Pacific

Journal of Mathematics

ON NONRADIAL SINGULAR SOLUTIONS OF SUPERCRITICAL BIHARMONIC EQUATIONS

Zongming Guo, Juncheng Wei and Wen Yang

ON NONRADIAL SINGULAR SOLUTIONS OF SUPERCRITICAL BIHARMONIC EQUATIONS

Zongming Guo, Juncheng Wei and Wen Yang

Abstract

We develop a gluing method for fourth-order ODEs and construct infinitely many nonradial singular solutions for a biharmonic equation with supercritical exponent.

1. Introduction

In this paper we are concerned with positive singular solutions of the biharmonic equation

$$
\begin{equation*}
\Delta^{2} u=u^{p} \quad \text { in } \mathbb{R}^{n}, n \geq 6, \tag{1-1}
\end{equation*}
$$

where $p>(n+4) /(n-4)$.
Equation (1-1) arises in both physics and geometry. In recent decades there has been much research into classifying solutions to (1-1). When $1<p \leq(n+4) /(n-4)$, all nonnegative solutions to (1-1) have been completely classified [Lin 1998; Wei and Xu 1999]: if $p<(n+4) /(n-4)$, then (1-1) admits no nontrivial nonnegative regular solution, while for $p=(n+4) /(n-4)$, i.e., the critical case, any positive regular solution of (1-1) can be written in the form

$$
u_{\lambda, \xi}=(n(n-4)(n-2)(n+2))^{-\frac{1}{8}(n-4)}\left(\frac{\lambda}{1+\lambda^{2}|x-\xi|^{2}}\right)^{\frac{1}{2}(n-4)}, \quad \xi \in \mathbb{R}^{n} .
$$

However, the question of the complete classification of positive regular solutions of (1-1) in the supercritical case, i.e., $p>(n+4) /(n-4)$, remains largely open.

The structure of positive radial solutions of $(1-1)$ with $p>(n+4) /(n-4)$ has been studied by Gazzola and Grunau [2006] and Guo and Wei [2010]. For the fourth-order ODE

$$
\left\{\begin{array}{l}
\Delta^{2} u(r)=u^{p}(r), \quad r \in[0, \infty) \tag{1-2}\\
u(0)=a, u^{\prime \prime}(0)=b, u^{\prime}(0)=u^{\prime \prime \prime}(0)=0
\end{array}\right.
$$

[^0]it is known from [Gazzola and Grunau 2006] that for any $a>0$ there is a unique $b_{0}:=b_{0}(a)<0$ such that the unique solution $u_{a, b_{0}}$ of (1-2) satisfies $u_{a, b_{0}} \in C^{4}(0, \infty)$, $u_{a, b_{0}}^{\prime}(r)<0$ and
$$
\lim _{r \rightarrow \infty} r^{\alpha} u_{a, b_{0}}(r)=K_{0}^{1 /(p-1)},
$$
where $\alpha=4 /(p-1)$ and
$$
K_{0}=\frac{8\left((n-2)(n-4)(p-1)^{3}+2\left(n^{2}-10 n+20\right)(p-1)^{2}-16(n-4)(p-1)+32\right)}{(p-1)^{4}} .
$$

This implies that $u_{a, b_{0}}(r)>0$ for all $r>0$ and $u_{a, b_{0}}(r) \rightarrow 0$ as $r \rightarrow \infty$. Moreover, it is known from [Guo and Wei 2010] that if $5 \leq n \leq 12$ or if $n \geq 13$ and $(n+4) /(n-4)<$ $p<p_{c}(n)$, then $u_{a, b_{0}}-K_{0}^{1 /(p-1)} r^{-\alpha}$ changes sign infinitely many times in $(0, \infty)$, and if $n \geq 13$ and $p \geq p_{c}(n)$, then $u(r)<K_{0}^{1 /(p-1)} r^{-\alpha}$ for all $r>0$ and the solutions are strictly ordered with respect to the initial value $a=u_{a, b_{0}}(0)$. Here $p_{c}(n)$ refers to the unique value of $p>(n+4) /(n-4)$ such that

$$
p_{c}(n)= \begin{cases}+\infty & \text { if } 4 \leq n \leq 12, \\ \frac{n+2-\sqrt{n^{2}+4-n \sqrt{n^{2}-8 n+32}}}{n-6-\sqrt{n^{2}+4-n \sqrt{n^{2}-8 n+32}}} & \text { if } n \geq 13 .\end{cases}
$$

Very recently, Dávila, Dupaigne, Wang and Wei [Dávila et al. 2014] proved that all stable or finite Morse index solutions of (1-1) are trivial provided $1<p<p_{c}(n)$. According to a result in [Guo and Wei 2010] and [Karageorgis 2009] all radial solutions are stable when $p \geq p_{c}(n)$. Thus the result in [Dávila et al. 2014] is sharp.

We now turn to the singular solutions of (1-1). It is easily seen that

$$
\begin{equation*}
u_{s}(x):=K_{0}^{1 /(p-1)}|x|^{-4 /(p-1)} \tag{1-3}
\end{equation*}
$$

is a singular solution of (1-1). In other words, u_{s} satisfies the equation

$$
\begin{equation*}
\Delta^{2} u=u^{p}, \quad u>0 \text { in } \mathbb{R}^{n} \backslash\{0\} . \tag{1-4}
\end{equation*}
$$

As far as we know, the radial singular solution in (1-3) is the only singular solution to (1-4) known so far. The question we shall address in this paper is whether or not there are nonradial singular solutions to (1-4). To this end, we first discuss the corresponding second-order Lane-Emden equation

$$
\begin{equation*}
\Delta u+u^{p}=0, \quad u>0 \text { in } \mathbb{R}^{n}, \tag{1-5}
\end{equation*}
$$

which has been widely studied. We refer to [Budd and Norbury 1987; Bidaut-Véron and Véron 1991; Dancer et al. 2011; Farina 2007; Guo 2002; Gidas and Spruck 1981; Gui et al. 1992; Johnson et al. 1993; Joseph and Lundgren 1972/73; Korevaar et al. 1999; Zou 1995] and the references therein. Farina [2007] proved that if
$(n+2) /(n-2)<p<p^{c}(n)$, the Morse index of any regular solution u of $(1-5)$ is ∞. Here $p^{c}(n)$ is the Joseph-Lundgren exponent [Joseph and Lundgren 1972/73]:

$$
p^{c}(n)= \begin{cases}+\infty & \text { if } 2 \leq n \leq 10 \\ \frac{(n-2)^{2}-4 n+8 \sqrt{n-1}}{(n-2)(n-10)} & \text { if } n \geq 11\end{cases}
$$

In [Dancer et al. 2011], Dancer, Du and Guo showed that if Ω_{0} is a bounded domain containing 0 , then u is a solution of (1-5) in $\Omega_{0} \backslash\{0\}$; if u has finite Morse index and $(n+2) /(n-2)<p<p^{c}(n)$, then $x=0$ must be a removable singularity of u. They also showed that if Ω_{0} is a bounded domain containing $0, u$ is a solution of (1-5) in $\mathbb{R}^{n} \backslash \Omega_{0}$ that has finite Morse index, and $(n+2) /(n-2)<p<p^{c}(n)$, then u must be a fast decay solution. It is easily seen that (1-5) has a radial singular solution

$$
u^{s}(x):=u^{s}(r)=\left(\frac{2}{p-1}\left(n-2-\frac{2}{p-1}\right)\right)^{1 /(p-1)}|x|^{-2 /(p-1)}
$$

Recently, Dancer, Guo and Wei [Dancer et al. 2012] obtained infinitely many positive nonradial singular solutions of $(1-5)$ provided $p \in\left((n+1) /(n-3), p^{c}(n-1)\right)$. The proof of that result is via a gluing of outer and inner solutions.

The main result in this paper is the following theorem.
Theorem 1.1. Let $n \geq 6$. Assume that

$$
\frac{n+3}{n-5}<p<p_{c}(n-1)
$$

Then (1-1) admits infinitely many nonradial singular solutions.
The proof of Theorem 1.1 is via a gluing of inner and outer solutions, as in [Dancer et al. 2012]. In the second-order case, one glues $\left(u(r), u^{\prime}(r)\right)$ at some intermediate point. However, since (1-1) is of fourth order, we have to match the inner solution and outer solution up to the third derivative $\left(u(r), u^{\prime}(r), u^{\prime \prime}(r), u^{\prime \prime \prime}(r)\right)$. Some essential obstructions appear when matching the inner and outer solutions. As far as we know this is the first paper on gluing inner and outer solutions for fourth-order ODE problems.

In the following, we sketch the proof of Theorem 1.1. After performing a separation of variables for a solution u of $(1-1), u(x)=r^{-\alpha} w(\theta)$, finding a nonradial singular solution of (1-1) is equivalent to finding a nonconstant solution of the equation

$$
\begin{equation*}
\Delta_{S^{n-1}}^{2} w+k_{1}(n) \Delta_{S^{n-1}} w+k_{0}(n) w=w^{p} \tag{1-6}
\end{equation*}
$$

where

$$
\begin{aligned}
& k_{0}(n)=(n-4-\alpha)(n-2-\alpha)(2+\alpha) \alpha \\
& k_{1}(n)=-((n-4-\alpha)(2+\alpha)+(n-2-\alpha) \alpha)
\end{aligned}
$$

It is clear that $w(\theta)=\left(k_{0}(n)\right)^{1 /(p-1)}$ is the constant solution of (1-6), which provides the radial singular solution of (1-1) that is given in (1-3).

In order to construct positive nonradial singular solutions of (1-1), we need to find positive nonconstant solutions of (1-6), which is a fourth-order inhomogeneous nonlinear ODE; therefore, we shall construct infinitely many positive nonconstant radially symmetric solutions of (1-6), i.e., solutions that only depend on the geodesic distance $\theta \in[0, \pi)$. We only consider the simple case $w(\theta)=w(\pi-\theta)$ for $0 \leq \theta \leq \frac{\pi}{2}$. In this case, (1-6) can be written in the form

$$
\left\{\begin{array}{l}
T_{1} w(\theta)+k_{1}(n) T_{2} w(\theta)+k_{0}(n) w=w^{p}, \quad w(\theta)>0,0<\theta<\frac{\pi}{2} \tag{1-7}\\
w^{\prime}(0), w^{\prime \prime \prime}(0) \text { exist, } w^{\prime}\left(\frac{\pi}{2}\right)=w^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0
\end{array}\right.
$$

where T_{1}, T_{2} are the differential operators defined by

$$
T_{1} w(\theta)=\frac{1}{\sin ^{n-2} \theta} \frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d}{d \theta}\left(\frac{1}{\sin ^{n-2} \theta} \frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d w(\theta)}{d \theta}\right)\right)\right)
$$

and

$$
T_{2} w(\theta)=\frac{1}{\sin ^{n-2} \theta} \frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d w(\theta)}{d \theta}\right)
$$

A key observation is that

$$
\begin{equation*}
w_{*}(\theta)=A_{p}(\sin \theta)^{-\alpha}, \quad \theta \in\left(0, \frac{\pi}{2}\right] \tag{1-8}
\end{equation*}
$$

with

$$
A_{p}^{p-1}=(n-5-\alpha)(n-3-\alpha)(2+\alpha) \alpha\left(:=k_{0}(n-1)\right)
$$

is a singular solution of (1-7) with a singular point at $\theta=0$. (Note that this is a singular solution in one dimension less.) We will construct the inner and outer solutions of (1-7) and glue them at some point close to 0 , which gives solutions of (1-7). The main difficulty is the matching of four parameters, which correspond to matching u and its derivatives up to the third order.

This paper is organized as follows. In Section 2, we present some preliminaries. In Section 3, we construct inner solutions of (1-7) by studying an initial value problem of (1-7) with large initial values at $\theta=0$. In Section 4, we construct outer solutions of (1-7). We first study an initial value problem of (1-7) with the initial values at $\theta=\frac{\pi}{2}$, then we analyze the asymptotic behaviors of the solutions of this initial value problem near $\theta=0$. Finally, in Section 5, we match the inner and outer solutions constructed in Sections 3 and 4 to obtain solutions of (1-1). This completes the proof of Theorem 1.1. We leave some computational results to the Appendix.

2. Preliminaries

In this section, we present some known results which will be used subsequently.
Let $u=u(r)$ be a positive radial solution of (1-1). Using the Emden-Fowler transformation

$$
\begin{equation*}
u(r)=r^{-\alpha} v(t), \quad t=\ln r, \tag{2-1}
\end{equation*}
$$

we see that $v(t)$ satisfies the equation
$(2-2) v^{(4)}(t)+K_{3} v^{\prime \prime \prime}(t)+K_{2} v^{\prime \prime}(t)+K_{1} v^{\prime}(t)+K_{0} v(t)=v^{p}(t), \quad t \in(-\infty, \infty)$, where the coefficients $K_{0}, K_{1}, K_{2}, K_{3}$ are given in [Gazzola and Grunau 2006]:

$$
\begin{aligned}
K_{0}=\frac{8}{(p-1)^{4}}\left((n-2)(n-4)(p-1)^{3}+2\left(n^{2}-10 n+\right.\right. & 20)(p-1)^{2} \\
- & 16(n-4)(p-1)+32),
\end{aligned}
$$

$K_{1}=-\frac{2}{(p-1)^{3}}\left((n-2)(n-4)(p-1)^{3}+4\left(n^{2}-10 n+20\right)(p-1)^{2}\right.$ $-48(n-4)(p-1)+128)$,
$K_{2}=\frac{1}{(p-1)^{2}}\left(\left(n^{2}-10 n+20\right)(p-1)^{2}-24(n-4)(p-1)+96\right)$,
$K_{3}=\frac{2}{p-1}((n-4)(p-1)-8)$.
By direct calculation it is easy to see that $K_{0}=k_{0}$. The characteristic polynomial (linearized at $K_{0}^{1 /(p-1)}$) of (2-2) is

$$
v \mapsto v^{4}+K_{3} v^{3}+K_{2} v^{2}+K_{1} v+(1-p) K_{0}
$$

and the eigenvalues are given by

$$
\begin{array}{ll}
\nu_{1}=\frac{N_{1}+\sqrt{N_{2}+4 \sqrt{N_{3}}}}{2(p-1)}, & \nu_{2}=\frac{N_{1}-\sqrt{N_{2}+4 \sqrt{N_{3}}}}{2(p-1)}, \\
\nu_{3}=\frac{N_{1}+\sqrt{N_{2}-4 \sqrt{N_{3}}}}{2(p-1)}, & \nu_{4}=\frac{N_{1}-\sqrt{N_{2}-4 \sqrt{N_{3}}}}{2(p-1)},
\end{array}
$$

where

$$
\begin{aligned}
N_{1}: & =-(n-4)(p-1)+8, \\
N_{2}: & =\left(n^{2}-4 n+8\right)(p-1)^{2}, \\
N_{3}: & =(9 n-34)(n-2)(p-1)^{4}+8(3 n-8)(n-6)(p-1)^{3} \\
& \quad+\left(16 n^{2}-288 n+832\right)(p-1)^{2}-128(n-6)(p-1)+256 .
\end{aligned}
$$

Let $\tilde{v}_{j}=v_{j}-\alpha$ for $j=1,2,3,4$.

Proposition 2.1 [Guo and Wei 2010]. For any $n \geq 5$ and $p>(n+4) /(n-4)$,

$$
\begin{equation*}
\tilde{v}_{2}<2-n<0<\tilde{v}_{1} . \tag{2-3}
\end{equation*}
$$

(1) For any $5 \leq n \leq 12$ or $n \geq 13$ and $(n+4) /(n-4)<p<p_{c}(n)$, we have $\tilde{v}_{3}, \tilde{v}_{4} \notin \mathbb{R}$ and $\Re\left(\tilde{v}_{3}\right)=\Re\left(\tilde{v}_{4}\right)=\frac{1}{2}(4-n)<0$.
(2) For any $n \geq 13$ and $p=p_{c}(n)$, we have $\tilde{v}_{3}=\tilde{v}_{4}=\frac{1}{2}(4-n)$.
(3) For any $n \geq 13$ and $p>p_{c}(n)$, we have

$$
\begin{equation*}
\tilde{v}_{2}<4-n<\tilde{v}_{4}<\frac{1}{2}(4-n)<\tilde{v}_{3}<0<\tilde{v}_{1}, \quad \tilde{v}_{3}+\tilde{v}_{4}=4-n . \tag{2-4}
\end{equation*}
$$

Theorem 2.2 [Gazzola and Grunau 2006]. For any $k \geq 1$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} v(t)=K_{0}^{1 /(p-1)}, \quad \lim _{t \rightarrow \infty} v^{(k)}(t)=0 \tag{2-5}
\end{equation*}
$$

Remark. We see that $K_{i}(i=0,1,2,3)$ and $v_{j}, \tilde{v}_{j}(j=1,2,3,4)$ above depend on n and p. In the following, by abuse of notation, we use $K_{i}, v_{j}, \tilde{v}_{j}$ with the dimension n replaced by $n-1$ and write $k_{0}=k_{0}(n)$ and $k_{1}=k_{1}(n)$.

3. Inner solutions

In this section, we construct inner solutions of (1-7).
Let $Q \gg 1$ be a large constant and \tilde{b} be a constant which will be given below. We consider the initial value problem

$$
\left\{\begin{array}{l}
T_{1} w(\theta)+k_{1} T_{2} w(\theta)+k_{0} w=w^{p} \tag{3-1}\\
w(0)=Q, w^{\prime}(0)=0, w^{\prime \prime}(0)=(\tilde{b}+\mu) Q^{1+2 / \alpha}, w^{\prime \prime \prime}(0)=0,
\end{array}\right.
$$

where $\mu>0$ is a small constant. Since $Q \gg 1$, we set $Q=\epsilon^{-4 /(p-1)}\left(:=\epsilon^{-\alpha}\right)$ with $\epsilon>0$ sufficiently small.

