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DEGENERATE FLAG VARIETIES AND SCHUBERT VARIETIES:
A CHARACTERISTIC FREE APPROACH

GIOVANNI CERULLI IRELLI, MARTINA LANINI AND PETER LITTELMANN

We consider the PBW filtrations over Z of the irreducible highest weight
modules in type An and Cn. We show that the associated graded modules can
be realized as Demazure modules for group schemes of the same type and
doubled rank. We deduce that the corresponding degenerate flag varieties
are isomorphic to Schubert varieties in any characteristic.

Introduction

Introduced by Evgeny Feigin in 2010, degenerate flag varieties naturally arise from
a representation theoretic context. In fact, given a finite dimensional, highest weight
irreducible module V(λ) for a simple finite dimensional, complex Lie algebra, the
corresponding degenerate flag variety F`(λ)a is the closure of a certain highest
weight orbit in the projectivization of V(λ)a, a degenerate version of V(λ).

If the algebra one starts with is of type An or Cn , it was shown in [Cerulli Irelli and
Lanini 2015] that, surprisingly, degenerate flag varieties can be realized as Schubert
varieties in a partial flag variety of the same type and bigger rank. It is hence natural
to ask whether also the modules V(λ)a are isomorphic to some already investigated
objects. The aim of this paper is to address such a question and provide a positive
answer to it. Feigin’s degeneration procedure can be carried out over Z — see [Feigin
et al. 2013] — and it is in this generality that we decided to approach the problem.

Our main theorem is the realization of V(λ)a as a Demazure module for a
group scheme of the same type and doubled rank. This fact allows us to recover,
as a corollary, the above-mentioned realization of F`(λ)a as a Schubert variety.
While the arguments in [Cerulli Irelli and Lanini 2015] relied on a linear algebraic
description of the degenerate flag variety due to Feigin [2012], the proof we obtain
here only uses the definition of F`(λ)a as a closure of a highest weight orbit; hence
it is more conceptual.

In what follows, we describe in more detail the main results of this article.
For simplicity let us start with the complex algebraic group SLn(C) and its Lie

algebra g = sln . We fix a Cartan decomposition g = n− ⊕ h⊕ n+, where n is
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the subalgebra of strictly upper triangular matrices, h is the Cartan subalgebra
consisting of diagonal matrices and n− is the subalgebra of strictly lower triangular
matrices. Let b= h⊕n+ be the corresponding Borel subalgebra of g and let B ⊂G
be the Borel subgroup with Lie algebra b.

We use the notation B̃, b̃, ñ+, h̃, and ñ− for the corresponding subgroup of
G̃ = SL2n(C) and subalgebras of g̃ = sl2n . Let n−,a ⊂ sl2n and N−,a ⊆ SL2n(C)

be the following commutative Lie subalgebra and commutative unipotent subgroup,
respectively:

(1) n−,a :=

{(
0 N
0 0

)
∈ sl2n | N ∈ n−

}
, N−,a :=

{(
1I N
0 1I

)
∈ SL2n | N ∈ n−

}
.

We view n−,a as the abelianization of n−, i.e., we have the canonical vector space
isomorphism between the two vector spaces, but n−,a is endowed with the trivial
Lie bracket. The enveloping algebra of n−,a is S•(n−,a). The embedding n−,a ↪→ b̃

induces an embedding S•(n−,a) ↪→U(b̃), so any U(b̃)-module inherits in a natural
way the structure of a S•(n−,a)-module.

A well investigated class of U(b̃)-modules are the Demazure modules: let µ
be a dominant integral weight for g̃ and let Ṽ(µ) be the corresponding irreducible
representation. For an element w of the Weyl group W̃ of g̃, the weight space
Ṽ(µ)wµ of weight wµ is one-dimensional; fix a generator vwµ. Recall that the
Demazure submodule Ṽ(µ)w is by definition the cyclic U(b̃)-module generated
by vwµ, i.e., Ṽ(µ)w =U(b̃).vwµ, and the Schubert variety X (w) is the closure of
the orbit B̃.[vwµ] ⊆ P(Ṽ(µ)).

A special class of S•(n−,a)-modules has been investigated in [Feigin et al. 2011a;
2011b]. Let λ be a dominant integral weight for g, let V(λ) be the corresponding
irreducible representation and fix a highest weight vector vλ. The PBW filtration
on U(n−) induces a filtration on the cyclic U(n−)-module V(λ)=U(n−).vλ, and
the associated graded space V a(λ) := gr V(λ) becomes a module for the associated
graded algebra S•(n−) := gr U(n−)' S•(n−,a).

The action of n−,a on V a(λ) can be integrated to an action of N−,a. In analogy
with the classical case we call the closure of the orbit Fa

λ := N−,a .[vλ] ⊆P(V a(λ))

the degenerate flag variety.
The aim of this article is to connect these two constructions and extend the results

in [Cerulli Irelli and Lanini 2015] to an algebraically closed field k of arbitrary
characteristic. In fact, the results hold even over Z. For simplicity, we formulate
them in the introduction for an algebraically closed field k. In the following,
we consider the case G = SLn(k) and G̃ = SL2n(k), respectively G = Sp2m(k),
and G̃ = Sp4m(k), and we replace the irreducible module of highest weight λ
by the Weyl module of highest weight λ, using the same notation V(λ). For the
precise description of the highest weight 9(λ), see Definitions 2.1 and 5.3; for a
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description of the Weyl group element τ ∈ W̃, see Definitions 2.2 and 5.1; and for
the construction of the Lie algebra n−,a in the symplectic case, see Section 5. For a
dominant G-weight λ let λ∗ be the dual dominant weight, so for the symplectic case
we have λ=λ∗, and in the SLn case we have λ∗=

∑n−1
i=1 miωn−i for λ=

∑n−1
i=1 miωi

in the notation as in [Bourbaki 1968].

Theorem. Let λ be a dominant G-weight.

(i) The Demazure submodule Ṽk(9(λ
∗))τ of the G̃-module Ṽk(9(λ

∗)) is isomor-
phic, as an n−,a-module, to the abelianized module V a(λ).

(ii) The Schubert variety X (τ )⊂P(Ṽ(9(λ∗))τ ) is isomorphic to the degenerate flag
variety Fa(λ), and this isomorphism induces an S•(n−,a)-module isomorphism

H 0(X (τ ),L9(λ∗))' (V a(λ))∗.

Using the isomorphism above, we deduce the defining relations for V a(λ) from
the defining relations of the Demazure module. Translated back into the language
of the abelianized algebras we get the following: in the SLn case, let R++ = R+

be the set of positive roots, and in the symplectic case, set

R++ = {εi − εj | 1≤ i < j ≤ m} ∪ {2εi | 1≤ i ≤ m}.

Corollary. The abelianized module V a(λ) is isomorphic as a cyclic S•(n−,a)-
module to S•(n−,a)/I (λ), where I (λ) is the ideal:

I (λ)= S•(n−,a)
(
U(n+) ◦ span{ f (〈λ,α

∨
〉+1)

α | α ∈ R++}
)
⊆ S•(n−,a).

The identification of the degenerate flag variety as a Schubert variety implies the
following corollary immediately; see also [Feigin and Finkelberg 2013; Feigin et al.
2014].

Corollary. The degenerate flag variety Fa(λ) is projectively normal, and it has
rational singularities.

1. Some special commutative unipotent subgroups

Let k be a field. Given a subspace N⊆ Mn(k) and a vector space automorphism
η :N→N, denote by Na

η ⊆ M2n(k) respectively N a
η ⊆GL2n(k) the following com-

mutative nilpotent Lie subalgebra of M2n(k), respectively commutative unipotent
subgroup of GL2n(k):

Na
η :=

{(
0 η(A)
0 0

) ∣∣∣∣ A ∈N
}
, N a

η :=

{(
1 η(A)
0 1

) ∣∣∣∣ A ∈N
}
.

If N⊆ Mn(k) is a Lie subalgebra, then we think of Na
η as an abelianized version

of N. Similarly one may think of N a
η as an abelianized version of a subgroup

N ⊆ GL2n(k). We will be more precise in the following examples.
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Example 1.1. Let k be an algebraically closed field of characteristic zero. We fix as
a maximal torus T ⊂ SLn the subgroup of diagonal matrices, and let B be the Borel
subgroup of upper triangular matrices. Let us denote by sln , b, and h the correspond-
ing Lie algebras and let g=n−⊕h⊕n+ be the Cartan decomposition. The choice of
a maximal torus and a Borel subgroup as above determines the set of positive roots
8+ and hence, according to the adjoint action of h, the root space decomposition
n− =

⊕
α∈8+ n

−

−α. In this example we set N= n−, and N =U− is the unipotent
radical of the opposite Borel subgroup B−. The map η is the identity map, so we
just omit it. Henceforth, we write n−,a for Na

⊂ sl2n(k) and N−,a for N a
⊂ SL2n .

Note that n−,a ⊂ sl2n is a Lie subalgebra of the Borel subalgebra b̃⊂ sl2n and
N−,a is an abelian subgroup of the Borel subgroup B̃ ⊂ SL2n (of upper triangular
matrices). We can think of N−,a as an abelianized version of U−.

The subgroup N−,a, as well as the Lie algebra n−,a, is stable under conjugation
with respect to the maximal torus T̃ ⊂SL2n , where T̃ ⊂SL2n consists of the diagonal
matrices. The group N−,a hence decomposes as a product of root subgroups of
the group SL2n , and n−,a decomposes into the direct sum of root subspaces for the
Lie algebra sl2n . We get an induced map φ :8+→ 8̃+ between the set of positive
roots of sln and the positive roots of sl2n , such that n−,a =

⊕
α∈8+ n

−,a
φ(α).

Example 1.2. Let k be an algebraically closed field of characteristic 0. Let
{e1, . . . , e2n} be the canonical basis of k2n, and fix a nondegenerate skew symmetric
form by the conditions 〈ei , ej 〉= δj,2n−i+1=−〈ej , ei 〉 for 1≤ i ≤ n, 1≤ j ≤ 2n. Let
Sp2m be the associated symplectic group. By the choice of the form we can fix as a
Borel subgroup B the subgroup of upper triangular matrices in Sp2m and let T be its
maximal torus consisting of diagonal matrices. Let us denote by sp2m , b, and h the
corresponding Lie algebras and let g= n−⊕ h⊕ n+ be the Cartan decomposition.

