A.0/ and A.1/ are noetherian follows from [Stafford and Zhang 1994,
Lemma 2.2(iii) and Theorem 2.3(i.a)].

When a ¤ 0; 1, we must show that R�4 � A.a/. Since uRnCRnu D RnC1

for n� 1 and since dimk R4 D 5, the proof boils down to showing that the set of
elements

�a.e
4
1/; �a.e

2
1e2/; �a.e1e2e1/; �a.e2e2

1/; �a.e
2
2/

is k-linearly independent for a¤ 0; 1. Using Lemma 1.3 and (1.4), consider the
following calculations:

�a.e
4
1/Du4

Dxx�x�
2

x�
3

Dx.x�y/.x�2y/.x�3y/DW r1;

�a.e
2
1e2/Du2.u�av/vDxx�.x�ay/�

2

y�
3

Dx.x�y/.x�.2Ca/y/yDW r2;

�a.e1e2e1/Du.u�av/vuDx.x�ay/�y�
2

x�
3

Dx.x�.1Ca/y/y.x�3y/DW r3;

�a.e2e2
1/D .u�av/vu2

D .x�ay/y�x�
2

x�
3

D .x�ay/y.x�2y/.x�3y/DW r4;

�a.e
2
2/D .u�av/v.u�av/vD .x�ay/y�.x�ay/�

2

y�
3

D .x�ay/y.x�.2Ca/y/yDW r5:

By direct computation, we see that r1; : : : ; r5 are linearly independent if a¤ 0; 1.
Further, since A.a/ and R are equal in large degree and R is noetherian, A.a/

is noetherian by [Stafford 1985, Lemma 1.4]. �

Next we compute the kernels of the maps �a and establish Theorem 0.6(a). We
will use the following notation:

Notation 2.2 (� , �a, �B). Let kht1; t2i be the free algebra, which we grade by
setting deg ti D i . We set the notation below:
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� � W kht1; t2i!U.WC/ is the algebra map given by �.t1/D e1 and �.t2/D e2.

� �a W kht1; t2i ! R is the algebra map given by �a.t1/ D �a.e1/ D u and
�a.t2/D �a.e2/D .u� av/v, for a 2 k. The image of �a is A.a/. Note that
�a D �a ı� .

� �B W kht1; t2i ! S is the algebra map given by �B.t1/ D �.e1/ D u and
�B.t2/D �.e2/D uv� vw. The image of �B is B. Note that �B D � ı� .

In the next result, we compute a presentation of the algebra A.0/.

Lemma 2.3. The kernel of �0 is generated by

q WD t2
1 t2� t2t2

1 � 2t2
2 ;

q0 WD t3
1 t2� 3t2

1 t2t1C 3t1t2t2
1 � t2t3

1 C 6t2
2 t1� 12t2t1t2C 6t1t2

2

as a two-sided ideal.

Proof. Let ADA.0/, and consider the exact sequence of right A-modules

0 �!K �!AŒ�1�˚AŒ�2�
.u;uv/
���!A �! k �! 0:

Claim. As a right A-module, K is generated by

.u2v;�u.uC 2v// and .u2v2;�u.uC 2v/v/:

Assume the claim. It is well known that one may deduce generators and relations
of a connected graded k-algebra from the first few terms in a minimal resolution
of the trivial module k. The precise method is given in Proposition A.1 in the
Appendix. Using the notation of that result, take

b1
1 D u2v; b1

2 D�u.uC 2v/;

b2
1 D u2v2; b2

2 D�u.uC 2v/v:

Moreover, take
Qb1
1 D t1t2;

Qb1
2 D�t2

1 � 2t2;

Qb2
1 D t2

1 t2� t1t2t1;
Qb2
2 D 2t2t1� 3t1t2:

Note that �0. Qb
i
j /D bi

j for i; j D 1; 2. Now we obtain by Proposition A.1 that

q1 WD t1.
Qb1
1/C t2.

Qb1
2/D t2

1 t2� t2t2
1 � 2t2

2 ;

q2 WD t1.
Qb2
1/C t2.

Qb2
2/D t3

1 t2� t2
1 t2t1C 2t2

2 t1� 3t2t1t2

generate ker�0. Observe that q D q1 and that

q0� 4q2 D�3t3
1 t2C t2

1 t2t1C 3t1t2t2
1 � t2t3

1 � 2t2
2 t1C 6t1t2

2 D�3t1qC qt1 2 .q/:

Thus, ker�0 is generated by q and q0, as desired.
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So it remains to prove the claim.

Proof of claim. Note that there is an isomorphism of graded right A-modules
ˇ W uA\uvA!K given by ˇ.r/D .u�1r;�.uv/�1r/.

Take M WDA\vA. Since AD kCuR, it is easy to show that M D uR\vuR,
and in particular, that M is a right R-module. Since .uRC vuR/�2 DR�2, we
get that

dimk Mn D dimk Rn�1C dimk Rn�2� dimk Rn D n� 2

for n � 2, and dimk Mn D 0 for n < 2. Moreover, u2v D vu.uC 2v/ 2M , so
u2vR�M and hilb.u2vR/D hilb M . So, M D u2vR. Now

uA\uvAD uM D u3vR
.�/
D u3vACu3v2AD uvu.uC2v/ACuvu.uC2v/vA;

where the equality .�/ holds as RDAC vA. Apply the map ˇ to the right-hand
side of the equation above to yield the desired result. �

We can now understand ker�0 and ker�1. We first prove:

Lemma 2.4. We have ker�0 D ker�1.

Proof. Working in the quotient division ring of R, we have

u�1�0.en/uD v
n�1uD �1.en/:

So for any f 2 U.WC/, we have �1.f /D u�1�0.f /u. The result follows. �

Proposition 2.5. We have that ker�a D .e1e3� e2
2
� e4/ for aD 0; 1.

Proof. We first check that e1e3� e2
2
� e4 is indeed in ker�0:

�0.e1e3� e2
2 � e4/D u.uv2/� .uv/.uv/�uv3

D u2v2
�u.uv�v2/v�uv3

D 0:

Recall that �0 D �0 ı � . So, Lemma 2.3 implies that ker�0 D �.ker�0/ is
generated by elements �.q/ and �.q0/ in U.WC/. Now �.q0/D 0 by Lemma 1.1(a),
so ker�0 is generated by �.q/. Moreover,

�.q/D e2
1e2�e2e2

1�2e2
2

D 2
�
e1.e1e2�e2e1/�e2

2�
�

1
2
e2

1e2�e1e2e1C
1
2
e2e2

1

��
D 2.e1e3�e2

2�e4/;

using the relation Œen; em�D .m�n/enCm in U.WC/. Thus, ker�0D .e1e3�e2
2
�e4/,

as claimed.
The result for aD 1 now follows by Lemma 2.4. �

It remains to analyze ker�a with a¤ 0; 1. We do this in the next two results.
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Lemma 2.6. For a¤ 0; 1, the kernel of �a is generated in degrees 5 and 6.

Proof. Take A0 WD A.a/. It suffices to show that the kernel of �a is generated in
degrees 5 and 6. Consider the exact sequence of right A0-modules

0 �!K �!A0Œ�1�˚A0Œ�2�
.u;.u�av/v/
�������!A0 �! k �! 0:

We have that uA0 \ .u � av/vA0 Š K as right A0-modules. As in the proof of
Lemma 2.3, it now suffices to show that uA0\.u�av/vA0 is generated in degrees 5

and 6 as a right A0-module.
Let J WD uA0\ .u� av/vA0, and let L WD uR\ .u� av/vR. Note that J �L.

Since a¤ 0, we get that R�2 D .uRC .u� av/vR/�2: So,

dimk Ln D dimk Rn�1C dimk Rn�2� dimk Rn D n� 2

for n � 2. So, dimk L3 D 1, and is principally generated as a right R-module by
an element of degree 3. In fact,

(2.7) LD rR; where r WD u.uvC .1� a/v2/D .uv� av2/.uC 2v/:

Since A0
�4
DR�4 by Proposition 2.1, we have J�6DL�6. By direct computation,

one obtains that Ji D 0 for i D 0; : : : ; 4; one can also use Routine A.2 in the
Appendix.

Let J 0 D J5A0CJ6A0. We prove by induction that Jn D J 0n, for all n� 5. The
statement is clear for n D 5; 6. For n D 7, we make the following assertion, the
proof of which is presented in the Appendix; see Claim A.3.

Claim. We have that J5A0
2
6� J6A0

1
.

