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TRANSFERENCE OF CERTAIN MAXIMAL
HILBERT TRANSFORMS ON THE TORUS

DASHAN FAN, HUOXIONG WU AND FAYOU ZHAO

Using transference techniques, we show that L?(R") estimates for many
operators may be transferred to the L?(T") estimates on the n-torus T"
via measure-preserving actions of R”. These operators include the maximal
bilinear Hilbert transform, the oscillation, and the variation and short vari-
ation operators of the Hilbert transform on the torus T. As an extension, we
study the (maximal) bilinear Riesz transforms on the n-torus T".

1. Introduction
Let C be the complex plane and Ri the upper half plane
R: ={(x,y)=x+iyeC:y> 0}

The boundary of R%r is the real line R. Consider the boundary condition f € L?(R),
where f is real-valued and 1 < p < oco. It is well known that the Poisson integral

1
) = PHE = 1 [ FO
is the solution of the Dirichlet problem on [R{%r. Precisely, u is a harmonic function
on [Ri%r and u(x, y) tends to f(x) nontangentially for almost all x e Ras y — 0.
There is a (unique) harmonic function

. _ 1 x—t
e = 0,0 =+ [ FO s ar
such that
F(z) =u(x,y) +iv(x,y)

is an analytic function on Ri. This function Q,(f)(x) is called the conjugate
Poisson integral of f. From [Stein and Weiss 1971, p. 186], we know that the
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function F(z), with z = x + iy, has the nontangential limit f(x) + j’TéH f(x) for
almost all x € R. Here H is the Hilbert transform defined by
M Hf (x) = lim H, f (x)
e =0
xX—t

H f (x) = —d
[t|>e t
To study the pointwise convergence of H f (x), one then needs to study the truncated
maximal Hilbert transform

H* f(x) = sup |H, f (x)].

e>0

Let
={z=x+iyeC:|z] <1}

be the unit disc. Its boundary T = dD is the one-dimensional torus. Without loss of
generality, we may identify the torus T with its fundarzlental interval [—%, %) The
Dirichlet problem on D with the boundary condition f € L?(T) similarly raises an
analytic function F(z) = u(x y)+i v(x y). The function F(z) forz=x+1iy € D,
has the nontangential limit fx) + = LH £ (x) for almost all points x € T. Here H is
the periodic version of the Hilbert transform defined by

ﬁﬂm=h%ﬁju)
and

) H, f(x)= / 1j;(x —t) cot(mt) dt.
e<lt|<x

By computing the Fourier coefficients, one can see that H £ (x) has the Fourier
series

ﬁf(x) = Z i sgn(k)age*™*x

k=—00
for any
oo
f(x) — Z akeZJTikx
k=—00

(see also [Edwards and Gaudry 1977]). It is known that Z,C(’O:foo sgn(k)akeZ” ikx
(up to a constant multiplier) is the conjugate Fourier series of f.

The bilinear Hilbert transform # ( f, g) and the maximal bilinear Hilbert transform
H*(f, g) are defined respectively as

fx—tgx+1) J

|t|>e t

®) H(f. 8)(x) = lim
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and

fxr—Dgx+0) |

lt|>e t

H*(f, &)(x) =sup

e>0

The operator H( f, g) is not merely a formal extension from the Hilbert transform.
It has deep roots in the study of certain harmonic analysis and PDE problems. The
study of the bilinear Hilbert transform H( f, g) was initiated by Calderén when he
studied certain Cauchy integrals C,, () along the Lipschitz curves. In order to obtain
the L? boundedness of C, (f), Calder6n introduced a commutator (now known as
the first Calderén commutator) and raised a famous conjecture, which says that H
is a bounded operator from L>® x L?> — L?; see [Jones 1994]. The conjecture was
solved in a more general setting by Lacey and Thiele in their celebrated theorem:

Theorem A1 [Lacey and Thiele 1997]. Let 1 < g, r < 00, and % < p < 00. Then

IHC O My SN ey 181 Lr )
provided % = $+ %

The notation A < B for A, B > 0 means that there exists a constant ¢ > 0
independent of all essential variables such that A < c¢B. We also use the notation
A~ B when A < B and B < A.

