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SOLITONS FOR THE INVERSE MEAN CURVATURE FLOW

GREGORY DRUGAN, HOJOO LEE AND GLEN WHEELER

We investigate self-similar solutions to the inverse mean curvature flow in
Euclidean space. Generalizing Andrews’ theorem that circles are the only
compact homothetic planar solitons, we apply the Hsiung–Minkowski inte-
gral formula to prove the rigidity of the hypersphere in the class of compact
expanders of codimension one. We also establish that the moduli space
of compact expanding surfaces of codimension two is large. Finally, we
update the list of Huisken–Ilmanen’s rotational expanders by constructing
new examples of complete expanders with rotational symmetry, including
topological hypercylinders, called infinite bottles, that interpolate between
two concentric round hypercylinders.

1. Main results

In this paper, we study self-similar solutions to the inverse mean curvature flow
in Euclidean space. After a brief introduction, we present the definitions of the
homothetic and translating solitons and discuss the one-dimensional examples. We
prove that families of cycloids are the only translating solitons (Theorem 8), and
we show how to construct translating surfaces via a tilted product of cycloids.

Next, we consider the rigidity of homothetic solitons. In the class of closed
homothetic solitons of codimension one, we prove that round hyperspheres are
rigid (Theorem 10). For the higher codimension case, we observe that any minimal
submanifold of the standard hypersphere is an expander, so in light of Lawson’s
construction [1970] of minimal surfaces in S3, there exist compact embedded
expanders for any genus in R4.

We conclude with an investigation of homothetic solitons with rotational sym-
metry. First, we construct new examples of complete expanders with rotational
symmetry, called infinite bottles (see Figure 1), which are topological hypercylinders
that interpolate between two concentric round hypercylinders (Theorem 14). Then,
we show how the analysis in the proof of Theorem 14 can be used to construct other
examples of complete expanders with rotational symmetry, including the examples
of Huisken and Ilmanen [1997a].
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Figure 1. A numerical approximation of the part of a curve whose
rotation about the horizontal axis is the self-expanding infinite
bottle in R3.

2. Inverse mean curvature flow: history and applications

Round hyperspheres in Euclidean space expand under the inverse mean curvature
flow (IMCF) with an exponentially increasing radius. This behavior is typical for
the flow. Gerhardt [1990] and Urbas [1990] showed that compact, star-shaped initial
hypersurfaces with strictly positive mean curvature converge under IMCF, after
suitable rescaling, to a round sphere.

Strictly positive mean curvature is an essential condition. For the IMCF to
be parabolic, the mean curvature must be strictly positive. Huisken and Ilmanen
[2008] proved that smoothness at later times is characterized by the mean curvature
remaining bounded strictly away from zero; see also Smoczyk [2000]. Within
the class of strictly mean-convex surfaces, however, a solution to inverse mean
curvature flow will, in general, become singular in finite time. For example, starting
from a thin embedded torus with positive mean curvature in R3, the surface fattens
up under IMCF and, after finite time, the mean curvature reaches zero at some
points [Huisken and Ilmanen 2001, p. 364]. Thus, the classical description breaks
down, and any appropriate weak definition of inverse mean curvature flow would
need to allow for a change of topology.

Huisken and Ilmanen [2001] used a level-set approach and developed the notion
of weak solutions for IMCF to overcome these problems. They showed existence
for weak solutions and proved that Geroch’s monotonicity [1973] for the Hawking
mass carries over to the weak setting. This enabled them to prove the Riemannian
Penrose inequality, which also gave an alternative proof for the Riemannian positive
mass theorem. For a summary, we refer the reader to Huisken and Ilmanen [1997a;
1997b]. The work of Huisken and Ilmanen also shows that weak solutions become
star-shaped and smooth outside some compact region and thus, by the results of
Gerhardt [1990] and Urbas [1990], round in the limit. Using a different geometric
evolution equation, Bray [2001] proved the most general form of the Riemannian
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Penrose inequality. An overview of the different methods used by Huisken, Ilmanen,
and Bray can be found in [Bray 2002]. An approach to solving the full Penrose
inequality involving a generalized inverse mean curvature flow was proposed in
[Bray et al. 2007]. To our knowledge, the full Penrose inequality is still an open
problem.

Finally, let us mention some other applications and new developments in IMCF.
Using IMCF, Bray and Neves [2004] proved the Poincaré conjecture for 3-manifolds
with σ -invariant greater than that of RP3; see also [Akutagawa and Neves 2007].
Connections with p-harmonic functions and the weak formulation of inverse mean
curvature flow are described in [Moser 2007], where a new proof for the existence
of a proper weak solution is given, and in [Lee et al. 2011], where gradient bounds
and nonexistence results are proved. Recently, Kwong and Miao [2014] discovered
a monotone quantity for the IMCF, which they used to derive new geometric
inequalities for star-shaped hypersurfaces with positive mean curvature.