So for n � 6, we have Jn D Ln D rRn�3. So dimk J7 D 5, and dimk J6A0
1
D

dimk J6 D 4. With the claim, we obtain J7 D J5A0
2
CJ6A0

1
. Thus, J7 D J 0

7
. Now

for the induction step, suppose we have established that J 0n D Jn and J 0
n�1
D Jn�1

for some n� 7. Then

JnC1 � J 0nC1 D J 0nuCJ 0n�1.u� av/v D JnuCJn�1.u� av/v

D r.Rn�3uCRn�4.u� av/v/D rRn�2 D JnC1:

The penultimate equality holds as a¤ 1. Thus, the lemma is verified. �

Proposition 2.8. If a¤ 0; 1, then ker�a is the ideal generated by the elements

h1 WD e1e2
2 � e2

1e3� .2a/e2e3C .1C 2a/e1e4� .a
2
C a/e5;

h2 WD e1e5� 4e2e4C 3e2
3 C 2e6;

h3 WD �4e2
1e2

2 � 4e3
2 C 4e3

1e3C .20a2
C 14a� 7/e2

3

� .16a2
C 18aC 5/e1e5C .16a3

C 36a2
C 16a� 2/e6:
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Proof. By Lemma 2.6, we just need to produce linearly independent elements of
ker�a in degrees 5 and 6. We have by Routine A.2 that dimk.ker�a/5 D 1 and
that we can choose a basis of .ker�a/5 to be the element h1. In fact, we verify that
�a.h1/D 0 using Lemma 1.3 and (1.4), while suppressing some � superscripts:

�a.h1/D u.u� av/v.u� av/v�u2.u� 2av/v2
� .2a/.u� av/v.u� 2av/v2

C .1C 2a/u.u� 3av/v3
� .a2

C a/.u� 4av/v4

D x.x� ay/�y.x� ay/�
3

y �xx�.x� 2ay/�
2

y2

� .2a/.x� ay/y.x� 2ay/�
2

y2

C .1C 2a/x.x� 3ay/�y3
� .a2

C a/.x� 4ay/y4

D x.x� .1C a/y/y.x� .3C a/y/y �x.x�y/.x� .2C 2a/y/y2

� .2a/.x� ay/y.x� .2C 2a/y/y2

C .1C 2a/x.x� .1C 3a/y/y3
� .a2

C a/.x� 4ay/y4

D 0:

On the other hand, we have by Routine A.2 that dimk.ker�a/6 D 4 and that we
can take a basis of .ker�a/6 to be h2; h3 along with

h4 WD 4e3
2 � 4e1e2e3C .7� 4a/e2

3 C .1C 4a/e1e5C .2� 4a� 4a2/e6;

h5 WD 4e3
2 C .7� 14a/e2

3 � 4e2
1e4C .5C 14a/e1e5C .2� 16a� 12a2/e6:

By direct computation we have

e1h1 D e2
1e2

2 � e3
1e3� .2a/e1e2e3C .1C 2a/e2

1e4� .a
2
C a/e1e5;

h1e1 D e1e2
2e1� e2

1e3e1� .2a/e2e3e1C .1C 2a/e1e4e1� .a
2
C a/e5e1

D e2
1e2

2 � e3
1e3� .2C 2a/e1e2e3C .2a/e2

3 C .3C 2a/e2
1e4C .4a/e2e4

� .2C 7aC a2/e1e5C 4.a2
C a/e6:

Claim. We have that h2, h3, e1h1, h1e1 are k-linearly independent and that

h4 D 2a.2aC 1/h2� h3� .6C 4a/e1h1C .2C 4a/h1e1;

h5 D 4a2h2� h3� .4C 4a/e1h1C .4a/h1e1:

The proof is presented in the Appendix; see Claim A.5. Thus, the result holds.
Now for the reader’s convenience, we verify that �a.hi/D 0 for i D 2; 3 using

Lemma 1.3 and (1.4), while suppressing some � superscripts:

�a.h2/D u.u�4av/v4
�4.u�av/v.u�3av/v3

C3.u�2av/v2.u�2av/v2
C2.u�5av/v5

D x.x�4ay/�y4
�4.x�ay/y.x�3ay/�

2

y3

C3.x�2ay/y2.x�2ay/�
3

y2
C2.x�5ay/y5
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D x.x�.1C4a/y/y4
�4.x�ay/y.x�.2C3a/y/y3

C3.x�2ay/y2.x�.3C2a/y/y2
C2.x�5ay/y5

D 0;

�a.h3/D�4u2.u�av/v.u�av/v�4.u�av/v.u�av/v.u�av/vC4u3.u�2av/v2

C.20a2
C14a�7/.u�2av/v2.u�2av/v2

�.16a2
C18aC5/u.u�4av/v4

C.16a3
C36a2

C16a�2/.u�5av/v5

D�4xx�.x�ay/�
2

y.x�ay/�
4

y

�4.x�ay/y.x�ay/�
2

y.x�ay/�
4

yC4xx�x�
2

.x�2ay/�
3

y2

C.20a2
C14a�7/.x�2ay/y2.x�2ay/�

3

y2

�.16a2
C18aC5/x.x�4ay/�y4

C.16a3
C36a2

C16a�2/.x�5ay/y5

D�4x.x�y/.x�.2Ca/y/y.x�.4Ca/y/y

�4.x�ay/y.x�.2Ca/y/y.x�.4Ca/y/y

C4x.x�y/.x�2y/.x�.3C2a/y/y2

C.20a2
C14a�7/.x�2ay/y2.x�.3C2a/y/y2

�.16a2
C18aC5/x.x�.1C4a/y/y4

C.16a3
C36a2

C16a�2/.x�5ay/y5

D 0: �

3. Elementary proofs that U.WC/ and U.W / are not noetherian

In this section, we establish the remaining part of Theorem 0.7, that ker�0 D

ker�1 is not finitely generated as a left or right ideal of U.WC/. We also prove
Theorem 0.8.

We first focus on U.WC/. Recall the map � WU.WC/� B from Definition 0.3,
and consider Notations 0.2, 1.2, 1.6, and 2.2 along with the following.

Notation 3.1 (p, I ). Let p WD�.e1e3�e2
2
�e4/ be an element of B, and let I WD .p/

be a two-sided ideal of B. Note that by Proposition 2.5, ID�.ker�0/D�B.ker�0/.

We begin by establishing some basic facts about p and I .

Lemma 3.2.

(a) p D v3w� v2w2.

(b) p is a normal element of S and of Q.

(c) I DQp.
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Proof. We employ Lemma 1.3 and (1.4) in all parts.

(a) Consider the computation in S below:

p D �.e1e3� e2
2 � e4/

D u.u� 2w/v2
� .u�w/v.u�w/v� .u� 3w/v3

D x.x� 2z/�y�
2

y�
3

� .x� z/y�.x� z/�
2

y�
3

� .x� 3z/y�y�
2

y�
3

D x.x�y � 2z/y2
� .x� z/y.x� 2y � z/y � .x� 3z/y3

D y3z�y2z2

D v3w� v2w2:

(b) From part (a), we get that p is a normal element of S , and of Q, since vpD pv,
wp D pw, and

up D u.v3w� v2w2/D xy�y�
2

y�
3

z�
4

�xy�y�
2

z�
3

z�
4

D .y3z�y2z2/x

D .y3z�y2z2/.xC 4y/�
4

D .v3w� v2w2/.uC 4v/D p.uC 4v/:

(c) On one hand, we get that I DBpB �QpQDQp, by Lemma 1.7 and part (b).
On the other hand, recall that R is the subalgebra of Q generated by u; v. We will
show by induction on i and j that p.vw/iRj�2i � I for all 0 � i �

�
1
2
j
˘
; this

yields pQj � I .
The base case i D j D 0 holds since p 2 I . For the induction step, assume

that p.vw/iRj�2i � I . Now it suffices to show that (i) p.vw/iRjC1�2i � I and
(ii) p.vw/iC1Rj�2i � I .

For (i), we have by induction that

I � up.vw/iRj�2i Cp.vw/iRj�2iuDW I
0;

since u is a generator of B. Now consider the following computations, where we
suppress the action of � on invariant elements and on graded pieces of kŒx;y�:

I 0Dx.y3z�y2z2/.yz/ikŒx;y�j�2iC.y
3z�y2z2/.yz/ikŒx;y�j�2ix

�j C4

D.y3z�y2z2/.yz/ixkŒx;y�j�2iC.y
3z�y2z2/.yz/i.xC.jC4/y/kŒx;y�j�2i

D.y3z�y2z2/.yz/i
�
xkŒx;y�j�2iC.xC.jC4/y/kŒx;y�j�2i

�
D.y3z�y2z2/.yz/ikŒx;y�jC1�2i ;

where the last equality holds since j C 4> 0. Thus (i) holds.
For (ii), we get that p.vw/iRjC2�2i � I by applying (i) twice. Now

I � p.vw/iRjC2�2i Cp.vw/iRj�2i.uv� vw/� p.vw/iRj�2i.vw/:

Note that Rk.vw/D .vw/Rk for all k. So I �p.vw/iC1Rj�2i and we are done. �
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Now we complete the proof of Theorem 0.7.

Theorem 3.3. The ideal I of B is not finitely generated as a left or right ideal. As
a result, the kernel of �0 is not finitely generated as a left or right ideal of U.WC/.

Proof. Recall that ker�0 D .e1e3 � e2
2
� e4/ by Proposition 2.5. It is clear that

if ker�0 is finitely generated as a left/right ideal of U.WC/, then I is finitely
generated as a left/right ideal of B. Therefore, to show that ker�0 is not finitely
generated it suffices to show that BI and IB are not finitely generated.