The proof of the theorem by Lacey and Thiele involves a very elegant method of
time-frequency analysis. The essence of the matter lies in their formulation and
proof of certain almost orthogonal results on the phase space. Maximal forms of
these results must be proved. These maximal inequalities rely in an essential way on
a novel maximal inequality of Bourgain [1989; 1990]. By refining these maximal
bilinear estimates and Bourgain’s lemma, Lacey further obtained the following
remarkable theorem:

Theorem A2 [Lacey 2000]. Let 1 < g, r < oo and % =141 1f2<p<oo,then

1
q
I1H*(f, g)”Lp(R) = ”f”Lq([Rq)”g”Lr(R)-

Based on Theorems A1l and A2, it is natural to expect to establish analogous
theorems for the periodic bilinear Hilbert transform on the torus. Here, the bilinear
Hilbert transform and its maximal operator on the torus are defined, initially on
C>(T), by

Hf D@ =pv. [ fle=0g+1)cot(mn) di

|f\<j
and
H*(f. &) (x) =sup

>0 1

<|t|<§

/ f(x —1)g(x +1) cot(rt) dt|.
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However, it seems quite difficult to adopt the time-frequency method used in [Lacey
and Thiele 1997]. Thus, in [Fan and Sato 2001], the authors used a “transference”
method to reduce the boundedness of H( £, &) to the boundedness of H(f, g)
by estimating an error term. The method of transference is a useful tool for
obtaining norm estimates independent of the dimension for classical operators acting
on L?(R") (see [Auscher and Carro 1994; Blasco and Gillespie 2009; Coifman
and Weiss 1977; Gillespie and Torrea 2004; Rubio de Francia 1989]). Fan and
Sato [2001] proved the de Leeuw-type theorems (see [de Leeuw 1965]) for the
transference of multilinear operators on Lebesgue spaces from R” to the n-torus.
In particular, they proved:

Theorem B. Letl<q,r§ooand%=}]+%.If%<p<oo,then

IHE Doy = W e IE 1L -
Note that

H(f ) @)~ Y ) sgn(ky — kp)ag, ag, e “ %,

kieZ krez
where

f(x) = Z akleZﬂiklx and g(x) — Z akze2m’k2x.

kieZz koeZ

In [Fan and Sato 2001], the authors also studied the boundedness of the maximal
multiplier operator

T (f, &) (x) = sup

e>0

Z Z m(eky, eky)ay, akzezni(k1+k2)x

k1 VA kQEZ

’

where m is a bounded and continuous function (see also [Berkson et al. 2006;
2007; Blasco et al. 2005; Grafakos and Honzik 2006] for transference methods on
maximal bilinear operators). For the bilinear Hilbert transform, clearly we have

H(f, 9 (x) =H*(f, ) (x),

since
Z Z Sgn(ek] _8k2)aklak2627ri(k1+k2)x — Z Z Sgn(k1 _kZ)aklakzeZNi(k]+k2)x~
kleZ szZ k1€Zk2€Z

This observation indicates
H(f D) £ H™(F. ).

Since the boundedness of H*(f, §) still remains open, the first aim of this paper is
to solve this problem by establishing the following analog of Lacey’s theorem.
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Theorem 1.1. Letl<q,r§ooand%=37+}.1f%<p<oo,then

17 Doy 2 M F o 18-

We adopt the method in [Fan and Sato 2001] to prove the theorem, in which
the main issue is to estimate error terms in order to reduce the boundedness of
Li(T) x L"(T) — LP?(T) to the known result for L7(R) x L"(R) — L?(R). This
method additionally allows us to treat other operators related to the maximal
Hilbert transform. Recall that the limits (1) and (3) mentioned above exist almost
everywhere. Motivated by probability and ergodic theory [Bourgain 1989; Jones
1997; 1998], in order to obtain extra information on their convergence rate, as well
as an estimate on the number of A-jumps they can have, Campbell, Jones, Reinhold
and Wierdl [Campbell et al. 2000] studied the oscillation and variation of the family
(H,) as & approaches 0 as follows.

For each fixed sequence () \ 0, define the oscillation and variation operators by

0o 1

@) ﬁ(H*f)(x)=(Z sup |Hgkf(x)—Hek+1f<x)|2>2,

k=1 k1 =Ek+1 <6k =k

: :
5)  Y(H )@ = sup (Zngkf(x)—wa(x)P) ,
(E)\O0 k=1

respectively. Also, define

1
2
Vk(H*f><x)=(sl)1§0< » IHa,-f(x)—Hs,-Hf(x)lz) :

1
b3 <Ej4+1<E;= T
where the supremum is taken over all decreasing sequences (¢;). Then the “short
variation operator” is defined by

00 1

2
©6) SV(H*fxx):( > vk<H*f(x))2) :

k=—00

For convenience, all the integrals are defined on the Schwartz class.
We recall the following results from [Campbell et al. 2000].