Let $w(\theta)=\epsilon^{-\alpha} v(\theta / \epsilon)$. Then we have $v(0)=1, v^{\prime}(0)=0, v^{\prime \prime}(0)=\tilde{b}+\mu$, $v^{\prime \prime \prime}(0)=0$ and $v(r)$ (for $\left.r=\theta / \epsilon\right)$ satisfies the equation

$$
\begin{align*}
& v^{(4)}(r)+2(n-2) \epsilon \cot (\epsilon r) v^{\prime \prime \prime}(r) \tag{3-2}\\
& +\left((n-2)(n-4) \frac{\epsilon^{2}}{\sin ^{2}(\epsilon r)}-(n-2)^{2} \epsilon^{2}+k_{1} \epsilon^{2}\right) v^{\prime \prime} \\
& \quad+\left((n-2) k_{1} \epsilon^{3} \cot (\epsilon r)-(n-2)(n-4) \epsilon^{3} \frac{\cot (\epsilon r)}{\sin ^{2}(\epsilon r)}\right) v^{\prime}(r)+k_{0} \epsilon^{4} v(r)=v^{p}(r)
\end{align*}
$$

with initial conditions

$$
v(0)=1, \quad v^{\prime}(0)=0, \quad v^{\prime \prime}(0)=\tilde{b}+\mu, \quad v^{\prime \prime \prime}(0)=0 .
$$

For $\epsilon>0$ sufficiently small, we have

$$
\begin{aligned}
\epsilon \cot (\epsilon r) & =\frac{1}{r}-\frac{1}{3} \epsilon^{2} r+\sum_{k=1}^{\infty} l_{k} \epsilon^{2 k+2} r^{2 k+1}, \\
\epsilon^{2} \sin ^{-2}(\epsilon r) & =\frac{1}{r^{2}}+\frac{1}{3} \epsilon^{2}+\sum_{k=1}^{\infty} m_{k} \epsilon^{2 k+2} r^{2 k} \\
\epsilon^{3} \cot (\epsilon r) \sin ^{-2}(\epsilon r) & =\frac{1}{r^{3}}+\sum_{k=1}^{\infty} n_{k} \epsilon^{2 k+2} r^{2 k-1}
\end{aligned}
$$

So (3-2) can be written in the form

$$
\begin{align*}
& v^{(4)}(r)+\left(\frac{2(n-2)}{r}-\frac{2}{3}(n-2) \epsilon^{2} r+\sum_{k=1}^{\infty} l_{k}^{\prime} \epsilon^{2 k+2} r^{2 k+1}\right) v^{\prime \prime \prime}(r) \tag{3-3}\\
& +\left(\frac{(n-2)(n-4)}{r^{2}}+\left(\frac{1}{3}(n-2)(n-4)-(n-2)^{2}+k_{1}\right) \epsilon^{2}+\sum_{k=1}^{\infty} m_{k}^{\prime} \epsilon^{2 k+2} r^{2 k}\right) v^{\prime \prime}(r) \\
& -\left(\frac{(n-2)(n-4)}{r^{3}}-(n-2) k_{1} r^{-1} \epsilon^{2}+\sum_{k=1}^{\infty} n_{k}^{\prime} \epsilon^{2 k+2} r^{2 k-1}\right) v^{\prime}(r)+k_{0} \epsilon^{4} v(r)=v^{p}(r)
\end{align*}
$$

with initial conditions

$$
v(0)=1, \quad v^{\prime \prime}(0)=\tilde{b}+\mu, \quad v^{\prime}(0)=v^{\prime \prime \prime}(0)=0 .
$$

The first approximation to the solution of (3-3) is the radial solution $v_{0}(r)$ of the problem

$$
\begin{equation*}
\Delta^{2} v=v^{p} \text { in } \mathbb{R}^{n-1}, \quad v(0)=1, v^{\prime}(0)=0, v^{\prime \prime}(0)=\tilde{b}+\mu, v^{\prime \prime \prime}(0)=0 . \tag{3-4}
\end{equation*}
$$

We write $v_{0}=v_{01}+v_{02}$, where v_{01} satisfies

$$
\begin{equation*}
\Delta^{2} v=v^{p}, \quad v(0)=1, \quad v^{\prime}(0)=0, \quad v^{\prime \prime}(0)=\tilde{b}, \quad v^{\prime \prime \prime}(0)=0, \tag{3-5}
\end{equation*}
$$

and v_{02} satisfies

$$
\begin{equation*}
\Delta^{2} v=v_{0}^{p}-v_{01}^{p}, \quad v(0)=0, \quad v^{\prime}(0)=0, \quad v^{\prime \prime}(0)=\mu, v^{\prime \prime \prime}(0)=0 . \tag{3-6}
\end{equation*}
$$

We now choose $\tilde{b}<0$ to be the unique value such that the solution v_{01} is the unique positive radial ground state of (3-5).
Lemma 3.1. Assume that $v_{01}(r)$ and $v_{02}(r)$ are the solutions to (3-5) and (3-6), respectively. For $(n+3) /(n-5)<p<p_{c}(n-1)$, there exists $R_{0} \gg 1$ such that for $r \geq R_{0}$, the solution $v_{01}(r)$ satisfies

$$
\begin{equation*}
v_{01}(r)=A_{p} r^{-\alpha}+\frac{a_{0} \cos (\beta \ln r)+b_{0} \sin (\beta \ln r)}{r^{(n-5) / 2}}+O\left(r^{2 \sigma-\alpha}\right), \tag{3-7}
\end{equation*}
$$

where $\beta=\sqrt{4 \sqrt{N_{3}}-N_{2}} /(2(p-1))$ (with n being replaced by $n-1$ in N_{2} and N_{3}) and $\sqrt{a_{0}^{2}+b_{0}^{2}} \neq 0$.

The solution $v_{02}(r)$ satisfies

$$
\begin{equation*}
v_{02}(r)=\mu B_{p} r^{\tilde{v}_{1}}+O\left(\mu^{2} r^{v_{1}+\tilde{v}_{1}}+\mu r^{\tilde{v}_{1}+\alpha-(n-5) / 2}\right), \tag{3-8}
\end{equation*}
$$

with $B_{p} \neq 0$ when $\mu=O\left(1 /\left(r^{\nu_{1}-\sigma}\right)\right)$ for r in any interval $\left[e^{T}, e^{10 T}\right]$ with $T \gg 1$ and $\sigma=\alpha-\frac{1}{2}(n-5)$.

Proof. The proof of this lemma is divided into two steps. We consider $v_{01}(r)$ in the first step. The main arguments in the proof are similar to those in the proof of Theorem 3.1 of [Guo 2014].

Using the Emden-Fowler transformation

$$
\begin{equation*}
v_{01}(r)=r^{-\alpha} v(t), \quad t=\ln r \quad(r>0), \tag{3-9}
\end{equation*}
$$

and letting $v(t)=A_{p}-h(t)$, we see that $h(t)$ satisfies

$$
\begin{equation*}
h^{(4)}(t)+K_{3} h^{\prime \prime \prime}(t)+K_{2} h^{\prime \prime}(t)+K_{1} h^{\prime}(t)+(1-p) K_{0} h(t)+O\left(h^{2}\right)=0 \tag{3-10}
\end{equation*}
$$

for $t>1$. Note that $r^{\alpha} v_{01}(r) \rightarrow A_{p}$ as $r \rightarrow \infty$ and hence $h(t) \rightarrow 0$ as $t \rightarrow \infty$. It follows from Proposition 2.1 that $\tilde{v}_{3}, \tilde{v}_{4} \notin \mathbb{R}$ and $\Re\left(\tilde{v}_{3}\right)=\Re\left(\tilde{v}_{4}\right)=\frac{1}{2}(5-n)<0$ and $\tilde{\nu}_{2}<3-n<0<\tilde{\nu}_{1} \operatorname{provided}(n+3) /(n-5)<p<p_{c}(n-1)$. Let $\nu_{3}=\sigma+i \beta$, where $\beta=\sqrt{4 \sqrt{N_{3}}-N_{2}} /(2(p-1))$ and $\sigma=-\frac{1}{2}(n-5)+\alpha<0$ for $p>(n+3) /(n-5)$.

We can write (3-10) as

$$
\begin{equation*}
\left(\partial_{t}-v_{4}\right)\left(\partial_{t}-v_{3}\right)\left(\partial_{t}-v_{2}\right)\left(\partial_{t}-v_{1}\right) h(t)=H(h(t)), \tag{3-11}
\end{equation*}
$$

where $H(h(t))=O\left(h^{2}\right)$. We claim that for any $T \gg 1$, there exist constants A_{i} and $B_{i}(i=1,2,3,4)$ such that

$$
\begin{aligned}
h(t)= & A_{1} e^{\sigma t} \cos \beta t+A_{2} e^{\sigma t} \sin \beta t+A_{3} e^{v_{2} t}+A_{4} e^{\nu_{1} t} \\
& +B_{1} \int_{T}^{t} e^{\sigma(t-s)} \sin \beta(t-s) H(h(s)) \mathrm{d} s+B_{2} \int_{T}^{t} e^{\sigma(t-s)} \cos \beta(t-s) H(h(s)) \mathrm{d} s \\
& +B_{3} \int_{T}^{t} e^{v_{2}(t-s)} H(h(s)) \mathrm{d} s+B_{4} \int_{T}^{t} e^{\nu_{1}(t-s)} H(h(s)) \mathrm{d} s .
\end{aligned}
$$

Moreover, each A_{i} depends on T and $v_{i}(i=1,2,3,4)$, while each B_{i} depends only on $\nu_{i}(i=1,2,3,4)$. In fact, it follows from (3-11) and the theory of second-order ODEs (see [Hartman 1982]) that

$$
\begin{align*}
\left(\partial_{t}\right. & \left.-v_{2}\right)\left(\partial_{t}-v_{1}\right) h(t) \tag{3-12}\\
& =A_{1}^{\prime} e^{\sigma t} \cos \beta t+A_{2}^{\prime} e^{\sigma t} \sin \beta t+\frac{1}{\beta} \int_{T}^{t} e^{\sigma(t-s)} \sin \beta(t-s) H(h(s)) \mathrm{d} s,
\end{align*}
$$

where A_{1}^{\prime} and A_{2}^{\prime} are constants depending on T, v_{3} and ν_{4}. Multiplying both sides of (3-12) by $e^{-v_{2} t}$ and integrating it from T to t, we obtain

$$
\begin{aligned}
\left(\partial_{t}-\nu_{1}\right) h(t)=A_{3}^{\prime} e^{\nu_{2} t}+\int_{T}^{t} & e^{\nu_{2}(t-s)}\left(A_{1}^{\prime} e^{\sigma s} \cos \beta s+A_{2}^{\prime} e^{\sigma s} \sin \beta s\right) \mathrm{d} s \\
& +\frac{1}{\beta} \int_{T}^{t} e^{\nu_{2}(t-s)} \int_{T}^{s} e^{\sigma(s-\xi)} \sin \beta(s-\xi) H(h(\xi)) \mathrm{d} \xi \mathrm{~d} s
\end{aligned}
$$

We now switch the order of integration and find that
$\left(\partial_{t}-v_{1}\right) h(t)$

$$
\begin{aligned}
& =A_{1}^{\prime \prime} e^{\sigma t} \cos \beta t+A_{2}^{\prime \prime} e^{\sigma t} \sin \beta t+A_{3}^{\prime \prime} e^{v_{2} t}+B_{1}^{\prime} \int_{T}^{t} e^{\sigma(t-s)} \sin \beta(t-s) H(h(s)) \mathrm{d} s \\
& \quad+B_{2}^{\prime} \int_{T}^{t} e^{\sigma(t-s)} \cos \beta(t-s) H(h(s)) \mathrm{d} s+B_{3}^{\prime} \int_{T}^{t} e^{v_{2}(t-s)} H(h(s)) \mathrm{d} s,
\end{aligned}
$$

where $A_{1}^{\prime \prime}, A_{2}^{\prime \prime}$ and $A_{3}^{\prime \prime}$ depend on T and $\nu_{i}(i=2,3,4)$, and where the $B_{i}^{\prime}(i=1,2,3)$ depend only on $v_{i}(i=2,3,4)$. Repeating the same argument once again, we obtain our claim. Using the fact that $\int_{T}^{t}=\int_{T}^{\infty}-\int_{t}^{\infty}$, we have

$$
\begin{aligned}
B_{4} \int_{T}^{t} e^{\nu_{1}(t-s)} H(h(s)) \mathrm{d} s & =B_{4} \int_{T}^{\infty} e^{v_{1}(t-s)} H(h(s)) \mathrm{d} s-B_{4} \int_{t}^{\infty} e^{\nu_{1}(t-s)} H(h(s)) \mathrm{d} s \\
& =B_{4} e^{v_{1} t} \int_{T}^{\infty} e^{-v_{1} s} H(h(s)) \mathrm{d} s-B_{4} \int_{t}^{\infty} e^{\nu_{1}(t-s)} H(h(s)) \mathrm{d} s .
\end{aligned}
$$

By combining $B_{4} e^{v_{1} t} \int_{T}^{\infty} e^{-v_{1} s} H(h(s)) \mathrm{d} s$ and $A_{4} e^{\nu_{1} t}$, we can also write $h(t)$ as $h(t)=A_{1} e^{\sigma t} \cos \beta t+A_{2} e^{\sigma t} \sin \beta t+A_{3} e^{\nu_{2} t}+M_{4} e^{\nu_{1} t}$

$$
\begin{aligned}
& +B_{1} \int_{T}^{t} e^{\sigma(t-s)} \sin \beta(t-s) H(h(s)) \mathrm{d} s \\
& \quad+B_{2} \int_{T}^{t} e^{\sigma(t-s)} \cos \beta(t-s) H(h(s)) \mathrm{d} s \\
& \quad+B_{3} \int_{T}^{t} e^{v_{2}(t-s)} H(h(s)) \mathrm{d} s-B_{4} \int_{t}^{\infty} e^{\nu_{1}(t-s)} H(h(s)) \mathrm{d} s .
\end{aligned}
$$

Since $h(t) \rightarrow 0$ as $t \rightarrow \infty$, we have $M_{4}=0$ (note $v_{1}>0$). Setting

$$
h_{1}(t)=A_{1} e^{\sigma t} \cos \beta t+A_{2} e^{\sigma t} \sin \beta t+A_{3} e^{v_{2} t}
$$

and

$$
\begin{array}{r}
h_{2}(t)=B_{1} \int_{T}^{t} e^{\sigma(t-s)} \sin \beta(t-s) H(h(s)) \mathrm{d} s+B_{2} \int_{T}^{t} e^{\sigma(t-s)} \cos \beta(t-s) H(h(s)) \mathrm{d} s \\
+B_{3} \int_{T}^{t} e^{v_{2}(t-s)} H(h(s)) \mathrm{d} s-B_{4} \int_{t}^{\infty} e^{\nu_{1}(t-s)} H(h(s)) \mathrm{d} s
\end{array}
$$

and noting that $H(h(t))=O\left(h^{2}(t)\right)$, we see that

$$
\begin{equation*}
\left|h_{2}(t)\right| \leq C\left(\tilde{h}_{1}(t)+\tilde{h}_{2}(t)\right), \tag{3-13}
\end{equation*}
$$

where $C>0$ is independent of T and

$$
\begin{aligned}
& \tilde{h}_{1}(t)=\max \left\{\int_{T}^{t} e^{\sigma(t-s)}\left|h_{1}(s)\right|^{2} \mathrm{~d} s, \int_{T}^{t} e^{\nu_{2}(t-s)}\left|h_{1}(s)\right|^{2} \mathrm{~d} s, \int_{t}^{\infty} e^{\nu_{1}(t-s)}\left|h_{1}(s)\right|^{2} \mathrm{~d} s\right\}, \\
& \tilde{h}_{2}(t)=\max \left\{\int_{T}^{t} e^{\sigma(t-s)}\left|h_{2}(s)\right|^{2} \mathrm{~d} s, \int_{T}^{t} e^{\nu_{2}(t-s)}\left|h_{2}(s)\right|^{2} \mathrm{~d} s, \int_{t}^{\infty} e^{\nu_{1}(t-s)}\left|h_{2}(s)\right|^{2} \mathrm{~d} s\right\} .
\end{aligned}
$$

We now show

$$
\begin{equation*}
\left|h_{2}(t)\right|=o\left(e^{\sigma t}\right) \tag{3-14}
\end{equation*}
$$

There are three cases to be considered:
(1) $\left|h_{2}(t)\right| \leq\left(\tilde{h}_{1}(t)+\int_{T}^{t} e^{\sigma(t-s)}\left|h_{2}(s)\right|^{2} \mathrm{~d} s\right)$,
(2) $\left|h_{2}(t)\right| \leq C\left(\tilde{h}_{1}(t)+\int_{T}^{t} e^{\nu_{2}(t-s)}\left|h_{2}(s)\right|^{2} \mathrm{~d} s\right)$,
(3) $\left|h_{2}(t)\right| \leq C\left(\tilde{h}_{1}(t)+\int_{t}^{\infty} e^{\nu_{1}(t-s)}\left|h_{2}(s)\right|^{2} \mathrm{~d} s\right)$.