By way of contradiction, suppose that BI is finitely generated. Then there exists
n� 4 such that BI�n D I . Since B is generated by u and .u�w/v, we get that

(3.4) InC1 D B1InCB2In�1 D uInC .u�w/vIn�1:

By Lemma 3.2, I DQp�SpS DSp. Since vI � vSp�Sp, we get by (3.4) that

(3.5) InC1 � uSpC .u�w/Sp D uSpCwSp:

Using Lemma 1.3 and (1.4), it is easy to see that uSCwSDxkŒx;y; z�CzkŒx;y; z�
and that a positive power of y cannot belong to the right-hand side. So, a positive
power of v cannot belong to uS CwS . Therefore,

(3.6) vn�3p 62 uSpCwSp:

On the other hand, vn�3p 2 InC1 by Lemma 3.2(c). This contradicts (3.5) and
(3.6). Thus, BI is not finitely generated.

Next, suppose that IB is finitely generated. Then there exists n � 4 such that
I�nB D I , with

(3.7) InC1D InB1CIn�1B2D InuCIn�1.u�w/vD InuCIn�1v.uCv�w/:

We get that I; Iv � pS by Lemma 3.2(b). So, the right-hand side of (3.7) is
contained in pSuCpS.v�w/. With an argument similar to that in the previous
paragraph, we obtain that SuCS.v �w/ does not contain positive powers of v.
So, pvn�3 62 InuC In�1v.uC v � w/. On the other hand, pvn�3 2 InC1 by
Lemma 3.2(b,c), which contradicts (3.7). Thus, IB is not finitely generated. �

Remark 3.8. We do not know whether or not ker�a is finitely generated for a¤0; 1.

One can of course deduce from Theorem 3.3 that U.W / and U.V / are neither
left nor right noetherian; see [Sierra and Walton 2014, Lemma 1.7]. Nevertheless,
a direct proof that U.W / is not left or right noetherian is of independent interest,
and we give such a result to end the section. First, we establish some notation.

Notation 3.9 ( yS , yR, yB, y�, y�a, �a, yI ). Since v is normal in S and in R, we may
invert it. Let yS WD S Œv�1�, and let yR WDRŒv�1�.
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Note that � extends to an algebra homomorphism y� WU.W /! yS defined by (0.4)
for all n 2 Z. Likewise, �a extends to an algebra homomorphism y�a W U.W /! yR

defined by (0.5) for all n 2 Z. For a 2 k define �a W
yS ! yR by u 7! u, v 7! v,

w 7! av. Note that y�a D �a
y�.

Let yB WD y�.U.W //. Finally, let yI D y�.ker y�0/. Note that yI D yB \ ker �0.

We first note that the proof of Lemma 2.4 extends to U.W / to give

(3.10) ker y�0 D ker y�1:

Proposition 3.11. Recall p D �.e1e3� e2
2
� e4/Dw.v�w/v

2 from Notation 3.1
and Lemma 3.2. We have

yI D yB \ ker �0 D
yB \ ker �1 D

yBp yB D ySp D p yS :

Proof. We first show that yBp yBD ySpDp yS . Certainly, yBp yB� ySp yS D ySpDp yS ,
where the last two equalities hold because a normal element of S will also be
normal in yS .

For the other direction, we will show yRwjp � yBp yB for all j � 0 by induction.
Since yS D yR �kŒw�, this will imply ySp � yBp yB. So assume wjp 2 yBp yB for some
j � 0 (it is clear for j D 0). Since up D p.uC 4v/, we get that for all n 2 Z,

yBp yB 3 Œy�.en/; w
jp�D .u� .n� 1/w/vn�1wjp�wjp.u� .n� 1/w/vn�1

D .j C 4/vnwjp:

So, kŒv; v�1� �wjp � yBp yB. Since uD y�.e1/ 2 yB, we have

yRwjp D kŒu� � kŒv; v�1� �wjp � yBp yB:

Finally, since we have seen that v�1wjp 2 yRwjp � yBp yB, we have that

yBp yB 3 .y�.e1/� y�.e2/v
�1/wjp D wjC1p:

By induction, yBp yB D ySp, as desired.
From the definitions, p 2 .ker �0/\ .ker �1/. So

yBp yB � .ker �0/\ .ker �1/\ yB D w yS \ .v�w/ yS D w.v�w/ yS D p yS :

Combining this with the first part of the proof, yBp yB D .ker �0/\ .ker �1/\ yB.
Then by (3.10) and the definition of yI , we have

yI D .ker �0/\ yB D y�.ker y�0/D y�.ker y�1/D .ker �1/\ yB;

completing the proof. �
From Proposition 3.11 we obtain:

Theorem 3.12. The ideal yI of yB is not finitely generated as a left or right ideal. As
a result, the kernel of y�0 is not finitely generated as a left or right ideal of U.W /.
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Proof. This argument is similar to the proof of Theorem 3.3. It suffices to show
that yI is not finitely generated as a left or right ideal of yB.

By way of contradiction, suppose we have yI D yB.yI�n ˚ � � � ˚
yIn/ for some

n 2N. For all k 2Z, we have y�.ek/ 2 u ySCw yS . So, yBk � u ySCw yS for all k ¤ 0,
and yIk � u ySCw yS for all k with jkj> n. Note that a power of v cannot belong to
u yS Cw yS . So, vn�3p 62 yI . However, by Proposition 3.11, we get that yI D ySp and
vn�3p 2 yI . This contradiction shows that yB

yI is not finitely generated.
The proof that yI yB is not finitely generated is similar; we leave the details to the

reader. �
Corollary 3.13. The universal enveloping algebra U.V / is neither left nor right
noetherian.

Proof. This follows directly from Theorem 3.12, since U.W /D U.V /=.c/. �
Remark 3.14. After the first draft of this paper was finished, we learned of the
results of Conley and Martin [2007]. We thank the referee for calling that work to
our attention. The paper considers a family of homomorphisms defined as (using
their notation)

�
 W U.W /! kŒx;x�1; @�; en 7! xnC1@C .nC 1/
xn:

Using the identification uD x2@, v D x from the discussion after Theorem 0.7, we
have

y�a.en/D .x
2@� .n� 1/ax/xn�1

D xnC1@C .1� a/.n� 1/xn:

The reader may verify that

y�a.e/D x2.1�a/�1�a.e/x
�2.1�a/

for all e 2 U.W / (where here one uses a suitable extension of kŒx;x�1; @� to carry
out computations). As a result,

(3.15) ker y�a D ker�1�a

for all a 2 k.
Conley and Martin [2007, Theorem 1.2] showed (using (3.15)) that

ker y�0 D ker y�1 D .e�1e2� e0e1� e1/:

Recall from Proposition 2.5 that ker�0 is generated as a two-sided ideal by g4 WD

e1e3� e2
2
� e4. A computation gives that

ad.e3
�1/.g4/D Œe�1; Œe�1; Œe�1;g4� � �D 12.e�1e2� e0e1� e1/;

and it follows that

.g4/D ker y�0 D ker y�1 D .e�1e2� e0e1� e1/:
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4. The connection between the maps � and �

For the remainder of the paper, we return to considering U.WC/. The main goal of
this section is to relate the map � (of Definition 0.3) that played a crucial role in the
proof of Theorem 3.3 to the map � (of Notation 0.9) that was the focus of [Sierra
and Walton 2014]. We show that ker� D ker �; in fact, we have the next result.

Theorem 4.1. We have that ker � D ker� D
T

a2k ker�a. As a consequence,
�.U.WC//Š �.U.WC//.

Consider Notation 0.2 and the following notation for this section. Recall the
definitions of X; f; � from Notation 0.9. So, � 2Aut.X / and �� W k.X /! k.X / is
the pullback of � . Here we take � 2 Aut.P2/ and � 2 Aut.P1/ to be morphisms of
varieties, defined by

�.Œx W y W z�/D Œx�y W y W z� and �.Œx W y�/D Œx�y W y�:

We denote the respective pullback morphisms by �� and ��. However, to be
consistent with Lemma 1.3 (and abusing notation slightly), we still write

S Š kŒx;y; z�� and RŠ kŒx;y�� :

We also establish the convention that h� WD ��h for h 2 k.X /, and similarly for
pullback by other morphisms.

Before proving Theorem 4.1, we provide some preliminary results.

Lemma 4.2 ( a, ‰a). For a 2 k, we have the following statements.

(a) We have a well-defined morphism  a W P
1!X given by

 a.Œx Wy�/D Œ2x2
�4xy�6ay2

Wx2
�2xyCy2

W�x2
C3xy�2y2

Wx2
�4xyC4y2�:

(b)  a� D � a.

(c)  �a extends to an algebra homomorphism ‰a W k.X /Œt I ���! k.P1/ŒsI ���,
where ‰a.t/D s.

Proof. (a,b) Both are straightforward. Part (a) is a direct computation. On page 508
in the Appendix, we verify that . a�/

� D �� �a D  
�
a �
� D .� a/

� as maps from
k.X /! k.P1/. Thus, (b) holds.

(c) We have for all h; ` 2 k.X / and n;m 2 N that

‰a.htn`tm/D‰a.h`
�n

tnCm/D  �a .h/ 
�
a .`

�n

/snCm

D  �a .h/ 
�
a .`/

�n

snCm
D  �a .h/s

n �a .`/s
m
D‰a.htn/‰a.`t

m/:

Thus, ‰a is an algebra homomorphism. �
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Lemma 4.3 (Ca). For a 2 k, define the curve

Ca D V .wC 6axC .4C 12a/yC .2C 6a/z;xz�y2/�X:

Then  a defines an isomorphism from P1! Ca.