Theorem C. The oscillation operator O'(H,) satisfies

IO He Nl Loy < pll f e
forl < p<ooand|{x eR:O(H,f)(x) > A} < (c/k)||f||L1(R).
Theorem D. If o > 2, then the variation operator ¥,(H,) satisfies

1Yo (Hx )l Loy < (P N Fll Loy

Jor 1 <p<ooand|{x € R:Yp(Hef)(x) > 2} < (c@/MNfl 1 gy
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Theorem E. The short variation operator Sy (H,) satisfies

”SV(H*f)”Lp(R) =< Cp”f”LP(R)
forl < p<ooand|{x € R:Sy(H,f)(x) > A} < (c/MIfllL1(w)-

Our second aim is to use the transference method to study the analogs of these
operators on the torus. For each fixed sequence (#;) “\, 0, define the oscillation and
variation operators on the torus by

—_

o0

~ ~ ~ 2
ﬁ(H*f)(x)z(Z sup | H, fO0) — ey, f(x)l)

lky 1 <Epq1 <Ex <t
e 1 SEk 1 <Ek =Tk

1
Vo (H f)(x) = (S?EO(Z | o f(x) - 8k+1f(x)|@)g

respectively. Also, define the operator Vk(ﬁ*) on the torus by

DO —

Vi(Hy f)(x) = ( |H,, f(x) — He,,, f(0)] )
fa X (SSI),IEO Z X X

1
2k <Ej+1<Ej=pT

where the supremum is taken over all decreasing sequences (¢;). Then define the
“short variation operator’ on the torus by

o0

1
~ ~ ~ ~ 2
SV<H*f>(x)=( > (vk(H*f(x)ﬂ) .
k

=—00

For simplicity, we define these operators on the space C*°(T).
We establish the following theorems.

Theorem 1.2. The oscillation operator O (H,) satisfies
NEHs P Loy < €pll Fll oy
for1<p<ooand|ix €T: O(H.)(x) > M < /M N1p:
Theorem 1.3. If ¢ > 2, then the variation operator %(ﬁ*) satisfies
1 (He )l Loy < epe I F Nl oy
for1<p<ooand |{x €T: % (H. [)x) > 1} < €@ /Ml 1 p:
Theorem 1.4. The short variation operator Sy (ﬁ*) satisfies
1Sy (H ) ocry < epll Fllory

forl<p<ooand|{xeT: Sv(ﬁ*f)(x) > A} < (C/)‘)”f”L’(Tr)'
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As we mentioned, the method in [Fan and Sato 2001] shows that L? (R") estimates
for many linear operators may be transferred to their corresponding L? estimates
on the torus via measure-preserving actions of R". As a further application and
extension, we consider the bilinear Riesz transform on the n-torus. Recall that the
bilinear singular integral with rough kernel on R" is defined by

4
) To(fo=lim [ f—ng+n2lay,

~0Jy1>¢ Iyl
where ©(y’) is a function defined on the unit sphere S”~! in Euclidean space
R" and whose integral over S"~! is zero. One then obtains the bilinear Riesz
transform by taking €2 (x) =x;/|x|, where x; is the j-th component of x. Using the
same transference method, we also can transfer the L?-boundedness of the maximal
bilinear Riesz transform from R" to T”. This fact is discussed in the last two sections.
Throughout this article, we use the letter ¢ to denote a positive constant, which is
independent of the main parameters and not necessarily the same at each occurrence.

2. Proof of Theorems 1.1-1.4

In this section we give the proof of Theorems 1.1-1.4. As is well known, Euler
discovered two remarkable expressions for circular functions, one as an infinite
product and the other as an infinite series. For the sine function he established the

formula
sin(mx) =mx H(l — 7) =X 1_[ (1 + k)

kez\{0}

(see [Varadarajan 2007]). By logarithmic differentiation one obtains

®) COL(TX) = p.v. % ;(ﬁ)

where p.v. means the Cauchy principal value, that is, that the sum has to be inter-
preted as the limit

©) Nl—lgrloo x+k - ; + (x—i—k x—k

), NeZ" .

Let x4(t) be the characteristic function of the set A ={r € R: |¢| > 1}. To prove
Theorem 1.1, we need the following lemma.