The choice of the torus and the Borel subgroup as above determines a set of
positive roots 8+ and hence, according to the adjoint action of h, the root space
decomposition n− =

⊕
α∈8+ n

−

−α. In this example we set N = n−, and N = U−

is the unipotent radical of the opposite Borel subgroup B−. Let η : n−→ n− be
the linear map sending a matrix (mi, j )1≤i, j≤2n to the matrix (m′i, j )1≤i, j≤2n , where
m′i, j = mi, j if i ≤ n or j ≤ n and m′i, j = −mi, j if both indices are strictly larger
than n. We write henceforth n−,aη for Na

η ⊂ sp4n(k) and N−,aη for N a
η ⊂ Sp4n .

Note that n−,aη ⊂ sp4n is a Lie subalgebra of the Borel subalgebra (of upper
triangular matrices) b̃⊂ sp4n and N−,aη is an abelian subgroup of the Borel subgroup
B̃ ⊂ Sp4n (of upper triangular matrices). We can think of N−,aη as an abelianized
version of U−.

The subgroup N−,aη is stable under conjugation with respect to the maximal torus
T̃ ⊂Sp4n , where T̃ ⊂Sp4n consists of the diagonal matrices. The group N−,aη hence
decomposes as a product of root subgroups of the group Sp4n and n−,a decomposes
into the direct sum of root subspaces for the Lie algebra sp4n . We get an induced
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map φ :8+→ 8̃+ between the set of positive roots of sp2n and the positive roots
of sp4n , such that n−,aη =

⊕
α∈8+ n

−,a
φ(α),η.

Example 1.3. To get a characteristic free approach for G as above, let GZ be a split
and connected simple algebraic Z-group of type An or Cn. For any commutative
ring A set GA = (GZ)A, and for a field set G = Gk , for this and the following;
see also [Jantzen 1987]. Then Gk is for any algebraically closed field a reduced
k-group, and it is connected and reductive. Its Lie algebra Lie(GZ) is a free Lie
algebra of finite rank and Lie Gk = Lie(GZ)⊗Z k. Let TZ ⊂ GZ be a split maximal
torus and set TA = (TZ)A for any ring A and T = Tk . We have a root space
decomposition Lie G = Lie T ⊕

⊕
α∈8(Lie G)α where (Lie G)α = (Lie GZ)α⊗Z k,

and corresponding root subgroups (defined over Z) xα : Ga → G such that the
tangent map dxα induces an isomorphism between the Lie algebra of the additive
group Ga and (Lie G)α. The functor which associates to any commutative ring A
the group xα(Ga(A))= xα(A) is a closed subgroup of G denoted by Uα, and we
have Lie(Uα)= (Lie G)α . Over Z we denote the corresponding subgroup by Uα,Z,
and over a field k we have Uα = (Uα,Z)k .

The construction described in Examples 1.1 and 1.2 makes (in this language)
sense over Z or over any field. As before, let G̃ be the group of the same type but
twice the rank, we denote the corresponding Borel subgroup, maximal torus, etc.
by B̃, T̃, etc. The construction in the examples above associates to every root α ∈8
a root φ(α) in the root system of G̃. For the Z-group GZ we have the subgroup
U−Z and the Lie algebra n−Z =

⊕
α∈8+ n

−

Z,−α, and we associate to this pair a new
pair given by a commutative subgroup N−,aη of the Z-group G̃Z and an abelian Lie
algebra n−,aZ,η . The first is the subgroup of the Borel subgroup B̃Z ⊂ G̃Z generated
by the commuting root subgroups Uφ(α),Z, α ∈8+, and the second is the abelian
Lie algebra n−,aZ,η =

⊕
α∈8+(Lie G)∼Z,φ(α) given as the sum of root subalgebras.

2. A special Schubert variety: the SLn case

We want to realize in the situation of Example 1.1 the abelianized representation
V(λ)a for N−,aη as a Demazure submodule of an irreducible representation for the
group SL2n .

2A. A special Weyl group element. Let W̃ be the Weyl group of SL2n(C); it is
the symmetric group S2n generated by the transpositions si , i = 1, . . . , 2n − 1.
Let h⊂ g= sln (respectively, h̃⊂ g̃= sl2n) be the Cartan subalgebra of traceless
complex diagonal matrices. For an element α ∈ h∗ and an element h ∈ h we denote
by 〈h, α〉 the evaluation of α in h. Let {ε1, . . . , εn} be the elements of the dual
vector space h∗ such that 〈h, εi 〉 is the i-th entry in the diagonal matrix h ∈ h. We
use the same notation 〈h̃, α̃〉 for elements h̃ ∈ h̃ and α̃ ∈ h̃∗, and the linear forms
{ε̃1, . . . , ε̃2n} in h̃∗ are defined as above.
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The roots of g (resp., g̃) are the elements αi, j := εi − εj (resp., α̃i, j = ε̃i − ε̃j ) for
i 6= j . We choose as a Borel subalgebra of g the subalgebra b of upper triangular
matrices. The corresponding simple roots are α1, · · · , αn−1 given by αi := αi,i+1.
For every root α, we denote by α∨ its coroot: this is the unique element of h such
that the reflection sα ∈ h∗ along α acts as sα(λ)=λ−〈α∨, λ〉α. Moreover we denote
by Eα the corresponding root vector. We denote by ωi = ε1+ · · ·+ εi (resp., ω̃i =

ε̃1+· · ·+ ε̃i ) the i-th fundamental weight of g (resp., g̃), where i = 1, 2, . . . , n− 1
(resp., i = 1, . . . , 2n− 1). They are characterized by the property 〈α∨i , ωj 〉 = δi, j .

Definition 2.1. Let 9 : h∗→ h̃∗ be the linear map defined on the weight lattice by

9

( n−1∑
i=1

aiωi

)
:=

n−1∑
i=1

ai ω̃2i .

Note that9 sends dominant weights to dominant weights. For every fundamental
weight ω̃k , we denote the corresponding parabolic subgroup by Pω̃k and by W̃ω̃k

the corresponding subgroup of W̃ which is the Weyl group of the semisimple part
of Pω̃k . Note that W̃ω̃k is generated by all the simple transpositions si but sk . Let
ρ =ω1+· · ·+ωn−1. Then 9(ρ)= ω̃2+ ω̃4+· · ·+ ω̃2n−2. The parabolic subgroup
Q = Pω̃2+···+ω̃2n−2 which is the stabilizer of 9(ρ) will play an important role. The
Weyl group of the semisimple part of Q is denoted by W̃ J.

Definition 2.2. We define in the Weyl group W̃ the element τ by

(2) τ = (snsn+1 · · · s2n−3s2n−2)(sn−1sn · · · s2n−4) · · · (s4s5s6)(s3s4)s2.

It is easy to see that the decomposition is reduced and τ is a minimal length
representative in its class in W̃/W̃ J. Another description of τ can be given by
viewing τ as a permutation of the set {1, . . . , 2n}:

(3) τ(t)=
{

n+ k if t = 2k,
k if t = 2k− 1,

for k = 1, 2, . . . , n. It follows now immediately from (3):

Lemma 2.3. In the irreducible SL2n(C)-representation Ṽ(ω̃2i )=
∧2i

C2n let v0 be
the highest weight vector v0 = e1 ∧ e2 ∧ · · · ∧ e2i . Then (up to a sign),

τ(v0)= vτ = e1 ∧ e2 ∧ · · · ∧ ei ∧ en+1 ∧ en+2 ∧ · · · ∧ en+i .

Let λ= b1ε1+ · · ·+ bn−1εn−1, with b1 ≥ · · · ≥ bn−1 ≥ 0, be a dominant weight
for SLn(C). The next result follows directly from Lemma 2.3.

Lemma 2.4. τ(9(λ))= b1ε̃1+ · · ·+ bn−1ε̃n−1+ b1ε̃n+1+ · · ·+ bn−1ε̃2n−1. �
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In Example 1.1 we have introduced a map φ :8+→ 8̃+ between the positive
roots of sln and the positive roots of sl2n . Note that the image of α = εi − εj ,
1≤ i < j ≤ n is the root φ(α)= ε̃j − ε̃n+i .

Lemma 2.5. (i) Let λ be a dominant weight for SLn(C), and let α̃ be a positive
SL2n-root. Then 〈α̃∨, τ (9(λ))〉< 0 only if the root space of α̃ lies in n−,a.

(ii) Let λ be a dominant SLn-weight, and let α = εi − εj be a positive SLn-root.
Then

〈α∨, λ〉 = −〈φ(α)∨, τ (9(λ))〉.

(iii) Let λ be a dominant weight for SLn(C), and let α̃ = ε̃p − ε̃q be a positive
SL2n-root. Then Eα̃vτ 6= 0 in Ṽ(9(λ)) only if α̃ is of the form α̃ = ε̃j − ε̃n+i ,
1≤ i < j ≤ n and 〈(εi − εj )

∨, λ〉> 0.

Proof. Let α̃= ε̃i−ε̃j be a positive root. By Lemma 2.4, for λ=b1ε1+· · ·+bn−1εn−1,
we get

〈α̃∨, τ (9(λ))〉 =


bi − bj ≥ 0 if 1≤ i < j ≤ n,

bi − bj−n ≥ 0 if 1≤ i ≤ n and n+ i ≤ j ≤ 2n,
bi − bj−n ≤ 0 if 1≤ i ≤ n and n+ 1≤ j < n+ i,

bi−n − bj−n ≥ 0 if n+ 1≤ i < j ≤ 2n,

which proves the lemma. �

The decomposition in (2) is reduced, but if we apply τ to a fundamental weight,
then it is possible to omit some of the reflections. A simple calculation shows:

Lemma 2.6. Let ω̃2i be the 2i -th fundamental weight for SL2n(C). Then

τ(ω̃2i )= (snsn+1 · · · sn+i−1) · · · (si+2 · · · s2i+1)(si+1 · · · s2i−1s2i )(ω̃2i ).