3. Definitions and one-dimensional examples

Definition 1 (homothetic solitons of arbitrary codimension). A submanifold 6n of
RN with nonvanishing mean curvature vector field

−→

H is called a homothetic soliton
for the inverse mean curvature flow if there exists a constant C ∈R−{0} satisfying

(1) −
1

|
−→

H |2
−→

H = CX⊥ on 6,

where the vector field X⊥ denotes the normal component of X . Notice that, for any
constant λ 6= 0, the rescaled immersion λX is a soliton with the same value of C .

Remark 2. On a homothetic soliton 6n
⊂ RN, we observe that the condition (1)

implies
|
−→

H |2 = 〈
−→

H,
−→

H〉 = 〈−C |
−→

H |2 X⊥,
−→

H〉 = −C |
−→

H |2〈X,
−→

H〉.

Since the mean curvature vector field
−→

H is nonvanishing, this shows

−〈
−→

H, X〉 = 1
C

or −〈4g X, X〉 = 1
C

or 4g|X |2 = 2
(

n− 1
C

)
,

where g denotes the induced metric on 6.

Proposition 3 (homothetic solitons of codimension one). Let 6n
⊂ Rn+1 be a

hypersurface with nowhere vanishing mean curvature vector field
−→

H =4g X. Then,
it becomes a homothetic soliton to the inverse mean curvature flow if and only if
there exists a constant C ∈ R−{0} satisfying

(2) −〈
−→

H, X〉 = 1
C

or equivalently, −〈4g X, X〉 = 1
C
.

Proof. According to the observation in Remark 2, the vector equality in (1) implies
the scalar equality in (2). To see that (2) implies (1), let N denote a unit normal



312 GREGORY DRUGAN, HOJOO LEE AND GLEN WHEELER

vector, and let H =−(div6 N) be the corresponding scalar mean curvature. Then
−→

H =4g X = H N , and the condition (2) becomes

−〈H N, X〉 = 1
C
,

which implies

CX⊥ = 〈N,CX〉N =− 1
H

N =− 1
H 2

−→

H. �

Remark 4. A complete classification of the homothetic solitons for the inverse
curve shortening flow in the plane was established by J. Urbas [1999]. If a plane
curve C is a solution to (2), then its curvature function κ satisfies the Poisson
equation

4C
1
κ2 = 2(C − 1),

and this guarantees the existence of constants α1, α2 ∈ R such that

κ2
=

1
(C − 1)s2+α1s+α2

,

where s denotes an arc length parameter on the curve C. It is a straightforward
exercise to find explicit parametrizations of these homothetic solitons; for instance,
see [Castro and Lerma 2016, Section 4]. Examples include circles, involutes of
circles, classical logarithmic spirals, epicycloids, and hypocycloids.

Definition 5 (translators of arbitrary codimension). A submanifold 6n
⊂ RN with

nonvanishing mean curvature vector field
−→

H is called a translator for the inverse
mean curvature flow if there exists a nonzero constant vector field V satisfying

(3) −
1

|
−→

H |2
−→

H = V⊥ on 6,

where the vector field V⊥ denotes the normal component of V. We say that V is
the velocity of the translator 6.

Proposition 6 (translators of codimension one). Let 6n
⊂ Rn+1 be a hypersurface

with nonvanishing mean curvature vector field
−→

H = 4g X , where g denotes the
induced metric on 6. Then 6n is a translator to the inverse mean curvature flow if
and only if there exists a nonzero constant vector field V satisfying

(4) 〈V ,
−→

H〉 = −1.

Proof. We first observe that the condition (3) implies the equality

−1=
〈
−

1

|
−→

H |2
−→

H,
−→

H
〉
= 〈V⊥,

−→

H〉 = 〈V,
−→

H〉.

It remains to check that the scalar equality (4) implies the vectorial equality in (3).
Let N denote a unit normal vector and H =−(div6 N) its scalar mean curvature, so
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that
−→

H =4g X = H N . Then the condition (4) becomes −1= 〈V,
−→

H〉 = H〈V, N〉,
which implies

V⊥ = 〈V, N〉N =− 1
H

N =− 1
H 2

−→

H. �

Corollary 7 (height function on translating hypersurfaces). A submanifold 6n

of Rn+1 with nonvanishing mean curvature is a translator to the inverse mean
curvature flow with velocity V = (0, . . . , 0, 1) if and only if

(5) −1=46xn+1 on 6.

Now we prove that cycloids are the only one-dimensional translators in R2.

Theorem 8 (classification of translating curves in R2). Any translating curves with
unit speed for the inverse mean curvature flow in the Euclidean plane are congruent
to cycloids generated by a circle of radius 1

4 .

Proof. Let the connected curve C be a translator in the xy-plane with unit velocity
V = (0, 1). Adopt the parametrization X (s)= (x(s), y(s)), where s denotes the arc
length on C, and introduce the tangential angle function θ(s) such that the tangent
dX/ds = (cos θ, sin θ) and the normal N (s) = (− sin θ, cos θ). The translator
condition reads

−
1
κ
= cos θ.