Lemma 2.1. Fore < |t| < %, we have

fN_15_ 1 ﬂ)_l 1 (L)
COt(nt)XA(s>_nkXZ:t+kXA< & T Z t+kXAC &
€
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and the estimate

1 t 1
> () =i (),

kez\{0}
where A€ is the complement of the set A.
Proof. Using (8), we write the term cot(wt) x4 (t/€) as
t 1 1 t
cotmta(z) = 7 2 mpals)
kez
1 1 t 1 t
RN () + ()
keZ\{0

Since x4 is the characteristic function of the set {r € R: |¢| > 1}, it is easy to see
that for ¢ < |t] < % and k € Z\ {0}, we have

(H—k) _
XA —8 =
The fact above leads to
oy 1 (ty,1 1 ﬂ) _1 1
ntXA<8)_7rtXA(e>+n Z t—i—kXA( € b1 t+k
kez\{0} kez\{0}

Hence we have
trnn(8) =2 S () L 5 L),
kez keZ\{0)
It now remains to estimate
E ne(s)
keZ\{0)

From (9), we know

> (D)= (e e () =2 Y (1)

keZ\{O k=1 k=1

Using this yields

; xAc(g)’ = Itlac(£),

which completes the proof. (]
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Proof of Theorem 1.1. For simplicity, we introduce some notation. Denote by

() 1ot

(10) 9 = X412, %) = ().

an - Ro=1Yw(H) o= (b
kez kez\{0}

Then we have

100 = [ Fs=ngt+0R0)dr
Let
He(f = | fr—ngx+nRe)dr.

<%
Because of Lemma 2.1, one has

H'(f. 9 = 7 sup|He (. D]+ 2 M(F. D).
where

M(f, &) (x) = sup

e>0

fa=nga+nrn di|.
|t|<j

By Lemma 2.1, the Minkowski integral inequality and Holder’s inequality, we
see that, for p > 1,

1

~ 2 - B
IMF, D)oy = / F =08 + D ocr,an 11 dt
2

= ||f||Lq(T)||g||Lr(1r)-

On the other hand, using Holder’s inequality, we have

=

2

1 1
H f L Fa=DgGc+ D@ dr / G =036+ 0r ()] di
2

L12(T) LM

= ”f”Ll(‘[) ”g”Ll(T)
Then an interpolation yields that, for all % < p < oo,

1M D ey <N 180 -

Thus, to prove the theorem, we only need to show that

supl o (7. D), - = 1 e 1811,

e>0
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It is easy to compute that the Fourier coefficients of f’)?{g () are

(]2) Cme _/ Z t+k) —i2mwmt dt

ZkZ

=f2ﬁ(t)e_"2”m’s a’t:—i/ sin(2Qrmte) dr
R [t]>1 t

= —misgn(em) + i/ sin(emt) dt.

t|<2m

Clearly, ¢y, ¢ is uniformly bounded on € > 0 and m € Z. On the other hand, it is
not difficult to check that

o
f(x —1gx+ t)f)fig(t) dt = Z Z ambncm_n’eelﬂi(n-km)x,

|t|<j m=—00 n=—00

where

© @]
f(X) = Z ameZﬂimx and g(x) — Z bneZﬂinx.

m=—0oQ n=—0oo

Now pick W € .#(R) satisfying W(x) = 1 on [—1, 1], supp(¥) c [-3, 3] and

0 < W(x) < 1. For any positive N, denote the function ¥V by
(13) WV (x) = W(x/N).
Consider the error term given by
Ene(f, )x) = W/NYH(f, 900 = He (W f, ¥V g) ().

The error term Ey . (f, §)(x) roughly gives the difference of #, on R and He on
the torus. By checking the Fourier transform, we have

o0

00
(lef LIJN )(x) Z Z ambneZHi(n—i-m)x

m=—oon=—oo
x—i-t) (x—t) 27i (n—m)t
X/ng(z)w<—N v(* 5 )e dt.