We only consider cases (1) and (3); case (2) is similar. For case (1), we have

$$
\begin{equation*}
\left|h_{2}(t)\right| \leq C\left(\tilde{h}_{1}(t)+\int_{T}^{t} e^{\sigma(t-s)}\left|h_{2}(s)\right|^{2} \mathrm{~d} s\right) \tag{3-15}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|h_{2}(t)\right| \leq C\left(\tilde{h}_{1}(t)+\max _{t \geq T}\left|h_{2}(t)\right| \int_{T}^{t} e^{\sigma(t-s)}\left|h_{2}(s)\right| \mathrm{d} s\right) \tag{3-16}
\end{equation*}
$$

Let $m(t)=\int_{T}^{t} e^{-\sigma s}\left|h_{2}(s)\right| \mathrm{d} s$. Then it can be seen from (3-16) that

$$
\begin{equation*}
m^{\prime}(t) \leq C \tilde{h}_{1}(t) e^{-\sigma t}+C \max _{t \geq T}\left|h_{2}(t)\right| m(t) \tag{3-17}
\end{equation*}
$$

For any $\epsilon>0$ sufficiently small, we can choose T sufficiently large so that $0<$ $d_{T}:=C \max _{t \geq T}\left|h_{2}(t)\right|<\epsilon$. It follows from (3-17) that

$$
\begin{equation*}
m(t) \leq C e^{d_{T} t} \int_{T}^{t} \tilde{h}_{1}(s) e^{-\sigma s} e^{-d_{T} s} \mathrm{~d} s \tag{3-18}
\end{equation*}
$$

Substituting $m(t)$ in (3-18) into (3-16), we see that

$$
\begin{equation*}
\left|h_{2}(t)\right| \leq C \tilde{h}_{1}(t)+C d_{T} e^{\left(\sigma+d_{T}\right) t} \int_{T}^{t} \tilde{h}_{1}(s) e^{-\sigma s} e^{-d_{T} s} \mathrm{~d} s \tag{3-19}
\end{equation*}
$$

Note that $\sigma+d_{T}<0$ for T sufficiently large. We can combine $\nu_{2}<\sigma$ with $h_{1}(t)=O\left(e^{\sigma t}\right)$ to get $\tilde{h}_{1}(t)=o\left(e^{\sigma t}\right)$. On the other hand, from (3-19) we can obtain that $\left|h_{2}(t)\right|=o\left(e^{\left(\sigma+d_{T}\right) t}\right)$. Substituting these into (3-15), we eventually have

$$
\begin{equation*}
\left|h_{2}(t)\right|=o\left(e^{\sigma t}\right) . \tag{3-20}
\end{equation*}
$$

For case (3), we have

$$
\begin{equation*}
\left|h_{2}(t)\right| \leq C\left(\tilde{h}_{1}(t)+\int_{t}^{\infty} e^{\nu_{1}(t-s)}\left|h_{2}(s)\right|^{2} \mathrm{~d} s\right) . \tag{3-21}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|h_{2}(t)\right| \leq C \tilde{h}_{1}(t)+C \max _{t \geq T}\left|h_{2}(t)\right| \int_{t}^{\infty} e^{v_{1}(t-s)}\left|h_{2}(s)\right| \mathrm{d} s . \tag{3-22}
\end{equation*}
$$

Letting $l(t)=\int_{t}^{\infty} e^{-\nu_{1} s}\left|h_{2}(s)\right| \mathrm{d} s$, we see from (3-22) that

$$
\begin{equation*}
-l^{\prime}(t) \leq C \tilde{h}_{1}(t) e^{-v_{1} t}+d_{T} l(t) . \tag{3-23}
\end{equation*}
$$

It follows from (3-23) that

$$
\begin{equation*}
l(s) \leq C e^{-d_{T} t} \int_{t}^{\infty} \tilde{h}_{1}(s) e^{-\nu_{1} s} e^{d_{T} s} \mathrm{~d} s \tag{3-24}
\end{equation*}
$$

Since $\tilde{h}_{1}(t)=o\left(e^{\sigma t}\right)$, we obtain from (3-24) that

$$
l(s)=o\left(e^{\left(\sigma-v_{1}\right) t}\right) .
$$

Substituting this into (3-22), we also have

$$
\left|h_{2}(t)\right|=o\left(e^{\sigma t}\right) .
$$

We now write $h(t)$ as

$$
\begin{aligned}
& h(t)=M_{1} e^{\sigma t} \cos \beta t+M_{2} e^{\sigma t} \sin \beta t+A_{3} e^{v_{2} t} \\
& \quad-B_{1} \int_{t}^{\infty} e^{\sigma(t-s)} \sin \beta(t-s) H(h(s)) \mathrm{d} s \\
& \quad-B_{2} \int_{t}^{\infty} e^{\sigma(t-s)} \cos \beta(t-s) H(h(s)) \mathrm{d} s \\
& \quad \quad+B_{3} \int_{T}^{t} e^{\nu_{2}(t-s)} H(h(s)) \mathrm{d} s-B_{4} \int_{t}^{\infty} e^{\nu_{1}(t-s)} H(h(s)) \mathrm{d} s .
\end{aligned}
$$

Then, it follows from $H(h(t))=O\left(h^{2}(t)\right), h_{1}(t)=O\left(e^{\sigma t}\right), h_{2}(t)=o\left(e^{\sigma t}\right)$ and $\nu_{2}<2 \sigma$ that

$$
\begin{equation*}
h(t)=M_{1} e^{\sigma t} \cos (\beta t)+M_{2} e^{\sigma t} \sin (\beta t)+A_{3} e^{v_{2} t}+O\left(e^{2 \sigma t}\right) . \tag{3-25}
\end{equation*}
$$

This implies that (3-7) holds for some a_{0} and b_{0}. By an argument similar to the one used in the proof of [Guo and Wei 2010, Theorem 3.3], we can show $a_{0}^{2}+b_{0}^{2} \neq 0$. This completes the proof of the first step.

We now proceed to the second step. Setting $v_{02}=\mu \tilde{v}_{02}$, we see that $\tilde{v}_{02}(r)$ satisfies

$$
\begin{equation*}
\Delta^{2} \tilde{v}_{02}-p v_{01}^{p-1} \tilde{v}_{02}=\mu^{-1}\left(\left(v_{01}+\mu \tilde{v}_{02}\right)^{p}-v_{01}^{p}-p \mu v_{01}^{p-1} \tilde{v}_{02}\right) \tag{3-26}
\end{equation*}
$$

with initial conditions

$$
\tilde{v}_{02}(0)=0, \quad \tilde{v}_{02}^{\prime}(0)=0, \quad \tilde{v}_{02}^{\prime \prime}(0)=1, \quad \tilde{v}_{02}^{\prime \prime \prime}(0)=0 .
$$

Using the Emden-Fowler transformation

$$
\tilde{v}_{02}(r)=r^{-\alpha} \hat{v}(t), \quad t=\ln r \quad(r>0),
$$

and the expression obtained for $v_{01}(r)$, we see that $\hat{v}(t)$ satisfies

$$
\begin{equation*}
\hat{v}^{(4)}+K_{3} \hat{v}^{\prime \prime \prime}+K_{2} \hat{v}^{\prime \prime}+K_{1} \hat{v}^{\prime}+(1-p) K_{0} \hat{v}=f(r, \mu, \hat{v}) \tag{3-27}
\end{equation*}
$$

where

$$
f(r, \mu, \hat{v})=O\left(\mu \hat{v}+r^{\alpha-(n-5) / 2}\right) \hat{v}
$$

provided that $\mu \hat{v}=o(1)$ for t sufficiently large. It follows from (3-27) that

$$
\begin{aligned}
& \hat{v}(t)=\hat{A}_{1} e^{\sigma t} \cos \beta t+\hat{A}_{2} e^{\sigma t} \sin \beta t+\hat{A}_{3} e^{v_{2} t}+\hat{A}_{4} e^{v_{1} t} \\
& \quad+\hat{B}_{1} \int_{T}^{t} e^{\sigma(t-s)} \sin \beta(t-s) f(r, \mu, \hat{v}(s)) \mathrm{d} s \\
& \quad+\hat{B}_{2} \int_{T}^{t} e^{\sigma(t-s)} \cos \beta(t-s) f(r, \mu, \hat{v}(s)) \mathrm{d} s \\
& \quad \quad+\hat{B}_{3} \int_{T}^{t} e^{v_{2}(t-s)} f(r, \mu, \hat{v}(s)) \mathrm{d} s+\hat{B}_{4} \int_{T}^{t} e^{v_{1}(t-s)} f(r, \mu, \hat{v}(s)) \mathrm{d} s
\end{aligned}
$$

where $\hat{A}_{i}=\hat{A}_{i}\left(T, v_{1}, \nu_{2}, \nu_{3}, v_{4}\right)(i=1,2,3,4)$ and $\hat{B}_{i}=\hat{B}_{i}\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}\right)$. We first show that \tilde{v}_{02} is strictly increasing in $(0, \infty)$. Using the initial values, we can find $R \in(0, \infty)$ such that $\tilde{v}_{02}(r)>0$ for $r \in(0, R)$. Writing (3-26) as

$$
\mu \Delta^{2} \tilde{v}_{02}=\left(v_{01}+\mu \tilde{v}_{02}\right)^{p}-v_{01}^{p},
$$

we obtain that $\left(\Delta \tilde{v}_{02}\right)^{\prime}>0$, and hence $\Delta \tilde{v}_{02}>\Delta \tilde{v}_{02}(0)=n-1$ for $r \in(0, R)$, which implies that $\left(\tilde{v}_{02}\right)^{\prime}(r)>0$ for $r \in(0, R)$. Moreover, we can deduce that $R=\infty$ and $\tilde{v}_{02}^{\prime}(r)>0$ for $r \in(0, \infty)$. Therefore, \hat{v} is increasing in $(0, \infty)$. Next, we claim
that $\hat{A}_{4} \neq 0$ for any $T \gg 1$ sufficiently large. Indeed, for $t \in[T, 10 T]$,

$$
\begin{aligned}
e^{-\nu_{1} t} \hat{v}(t)= & \hat{A}_{4}+\tilde{g}(t)+\hat{B}_{1} e^{\left(\sigma-v_{1}\right) t} \int_{T}^{t} e^{-\sigma s} \sin \beta(t-s) f(r, \mu, \hat{v}(s)) \mathrm{d} s \\
& +\hat{B}_{2} e^{\left(\sigma-v_{1}\right) t} \int_{T}^{t} e^{-\sigma s} \cos \beta(t-s) f(r, \mu, \hat{v}(s)) \mathrm{d} s \\
& +\hat{B}_{3} e^{\left(v_{2}-\nu_{1}\right) t} \int_{T}^{t} e^{-\nu_{2} s} f(r, \mu, \hat{v}(s)) \mathrm{d} s+\hat{B}_{4} \int_{T}^{t} e^{-\nu_{1} s} f(r, \mu, \hat{v}(s)) \mathrm{d} s \\
\leq & \left|\hat{A}_{4}\right|+|\tilde{g}(t)|+\left(\sum_{j=1}^{4}\left|\hat{B}_{j}\right|\right) \max _{t \in[T, 10 T]}\left(\mu \hat{v}+e^{(\alpha-(n-5) / 2) t}\right) \int_{T}^{t} e^{-\nu_{1} s} \hat{v}(s) \mathrm{d} s,
\end{aligned}
$$

where

$$
\tilde{g}(t)=\hat{A}_{1} e^{\left(\sigma-v_{1}\right) t} \cos \beta t+\hat{A}_{2} e^{\left(\sigma-v_{1}\right) t} \sin \beta t+\hat{A}_{3} e^{\left(v_{2}-v_{1}\right) t} .
$$

Since

$$
\left(\sum_{j=1}^{4}\left|\hat{B}_{j}\right|\right) \max _{t \in[T, 10 T]}\left(\mu \hat{v}+e^{(\alpha-(n-5) / 2) t}\right)=\tau=o(1)
$$

we have

$$
\begin{equation*}
e^{-v_{1} t} \hat{v}(t) \leq\left|\hat{A}_{4}\right|+|\tilde{g}(t)|+\tau \int_{T}^{t} e^{-\nu_{1} s} \hat{v}(s) \mathrm{d} s \tag{3-28}
\end{equation*}
$$

Let $\ell(t)=\int_{T}^{t} e^{-\nu_{1} s} \hat{v}(s) \mathrm{d} s$. We see that

$$
\begin{equation*}
\left(e^{-\tau t} \ell(t)\right)^{\prime} \leq\left(\left|\hat{A}_{4}\right|+|\tilde{g}(t)|\right) e^{-\tau t} . \tag{3-29}
\end{equation*}
$$

Integrating (3-29) in [T, t], we obtain

$$
\ell(t) \leq \frac{\left|\hat{A}_{4}\right|+\max _{t \in[T, 10 T]}|\tilde{g}(t)|}{\tau} e^{\tau(t-T)} .
$$

If we choose $\tau(t-T) \leq C$ for $t \in[T, 10 T]$, i.e., $\tau=O(1 / T)$, we see that

$$
\begin{equation*}
\ell(t) \leq \frac{\left(\left|\hat{A}_{4}\right|+\max _{t \in[T, 10 T]}|\tilde{g}(t)|\right) C}{\tau} \tag{3-30}
\end{equation*}
$$

Substituting this into (3-28), we have

$$
\begin{equation*}
e^{-v_{1} t} \hat{v}(t) \leq\left|\hat{A}_{4}\right|(1+C)+|\tilde{g}(t)|+C \max _{t \in[T, 10 T]}|\tilde{g}(t)| . \tag{3-31}
\end{equation*}
$$

Suppose $\hat{A}_{4}=0$. We see from (3-31) and the expression of $|\tilde{g}(t)|$ that

$$
\hat{v}(t)=o(1) \quad \text { for all } t \in[T, 10 T] .
$$

This contradicts the fact that \hat{v} is increasing in $(0, \infty)$. Therefore, $\hat{A}_{4} \neq 0$ and our claim holds. Moreover, it is known from (3-31) and the expression of $\hat{v}(t)$ that

$$
\begin{equation*}
\hat{v}(t)=B_{p} e^{v_{1} t}+O\left(\mu e^{2 v_{1} t}+e^{\left(\sigma+v_{1}\right) t}\right) \tag{3-32}
\end{equation*}
$$

with $B_{p} \neq 0$ and $\mu=O\left(e^{\left(-\nu_{1}+\sigma\right) t}\right)$. Therefore,

$$
v_{02}(r)=\mu B_{p} r^{\tilde{r}_{1}}+O\left(\mu^{2} r^{v_{1}+\tilde{v}_{1}}+\mu r^{\tilde{v}_{1}+\sigma}\right)
$$

with $B_{p} \neq 0$ and $\mu=O\left(1 / r^{\nu_{1}-\sigma}\right)$.
Lemma 3.2. Let p satisfy the conditions of Lemma 3.1 and $v_{1}(r)$ be the unique solution of the equation

$$
\left\{\begin{array}{c}
v_{1}^{(4)}(r)+\frac{2(n-2)}{r} v_{1}^{\prime \prime \prime}(r)+\frac{(n-2)(n-4)}{r^{2}} v_{1}^{\prime \prime}(r)-\frac{(n-2)(n-4)}{r^{3}} v_{1}^{\prime}(r) \tag{3-33}\\
-\frac{2}{3}(n-2) r v_{0}^{\prime \prime \prime}(r)+\left(\frac{1}{3}(n-2)(n-4)-(n-2)^{2}+k_{1}\right) v_{0}^{\prime \prime}(r) \\
+\frac{(n-2) k_{1}}{r} v_{0}^{\prime}(r)=p v_{0}^{p-1}(r) v_{1}(r), \\
v_{1}(0)=0, v_{1}^{\prime}(0)=0, v_{1}^{\prime \prime}(0)=0, v_{1}^{\prime \prime \prime}(0)=0 .
\end{array}\right.
$$

Then for $r \in\left[e^{T}, e^{10 T}\right]$ with $T \gg 1$ and $\mu=O\left(1 / r^{\nu_{1}-\sigma}\right)$,

$$
\begin{align*}
& v_{1}(r)=C_{p} r^{2-\alpha}+r^{2-(n-5) / 2}\left(a_{1} \cos (\beta \ln r)+b_{1} \sin (\beta \ln r)\right) \tag{3-34}\\
& \quad+\mu D_{p} r^{2+\tilde{v}_{1}}+O\left(\mu^{2} r^{\tilde{v}_{1}+v_{1}+2}+\mu r^{\tilde{v}_{1}+\sigma+2}\right)+o\left(r^{2-(n-5) / 2}\right)
\end{align*}
$$

where C_{p} satisfies

$$
\begin{equation*}
E_{1} C_{p}-p A_{p}^{p-1} C_{p}=F_{1} A_{p}, \tag{3-35}
\end{equation*}
$$

with

$$
\begin{aligned}
& E_{1}=(1+\alpha)(1-\alpha)(2-\alpha) \alpha-2(n-2)(2-\alpha)(1-\alpha) \alpha \\
& \quad-(n-2)(n-4)(2-\alpha)+(n-2)(n-4)(2-\alpha)(1-\alpha), \\
& F_{1}=\left((n-2)^{2}-k_{1}-\frac{1}{3}(n-2)(n-4)\right) \alpha(\alpha+1) \\
& \quad-\frac{2}{3}(n-2) \alpha(\alpha+1)(\alpha+2)+k_{1}(n-2) \alpha,
\end{aligned}
$$

and where D_{p} satisfies

$$
\begin{equation*}
E_{2} D_{p}=F_{2} B_{p}, \tag{3-36}
\end{equation*}
$$

with

$$
\begin{aligned}
& E_{2}=\left(2+\tilde{v}_{1}\right)\left(\tilde{v}_{1}+n-1\right)\left(\tilde{v}_{1}+n-3\right) \tilde{v}_{1}-p A_{p}^{p-1} \\
& \begin{aligned}
F_{2}=\frac{2}{3}(n-2)\left(\tilde{v}_{1}-1\right)\left(\tilde{v}_{1}-2\right) \tilde{v}_{1}+\left((n-2)^{2}-\right. & \left.k_{1}-\frac{1}{3}(n-2)(n-4)\right)\left(\tilde{v}_{1}-1\right) \tilde{v}_{1} \\
& \quad-k_{1}(n-2) \tilde{v}_{1}+p(p-1) A_{p}^{p-2} C_{p}
\end{aligned}
\end{aligned}
$$

and where $\left(a_{1}, b_{1}\right)$ is the solution of

$$
\left\{\begin{array}{l}
A a_{1}-B b_{1}=G \\
B a_{1}+A b_{1}=H
\end{array}\right.
$$

with

$$
\begin{aligned}
& A=\frac{1}{16}\left(n^{4}-12 n^{3}+14 n^{2}+132 n-135\right)-p A_{p}^{p-1}+\frac{1}{2}\left(n^{2}-6 n-35\right) \beta^{2}+\beta^{4} \\
& B=\left(2 n^{2}-12 n-6\right) \beta+8 \beta^{3} \\
& G=p(p-1) A_{p}^{p-2} C_{p} a_{0}+\frac{1}{12}\left(n^{4}-11 n^{3}+41 n^{2}-61 n+30\right) a_{0} \\
& \quad+\frac{1}{4}\left(n^{2}-6 n+5\right) k_{1} a_{0}+\frac{1}{6}\left(4 n^{2}+3 n-n^{3}-14\right) b_{0} \beta-2 k_{1} b_{0} \beta \\
& \quad \quad+\frac{1}{3}\left(n^{2}-9 n+14\right) a_{0} \beta^{2}+a_{0} k_{1} \beta^{2}-\frac{2}{3}(n-2) b_{0} \beta^{3} \\
& \\
& \begin{aligned}
& H=p(p-1) A_{p}^{p-2} C_{p} b_{0}+\frac{1}{12}\left(n^{4}-11 n^{3}+41 n^{2}-61 n+30\right) b_{0} \\
& \quad+\frac{1}{4}\left(n^{2}-6 n+5\right) k_{1} b_{0}-\frac{1}{6}\left(4 n^{2}+3 n-n^{3}-14\right) a_{0} \beta+2 k_{1} a_{0} \beta \\
& \quad+\frac{1}{3}\left(n^{2}-9 n+14\right) b_{0} \beta^{2}+b_{0} k_{1} \beta^{2}+\frac{2}{3}(n-2) a_{0} \beta^{3}
\end{aligned}
\end{aligned}
$$

Remark. We need to show that $E_{2} \neq 0$ and that the 2×2 matrix $K=\left[\begin{array}{cc}A & -B \\ B & A\end{array}\right]$ is invertible. This will be proved in the Appendix.