Now, we integrate(dx
dθ
,

dy
dθ

)
=

( ds
dθ

dx
ds
,

ds
dθ

dy
ds

)
=

( 1
κ

cos θ, 1
κ

sin θ
)
= (−cos2θ,− cos θ sin θ)

to recover, up to translation, the curve

(x, y)= 1
4(−2θ − sin(2θ), 1+ cos(2θ)).

After introducing the new variable t =−π + 2θ , we have

(x, y)= 1
4(−π − t + sin t, 1− cos t).

Reflecting about the x-axis and then translating along the (1, 0) direction, the
translator is congruent to the cycloid represented by 1

4(t−sin t, 1−cos t). Therefore,
we conclude that C is congruent to the cycloid through the origin, generated by a
circle of radius 1

4 . �

Example 9 (tilted cycloid products: one-parameter family of translators with the
same speed in R3). We can use cycloids (one-dimensional translators in R2) to
construct a one-parameter family of two-dimensional translators with velocity
(0, 0, 1) in R3. Let (α(s), β(s)) denote a unit speed patch of the translating curve
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C with velocity (0, 1) in the αβ-plane, so that β ′′(s)=−1 on the translator C. For
each constant µ ∈

(
−
π
2 ,

π
2

)
, we introduce orthonormal vectors

v1 = (cosµ, 0,− sinµ), v2 = (0, 1, 0), v3 = (sinµ, 0, cosµ),

and associate the product surface 6µ = R×
1

cosµ
C defined by the patch

X(s, h)= hv1+
α(s)
cosµ

v2+
β(s)
cosµ

v3.

A straightforward computation yields

〈46µ X, (0, 0, 1)〉 =
〈 1
cosµ

(α′′(s)v2+β
′′(s)v3), (0, 0, 1)

〉
= β ′′(s)=−1,

which guarantees that 6µ becomes a translator with velocity (0, 0, 1) in R3.

4. Rigidity of hyperspheres and spherical expanders

We first prove that hyperspheres, as homothetic solitons to the inverse mean cur-
vature flow, are exceptionally rigid. This is a higher-dimensional generalization
of Andrews’ result [2003, Theorem 1.7] that circles centered at the origin are the
only compact homothetic solitons in R2. We then explain that the moduli space of
spherical expanders of higher codimension is large. Hereafter, we assume n ≥ 2.

Theorem 10 (uniqueness of spheres as compact solitons). Let 6n be a homothetic
soliton hypersurface for the inverse mean curvature flow in Rn+1. If 6 is closed,
then it is a round hypersphere (centered at the origin).

Proof. Since 6 is a compact hypersurface with nonvanishing mean curvature
vector, there exists an inward pointing unit normal vector field N along 6. Then
−→

H = 4g X = H N , where the scalar mean curvature H = − div6 N is positive.
Since 6 is a homothetic soliton, we have

(6) 1
C
=−〈X,

−→

H〉 = −H〈X, N〉,

for some constant C 6= 0. The Hsiung–Minkowski formula [Hsiung 1956] gives

0=
∫
6

(
1+ 1

n
〈
X,

−→

H
〉)

d6 =
(

1− 1
nC

) ∫
6

1 d6.

It follows that C = 1/n. Let κ1, . . . , κn be principal curvature functions on 6. In
terms of

σ2 =
2

n(n−1)

∑
1≤i< j≤n

κiκ j =
H 2

n2 −
1

n2(n−1)

∑
1≤i< j≤n

(κi − κ j )
2,
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we have the classical symmetric means inequality

H 2

n2 − σ2 =
1

n2(n−1)

∑
1≤i< j≤n

(κi − κ j )
2
≥ 0.

Applying the Hsiung–Minkowski formula again, we obtain the integral identity

0=
∫
6

(H
n
+
σ2
H
〈X,

−→

H〉
)

d6 =
∫
6

(H
n
−

nσ2
H

)
d6 =

∫
6

n
H

(H 2

n2 − σ2

)
d6.

Hence, H 2/n2
− σ2 vanishes on 6, which implies that κ1 = · · · = κn on 6. Since

6n is a closed umbilic hypersurface in Euclidean space, it is a hypersphere. It
follows from (6) that this hypersphere is centered at the origin. �

Lemma 11. A minimal submanifold of the hypersphere Sq≥2 is an expander for
the inverse mean curvature flow in Rq+1.

Proof. Let 6 p≥1 be a minimal submanifold of the hypersphere Sq
⊂ Rq+1, and let

X denote the position vector field in Rq+1. On the one hand, since X is already
normal to the hypersphere Sq

⊂ Rq+1, we observe the equality

X⊥ := X⊥(6⊂Rq+1)
= X.

On the other hand, according to the minimality of 6 p in Sq, we obtain

(7) 4g X + pX = 0,

where g denotes the induced metric on 6 p. Thus, we have

(8)
−→

H :=
−→

H6⊂Rq+1(X)=4g X =−pX and |
−→

H | = p|X | = p.