The definition of the inverse Fourier transform on the space of Schwartz functions
shows that

/R ms(t)\y(xT“>w(xT_t)e2m<"—m>’ dt

:/9%5(1)/ f @(u)@(U)eZHiu(x+t)/N62niv(x—t)/N du dv eZni(n—m)t dt
R R JR

:/ / @(u)ﬁ(v)eZﬂix(u—l-v)/N </ 9{8(t)eZﬂi(u—v)t/NEZr[i(n—m)t d[) dudv.
R JR R
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Therefore, we obtain that

o0

oo
Ene(f, @)=Y > anbye™ "t

m=—o0 n=—00

X / / a(u)a(v)(cm—n,s - Cm—n+(v—u)/N,s)ezmx(u—H))/N dudv.
R JR
If m = n, then
/ f W)Y (V) (€mne = CmontwyN.e)e" TN dy gy
R JR

:i// @(u)@(v)</ smsZnt(tv—u)/N dt)ez’”x(”J“”)/Ndudv
R Ju>v |t]>1

i / f ®(u)®<v)< / sine2t (u—v)/N dt)ezmx(““)“vdudv
R Jv>u |t]>1 t

=0.

If m # n, for any sufficiently small § > 0, we choose an L > 0 such that

< 4.

/ W (U)W () (Cmn.e = Cm—ntvuy/N.e) e TN gy dy
u2+v2>L

Now we let N be sufficiently large so that, for ur+vr <L,
sgn(m —n) =sgn(m —n+ (v —u)/N).

By this choice, for all 0 < ¢ < %, we have

/ W U)W ) (Cmne = Cmntwwyn.e)e™ TN dudv
u4v2<L

j/
u2+v2<L

=o0(l) as N — oc.

sin(et (m—n))—sin(et (m—n+(w—u)/N)) dt

V() ;

du dv

[t|<2m

Since (a,) and (b,,) are rapidly decreasing sequences, it is easy to see that
lim sup |Ey.(f.8)(x)]=0.
N—>00 0<e<1/2
Applying that

sup |H:(fF, &)
O<e<l1/2

is a periodic function, together with Theorem A2, we now have, as N — oo,
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_ (/% ( su iﬂjﬂ (f N)(x)|)pdx)l7
LP('[I')_ —% 0<8<p1/2 S8

N

1 2 p
:W</ sup W (x/N)?|He(f, §)(x)] dX)

& 0<e<1/2

—_

sup | (7. 2)|
O<e<l1/2

=

ST

<o(l)+ N}/P </R sup }He(\pr, \pNg)(x)V’ dx)

O<e<l1/2
<o)+ 17 Nl/l’ (N4 f||Lq(R)||lIJ 8l w)
<o(l)+ ||f||Lq(1r)||§||Lr(1r)-
Thus we get the desired result by letting N — oco. U

We again will use the transference method to prove Theorems 1.2—1.4. To this
end, we need a key lemma in order to estimate error terms.

Lemma 2.2. Let R,, 5‘{8 and \V be as defined in (10), (11) and (13), respectively.
Fork eZT, set

Hepooos(H@) = (R, —Rey,y) * f(20),
Hep oy (1)) = (Rey — Repy)  FO0).

For fixed N € 7, define the error term

EN,ak,sk_H (];)(x) \I/N(X)Hsk Skt (f)(x) ak Skal (‘IJNf)(X)
Let1 < p <o0. As N — oo, we have:

(1) For each fixed sequence (t;) \ 0,

S !
~ 2
‘ <Z Sup | Eneper ()] ) =o(1).
k=1 1 SEk+1 <Ex=Ik LP(T)
(ii) Iszk <égry1 <& < % then for o > 2,
1
sup (Z\EN et ()] ) =o(1).
(e)\0 LP(T)

Proof. By the previous calculation (12), we know that the Fourier coefficients of
R (1) are

14 .= / R(1)e 27 gy = — i f SNERTED 4y, tez.
R lt]>1
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Note that

oo
li)%gk(t)f(x —t)dt = Z (A Cr 5, €7

ltl<5 m=—00

For fixed N € Z+, we have

o
V(x/N)Hep o, (HYX) = D aye™™™ / U () (em ey = Cmeey e du.

m=—00 R

Also, by a similar estimate as in Theorem 1.1, we obtain
[e.¢]
Hek,skH (\'IJNf)(x) = Z ameanmx/ \Ij(u)(cm+u/N,ek - Cm—&—u/N,ekH)eznux/N du.
m=—00 R
Consequently,

o0
EN,Ek,£k+1(f)(x) = Z ameZT[imx

m=—00

X f \I’(M)((Cm,gk — Cm’ng) — (Cm—l—u/N,sk — Cm_"_u/N’SkH))eZnux/N du.
R

In order to simplify the notation, we denote by Cy (1) the term

(Cm,sk - Cm,€k+1) - (Cm-i-u/N,ek - Cm—H,t/N,skH)-

To evaluate the inner integral above, we first deal with the term Cy (1). From the
second expression of (14),