Proof. The uniqueness of solutions to (3-33) follows from standard ODE theory since all the initial conditions are zero and the inhomogeneous term is locally Lipschitz. Analyzing the terms which contain v_{0} in (3-33) and using the Taylor expansion for v_{0}^{p-1} for $r \in\left[e^{T}, e^{10 T}\right]$, after direct computation we can find the leading terms which are of the orders

$$
r^{-2-\alpha}, \quad r^{(1-n) / 2} \cos (\beta \ln r), \quad r^{(1-n) / 2} \sin (\beta \ln r), \quad \mu r^{\tilde{v}_{1}-2}
$$

By the above observation, we can assume

$$
\begin{aligned}
v_{1}(r)=C_{p} r^{2-\alpha}+\tilde{f}(r) r^{2-(n-5) / 2} & +\mu D_{p} r^{2+\tilde{v}_{1}} \\
& +o\left(r^{2-(n-5) / 2}\right)+O\left(\mu^{2} r^{\tilde{\nu}_{1}+v_{1}+2}+\mu r^{\tilde{\nu}_{1}+\sigma+2}\right)
\end{aligned}
$$

where

$$
\tilde{f}(r)=a_{1} \cos (\beta \ln r)+b_{1} \sin (\beta \ln r)
$$

Using (3-7) and (3-8), we can get C_{p}, D_{p}, a_{1} and b_{1} by direct calculation.

Furthermore, we can obtain the following proposition.

Proposition 3.3. Let

$$
\frac{n+3}{n-5}<p<p_{c}(n-1)
$$

and $v(r)$ be a solution of (3-2). Then for $\epsilon>0$ sufficiently small,

$$
v(r)=v_{0}(r)+\sum_{k=1}^{\infty} \epsilon^{2 k} v_{k}(r) .
$$

Moreover, for $r \in\left[e^{T}, e^{10 T}\right]$ with $T \gg 1$ and $\mu=O\left(1 / r^{\nu_{1}-\sigma}\right)$,

$$
\begin{align*}
v_{k}(r)=\sum_{j=1}^{k} d_{j}^{k} r^{2 j-\alpha}+ & \sum_{j=1}^{k} e_{j}^{k} r^{2 j-(n-5) / 2} \sin \left(\beta \ln r+E_{j}^{k}\right)+\sum_{j=1}^{k} \mu f_{j}^{k} r^{2 j+\tilde{v}_{1}} \tag{3-37}\\
& +O\left(\mu^{2} r^{\tilde{v}_{1}+v_{1}+2 k}+\mu r^{\tilde{v}_{1}+\sigma+2 k}\right)+o\left(r^{2 k-(n-5) / 2}\right),
\end{align*}
$$

where $d_{j}^{k}, e_{j}^{k}, f_{j}^{k}, E_{j}^{k}(j=1,2, \ldots, k)$ are constants. Moreover,

$$
d_{1}^{1}=C_{p}, \quad e_{1}^{1}=\sqrt{a_{1}^{2}+b_{1}^{2}}, \quad f_{1}^{1}=D_{p}, \quad \sin E_{1}^{1}=a_{1} / e_{1}^{1}, \quad \cos E_{1}^{1}=b_{1} / e_{1}^{1},
$$

where $C_{p}, a_{1}, b_{1}, D_{p}$ are given in Lemma 3.2.
Proof. Substituting

$$
v(r)=v_{0}(r)+\sum_{i=1}^{\infty} \epsilon^{2 i} v_{i}(r)
$$

into (3-3), we expand (3-3) according to the order of ϵ. Considering the constant order and the ϵ^{2} order, we get (3-4) and (3-33), respectively. We note that only the terms $v_{0}, v_{1}, \ldots, v_{k}$ carry $\epsilon^{2 k}$. Suppose we have found v_{k-1}. Then we can determine v_{k} by studying the equation of order $\epsilon^{2 k}$ in (3-3), i.e.,

$$
\left\{\begin{array}{l}
v_{k}^{(4)}(r)+\frac{2(n-2)}{r} v_{k}^{\prime \prime \prime}(r)+\frac{(n-2)(n-4)}{r^{2}} v_{k}^{\prime \prime}(r)-\frac{(n-2)(n-4)}{r^{3}} v_{k}^{\prime}(r) \\
-\frac{2}{3}(n-2) r v_{k-1}^{\prime \prime \prime}(r)+\left(\frac{1}{3}(n-2)(n-4)-(n-2)^{2}+k_{1}\right) v_{k-1}^{\prime \prime}(r) \\
\quad+\frac{(n-2) k_{1}}{r} v_{k-1}^{\prime}(r)+\sum_{i=1}^{k-1}\left(l_{i}^{\prime} r^{2 i+1} v_{k-i-1}^{\prime \prime \prime}(r)+m_{i}^{\prime} r^{2 i} v_{k-i-1}^{\prime \prime}(r)\right. \\
\left.\quad+n_{i}^{\prime} r^{2 i-1} v_{k-i-1}^{\prime}(r)\right)+k_{0} v_{k-1}(r)=\left.\frac{d^{k}}{d t^{k}}\left(\sum_{i=0}^{k} t^{i} v_{i}\right)^{p}\right|_{t=0}, \\
v_{k}(0)=0, v_{k}^{\prime}(0)=0, v_{k}^{\prime \prime}(0)=0, v_{k}^{\prime \prime \prime}(0)=0,
\end{array}\right.
$$

where $l_{i}^{\prime}, m_{i}^{\prime}, n_{i}^{\prime}$ are given in (3-3). Following our arguments in Lemma 3.2, we find the leading order of the terms involving $v_{0}, v_{1}, \ldots, v_{k-1}$ in the above equation,
and then we assume v_{k} has the expansion in (3-37). By substituting (3-37) into the equation of order $\epsilon^{2 k}$ and comparing each order, we can compute the terms $d_{j}^{k}, e_{j}^{k}, f_{j}^{k}, E_{j}^{k}(j=1,2, \ldots, k)$.

Theorem 3.4. Let

$$
\frac{n+3}{n-5}<p<p_{c}(n-1)
$$

and $w_{\epsilon, \mu}^{\mathrm{inn}}(\theta)$ be the solution of (1-7) with

$$
w(0)=\epsilon^{-\alpha}, \quad w_{\theta}(0)=0, \quad w_{\theta \theta}(0)=(\tilde{b}+\mu) \epsilon^{-\alpha-2}, \quad w_{\theta \theta \theta}(0)=0 .
$$

Then for any sufficiently small $\epsilon>0, \theta / \epsilon \in\left[e^{T}, e^{10 T}\right]$ with $T \gg 1$, and $\mu=$ $O\left((\epsilon / \theta)^{\nu_{1}-\sigma}\right)$, there holds

$$
\begin{aligned}
& w_{\epsilon, \mu}^{\mathrm{inn}}(\theta) \\
& =\frac{A_{p}}{\theta^{\alpha}}+\frac{C_{p}}{\theta^{\alpha-2}}+B_{p} \mu \epsilon^{-v_{1}} \theta^{\tilde{v}_{1}}+\sum_{k=2}^{\infty} \sum_{j=1}^{k} d_{j}^{k} \epsilon^{2(k-j)} \theta^{2 j-\alpha} \\
& +\epsilon^{(n-5) / 2-\alpha}\left(\frac{a_{0} \cos \left(\beta \ln \frac{\theta}{\epsilon}\right)+b_{0} \sin \left(\beta \ln \frac{\theta}{\epsilon}\right)}{\theta^{(n-5) / 2}}+\frac{a_{1} \cos \left(\beta \ln \frac{\theta}{\epsilon}\right)+b_{1} \sin \left(\beta \ln \frac{\theta}{\epsilon}\right)}{\theta^{(n-5) / 2-2}}\right. \\
& +\sum_{k=2}^{\infty}\left(\sum_{j=1}^{k} e_{j}^{k} \epsilon^{2(k-j)} \theta^{2 j-(n-5) / 2} \sin \left(\beta \ln \frac{\theta}{\epsilon}+E_{j}^{k}\right)+o\left(\theta^{2 k-(n-5) / 2}\right)\right) \\
& \left.+O\left(\theta^{2-(n-5) / 2}\right)\right) \\
& +\epsilon^{-\alpha} \sum_{k=1}^{\infty}\left(\sum_{j=1}^{k}\left(\mu f_{j}^{k} \epsilon^{2 k-2 j-\tilde{v}_{1}} \theta^{2 j+\tilde{v}_{1}}\right)\right. \\
& +O\left(\mu^{2} \theta^{\tilde{v}_{1}+\nu_{1}+2 k} \epsilon^{-\tilde{v}_{1}-\nu_{1}}+\mu \theta^{\tilde{v}_{1}+\sigma+2 k} \epsilon^{-\tilde{v}_{1}-\sigma}\right) \\
& \left.+O\left(\mu^{2}\left(\frac{\theta}{\epsilon}\right)^{\tilde{\mathrm{v}}_{1}+\nu_{1}}+\mu\left(\frac{\theta}{\epsilon}\right)^{\tilde{\mathrm{v}}_{1}+\sigma}\right)\right) .
\end{aligned}
$$

Proof. This is a direct consequence of Proposition 3.3 by setting $r=\theta / \epsilon$.
We now obtain some useful lemmas.
Lemma 3.5. Let $(n+3) /(n-5)<p<p_{c}(n-1)$ and

$$
v(Q, \mu, \theta)=Q v_{0}\left(Q^{(p-1) / 4} \theta\right) .
$$

Then for $Q^{(p-1) / 4} \theta \in\left[e^{T}, e^{10 T}\right]$ with $T \gg 1$,

$$
\mu=O\left(\frac{1}{\left(Q^{(p-1) / 4} \theta\right)^{v_{1}-\sigma}}\right)
$$

and $n=0,1,2$, we have that $v(Q, \mu, \theta)$ satisfies

$$
\begin{aligned}
& \frac{\partial^{n}}{\partial Q^{n}}(v(Q, \mu, \theta)) \\
& \begin{aligned}
=\frac{\partial^{n}}{\partial Q^{n}}\left(\frac{A_{p}}{\theta^{\alpha}}\right) & +\frac{\partial^{n}}{\partial Q^{n}}\left(C \theta^{-(n-5) / 2} Q^{-((p-1)(n-5) / 8-1)} \sin \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)+\kappa\right)\right) \\
& +Q^{\tilde{v}_{2} / \alpha+1-n} O\left(\theta^{\tilde{v}_{2}}\right)+\mu B_{p} Q^{\tilde{v}_{1} / \alpha+1-n} \theta^{\tilde{v}_{1}} \\
& +O\left(\mu^{2} Q^{\left(\tilde{v}_{1}+v_{1}\right) / \alpha+1-n} \theta^{\tilde{v}_{1}+v_{1}}+\mu Q^{\left(\tilde{v}_{1}+\sigma\right) / \alpha+1-n} \theta^{\sigma+\tilde{v}_{1}}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{n}}{\partial Q^{n}}\left(v_{\theta}^{\prime}(Q, \mu, \theta)\right) \\
& =\frac{\partial^{n}}{\partial Q^{n}}\left(-\alpha \frac{A_{p}}{\theta^{\alpha+1}}\right) \\
& \quad+\frac{\partial^{n+1}}{\partial Q^{n} \partial \theta}\left(C \theta^{-(n-5) / 2} Q^{-((p-1)(n-5) / 8-1)} \sin \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)+\kappa\right)\right) \\
& \quad+Q^{\tilde{v}_{2} / \alpha+1-n} O\left(\theta^{\tilde{v}_{2}-1}\right)+\mu \tilde{v}_{1} B B_{p} Q^{\tilde{v}_{1} / \alpha+1-n} \theta^{\tilde{v}_{1}-1} \\
& \\
& \quad+O\left(\mu^{2} Q^{\left(\tilde{v}_{1}+v_{1}\right) / \alpha+1-n} \theta^{\tilde{v}_{1}+v_{1}-1}+\mu Q^{\left(\tilde{v}_{1}+\sigma\right) / \alpha+1-n} \theta^{\sigma+\tilde{v}_{1}-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{n}}{\partial Q^{n}}\left(\frac{\partial^{2}}{\partial \theta^{2}} v(Q, \mu, \theta)\right) \\
& =\frac{\partial^{n}}{\partial Q^{n}}\left(\alpha(\alpha+1) \frac{A_{p}}{\theta^{\alpha+2}}\right)
\end{aligned}
$$

$$
+\frac{\partial^{n+2}}{\partial Q^{n} \partial \theta^{2}}\left(C \theta^{-(n-5) / 2} Q^{-((p-1)(n-5) / 8-1)} \sin \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)+\kappa\right)\right)
$$

$$
+Q^{\tilde{v}_{2} / \alpha+1-n} O\left(\theta^{\tilde{v}_{2}-2}\right)+\mu \tilde{\nu}_{1}\left(\tilde{v}_{1}-1\right) B_{p} Q^{\tilde{v}_{1} / \alpha+1-n} \theta^{\tilde{v}_{1}-2}
$$

$$
+O\left(\mu^{2} Q^{\left(\tilde{v}_{1}+v_{1}\right) / \alpha+1-n} \theta^{\tilde{v}_{1}+v_{1}-2}+\mu Q^{\left(\tilde{v}_{1}+\sigma\right) / \alpha+1-n} \theta^{\sigma+\tilde{v}_{1}-2}\right)
$$

$$
\frac{\partial^{n}}{\partial Q^{n}}\left(\frac{\partial^{3}}{\partial \theta^{3}} v(Q, \mu, \theta)\right)
$$

$$
=\frac{\partial^{n}}{\partial Q^{n}}\left(-\alpha(\alpha+1)(\alpha+2) \frac{A_{p}}{\theta^{\alpha+3}}\right)
$$

$$
+\frac{\partial^{n+3}}{\partial Q^{n} \partial \theta^{3}}\left(C \theta^{-(n-5) / 2} Q^{-((p-1)(n-5) / 8-1)} \sin \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)+\kappa\right)\right)
$$

$$
+Q^{\tilde{v}_{2} / \alpha+1-n} O\left(\theta^{\tilde{v}_{2}-3}\right)+\mu \tilde{\nu}_{1}\left(\tilde{v}_{1}-1\right)\left(\tilde{v}_{1}-2\right) B_{p} Q^{\tilde{v}_{1} / \alpha+1-n} \theta^{\tilde{v}_{1}-3}
$$

$$
+O\left(\mu^{2} Q^{\left(\tilde{v}_{1}+\nu_{1}\right) / \alpha+1-n} \theta^{\tilde{v}_{1}+\nu_{1}-3}+\mu Q^{\left(\tilde{v}_{1}+\sigma\right) / \alpha+1-n} \theta^{\sigma+\tilde{v}_{1}-3}\right)
$$

where $\kappa=\tan ^{-1}\left(b_{0} / a_{0}\right)$ and $C=\sqrt{a_{0}^{2}+b_{0}^{2}}$.

For $n=0,1$, we have

$$
\begin{aligned}
& \frac{\partial^{n}}{\partial \mu^{n}}(v(Q, \mu, \theta)) \\
& =\mu^{1-n} B_{p} Q^{\tilde{v}_{1} / \alpha+1} \theta^{\tilde{\nu}_{1}}+O\left(\mu^{2-n} Q^{\left(\tilde{v}_{1}+\nu_{1}\right) / \alpha+1} \theta^{\tilde{v}_{1}+v_{1}}+\mu^{1-n} Q^{\left(\tilde{v}_{1}+\sigma\right) / \alpha+1} \theta^{\sigma+\tilde{v}_{1}}\right), \\
& \frac{\partial^{n}}{\partial \mu^{n}}\left(\frac{\partial}{\partial \theta} v(Q, \mu, \theta)\right) \\
& =\mu^{1-n} \tilde{\nu}_{1} B_{p} Q^{\tilde{v}_{1} / \alpha+1} \theta^{\tilde{v}_{1}-1} \\
& +O\left(\mu^{2-n} Q^{\left(\tilde{v}_{1}+v_{1}\right) / \alpha+1} \theta^{\tilde{v}_{1}+\nu_{1}-1}+\mu^{1-n} Q^{\left(\tilde{v}_{1}+\sigma\right) / \alpha+1} \theta^{\sigma+\tilde{v}_{1}-1}\right), \\
& \frac{\partial^{n}}{\partial \mu^{n}}\left(\frac{\partial^{2}}{\partial \theta^{2}} v(Q, \mu, \theta)\right) \\
& =\mu^{1-n} \tilde{v}_{1}\left(\tilde{v}_{1}-1\right) B_{p} Q^{\tilde{v}_{1} / \alpha+1} \theta^{\tilde{v}_{1}-2} \\
& +O\left(\mu^{2-n} Q^{\left(\tilde{v}_{1}+v_{1}\right) / \alpha+1} \theta^{\tilde{v}_{1}+v_{1}-2}+\mu^{1-n} Q^{\left(\tilde{v}_{1}+\sigma\right) / \alpha+1} \theta^{\sigma+\tilde{v}_{1}-2}\right), \\
& \frac{\partial^{n}}{\partial \mu^{n}}\left(\frac{\partial^{3}}{\partial \theta^{2}} v(Q, \mu, \theta)\right) \\
& =\mu^{1-n} \tilde{v}_{1}\left(\tilde{v}_{1}-1\right)\left(\tilde{v}_{1}-2\right) B_{p} Q^{\tilde{v}_{1} / \alpha+1} \theta^{\tilde{v}_{1}-3} \\
& +O\left(\mu^{2-n} Q^{\left(\tilde{v}_{1}+v_{1}\right) / \alpha+1} \theta^{\tilde{v}_{1}+v_{1}-3}+\mu^{1-n} Q^{\left(\tilde{v}_{1}+\sigma\right) / \alpha+1} \theta^{\sigma+\tilde{v}_{1}-3}\right),
\end{aligned}
$$

while for $n=2$, we have

$$
\frac{\partial^{2}}{\partial \mu^{2}}\left(\frac{\partial^{m}}{\partial \theta^{m}} v(Q, \mu, \theta)\right)=O\left(Q^{\left(\tilde{v}_{1}+v_{1}\right) / \alpha+1} \theta^{\tilde{v}_{1}+v_{1}-m}\right), \quad m=0,1,2,3
$$

Proof. These estimates are obtained by the expansions of $v_{01}(r)$ and $v_{02}(r)$ given above and direct calculation.