Combining the four equalities on 6 and taking C = 1
p
> 0, we get

−
1

|
−→

H |2
−→

H = C X⊥,

which indicates that 6 is an expander for the inverse mean curvature flow. �

Theorem 12. For any integer g ≥ 1, there exists at least one two-dimensional
compact embedded expander of genus g in R4.

Proof. For any integer g, Lawson [1970] showed that there exists a compact
embedded minimal surface 6 of genus g in S3. Lemma 11 shows that 6 becomes
an expander to the inverse mean curvature flow in R4. �

Remark 13. Castro and Lerma [2016] proved that the converse of Lemma 11 holds.
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5. Expanders with rotational symmetry

In this section, we investigate homothetic solitons in Rn+1 with rotational symmetry
about a line through the origin. To a profile curve C parametrized by (r(t), h(t)) for
t ∈ I in the half-plane {(r, h) | r > 0, h ∈R}, we associate the rotational hypersurface
in Rn+1 defined by

6n
=
{

X = (r(t) p, h(t)) ∈ Rn+1
| (r(t), h(t)) ∈ C, p ∈ Sn−1

⊂ Rn}.
The rotational hypersurface 6 satisfies the homothetic soliton (2) if and only if the
profile curve (r(t), h(t)) satisfies the ODE

(9) −

(
ṙ ḧ− ḣr̈

(ṙ2+ ḣ2)
3/2 +

n− 1

(ṙ2+ ḣ2)
1/2 ·

ḣ
r

)
−ḣr + ṙ h

(ṙ2+ ḣ2)
1/2 =

1
C

for some constant C > 0. We observe:

i. As long as the quantity r ḣ− hṙ is nonzero, we may write (9) as

ṙ ḧ− ḣr̈
ṙ2+ ḣ2

=−
(n− 1)

r
ḣ+

ṙ2
+ ḣ2

C(r ḣ− hṙ)
.

ii. The ODE (9) is invariant under the dilation (r, h) 7→ (λr, λh), unlike the profile
curve equation for shrinkers or expanders for the mean curvature flow.

iii. Spheres are expanders. The half-circle (r(t), h(t)) = (R cos t, R sin t) with
t ∈

(
−
π
2 ,

π
2

)
having the origin as its center obeys the ODE (9) with C = 1/n.

iv. Cylinders become expanders. The lines r(t) = constant are solutions to the
ODE (9) when C = 1/(n− 1).

v. We outline a way to deduce the ODE (9) using the homothetic soliton equation

4g|X |2 = 2
(

n− 1
C

)
.

We observe that 6 is a homothetic soliton with rotational symmetry if and
only if

(10) 2
(

n− 1
C

)
=4g(r2

+h2)=
1

rn−1
(
ṙ2+ḣ2

)1/2 d
dt

(
rn−1(

ṙ2+ḣ2
)1/2 d

dt
(r2
+h2)

)
,

which is equivalent to (9).

5.1. Construction of expanding infinite bottles. Writing the profile curve C as a
graph (r(h), h), we have the second-order nonlinear differential equation

(11) r ′′

1+r ′ 2
=

n−1
r
−

1+r ′ 2

C(r−hr ′)
.
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When C = 1/(n− 1), this equation becomes

(12) r ′′

1+r ′ 2
= (n− 1)

(
1
r
−

1+r ′ 2

r−hr ′

)
.

Observe that r(h)= constant is a solution to (12), which corresponds to a round
hypercylinder expander. Moreover, if r(h) is a solution to (12) with r ′(a)= 0 for
some a ∈R, then r(h)≡ r(a). Consequently, any nonconstant solution to (12) must
be strictly monotone.

In this section, we construct new examples of entire solutions to (12), which
correspond to hypercylinder expanders that interpolate between two concentric
round hypercylinders.

Theorem 14 (construction of infinite bottles). Let r0, h0, and r ′0 be constants
satisfying r0 > 0, h0 < 0, and r ′0 ∈ (0,−h0/r0), and let r(h) be the unique solution
to (12) satisfying the initial conditions r(h0) = r0 and r ′(h0) = r ′0. Then r(h) is
an entire solution, and there are constants 0 < rbot < rtop < ∞ such that r(h)
interpolates between rbot and rtop. More precisely, r(h) is strictly increasing,
limh→−∞ r(h)= rbot, limh→∞ r(h)= rtop, and there exists a point h1 ∈ (h0, 0) such
that r ′′(h1)= 0 and r ′′(h) has the same sign as (h1− h) when h 6= h1.

Proof. We separate the proof into two parts. First, we show that the solution is
entire and increasing, and there is a unique point where the concavity changes
sign. Second, we establish estimates that bound the solution between two positive
constants. We note that the rotation of the profile curve about the h-axis has
the appearance of an infinite bottle, which interpolates between two concentric
cylinders.

Part 1: Existence of expanding infinite bottles.