Ek . .
C () =2i/ sm(27rmt)—31nt(2n(m+u/N)t) Jt.
Ek+1

We consider two cases: m =0 and m # 0.
If m = 0, one has

15)  |Cn(w)|= ‘—21'[8" sin@rtu/N)

1
<4 — .
< 7T|M|N(<9k Ek+1)

If m # 0, it follows from trigonometric identities that

& | gj tu/N
M dt < 2n|u|%(8k ~8k+1)-

(16) Cy )] 52/

Ek+1
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Applying the above estimates, we have

o\
Sup EN,Sk,€k+] (f)(-x)| >

H <k:l Tt | SEk41 <€k =Ik

Lr(T)
S :
| (o), 23
e (tk — tet1) <=
N k=1 vy N
Therefore we obtain that, as N — oo,
00 1
~ 2\2
‘ (Z sup EN,Sk,£k+1(f)(x)| ) :0(1)
k=1 U1 SEkt1 <Ek=lk Lr(T)
Similarly, we have for o > 2,
0 1
~ 0
sup (Z|EN,gk,gk+1<f)<x>|")
(eNO N\ LP(T)
1
3 1
~ |l sup ( (5k_5k+l)g) ~ || sup ( (8k—8k+1)> <.
(N0 Z LP(TF) (E)N0 2 ey N
Thus we obtain that, as N — oo,
1
0
sup (Z|EN e (N ) =o(1). O
(ex)\O0 LP(T)

Proof of Theorem 1.2. With the previous notation, by the definition of ﬁg ( f ) in (2),
we rewrite Hy, f — Hy, ., [ as

f(X) 8A+|f(x) 7T " f(x _t)(msk(t) £k+1(t))
t<
1

+ = D) (Feg,, (1) — re, (1)) dt,
- |tk%f(x )(reg, (1) —re (1))

with the help of Lemma 2.1.
Recall again that x4 is the characteristic function of the set |¢| > 1. It is easy to
see that for g1 < & < |t| < %, we have that for all j € Z\ {0},

(t—i—j) (t—i—j)
XA = X4 =1.
Ek+1 &k

r8k+1(t) _rSk(t) =0

This leads to
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It now suffices to consider
1

2 )2
By (i) of Lemma 2.2, the basic properties of operators on the torus and Theorem C,
we conclude that as N — oo,

|
IOH NIy = —f ( sup
i Lo N —ﬁ Z lk+1§8k+1 <&k =tk

<o(l)+ N/ ( sup | He, o1 (W f)(X)! >

1) <e <& <,
k= 1k+l k+1<€k=lk

o0

O(H.f)(x) = (Z sup

k=1 I SEk+1 <€k =Ik

fl= 1) (Re, (1) — Rey,, (1)) dr

|l\<

w(%)ﬁgk,£k+1<f)<x)}2)gdx

N\‘w

§0(1)+N/R)‘I’ (£)Fo|"dx <1l + o0,

We next show that the oscillation operator & (ﬁ*) is of weak type (1, 1), that is,
for any A > 0,

[(x e T: |O(H ()] > )] < /\IIfIIL]m
By the basic properties of operators on the torus, we find that for N € Z+,
{rel-3. 1) 10HNH@I> 1) =N [{x e [-5, §) : 0H. /H@)| > 1]
=N {ll = ¥ [9(F) 0N > 1)),

As in the proofs of (15) and (16), we know that Ey ¢, ¢, (f)(x) — 0 uniformly
in x as N — oo. For any A such that 0 < 1| < A, choose N large enough that

[{re[-5.3): 10H DN > 1} < N7 {x e R:[OH WY ] > 2=},
Theorem C implies that the last term above can be controlled by

eN~' Nz cN~'N c 7
A— )\. ”\IJ f”Ll([R) A— )x ”f”Ll(WT) )\‘_)\‘1||f||L1(T)-

Since A; > 0 is arbitrary, we get the desired result. This completes the proof of
Theorem 1.2. O

Proof of Theorem 1.3. Using the same argument as in Theorem 1.2, it is enough to

study
g)g,

Now by checking the proof for the oscillation operator O(H,), it suffices to show

IVo(Hs Dl oty = Lo cr-

icEs 1) (Re, (1) — Rey,, (1)) dr

|f|<

V,(H, f)(x) = sup (
¢ (exr)\O Z
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Write
Hgp o1 (f)(x) = Hg, f(x) — He,,, f(X),
Hepeot1 (H)(0) = (Rep — Ry, ) * F(0).