Lemma 3.6. In the region

$$
\theta=\left|O\left(Q^{\sigma /((2-\sigma) \alpha)}\right)\right|, \quad \mu=O\left(\theta^{2-2 v_{1} / \sigma}\right), \quad \sigma=-\frac{1}{2}(n-5-2 \alpha)
$$

the solution $w(Q, \mu, \theta)$ of (1-7) with

$$
\begin{aligned}
w(Q, \mu, 0) & =Q, & w_{\theta}(Q, \mu, 0) & =0 \\
w_{\theta \theta}(Q, \mu, 0) & =(\tilde{b}+\mu) Q^{1+2 / \alpha}, & w_{\theta \theta \theta}(Q, \mu, 0) & =0
\end{aligned}
$$

satisfies
(1) $\left|\frac{\partial^{m+n}}{\partial Q^{n} \partial \theta^{m}} w(Q, \mu, \theta)-\frac{\partial^{m+n}}{\partial Q^{n} \partial \theta^{m}} v(Q, \mu, \theta)\right|$ $=Q^{-(n-5)(p-1) / 8-(n-1)}\left|o\left(\theta^{-(n-5) / 2-m}\right)\right|$,
(2) $\left|\frac{\partial^{m+n}}{\partial \mu^{n} \partial \theta^{m}} w(Q, \mu, \theta)-\frac{\partial^{n+m}}{\partial \mu^{n} \partial \theta^{m}} v(Q, \mu, \theta)\right|$

$$
=\left|O\left(\mu^{2-n} Q^{\left(\tilde{v}_{1}+v_{1}\right) / \alpha+1} \theta^{\tilde{v}_{1}+v_{1}-m}\right)\right| .
$$

Proof. This lemma can be obtained from Lemma 3.5 and Theorem 3.4. Note that

$$
\epsilon=Q^{-1 / \alpha}, \quad \sigma / \alpha=\frac{1}{8}(p-1)(n-5)-1 .
$$

Moreover,

$$
Q^{(p-1) / 4} \theta \in\left[e^{T}, e^{10 T}\right]
$$

provided that Q is sufficiently large.
Now we write the inner solutions obtained in Theorem 3.4 in terms of the parameters Q and μ.
Theorem 3.7. Let $(n+3) /(n-5)<p<p_{c}(n-1)$ and let $w_{Q, \mu}^{\mathrm{inn}}(\underset{\tilde{b}}{ })$ be an inner solution of problem (1-7) with $w(0)=Q, w_{\theta}(0)=0, w_{\theta \theta}(0) \stackrel{Q, \mu}{=}(\tilde{b}+\mu) Q^{1+2 / \alpha}$, $w_{\theta \theta \theta}(0)=0$. Then for any sufficiently large $Q>0$ and $\theta=\left|O\left(Q^{\sigma /((2-\sigma) \alpha)}\right)\right|=$ $\left|O\left(\mu^{\sigma /\left(2 \sigma-2 \nu_{1}\right)}\right)\right|$,

$$
\begin{aligned}
& w_{Q, \mu}^{\mathrm{inn}}(\theta)=\frac{A_{p}}{\theta^{\alpha}}+\frac{C_{p}}{\theta^{\alpha-2}}+B_{p} \mu Q^{\nu_{1} / \alpha} \theta^{\tilde{v}_{1}}+\sum_{k=2}^{\infty} \sum_{j=1}^{k} d_{j}^{k} Q^{-(p-1)(k-j) / 2} \theta^{2 j-\alpha} \\
& +Q^{\sigma / \alpha}\left(\frac{a_{0} \cos \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)\right)+b_{0} \sin \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)\right)}{\theta^{(n-5) / 2}}\right. \\
& +\frac{a_{1} \cos \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)\right)+b_{1} \sin \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)\right)}{\theta^{(n-5) / 2-2}} \\
& +O\left(\theta^{2-(n-5) / 2}\right) \\
& +\sum_{k=2}^{\infty}\left(\sum_{j=1}^{k} e_{j}^{k} Q^{-(p-1)(k-j) / 2} \theta^{2 j-(n-5) / 2}\right. \\
& \left.\left.\times \sin \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)+E_{j}^{k}\right)+o\left(\theta^{2 k-(n-5) / 2}\right)\right)\right) \\
& +Q \sum_{k=1}^{\infty}\left(\sum_{j=1}^{k}\left(\mu f_{j}^{k} Q^{-\left(2 k-2 j-\tilde{v}_{1}\right) / \alpha} \theta^{2 j+\tilde{v}_{1}}\right)\right. \\
& \left.+O\left(\mu^{2} Q^{\left(\tilde{v}_{1}+\nu_{1}\right) / \alpha} \theta^{\tilde{v}_{1}+\nu_{1}+2 k}+\mu Q^{\left(\tilde{v}_{1}+\sigma\right) / \alpha} \theta^{\tilde{v}_{1}+\sigma+2 k}\right)\right) .
\end{aligned}
$$

4. Outer solutions

In this section, we construct outer solutions for (1-7). Let $w_{*}(\theta)$ be the singular solution given in (1-8).
Lemma 4.1. The equation

$$
\begin{equation*}
T_{1} \phi(\theta)+k_{1} T_{2} \phi(\theta)+k_{0} \phi=p w_{*}^{p-1}(\theta) \phi(\theta), \quad 0<\theta<\frac{\pi}{2}, \tag{4-1}
\end{equation*}
$$

admits a solution, which can be written as
(4-2) $\phi(\theta)=\theta^{-(n-5) / 2}\left(c_{1} \cos \left(\beta \ln \frac{\theta}{2}\right)+c_{2} \sin \left(\beta \ln \frac{\theta}{2}\right)\right)+O\left(\theta^{2-(n-5) / 2}\right) \quad$ as $\theta \rightarrow 0$, where c_{1}, c_{2} are constants such that $c_{1}^{2}+c_{2}^{2} \neq 0$, and also admits another solution, which can be written as

$$
\begin{equation*}
\psi(\theta)=c_{0} \theta^{\tilde{v}_{2}}+O\left(\theta^{\tilde{v}_{2}+2}\right) \quad \text { as } \theta \rightarrow 0, \tag{4-3}
\end{equation*}
$$

where c_{0} is a nonzero constant. Here T_{1} and T_{2} are differential operators defined in (1-7).

Proof. For the equations

$$
\left\{\begin{array}{l}
T_{1} \phi_{1}(\theta)+k_{1} T_{2} \phi_{1}(\theta)+k_{0} \phi_{1}(\theta)=p w_{*}^{p-1}(\theta) \phi_{1}(\theta), \quad 0<\theta<\frac{\pi}{2}, \tag{4-4}\\
\phi_{1}\left(\frac{\pi}{2}\right)=1, \phi_{1}^{\prime}\left(\frac{\pi}{2}\right)=0, \phi_{1}^{\prime \prime}\left(\frac{\pi}{2}\right)=0, \phi_{1}^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0,
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
T_{1} \phi_{2}(\theta)+k_{1} T_{2} \phi_{2}(\theta)+k_{0} \phi_{2}(\theta)=p w_{*}^{p-1}(\theta) \phi_{2}(\theta), \quad 0<\theta<\frac{\pi}{2}, \tag{4-5}\\
\phi_{2}\left(\frac{\pi}{2}\right)=0, \phi_{2}^{\prime}\left(\frac{\pi}{2}\right)=0, \phi_{2}^{\prime \prime}\left(\frac{\pi}{2}\right)=1, \phi_{2}^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0,
\end{array}\right.
$$

we claim that both $\phi_{1}(\theta)$ and $\phi_{2}(\theta)$ are strictly decreasing for $\theta \in\left(0, \frac{\pi}{2}\right)$. We only show the case of $\phi_{2}(\theta)$; the case of $\phi_{1}(\theta)$ can be treated similarly.

Let us set

$$
A(\theta)=\frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d \phi_{2}(\theta)}{d \theta}\right) .
$$

Before proving that $\phi_{2}(\theta)$ is decreasing, we first present a useful fact. If $A(\theta)>0$ for $\theta \in\left(\theta_{0}, \frac{\pi}{2}\right)$, where $\theta_{0} \in\left(0, \frac{\pi}{2}\right)$, then for $\theta \in\left(\theta_{0}, \frac{\pi}{2}\right)$, we have $\phi_{2}^{\prime}(\theta)<0$ and $\phi_{2}(\theta)>0$. The proof of this fact is simple; thus we omit it here. Next, we show that $\phi_{2}(\theta)$ is decreasing. By using the boundary condition of ϕ_{2} at $\theta=\frac{\pi}{2}$, we have $A\left(\frac{\pi}{2}\right)=1$ and find $\theta_{1} \in\left(0, \frac{\pi}{2}\right)$ such that $A(\theta)>0$ for $\theta \in\left(\theta_{1}, \frac{\pi}{2}\right)$; then $\phi_{2}(\theta)>0$ for $\theta \in\left(\theta_{1}, \frac{\pi}{2}\right)$. Using the fact that $k_{1}(n)<0$ and the second conclusion in Lemma A.1, we have

$$
T_{1} \phi_{2}(\theta)=\left(p w_{*}^{p-1}-k_{0}\right) \phi_{2}(\theta)-k_{1} \frac{A(\theta)}{\sin ^{n-2} \theta}>0 \quad \text { for } \theta \in\left(\theta_{1}, \frac{\pi}{2}\right) .
$$

Now we are going to show that $\theta_{1}=0$. If not, $\theta_{1} \in\left(0, \frac{\pi}{2}\right)$ and $A\left(\theta_{1}\right)=0$. For $\theta \in\left(\theta_{1}, \frac{\pi}{2}\right)$, we have

$$
\frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d}{d \theta}\left(\frac{A(\theta)}{\sin ^{n-2} \theta}\right)\right)>0 .
$$

Using this inequality and

$$
\left.\frac{d}{d \theta}\left(\frac{A(\theta)}{\sin ^{n-2} \theta}\right)\right|_{\theta=\frac{\pi}{2}}=0,
$$

we have

$$
\begin{equation*}
\frac{d}{d \theta}\left(\frac{A(\theta)}{\sin ^{n-2} \theta}\right)<0 \quad \text { for } \theta \in\left(\theta_{1}, \frac{\pi}{2}\right) \tag{4-6}
\end{equation*}
$$

It follows from (4-6) that

$$
\begin{equation*}
\frac{A(\theta)}{\sin ^{n-2} \theta}>1 \quad \text { for } \theta \in\left(\theta_{1}, \frac{\pi}{2}\right) \tag{4-7}
\end{equation*}
$$

which contradicts the fact that $A\left(\theta_{1}\right)=0$. Thus, $A(\theta)>0$ and $\phi_{2}^{\prime}(\theta)<0$ for $\theta \in\left(0, \frac{\pi}{2}\right)$. Hence, we have proved the claim.

We now prove that there are $D_{1} \neq 0$ and $D_{2} \neq 0$ such that for θ near 0,

$$
\begin{equation*}
\phi_{1}(\theta)=D_{1} \theta^{\tilde{v}_{2}}+O\left(\theta^{2+\tilde{v}_{2}}\right) \tag{4-8}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{2}(\theta)=D_{2} \theta^{\tilde{v}_{2}}+O\left(\theta^{2+\tilde{v}_{2}}\right) \tag{4-9}
\end{equation*}
$$

We only show (4-9). The proof of (4-8) is similar. Using the Emden-Fowler transformation

$$
\tilde{\phi}(t)=(\sin \theta)^{\alpha} \phi_{2}(\theta), \quad t=\ln \left(\tan \frac{\theta}{2}\right)
$$

we obtain that $\tilde{\phi}(t)$, for $t \in(-\infty, 0)$, satisfies the homogeneous equation

$$
\begin{equation*}
\tilde{\phi}^{(4)}(t)+a_{3}(t) \tilde{\phi}^{\prime \prime \prime}(t)+a_{2}(t) \tilde{\phi}^{\prime \prime}(t)+a_{1}(t) \tilde{\phi}^{\prime}(t)+a_{0}(t) \tilde{\phi}(t)=0 \tag{4-10}
\end{equation*}
$$

where

$$
\begin{array}{ll}
a_{3}(t)=K_{3}+O\left(e^{2 t}\right), & a_{2}(t)=K_{2}+O\left(e^{2 t}\right) \\
a_{1}(t)=K_{1}+O\left(e^{2 t}\right), & a_{0}(t)=(1-p) K_{0}
\end{array}
$$

Therefore,

$$
\begin{align*}
\tilde{\phi}^{(4)}(t)+K_{3} \tilde{\phi}^{\prime \prime \prime}(t)+K_{2} \tilde{\phi}^{\prime \prime}(t)+K_{1} \tilde{\phi}^{\prime}(t) & +(1-p) K_{0} \tilde{\phi}(t) \tag{4-11}\\
& =O\left(e^{2 t}\left(\tilde{\phi}^{\prime \prime \prime}(t)+\tilde{\phi}^{\prime \prime}(t)+\tilde{\phi}^{\prime}(t)\right)\right)
\end{align*}
$$

Following the arguments in the proof of Lemma 3.1, we can write the solutions of (4-11) as (for any $T \ll-1$):
(4-12) $\quad \tilde{\phi}(t)=A_{5} e^{\sigma t} \cos \beta t+A_{6} e^{\sigma t} \sin \beta t+A_{7} e^{\nu_{2} t}+A_{8} e^{\nu_{1} t}$

$$
\begin{aligned}
& +B_{5} \int_{-\infty}^{t} e^{\sigma(t-s)} \sin \beta(t-s) g(s, \tilde{\phi}(s)) \mathrm{d} s \\
& \quad+B_{6} \int_{-\infty}^{t} e^{\sigma(t-s)} \cos \beta(t-s) g(s, \tilde{\phi}(s)) \mathrm{d} s \\
& \quad+B_{7} \int_{-\infty}^{t} e^{\nu_{2}(t-s)} g(s, \tilde{\phi}(s)) \mathrm{d} s+B_{8} \int_{T}^{t} e^{\nu_{1}(t-s)} g(s, \tilde{\phi}(s)) \mathrm{d} s
\end{aligned}
$$

where $g(t, \tilde{\phi}(t))$ is the right-hand side of (4-11), A_{8} depends on T and each B_{i+4} depends only on $v_{i}(i=1,2,3,4)$. It is known from (4-12) that if $A_{7}=0$, then for $|t|$ sufficiently large,

$$
\begin{equation*}
\tilde{\phi}(t)=A_{5} e^{\sigma t} \cos \beta t+A_{6} e^{\sigma t} \sin \beta t+O\left(e^{(2+\sigma) t}\right) \tag{4-13}
\end{equation*}
$$

with $A_{5}^{2}+A_{6}^{2} \neq 0$ or

$$
\begin{equation*}
\tilde{\phi}(t)=A_{8} e^{v_{1} t}+O\left(e^{\left(2+v_{1}\right) t}\right) \tag{4-14}
\end{equation*}
$$

with $A_{8} \neq 0$. Otherwise, if $A_{5}^{2}+A_{6}^{2}=0$ and $A_{8}=0$, we know that $\tilde{\phi}(t)=O\left(e^{\left(2+v_{1}\right) t}\right)$. Substituting this into (4-12), we see that $\tilde{\phi}(t)=O\left(e^{\left(4+\nu_{1}\right) t}\right)$; repeating this procedure, we eventually obtain that $\tilde{\phi}(t) \equiv 0$. This is impossible. Therefore, for θ near 0 ,

$$
\phi_{2}(\theta)=A_{5} \theta^{-(n-5) / 2} \cos \left(\beta \ln \frac{\theta}{2}\right)+A_{6} \theta^{-(n-5) / 2} \sin \left(\beta \ln \frac{\theta}{2}\right)+O\left(\theta^{2-(n-5) / 2}\right)
$$

or

$$
\phi_{2}(\theta)=A_{8} \theta^{\tilde{v}_{1}}+O\left(\theta^{2+\tilde{v}_{1}}\right) .
$$

But these contradict the fact that $\phi_{2}(\theta)$ is strictly decreasing for $\theta \in\left(0, \frac{\pi}{2}\right)$. Thus, we prove the claim and get (4-9).

