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BERGMAN THEORY OF CERTAIN
GENERALIZED HARTOGS TRIANGLES

LUKE D. EDHOLM

The Bergman theory of domains {|z1|
γ < |z2| < 1} in C2 is studied for cer-

tain values of γ , including all positive integers. For such γ , we obtain a
closed form expression for the Bergman kernel Bγ . With these formulas, we
make new observations relating to the Lu Qi-Keng problem and analyze the
boundary behavior of Bγ (z, z).

1. Introduction

For a domain�⊂Cn, the Bergman space is the set of square-integrable, holomorphic
functions on�. The Bergman kernel is a reproducing integral kernel on the Bergman
space that is indispensable to the study of holomorphic functions in several complex
variables. The purpose of this paper is to understand Bergman theory for a class of
bounded, pseudoconvex domains in C2. Define the generalized Hartogs triangle of
exponent γ > 0 to be the domain

(1.1) Hγ = {(z1, z2) ∈ C2
: |z1|

γ < |z2|< 1}.

H1 is the “classical” Hartogs triangle, a well-known pseudoconvex domain with
nontrivial Nebenhülle. When γ > 1, we call Hγ a fat Hartogs triangle, and when
0< γ < 1, we call Hγ a thin Hartogs triangle. Our main results are the following
two computations.

Theorem 1.2. Let s := z1w1, t := z2w2, and k ∈ Z+. The Bergman kernel for the
fat Hartogs triangle Hk is given by

(1.3) Bk(z, w)=
pk(s)t2

+ qk(s)t + sk pk(s)
kπ2(1− t)2(t − sk)2

,

where pk and qk are the polynomials

pk(s)=
k−1∑
l=1

l(k− l)sl−1, qk(s)=
k∑

l=1

(l2
+ (k− l)2sk)sl−1.
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Theorem 1.4. Let s = z1w1, t = z2w2, and k ∈ Z+. The Bergman kernel for the
thin Hartogs triangle H1/k is given by

(1.5) B1/k(z, w)=
tk

π2(1− t)2(tk − s)2
.

There has been an extensive amount of research devoted to understanding
Bergman kernels of various classes of domains, and there are several instances
in which explicit formulas for the kernel have been obtained. The most common
method involves summing an infinite series, which is done in [D’Angelo 1978;
1994; Park 2008]. In [Boas et al. 1999], explicit formulas for the Bergman kernel
are produced using other techniques which avoid infinite series altogether. But
these situations are exceptional, and in most cases it is impossible to express the
Bergman kernel in closed form.

Despite the difficulty of producing explicit formulas, powerful estimates on
the Bergman kernel have been given for many classes of pseudoconvex domains.
Fefferman [1974] develops an asymptotic expansion of the kernel on smoothly
bounded, strongly pseudoconvex domains in Cn. Useful estimates also exist for
large classes of smoothly bounded, weakly pseudoconvex domains. See [Catlin
1989; McNeal 1989; 1994; Nagel et al. 1989] for some of the principal results on
finite type domains, and [Fu 2014] for domains with locally smooth boundaries and
constant Levi-rank.

At present, there are no general theorems about the behavior of the Bergman
kernel on pseudoconvex domains near unsmooth boundary points, which adds to
the intrigue of Theorems 1.2 and 1.4. Each generalized Hartogs triangle defined
by (1.1) has two very different kinds of boundary irregularities: the “corner points”
which occur at the intersection of the two bounding real hypersurfaces, and the
origin singularity, near which bHk cannot be expressed as the graph of a continuous
function.

|z2|

|z1|

|z2|

|z1|

This is one of several recent papers to study holomorphic function theory on
domains with similar kinds of boundary singularities. Chakrabarti and Shaw [2013]
investigate the Sobolev regularity of the ∂̄-equation on the classical Hartogs triangle.
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Chakrabarti and Zeytuncu [2016] study the L p-mapping properties of the Bergman
projection on the classical Hartogs triangle, and Chen [2013] studies L p-mapping
of the Bergman projection on analogous domains in higher dimensions. Zapałowski
[2016] characterizes proper maps between generalizations of the Hartogs triangle
in Cn. This author and McNeal investigate the Bergman projection on fat Hartogs
triangles in [Edholm and McNeal 2016]. It can be hoped that by understanding the
Bergman theory on example domains with boundary singularities such as Hγ , we
can gain deeper insight into the situation on more general domains.