Proof. That the image of  a of Lemma 4.2(a) is contained in Ca is a straightforward
verification. The inverse map to  a is defined by the birational map Œw W x W y W z� 7!
Œ2xCy W xCy�; we leave the verification of the details to the reader. �

Lemma 4.4 (
 ). Define a map 
 WR!k.P1/ŒsI ��� as follows: if h2RnDkŒx;y�n,
let


 .h/D
h

x.x�y/ � � � .x� .n� 1/y/
sn:

Then 
 is an injective k-algebra homomorphism.

Proof. Let h 2 kŒx;y�n and ` 2 kŒx;y�m. Then


 .h�`/D 
 .h`�
n

/D
h`�

n

x.x�y/ � � � .x�.nCm�1/y/
snCm

D
h

x.x�y/ � � � .x�.n�1/y/

�
`

x.x�y/ � � � .x�.m�1/y/

��n

smCn

D
h

x.x�y/ � � � .x�.n�1/y/
sn `

x.x�y/ � � � .x�.m�1/y/
sm
D 
 .h/
 .`/:

So, 
 is a homomorphism; injectivity is clear. �

Proposition 4.5. Retain the notation of Lemmas 4.2 and 4.4. Let a 2 k. Then
‰a�D 
�a as maps from U.WC/! k.P1/ŒsI ���, and ker‰a�D ker�a.

Proof. By Lemma 1.1(a), it suffices to verify that the maps ‰a� and 
�a agree on
e1 and e2. We have

‰a.�.e1//D‰a.t/D s D 
 .u/D 
 .�a.e1//:

We verify that

(4.6)  �a .f /D
xy � ay2

x2�xy

on page 508 in the Appendix. Thus,

‰a.�.e2//D  
�
a .f /s

2
D

xy � ay2

x2�xy
s2
D 
 .uv� av2/D 
�a.e2/:

The final statement follows from the fact that 
 is injective (Lemma 4.4). �
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Proof of Theorem 4.1. By Lemma 4.3,  �a hD 0 if and only if hjCa
� 0. Now, the

curves Ca cover an open subset of X . (One way to see this is that, because
S

a Ca

is dense in X and is clearly constructible, by [Hartshorne 1977, Exercise II.3.19(b)]
it contains an open subset of X .) Thus if h 2 k.X / is in the intersection

T
a ker �a ,

then h vanishes on this open subset and so h D 0. So,
T

a ker‰a D f0g. Thus,
ker �D

T
a ker‰a�D

T
a ker�a, where the last equality holds by Proposition 4.5.

To show that ker� D
T

a ker�a, define closed immersions ia W P1 ! P2 for
a 2 k by ia.Œx W y�/D Œx W y W ay�. Then im.ia/D V .z�ay/, and pullback along ia
induces the ring homomorphism

i�a W kŒx;y; z�! kŒx;y�; x 7! x; y 7! y; z 7! ay:

The reader may verify that ia� D �ia, and that i�a is also a homomorphism from
S D kŒx;y; z�� to RD kŒx;y�� . In terms of u; v; w, we have

i�a .u/D u; i�a .v/D v; i�a .w/D av:

That is, i�a D �ajS , where �a was defined in Notation 3.9. We see that i�a� D �a.
As with the first paragraph, the curves V .z�ay/ cover an open subset of P2: in

fact,
S

a V .z�ay/� .P2XV .y//. So
T

a ker i�a Df0g. Thus, ker�D
T

a ker i�a�DT
a ker�a, completing the proof. �

5. The kernel of �

In this section, we analyze the map � from Definition 0.3. In particular, we verify
part (c) of Theorem 0.6. To proceed, recall Notations 0.2, 1.2, 1.6, and 2.2.

Theorem 5.1. The kernel of � is generated as a two-sided ideal by

g WD e1e5� 4e2e4C 3e2
3 C 2e6:

Proof. First, observe that as e1e5; e2e4; e
2
3
; e6 are elements of the standard basis for

U.WC/ (by Lemma 1.1(b)), they are linearly independent. So, we have that g ¤ 0.
Now we verify that �.g/D 0 by using Lemma 1.3 and (1.4):

�.g/Du.u�4w/v4
�4.u�w/v.u�3w/v3

C3.u�2w/v2.u�2w/v2
C2.u�5w/v5

D x.x� 4z/�y4
� 4.x� z/y.x� 3z/�

2

y3

C 3.x� 2z/y2.x� 2z/�
3

y2
C 2.x� 5z/y5

D x.x�y � 4z/y4
� 4.x� z/y.x� 2y � 3z/y3

C 3.x� 2z/y2.x� 3y � 2z/y2
C 2.x� 5z/y5

D 0:

We take the following notation for the rest of the proof.
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Notation 5.2 (M , M 0, b5, b6, b7, �). Consider the right B-modules

M WD uB \ .u�w/vB and M 0
WD b5BC b6BC b7B;

with

b5 D .uv�vw/.u
3
�6.uv�vw/uC12u.uv�vw//;

b6 D .uv�vw/.�48.uv�3vw/v2
�36u.uv�2vw/vCu4/;

b7 D .uv�vw/.u
5
�40..uv�vw/2u�3.uv�vw/u.uv�vw/C3u.uv�vw/2//:

Further, take � WB!A.0/ to be the map induced by the projection �0 W
yS � yRD

yS=.w/ from Notation 3.9.

The remainder of the proof will be established through a series of lemmas.

Lemma 5.3. We obtain that b5; b6; b7 2uB\.u�w/vB. In other words, M 0�M .

Proof. Let

r5 WD e2.e
3
1 � 6e2e1C 12e1e2/;(5.4)

r6 WD e2.�48e4� 36e1e3C e4
1/;(5.5)

r7 WD e2.e
5
1 � 40.e2

2e1� 3e2e1e2C 3e1e2
2//:(5.6)

We have as a consequence of the degree-5 relation of U.WC/ in Lemma 1.1(a) that

(5.7) r5 D e1.e
2
1e2� 3e1e2e1C 3e2e2

1 C 6e2
2/;

and as a consequence of the degree-7 relation of U.WC/ in Lemma 1.1(a) that

(5.8) r7 D e1.e
4
1e2� 5e3

1e2e1C 10e2
1e2e2

1 � 10e1e2e3
1 C 5e2e4

1 � 40e3
2/:

Thus r5; r7 2 e1U.WC/\ e2U.WC/. Since b5 D �.r5/ and b7 D �.r7/, these are
both in uB \ .uv� vw/B.

Note that r6 2 e2U.WC/, so b6 D �.r6/ 2 .u�w/vB. Further,

r6 D e1.�36e2e3� 18e5C 2e4e1� e3e2
1 C e2e3

1/C 12g:

Thus, b6 2 uB as well. �

Lemma 5.9. Suppose that M DM 0. Then ker� D .g/ and the theorem holds.

Proof. Let K be the kernel of

˛ W BŒ�1�˚BŒ�2�! B; .b; b0/ 7! .ubC .uv� vw/b0/:

It is a standard fact that the map

ˇ WM !K
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defined by ˇ.r/ D .u�1r;�.uv � vw/�1r/ is an isomorphism of graded right
B-modules, as in the proof of Lemma 2.3. Thus, K is generated by ˇ.b5/, ˇ.b6/,
and ˇ.b7/ by the assumption. By Proposition A.1 in the Appendix, the kernel
of �B is generated as a two-sided ideal of kht1; t2i by a degree-5 element q5, a
degree-6 element q6, and a degree-7 element q7. We compute q5 and q7 by applying
the formula from Proposition A.1 to ˇ.b5/ and ˇ.b7/, and by using (5.4)–(5.8).
Namely, take

Qb1
1 D t2

1 t2� 3t1t2t1C 3t2t2
1 C 6t2

2 ;

Qb1
2 D�t3

1 C 6t2t1� 12t1t2;

Qb2
1 D t4

1 t2� 5t3
1 t2t1C 10t2

1 t2t2
1 � 10t1t2t3

1 C 5t2t4
1 � 40t3

2 ;

Qb2
2 D�t5

1 C 40.t2
2 t1� 3t2t1t2C 3t1t2

2 /:

So, we have that

q5 D t1 Qb
1
1 C t2 Qb

1
2 D Œt1; Œt1; Œt1; t2� � �C 6Œt2; Œt2; t1� �;

q7 D t1 Qb
2
1 C t2 Qb

2
2 D Œt1; Œt1; Œt1; Œt1; Œt1; t2� � � � �C 40Œt2; Œt2; Œt2; t1� � �:

By Lemma 1.1(a), q5 and q7 generate the kernel of � . So, ker� D �.ker�B/D

.�.q6//. We see immediately that .ker�/6 is a 1-dimensional k-vector space,
generated by �.q6/. Since g 2 .ker�/6 is nonzero, we have g D �.q6/ up to a
scalar multiple. Therefore, ker� D .g/. �

Our goal now is to show that M DM 0; we do this by comparing Hilbert series.

Lemma 5.10. The Hilbert series of M is t5.1� t/�2.1� t2/�1.