Let $\phi(\theta)=\phi_{1}(\theta)-\left(D_{1} / D_{2}\right) \phi_{2}(\theta)$. Then $\phi(\theta)$ satisfies the problem

$$
\left\{\begin{array}{l}
T_{1} \phi(\theta)+k_{1} T_{2} \phi(\theta)+k_{0} \phi(\theta)=p w_{*}^{p-1}(\theta) \phi(\theta), \quad 0<\theta<\frac{\pi}{2}, \tag{4-15}\\
\phi\left(\frac{\pi}{2}\right)=1, \phi^{\prime}\left(\frac{\pi}{2}\right)=0, \phi^{\prime \prime}\left(\frac{\pi}{2}\right)=-D_{1} / D_{2}, \phi^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0 .
\end{array}\right.
$$

We claim that for θ near 0 ,

$$
\begin{equation*}
\phi(\theta)=\theta^{-(n-5) / 2}\left(c_{1} \cos \left(\beta \ln \frac{\theta}{2}\right)+c_{2} \sin \left(\beta \ln \frac{\theta}{2}\right)\right)+O\left(\theta^{2-(n-5) / 2}\right) \tag{4-16}
\end{equation*}
$$

with $c_{1}^{2}+c_{2}^{2} \neq 0$. Using the Emden-Fowler transformation

$$
\begin{equation*}
\hat{\phi}(t)=(\sin \theta)^{\alpha} \phi(\theta), \quad t=\ln \left(\tan \frac{\theta}{2}\right), \tag{4-17}
\end{equation*}
$$

(4-8) and (4-9), we obtain that for t near $-\infty$,

$$
\begin{equation*}
\hat{\phi}(t)=e^{\sigma t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)+c_{3} e^{\nu_{1} t}+O\left(e^{(2+\sigma) t}\right) \tag{4-18}
\end{equation*}
$$

provided $c_{1}^{2}+c_{2}^{2} \neq 0$ or

$$
\begin{equation*}
\hat{\phi}(t)=c_{3} e^{\nu_{1} t}+O\left(e^{\left(2+\nu_{1}\right) t}\right) \tag{4-19}
\end{equation*}
$$

provided $c_{1}^{2}+c_{2}^{2}=0$ and $c_{3} \neq 0$. (Note that if both $c_{1}^{2}+c_{2}^{2}=0$ and $c_{3}=0$, we can obtain $\hat{\phi}(t) \equiv 0$. This is impossible.) We now show that (4-19) cannot occur. On the contrary, we see that for θ near 0 ,

$$
\phi(\theta)=c_{3} \theta^{\tilde{v}_{1}}+O\left(\theta^{2+\tilde{v}_{1}}\right) .
$$

This implies that $\phi(\theta) \rightarrow 0$ as $\theta \rightarrow 0$. Since

$$
\hat{\phi}(t)=O\left(e^{\nu_{1} t}\right), \quad \hat{\phi}^{\prime}(t)=O\left(e^{\nu_{1} t}\right), \quad \hat{\phi}^{\prime \prime}(t)=O\left(e^{\nu_{1} t}\right), \quad \hat{\phi}^{\prime \prime \prime}(t)=O\left(e^{\nu_{1} t}\right),
$$

we obtain from (4-17) that

$$
\begin{aligned}
\phi^{\prime}(\theta) & =O\left(\theta^{\tilde{v}_{1}-1}\right), \\
\sin ^{n-2} \theta \frac{d \phi(\theta)}{d \theta} & =O\left(\theta^{n-3+\tilde{\nu}_{1}}\right), \\
\frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d \phi(\theta)}{d \theta}\right) & =O\left(\theta^{n-4+\tilde{v}_{1}}\right) .
\end{aligned}
$$

Similar arguments imply that

$$
\sin ^{n-2} \theta \frac{d}{d \theta}\left(\frac{1}{\sin ^{n-2} \theta} \frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d \phi(\theta)}{d \theta}\right)\right)=O\left(\theta^{n-5+\tilde{\nu}_{1}}\right) .
$$

If we define

$$
e(\theta)=\sin ^{n-2} \theta \frac{d}{d \theta}\left(\frac{1}{\sin ^{n-2} \theta} \frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d \phi(\theta)}{d \theta}\right)\right),
$$

we see that $e(0)=0$. Then, we claim that ϕ changes sign in $\left(0, \frac{\pi}{2}\right)$. Suppose that this is not true. Without loss of generality, we assume $\phi>0$ in $\left(0, \frac{\pi}{2}\right)$. Then it follows from the equation of ϕ that for $\theta \in\left(0, \frac{\pi}{2}\right)$,

$$
\begin{equation*}
\frac{d}{d \theta}\left(e(\theta)+k_{1}\left(\sin ^{n-2} \theta \frac{d \phi(\theta)}{d \theta}\right)\right)=\sin ^{n-2} \theta\left(p w_{*}^{p-1}-k_{0}\right) \phi(\theta)>0 . \tag{4-20}
\end{equation*}
$$

But integrating both sides of (4-20) in ($0, \frac{\pi}{2}$) and using the boundary conditions $\phi^{\prime}\left(\frac{\pi}{2}\right)=\phi^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0$, we obtain

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{n-2} \theta\left(p w_{*}^{p-1}-k_{0}\right) \phi(\theta) d \theta=0 .
$$

This is clearly impossible. Noticing that $\phi \neq 0$ for θ near 0 , we see that there is a minimal zero point $\hat{\theta} \in\left(0, \frac{\pi}{2}\right)$ of ϕ. Without loss of generality, we assume that $\phi>0$ in $(0, \hat{\theta})$. It follows from (4-20) that $E(\theta):=e(\theta)+k_{1} \sin ^{n-2} \theta(d \phi(\theta) / d \theta)$ is increasing for $\theta \in(0, \hat{\theta})$. Noticing $E(0)=0$, we then obtain that $E(\theta)>0$ for $\theta \in(0, \hat{\theta})$. Therefore,

$$
\begin{equation*}
\frac{d}{d \theta}\left(\frac{1}{\sin ^{n-2} \theta} \frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d \phi(\theta)}{d \theta}\right)+k_{1} \phi(\theta)\right)>0 \quad \text { for } \theta \in(0, \hat{\theta}) . \tag{4-21}
\end{equation*}
$$

Moreover, by a similar argument, we have

$$
\begin{equation*}
\frac{d}{d \theta}\left(\sin ^{n-2} \theta \frac{d \phi(\theta)}{d \theta}\right)>0 \quad \text { for } \theta \in(0, \hat{\theta}) \tag{4-22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \phi(\theta)}{d \theta}>0 \quad \text { for } \theta \in(0, \hat{\theta}) \tag{4-23}
\end{equation*}
$$

But (4-23) implies $\phi(\hat{\theta})>0$, which contradicts the fact that $\phi(\hat{\theta})=0$. This contradiction implies that (4-19) cannot occur and thus (4-18) holds. As a consequence, (4-16) holds and hence (4-2) holds.

Let $\psi(\theta)=\phi_{1}(\theta)$. We easily see that (4-3) can be obtained from (4-8).
For any sufficiently small $\delta>\eta>0$, we set $\psi_{1}(\theta)$ to be the solution of the problem

$$
\begin{cases}T_{1} \psi_{1}(\theta)+k_{1} T_{2} \psi_{1}(\theta)+k_{0} \psi_{1}(\theta) & \tag{4-24}\\ \quad=\eta^{-2}\left(\left(w_{*}+\Phi+\Psi\right)^{p}-w_{*}^{p}-p w_{*}^{p-1}\left(\Phi+\eta^{2} \psi\right)\right) \\ \left(\psi_{1}+\psi\right)\left(\frac{\pi}{2}\right)=2, & \left(\psi_{1}+\psi\right)^{\prime}\left(\frac{\pi}{2}\right)=0 \\ \left(\psi_{1}+\psi\right)^{\prime \prime}\left(\frac{\pi}{2}\right)=D_{1} \delta^{2} /\left(D_{2} \eta^{2}\right), & \left(\psi_{1}+\psi\right)^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0\end{cases}
$$

where $\psi(\theta)$ is given in Lemma 4.1, $\Phi=\delta^{2} \phi(\theta)$ and $\Psi=\eta^{2}\left(\psi_{1}(\theta)+\psi(\theta)\right)$. We can see that Ψ satisfies the problem

$$
\left\{\begin{array}{l}
T_{1} \Psi(\theta)+k_{1} T_{2} \Psi(\theta)+k_{0} \Psi(\theta)=\left(w_{*}+\Phi+\Psi\right)^{p}-w_{*}^{p}-p w_{*}^{p-1} \Phi \tag{4-25}\\
\Psi\left(\frac{\pi}{2}\right)=2 \eta^{2}, \Psi^{\prime}\left(\frac{\pi}{2}\right)=0, \Psi^{\prime \prime}\left(\frac{\pi}{2}\right)=D_{1} \delta^{2} / D_{2}, \Psi^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0
\end{array}\right.
$$

This implies

$$
\begin{cases}T_{1}(\Psi+\Phi)+k_{1} T_{2}(\Psi+\Phi)+k_{0}(\Psi+\Phi)=\left(w_{*}+\Phi+\Psi\right)^{p}-w_{*}^{p} \tag{4-26}\\ (\Psi+\Phi)\left(\frac{\pi}{2}\right)=2 \eta^{2}+\delta^{2}, & (\Psi+\Phi)^{\prime}\left(\frac{\pi}{2}\right)=0 \\ (\Psi+\Phi)^{\prime \prime}\left(\frac{\pi}{2}\right)=0, & (\Psi+\Phi)^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0\end{cases}
$$

Arguments similar to those in the proof of Lemma 4.1 imply that $\Psi(\theta)+\Phi(\theta)$ is strictly decreasing. Then

$$
\begin{equation*}
\Psi(\theta)+\Phi(\theta)>0 \quad \text { for } \theta \in\left(0, \frac{\pi}{2}\right) \tag{4-27}
\end{equation*}
$$

Setting $\psi_{2}(\theta)=\psi(\theta)+\psi_{1}(\theta)$, we easily see that ψ_{2} satisfies the problem

$$
\left\{\begin{array}{l}
T_{1} \psi_{2}(\theta)+k_{1} T_{2} \psi_{2}(\theta)+k_{0} \psi_{2}(\theta) \tag{4-28}\\
\quad=p w_{*}^{p-1} \psi_{2}+\eta^{-2}\left(\left(w_{*}+\Phi+\eta^{2} \psi_{2}\right)^{p}-w_{*}^{p}-p w_{*}^{p-1}\left(\Phi+\eta^{2} \psi_{2}\right)\right), \\
\psi_{2}\left(\frac{\pi}{2}\right)=2, \psi_{2}^{\prime}\left(\frac{\pi}{2}\right)=0, \psi_{2}^{\prime \prime}\left(\frac{\pi}{2}\right)=D_{1} \delta^{2} /\left(D_{2} \eta^{2}\right), \psi_{2}^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0
\end{array}\right.
$$

By the Emden-Fowler transformation

$$
\tilde{\psi}_{2}(t)=(\sin \theta)^{\alpha} \psi_{2}(\theta), \quad t=\ln \tan \frac{\theta}{2}
$$

we see that $\tilde{\psi}_{2}(t)$ satisfies the problem

$$
\left\{\begin{array}{l}
\tilde{\psi}_{2}^{(4)}(t)+a_{3}(t) \tilde{\psi}_{2}^{\prime \prime \prime}(t)+a_{2}(t) \tilde{\psi}_{2}^{\prime \prime}(t) \tag{4-29}\\
\quad \quad+a_{1}(t) \tilde{\psi}_{2}^{\prime}(t)+a_{0}(t) \tilde{\psi}_{2}(t)=G\left(\tilde{\psi}_{2}(t)\right), \quad-\infty<t<0, \\
\tilde{\psi}_{2}^{\prime}(0)=0, \\
\tilde{\psi}_{2}^{\prime \prime \prime}(0)=0,
\end{array}\right.
$$

where $a_{0}(t), a_{1}(t), a_{2}(t), a_{3}(t)$ are defined in (4-10), and

$$
\begin{aligned}
& G\left(\tilde{\psi}_{2}(t)\right) \\
& =(\sin \theta)^{4+\alpha} \eta^{-2}\left(\left(w_{*}+\Phi+\eta^{2} \sin ^{-\alpha} \theta \tilde{\psi}_{2}\right)^{p}-w_{*}^{p}-p w_{*}^{p-1}\left(\Phi+\eta^{2} \sin ^{-\alpha} \theta \tilde{\psi}_{2}\right)\right) .
\end{aligned}
$$

Moreover, we can rewrite (4-29) in the following form (see the proof of Lemma 4.1):

$$
\begin{align*}
\tilde{\psi}_{2}^{(4)}(t)+K_{3} \tilde{\psi}_{2}^{\prime \prime \prime}(t)+K_{2} \tilde{\psi}_{2}^{\prime \prime}(t)+K_{1} \tilde{\psi}_{2}^{\prime}(t)+ & (1-p) K_{0} \tilde{\psi}_{2}(t) \tag{4-30}\\
& =G\left(\tilde{\psi}_{2}(t)\right)+g\left(t, \tilde{\psi}_{2}(t)\right),
\end{align*}
$$

where

$$
g\left(t, \tilde{\psi}_{2}(t)\right)=O\left(e^{2 t}\left(\tilde{\psi}_{2}^{\prime \prime \prime}(t)+\tilde{\psi}_{2}^{\prime \prime}(t)+\tilde{\psi}_{2}^{\prime}(t)\right)\right)
$$

for $t \ll-1$. Therefore, for $t<T$ with any $T \ll-1$,

$$
\begin{align*}
& \tilde{\psi}_{2}(t)=D_{5} e^{v_{2} t}+D_{6} e^{\sigma t} \cos \beta t+D_{7} e^{\sigma t} \sin \beta t+D_{8} e^{\nu_{1} t} \tag{4-31}\\
& +B_{5} \int_{-\infty}^{t} e^{\sigma(t-s)} \sin \beta(t-s)\left(G\left(\tilde{\psi}_{2}(s)\right)+g\left(s, \tilde{\psi}_{2}(s)\right)\right) \mathrm{d} s \\
& \quad+B_{6} \int_{-\infty}^{t} e^{\sigma(t-s)} \cos \beta(t-s)\left(G\left(\tilde{\psi}_{2}(s)\right)+g\left(s, \tilde{\psi}_{2}(s)\right)\right) \mathrm{d} s \\
& \quad+B_{7} \int_{-\infty}^{t} e^{v_{2}(t-s)}\left(G\left(\tilde{\psi}_{2}(s)\right)+g\left(s, \tilde{\psi}_{2}(s)\right)\right) \mathrm{d} s \\
& \quad+B_{8} \int_{T}^{t} e^{v_{1}(t-s)}\left(G\left(\tilde{\psi}_{2}(s)\right)+g\left(s, \tilde{\psi}_{2}(s)\right)\right) \mathrm{d} s,
\end{align*}
$$

where $B_{5}, B_{6}, B_{7}, B_{8}$ depend only on $v_{i}(i=1,2,3,4)$. Using the fact $\Psi(\theta)+\Phi(\theta)$ is strictly decreasing in $\left(0, \frac{\pi}{2}\right)$ and (4-2), we conclude that $D_{5} \neq 0$. Letting $\phi(\theta)=$ $\sin ^{-\alpha} \theta \tilde{\phi}(t)$, we see that for $t \in[10 T, 2 T]$ and $\delta^{2}=O\left(e^{(2-\sigma) t}\right), \eta^{2}=O\left(e^{\left(2-v_{2}\right) t}\right)$,

$$
\begin{equation*}
G\left(\tilde{\psi}_{2}(t)\right)=\eta^{-2} O\left(\left(\delta^{2} \tilde{\phi}(t)+\eta^{2} \tilde{\psi}_{2}(t)\right)^{2}\right)=O\left(e^{\left(2+v_{2}\right) t}\right) \tag{4-32}
\end{equation*}
$$

Note that

$$
\tilde{\phi}(t)=e^{\sigma t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)+O\left(e^{(2+\sigma) t}\right)
$$

and $\tilde{\psi}_{2}(t)=D_{5} e^{v_{2} t}+O\left(e^{\left(2+v_{2}\right) t}\right)$. Then

$$
\delta^{2} \tilde{\phi}(t)+\eta^{2} \tilde{\psi}_{2}(t)=O\left(e^{2 t}\right)
$$

Therefore, it follows from (4-31) and (4-32) that

$$
\begin{equation*}
\tilde{\psi}_{2}(t)=D_{5} e^{\nu_{2} t}+D_{6} e^{\sigma t} \cos \beta t+D_{7} e^{\sigma t} \sin \beta t+O\left(e^{\left(2+\nu_{2}\right) t}\right) \tag{4-33}
\end{equation*}
$$

provided $\delta^{2}=O\left(e^{(2-\sigma) t}\right)$ and $\eta^{2}=O\left(e^{\left(2-v_{2}\right) t}\right)$. Hence, for θ near 0 ,

$$
\begin{equation*}
\Psi(\theta)=\eta^{2}\left(D_{5} \theta^{\tilde{v}_{2}}+\theta^{-(n-5) / 2}\left(D_{6} \cos \left(\beta \ln \frac{\theta}{2}\right)+D_{7} \sin \left(\beta \ln \frac{\theta}{2}\right)\right)+O\left(\theta^{2+\tilde{v}_{2}}\right)\right) \tag{4-34}
\end{equation*}
$$

with $D_{5} \neq 0$ provided that

$$
\theta=O\left(\delta^{2 /(2-\sigma)}\right)=O\left(\eta^{2 /\left(2-v_{2}\right)}\right)
$$

Since $\tilde{v}_{2}<3-n$, we easily see that $\tilde{v}_{2}+2<-(n-5)<-(n-5) / 2$. Thus, $\theta^{-(n-5) / 2}=o\left(\theta^{2+\tilde{v}_{2}}\right)$.

Now we can obtain the following theorem.
Theorem 4.2. For any $\delta>\eta>0$ sufficiently small, problem (1-7) admits outer solutions $w_{\delta, \eta}^{\text {out }} \in C^{4}\left(0, \frac{\pi}{2}\right)$ satisfying

$$
\begin{equation*}
w_{\delta, \eta}^{\mathrm{out}}(\theta)=w_{*}(\theta)+\Phi(\theta)+\Psi(\theta), \quad \theta \in\left(0, \frac{\pi}{2}\right) \tag{4-35}
\end{equation*}
$$

with $\left(w_{\delta, \eta}^{\text {out }}\right)^{\prime}\left(\frac{\pi}{2}\right)=\left(w_{\delta, \eta}^{\text {out }}\right)^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0$. Moreover,

$$
\begin{align*}
w_{\delta, \eta}^{\text {out }}(\theta)=\frac{A_{p}}{\theta^{\alpha}} & +\frac{2 A_{p}}{3(p-1)} \frac{1}{\theta^{\alpha-2}} \tag{4-36}\\
+ & \delta^{2}\left(\frac{\vartheta_{1} \cos \left(\beta \ln \frac{\theta}{2}\right)+\vartheta_{2} \sin \left(\beta \ln \frac{\theta}{2}\right)}{\theta^{(n-5) / 2}}+O\left(\frac{1}{\theta^{(n-5) / 2-2}}\right)\right) \\
& +\eta^{2}\left(\vartheta_{3} \theta^{\tilde{v}_{2}}+O\left(\theta^{\tilde{v}_{2}+2}\right)\right)
\end{align*}
$$

provided that

$$
\theta=O\left(\delta^{2 /(2-\sigma)}\right)=O\left(\eta^{2 /\left(2-v_{2}\right)}\right)
$$

where $\vartheta_{1}, \vartheta_{2}, \vartheta_{3}$ are constants independent of δ, η such that $\vartheta_{1}^{2}+\vartheta_{2}^{2} \neq 0, \vartheta_{3} \neq 0$.
Proof. The proof can be obtained from the expressions of $w_{*}(\theta), \Phi(\theta)$ and $\Psi(\theta)$ given in (1-8), (4-16) and (4-34).