2. Preliminaries

Bergman theory. Here we highlight some basic facts about Bergman theory that
are used throughout this paper. See [Krantz 1992] for a more detailed treatment. If
�⊂Cn is a domain, let O(�) denote the holomorphic functions on �. The standard
L2 inner product is denoted by

(2.1) 〈 f, g〉 =
∫
�

f · ḡ dV,

where dV denotes Lebesgue measure on Cn. L2(�) denotes the measurable func-
tions f such that 〈 f, f 〉 = ‖ f ‖2 <∞. We define the Bergman space A2(�) :=

O(�)∩ L2(�).
A2(�) is a Hilbert space with inner product (2.1), and for all z ∈�, the evaluation

functional evz : f 7→ f (z) is continuous. Therefore, the Riesz representation theorem
guarantees the existence of a function B� :�×�→ C satisfying

(2.2) f (z)=
∫
�

B�(z, w) f (w) dV (w), f ∈ A2(�).

We call B� the Bergman kernel, and when context is clear we may omit the
subscript. In addition to reproducing functions in the Bergman space via (2.2), the
Bergman kernel is conjugate symmetric and for each fixed w ∈�, B( ·, w)∈ A2(�).

Given an orthonormal Hilbert space basis {φα}α∈A for A2(�), the Bergman
kernel is given by the formula

(2.3) B(z, w)=
∑
α∈A

φα(z)φα(w),

which is independent of the choice of the basis.
Finally, the Bergman kernel transforms under biholomorphisms in the following

way: Let F :�→ �̃ be a biholomorphic map of domains in Cn. Then

(2.4) B�(z, w)= det F ′(z) ·B�̃(F(z), F(w)) · det F ′(w).
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The Bergman kernel of H1. The formula for the Bergman kernel of the classical
Hartogs triangle has been known for quite some time, at least since Bremermann’s
[1955] paper. Following the spirit of Bremermann’s argument, we use formula (2.4)
to compute BH1 . The map given by ψ(z1, z2)= (z1/z2, z2) is a biholomorphism of
H1 onto D× D∗, where D is the unit disc and D∗ is the punctured disc. It’s easy
to see that the Bergman kernel of D× D∗ is the same as that of D× D, which is
well known and given by

(2.5) BD×D(z, w)=
1

π2(1− z1w1)2(1− z2w2)2
= BD×D∗(z, w).

Seeing that detψ ′(z)= 1/z2, (2.4) says

(2.6) BH1(z, w)=
z2w2

π2(1− z2w2)2(z2w2− z1w1)2
.

Because of this computation, Theorems 1.2 and 1.4 only need to be proved for
integers k ≥ 2. Note the polynomial p1(s) in (1.3) is vacuously equal to 0.

Distance to the boundary and asymptotic growth rates. The following notation
will be used in and around Theorem 4.9. Given any z ∈�, define the distance to
the boundary of � by the function

δ�(z) :=min{‖z− ζ‖ : ζ ∈ b�},

where ‖ · ‖ denotes Euclidean distance. When the context is clear, we may omit the
subscript. We will also use the following notation to write inequalities. If A and
B are functions depending on several variables, write A . B to mean that there
is a constant K > 0, independent of relevant variables, such that A ≤ K · B. The
independence of which variables will be clear in context. Also write A ≈ B to
mean that A . B . A.

3. Bell’s transformation rule and derivation of the kernel

Equation (2.4) says that the Bergman kernels of two biholomorphic domains are
related by a simple formula. But applications of this transformation rule remain
limited by the fact that it’s rare to expect two domains in Cn to be biholomor-
phic. There is, however, a more general version of this transformation rule. Bell
[1982] proves a generalization which applies whenever we have two domains and
a proper holomorphic map from one onto the other. The statement of this more
general transformation rule appears below, and it will be essential to our proof of
Theorem 1.2.