Proof. Since A.0/D k˚uR we have

hilb A.0/D 1C t.hilb R/D 1C
t

.1� t/2
D

1� t C t2

.1� t/2
:

On the other hand, it is well known that

hilb QD hilb kŒx;y;yz�D
1

.1� t/2.1� t2/
:

Since �0 D � ı �, we get that ker � D �.ker�0/ (which is denoted by I in
Notation 3.1). So, by Lemma 3.2(c), we get

hilb ker �D
t4

.1� t/2.1� t2/
:
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Then

hilb B D hilb A.0/C hilb ker �

D
1� t C t3� t4

.1� t/2.1� t2/
C

t4

.1� t/2.1� t2/
D

1� t C t3

.1� t/2.1� t2/
:

Finally, we compute hilb M from the exact sequence

0 �!M
ˇ
�!BŒ�1�˚BŒ�2�

˛
�!B �! k �! 0;

where ˛; ˇ are as in the proof of Lemma 5.9. This gives

hilb M D .t2
C t � 1/.hilb B/C 1D

t5

.1� t/2.1� t2/
;

as claimed. �

We now provide results on the Hilbert series of M 0.

Lemma 5.11. We have that hilb �.M 0/� t5.1� t/�2.

Proof. Let a5 WD �.b5/ and a6 WD �.b6/. Then

a5 D uvu.u2
� 6vuC 12uv/

D xy.x� 2y/
�
.x� 3y/.x� 4y/� 6y.x� 4y/C 12.x� 3y/y

�
D x2.x�y/.x� 2y/y;

a6 D uvu.u3
� 36uv2

� 48v3/

D xy.x� 2y/
�
.x� 3y/.x� 4y/.x� 5y/� 36.x� 3y/y2

� 48y3
�

D x2.x�y/.x� 2y/y.x� 11y/

D a5.u� 6v/:

Since a5u and a5.u�6v/ are in �.M 0/ and u and u�6v span R1, we have a5R1�

�.M 0/. We get that �.M 0/�a5A.0/Ca5R1A.0/, as �.M 0/ is a right A.0/-module
and contains a5R�1. Since A.0/CR1A.0/ D R, we obtain that �.M 0/ � a5R.
Now as hilb RD .1� t/�2, we conclude that hilb �.M 0/� t5.1� t/�2. �

Lemma 5.12. We have that hilb.M 0\ ker �/� t7.1� t/�2.1� t2/�1.

Proof. Again, recall that ker �D �.ker�0/, which is denoted by I in Notation 3.1.
Moreover by Lemma 3.2(c), we have I DQpD pQ, where pD v3w�v2w2. Let

h WD .uv� vw/.uC 2v/p D .xy �yz/x.y3z�y2z2/:

Claim. We have

b5QC b6QC b7Q 3 x.xy �yz/.xyzCy2z/D .uv� vw/.uC 2v/.uC 4v/vw:



MAPS FROM THE ENVELOPING ALGEBRA OF THE POSITIVE WITT ALGEBRA 497

The proof of this claim is provided in the Appendix; see Claim A.6(a).
Since M 0\ I �M 0I D b5QpC b6QpC b7Qp, we have

(5.13) M 0
\ I � .uv� vw/.uC 2v/.uC 4v/vwpQ

D .xy �yz/x.y3z�y2z2/.xCy/yzQD h.xCy/yzQ:

We now show by induction that M 0\ I � hQn for all n� 0.

Claim. M 0\ I � hQn for nD 0; 1; 2.

The proof of this assertion is provided in the Appendix; see Claim A.6(b). We
will prove the result for larger n by geometric arguments. The maximal graded
nonirrelevant ideals of kŒx;y;yz� are in bijective correspondence with k-points of
the weighted projective plane P.1; 1; 2/ [Harris 1992, Example 10.27]. We use the
notation .a W b W c/ to denote a point of P.1; 1; 2/. Let

K.n/ WD .x� ny/kŒx;y;yz�C .y2
�yz/kŒx;y;yz�

be the graded ideal of polynomials vanishing at .n W 1 W 1/.
Suppose now that M 0\ I � hQn for some n� 2. Then M 0\ I contains

h.QnuCQn�1.uv� vw//

D h
�
.x� .nC 7/y/kŒx;y;yz�C ..x� .nC 6/y/y �yz/kŒx;y;yz�

�
nC1

D h
�
.x� .nC 7/y/kŒx;y;yz�C .y2

�yz/kŒx;y;yz�
�
nC1

D hK.nC 7/nC1:

From (5.13), we get .M 0\I/nC1 3h.xyzCy2z/yn�2. Since .xyzCy2z/yn�2

does not vanish at .nC 7 W 1 W 1/, it is not in hK.nC 7/nC1. Thus,

hK.nC 7/nC1C kh.xyzCy2z/yn�2
D hkŒx;y;yz�nC1 �M 0

\ I;

where the equality holds as hK.nC 7/nC1 is codimension 1 in hkŒx;y;yz�nC1.
Hence, hQnC1 �M 0\ I .

Now, by induction, we obtain M 0\I � hQ. Since hilb QD .1� t/�2.1� t2/�1,
we have

hilb.M 0
\ I/�

t7

.1� t/2.1� t2/
: �

Lemma 5.14. We have that hilb M D hilb M 0D t5.1� t/�2.1� t2/�1. As a result,
M DM 0.

Proof. Combining Lemmas 5.11 and 5.12, we have

hilb.M 0/�
t5

.1� t/2
C

t7

.1� t/2.1� t2/
D

t5

.1� t/2.1� t2/
:
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On the other hand, by Lemmas 5.3 and 5.10,

hilb.M 0/�
t5

.1� t/2.1� t2/
:

Thus, hilb M D hilb M 0. Since M 0 �M again by Lemma 5.3, we conclude that
M DM 0. �

Theorem 5.1 now follows from Lemmas 5.9 and 5.14. �

Remark 5.15. A shorter proof of Theorem 5.1 follows from the results of [Conley
and Martin 2007]. Recall from Notation 3.9 that we may extend � to a map
y� W U.W /! yS , using the same formula (0.4) for y�.en/ with n� 0. Then [Conley
and Martin 2007, Theorem 1.3] and (3.15), together with Theorem 4.1, give that
ker y� D .e�1e3� 4e0e2C 3e2

1
C 2e2/. The reader may verify that

ad.e4
�1/.g/D Œe�1; Œe�1; Œe�1; Œe�1;g� � � �D 24.e�1e3� 4e0e2C 3e2

1 C 2e2/:

Since y�.g/D 0, we have .g/� ker y� D .e�1e3�4e0e2C3e2
1
C2e2/� .g/, so all

are equal.

6. A partial result on chains of two-sided ideals

It is not known whether U.WC/ satisfies the ascending chain condition (ACC) on
two-sided ideals; see Question 0.11. We do not answer this question here; however,
we prove the partial result that the non-noetherian factor B of U.WC/ does have
ACC on two-sided ideals.

Recall Notations 0.2, 1.2, 1.6; in particular, Q is the subalgebra of S generated by
u; v; vw. Throughout, we consider B as a subalgebra of Q. We begin by proving:

Lemma 6.1. Let h be a nonzero, homogeneous, normal element of Q, and let a 2 k.
Then the Q-bimodules

N WD hQ=hvQ and Ma D hQ=h.vw� av2/Q

are noetherian B-bimodules under the action induced from Q.

Proof. We remark that any normal element of Q must be in the commutative
subalgebra kŒv; vw�, and thus, must commute with v and vw. In particular, vQN D0

and .vw� av2/QMa D 0DMa.vw� av2/Q.
Let � WQ!Q=vQ be the canonical projection. (Note that vw 62 ker � .) Since

u.vw/� .vw/uD 2v2w is contained in ker � , the image Q=vQ is commutative. It
is easy to see that Q=vQŠ kŒs; t � under the identification s D �.u/, t D �.vw/D

�.uv�vw/. Note that sD �.�.e1// and t D �.�.e2// are in B. So, �.B/DQ=vQ.
Thus, a left B-submodule of hQ=hvQ is simply an ideal of kŒs; t �. So, hQ=hvQ
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is noetherian as a left B-module. As chains of B-bimodules are also chains of left
B-modules, hQ=hvQ is also a noetherian B-bimodule.

Now define an algebra homomorphism ı W Q ! R by ı.u/ D u, ı.v/ D v,
and ı.vw/D av2. (Note that ı D �ajQ from Notation 3.9.) It is easy to see that
ker ı D .vw � av2/Q and that ı is surjective. Note also that ı.�.e1// D u and
ı.�.e2//D uv � av2. Thus, ı.B/D A.a/ as subalgebras of R. If a¤ 0; 1, then
by Proposition 2.1, A.a/�R�4 is noetherian, and R is a finitely generated right
A.a/-module. If a D 0, then R D A.0/C vA.0/ is again a finitely generated
right A.0/-module, and A.0/ is noetherian. Thus for a¤ 1, Ma is also a finitely
generated right A.a/-module. So, Ma is noetherian as a right B-module, let alone
a B-bimodule.

If a D 1 then we have, similarly, that ı.B/ D A.1/ is noetherian, and that
RDA.1/CA.1/v is a finitely generated left A.1/-module. It follows that Ma is a
finitely generated left A.a/-module. So, Ma is noetherian as a left B-module, and
again as a B-bimodule. �

We now use geometric arguments to show:

Proposition 6.2. Suppose that k is algebraically closed, and let K � Q be a
nonzero graded ideal. Then Q=K is a noetherian B-bimodule.