For any large integer N, we define the error term

Ey eponn (F)(¥) = W /N)He 01 (f) — Hep o1 (W ().

Using (ii) of Lemma 2.2, we obtain that as N — oo,

1
sup (Z |EN EksEk+1 (f)(x)| )Q

(e6)\O0

=o(1).

Lr(T)

Finally, applying Theorem D, analogously to the proof of Theorem 1.2 we obtain

ol ey = v | N&‘f&( (%) gkgk+1<f)(x)\)
,

<o(l)+ R(S?EO<Z‘H“ a1 (PN )| )

<o+ [ [(3) F@| dx <17l +oc.

Letting N — oo, we conclude that the variation operator “I/Q(ﬁ*) is of strong type
(p, p) forl < p < oo.

The same argument as in the proof of Theorem 1.2 works for the weak type
(1, 1) for the variation operator ”f/Q(ﬁ*). We omit the details. O

Proof of Theorem 1.4. The proof of Theorem 1.4 is similar to that of Theorem 1.3.
The only change is to consider two different cases: p’ > 2 and p’ < 2 in place
of the symmetric differentiation operator used above. We leave the details to the
interested reader. U

3. Extension to Riesz transforms

In this section we study the (maximal) bilinear Riesz transforms as n-dimensional
extensions.
We start with the maximal bilinear singular integral with rough kernel
17) To(f. 9)(x) =sup |Ta:(f. §) ()],
e>0

where Tg . is the truncated bilinear operator defined by

T (f 8x)= fx=Ngkc+y) Q()dy fore>0.

|y|>e |)’|"
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Following the standard rotation method by Calderén and Zygmund (see also [Fan
and Zhao > 2016; Grafakos and Torres 2002]), we have the following result on R".

Theorem 3.1. Let 1 < g,r <o00,1 < p < oo and % = 6114_%, IfQe Lo°(S"1) is
an odd function, then

175(f, 8)||Lp(Rn) =< ||f||Lq(Rn)||g||Lr(Rn)'

If Q(x)=x;/|x|, j=1,2,...,n, then (7) and (17) are reduced to the bilinear
Riesz transforms and their maximal operators in Euclidean space R":

. Y
R;(f.8)(x) = C, lim fx =gt +y) = dy,
=0 Jjy|>e |y
Yj .
R%(f., g)(x) = Cy sup fx=ygc+y)—tsdy|, 1<j<n,
e>0 |J|y|>¢ |y|

where y; is the j-th component of y and C,, =T"((n + 1)/2)71_(”+1)/2.

Corollary 3.2. Let1 <q,r <00,1 < p < oo and % = % + } Then

1R CF Moy 2 1oy 181 -

As an application, we consider analogous operators on the n-dimensional torus
n_[_1 Ly
= [_2’ 2) : B
For C*°(T") functions f, g, write their Fourier series

f(x) = Z akle27ti(k1,x>’ g(x) — Z bkzeZHi(kz,x)’
k[EZ" kzezn
where (-, -) denotes the dot product.
Let

Q:{x:(xl,xz,...,xn)eR”:—%§xj<§f0rj=1,2,...,n}

be the fundamental cube on which
ﬂwwzfﬂww
T 0

for all functions f on the torus T". For N € Z*, let NQ denote a cube with the
same center as Q and side length N times the side length of Q. Denote by Q. the
set given by

O.={xeQ:|x|>c¢} f0r0<8<%.

Let
E={xcR":|x|>1}
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and yg(x) be the characteristic function of E. For 1 <i < n, let x; and m; be
the i-th components of x = (xy, ..., x,) and m = (my, ..., m,), respectively. For
any x # 0, the kernel of the j-th Riesz transform on R" is

Xj

K50 = [

Then the kernel of the j-th Riesz transform on the torus is defined, in the sense of
Cauchy principle value, by

(18) IZ,-(x) _ Z Xjtmy

meZn |x —i_lnln_‘_1 ’

We now define the bilinear Riesz transform R and its maximal operator R * on the
torus T”, for f, § € C(T"), by

Ri(f,&)(x)= lim ie},e<f, 2)(x),
Ri(f.9)(x)= sup |R;(f. D),

O<e<l1/2

where R, . is defined by
Rie(F.8)() = / R0 F (= »gte+y) dy
Qe

- /Qk’j@)x,;(g)ﬂx—y)g(x+y>dy.