Recall the classical fact that any holomorphic, proper map of � onto �̃ is
necessarily a branched covering of finite order.
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Theorem 3.1 (Bell’s transformation rule). Let � and �̃ be domains in Cn with
respective Bergman kernels B and B̃, and suppose φ is a proper holomorphic map
of order k from � onto �̃. Let u := det[φ′], and let 81,82, . . . , 8k be the branch
inverses of φ defined locally on �̃−V , where V := {φ(z) : u(z)= 0}. Finally, write
Uj := det[8′j ]. Then

(3.2) u(z)B̃(φ(z), w)=
k∑

j=1

B(z,8j (w))Uj (w).

We’re now ready to compute the Bergman kernel of fat Hartogs triangles with
integer exponents. For the rest of this paper, we’ll denote the Bergman kernel of
Hγ by Bγ .

Proof of Theorem 1.2. First we need to define the map φ and its local inverses
81, . . . , 8k . For each integer k ≥ 2, the function φ : H1→ Hk given by

φ(z)= (z1, zk
2) := (φ1(z), φ2(z))

is a branched cover of order k, since

|φ1(z)|k < |φ2(z)|< 1 ⇐⇒ |z1|
k < |zk

2|< 1

⇐⇒ |z1|< |z2|< 1.

We note u(z)= kzk−1
2 , so V is the set {z2 = 0}, which is disjoint from Hk . For

each j = 1, . . . , k, the map 8j (z)=
(
z1, ζ

j z1/k
2

)
defines a local inverse of φ, where

ζ = e2π i/k and z1/k
2 is taken to mean the root with argument in the interval [0, 2π/k).

From this we see Uj (z)=
(
ζ j z1/k−1

2

)
/k. We now apply Bell’s rule (3.2):

(3.3) Bk
(
(z1, zk

2), (w1, w2)
)
=

z2w
1/k
2

k2zk
2w2

k∑
j=1

B1
(
(z1, z2), (w1, ζ

jw
1/k
2 )

)
ζ̄ j

=
z2

2w
2/k
2

π2k2zk
2w2

k∑
j=1

ζ̄ 2 j(
1− z2w

1/k
2 ζ̄ j

)2(z2w
1/k
2 ζ̄ j − z1w1

)2

=
a2−k

π2k2

k∑
j=1

ζ̄ 2 j(
1− aζ̄ j

)2(aζ̄ j − s
)2 ,

where a = z2w
1/k
2 and s = z1w1. Define f j (a, s) := (ζ j

−a)2(a−sζ j )2 and notice
that

∏k
j=1 f j (a, s)=

∏k
j=1(ζ

j
− a)2 ·

∏k
j=1(a− sζ j )2 = (1− ak)2(ak

− sk)2.
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Now, it follows that

(3.4) (3.3)= a2−k

π2k2

k∑
j=1

ζ 2 j

f j (a, s)
=

a2−k ∑k
j=1 Fj (a, s)ζ 2 j

π2k2(1− ak)2(ak − sk)2
,

where Fj (a, s) := (1−ak)2(ak
−sk)2/ f j (a, s). Notice each Fj (a, s) can be written

as a polynomial in a of degree 4k− 4, so the numerator of (3.4) takes the form

(3.5) a2−k
k∑

j=1

Fj (a, s)ζ 2 j
=

3k−2∑
j=2−k

g j (s)a j
:= G(a, s).

We now wish to calculate the coefficient polynomials g j (s). Toward this goal,
observe that G(ζma, s)= G(a, s) for all m ∈ Z. This follows because

G(ζma, s)= (ζma)2−k
k∑

j=1

Fj (ζ
ma, s)ζ 2 j

= a2−k
k∑

j=1

(1− ak)2(ak
− sk)2

f j−m(a, s)
ζ 2 j−2m

= G(a, s).

Here, we’ve used the facts that

f j (ζ
ma, s)= ζ 4m f j−m(a, s) and f j (a, s)= f j+mk(a, s)

for all m ∈ Z. Because G has this invariance, we conclude that

(3.6) G(a, s)= a2−k
k∑

j=1

Fj (a, s)ζ 2 j
= g2k(s)a2k

+ gk(s)ak
+ g0(s).