Let L(i) be the semisimple part of the Levi subgroup of SL2n(C) associated
with the simple roots α̃i+1, α̃i+2, . . . , α̃i+n−1, denote by l(i) the Lie algebra of L(i).
Note that L(i) is isomorphic to SLn(C). Let $1, . . . ,$n−1 be the fundamental
weights of L(i), the enumeration is such that the simple root α̃i+ j of L(i)⊆SL2n(C)

corresponds to $j .
The restriction of ω̃2i to L(i) is$i . Let W L(i) be the Weyl group of L(i), we can

identify it with the subgroup of the Weyl group of SL2n generated by the reflections
si+1, si+2, . . . , si+n−1. Using Lemma 2.6, it is easy to see:

Lemma 2.7. A reduced decomposition of the longest word of W L(i) modulo the
stabilizer W L(i)

$i
of $i in W L(i) is given by

(snsn+1 · · · sn+i−1) · · · (si+2 · · · s2i+1)(si+1 · · · s2i−1s2i ).
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3. The fundamental representations: the sln case

We switch now to Lie algebras and hyperalgebras over Z. Fix a Chevalley basis for
the Lie algebra gZ = sln,Z ⊂ sln,C:

{ fα, eα | α ∈8+} ∪ {h1, . . . , hn−1},

where fα ∈ gZ,−α , eα ∈ gZ,α , and hi ∈ hZ. For any m ∈Z≥1, we define the following
elements in U(g):

(4) e(m)α =
em
α

m!
, f (m)α =

f m
α

m!
,

(
hi

m

)
=

hi (hi − 1) · · · (hi −m+ 1)
m

,

and for m = 0 we set e(0)α = f (0)α =
(hi

0

)
= 1. Recall that the hyperalgebra UZ(sln)

of (SLn)Z is the Z-subalgebra of the complex enveloping algebra U(sln) generated
by the elements defined in (4). We will use capital letters to denote the Chevalley
basis elements for sl2n,Z (e.g., Eα̃, Fα̃, Hi ) and the generators of the hyperalgebra
UZ(sl2n) (e.g., E (m)α̃ , F (m)α̃ ,

(Hi
m

)
). Similarly, let UZ(b̃) be the subalgebra generated

by all E (m)α̃ for m≥0 and α̃ >0, and all
(Hi

m

)
for i =1, . . . , 2n−1 and m≥0. Denote

by UZ(l(i)) the hyperalgebra associated with l(i), i.e., the subalgebra generated by
all F (m)α̃ , E (m)α̃ for m ≥ 0 and α̃ > 0, a root of the Levi subgroup L(i), and by all(Hj

m

)
for j = i + 1, . . . , i + n− 1.

Let µ be a dominant integral weight for SL2n(C) and denote by Ṽ(µ) the irre-
ducible SL2n(C)-representation of highest weight µ. Fix a highest weight vector vµ;
the corresponding Z-form is ṼZ(µ)=UZ(sl2n)vµ. To define the Demazure module
ṼZ(µ)w, fix a representative w̌ of w in the simply connected Chevalley group
associated with sl2n,Z and set vw := w̌(vµ). The Demazure module ṼZ(λ)w is the
cyclic UZ(b̃)-subrepresentation UZ(b̃).vw ⊆ ṼZ(µ).

Lemma 3.1. The Demazure module ṼZ(`ω̃2i )τ contained in ṼZ(`ω̃2i ) is the Weyl
module VZ(`$i ) of highest weight `$i for UZ(l(i)).

Proof. Consider 9(`ωi )= `ω̃2i and recall that the restriction of ω̃2i to l(i) is $i .
So the UZ(l(i))-submodule UZ(l(i))v`ω̃2i ⊆ ṼZ(`ω̃2i ) is the Weyl module VZ(`$i )

of highest weight `$i for UZ(l(i)). Let UZ(b(i)) be the subalgebra of UZ(l(i))
generated by the E (m)α̃ for m ≥ 0 and α̃ > 0, a root of l(i), and all

(Hj
m

)
for j =

i + 1, . . . , i + n− 1.
The Weyl module VZ(`$i ) is a cyclic UZ(b(i))-module and is generated by a

lowest weight vector of the form w̌0,i (v`$i ), where w̌0,i is an appropriate represen-
tative (in the Chevalley group associated with l(i)) of the longest element w0,i of
the Weyl group W L(i) of l(i). Recall that W L(i) can be identified with the subgroup
of W̃ generated by si+1, . . . , sn+i−1. Now

ṼZ(`ω̃2i )τ =UZ(b̃)vτ =UZ(b̃)vw0,i =UZ(b(i))vw0,i = VZ(`$i )⊆ ṼZ(`ω̃2i )



DEGENERATE FLAG VARIETIES AND SCHUBERT VARIETIES 291

by Lemmas 2.5, 2.6, and 2.7. �

The previous result implies in particular:

Corollary 3.2. rank ṼZ(9(`ωi ))τ = rank VZ(`ωi ).

Let ι : sln → sln be the Chevalley involution defined by ι|h = −1 and that ι
exchanges eα and − fα. It follows that ι(n−Z ) = n+Z , and this map extends to an
isomorphism of the corresponding hyperalgebras ι : UZ(n

−)→ UZ(n
+) and the

associated graded versions obtained via the PBW filtration: ι : S•Z(n
−)→ S•Z(n

+).
Let λ =

∑
ajωj be a dominant weight and set λ∗ :=

∑
ajωn− j . Fix a highest

weight vector vλ ∈ VZ(λ) and a lowest weight vector vw0 ∈ VZ(λ), where w0 is the
longest word in the Weyl group of sln . We get two possible S•Z(n

−,a)-structures on
VZ(λ): one uses the PBW filtration on UZ(n

−) to induce, via the highest weight
vector, a PBW filtration on VZ(λ) and passes to the associated graded module.
One gets the module V a

Z (λ) discussed before. Now one can do the same also for
UZ(n

+), once the highest weight vector is replaced by the lowest weight vector.
We denote the cyclic S•Z(n

+)-module (generated by the lowest weight vector) by
V a,+

Z (λ). Now via ι this module also becomes naturally a S•Z(n
−)-module.

Lemma 3.3. As a S•Z(n
−)-module, V a,+

Z (λ) is isomorphic to V a
Z (λ
∗).

Proof. Note that twisting the representation map with the Chevalley involution makes
the lowest weight vector (the cyclic generator for the U(n+)-action) into a cyclic
generator for the U(n−)-action. Recall that the Chevalley involution is equal to −1
on h, so after the twist this is now a highest weight vector of weight λ∗ =−w0(λ),
where w0 is the longest word in W. Since the construction is compatible with the
PBW filtrations with respect to the two algebras, the result for the associated graded
modules follows immediately. �

Proposition 3.4. As SZ(n
−,a)-modules, ṼZ(9(`ωi ))τ ' V a

Z (`ωn−i ).

Proof. Let n−,ai ⊆ n−,a be the sum of all root subspaces of roots of the form
ε̃k− ε̃n+`, where 1≤ `≤ i ≤ k ≤ n and ` 6= k. This is a commutative Lie subalgebra,
which by Lemma 2.5 has the property

VZ(9(`ωi ))τ =U(b̃).vτ =U(n−,ai ).vτ = S•(n−,ai ).vτ .

Since n−,a is commutative, all root vectors in n−,a which are not in n−,ai act trivially
on VZ(9(`ωi ))τ .

Another way to describe n−,ai is as the intersection n−,a ∩ l(i). More precisely,
this intersection is the nilpotent radical of the maximal parabolic subalgebra of l(i)
associated with the fundamental weight $n−i . By Lemma 3.1, we know that
VZ(9(`ωi ))τ =U(b(i)).vτ ' VZ(`$i ), and since vτ is a lowest weight vector,

VZ(9(`ωi ))τ =U(n−,ai ).vτ ' VZ(`$i ).
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Set n+(i)= b(i)∩ ñ+. By the isomorphism between l(i) and sln we can identify m

with n+ ⊂ sln . Consider the associated PBW filtration on VZ(`$i ) by applying the
PBW filtration of U(n+(i)) to the lowest weight vector. Recall that after passing
to the associated graded algebra S•(n+(i)), all root vectors not contained in n−,ai
act trivially on V a,+

Z (`$i ). Remember that we add a “+” to indicate that this is
the associated graded space with respect to the filtration by the nilpotent radical
of the fixed Borel subalgebra and not, as usual, of the opposite nilpotent algebra.
Since $i and $n−i are cominuscule, n−,ai is commutative and the PBW filtration
on VZ(`$i ) is already a grading. It follows that the action of n−,ai on VZ(`$i ) and
V a,+

Z (`$i ) are the same, so the n−,ai actions on V a,+
Z (`$i ) and VZ(9(`ωi ))τ are

isomorphic; hence, so are the n−,a actions by trivial extension. The proposition
follows now by Lemma 3.3. �

4. The general case for sln

4A. We extend Proposition 3.4 to any dominant weight for sln . Recall that for a
dominant weight λ= a1ω1+· · ·+an−1ωn−1 we denote by λ∗ the dominant weight
given by λ∗ = an−1ω1+ · · ·+ a1ωn−1.

Theorem 4.1. Let λ be a dominant sln-weight. As an n−,aZ -module, the Demazure
submodule ṼZ(9(λ

∗))τ of the (sl2n)Z-module ṼZ(9(λ
∗)) is isomorphic to V a

Z (λ).

The proof of Theorem 4.1 will be given in Section 4G, and the strategy of proof
is explained in Section 4C. We deduce a useful corollary.

Corollary 4.2. In particular, V a
Z (λ) is free as a Z-module.

Proof of the corollary. The Demazure module ṼZ(9(λ
∗))τ is a direct summand of

the free Z-module ṼZ(9(λ
∗)) and hence free as Z-module. �

4B. The abelianized module V a
Z (λ) is a cyclic module over the algebra S•Z(n

−,a)

having as a generator the image of a highest weight vector vλ ∈ V(λ) in V a
Z (λ).

Hence the module is isomorphic to S•Z(n
−,a)/IZ(λ), where IZ(λ) is the annihilator

of vλ in S•Z(n
−,a).

We have an additional Lie algebra acting on S•Z(n
−,a) as well as on V a

Z (λ). Let
b be the Borel subalgebra of g= (sln)Z⊗C as in Example 1.1, so g= n−⊕h⊕n+.
As free Z-modules, UZ(n

−) ' UZ(g)/U+Z (h+ n+), so that the adjoint action of
UZ(b) on UZ(g) induces the structure of a UZ(b)-module on UZ(n

−) and hence
on S•Z(n

−,a). This action is compatible with the induced UZ(b)-action on V a
Z (λ)

[Feigin et al. 2013, Prop. 2.3.]. Recall that for a positive root α we have denoted
by fα the corresponding fixed Chevalley basis element in (sln)−α,Z. Using the
presentation of Demazure modules in terms of generators and relations by Joseph,
Mathieu and Polo (compare [Mathieu 1989, Lemme 26]), we get as a consequence
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of the proof of Theorem 4.1 the following description of the ideal IZ(λ); see [Feigin
et al. 2011a; 2013].

Corollary 4.3. As a cyclic SZ(n
−,a)-module, the abelianized module V a

Z (λ) is
isomorphic to S•Z(n

−,a)/IZ(λ), where

IZ(λ)= S•Z(n
−,a)

(
UZ(n

+) ◦ span{ f (〈α
∨,λ〉+m)

α | m ≥ 1, α > 0}
)
⊆ SZ(n

−,a).