Notice that the condition r ′(h0)= r ′0 > 0 shows that r is a nonconstant solution
and guarantees that r ′(h) > 0. Also, observe that the assumption r ′0 ∈ (0,−h0/r0)

coupled with the defining initial conditions for r(h) shows that h+ r ′r is negative
at h = h0. In fact, by assumption, the terms r ′, −h − r ′r , r , and r − hr ′ are all
positive at h = h0. So, writing (12) as

(13) r ′′ = (n− 1)(1+ r ′ 2)r
′(−h−r ′r)
r(r−hr ′)

,

we see that r ′′(h0) > 0.
In the following lemma, we show that the concavity of r(h) changes sign exactly

once when r(h) is a maximally extended solution.

Lemma 15 (existence of a unique inflection point). Let r : (hmin, hmax)→ R+ be
a maximally extended solution. Then there exists a point h1 ∈ (h0, 0) such that
r ′′(h1)= 0. Furthermore, r ′′(h) has the same sign as (h1− h) when h 6= h1.
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Proof. Step A. We claim that there exists a point h1 ∈ (h0, 0) such that r ′′(h1)= 0.
We first treat the case where hmax ≤ 0. In this case, proving the claim is equivalent
to showing there is a point h1 ∈ (h0, hmax) such that r ′′(h1) = 0. Suppose to the
contrary that

r ′′(h) > 0 for all h ∈ (h0, hmax).

As hmax ≤ 0 and both r and r ′ are positive, we have (r−hr ′) > 0 for h ∈ (h0, hmax).
In fact, since (d/dh)(r−hr ′)=−hr ′′> 0, we see that (r−hr ′) > r0−h0r ′0. Using
(13) and the positivity of the functions r , r ′, (r − hr ′), and r ′′, we arrive at the
inequality (−h− rr ′) > 0, which leads to the estimate

0< r ′(h) <−
h
r
<−

h0

r0
for all h ∈ (h0, hmax).

Now, returning to (13), we have the estimate

0≤ r ′′(h)= (n− 1)(1+ r ′ 2)r
′(−h−r ′r)
r(r−hr ′)

≤ (n− 1)
(

1+
(h0

r0

)2)(−h0/r0)(−h0)

r0(r0−h0r ′0)

for h ∈ (h0, hmax). These estimates contradict the finiteness of the maximal endpoint
hmax, and we conclude that the claim is true in the case where hmax ≤ 0.

It still remains to prove the claim in the case where hmax > 0. However, in this
case the solution r(h) is defined when h = 0, and (12) implies

r ′′(0)=−(n− 1)r
′(0)2

r(0)
(1+ r ′(0)2) < 0.

It follows that there exists a point h1 ∈ (h0, 0) such that r ′′(h1)= 0.
Step B. We claim that r ′′(h) has the same sign as h1 − h. Taking a derivative

of (11), we have

r ′′′

1+r ′ 2
=

2r ′(r ′′)2

(1+r ′ 2)2
−

n−1
r2 r ′− 2r ′r ′′

C(r−hr ′)
−

1+r ′ 2

C(r−hr ′)2
hr ′′.

At the point h1, we obtain

r ′′′(h1)

1+r ′(h1)2
=−(n− 1) r ′(h1)

r(h1)
2 < 0,

which shows that r ′′(h) has the same sign as h1−h in a neighborhood of h1. In fact,
at any point h̄ where r ′′(h̄)= 0, we have r ′′′(h̄) < 0. This property tells us that the
sign of r ′′ can only change from positive to negative, and consequently r ′′ vanishes
at most once. Thus, r ′′(h) has the same sign as h1− h for all h ∈ (hmin, hmax). �

Next, we prove that the profile curves corresponding to the infinite bottles come
from entire graphs.

Lemma 16 (existence of entire solutions). We have hmin =−∞ and hmax =∞.



SOLITONS FOR THE INVERSE MEAN CURVATURE FLOW 319

Proof. Step A. We claim that hmax =∞. First, we show that hmax > 0. To see this,
notice that 0≤ r ′(h)≤ r ′(h1), r(h)≥ r0, and r − hr ′ ≥ r0 whenever h1 ≤ h ≤ 0. It
follows from (12) that the solution r(h) can be extended past h ≤ 0. Thus, hmax > 0.
Next, we show that hmax =∞. Since h1 < 0, we have (d/dh)(r−hr ′)=−hr ′′ ≥ 0
when h ≥ 0 so that (r − hr ′)≥ r(0) when h ≥ 0. We also have 0≤ r ′(h)≤ r ′(h1)

and r(h) ≥ r0 when h ≥ 0. As before, it follows from (12) that the solution r(h)
can be extended past any finite point.