It remains to calculate g2k(s), gk(s) and g0(s), and these polynomials are obtained
in the following lemma. But to avoid disrupting the flow of the paper with several
pages of algebra, we postpone its proof until Section 5.

Lemma 3.7. The coefficient polynomials g2k(s), gk(s) and g0(s) are given by

g2k(s)= k
k−1∑
l=1

l(k− l)sl−1
= kpk(s),(3.8)

gk(s)= k
k∑

l=1

(l2
+ (k− l)2sk)sl−1

= kqk(s),(3.9)

g0(s)= k
k−1∑
l=1

l(k− l)sk+l−1
= ksk pk(s).(3.10)

Using this lemma and letting t := ak
= zk

2w2, we see from (3.4) that
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Bk
(
(z1, zk

2), (w1, w2)
)
=

pk(s)t2
+ qk(s)t + sk pk(s)

kπ2(1− t)2(t − sk)2
.

This is the desired formula for Bk , except that both sides are a function of zk
2. This

is remedied by formally replacing the variable zk
2 with z2. This concludes the proof

of Theorem 3.1 �

Remark 3.11. It’s also true that the Bergman kernel of Hm/n is a rational function
whenever m, n ∈Z+. Indeed, the map (z1, z2) 7→ (z1zn−1

2 , zm
2 ) is a proper map from

H1 onto Hm/n , so Bell’s formula gives Bm/n as a finite sum. Zapałowski [2016]
characterizes the proper maps between fat Hartogs triangles. He shows there is a
proper map F : Hm/n→ Hp/q if and only if there are a, b ∈ Z+ such that

aq
p
−

bn
m
∈ Z.

Zapałowski’s description of proper maps shows that the methods employed in this
paper aren’t able to say anything about fat Hartogs triangles Hγ , for irrational γ .

Remark 3.12. Ramadanov’s theorem says that if {�k} is an increasing family
of domains such that �k → � b Cn , then B�k (z, w) → B�(z, w) absolutely
and uniformly on compact subsets of � × �. See [Ramadanov 1967] for the
first appearance of this fact, and [Boas 1996] for a generalization in the smoothly
bounded, pseudoconvex case. Notice that {Hk} is an increasing family and that Hk→

D× D∗ as k→∞. Ramadanov’s theorem shows that Bk(z, w)→ BD×D∗(z, w),
which is given in (2.5). This is difficult to see from direct computation.

Biholomorphism classes of domains. Let

ψ(z)= (ψ1(z), ψ2(z)) := (z1/z2, z2).

On page 330, we used the fact that ψ : H1 → D × D∗ is a biholomorphism to
compute the Bergman kernel of H1. We’ll give a very similar argument to prove
Theorem 1.4. Let 9(z)= (z1z2, z2), and see that 9 : D× D∗→ H1 is the inverse
of ψ . Now, notice that ψ :H1/(k+1)→H1/k is also a biholomorphism for all k ∈Z+,
because

|ψ1(z)|1/k < |ψ2(z)|< 1 ⇐⇒ |ψ1(z)|< |ψ2(z)|k < 1

⇐⇒ |z1/z2|< |z2|
k < 1

⇐⇒ |z1|< |z2|
k+1 < 1

⇐⇒ |z1|
1/(k+1) < |z2|< 1.

Letψk
:=ψ◦· · ·◦ψ be k copies ofψ composed together, soψk(z) := (z1z−k

2 , z2).
This gives a biholomorphism from H1/k to D× D∗ with inverse 9k

:= (z1zk
2, z2).
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We illustrate this chain of biholomorphisms below:

9 9 9 9 9
D× D∗ 
 H1 
 H1/2 
 · · · 
 H1/k 
 · · · .

ψ ψ ψ ψ ψ

Proof of Theorem 1.4. Using the biholomorphism ψk
: H1/k→ D× D∗ we easily

obtain the desired formula. Indeed, since det[(ψk)′](z)= z−k
2 ,

B1/k(z, w)=
1

zk
2w

k
2

B1(ψk(z), ψk(w))=
zk

2w
k
2

π2(1− z2w2)2(zk
2w

k
2− z1w1)2

. �

Remark 3.13. For m, n ∈ Z+, the map ψ(z) = (z1/z2, z2) also gives a biholo-
morphism from Hm/(n+m) onto Hm/n . Applying this map recursively, we see that
Hm/(n+km) and Hm/n are biholomorphic for all k ∈ Z+.