4C. The proof of Theorem 4.1 will be given in Section 4G, but it needs some
preparation. The strategy of the proof is summarized by the following diagram
of S•Z(n

−,a)-modules. For a dominant weight λ = a1ω1 + · · · + an−1ωn−1 (so
λ∗ = an−1ω1+ · · · + a1ωn−1), we get the following natural maps (the details are
described below):

S•Z(n
−,a)/IZ(λ

∗)
'

h // V a
Z (λ
∗)

a
����

b // V a
Z (a1ω

∗

1)⊗ · · ·⊗ V a
Z (an−1ω

∗

n−1)

c

'

��
S•Z(n

−,a)/MZ(λ
∗)

f
OOOO

g

'

// ṼZ(9(λ))τ
� � d // ṼZ(a19(ω1))τ ⊗ · · ·⊗ ṼZ(an−19(ωn−1))τ .

Let us describe the diagram above and the strategy of the proof. We recall that, given
a tensor product of cyclic S•Z(n

−,a)-modules, the Cartan component of the tensor
product is, by definition, the cyclic S•Z(n

−,a)-submodule generated by the tensor
product of the cyclic generators. Further, recall that the isomorphism V a

Z (`ω
∗

j )'

ṼZ(`9(ωj ))τ sends the highest weight vector v`ω∗j to the extremal weight vector
vτ(`9(ωj )) and uses the Chevalley involution. The maps above are defined as follows:

• b is induced by the compatibility of the PBW filtration with the tensor product,
and it is surjective onto the Cartan component of this tensor product.

• IZ(λ
∗) is the annihilator in S•Z(n

−,a) of the image of the highest weight vector
vλ∗ in V a

Z (λ
∗) and h is the corresponding quotient map.

• c is the isomorphism given by Proposition 3.4.

• d is the isomorphism onto the Cartan component of the tensor product. The fact
that this is an isomorphism follows by standard monomial theory [Lakshmibai
et al. 1979] or Frobenius splitting [Ramanathan 1987].

• a equals c ◦ b after identifying ṼZ(9(λ))τ with its image under d.

• MZ(λ
∗) is the annihilator in S•Z(n

−,a) of the extremal weight vector vτ(9(λ)) in
ṼZ(9(λ))τ and g is the corresponding quotient map.

• f is going to be constructed in the proof.

In order to finish the proof we will show that MZ(λ
∗)⊆ IZ(λ

∗), and the inclusion
induces the surjective map f which in turn shows that the map a is an isomorphism.
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4D. We first determine MZ(λ
∗). By [Mathieu 1989, Lemme 26], the Demazure

module ṼZ(9(λ))τ is isomorphic to the algebra UZ(ñ
+) modulo the left ideal

ĨZ(τ9(λ)) generated for all m ≥ 1 by{
E (m)α̃ if 〈α̃∨, τ9(λ)〉 ≥ 0,
E (−〈α̃

∨,τ9(λ)〉+m)
α̃ otherwise.

4E. The annihilator MZ(λ
∗) is the intersection of UZ(n

−,a) ⊂ UZ(ñ
+) with the

ideal ĨZ(τ9(λ)). To determine the intersection, let us divide the positive roots of
SL2n into three families:

• α̃ is of the first type if α̃ = φ(α) for some positive SLn-root α.

• α̃ = ε̃k − ε̃l is of second type if 1≤ k < l ≤ n or n+ 1≤ k < l ≤ 2n.

• α̃ = ε̃k − ε̃l is of third type if 1≤ k ≤ n, n+ 1≤ l ≤ 2n and k < l − n.

1st
type

2nd
type

2nd
type

3rd
type


The Eα̃, with α̃ of second type, span a Lie subalgebra isomorphic to two copies
of bZ. Let b1

Z denote the first copy spanned by the Eα̃ , α̃= ε̃k−ε̃l , 1≤ k< l≤n, and
let b2

Z denote the second copy spanned by the Eα̃ , α̃ = ε̃k − ε̃l , n+ 1≤ k < l ≤ 2n.
Let ĨZ(∞)⊂UZ(ñ

+) be the left UZ(ñ
+)-submodule generated by the E (m)α̃ , with

m ≥ 1 and α̃ of second or third type. Then Lemma 2.5 and a PBW basis argument
show that we have the Z-module decomposition

UZ(ñ
+)=UZ(n

−,a)⊕ ĨZ(∞)= S•Z(n
−,a)⊕ ĨZ(∞) and ĨZ(∞)⊂ ĨZ(τ9(λ)).

By abuse of notation, we identify in the following S•Z(n
−,a) with UZ(ñ

+)/ ĨZ(∞).
So determining MZ(λ

∗)=UZ(n
−,a)∩ ĨZ(τ9(λ)) (the intersection taking place in

UZ(ñ
+)) is equivalent to determining the image of ĨZ(τ9(λ))/IZ(∞) in S•Z(n

−,a).
In the following we identify MZ(λ

∗) with ĨZ(τ9(λ))/IZ(∞).
Note that UZ(b

1
Z⊕ b2

Z) acts naturally via the adjoint action on ñ+Z and hence on
UZ(ñ

+). The span of the Eα̃, with α̃ of second or third type, is stable under this
adjoint action of b1

Z⊕b2
Z, so ĨZ(∞)⊂UZ(ñ

+)Z is a submodule with respect to this
adjoint action.
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We get an induced UZ(b
1
Z ⊕ b2

Z)-action on S•Z(n
−,a) which we denote by “◦”.

Moreover, since U+Z (b
1
Z⊕ b2

Z) (the set of elements without constant term) is con-
tained in ĨZ(∞), we see that MZ(λ

∗)= ĨZ(τ9(λ))/ ĨZ(∞) is a U+Z (b
1
Z⊕b2

Z)-stable
submodule with respect to the “◦”-action of UZ(b

1
Z ⊕ b2

Z). As a first step in the
proof of the theorem we show:

Lemma 4.4. The left S•Z(n
−,a)-submodule MZ(λ

∗)⊂ S•Z(n
−,a) is generated by

mZ(λ
∗) :=

〈
UZ(b

1
Z⊕ b2

Z) ◦ E (−〈α̃
∨,τ9(λ)〉+m)

α̃

∣∣ α̃ of first type and m ≥ 1
〉
Z
.

Proof. Let m be an element of MZ(λ
∗) and choose a representative m in ĨZ(τ9(λ)).

Since we are free to choose a representative modulo IZ(∞), we may assume (see
Section 4D) that m is a sum of monomials of the form r E (`)α̃ , where r is a monomial
in the E (q)

β̃
with q≥0 and β̃ of first, second, or third type, and `=−〈α̃∨, τ9(λ)〉+k

for some k ≥ 1 and α̃ of first type.
If γ̃ is a root of third type and β̃ is any other positive root, then [Eγ̃ , Eβ̃] = cEγ̃ ′ ,

where c ∈ Z and either c = 0 or γ̃ ′ is of third type. So if r has a factor E (p)γ̃ , with
p > 0 and γ̃ a root of third type, then we can rewrite the monomial r E (`)α̃ as a sum
of monomials of the form r ′E (p

′)
γ̃ , with p′ > 0. Since this sum is an element in

IZ(∞), without loss of generality we will assume in the following that r has only
factors of the form E (`)

β̃
, with β̃ of first or second type.

If γ̃ is of second type and β̃ is of first type, then [Eγ̃ , Eβ̃] = cEγ̃ ′ , where c ∈ Z

and either c= 0 or γ̃ ′ is of first or third type. So after reordering the factors we can
assume without loss of generality in the following that r E (`)α̃ is of the form r = r1r2,
where r1 is a monomial in the E (`)

β̃
, with β̃ of first type, and r2 is a monomial in

the E (`)γ̃ , with γ̃ of second type.
Recall that for γ̃ of second type,

Eγ̃ Eβ̃1
· · · Eβ̃m

≡

m∑
i=1

Eβ̃1
· · · Eβ̃i−1

(Eγ̃ Eβ̃i
− Eβ̃i

Eγ̃ )Eβ̃i+1
· · · Eβ̃m

mod IZ(∞)

≡

m∑
i=1

Eβ̃1
· · · Eβ̃i−1

(ad(Eγ̃ )(Eβ̃i
))Eβ̃i+1

· · · Eβ̃m
mod IZ(∞)

≡ ad(Eγ̃ )(Eβ̃1
· · · Eβ̃m

) mod IZ(∞).

An appropriate reformulation of the equality above holds also for the divided
powers of root vectors. It follows that r2 E (`)α̃ ∈ mZ(λ

∗); hence r E (`)α̃ = r1r2 E (`)α̃ ∈
S•Z(n

−,a)mZ(λ
∗), which implies that MZ(λ

∗) is generated by mZ(λ
∗) as a left

S•Z(n
−,a)-module. �

4F. To compare MZ(λ
∗) with IZ(λ

∗), we need a variant of the description of mZ(λ
∗).

Let 1(bZ) ⊂ b1
Z ⊕ b2

Z be the Lie subalgebra obtained as a diagonally embedded
copy of bZ. Let UZ(1(bZ))⊂UZ((b

1
Z)⊕ (b

2
Z)) be its hyperalgebra.
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Lemma 4.5. mZ(λ
∗)=

〈
UZ(1(bZ))◦E (−〈α̃

∨,τ9(λ)〉+m)
α̃

∣∣ α̃ of first type and m ≥ 1
〉
Z

.

Proof. We assume first that k is an algebraically closed field of arbitrary character-
istic. Let B be the subgroup of upper triangular invertible matrices in SLn(k), so
Lie B = b. Let B1

× B2
⊂ SL2n(k) be the subgroup with Lie algebra b1

⊕ b2 and
denote by 1(B)⊂ B1

× B2 the diagonally embedded group isomorphic to B.
Let q be the sum of the SL2n-root spaces corresponding to roots of second or

third type. Then ñ+ = n−,a⊕ q and we identify n−,a with ñ+/q. The adjoint action
of B1

× B2 on sl2n admits ñ+ as well as q as submodules, so we get an induced
(B1
×B2)-action on n−,a = ñ+/q. This action naturally extends to the commutative

hyperalgebra S•k(n
−,a).

If we replace the group action of B1
× B2 by the induced action of the hyperal-

gebra Uk(b
1
⊕ b2) of the group, then we get the action of Uk(b

1
⊕ b2) on Uk(ñ

+),
respectively on S•k(n

−,a) discussed above, and similarly for the action of 1(B) and
its hyperalgebra Uk(1(b)). Recall that for a root α̃ of type 1,

Uk(b
1
⊕ b2) ◦ E (m)α̃ = 〈Ad((b1, b2)) ◦ (Eα̃)(m) | (b1, b2) ∈ B1

× B2
〉,

i.e., the smallest Uk(b
1
⊕ b2) stable subspace containing (Eα̃)(m) is the linear span

of the (B1
× B2)-orbit. The same holds in the other case, so we have:

Uk(1(b)) ◦ E (m)α̃ = 〈Ad((b, b)) ◦ (Eα̃)(m) | b ∈ B〉.