Step B. We claim that hmin = −∞. Suppose to the contrary that hmin > −∞.
Then at least one of the functions r ′, 1/r , or 1/(r − hr ′) must blow up at the finite
point h = hmin. Since r ′′ > 0 on (hmin, h1), the positive function r ′ is increasing,
and we have r ′(h) ≤ r ′(h0) = r ′0 for all h ∈ (hmin, h0). So, the function r ′ does
not blow up at hmin. If the function 1/r is bounded above on (hmin, h0), then the
inequality 0 < r(h) < r(h)− hr ′(h) (when h ≤ 0) guarantees that 1/(r − hr ′) is
also bounded above on (hmin, h0), in which case, the solution can be extended prior
to hmin. Therefore, the function 1/r must blow up at h = hmin. In other words,

lim
h→hmin

+

r(h)= 0.

Observing this and using 0 < r ′(h) < r ′0 on (hmin, h0), we can find a sufficiently
small δ > 0 so that r ′(h)r(h) ≥ −h0/2 for all h ∈ (hmin, hmin + δ]. Also, the
inequality (d/dh)(r − hr ′)=−hr ′′ > 0 guarantees that

0< r(h)− hr ′(h)≤ ε1 := r(hmin+ δ)− (hmin+ δ)r ′(hmin+ δ).

It follows from these estimates and (12) that

d
dh
(arctan r ′)= r ′′

1+r ′ 2
= (n− 1)−(h+r ′r)

r−hr ′
·

r ′

r
≥ ε2

d
dh
(ln r),

where

ε2 =
(n−1)(−h0/2)

ε1
> 0

is a constant. Hence, the function F(h) := arctan(dr/dh)− ε2 ln r(h) is increasing
on (hmin, hmin+ δ]. Thus, we have the estimate

ε2 ln r(h)≥−F(hmin+ δ)+ arctan r ′ >−F(hmin+ δ).

Taking the limit as h→ hmin
+ and using limh→hmin

+ r(h)= 0 leads to a contradiction.
We conclude that hmin =−∞. �

So far, we have proved the existence of an entire bottle solution r(h) to (12). In
the next part of the proof we will establish estimates that squeeze the ends of the
infinite bottles between two cylinders.
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Part 2: Squeezing infinite bottles by two hypercylinders.

To establish upper and lower bounds for the solution r(h), we study the profile
curve C by writing it as a graph over the axis of rotation: (r, h(r)). Then, we have
the second-order nonlinear differential equation

(14) h′′

1+h′ 2
=−

(n−1)
r

h′+ 1+h′ 2

C(rh′−h)
,

or equivalently,

(15) h′′

1+h′ 2
=
(n− 1)hh′+ 1

C r
r(rh′− h)

+

( 1
C
− (n− 1)

) h′ 2

(rh′−h)
.

Throughout this section, we take C = 1/(n− 1), so that (14) takes the form

(16) h′′

1+h′ 2
=−(n− 1)

(
h′

r
−

1+h′ 2

rh′−h

)
=

n−1
r
·

r+hh′

rh′−h
.

Now, let h(r) be a maximally extended solution to (16) defined on (rbot, rtop).
Lemma 15 tells us that there is a point r1 ∈ (rbot, rtop) such that h′(r) > 0 and
h′′(r) > 0 for all r ∈ (r1, rtop) and that r1h′(r1)− h(r1) > 0.

Lemma 17 (existence of the outside cylinder barrier). We have

rtop <∞, lim
r→rtop−

h′(r)=∞, and lim
r→rtop−

h(r)=∞.

Proof. We introduce the angle functions θ, φ : (r1, rtop)→
(
0, π2

]
, defined by

θ(r)= arctan dh
dr

and φ(r)= arctan h
r
,

to rewrite the profile curve (16) as

(17) dθ
dr
=

n−1
r ·tan(θ−φ)

.

Combining this and 0 < tan(θ − φ) ≤ tan θ , we have dθ/dr ≥ (n− 1)/(r · tan θ),
which implies

d
dr

( tan θ
rn−1

)
≥

n−1
rn tan θ

≥ 0.

This tells us that the continuous function (tan θ)/rn−1 is increasing for r > r1. Set
θ1 = θ(r1). According to the estimate

d
dr

(
h−

tan θ1

nrn−1
1

rn
)
= tan θ −

tan θ1

rn−1
1

rn−1
=

(
tan θ
rn−1 −

tan θ1

rn−1
1

)
rn−1
≥ 0,

we see that the function
h−

tan θ1

nrn−1
1

rn
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is increasing. In particular, we have the height estimate

h ≥ h1+
tan θ1

nr1n−1 (r
n
− rn

1 ).

Observe that
1

tan(θ−φ)
=

1+tan θ tanφ
tan θ−tanφ

≥ tanφ.

Combining this with (17), we have

1
n− 1

dθ
dr
≥

tanφ
r
=

h
r2 ≥

1
r2

(
h1+

tan θ1

nr1n−1 (r
n
− rn

1 )

)
,

which implies

d
dr

(
θ

n−1
+

(
h1−

tan θ1

n
r1

)
1
r
−

tan θ1

n(n− 1)rn−1
1

rn−1
)
≥ 0.