4. Consequences of the kernel formulas

The Lu Qi-Keng problem. One of the long-standing open problems in Bergman
theory is to classify the domains for which the Bergman kernel is nowhere vanishing.
This question was first raised by Lu Qi-Keng [1966]. We say that a domain �⊂Cn

is Lu Qi-Keng when it has zero-free Bergman kernel, and the investigation of which
domains have a zero-free Bergman kernel is known as the Lu Qi-Keng problem.
See [Boas 2000] for a good historical survey, a few key points of which we now
summarize.

The situation in the complex plane is relatively straightforward. When �⊂ C is
simply connected, the Riemann mapping theorem together with (2.4) show that �
is a Lu Qi-Keng domain, since the Bergman kernel of the unit disc is nonvanishing.
But a finitely connected domain in C with at least two nonsingleton boundary
components is not Lu Qi-Keng. See [Rosenthal 1969; Skwarczyński 1969] when �
is an annulus, and [Bell 1992] for a more general class of domains.

There is no such simple characterization of the situation known in higher dimen-
sions. In [Boas et al. 1999], it’s shown there are smoothly bounded, strongly convex
domains with real analytic boundary that are not Lu Qi-Keng in Cn, when n ≥ 3.
Contrary to previous expectations, Boas [1996] shows that “most” pseudoconvex
domains (with respect to a certain topology on the set of domains in Cn) have
vanishing Bergman kernel. Nevertheless, it is still desirable to understand why
domains from certain classes have zero-free Bergman kernels, while domains from
closely related classes may not. We now address this problem in the case of the
domains Hγ , where γ ∈ Z+ and γ−1

∈ Z+.
Using the explicit formulas for the Bergman kernels computed in the previous

section, we can check whether or not these domains are Lu Qi-Keng. The following
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corollary is immediate from (1.5), whose numerator vanishes if and only if at least
one of z2 or w2 equals zero.

Corollary 4.1. Let k be a positive integer. The thin Hartogs triangle H1/k is a Lu
Qi-Keng domain.

For fat Hartogs triangles with integer exponent k ≥ 2, we deduce the following
corollary from (1.3).

Corollary 4.2. Let k ≥ 2 be an integer. The fat Hartogs triangle Hk is not a Lu
Qi-Keng domain.

Proof. First consider the case k≥3. Let z=
(
0, i/
√

k− 1
)

andw=
(
0,−i/

√
k− 1

)
.

Then z, w ∈ Hk . Since pk(0) = k − 1 and qk(0) = 1, we see that Bk(z, w) = 0.
When k = 2, let z =

(
i/
√

2,
(√

7+ i
)
/4
)

and w =
(
−i/
√

2,
(√

7− i
)
/4
)
. It is

easily checked that z, w ∈ H2 and that B2(z, w)= 0. �

It’s immediate from (2.4) that a nonvanishing Bergman kernel is a biholomorphic
invariant. Corollary 4.2 lets us deduce the following:

Corollary 4.3. Let k ≥ 2 be an integer. Hk is not biholomorphic to D× D∗.

Remark 4.4. Using Ramadanov’s theorem in conjunction with Hurwitz’s theorem
on zeroes of holomorphic functions, we see that for each integer k ≥ 2, there is
an sk ∈ [k − 1, k) such that for all γ ∈ (sk, k], the Bergman kernel Bγ of Hγ has
zeroes. It seems plausible to conjecture that sk = k − 1, i.e., that no fat Hartogs
triangle of exponent γ > 1 is Lu Qi-Keng.

Remark 4.5. As was mentioned in Remark 3.12, Hk→ D× D∗ as k→∞. The
Bergman kernel BD×D∗ is zero free, so for any fixed compact subset K ⊂ D× D∗,
Ramadanov’s theorem tells us that the Bergman kernel Bk restricted to K is zero
free for all k sufficiently large. We see this happen as the zero of Bk provided in the
proof of Corollary 4.2 is pushed to the origin. It would be interesting to do further
analysis of the zero set of the polynomial in the numerator of Bk .