Proof. Let T be the commutative ring kŒx;y;yz�. We consider K as a subset of T ,
since (via Lemma 1.3) QD T � and T have the same underlying vector space. For
all n;m 2 N, we have

(6.3) KnCm �KnQm DKn.Tm/
�n

DKnTm;

and so K is also an ideal of T . Further,

(6.4) KnCm �QmKn D Tm.Kn/
�m

:

If T were generated in degree 1, one could obtain directly from (6.3) and (6.4) that
Kn is �-invariant for n� 0 (or see [Artin and Stafford 1995, Lemma 4.4]). A
similar statement holds in our case; however, a proof would take us too far afield
so we work more directly with the graded pieces of K.

Choose n0 so that Kn0
¤0. For all n�n0, let hn¤0 be a greatest common divisor

of Kn, considered as a subset of Tn. By (6.3), hnC1 j hnx; hny. Since x;y have
no common divisor, we have hnC1 j hn for all n� n0. This chain of divisors must
stabilize, and thus there is n1 � n0 such that hnC1h�1

n 2 k for n� n1. Let h WD hn1
.

By (6.4), h j�m.h/ for all m 2N, so h is an eigenvector of �. Thus, h is normal
in Q. Since h jf for all f 2K, we can write K D hJ for some J �Q. Since h

is normal, J is again an ideal of Q. So, (6.3) and (6.4) apply to J .
Since h 2 kŒv; vw� and k is algebraically closed, we have

hD .vw� a1v
2/ � � � .vw� anv

2/vk
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for some n; k 2 N and a1; : : : ; an 2 k. Applying Lemma 6.1 repeatedly, we obtain
that Q=hQ is a noetherian B-bimodule.

From the exact sequence

0! hQ=hJ !Q=K!Q=hQ! 0;

it suffices to prove that hQ=hJ is a noetherian B-bimodule. We make a geometric
argument to do so.

Graded ideals of T correspond to subschemes of the weighted projective plane
P.1; 1; 2/. Note that � acts on P.1; 1; 2/ by �.a W b W c/D .a� b W b W c/.

Let Yn be the subset of P.1; 1; 2/ defined by the vanishing of the polynomials
in Jn, considered now as a subset of T . By the definition of h, for n � n1 the
polynomials in Jn have no nontrivial common factor, and so dim Yn � 0. By (6.3)
and (6.4), we have

YnC1 � Yn\�.Yn/

for n� n1. It follows that there exists n2 � n1 such that

(6.5) YnC1 D Yn D �.Yn/

for n� n2. Let Y WD Yn2
. Since �-orbits in P.1; 1; 2/ are either infinite or trivial,

each point of Y is �-invariant. Note that Y is the subset of P.1; 1; 2/ defined by J ,
considered as an ideal of T .

Let P be an associated prime of J . Since J is graded, P is graded. By using
the Nullstellensatz, with the fact that dim Y � 0, we get that either P D TC, or P

defines some point .a W b W c/ 2 Y . In the first case, certainly y 2 P . In the second
case, .a W b W c/D �.a W b W c/D .a� b W b W c/ and so b D 0. Again, y 2 P .

The radical
p

J is the intersection of the associated primes of J . Since y is
contained in all associated primes, y 2

p
J . Thus, there is some n such that

yn D vn 2 J . So, hQ=hJ is a factor of hQ=hvnQ. Applying Lemma 6.1 again,
we see that hQ=hJ is a noetherian B-bimodule, as desired. �

We now prove Proposition 0.12. In fact, we show:

Proposition 6.6. The ring Q is noetherian as a B-bimodule. As a consequence, B

satisfies ACC on two-sided ideals.

Proof. Let k0 be an algebraic closure of k. If Q˝k k0 were a noetherian bimodule
over B˝kk0, then Q would be a noetherian B-bimodule; this holds as k0 is faithfully
flat over k [Goodearl and Warfield 2004, Exercise 17T]. So it suffices to prove
the result in the case that k is algebraically closed. By standard arguments, it is
sufficient to show that Q satisfies ACC on graded B-subbimodules, or equivalently,
that any nonzero graded B-subbimodule of Q is finitely generated.
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Let K be a nonzero graded B-subbimodule of Q. Since B � Qp D pQ by
Lemma 3.2(c), we have that K D BKB �QpKpQ. Since Q is noetherian, there
is a finite-dimensional graded vector space V �K with QpKpQDQpVpQ.

By Proposition 6.2, the B-bimodule Q=QpVpQ is noetherian. Thus the B-
subbimodule K=QpVpQ of Q=QpVpQ is finitely generated. So, there is a finite-
dimensional vector space W �K such that KDBWBCQpVpQ�BWBCBVB.
As V;W � K, certainly K � BWB CBVB. Thus, K is finitely generated by
V CW , as needed. �

Appendix

We first give a general result from ring theory to which we were not able to find
a reference; it is the converse to [Rogalski 2014, Lemma 2.11]. We then finish
by presenting Maple and Macaulay2 routines and proofs of computational claims
asserted above.

A result in ring theory. Consider the following setting. Let T D kht1; : : : ; tni
be the free algebra. Set deg ti D di 2 Z�1, and grade T by the induced grading.
Suppose that � W T !A is a surjective homomorphism of graded algebras, and let
ai D �.ti/. By definition, the ai generate A as an algebra. Let J D ker� . Consider
the map

˛ WAŒ�d1�˚ � � �˚AŒ�dn�
.a1;:::;an/
������!A

that sends .r1; : : : ; rn/ 7!
Pn

iD1 airi . Note that ˛ is a homomorphism of graded
right A-modules, and set K D ker˛. Let b1; : : : ; bm be homogeneous elements
of K, where bjD .b

j
1
; : : : ; b

j
n /2AŒ�d1�˚ � � � ˚AŒ�dn�. For all 1 � i � n and

1 � j � m, choose homogeneous elements Qbj
i 2 T so that �. Qbj

i / D b
j
i . Let

qj D
Pn

iD1 ti Qb
j
i . (Note that the qi are homogeneous; in fact, deg qj D deg bj.)

Proposition A.1. Retain the notation above. If fb1; : : : ; bmg generate K as a right
A-module, then fq1; : : : ; qmg generate J as an ideal of T .

Proof. Let J 0 be the ideal of T generated by q1; : : : ; qm. Since

�.qj /D
X

i

�.ti/�. Qb
j
i /D

X
i

aib
j
i D ˛.b

j /D 0;

we get that J 0 � J .
We prove by induction that J 0

k
DJ

k
for all k 2N. Certainly J 0

0
DJ

0
D0. Assume

that we have shown that J 0
<k
D J

<k
, and let h 2 J

k
. Because T is generated by

t1; : : : ; tn, there are homogeneous elements f1; : : : ; fn 2 T , with degfi D k � di ,
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such that hD
P

i tifi . Then

0D �.h/D

nX
iD1

ai�.fi/D ˛.�.f1/; : : : ; �.fn//:

Since the bj generate K D ker˛, there are homogeneous elements r1; : : : ; rm 2A

with .�.f1/; : : : ; �.fn// D
Pm

jD1 bj rj . Let Qr1; : : : ; Qrm be homogeneous lifts of
r1; : : : ; rm. Then for each i we have

�.fi/D
X

j

b
j
i rj D

X
j

�. Qb
j
i Qrj /:

So, fi�
P

j
Qb
j
i Qrj 2 J D ker� . Since degfi D k�di < k, each fi�

P
j
Qb
j
i Qrj 2 J 0.

Thus J 0 containsX
i

tifi �

X
i

ti

�X
j

Qb
j
i Qrj

�
D h�

X
j

�X
i

ti Qb
j
i

�
Qrj D h�

X
j

qj Qrj :

As
P

i ti Qb
j
i D qj 2 J 0 by definition, we have

P
j qj Qrj 2 J 0. Therefore, h 2 J 0

k
. �

Proof of assertions: Maple routines. We begin with the following Maple routine.

Routine A.2. A Maple routine to compute the kernel of �a at a specific degree n

is presented as follows.
Recall from Lemma 1.1(b) that a k-vector space basis of U.WC/n is given by

partitions of n. Moreover, we employ Lemma 1.3 and (1.4) to input a function
f .i; j /D �a.ei/�

j, considered as an element of kŒx;y�.
with(combinat,partition): with(LinearAlgebra):
# Choose value of n
n:=1;
N:=partition(n): f:=(i,j)->((x-j*y)-(i-1)*a*y)*y^(i-1):

Given a partition d WD .n1; : : : ; nk/ of n, we create a list of double-indexed entries
mD .mŒi1; j1�; : : : ;mŒik ; jk �/. Here, i` D n`, and j1 D 0 with j` D j`�1C n`�1

for `� 2. Then
�a.en1

� � � enk
/DmŒi1; j1� � � �mŒik ; jk �;

denoted by P . (Here, P is in list form, which we put in matrix form later for
multiplication. The k-loop enables us to form the product of elements mŒi�; j��.)
P:=[]:
for d from 1 to nops(N) do M:=[]: j[1]:=0:
for l from 1 to nops(N[d]) do

j[l+1]:=j[l]+ N[d][l]: M:=[op(M),f(N[d][l],j[l])]: S[0]:=1:
for k from 1 to nops(M) do S[k]:=S[k-1]*M[k]:
end do: end do:
P:=[op(P),expand(S[nops(M)])]:
end do:
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Next, we define an arbitrary element of �a.U.WC/n/, namely p WD
Pk

iD1 bi�a.eni
/.