Let d be the sum of the SL2n-root spaces corresponding to roots of first or third
type and let d3 be just the sum of the root spaces corresponding to roots of third
type, so d= n−,a⊕ d3. We identify d⊂ sl2n with Mn(k), formally this can be done
by the map

χ : d→ Mn(k), Ã =
(

0 A
0 0

)
7→ A,

where A is a n× n matrix. In the following we simplify the notation and omit the
map χ . We freely identify d with Mn(k), so we denote by A the n× n matrix as
well as the 2n× 2n-matrix Ã ∈ d. Note that for (b1, b2) ∈ B1

× B2 we get

Ad((b1, b2)) ◦ Ã =
(

b1 0
0 b2

)(
0 A
0 0

)(
b−1

1 0
0 b−1

2

)
=

(
0 b1 Ab−1

2
0 0

)
,

we just write Ad((b1, b2)) ◦ (A)= b1 Ab−1
2 and Ad((b, b)) ◦ (A)= b Ab−1. Recall

that χ is just a vector space isomorphism. If we equip in addition Mn(k) with
the trivial Lie bracket, then this becomes also a Lie algebra homomorphism. In
this sense we identify also the (commutative) Lie subalgebras n−,a and d3 with
subalgebras of Mn . An elementary calculation shows how the B1

×B2-orbit through
Eα̃ = Eεn−εn+1 breaks up into 1(B)-orbits. Recall that we identify d with Mn(k)



DEGENERATE FLAG VARIETIES AND SCHUBERT VARIETIES 297

and Eεn−εn+1 ∈ d corresponds to En,1:

{Ad((b1, b2)) ◦ (Eα̃) | (b1, b2) ∈ B1
× B2
} = {b1 En,1b−1

2 | b1, b2 ∈ B}

=

⋃
λ∈k

{b(En,1+ λE1,1)b−1
| b ∈ B}

⊂ Mn(k).

We conclude for the linear span,

Uk(b
1
⊕ b2) ◦ E (m)α̃ =

〈
Ad((b1, b2)) ◦ (Eα̃)(m)

∣∣ (b1, b2) ∈ B1
× B2〉

=
〈(

Ad((b1, b2)) ◦ (Eα̃)
)(m) ∣∣ (b1, b2) ∈ B1

× B2〉
=
〈
(b1 En,1b−1

2 )(m)
∣∣ b1, b2 ∈ B

〉
=

〈⋃
λ∈k

{b(En,1+ λE1,1)
(m)b−1

∣∣∣∣ b ∈ B}
〉
.

Let I (d3)⊂Uk(d) be the left ideal in the hyperalgebra generated by d3. Then

Uk(b
1
⊕ b2) ◦ E (m)α̃ ≡

〈⋃
λ∈k

{(b(En,1+ λE1,1)b−1)(m)
∣∣∣∣ b ∈ B}

〉
≡ 〈(bEn,1b−1)(m) | b ∈ B〉 mod I (d3)

because the E (`)1,1, with `≥ 1, lie in the 1(B)-stable ideal I (d3). It follows that

Uk(b
1
⊕ b2) ◦ E (m)α̃ ≡ 〈Ad((b, b))(Eα̃)(m) | b ∈ B〉

≡Uk(1(b)) ◦ E (m)α̃ mod I (d3).

Since I (d3)⊂ Ĩ k(∞), the equation holds in S•(n−,a)=Uk(ñ
+)/ Ĩ (∞) too, so

Uk(b
1
⊕ b2) ◦ E (m)α̃ =Uk(1(b)) ◦ E (m)α̃

in S•(n−,a). It is now easy to see that the same arguments prove the equality for
all E (m)α̃ , with α̃ of first type and m ≥ 1. Clearly,

UZ(b
1
⊕ b2) ◦ E (m)α̃ ⊇UZ(1(b)) ◦ E (m)α̃ .

Since we have equality after base change for fields of arbitrary characteristics, the
equality of the modules holds also over Z. In particular, the following equality
holds in S•Z(n

−,a):

mZ(λ
∗)=

〈
UZ(b

1
Z⊕ b2

Z) ◦ E (−〈α̃
∨,τ9(λ)〉+m)

α̃

∣∣ α̃ of first type and m ≥ 1
〉
Z

=
〈
UZ(1(bZ)) ◦ E (−〈α̃

∨,τ9(λ)〉+m)
α̃

∣∣ α̃ of first type and m ≥ 1
〉
Z
. �
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4G. Proof of Theorem 4.1. Recall the identification of the abelianized version
of n− ⊂ sln with n−,a ⊂ sl2n , which sends the image of a Chevalley generator fα
to Eφ(α). By Lemma 2.5 (see Lemma 3.3 for the twist λ ↔ λ∗) the elements
E (−〈α̃

∨,τ9(λ)〉+m)
α̃

, where α̃ is of first type and m ≥ 1 are elements of IZ(λ
∗). Now

the UZ(b)-module structure on S•Z(n
−,a) described in Section 4B is the same as the

one described above, so it follows that mZ(λ
∗)⊂ IZ(λ

∗) and hence MZ(λ
∗)⊂ IZ(λ

∗),
which, as explained in Section 4C, finishes the proof of the theorem. �

4H. Let ρ be the sum of all fundamental weights for SLn and set ρ̃ =9(ρ). Let
QZ ⊂ (SL2n)Z be the corresponding parabolic Z-subgroup. Recall that (N−,a)Z is
a commutative subgroup of the Borel subgroup B̃Z. For any SL2n-root α̃ let UZ,α̃

be the associated root subgroup.

Lemma 4.6. The orbit B̃Z .τ ⊂ (SL2n)Z/QZ is equal to N−,a .τ , and the map
N−,a→ N−,a .τ , u 7→ uτ , is a bijection.

Proof. We have B̃Z .τ =
∏
α̃>0 UZ,α̃ .τ , and the map

∏
α̃∈0 UZ,α̃→

∏
α̃∈0 UZ,α̃ .τ is

a bijection, where 0 is the set of all positive roots of SL2n such that τ−1(α̃) < 0 and
τ−1(α̃) is not an element of the root system of QZ. Now this condition is fulfilled if
and only if 〈τ−1(α̃∨), ρ̃〉< 0, or, equivalently, 〈α̃∨, τ (ρ̃)〉< 0. By Lemma 2.4 this
is only possible if α̃ = ε̃i − ε̃j is such that 1≤ i ≤ n, n+1≤ j ≤ 2n, and i > j −n.
But this implies that the root subgroup UZ,α̃ is a subgroup of N−,a, and all root
subgroups of (SL2n)Z contained in N−,a satisfy this condition. It follows that N−,a

is the product of all root subgroups corresponding to positive roots of SL2n in 0. �

Recall that the degenerate flag scheme F`(λ)aZ is the closure of the N−,aZ -orbit
through the highest weight vector in PP(V a

Z (λ)).

Theorem 4.7. Let λ be a dominant weight for SLn . The Schubert scheme XZ(τ )⊂

P(ṼZ(9(λ))τ ) is isomorphic to the degenerate partial flag scheme F`(λ∗)aZ for
(SLn)Z, and this map induces a module isomorphism H 0(XZ(τ),L9(λ))' (V a

Z(λ
∗))∗.

Proof. We consider only the case where λ is regular; the arguments in the general
case are similar. With respect to the isomorphism in Lemma 4.6, the orbit

B̃Z .τ ⊂ (SL2n)Z/(P̃λ)Z ↪→ P(Ṽ(9(λ))),

through the extremal weight vector, which is the same as the N−,a-orbit, is mapped
onto the N−,aZ -orbit through the highest weight vector in P(V a

Z (λ
∗)). By definition,

the Schubert scheme XZ(τ ) is the closure of the orbit B̃Z .τ and the degenerate
flag scheme F`(λ∗)aZ is the closure of the N−,aZ -orbit. It follows that the module
isomorphism induces an isomorphism between the Schubert scheme XZ(τ ) ⊆

P(ṼZ(9(λ))τ ) and the degenerate flag scheme F`(λ∗)aZ in P(V a
Z (λ)). Hence we

get induced isomorphisms

H 0(XZ(τ ),L9(λ))' (ṼZ(9(λ))τ )
∗
' (V a

Z (λ
∗))∗
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for the dual modules. �

Let k be an algebraically closed field of arbitrary characteristic and denote by
Vk(λ) = VZ(λ)⊗Z k, Uk(sln) = UZ(sln)⊗Z k, Uk(n

−) = UZ(n
−)⊗Z k, etc., the

objects obtained by base change. The PBW filtration

Vk(λ)` = 〈Y
(m1)
1 · · · Y (m N )

N vλ | m1+ · · ·+m N ≤ `, Y1, . . . , YN ∈ n
−

k 〉

and the associated graded space V a
k (λ) is defined in the same way as before, and by

Corollary 4.2, Vk(λ)`= VZ(λ)`⊗Z k and V a
k (λ)= V a

Z (λ)⊗Z k. The group N−,ak acts
on the abelianized representation V a

k (λ), and the degenerate flag variety F`(λ)ak is
the closure of the N−,ak -orbit through the highest weight vector in P(V a

k (λ)).
Now by the results of [Mathieu 1989; Mehta and Ramanathan 1988; Ramanathan

1987; Ramanan and Ramanathan 1985] one knows that for Demazure modules
we have Ṽk(9(λ))τ = ṼZ(9(λ))τ ⊗Z k, Xk(τ ) = XZ(τ ) ⊗Z k, etc., and that
the Schubert varieties are Frobenius split, projectively normal and have rational
singularities. It follows that V a

k (λ
∗) = Ṽ k(9(λ))τ and F`(λ∗)ak = Xk(τ ), so the

degenerate flag variety has in this case the same nice geometric properties as the
Schubert variety. For a dominant SLn-weight λ=

∑n−1
i=1 aiωi , let the support supp λ

of λ be the set {i | 1≤ i ≤ n− 1, ai 6= 0}.

Corollary 4.8. The degenerate partial flag variety F`(λ)ak depends only on supp λ.
It is a projectively normal variety, Frobenius split, with rational singularities.