Diagonal boundary behavior. The asymptotic behavior of B�(z, z) as z tends to
the boundary has been studied for many classes of smoothly bounded, pseudoconvex
domains. [Hörmander 1965; Fefferman 1974] are two seminal papers dealing with
the strongly pseudoconvex case. Results also exist for many classes of smoothly
bounded, weakly pseudoconvex domains. See [McNeal 1989; Catlin 1989; Nagel
et al. 1989] for finite-type domains in C2, and [McNeal 1994] for finite-type, convex
domains in Cn. Refer to [Fu 2014] for analogous results on smoothly bounded
domains with constant Levi rank. But all these estimates are for classes of domains
with boundary smoothness, and there are presently no general theorems about the
behavior of B�(z, z) for pseudoconvex domains near singular boundary points.

Using the explicit formulas for the Bergman kernel, we establish the following:
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Lemma 4.6. Let k ∈ Z+. We have the following behavior of the Bergman kernel
restricted to the diagonal:

(4.7) Bk(z, z)≈
1

(1− |z2|)2(|z2| − |z1|k)2
, z ∈ Hk .

Proof. In this proof we are concerned with Bk(z, z), so write s := |z1|
2 and t := |z2|

2.
From Theorem 1.2 we see that

Bk(z, z)=
pk(s)t2

+ qk(s)t + sk pk(s)
kπ2(1− t)2(t − sk)2

,(4.8)

where pk(s) and qk(s) are given in the statement of Theorem 1.2. We now estimate
the numerator of (4.8). Notice that qk(s)≥ 1 for all s ∈ [0, 1), and so

t ≤ pk(s)t2
+ qk(s)t + sk pk(s) < t[2pk(1)+ qk(1)]. t,

since sk< t . Now estimate the terms in the denominator. It’s easy to see that both

(1− t)2 ≈ (1− |z2|)
2,

(t − sk)2 ≈ |z2|
2(|z2| − |z1|

k)2.

Here, we’ve used the fact that |z2|
2
≤ (|z2|+|z1|

k)2< 4|z2|
2. Putting these estimates

together, we obtain (4.7). �

Let � ⊂ C2 be a bounded domain and ζ ∈ b� a smooth, Levi-flat boundary
point. It can be shown that B�(z, z)≈ δ�(z)−2 as z→ ζ . See [Fu 2014] for more
information. The domains Hk are Levi-flat at all smooth boundary points, because
the smooth parts of the boundary can be locally foliated by analytic discs. We
explicitly see this asymptotic behavior from estimate (4.7). In fact, this estimate also
lets us determine the asymptotic growth rate of Bk(z, z) as z tends to the boundary
singularity at the origin. When z is sufficiently close to 0, it’s straightforward to see
|z2| − |z1|

k
≈ δk(z), the distance of z to the boundary of Hk . From this, we deduce:

Theorem 4.9. Let k ∈ Z+ and δk(z) be the distance of z to bHk . Then

Bk(z, z)≈ δk(z)−2 as z→ 0.

Remark 4.10. Following steps analogous to those in Lemma 4.6, we can show

B1/k(z, z)≈
1

(1− |z2|)2(|z2|k − |z1|)2
, z ∈ H1/k .

This estimate can be used to determine the asymptotic growth rate of B1/k(z, z) as
z tends to the boundary singularity at the origin. When z is sufficiently close to 0,
it’s straightforward to check that |z2|

k
− |z1| ≈ δ1/k(z), the distance of z to bH1/k .

From this we conclude that B1/k(z, z)≈ δ1/k(z)−2 as z→ 0.
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5. Proof of Lemma 3.7

Equation (3.6) tells us that

(5.1) a2−k
k∑

j=1

Fj (a, s)ζ 2 j
= g2k(s)a2k

+ gk(s)ak
+ g0(s).

We prove Lemma 3.7 by splitting the calculation of g2k(s), gk(s) and g0(s) into
two separate lemmas.

Lemma 5.2. Let

hl(s) :=
l∑

r=0

sr.