5. Infinitely many solutions of (1-7) and proof of Theorem 1.1

In this section, we construct infinitely many regular solutions for (1-7) by matching the inner and outer solutions.

We construct solutions of the problem

$$
\left\{\begin{array}{l}
T_{1} w+k_{1} T_{2} w+k_{0} w=w^{p}, \quad w(\theta)>0,0<\theta<\frac{\pi}{2} \tag{5-1}\\
w(0)=Q\left(:=\epsilon^{-\alpha}\right), w^{\prime}\left(\frac{\pi}{2}\right)=0, w^{\prime \prime}(0)=(\tilde{b}+\mu) \epsilon^{-\alpha-2}, w^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=0
\end{array}\right.
$$

by matching the inner and outer solutions given in Theorems 3.7 and 4.2. To do so, we will find $\Theta \in\left(0, \frac{\pi}{2}\right)$ with

$$
\Theta=O\left(Q^{\sigma /((2-\sigma) \alpha)}\right) \quad(Q \gg 1)
$$

such that the following identities hold:

$$
\begin{align*}
\left.\left(w_{Q, \mu}^{\mathrm{inn}}(\theta)-w_{\delta, \eta}^{\mathrm{out}}(\theta)\right)\right|_{\theta=\Theta} & =0, \tag{5-2}\\
\left.\left(w_{Q, \mu}^{\mathrm{inn}}(\theta)-w_{\delta, \eta}^{\mathrm{out}}(\theta)\right)_{\theta}^{\prime}\right|_{\theta=\Theta} & =0, \tag{5-3}\\
\left.\left(w_{Q, \mu}^{\mathrm{in}}(\theta)-w_{\delta, \eta}^{\text {out }}(\theta)\right)_{\theta}^{\prime \prime}\right|_{\theta=\Theta} & =0, \tag{5-4}\\
\left.\left(w_{Q, \mu}^{\mathrm{inn}}(\theta)-w_{\delta, \eta}^{\text {out }}(\theta)\right)_{\theta}^{\prime \prime \prime}\right|_{\theta=\Theta} & =0 . \tag{5-5}
\end{align*}
$$

These will be done by arguments similar to those in the proof of Lemma 6.1 of [Budd and Norbury 1987] and Theorem 1.1 of [Dancer et al. 2012]. Then, we obtain a C^{4} function $w(\theta)$ defined by $w(\theta)=w_{Q, \mu}^{\text {inn }}(\theta)$ for $\theta \leq \Theta$ and $w(\theta)=w_{\delta, \eta}^{\text {out }}(\theta)$ for $\theta \geq \Theta$ which is a solution to (5-1).

First, we observe that

$$
\begin{equation*}
\frac{2 A_{p}}{3(p-1)}=C_{p} \tag{5-6}
\end{equation*}
$$

by (3-35), where A_{p}, C_{p} are given in Section 3.
Define $Q_{*}, \delta_{*}^{2}, \eta_{*}^{2}$ and μ_{*} by

$$
\begin{gather*}
\beta \ln Q_{*}^{(p-1) / 4}+\kappa=\beta \ln 2^{-1}+\omega+2 m \pi \tag{5-7}\\
\delta_{*}^{2}=\sqrt{\frac{a_{0}^{2}+b_{0}^{2}}{\vartheta_{1}^{2}+\vartheta_{2}^{2}}} Q_{*}^{\sigma / \alpha}, \tag{5-8}\\
\eta_{*}^{2}=O\left(Q_{*}^{\left(2-v_{2}\right) \sigma /((2-\sigma) \alpha)}\right), \quad \mu_{*}=O\left(Q_{*}^{\left(2 \sigma-2 \nu_{1}\right) /((2-\sigma) \alpha)}\right), \tag{5-9}
\end{gather*}
$$

$$
\begin{equation*}
\mu_{*} B_{p} Q_{*}^{\nu_{1} / \alpha}=\vartheta_{3} \eta_{*}^{2} \Theta_{*}^{\tilde{\nu}_{2}-\tilde{v}_{1}}, \tag{5-10}
\end{equation*}
$$

where

$$
\kappa=\tan ^{-1}\left(\frac{a_{0}}{b_{0}}\right), \quad \omega=\tan ^{-1}\left(\frac{\vartheta_{1}}{\vartheta_{2}}\right)
$$

and $m \gg 1$ is an integer. The integer m is chosen such that the results in Sections 3 and 4 hold.

Note that

$$
O\left(\delta_{*}^{2 /(2-\sigma)}\right)=O\left(Q_{*}^{\sigma /(\alpha(2-\sigma))}\right),
$$

$a_{0} \cos \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)\right)+b_{0} \sin \left(\beta \ln \left(Q^{(p-1) / 4} \theta\right)\right)$

$$
=\sqrt{a_{0}^{2}+b_{0}^{2}} \sin \left(\beta \ln \theta+\beta \ln Q^{(p-1) / 4}+\kappa\right)
$$

$$
\vartheta_{1} \cos \left(\beta \ln \frac{\theta}{2}\right)+\vartheta_{2} \sin \left(\beta \ln \frac{\theta}{2}\right)=\sqrt{\vartheta_{1}^{2}+\vartheta_{2}^{2}} \sin \left(\beta \ln \theta+\beta \ln 2^{-1}+\omega\right) .
$$

We will see that the Q, μ, δ^{2} and η^{2} required to satisfy the matching conditions (5-2)-(5-5) can be obtained as small perturbations of $Q_{*}, \mu_{*}, \delta_{*}^{2}$ and η_{*}^{2} given in (5-7)-(5-10), i.e.,

$$
\begin{align*}
Q & =Q_{*}\left(1+O\left(Q_{*}^{2 \sigma /((2-\sigma) \alpha)}\right)\right) \tag{5-11}\\
\mu & =\mu_{*}\left(1+O\left(Q_{*}^{2 \sigma /((2-\sigma) \alpha)}\right)\right) \tag{5-12}\\
\delta^{2} & =\delta_{*}^{2}\left(1+O\left(Q_{*}^{2 \sigma /((2-\sigma) \alpha)}\right)\right) \tag{5-13}\\
\eta^{2} & =\eta_{*}^{2}\left(1+O\left(Q_{*}^{2 \sigma /((2-\sigma) \alpha)}\right)\right) \tag{5-14}
\end{align*}
$$

To show this we define the function $\boldsymbol{F}(Q, \mu, \delta, \eta)$ by

$$
\boldsymbol{F}\left(Q, \mu, \delta^{2}, \eta^{2}\right)=\left[\begin{array}{c}
\Theta^{(n-5) / 2}\left(w_{Q, \mu}^{\text {inn }}(\Theta)-w_{\delta, \eta}^{\text {out }}(\Theta)\right) \\
\left.\Theta\left(\theta^{(n-5) / 2}\left(w_{Q, \mu}^{\text {inn }}(\theta)-w_{\delta, \eta}^{\text {out }}(\theta)\right)\right)_{\theta}^{\prime}\right|_{\theta=\Theta} \\
\left.\Theta^{2}\left(\theta^{(n-5) / 2}\left(w_{Q, \mu}^{\text {inn }}(\theta)-w_{\delta, \eta}^{\text {out }}(\theta)\right)\right)_{\theta}^{\prime \prime}\right|_{\theta=\Theta} \\
\left.\Theta^{3}\left(\theta^{(n-5) / 2}\left(w_{Q, \mu}^{\text {inn }}(\theta)-w_{\delta, \eta}^{\text {out }}(\theta)\right)\right)_{\theta}^{\prime \prime \prime}\right|_{\theta=\Theta}
\end{array}\right]^{T}
$$

Now, we regard δ^{2}, η^{2} as new variables. Taking $Q_{*}, \mu_{*}, \delta_{*}^{2}$ and η_{*}^{2}, we find a bound for $\boldsymbol{F}\left(Q_{*}, \mu_{*}, \delta_{*}^{2}, \eta_{*}^{2}\right)$ by using the behaviors of $w_{Q, \mu}^{\text {inn }}(\theta)$ and $w_{\delta, \eta}^{\text {out }}(\theta)$ given in Theorems 3.7 and 4.2 respectively. Accordingly we find for some $M>1$ suitably large,

$$
\begin{equation*}
\left|\Theta^{-(n-5) / 2} \boldsymbol{F}\left(Q_{*}, \mu_{*}, \delta_{*}^{2}, \eta_{*}^{2}\right)\right| \leq M \Theta^{4-\sigma-(n-5) / 2}+\text { small terms } \tag{5-15}
\end{equation*}
$$

We seek values of $Q, \mu, \delta^{2}, \eta^{2}$ which are small perturbations of $Q_{*}, \mu_{*}, \delta_{*}^{2}, \eta_{*}^{2}$ and such that $\boldsymbol{F}\left(Q, \mu, \delta^{2}, \eta^{2}\right)=0$. As in [Dancer et al. 2012], we need to evaluate the Jacobian of \boldsymbol{F} at $\left(Q_{*}, \mu_{*}, \delta_{*}^{2}, \eta_{*}^{2}\right)$:
$\frac{\partial \boldsymbol{F}\left(Q, \mu, \delta^{2}, \eta^{2}\right)}{\partial\left(Q, \mu, \delta^{2}, \eta^{2}\right)}=\left[\begin{array}{cccc}I_{1}+I_{3} & I_{4} & -D \sin \tau & I_{5} \\ \beta I_{2}+q_{1} I_{3} & q_{1} I_{4} & -\beta D \cos \tau & q_{4} I_{5} \\ I_{6} & q_{2} I_{4} & I_{8} & q_{5} I_{5} \\ I_{7} & q_{3} I_{4} & I_{9} & q_{6} I_{5}\end{array}\right]+$ higher-order terms,
where

$$
\begin{gathered}
I_{1}=C\left(\frac{\sigma}{\alpha} \sin \tau+\frac{\beta(p-1)}{4} \cos \tau\right) Q_{*}^{\sigma / \alpha-1}, \\
I_{2}=C\left(\frac{\sigma}{\alpha} \cos \tau-\frac{\beta(p-1)}{4} \sin \tau\right) Q_{*}^{\sigma / \alpha-1}, \\
I_{3}=\frac{\nu_{1}}{\alpha} B_{p} \mu_{*} \Theta^{\tilde{v}_{1}+(n-5) / 2} Q_{*}^{v_{1} / \alpha-1}, \quad I_{4}=B_{p} Q_{*}^{v_{1} / \alpha} \Theta^{\tilde{v}_{1}+(n-5) / 2}, \\
I_{5}=-\vartheta_{3} \Theta^{\tilde{\nu}_{2}+(n-5) / 2}, \quad I_{6}=-\beta^{2} I_{1}-\beta I_{2}+q_{2} I_{3}, \\
I_{7}=-\beta^{3} I_{2}+3 \beta^{2} I_{1}+2 \beta I_{2}+q_{3} I_{3}, \quad I_{8}=\beta^{2} D \sin \tau+\beta D \cos \tau, \\
I_{9}=\beta^{3} D \cos \tau-3 \beta^{2} D \sin \tau-2 \beta D \cos \tau, \\
q_{1}=\tilde{v}_{1}+\frac{1}{2}(n-5), \quad q_{2}=\left(\tilde{v}_{1}+\frac{1}{2}(n-7)\right) q_{1}, \quad q_{3}=\left(\tilde{v}_{1}+\frac{1}{2}(n-9)\right) q_{2}, \\
q_{4}=\tilde{v}_{2}+\frac{1}{2}(n-5), \quad q_{5}=\left(\tilde{v}_{2}+\frac{1}{2}(n-7)\right) q_{4}, \quad q_{6}=\left(\tilde{v}_{2}+\frac{1}{2}(n-9)\right) q_{5}, \\
C=\sqrt{a_{0}^{2}+b_{0}^{2}}, \quad D=\sqrt{\vartheta_{1}^{2}+\vartheta_{2}^{2}},
\end{gathered}
$$

and

$$
\tau=\beta \ln \Theta+\beta \ln Q_{*}^{(p-1) / 4}+\kappa=\beta \ln \Theta+\beta \ln 2^{-1}+\omega+2 m \pi .
$$

We define the function $\boldsymbol{G}(x, y, z, w)$ by

$$
\begin{aligned}
& \boldsymbol{G}(x, y, z, w) \\
& \quad=\boldsymbol{F}\left(Q_{*}+x Q_{*}^{1-\sigma / \alpha}, \mu_{*}+\Theta^{-\tilde{v}_{1}-(n-5) / 2} Q_{*}^{-v_{1} / \alpha} y, \delta_{*}^{2}+z, \eta_{*}^{2}+\Theta^{-\tilde{\tilde{v}}_{2}-(n-5) / 2} w\right) .
\end{aligned}
$$

Using (5-15), (4-36) and the results in Lemmas 3.5 and 3.6, we express $\boldsymbol{G}(x, y, z, w)$ in the form
$\boldsymbol{G}(x, y, z, w)=\boldsymbol{C}+\left[\begin{array}{cccc}I_{1}^{\prime}+I_{3}^{\prime} & I_{4}^{\prime} & -D \sin \tau & I_{5}^{\prime} \\ \beta I_{2}^{\prime}+q_{1} I_{3}^{\prime} & q_{1} I_{4}^{\prime} & -\beta D \cos \tau & q_{4} I_{5}^{\prime} \\ I_{6}^{\prime} & q_{2} I_{4}^{\prime} & I_{8}^{\prime} & q_{5} I_{5}^{\prime} \\ I_{7}^{\prime} & q_{3} I_{4}^{\prime} & I_{9}^{\prime} & q_{6} I_{5}^{\prime}\end{array}\right]\left(\begin{array}{c}x \\ y \\ y \\ z \\ w\end{array}\right)$

$$
+\boldsymbol{E}\left(x, y, z, w, Q_{*}, \mu_{*}, \delta_{*}^{2}, \eta_{*}^{2}\right),
$$

where

\[

\]

and where \boldsymbol{C} is a constant vector independent of (x, y, z, w) which is bounded above by $M \Theta^{4-\sigma}$, and $|\boldsymbol{E}|$ is bounded independently of $x, y, z, w, Q, \mu, \delta$ and η. Thus,

$$
\boldsymbol{G}(x, y, z, w)=\boldsymbol{C}+L\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)+\boldsymbol{T}(x, y, z, w)
$$

where L is a linear operator which is invertible; we shall prove this fact in Lemma A.1. If we define the operator \boldsymbol{J} mapping \mathbb{R}^{4} into itself by

$$
\boldsymbol{J}(x, y, z, w)=-\left(L^{-1} \boldsymbol{C}+L^{-1} \boldsymbol{T}(x, y, z, w)\right),
$$

then, provided that Q_{*} is sufficiently large, a direct calculation shows that \boldsymbol{J} maps the set I into itself, where I is the ball

$$
\begin{equation*}
I=\left\{(x, y, z, w):\left(x^{2}+y^{2}+z^{2}+w^{2}\right)^{1 / 2} \leq 4 M(\operatorname{det} L)^{-1} \Theta^{4-\sigma}\right\}, \tag{5-16}
\end{equation*}
$$

and $\operatorname{det} L$ is the determinant of L, which depends on $\sqrt{a_{0}^{2}+b_{0}^{2}}, \beta, D, \alpha, B_{p}, \vartheta_{3}$ and $v_{i}(i=1,2,3,4)$. We apply the Brouwer fixed point theorem to conclude that \boldsymbol{J} has a fixed point in I. This point (x, y, z, w) satisfies $\boldsymbol{G}(x, y, z, w)=0$ and

$$
\left(x^{2}+y^{2}+z^{2}+w^{2}\right)^{1 / 2} \leq M^{\prime} \Theta^{4-\sigma},
$$

where M^{\prime} is a constant defined in (5-16) and is independent of $Q_{*}, \mu_{*}, \delta_{*}, \eta_{*}$ and Θ. By substituting for Q, μ, δ and η, then taking Θ to have the upper limiting value of $Q_{*}^{\sigma /((2-\sigma) \alpha)}$, we obtain (5-11)-(5-14). Therefore, we can find a solution to (5-1) such that (5-2)-(5-5) hold.

We have shown that (5-2)-(5-5) have a solution for each large fixed m. This yields a solution of (5-1) and also gives the proof of Theorem 1.1. Hence we have: Theorem 5.1. For $m \gg 1$ large and Q, μ, δ and η as given in (5-11)-(5-14), problem (5-1) admits a classical solution $w_{Q, \mu, \delta, \eta}(\theta)$. Moreover, there is $\Theta=$ $\left|O\left(Q^{\sigma /(2-\sigma) \alpha)}\right)\right|$ such that (5-2)-(5-5) hold.

As a consequence, problem (1-7) admits infinitely many nonconstant positive solutions. Hence, we have proved Theorem 1.1.

Appendix

We will prove a lemma which was used in the previous sections.
Lemma A.1. For the terms E_{2} and $k_{0}(n)$ and the matrices K and L, which were defined in previous sections, we have
(1) $E_{2} \neq 0$,
(2) $p \in\left(\frac{n+3}{n-5}, p_{c}(n-1)\right) \Rightarrow p k_{0}(n-1) \geq k_{0}(n)$,
(3) $\operatorname{det} K \neq 0$,
(4) $\operatorname{det} L \neq 0$.