Remark 4.9. Feigin and Finkelberg [2013] construct resolutions of the degenerate
flag varieties given by towers of P1-fibrations. The steps of the successive fibrations
are indexed by the set of positive roots, which had been totally reordered. In
fact, their varieties are Bott–Samelson varieties [Cerulli Irelli and Lanini 2015,
Appendix] and such an order (which actually should be thought of as an order on
the set of negative roots) is now natural since it corresponds to the subsequent steps
of the Bott–Samelson variety indexed by the reduced expression (2) of τ, under the
identification of −αi, j with α̃j,i+n .

5. A special Schubert variety: the Sp2m case

As for the SLn case, we want to realize for Example 1.2 the abelianized representa-
tion VZ(λ)

a for N−,aZ as a Demazure submodule in an irreducible representation
for the larger group Sp2(2m).

5A. A special Weyl group element. Let us keep the same notation as in the previous
sections and denote by h ⊂ sp2m (resp., h̃ ⊂ sp2(2m)) the Cartan subalgebra of
traceless complex diagonal matrices and by b⊂ sp2m (resp., b̃⊂ sp2(2m)) the Borel
subalgebra of traceless complex upper triangular matrices. Let {ε1, . . . , ε2m} (resp.,
{ε̃1, . . . , ε̃2(2m)}) be a basis of the dual vector space h∗ (resp., h̃∗). The choice of
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Cartan and Borel subalgebras we made determines the following set of positive
roots for Sp2m :

αi, j :=

{
εi − εj 1≤ i < j ≤ m,
εi + εj−m 1≤ i ≤ m < j and i + j ≤ 2m,

where the simple roots are {αi := αi,i+1 | 1 ≤ i ≤ m− 1} ∪ {αm := 2εm}. We will
write α̃i, j for the Sp2m-roots. The Weyl group of Sp2(2m) is denoted W̃ . This is the
group of linear transformations of h∗ generated by the elements {ri | 1≤ i ≤ 2m},
where ri denotes the reflection with respect to the simple root α̃i .

Definition 5.1. We define in W̃ a very special element:

τ = (r2m · · · rm+1) · · ·

(r2mr2m−1r2m−2)(r2mr2m−1)r2m(rm · · · r2m−2) · · · (r4r5r6)(r3r4)r2.

Any element of the Weyl group W̃ of Sp2(2m) can be identified with an element
of the symmetric group on 4m letters S4m , via ri = si s4m−i , for 1≤ i ≤ 2m−1, and
rn = s2m (where, as usual, si denotes the transposition exchanging i and i+1) and it
acts on the basis {ei | i = 1, . . . , 4m} of C4m by permuting the indices. It is an easy
check to see that under this identification τ equals the element τ of Definition 2.2
for n = 2m and we hence have the following (compare Lemma 2.3):

Lemma 5.2. In the irreducible Sp2(2m)-representation Ṽ(ω̃2i ) ⊂
∧2i

C4m , with
1≤ i ≤ 2m, let vω2i vω2i = e1∧ e2∧ . . .∧ e2i be the highest weight vector. Then (up
to sign),

τ(vω2i )= e1 ∧ e2 ∧ · · · ∧ ei ∧ e2m+1 ∧ e2m+2 ∧ · · · ∧ e2m+i .

We denote by {ωi | 1≤ i ≤m}, resp. {ω̃i | 1≤ i ≤ 2m}, the fundamental weights
of sp2m , resp., sp2(2m). They are characterized by the property 〈α∨i , ωj 〉 = δi, j .

Definition 5.3. Let 9 : h∗→ h̃∗ be the linear map defined on the weight lattice by

9

( n−1∑
i=1

aiωi

)
:=

n−1∑
i=1

ai ω̃2i .

Note: 9 sends dominant weights to dominant weights. Let λ= b1ε1+· · ·+bmεm ,
with b1 ≥ · · · ≥ bm ≥ 0, be a dominant weight for Sp2m .

Lemma 5.4. τ(9(λ))= b1ε̃1+· · ·+ bm ε̃m − bm ε̃m+1−· · ·− b1ε̃2m .

Proof. This equality follows directly from Lemma 5.2 above. �

As in the special linear case, we define a map from the set of negative roots of
Sp2m to the set of positive Sp2(2m)-roots by sending αi, j to α̃j,i+2m . The following
is the symplectic analogue of Lemma 2.5:
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Lemma 5.5. (i) Let λ be a dominant weight for Sp2m(C). For a positive Sp2(2m)-
root α̃, we have 〈α̃∨, τ (9(λ))〉< 0 only if the α̃-root space lies in Lie(U(n−)).

(ii) Let λ be a dominant Sp2m-weight, let α = αi, j be a positive Sp2m-root, and let
α̃ = α̃j,i+2m be the Sp2(2m) positive root associated with −α. Then

〈α∨, λ〉 = −〈α̃∨, τ (9(λ))〉.

(iii) Let λ be a dominant weight for Sp2m(C) and let α̃ be a positive Sp2(2m)-root.
Then Eα̃vτ 6= 0 in Ṽ(9(λ)) only if α̃ = α̃j,i+2m , where αi, j is a positive Sp2m-
root such that 〈α∨i, j , λ〉> 0.

Proof. Lemma 5.4 implies that for λ= b1ε1+ · · ·+ bm−1εm−1,

〈
(ε̃i − ε̃j )

∨, τ (9(λ))
〉
=


bi − bj ≥ 0 if 1≤ i < j ≤ m,

bi + b2m− j+1 ≥ 0 if 1≤ i ≤ m < j ≤ 2m,
−b2m−i+1+ b2m− j+1 ≥ 0 if m < i < j ≤ 2m,

and

〈
(ε̃i+ε̃j−2m)

∨, τ (9(λ))
〉
=



bi+bj−2m ≥ 0 if 1≤ i ≤ m
and 2m < j ≤ 3m,

bi−b4m− j+1 ≥ 0 if 1≤ i ≤ m
and 3m < j ≤ 4m−i+1,

−bi+b4m− j+1 ≥ 0 if 1≤ i ≤ m, 3m < j,
and 4m−i+1< j,

b2m−i+1+b2m− j+1 ≥ 0 if m < i ≤ 2m
and 3m < j,

where always i + j ≤ 4m. This proves the corollary. �

6. The fundamental representations: the sp2m case

Let n−,a,iZ be the direct sum of all root spaces of Lie (Sp2(2m))Z corresponding to
positive roots β such that 〈β∨, τ (ω̃2i )〉< 0 for all 1≤ i ≤ m. By Lemma 5.5, such
a space lies in Lie(U(n−Z )).

By [Mathieu 1989, Lemme 26], the Demazure module ṼZ(`ω̃2i )τ is isomorphic
to the algebra UZ(ñ) modulo the left ideal ĨZ(τ`ω̃2i ) generated for all m ≥ 1 by the{

E (m)k,l if 〈α̃∨k,l, τ ω̃2i 〉 ≥ 0,

E
(−〈α̃∨k,l ,τ`ω̃2i 〉+m)
k,l otherwise.

Therefore all the root vectors (and their divided powers) not lying in n−,a,iZ act
trivially on ṼZ(`ω̃2i )τ and hence in order to describe its structure as an n−,aZ -module
it suffices to consider only the n−,a,iZ -action. Recall that vτ = τ(v0) denotes the
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generator of ṼZ(9(`ωi ))τ . Then the above discussion can be summarized as

(5) ṼZ(`ω̃2i )τ =UZ(ñ).vτ =UZ(n
−,a).vτ =UZ(n

−,a,i ).vτ .

Recall that we embed in (SL2(2m))Z a copy L(i)Z of (SL2m)Z so that we can iden-
tify the SL2(2m)-Demazure module Ṽ SL2(2m)

Z (`ω̃2i )τ generated by τ(v0)= τ(v0)= vτ

with the Weyl module V L(i)
Z (`$i ) for L(i)Z.

For 1 ≤ k, l ≤ 4m, denote by Xk,l the 4m × 4m-matrix having a 1 in position
(k, l) and whose all other entries 0 (for k 6= l, this is the SL2(2m)-root operator
corresponding to the SL2(2m)-root αk,l), so that

n−,a,i = span{Xr,s + X4m−s+1,4m−r+1 | i + 1≤ r ≤ 2m and 2m < s ≤ 2m+ i}.

It is then immediate:

Lemma 6.1. Every element y ∈n−,a,iZ can be written in a unique way as y= y1+y2,
with y1 ∈ n−,a,i ∩ Lie L(i)Z and y2 ∈ span{Xk,l | l > 2m + k}. Moreover, y2 is
uniquely determined by y1.

By the previous lemma, the projection p : (SL2(2m))Z → L(i)Z induces an
isomorphism of vector spaces n−,a,iZ ' p(n−,a,iZ ). Let us write n−,a,iZ for p(n−,a,i ).
Since the Lie algebras are commutative, we see that p : n−,a,iZ → n−,a,iZ is not only
an isomorphism of vector spaces, but it is in fact a Lie algebra isomorphism.

Corollary 6.2. ṼZ(9(`ωi ))τ =UZ(n
−,a,i ).vτ .

Proof. Let y ∈ n−,a,iZ . By Lemma 6.1 we can write y= p(y)+ y2 with y2 in the span
of the matrices X i, j with j > 2m+ i . Therefore, y2 acts trivially on ṼZ(9(`ωi ))τ ,
and we conclude

ṼZ(9(`ωi ))τ )=UZ(n
−,a,i ).vτ =UZ(n

−,a,i ).vτ . �

For 0≤ i ≤m−1, let Sp2m(i)Z be a copy of (Sp2m)Z sitting inside L(i)Z, defined
with respect to the form given by the matrix

0 Jm−i 0 0
−Jm−i 0 0 0

0 0 0 Ji

0 0 −Ji 0

,
where Jr denotes the r×r antidiagonal matrix with entries (1, 1, . . . , 1). Moreover,
denote (Spstd

2m)Z := Sp2m(0)Z.
Let σ be the permutation in W L(i) such that Lie Sp2m(i)Z = σ Lie(Spstd

2m)Zσ
−1.

The permutation σ fixes 2m + 1, . . . , 2m + i and moves 2m − i + 1, . . . , 2m in
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front of i + 1, . . . , 2m− i , so that

(6) σ(e1 ∧ e2 ∧ · · · ∧ ei ∧ e2m+1 ∧ e2m+2 ∧ · · · ∧ e2m+i )

= e1 ∧ e2 ∧ · · · ∧ ei ∧ e2m+1 ∧ e2m+2 ∧ · · · ∧ e2m+i .

Let bZ ⊂ Lie(Spstd
2m)Z be the Borel subalgebra of upper triangular matrices. Let

pi
Z ⊂ Lie(Spstd

2m)Z be the maximal parabolic subalgebra associated with $i , and pi,n
Z

its nilpotent radical. Write Spi,n
Z for σpi,n

Z σ
−1
⊂ Lie Sp2m(i)Z.