For each j = 1, . . . , k, the respective coefficient functions of the a3k−2, a2k−2 and
ak−2 terms of Fj (a, s)ζ 2 j are equal to the following:

a3k−2
:

k−2∑
l=0

hl(s)hk−2−l(s),

a2k−2
: 2

k−2∑
l=0

sk−1−lhl(s)2+ hk−1(s)2,

ak−2
: sk

k−2∑
l=0

hl(s)hk−2−l(s).

In particular, note that these expressions have no j dependence.

Proof. In this calculation of the coefficient functions of the a3k−2, a2k−2 and ak−2

terms appearing in Fj (a, s)ζ 2 j, we’ll often write θ := ζ j to cut down on superscripts.

(5.3) Fj (a, s)=
(1− ak)2(ak

− sk)2

f j (a, s)
=

(ak
−1

a−θ

)2(ak
−sk

a−sθ

)2

=

( k∑
m=1

ak−mθm−1
)2( k∑

n=1

ak−n(sθ)n−1
)2

=

( k∑
m=1

k∑
n=1

a2k−m−nθm+n−2sn−1
)2

.

To better understand the double sum inside the parentheses of (5.3) above, we
split this sum into three pieces, A, B and C , depending on the value of m+ n. Let
A be the sum of the terms with 2 ≤ m + n ≤ k, B be the sum of the terms with
m+ n = k+ 1, and C be the sum of the terms with k+ 2≤ m+ n ≤ 2k.
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We rewrite A by letting l = m+ n− 2 be the index of summation. Then

A =
k−2∑
l=0

a2k−l−2θ lhl(s).

For B, only include those terms with m+ n = k+ 1, so we don’t have an outside
sum. Therefore,

B = ak−1θ k−1hk−1(s).

For C , let l = m+ n− k− 2 be the index of summation. Then

C =
k−2∑
l=0

ak−2−lθ k+lsl+1hk−2−l(s).

So we have

(5.3)=
( k−2∑

l=0

a2k−2−lθ lhl(s)+ ak−1θ k−1hk−1(s)+
k−2∑
l=0

ak−2−lθ k+lsl+1hk−2−l(s)
)2

= (A+ B+C)2

= A2
+ B2

+C2
+ 2AB+ 2BC + 2AC.

I emphasize that as a polynomial in a, A has powers of a ranging from a2k−2

to ak, B only has an ak−1 term, and C has terms ranging from ak−2 to a0. This
observation greatly simplifies the computations below.

Computation of the a3k−2 coefficient. For the coefficient of the a3k−2 term in
Fj (a, s)θ2, it is sufficient to consider the coefficient function of a3k−2 in A2θ2:

A2θ2
=

( k−2∑
m=0

a2k−2−mθmhm(s)
)( k−2∑

n=0

a2k−2−nθnhn(s)
)
θ2

= θ2
k−2∑
m=0

k−2∑
n=0

a4k−4−m−nθm+nhm(s)hn(s).

Letting m+n = k− 2, we find that the coefficient function of a3k−2 is independent
of θ (since θ k

= 1), and therefore independent of j . This function is given by

(5.4)
k−2∑
l=0

hl(s)hk−2−l(s).

Computation of the a2k−2 coefficient. For the coefficient of the a2k−2 term in
Fj (a, s)θ2, it is sufficient to consider the coefficient of a2k−2 in (2AC + B2)θ2:
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(2AC + B2)θ2

=

[
2
( k−2∑

m=0

a2k−2−mθmhm(s)
)( k−2∑

n=0

ak−2−nθ k+nsn+1hk−2−n(s)
)

+ (ak−1θ k−1hk−1(s))2
]
θ2

=

[
2

k−2∑
m=0

k−2∑
n=0

a3k−4−m−nθ k+m+nsn+1hm(s)hk−2−n(s)+ a2k−2θ2k−2hk−1(s)2
]
θ2.

Letting m+n = k− 2, we find that the coefficient function of a2k−2 is independent
of θ (since θ2k

= 1), and therefore independent of j . This function is given by

(5.5) 2
k−2∑
l=0

sk−1−lhl(s)2+ hk−1(s)2.