B:=[];
for i from 1 to nops(N) do B:=[op(B),b[i]]: end do:
Bvec:=convert(B,Matrix): Pvec:=convert(P,Matrix):
q:=Multiply(Bvec,Transpose(Pvec)):
p:=expand(q[1][1]):

Then we set the coefficients of p equal to 0 and solve for the bi . We rule out the
case when aD 0; 1.
Coeffs:=[coeffs(collect(p,[x,y], ’distributed’),[x,y])]:
solve([op(Coeffs),a<>0,a<>1]);

Note that the number of free bi equals the k-vector space dimension of .ker�a/n.
We continue by verifying the claim from the proof of Lemma 2.6.

Claim A.3. Retain the notation from Section 2, especially that in Lemma 2.6. We
have that J5A.a/2 6� J6A.a/1.

Proof. Nonzero elements in J5 arise as elements of .u�av/vA.a/3 that are divisible
by u on the left. We obtain that

.u�av/vA.a/3

D kŒ.uv�av2/.u3/�˚kŒ.uv�av2/.u.u�av/v/�˚kŒ.uv�av2/..u�2av/v2/�

D kŒr1�˚kŒr2�˚kŒr3�;

where

r1 WD u4v� .3C a/u3v2
C .6C 6a/u2v3

� .6C 18a/uv4
C 24av5;

r2 WD u3v2
� .2C 2a/u2v3

C .2C 5aC a2/uv4
� .6aC 2a2/v5;

r3 WD u2v3
� .1C 3a/uv4

C .2aC 2a2/v5:

We see this as vku D uvk � kvkC1 for all k � 1, vu2 D u2v � 2uv2 C 2v3,
v2u2 D u2v2 � 4uv3 C 6v4, vu3 D u3v � 3u2v2 C 6uv3 � 6v4, and v2u3 D

u3v2� 6u2v3C 18uv4� 24v5 in R. Eliminating the v5 term of r1; r2; r3, we get
that J5 is generated by

s1 WD .3C a/r1C 12r2;

s2 WD .1C a/r1� 12r3;

s3 WD .1C a/r2C .3C a/r3:

By way of contradiction, suppose that J5A.a/2 � J6A.a/1. Recall that J �L,
where L WD uR\ .u� av/vR. Further, J6 DL6, and LD rR for

r D u.uvC .1� a/v2/D .uv� av2/.uC 2v/:

So, si D r.ci1u2Cci2uvCci3v
2/2 J5 � rR2, for some cij 2 k. We produce these

coefficients cij below.
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r1:=x*(x-y)*(x-2*y)*(x-3*y)*y-(3+a)*x*(x-y)*(x-2*y)*y^2
+(6+6*a)*x*(x-y)*y^3-(6+18*a)*x*y^4+24*a*y^5:

r2:=x*(x-y)*(x-2*y)*y^2-(2+2*a)*x*(x-y)*y^3
+(2+5*a+a^2)*x*y^4-(6*a+2*a^2)*y^5:

r3:=x*(x-y)*y^3-(1+3*a)*x*y^4+(2*a+2*a^2)*y^5:
s1:=(3+a)*r1+12*r2: s2:=(1+a)*r1-12*r3: s3:=(1+a)*r2+(3+a)*r3:
r:=x*((x-y)*y+(1-a)*y^2):
eq1:=s1 - r*(c11*(x-3*y)*(x-4*y)+c12*(x-3*y)*y+c13*y^2):
eq2:=s2 - r*(c21*(x-3*y)*(x-4*y)+c22*(x-3*y)*y+c23*y^2):
eq3:=s3 - r*(c31*(x-3*y)*(x-4*y)+c32*(x-3*y)*y+c33*y^2):
Coeffs1:=[coeffs(collect(eq1,[x,y], ’distributed’),[x,y])]:
Coeffs2:=[coeffs(collect(eq2,[x,y], ’distributed’),[x,y])]:
Coeffs3:=[coeffs(collect(eq3,[x,y], ’distributed’),[x,y])]:
solve(Coeffs1); solve(Coeffs2); solve(Coeffs3);
> {a = a, c11 = 3 + a, c12 = 6 - 2 a, c13 = -4 a}
> {a = a, c21 = 1 + a, c22 = -2 - 2 a, c23 = -4 + 8 a}

2
> {a = a, c31 = 0, c32 = 1 + a, c33 = 1 - 2 a - a }

Therefore,
s1 D r..3C a/u2

C .6� 2a/uv� 4av2/;

s2 D r..1C a/u2
� .2C 2a/uv� .4� 8a/v2/;

s3 D r..1C a/uvC .1� 2a� a2/v2/:

By assumption, for iD1; 2; 3 we have si.u�av/vDwiu for somewi 2J6. Take
an arbitrary element of J6DL6D rR3, namely r.di1u3Cdi2u2vCdi3uv2Cdi4v

3/

for dij 2 k. Then, for some ˛i 2 k,

(A.4) pi WD si.u� av/v D ˛ir.di1u4
C di2u2vuC di3uv2uC di4v

3u/:

Continuing with the code we enter:
s1:=r*((3+a)*(x-3*y)*(x-4*y)+(6-2*a)*(x-3*y)*y-4*a*y^2):
s2:=r*((1+a)*(x-3*y)*(x-4*y)-(2+2*a)*(x-3*y)*y-(4-8*a)*y^2):
s3:=r*((1+a)*(x-3*y)*y+(1-2*a-a^2)*y^2):
p1:=s1*(x-(5+a)*y)*y: p2:=s2*(x-(5+a)*y)*y: p3:=s3*(x-(5+a)*y)*y:
Eq1:=p1 - alpha1*r*(d11*(x-3*y)*(x-4*y)*(x-5*y)*(x-6*y)

+ d12*(x-3*y)*(x-4*y)*y*(x-6*y)
+ d13*(x-3*y)*y^2*(x-6*y) + d14*y^3*(x-6*y)):

Eq2:=p2 - alpha2*r*(d21*(x-3*y)*(x-4*y)*(x-5*y)*(x-6*y)
+ d22*(x-3*y)*(x-4*y)*y*(x-6*y)
+ d23*(x-3*y)*y^2*(x-6*y) + d24*y^3*(x-6*y)):

Eq3:=p3 - alpha3*r*(d31*(x-3*y)*(x-4*y)*(x-5*y)*(x-6*y)
+ d32*(x-3*y)*(x-4*y)*y*(x-6*y)
+ d33*(x-3*y)*y^2*(x-6*y) + d34*y^3*(x-6*y)):

CCoeffs1:=[coeffs(collect(Eq1,[x,y], ’distributed’),[x,y])]:
CCoeffs2:=[coeffs(collect(Eq2,[x,y], ’distributed’),[x,y])]:
CCoeffs3:=[coeffs(collect(Eq3,[x,y], ’distributed’),[x,y])]:
L1:=solve(CCoeffs1): L2:=solve(CCoeffs2): L3:=solve(CCoeffs3):
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for i from 1 to nops([L1]) do print(L1[i][1]); end do;
> a = 9, a = 1
for i from 1 to nops([L2]) do print(L2[i][1]); end do;
> a = 1, a = 1/2
for i from 1 to nops([L3]) do print(L3[i][1]); end do;

2
> a = 1, a = RootOf(-2 - 3 _Z + _Z ) - 1

So in order for (A.4) to hold for i D 1; 2; 3, we must have a D 1. This yields a
contradiction, as desired. �

We now verify the claim from the proof of Proposition 2.8.

Claim A.5. Retain the notation from Section 2, especially that in Proposition 2.8.
We have that h2, h3, e1h1, h1e1 are k-linearly independent and that

h4 D 2a.2aC 1/h2� h3� .6C 4a/e1h1C .2C 4a/h1e1;

h5 D 4a2h2� h3� .4C 4a/e1h1C .4a/h1e1:

Proof. This is established simply by considering the linear combination

c1h2C c2h3C c3h4C c4h5C c5e1h1C c6h1e1;

setting the coefficients of the basis elements of U.WC/6 equal to 0, and solving for
c1; : : : ; c6. By Lemma 1.1(a), the basis elements of U.WC/6 are

e6
1 ; e4

1e2; e2
1e2

2 ; e3
2 ; e3

1e3; e1e2e3; e2
3 ; e2

1e4; e2e4; e1e5; e6:

So, we establish the claim via the following Maple routine:
with(LinearAlgebra):
M:=Matrix([
[0,0, 0, 0, 0, 0, 3, 0, -4, 1, 2],
[0,0,-4,-4, 4, 0,20*a^2+14*a-7, 0, 0,-16*a^2-18*a-5,16*a^3+36*a^2+16*a-2],
[0,0, 0, 4, 0, -4, 7-4*a, 0, 0, 4*a+1, -4*a^2- 4*a+2],
[0,0, 0, 4, 0, 0, 7-14*a, -4, 0, 14*a+5, -12*a^2-16*a+2],
[0,0, 1, 0,-1, -2*a, 0,2*a+1, 0, -a^2-a, 0],
[0,0, 1, 0,-1,-2*a-2, 2*a,2*a+3,4*a, -a^2-7*a-2, 4*a^2+4*a]
]);
P:=Matrix([
[c1, 0, 0, 0, 0, 0],
[ 0, c2, 0, 0, 0, 0],
[ 0, 0, c3, 0, 0, 0],
[ 0, 0, 0, c4, 0, 0],
[ 0, 0, 0, 0, c5, 0],
[ 0, 0, 0, 0, 0, c6]
]);
B:=Multiply(P,M);
for i from 1 to 11 do