Therefore, the function

F(r)= θ

n−1
+

(
h1−

tan θ1

n
r1

)
1
r
−

tan θ1

n(n− 1)rn−1
1

rn−1

is increasing, and for all r ∈ (r1, rtop), we have

θ

n−1
≥ F(r1)−

(
h1−

tan θ1

n
r1

)
1
r
+

tan θ1

n(n− 1)rn−1
1

rn−1.

Since the left-hand side is bounded above, and the right-hand side becomes arbitrarily
large as r goes to∞, we conclude that rtop <∞. It then follows that the increasing,
concave up function h(r) satisfies limr→rtop− h′(r) =∞. If h(r) has a finite limit
as r approaches rtop, then by the uniqueness of the cylinder r(h)≡ rtop, we get a
contradiction. Therefore, we also have limr→rtop− h(r)=∞. �

Next, we prove the following lemma, which shows that a solution with h < 0,
h′ > 0, and h′′ < 0 cannot approach the axis of rotation.

Lemma 18 (existence of the inside cylinder barrier). We have

rbot > 0, lim
r→rbot+

h′(r)=∞, and lim
r→rbot+

h(r)=−∞.

Proof. We first observe that h−rh′<0 and hh′<0. We introduce three well-defined
functions θ : (rbot, r0] →

(
0, π2

]
and 91, 92 : (rbot, r0] → R defined by

θ(r)= arctan dh
dr
, 91(r)=

−hh′

rh′−h
, and 92(r)=

r+hh′

hh′
,

and we rewrite the profile curve (16) as

(18) dθ
dr
=−

n−1
r
9192.
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Using the estimate

d91
dr
=
−r(h′)3+h((h′)2+hh′′)

(h−rh′)2
≤ 0,

we see that 91 is decreasing on (rbot, r0], and setting ε1 =91(r0), we have

(19) 91(r)≥ ε1 > 0.

Observing (hh′)′= h′2+h′′h > 0 and defining a constant ε2=−h(r0)h′(r0) > 0,
we have the estimate hh′ ≤−ε2 for all r ∈ (rbot, r0]. It follows that

(20) 92(r)= 1+ r
hh′
≥ 1− r

ε2
.

Combining (18), (19), and (20), we have

d
dr

(
θ

(n−1)ε1
+ ln r − r

ε2

)
≤ 0.

Therefore, the function 9(r)= θ

(n−1)ε1
+ ln r − r

ε2
is decreasing, and for all

r ∈ (rbot, r0], we have

θ

(n−1)ε1
≥− ln r + r

ε2
+9(r0).

Since the left-hand side is bounded above, and the right-hand side becomes arbitrarily
large as r goes to 0, we conclude that rbot > 0. It then follows that the increasing,
concave down function h(r) satisfies limr→rbot+ h′(r)=∞. If h(r) has a finite limit
as r approaches rbot, then by comparison with the cylinder r(h) ≡ rbot, we get a
contradiction. Therefore, we also have limr→rbot+ h(r)=−∞.

This completes the proof of both the lemma and Theorem 14. �

5.2. Other examples of complete solitons. Huisken and Ilmanen [1997a] used a
phase-plane analysis to exhibit complete, rotationally symmetric expanders for
the inverse mean curvature flow which are topological hyperplanes. For each
C > 1/n, they showed there exists a half-entire solution to (11) which intersects
the h-axis perpendicularly, and they provided numeric descriptions of these profile
curves. For C > 1/n and C 6= 1/(n − 1), they also indicated the existence of
entire solutions to (11) which are symmetric about the r-axis and correspond to
topological hypercylinders. (We note that the rotational expander constructed in
Theorem 14 is nonsymmetric in the sense that its profile curve is not symmetric
about the r -axis.) In this section, we explain how the techniques from Section 5.1
can be used to recover the examples and numeric pictures presented in [Huisken
and Ilmanen 1997a].
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Hyperplane expanders. We begin by considering the initial value problem where
we shoot perpendicularly to the axis of rotation. For C > 0, let h(r) be a solution
to (14) with h(0) = h0 < 0 and h′(0) = 0. This singular shooting problem is
well-defined (see [Baouendi and Goulaouic 1976] and [Drugan 2015]), and the
solution satisfies h′′(0)=−1/(nCh0) > 0. Differentiating (14) and analyzing the
equation for h′′′(r) shows that, under the above conditions, we have h′′(r) > 0 and
h′(r) > 0, for r > 0, as long as the solution is defined. The global behavior of the
solution ultimately depends on the value of C .

When h(r) is a solution to the above shooting problem, the graph (r, h(r)) is
part of a profile curve C, which corresponds to a rotational expander for the inverse
mean curvature flow. Applying the techniques from the proof of Theorem 14 to the
profile curve C leads to a description of the global behavior of this expander, which
ultimately depends on the value of C > 1/n. In terms of the profile curve C written
as a graph over the h-axis, we have the following result.