Computation of the ak−2 coefficient. For the coefficient of the ak−2 term, it is
sufficient to determine the coefficient of ak−2 in C2θ2:

C2θ2
=

( k−2∑
m=0

ak−2−mθ k+msm+1hk−2−m(s)
)( k−2∑

n=0

ak−2−nθ k+nsn+1hk−2−n(s)
)
θ2

= θ2
k−2∑
m=0

k−2∑
n=0

a2k−4−m−nθ2k+m+nsm+n+2hk−2−m(s)hk−2−n(s).

Letting m+ n = k− 2, we find that the coefficient function of ak−2 is independent
of θ (since θ3k

= 1), and therefore independent of j . This function is given by

(5.6) sk
k−2∑
l=0

hl(s)hk−2−l(s). �

Now we rewrite (5.4), (5.5) and (5.6) as simpler polynomials:

Lemma 5.7. Again, let hl(s)=
∑l

r=0 sr. Then we have the following equalities:

k−2∑
l=0

hl(s)hk−2−l(s)=
k−1∑
l=1

l(k− l)sl−1,(5.8)

2
k−2∑
l=0

sk−1−lhl(s)2+ hk−1(s)2 =
k∑

l=1

(l2
+ (k− l)2sk)sl−1.(5.9)

Proof. Focus on (5.8) first. Notice that

hl(s)hk−2−l(s)=
( l∑

m=0

sm
)( k−2−l∑

n=0

sn
)
=

k−2∑
r=0

sr
+

k−3∑
r=1

sr
+ · · · +

k−2−L∑
r=L

sr,
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where L =min{l, k− 2− l}. Using this, we see

(5.10) (5.4)=
k−2∑
l=0

hl(s)hk−2−l(s)

=

k−2∑
l=0

( k−2∑
r=0

sr
+

k−3∑
r=1

sr
+ · · · +

k−2−L∑
r=L

sr
)

= (k− 1)
k−2∑
r=0

sr
+ (k− 3)

k−3∑
r=1

sr
+ · · · + (k− 2K − 1)

k−2−K∑
r=K

sr,

where K =
⌊ 1

2(k− 2)
⌋

. From here, we compute that the coefficient of sl in (5.4) is
given by

L∑
m=0

(k− 2m− 1)= (L + 1)(k− 1)− 2
L∑

m=0

m

= (L + 1)(k− L − 1)= (l + 1)(k− l − 1).

Therefore,

(5.4)=
k−2∑
l=0

hl(s)hk−2−l(s)=
k−2∑
l=0

(l + 1)(k− l − 1)sl
=

k−1∑
l=1

l(k− l)sl−1,

where we’ve re-indexed the sum in the last equality, obtaining the form of (5.8).
Now we’ll establish (5.9). Note that

hr (s)2 = 1+ 2s+ · · · + rsr−1
+ (r + 1)sr

+ rsr+1
+ · · · + 2s2r−1

+ s2r.

Using this, write the pieces of (5.5) = 2
∑k−2

l=0 sk−1−lhl(s)2 + hk−1(s)2 in the
following way:

sk−1h0(s)2 = sk−1

sk−2h1(s)2 = sk−2
+ 2sk−1

+ sk

sk−3h2(s)2 = sk−3
+ 2sk−2

+ 3sk−1
+ 2sk

+ sk+1

...
...

hk−1(s)2 = 1+ · · · + (k− 1)sk−2
+ ksk−1

+ (k− 1)sk
+ · · ·+ s2k−2.

The coefficient of sl in (5.5) can be obtained by considering the vertical columns
above. Notice the coefficients of sl and s2k−2−l are always the same. When
0≤ l ≤ k− 1, we have that the coefficient of sl is given by

2
l∑

r=1

r + (l + 1)= (l + 1)2.
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Therefore,

(5.5)=
k−1∑
l=0

(l + 1)2sl
+

k−2∑
l=0

(k− (l + 1))2sk+l

=

k−1∑
l=0

(
(l + 1)2+ (k− l − 1)2sk)sl

=

k∑
l=1

(
l2
+ (k− l)2sk)sl−1,

where we have re-indexed the sum in the last equality to obtain the form of (5.9). �

Proof of Lemma 3.7. Lemmas 5.2 and 5.7 together give us (3.8), (3.9) and (3.10).
�
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