L[i]:=B[1,i]+B[2,i]+B[3,i]+B[4,i]+B[5,i]+B[6,i]:
end do:
V:=solve([L[1],L[2],L[3],L[4],L[5],L[6],L[7],L[8],L[9],L[10],L[11]],

[c1,c2,c3,c4,c5,c6]);
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>[[c1 = -2 (c3 + 2 c3 a + 2 c4 a) a, c2 = c3 + c4, c3 = c3, c4 = c4,
c5 = 6 c3 + 4 c4 + 4 c3 a + 4 c4 a, c6 = -2 c3 - 4 c3 a - 4 c4 a]]

eval(V,[c3=1,c4=0]);
>[[c1 = -2 (2 a + 1) a, c2 = 1, 1 = 1, 0 = 0, c5 = 6 + 4 a, c6 = -2 - 4 a]]
eval(V,[c3=0,c4=1]);
> 2

[[c1 = -4 a , c2 = 1, 0 = 0, 1 = 1, c5 = 4 + 4 a, c6 = -4 a]] �
We now verify the claims from the proof of Lemma 5.12.

Claim A.6. Retain the notation from Lemma 5.12.

(a) b5QCb6QCb7Q3x.xy�yz/.xyzCy2z/D .uv�vw/.uC2v/.uC4v/vw.

(b) .M 0\ ker �/� hQi for i � 2, where

hD .uv� vw/.uC 2v/.v3w� v2w2/D .xy �yz/x.y3z�y2z2/:

Proof. (a) Using Lemma 1.3 and (1.4), we see that �1
6
b5u C b5v C

1
6
b6 D

.uv� vw/.uC 2v/.uC 4v/vw:
b5:=(x*y-y*z)*((x-2*y)*(x-3*y)*(x-4*y)

-6*((x-2*y)*y-y*z)*(x-4*y)+12*(x-2*y)*((x-3*y)*y-y*z)):
b6:=(x*y-y*z)*(-48*((x-2*y)*y-3*y*z)*y^2

-36*(x-2*y)*((x-3*y)*y-2*y*z)*y
+(x-2*y)*(x-3*y)*(x-4*y)*(x-5*y)):

r:=x*(x*y-y*z)*(x*y*z+y^2*z):
p:=c1*b5*(x-5*y)+c2*b5*y+c3*b6 - r:
Coeffs:=[coeffs(collect(p,[x,y,z], ’distributed’),[x,y,z])]:
solve(Coeffs);
> {c1 = -1/6, c2 = 1, c3 = 1/6}

(b) It is easy to see that �.h/ D 0, so it suffices to show that hQ0, hQ1, hQ2

are in M 0 WD b5B C b6B C b7B. Recall that Q is the subalgebra of S gener-
ated by u; v; vw, and B is the subalgebra of S generated by u;uv � vw. Since
deg.h/D 7,

hQ0 D fc1h j c1 2 kg;

hQ1 D fc2huC c3hv j ci 2 kg;

hQ2 D fc4hu2
C c5huvC c6hv2

C c7hvw j ci 2 kg;

and moreover,

M 0
7 D fd1b5u2

C d2b5.uv� vw/C d3b6uC d4b7 j di 2 kg;

M 0
8 D fd5b5u3

C d6b5u.uv� vw/C d7b5.uv� vw/u

C d8b6u2
C d9b6.uv� vw/C d10b7u j di 2 kg;

M 0
9D fd11b5u4

Cd12b5u2.uv�vw/Cd13b5u.uv�vw/uCd14b5.uv�vw/u
2

C d15b5.uv� vw/
2
C d16b6u3

C d17b6u.uv� vw/

C d18b6.uv� vw/uC d19b7u2
C d20b7.uv� vw/ j di 2 kg;
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Continuing with the code in part (a), we enter:

b7:=(x*y-y*z)*((x-2*y)*(x-3*y)*(x-4*y)*(x-5*y)*(x-6*y)
-40*(((x-2*y)*y-y*z)*((x-4*y)*y-y*z)*(x-6*y)
-3*((x-2*y)*y-y*z)*(x-4*y)*((x-5*y)*y-y*z)
+3*(x-2*y)*((x-3*y)*y-y*z)*((x-5*y)*y-y*z))):

h:=(x*y-y*z)*x*(y^3*z-y^2*z^2):
hQ0:=c1*h:
hQ1:=c2*h*(x-7*y)+c3*h*y:
hQ2:=c4*h*(x-7*y)*(x-8*y)+c5*h*(x-7*y)*y+c6*h*y^2+c7*h*y*z:
m7:=d1*b5*(x-5*y)*(x-6*y)+d2*b5*((x-5*y)*y-y*z)+d3*b6*(x-6*y)+d4*b7:
m8:=d5*b5*(x-5*y)*(x-6*y)*(x-7*y)+d6*b5*(x-5*y)*((x-6*y)*y-y*z)

+d7*b5*((x-5*y)*y-y*z)*(x-7*y)+d8*b6*(x-6*y)*(x-7*y)
+d9*b6*((x-6*y)*y-y*z)+d10*b7*(x-7*y):

m9:=d11*b5*(x-5*y)*(x-6*y)*(x-7*y)*(x-8*y)
+d12*b5*(x-5*y)*(x-6*y)*((x-7*y)*y-y*z)
+d13*b5*(x-5*y)*((x-6*y)*y-y*z)*(x-8*y)
+d14*b5*((x-5*y)*y-y*z)*(x-7*y)*(x-8*y)
+d15*b5*((x-5*y)*y-y*z)*((x-7*y)*y-y*z)+d16*b6*(x-6*y)*(x-7*y)*(x-8*y)
+d17*b6*(x-6*y)*((x-7*y)*y-y*z)+d18*b6*((x-6*y)*y-y*z)*(x-8*y)
+d19*b7*(x-7*y)*(x-8*y)+d20*b7*((x-7*y)*y-y*z):

p7:=m7 - hQ0: p8:=m8 - hQ1: p9:=m9 - hQ2:
Coeffs7:=[coeffs(collect(p7,[x,y,z], ’distributed’),[x,y,z])]:
Coeffs8:=[coeffs(collect(p8,[x,y,z], ’distributed’),[x,y,z])]:
Coeffs9:=[coeffs(collect(p9,[x,y,z], ’distributed’),[x,y,z])]:
solve(Coeffs7,[d1,d2,d3,d4]);

c1 c1 c1 c1
> [[d1 = - ----, d2 = ----, d3 = - ----, d4 = ----]]

24 4 48 16
solve(Coeffs8,[d5,d6,d7,d8,d9,d10]);

c2 c3 c3 c2 c3
> [[d5 = - ---- - ----, d6 = ----, d7 = ---- + ----,

24 48 24 4 16

c2 c3 c3 c2 c3
d8 = - ---- + ---, d9 = ----, d10 = ---- + ---- ]]

48 192 48 16 64

solve(Coeffs9,[d11,d12,d13,d14,d15,d16,d17,d18,d19,d20]);
c4 c6 c5 c7

> [[d11 = 8 d16 + ---- + --- - ---- - ----, [...],
8 144 18 18

9 c4 c6 25 c5 11 c7
d20 = -108 d16 - ---- - ---- + ----- + -----]]

4 24 48 24

Thus, all arbitrary elements of hQ0, hQ1, hQ2 are contained, respectively, in M 0
7
,

M 0
8
, M 0

9
, as desired. �
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Proof of assertions: Macaulay2 routines. The following Macaulay2 code verifies
Lemma 4.2(b) and (4.6); see lines o7–o10 and line o13, respectively.

Macaulay2, version 1.4
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,
PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : ringX=QQ[w,x,y,z]/ideal(x*z-y^2);
i2 : taustar=map(ringX,ringX,{w-2*x+2*z,z,-y-2*z,x+4*y+4*z});
i3 : ringP1a=QQ[x,y,a];
i4 : mustar=map(ringP1a, ringP1a, {x-y,y,a});
i5 : psistar=map(ringP1a, ringX, {2*x^2-4*x*y-6*a*y^2,x^2-2*x*y+y^2,

-x^2+3*x*y-2*y^2,x^2-4*x*y+4*y^2});
i6 : use ringX;
i7 : mustar(psistar(w))==psistar(taustar(w)) o7 = true
i8 : mustar(psistar(x))==psistar(taustar(x)) o8 = true
i9 : mustar(psistar(y))==psistar(taustar(y)) o9 = true
i10 : mustar(psistar(z))==psistar(taustar(z)) o10 = true
i11 : num=w+12*x+22*y+8*z;
i12 : den=12*x+6*y;

2
- y a + x*y

i13 : psistar(num)/psistar(den) o13 = ----------- o13 : frac(ringP1a)
2

x - x*y
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