Our result can be stated as follows:

Theorem 3.3. Letl<q,r§oo,1§p<ooand%=é+%. Then

IR CFs OMocony 2 W llzacon 181

By checking the proof of Theorem 1.1, it suffices to show an easy lemma to
obtain Theorem 3.3.

Lemma 34. For0<¢ < % and y € Q, we have the estimate

Rioe(2) =5 3 k() e () = 3 Kyt +moee(2)

mezn mezm {0}
and
> Ky +m)XEC(§)‘ =< |ylxge (f)
mezm {0}

where EC is the complement of the set E.
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Proof. The first equality above follows the method of Lemma 2.1. Now we estimate
the second inequality. Write

DT:{meZ”\{O}:mj>O}, D?:{meZ"\{O}:mj=O},
and
y*:(y17y27”"yj—l7_yj9yj+lv""yn)’
Then we have
> e ()
+1AE
meZ"\{0} [y +ml" €
y) yjitm; yji—mj (y) Vi
= - + + = _
XEC(g Z<|y—|—m|"+1 |y*+m|"+l> XEC e Z |y +m|"+1
m

+ 0
j meD;

_ y 1 1
_XEC(g)yj Z <|y +m|ntl + |y*—|—m|”+1)
me

H
J

y 1 1
m

n
Dj

y 1
+ XEC <g)yj' Z <—|y +m|"+1>'
m

0
D;

It is trivial to get that

y Y Y\
16 (3) 2 | = 2 ()
meD?

J
and

y 1 1 (y)
— . -< p— -
XEC(e)y] Z <|y+m|”+1 + |y*+m|”+1> = XEC\ g il
m

H
J

Using the mean value theorem,
£ &) = fO) = max |V f(2)] lx = yl,

where [ is the line segment between x and y. This leads to

y 1 1 y
e (2) 2 mi(peen - |y*+m|”+1)‘ = xee(3) il
me

+
J

completing the proof. ([

From the theorem, we obtain the following corollary.
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Corollary 3.5. Let1 <q,r <00,1 < p < oo and % = 611 + % Then

1R CFo )l =< 1l acom 181 e o

This corollary corresponds to a result by Blasco and Gillespie [2009, The-
orem 1.12] which says that the bilinear Riesz transform R; is bounded from
L7(R") x L"(R") to L?(R"), provided 1 < g,r < o0, 1 < p < oo and % = $+ 1

4. Final remarks

We want to further illustrate that our method works for many operators. In this
section, we provide another example. For ¢ > 0, define

Yj .
Rj,a(fxx):cn/ fe=ypigdy forj=12....n
ly|>¢

Gillespie and Torrea [2004] introduced the oscillation, variation and short vari-
ation operators of the Riesz transform R; in R". The definitions of these three
operators can be expressed in forms similar to (4), (5) and (6) with H, replaced by
R; ¢ in place of the symmetric differentiation operator used above. Gillespie and
Torrea also established the L (R")-boundedness of these operators for 1 < p < oo.

For C*°(T") functions f , write their Fourier series

];(X) — Z akeZ””k’x).

keZm

We define the periodic version of § j.e by
Rho = [ K-y,
O
where Ej is defined as in (18).

We now define the oscillation operator & (R ;) on the torus by

o0

ﬁ(ﬁjfxx):(z sup | R fx) — ,gkﬂf(x)!)

k=1 It 1 =8k+1 <8k =k

Z

and the variation operator %(ﬁ ;) on the torus by

V/(R Hx)= su ( Rje f(x)— skﬂf() )
X (sk)go Z| Js x) —Rj, x|

Define the operator Vk(ﬁ ;) on the torus by

1

vk<§,-f><x>—sup( Y R fx) - ,Wf(x)!)

3 0 1
(CIAN —<81+1<s] *T
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where the supremum is taken over all decreasing sequences (¢;). Define the “short
variation operator” on the torus by

Sv(R; f)(x) = ( > (Vi(R; f<x>)2)2.

k=—00

Applying the same techniques as in the proof of Theorem 1.2, we can easily transfer
those results in [Gillespie and Torrea 2004] from R" to the torus T".
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