Theorem 19. For C > 1/n and h0 < 0, there exists a half-entire solution r(h)
to (11) that is defined for h > h0, and such that the curve (h, r(h)) intersects the
h-axis perpendicularly when h = h0. The solution r(h) has three types of behavior,
depending on the value of C :

(1) If C = 1/(n− 1), then r ′ > 0, r ′′ < 0, and there exists 0< rtop <∞ such that
limh→∞ r(h)= rtop.

(2) If C > 1/(n− 1), then r ′ > 0, r ′′ < 0, and limh→∞ r(h)=∞.

(3) If 1/n < C < 1/(n− 1), then there exists a point h1 such that r ′′(h) has the
same sign as (h− h1), and limh→∞ r(h)= 0.

Proof. When C = 1/(n− 1), the convexity of h(r) along with the analysis from
Lemma 17 shows that there is a point rtop <∞ such that limr→rtop− h′(r)=∞ and
limr→rtop− h(r)=∞. Written as a graph over the h-axis, this shows that there is a
solution r(h) to (11), defined for h> h0, which intersects the h-axis perpendicularly
at h0 and satisfies r ′ > 0, r ′′ < 0, and limh→∞ r(h)= rtop.

Next, when C > 1/(n − 1), we claim that the solution h(r) must exist for all
r > 0. To see this, suppose to the contrary that h′ increases to∞ at a point rtop<∞.
Then, since C > 1/(n− 1), (14) forces h ≥ εrh′ when r is close to rtop, for some
ε > 0. However, integrating this inequality shows that h′ does not blow up at a finite
point; hence the solution exists for all r > 0. Therefore, the solution h(r) exists
for all r > 0, and using h′′ > 0 and h′ > 0, we have limr→∞ h(r) =∞. Written
as a graph over the h-axis, this shows that there is a solution r(h) to (11), defined
for h > h0, which intersects the h-axis perpendicularly at h0 and satisfies r ′ > 0,
r ′′ < 0, and limh→∞ r(h)=∞.

Finally, when 1/n < C < 1/(n− 1), the factor 1
C − (n− 1) in (15) is positive

and the analysis in Lemma 17 can be used to show that h(r) does not exist for all
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r > 0. Moreover, using the positivity of 1
C − (n− 1) and integrating (14), we arrive

at an inequality that provides an upper bound for h. In terms of the profile curve
written as a graph over the h-axis, this says that the solution r(h) achieves a global
maximum at a finite point. Reading (9) in polar coordinates, we can show that r(h)
is defined for h > h0. This forces the concavity of r(h) to change sign at a finite
point, and as in the proof of Lemma 15, it follows that there is a point h1 such that
r ′′(h) has the same sign as (h− h1). Then, an argument similar to the one in the
previous paragraph shows that r(h) is not bounded below by a positive constant,
and we conclude that limh→∞ r(h)= 0. �

We remark that when 1/n < C < 1/(n− 1), the analogue of Lemma 17 holds,
but as we saw in the proof of the previous theorem, the analogue of Lemma 18 is
not true. Similarly, if C > 1/(n− 1), then the analogue of Lemma 18 holds, but
the analogue of Lemma 17 does not.

Hypercylinder expanders. We finish this section with a result on the construction
of rotational expanders that are topological hypercylinders.

Theorem 20. For C > 1/n and r0 > 0, there is a unique solution r(h) to (11) that
is symmetric about the r-axis and satisfies the initial condition r(0)= r0, r ′(0)= 0.
The solution r(h) has three types of behavior, depending on the value of C :

(1) If C=1/(n−1), then r(h)≡r0 (which corresponds to the round hypercylinder).

(2) If C > 1/(n − 1), then r(h) has a global minimum at h = 0, and there ex-
ists a point h1 > 0 such that r ′′(h) has the same sign as (h1 − |h|). Also,
limh→∞ r(h)=∞.

(3) If 1/n < C < 1/(n− 1), then r(h) has a global maximum at h = 0, and there
exists a point h1 > 0 such that r ′′(h) has the same sign as (|h| − h1). Also,
limh→∞ r(h)= 0.

Proof. It follows from (11) that the condition r ′(0) = 0 forces the solution to be
constant when C=1/(n−1), to have a global minimum at h=0 when C>1/(n−1),
and to have a global maximum at h= 0 when 1/n<C < 1/(n−1). To see that there
is a finite point h1> 0 where the concavity of r(h) changes sign when C > 1/(n−1),
we first observe that r(h) is increasing when h > 0, and consequently, it is defined
for all h > 0. An analysis of (14) shows that a positive solution h(r) cannot satisfy
h′′(r) < 0 and h′(r) > 0 for all r > 0 when C > 1/(n− 1); hence, there is a finite
point h1 > 0 where the concavity of r(h) changes sign. When 1/n<C < 1/(n−1),
the analysis in the proof of Theorem 19 can be used to show that the concavity of
r(h) changes sign at a finite point h1 > 0. The proofs of the remaining properties
are similar to the proofs given for Theorems 14 and 19. �
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