Lemma 6.3. VZ(`$i )=UZ(Spi,n).vτ .

Proof. By (6), vτ is a lowest weight vector for Sp2m(i), as well as for L(i), and
the module generated by this vector is UZ(Lie Sp2m(i)).vτ = VZ(`$i ). Since it
is generated by a lowest weight vector, it is enough to consider the action of the
nilpotent radical

UZ(Lie Sp2m(i)).vτ =UZ(σbσ
−1).vτ =UZ(Spi,n).vτ . �

Observe that since n−,a,iZ ⊆ Spi,n
Z , the Weyl module VZ(`$i ) is naturally equipped

with a structure of n−,a,i -module. It is easy to check that:

Lemma 6.4. Every element x ∈ Spi,n
Z can be written in a unique way as x = x1+x2,

with x1 ∈ n−,a,i and x2 ∈ span{Xk,l | 2m − i < k ≤ 2m and i + 1 < l < 2m}.
Moreover, x2 is uniquely determined by x1.

As in Section 3, we consider the Chevalley involution ι : sp2m→ sp2m such that
ι|h=−1 and ι exchanges eα and− fα . It induces an isomorphism S•Z(n

−)→ S•Z(n
+),

which by abuse we also call ι.
For a dominant weight λ, fix a highest weight vector vλ ∈ VZ(λ) and a lowest

weight vector vw0 ∈ VZ(λ), where w0 is the longest word in the Weyl group of sp2m .
Recall that considering the PBW filtration on UZ(n

−) and on UZ(n
+) provides

VZ(λ) with two possible S•Z(n
−,a)-structures: in the first case, looking at the PBW

filtration on VZ(λ) induced by the action of UZ(n
−) on the highest weight vector

and taking the associated graded space provides the abelianized module V a
Z (λ),

while in the second case, looking at the PBW filtration on VZ(λ) induced by the
action of UZ(n

+) on the lowest weight vector and taking the associated graded space
produces a module that we denote by V a,+

Z (λ). Now via ι this module also becomes
naturally a S•Z(n

−)-module and Lemma 3.3 holds in the symplectic case too:

Lemma 6.5. As a S•Z(n
−)-module, V a,+

Z (λ) is isomorphic to V a
Z (λ).

Observe that in the symplectic case there is no need of replacing λ by λ∗ since
they coincide.

Lemma 6.6. The Demazure module ṼZ(9(`ωi ))τ contained in ṼZ(9(`ωi )) and
VZ(`ωi )

a are isomorphic as S•Z(n
−)-modules.
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Proof. By Lemma 6.4, the projection q : Spi,n
Z → n−,a,i is an isomorphism of vector

spaces. Moreover, if we write x ∈ Spi,n
Z as x = q(x)+ x2, then x2 lies in the span

of the matrices X i, j with i + 1< j < 2m; hence, x2 .vτ = 0. Now, by [Feigin et al.
2014, Proposition 3.1], the PBW filtrations on VZ(`ωi ) with respect to the actions
of Spi,n

Z and n−,a,iZ are compatible, and

gr VZ(`$i )= gr UZ(Sp
i,n
Z ).vτ ' gr UZ(n

−,a,i ).vτ .

On the other hand, when we consider in ṼZ(9(`ωi ))τ the PBW filtration with
respect to the action of Spi,n

Z and go to the associated graded module, then the
action of (Spi,n

Z )
a is isomorphic to the action of n−,a,iZ on ṼZ(9(`ωi ))τ . �

The previous result implies in particular:

Corollary 6.7. rank ṼZ(9(`ωi ))τ = rank VZ(`ωi ).

7. The general case for sp2m

We come now to the general case (notation as in Example 1.2):

Theorem 7.1. Let λ be a dominant sp2m-weight. As an N−,aZ,η -module, the Demazure
submodule ṼZ(9(λ))τ of the (Sp2(2m))Z-module ṼZ(9(λ)) is isomorphic to the
abelianized module V a

Z (λ).

As in the type A case, the proof of the above theorem will provide us with a
description of V a

Z (λ) as an S•Z(n
−,a
η )-module in terms of generators and relations.

The abelianized module V a
Z (λ) is a cyclic module over the algebra S•Z(n

−,a
η ) with

the image of a highest weight vector vλ ∈ V(λ) in V a
Z (λ) as a generator; see [Feigin

et al. 2013, Proposition 2.3]. Hence the module is isomorphic to S•Z(n
−,a
η )/IZ(λ)

where IZ(λ) is the annihilator of vλ in SZ(n
−,a
η ). As a consequence of the proof of

Theorem 7.1, we obtain the description of the ideal IZ(λ) in terms of generators given
in [Feigin et al. 2011a; 2013] from Mathieu’s generator and relation presentation of
Demazure modules.

Let b be the Borel subalgebra of sp2m = (sp2m)Z ⊗ C as in Example 1.1(b),
so sp2m = n− ⊕ h⊕ n+. As free Z-modules, UZ(n

−) ' UZ(g)/U+Z (h+ n+), so
that the adjoint action of UZ(b) on UZ(g) induces the structures of a U+Z (b)- and
a BZ-module on UZ(n

−), hence on SZ(n
−,a
η ). This action is compatible with the

BZ-action on V a
Z (λ) [Feigin et al. 2013, Proposition 2.3.]. Recall that for a positive

root α we have denoted by fα the corresponding fixed Chevalley basis element in
(sp2m)−α,Z. Let us set

R++ = {εi − εj | 1≤ i < j ≤ m} ∪ {2εi | 1≤ i ≤ m}

As a consequence of the proof of Theorem 7.1 we get the following description of
the ideal IZ(λ):
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Corollary 7.2. As a cyclic S•Z(n
−,a
η )-module, the abelianized module V a

Z (λ) is
isomorphic to S•Z(n

−,a
η )/IZ(λ), where

IZ(λ)= S•Z(n
−,a
η )

(
UZ(n

+) ◦ span{ f (〈λ,α
∨
〉+m)

α | m ≥ 1 and α ∈ R++}
)
⊆ S•Z(n

−,a
η ).

7A. The proof of the theorem will be only sketched, since the strategy is the
same as for the type A case. We reproduce here the diagram of S•(n−,aη )-modules
summarizing the main idea: for a dominant weight λ = a1ω1 + · · · + amωm , we
have the natural maps

S•Z(n
−,a
η )/IZ(λ)

'

h // V a
Z (λ)

a
����

b // V a
Z (a1ω1)⊗ · · ·⊗ V a

Z (amωm)

c

'

��
S•Z(n

−,a
η )/MZ(λ)

f
OOOO

g

'

// ṼZ(9(λ))τ
� � d // ṼZ(a19(ω1))τ ⊗ · · ·⊗ ṼZ(am9(ωm))τ.

where in the top row the action on the modules is twisted by the Chevalley involution
so the cyclic generators are lowest weight vectors, and the maps c, d , a, and g arise
as in the proof of Theorem 4.1 so that again the main difficulty of the proof consists
in producing the map f .

7B. The first step consists in determining MZ(λ). By [Mathieu 1989, Lemme 26],
the Demazure module ṼZ(9(λ))τ is isomorphic to the algebra UZ(ñ) modulo the
left ideal ĨZ(τ9(λ)) generated for all m ≥ 1 by the elements{

E (m)k,l if 〈α̃∨k,l, τ9(λ)〉 ≥ 0,

E (−〈α̃
∨
k,l ,τ9(λ)〉+m)

k,l otherwise.

7C. The annihilator MZ(λ) is the intersection of UZ(n
−,a
η )⊂UZ(ñ

+) with the ideal
ĨZ(τ9(λ)). To determine such an intersection, we fix a PBW basis and divide the
positive roots in three families, exactly as in the proof of Theorem 4.1.

7D. By Lemma 5.5(i), 〈α̃∨k,l, τ9(λ)〉 ≥ 0 if α̃k,l is of third type. As in type A, we
may hence proceed with the calculation modulo the left ideal generated by the
divided powers of the corresponding Ek,l . Modulo such an ideal, by Lemma 5.4
and Lemma 5.5, ĨZ(τ9(λ)) is generated by the E (m)k,l with m ≥ 1 and α̃k,l of second
type, and the

E (−〈α̃
∨
k,l ,9(λ)〉+m)

k,l with m ≥ 1 and α̃k,l of first type.

7E. Thus, we consider the subalgebra a generated by the E (m)k,l , for α̃k,l of second
type. Let bZ,sl2m be the Borel subalgebra of sl2m consisting of traceless upper
triangular matrices and let bZ be the corresponding symplectic Borel subalgebra (of
(Spstd

2m)Z). Let us embed bZ in bZ,sl2m ⊕bZ,sl2m via A 7→ (A,−A), where A denotes
the matrix which is skew-transposed to A, and let 1−(bZ) be its image. Also a
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is embedded in bZ,sl2m ⊕ bZ,sl2m , once we identify the latter with the Lie algebra
generated by the divided powers of the SL4m-root vectors of second type. The
image of such an embedding contains 1−(bZ). By taking fixed points with respect
to the outer automorphism of sl2m and sl4m induced by the symmetry of the Dynkin
diagram, it follows from Lemma 4.5 that

(7) UZ(1
−(bZ))

〈
{E (m)i, j | αi, j of first type, m ≥ 1}

〉
=UZ(a)

〈
{E (m)i, j | αi, j of first type, m ≥ 1}

〉
.

Therefore,

ĨZ(τ9(λ))∩ S•Z(n
−,a
η )

' S•Z(n
−,a
η ) ◦UZ(1

−(bZ)) span{ f 〈α
∨,λ〉+`

i, j | α ∈ R++ and `≥ 1} =: MZ(λ).

7F. Proof of Theorem 7.1. Since the roots of first type are precisely the ones
coming from the elements fi, j with αi, j ∈ R++ and since{

f (〈α
∨
i, j,λ〉+m)

i, j

∣∣ αi, j ∈ R++ and m ≥ 1
}
⊆ IZ(λ),

we get a surjective morphism

(8) ṼZ(9λ)τ
g
' S•Z(n

−,a
η )/MZ(λ)

f
→ S•Z(n

−,a
η )/IZ(λ)' VZ(λ)

a.

This concludes the proof of the theorem. �

7G. Let ρ be the sum of the fundamental weights for Sp2m and let ρ̃ = 9(ρ)
be the corresponding dominant weight for Sp2(2m). Let QZ ⊂ (Sp2(2m))Z be the
corresponding parabolic subgroup. Recall that N−,aZ,η is a commutative subgroup
of the Borel subgroup B̃Z. For any Sp2(2m)-root α̃, let UZ,α̃ be the associated root
subgroup.

Lemma 7.3. The orbit B̃Z .τ ⊂ (Sp2(2m))Z/QZ is nothing but N−,aZ,η .τ , and the map
N−,aZ,η → N−,aZ,η .τ , given by u 7→ uτ is a bijection.

Proof. We have B̃Z .τ =
∏
α̃>0 UZ,α .τ , and the map

∏
α̃∈0 UZ,α̃→

∏
α̃∈0 UZ,α̃ .τ is

a bijection, where 0 is the set of all positive roots of Sp2(2m) such that τ−1(α̃) < 0
and τ−1(α̃) is not an element of the root system of QZ. Now this condition is
fulfilled if and only if 〈τ−1(α̃∨), ρ̃〉 < 0, or, equivalently, 〈α̃∨, τ (ρ̃)〉 < 0. By
Lemma 5.4 this is not possible if α̃ is of the form α̃ = ε̃i − ε̃j , with 1≤ i < j ≤ 2m.
For the long roots, this is only possible if α̃ = 2ε̃j , with j =m+1, . . . , 2m, and for
the roots α= ε̃i+ ε̃j , with 1≤ i < j ≤ 2m; this is only possible if either i, j ≥m+1
or 1≤ i ≤ m and j = 2m+ 1− k is such that 1≤ k < i .

But this implies that the root subgroup UZ,α̃ is a subgroup of N−,aZ,η , and all
root subgroups of (Sp2(2m))Z contained in N−,aZ,η satisfy this condition. It follows
that N−,aZ,η .τ is the product of all root subgroups corresponding to positive roots of
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Sp2(2m) such that τ−1(α̃) < 0 and τ−1(α) is not an element of the root system of
QZ and hence N−,aZ,η .τ = B̃Z .τ ⊂ (Sp2(2m))Z/QZ. �

Corollary 7.4. The degenerate flag variety F`(λ)ak depends only on supp λ. It is a
projectively normal variety, Frobenius split, with rational singularities.

Acknowledgements

The work of M. Lanini and P. Littelmann was partially supported by the DFG-
Schwerpunkt Grant SP1388. The work of G.C.I. was financed by the national FIRB
grant RBFR12RA9W “Perspectives in Lie Theory”. We thank Corrado De Concini
for many helpful conversations about this project.

References

[Bourbaki 1968] N. Bourbaki, Groupes et algèbres de Lie: Chapitres 4, 5, 6, Hermann, Paris, 1968.
MR 0240238

[Cerulli Irelli and Lanini 2015] G. Cerulli Irelli and M. Lanini, “Degenerate flag varieties of type A
and C are Schubert varieties”, Int. Math. Res. Not. 2015:15 (2015), 6353–6374. MR 3384481

[Feigin 2012] E. Feigin, “GM
a degeneration of flag varieties”, Selecta Math. (N.S.) 18:3 (2012),

513–537. MR 2960025

[Feigin and Finkelberg 2013] E. Feigin and M. Finkelberg, “Degenerate flag varieties of type A:
Frobenius splitting and BW theorem”, Math. Z. 275:1-2 (2013), 55–77. MR 3101796

[Feigin et al. 2011a] E. Feigin, G. Fourier, and P. Littelmann, “PBW filtration and bases for irreducible
modules in type An”, Transform. Groups 16:1 (2011), 71–89. MR 2785495

[Feigin et al. 2011b] E. Feigin, G. Fourier, and P. Littelmann, “PBW filtration and bases for symplectic
Lie algebras”, Int. Math. Res. Not. 2011:24 (2011), 5760–5784. MR 2863380

[Feigin et al. 2013] E. Feigin, G. Fourier, and P. Littelmann, “PBW-filtration over Z and compatible
bases for VZ(λ) in type An and Cn”, pp. 35–63 in Symmetries, integrable systems and representations
(Tokyo, 2011 and Lyon, 2011), edited by K. Iohara et al., Springer Proc. Math. Stat. 40, Springer,
Heidelberg, 2013. MR 3077680

[Feigin et al. 2014] E. Feigin, M. Finkelberg, and P. Littelmann, “Symplectic degenerate flag varieties”,
Canad. J. Math. 66:6 (2014), 1250–1286. MR 3270783

[Jantzen 1987] J. C. Jantzen, Representations of algebraic groups, Pure and Applied Mathematics
131, Academic Press, Boston, 1987. MR 899071

[Lakshmibai et al. 1979] V. Lakshmibai, C. Musili, and C. S. Seshadri, “Geometry of G/P”, Bull.
Amer. Math. Soc. (N.S.) 1:2 (1979), 432–435. MR 520081

[Mathieu 1989] O. Mathieu, “Construction d’un groupe de Kac–Moody et applications”, Compositio
Math. 69:1 (1989), 37–60. MR 986812

[Mehta and Ramanathan 1988] V. B. Mehta and A. Ramanathan, “Schubert varieties in G/B×G/B”,
Compositio Math. 67:3 (1988), 355–358. MR 959217

[Ramanan and Ramanathan 1985] S. Ramanan and A. Ramanathan, “Projective normality of flag
varieties and Schubert varieties”, Invent. Math. 79:2 (1985), 217–224. MR 778124

[Ramanathan 1987] A. Ramanathan, “Equations defining Schubert varieties and Frobenius splitting
of diagonals”, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61–90. MR 908216

http://msp.org/idx/mr/0240238
http://dx.doi.org/10.1093/imrn/rnu128
http://dx.doi.org/10.1093/imrn/rnu128
http://msp.org/idx/mr/3384481
http://dx.doi.org/10.1007/s00029-011-0084-9
http://msp.org/idx/mr/2960025
http://dx.doi.org/10.1007/s00209-012-1122-9
http://dx.doi.org/10.1007/s00209-012-1122-9
http://msp.org/idx/mr/3101796
http://dx.doi.org/10.1007/s00031-010-9115-4
http://dx.doi.org/10.1007/s00031-010-9115-4
http://msp.org/idx/mr/2785495
http://msp.org/idx/mr/2863380
http://dx.doi.org/10.1007/978-1-4471-4863-0_3
http://dx.doi.org/10.1007/978-1-4471-4863-0_3
http://msp.org/idx/mr/3077680
http://dx.doi.org/10.4153/CJM-2013-038-6
http://msp.org/idx/mr/3270783
http://msp.org/idx/mr/899071
http://dx.doi.org/10.1090/S0273-0979-1979-14631-7
http://msp.org/idx/mr/520081
http://www.numdam.org/item?id=CM_1989__69_1_37_0
http://msp.org/idx/mr/986812
http://www.numdam.org/item?id=CM_1988__67_3_355_0
http://msp.org/idx/mr/959217
http://dx.doi.org/10.1007/BF01388970
http://dx.doi.org/10.1007/BF01388970
http://msp.org/idx/mr/778124
http://www.numdam.org/item?id=PMIHES_1987__65__61_0
http://www.numdam.org/item?id=PMIHES_1987__65__61_0
http://msp.org/idx/mr/908216


308 GIOVANNI CERULLI IRELLI, MARTINA LANINI AND PETER LITTELMANN

Received November 16, 2015. Revised May 6, 2016.

GIOVANNI CERULLI IRELLI

DIPARTIMENTO DI MATEMATICA

SAPIENZA UNIVERSITÀ DI ROMA

PIAZZALE ALDO MORO 5
I-00185 ROMA

ITALY

cerulli@mat.uniroma1.it

cerulli.math@googlemail.com

MARTINA LANINI

SCHOOL OF MATHEMATICS

UNIVERSITY OF EDINBURGH

JAMES CLERK MAXWELL BUILDING

PETER GUTHRIE TAIT ROAD

EDINBURGH

EH9 3FD
UNITED KINGDOM

m.lanini@ed.ac.uk

PETER LITTELMANN

MATHEMATICAL INSTITUTE

UNIVERSITY OF COLOGNE

WEYERTAL 86-90
D-50931 COLOGNE

GERMANY

peter.littelmann@math.uni-koeln.de

mailto:cerulli@mat.uniroma1.it
mailto:cerulli.math@googlemail.com
mailto:m.lanini@ed.ac.uk
mailto:peter.littelmann@math.uni-koeln.de


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Igor Pak
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pak.pjm@gmail.com

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2016 is US $440/year for the electronic version, and $600/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:pak.pjm@gmail.com
mailto:yang@math.princeton.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 284 No. 2 October 2016

257Spherical CR Dehn surgeries
MIGUEL ACOSTA

283Degenerate flag varieties and Schubert varieties: a characteristic free approach
GIOVANNI CERULLI IRELLI, MARTINA LANINI and PETER

LITTELMANN

309Solitons for the inverse mean curvature flow
GREGORY DRUGAN, HOJOO LEE and GLEN WHEELER

327Bergman theory of certain generalized Hartogs triangles
LUKE D. EDHOLM

343Transference of certain maximal Hilbert transforms on the torus
DASHAN FAN, HUOXIONG WU and FAYOU ZHAO

365The Turaev and Thurston norms
STEFAN FRIEDL, DANIEL S. SILVER and SUSAN G. WILLIAMS

383A note on nonunital absorbing extensions
JAMES GABE

395On nonradial singular solutions of supercritical biharmonic equations
ZONGMING GUO, JUNCHENG WEI and WEN YANG

431Natural commuting of vanishing cycles and the Verdier dual
DAVID B. MASSEY

439The nef cones of and minimal-degree curves in the Hilbert schemes of points
on certain surfaces

ZHENBO QIN and YUPING TU

455Smooth approximation of conic Kähler metric with lower Ricci curvature
bound

LIANGMING SHEN

475Maps from the enveloping algebra of the positive Witt algebra to regular
algebras

SUSAN J. SIERRA and CHELSEA WALTON

0030-8730(201610)284:2;1-Z

Pacific
JournalofM

athem
atics

2016
Vol.284,N

o.2


	Introduction
	1. Some special commutative unipotent subgroups
	2. A special Schubert variety: the SLn case
	2A. A special Weyl group element

	3. The fundamental representations: the sln case
	4. The general case for sln
	4A. 
	4B. 
	4C. 
	4D. 
	4E. 
	4F. 
	4G. Proof of 0=thm.341=Theorem 4.1
	4H. 

	5. A special Schubert variety: the Sp2m case
	5A. A special Weyl group element

	6. The fundamental representations: the sp2m case
	7. The general case for sp2m
	7A. 
	7B. 
	7C. 
	7D. 
	7E. 
	7F. Proof of 0=thm.711=Theorem 7.1
	7G. 

	Acknowledgements
	References
	
	