Proof. First, we show that $E_{2} \neq 0$. It is known that
$(\mathrm{A}-1) E_{2}=\left(\tilde{v}_{1}+2\right) \tilde{v}_{1}\left(\tilde{v}_{1}+n-3\right)\left(\tilde{v}_{1}+n-1\right)-p(n-5-\alpha)(n-3-\alpha)(2+\alpha) \alpha$.
For convenience, we use n instead of $n-1$ and $\tilde{v}_{1}(n)$ instead of $\tilde{v}_{1}(n-1)$; i.e., we study the term
$(\mathrm{A}-2) E_{2}=\left(\tilde{\nu}_{1}+2\right) \tilde{\nu}_{1}\left(\tilde{\nu}_{1}+n-2\right)\left(\tilde{\nu}_{1}+n\right)-p(n-4-\alpha)(n-2-\alpha)(2+\alpha) \alpha$.
Let $f(\alpha)=p(n-4-\alpha)(n-2-\alpha)(2+\alpha) \alpha$. Through a simple computation, we get $f(\alpha)$ and its derivative $f^{\prime}(\alpha)$:
$f(\alpha)=\alpha^{4}+(12-2 n) \alpha^{3}+\left(n^{2}-18 n+52\right) \alpha^{2}+\left(6 n^{2}-52 n+96\right) \alpha+8(n-2)(n-4)$,
and

$$
f^{\prime}(\alpha)=4 \alpha^{3}+(36-6 n) \alpha^{2}+\left(2 n^{2}-36 n+104\right) \alpha+\left(6 n^{2}-52 n+96\right) .
$$

We compute the roots of $f^{\prime}(\alpha)$ to find its zero points: $\frac{1}{2}\left(n-6 \pm \sqrt{n^{2}+4}\right)$ and $\frac{1}{2}(n-6)$. It is easy to see that $f(\alpha)$ is strictly increasing for $\alpha \in\left(0, \frac{1}{2}(n-6)\right)$ and decreasing for $\alpha \in\left(\frac{1}{2}(n-6), \frac{1}{2}\left(n-6+\sqrt{n^{2}+4}\right)\right.$). We know $\alpha=4 /(p-1)<\frac{1}{2}(n-4)$ and $\frac{1}{2}(n-4) \in\left(\frac{1}{2}(n-6), \frac{1}{2}\left(n-6+\sqrt{n^{2}+4}\right)\right)$. As a consequence, we can conclude

$$
f(\alpha) \leq f\left(\frac{1}{2}(n-6)\right)=\frac{1}{16} n^{4}-\frac{1}{2} n^{2}+1 \quad \text { for all } p \in\left(\frac{n+4}{n-4}, p_{c}(n)\right) .
$$

Let $g(x)=x(x+2)(x+n)(x+n-2)=x^{4}+2 n x^{3}+\left(n^{2}+2 n-4\right) x^{2}+\left(2 n^{2}-4 n\right) x$. We compute its derivative, $g^{\prime}(x)=4 x^{3}+6 n x^{2}+\left(2 n^{2}+4 n-8\right) x+\left(2 n^{2}-4 n\right)$, and find $g^{\prime}(x)>0$ for $x>0$ when $n \geq 5$. On the other hand, using $4 \sqrt{N_{3}}>N_{2}$ for $p \in\left((n+4) /(n-4), p_{c}(n)\right)$, we find

$$
\tilde{v}_{1}>\frac{1}{2}\left(\sqrt{2\left(n^{2}-4 n+8\right)}-(n-4)\right) .
$$

Therefore,

$$
\begin{align*}
g\left(\tilde{v}_{1}\right) & \geq g\left(\frac{1}{2}\left(\sqrt{2\left(n^{2}-4 n+8\right)}-(n-4)\right)\right) \tag{A-3}\\
& =96-40 n+11 n^{2}-\frac{1}{2} n^{3}+\frac{1}{16} n^{4}+\sqrt{2}\left(24-4 n+n^{2}\right) \sqrt{8-4 n+n^{2}}
\end{align*}
$$

Comparing $\frac{1}{16} n^{4}-\frac{1}{2} n^{2}+1$ and the right-hand side of (A-3), by direct computation, we can get

$$
g\left(\frac{1}{2}\left(\sqrt{2\left(n^{2}-4 n+8\right)}-(n-4)\right)\right)>\frac{1}{16} n^{4}-\frac{1}{2} n^{2}+1 \quad \text { for } n \in(0, \infty) .
$$

As a result, $g\left(\tilde{v}_{1}\right)>f(\alpha)$. Hence, E_{2} is nonzero.
Next, we prove $p k_{0}(n-1) \geq k_{0}(n)$ for $p \in\left((n+3) /(n-5), p_{c}(n-1)\right)$. According to the definition of $k_{0}(n)$, it is enough for us to show

$$
\begin{equation*}
p(n-5-\alpha)(n-3-\alpha) \geq(n-4-\alpha)(n-2-\alpha) . \tag{A-4}
\end{equation*}
$$

Using the relation $p=4 / \alpha+1$, it is equivalent to show (after computation)

$$
\begin{equation*}
6 \alpha^{2}+(39-10 n) \alpha+4 n^{2}-32 n+60 \geq 0 . \tag{A-5}
\end{equation*}
$$

It is known that (A-5) holds provided
$\alpha \geq \frac{1}{12}\left(10 n-39+\sqrt{4 n^{2}-12 n+81}\right) \quad$ or $\quad \alpha \leq \frac{1}{12}\left(10 n-39-\sqrt{4 n^{2}-12 n+81}\right)$.
On the other hand, since $p \in\left((n+3) /(n-5), p_{c}(n-1)\right)$, we have $\alpha<\frac{1}{2}(n-5)$. It is easy to show $\frac{1}{2}(n-5) \leq \frac{1}{12}\left(10 n-39-\sqrt{4 n^{2}-12 n+81}\right)$ when $n \geq 5$. Hence, (A-5) holds. Therefore (A-4) holds.

Then, to show K is invertible, it is enough for us to show $B \neq 0$ or $A \neq 0$. Recall

$$
B=\left(2 n^{2}-12 n-6\right) \beta+8 \beta^{3}=\left(2(n-3)^{2}-24\right) \beta+8 \beta^{3} .
$$

It is known that $2(n-3)^{2}-24<0$ only when $n=6$. Since $\beta>0$, we have $B \neq 0$ when $n \geq 7$. When $n=6$, we find

$$
A=\beta^{4}-\frac{35}{2} \beta^{2}-\frac{135}{16}-(1-\alpha)(3-\alpha)(2+\alpha)(4+\alpha), \quad B=-6 \beta+8 \beta^{3} .
$$

If $B \neq 0$ for $n=6$, we have that K is invertible, while if $B=0$ for $n=6$, then $A=-21-(1-\alpha)(3-\alpha)(2+\alpha)(4+\alpha)<0$ for $\alpha \in\left(0, \frac{1}{2}\right)$ and K is also invertible. Therefore, we have proved the third conclusion.

Finally, we show the matrix L is invertible. Recall that L is given by

$$
L:=\left[\begin{array}{cccc}
I_{1}^{\prime}+I_{3}^{\prime} & I_{4}^{\prime} & -D \sin \tau & I_{5}^{\prime} \tag{A-6}\\
\beta I_{2}^{\prime}+q_{1} I_{3}^{\prime} & q_{1} I_{4}^{\prime} & -\beta D \cos \tau & q_{4} I_{5}^{\prime} \\
I_{6}^{\prime} & q_{2} I_{4}^{\prime} & I_{8}^{\prime} & q_{5} I_{5}^{\prime} \\
I_{7}^{\prime} & q_{3} I_{4}^{\prime} & I_{9}^{\prime} & q_{6} I_{5}^{\prime}
\end{array}\right],
$$

where

$$
\begin{array}{ll}
I_{1}^{\prime}=C\left(\frac{\sigma}{\alpha} \sin \tau+\frac{\beta(p-1)}{4} \cos \tau\right), & I_{2}^{\prime}=C\left(\frac{\sigma}{\alpha} \cos \tau-\frac{\beta(p-1)}{4} \sin \tau\right), \\
I_{3}^{\prime}=\frac{\nu_{1}}{\alpha} B_{p} \mu_{*} \Theta^{\tilde{\mathrm{N}}_{1}+(n-5) / 2} Q_{*}^{\left(v_{1}-\sigma\right) / \alpha}, & I_{4}^{\prime}=B_{p}, \\
I_{5}^{\prime}=\vartheta_{3}, & I_{6}^{\prime}=-\beta^{2} I_{1}^{\prime}-\beta I_{2}^{\prime}+q_{2} I_{3}^{\prime}, \\
I_{7}^{\prime}=-\beta^{3} I_{2}^{\prime}+3 \beta^{2} I_{1}^{\prime}+2 \beta I_{2}^{\prime}+q_{3} I_{3}^{\prime}, & I_{8}^{\prime}=\beta^{2} D \sin \tau+\beta D \cos \tau, \\
\quad I_{9}^{\prime}=\beta^{3} D \cos \tau-3 \beta^{2} D \sin \tau-2 \beta D \cos \tau .
\end{array}
$$

Using simple linear transformations, we see that

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
I_{1}^{\prime}+I_{3}^{\prime} & I_{4}^{\prime} & -D \sin \tau & I_{5}^{\prime} \\
\beta I_{2}^{\prime}+q_{1} I_{3}^{\prime} & q_{1} I_{4}^{\prime} & -\beta \cos \tau & q_{4} I_{5}^{\prime} \\
I_{6}^{\prime} & q_{2} I_{4}^{\prime} & I_{8}^{\prime} & q_{5} I_{5}^{\prime} \\
I_{7}^{\prime} & q_{3} I_{4}^{\prime} & I_{9}^{\prime} & q_{6} I_{5}^{\prime}
\end{array}\right] \sim\left[\begin{array}{cccc}
I_{1}^{\prime} & I_{4}^{\prime} & -D \sin \tau & I_{5}^{\prime} \\
\beta I_{2}^{\prime} & q_{1} I_{4}^{\prime}-\beta D \cos \tau & q_{4} I_{5}^{\prime} \\
I_{6}^{\prime}-q_{2} I_{3}^{\prime} & q_{2} I_{4}^{\prime} & I_{8}^{\prime} & q_{5} I_{5}^{\prime} \\
I_{7}^{\prime}-q_{3} I_{3}^{\prime} & q_{3} I_{4}^{\prime} & I_{9}^{\prime} & q_{6} I_{5}^{\prime}
\end{array}\right]} \\
& \quad \sim\left[\begin{array}{cccc}
I_{1}^{\prime} & -D \sin \tau & I_{4}^{\prime} & I_{5}^{\prime} \\
\beta I_{2}^{\prime} & -\beta D \cos \tau & q_{1} I_{4}^{\prime} & q_{4} I_{5}^{\prime} \\
I_{6}^{\prime}-q_{2} I_{3}^{\prime} & I_{8}^{\prime} & q_{2} I_{4}^{\prime} & q_{5} I_{5}^{\prime} \\
I_{7}^{\prime}-q_{3} I_{3}^{\prime} & I_{9}^{\prime} & q_{3} I_{4}^{\prime} & q_{6} I_{5}^{\prime}
\end{array}\right] \sim\left[\begin{array}{cccc}
I_{1}^{\prime} & -D \sin \tau & I_{4}^{\prime} & -I_{5}^{\prime} \\
\beta I_{2}^{\prime} & -\beta D \cos \tau & q_{1} I_{4}^{\prime} & -q_{4} I_{5}^{\prime} \\
0 & 0 & I_{10}^{\prime} & I_{11}^{\prime} \\
0 & 0 & I_{12}^{\prime} & I_{13}^{\prime},
\end{array}\right],
\end{aligned}
$$

where
$I_{10}^{\prime}=q_{2} B_{p}+q_{1} B_{p}+\beta^{2} B_{p}, \quad I_{11}^{\prime}=q_{5} \vartheta_{3}+q_{4} \vartheta_{3}+\beta^{2} \vartheta_{3}$,
$I_{12}^{\prime}=q_{3} B_{p}+\beta^{2} q_{1} B_{p}-3 \beta^{2} B_{p}-2 q_{1} B_{p}, \quad I_{13}^{\prime}=q_{6} \vartheta_{3}+\beta^{2} q_{4} \vartheta_{3}-3 \beta^{2} \vartheta_{3}-2 q_{4} \vartheta_{3}$.
Here we use the first column minus $I_{3}^{\prime} / I_{4}^{\prime}$ times the second column in the first step, change the places of the second and third columns in the second step, and in the end, add the second row and β times the first row to the third row and add $-3 \beta^{2}$ times the first row and $\beta^{2}-2$ times the second row to the fourth row. On the other hand, since

$$
\operatorname{det}\left[\begin{array}{cc}
I_{1}^{\prime} & -D \sin \tau \\
\beta I_{2}^{\prime} & -\beta D \cos \tau
\end{array}\right] \neq 0
$$

to show that L is invertible, it is enough for us to prove that the 2×2 matrix

$$
\left[\begin{array}{cc}
q_{2}+q_{1}+\beta^{2} & q_{5}+q_{4}+\beta^{2} \tag{A-7}\\
q_{3}+\beta^{2} q_{1}-3 \beta^{2}-2 q_{1} & q_{6}+\beta^{2} q_{4}-3 \beta^{2}-2 q_{4}
\end{array}\right] .
$$

is invertible. It follows from the definitions of $q_{i}(i=1,2,3,4,5,6)$ and β that $q_{2}+q_{1}+\beta^{2}=q_{5}+q_{4}+\beta^{2} \neq 0$. Let

$$
\chi_{1}=q_{3}+\beta^{2} q_{1}-3 \beta^{2}-2 q_{1}, \quad \chi_{2}=q_{6}+\beta^{2} q_{4}-3 \beta^{2}-2 q_{4} .
$$

Then

$$
\begin{aligned}
\chi_{1}-\chi_{2} & =q_{3}-q_{6}-\left(q_{1}-q_{4}\right)\left(2-\beta^{2}\right) \\
& =\left(\tilde{v}_{1}-\tilde{v}_{2}\right)\left(\left(\tilde{v}_{1}+\tilde{v}_{2}\right)^{2}-\tilde{v}_{1} \tilde{v}_{2}+\frac{1}{2}(3 n-21)\left(\tilde{v}_{1}+\tilde{v}_{2}\right)+\frac{1}{4}\left(3 n^{2}-42 n+135\right)+\beta^{2}\right) \\
& =\left(\tilde{v}_{1}-\tilde{v}_{2}\right)\left(\frac{1}{4}\left(n^{2}-10 n+25\right)-\tilde{v}_{1} \tilde{v}_{2}+\beta^{2}\right),
\end{aligned}
$$

where we are using the fact that $\tilde{v}_{1}+\tilde{v}_{2}=-(n-5)$. It is known (from Section 2) that

$$
\tilde{v}_{1} \tilde{v}_{2}=\frac{n^{2}-10 n+25}{4}-\frac{N_{2}+4 \sqrt{N_{3}}}{4(p-1)^{2}}
$$

and $\beta^{2}=\left(4 \sqrt{N_{3}}-N_{2}\right) /\left(4(p-1)^{2}\right.$), where N_{2} and N_{3} (with the dimension n being replaced by $n-1$) are defined in Section 2. Therefore,

$$
\chi_{1}-\chi_{2}=\left(\tilde{v}_{1}-\tilde{v}_{2}\right) \frac{2 \sqrt{N_{3}}}{(p-1)^{2}} \neq 0 .
$$

Hence, (A-7) is invertible.

Acknowledgements

The research of Z. Guo is supported by NSFC $(11171092,11571093)$ and Innovation Scientists and Technicians Troop Construction Projects of Henan Province (114200510011). The research of J. Wei is partially supported by NSERC of Canada. We thank the referee for a thorough reading of the manuscript and many thoughtful suggestions.

References

[Bidaut-Véron and Véron 1991] M.-F. Bidaut-Véron and L. Véron, "Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations", Invent. Math. 106:3 (1991), 489-539. MR Zbl
[Budd and Norbury 1987] C. Budd and J. Norbury, "Semilinear elliptic equations and supercritical growth", J. Differential Equations 68:2 (1987), 169-197. MR Zbl
[Dancer et al. 2011] E. N. Dancer, Y. Du, and Z. Guo, "Finite Morse index solutions of an elliptic equation with supercritical exponent", J. Differential Equations 250:8 (2011), 3281-3310. MR Zbl
[Dancer et al. 2012] E. N. Dancer, Z. Guo, and J. Wei, "Non-radial singular solutions of the LaneEmden equation in \mathbb{R}^{N} ", Indiana Univ. Math. J. 61:5 (2012), 1971-1996. MR Zbl
[Dávila et al. 2014] J. Dávila, L. Dupaigne, K. Wang, and J. Wei, "A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem", Adv. Math. 258 (2014), 240-285. MR Zbl
[Farina 2007] A. Farina, "On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb{R}^{N ",}$, Math. Pures Appl. (9) $87: 5$ (2007), 537-561. MR Zbl
[Gazzola and Grunau 2006] F. Gazzola and H.-C. Grunau, "Radial entire solutions for supercritical biharmonic equations", Math. Ann. 334:4 (2006), 905-936. MR Zbl
[Gidas and Spruck 1981] B. Gidas and J. Spruck, "Global and local behavior of positive solutions of nonlinear elliptic equations", Comm. Pure Appl. Math. 34:4 (1981), 525-598. MR Zbl
[Gui et al. 1992] C. Gui, W.-M. Ni, and X. Wang, "On the stability and instability of positive steady states of a semilinear heat equation in $\mathbb{R}^{n \prime \prime}$, Comm. Pure Appl. Math. 45:9 (1992), 1153-1181. MR Zbl
[Guo 2002] Z. Guo, "On the symmetry of positive solutions of the Lane-Emden equation with supercritical exponent", Adv. Differential Equations 7:6 (2002), 641-666. MR Zbl
[Guo 2014] Z. Guo, "Further study of entire radial solutions of a biharmonic equation with exponential nonlinearity", Ann. Mat. Pura Appl. (4) 193:1 (2014), 187-201. MR Zbl
[Guo and Wei 2010] Z. Guo and J. Wei, "Qualitative properties of entire radial solutions for a biharmonic equation with supercritical nonlinearity", Proc. Amer. Math. Soc. 138:11 (2010), 39573964. MR Zbl
[Hartman 1982] P. Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, 1982. MR Zbl
[Johnson et al. 1993] R. A. Johnson, X. B. Pan, and Y. Yi, "Positive solutions of super-critical elliptic equations and asymptotics", Comm. Partial Differential Equations 18:5-6 (1993), 977-1019. MR Zbl
[Joseph and Lundgren 1972/73] D. D. Joseph and T. S. Lundgren, "Quasilinear Dirichlet problems driven by positive sources", Arch. Rational Mech. Anal. 49 (1972/73), 241-269. MR Zbl
[Karageorgis 2009] P. Karageorgis, "Stability and intersection properties of solutions to the nonlinear biharmonic equation", Nonlinearity 22:7 (2009), 1653-1661. MR Zbl
[Korevaar et al. 1999] N. Korevaar, R. Mazzeo, F. Pacard, and R. Schoen, "Refined asymptotics for constant scalar curvature metrics with isolated singularities", Invent. Math. 135:2 (1999), 233-272. MR Zbl
[Lin 1998] C.-S. Lin, "A classification of solutions of a conformally invariant fourth order equation in \mathbb{R}^{n} ", Comment. Math. Helv. 73:2 (1998), 206-231. MR Zbl
[Wei and Xu 1999] J. Wei and X. Xu, "Classification of solutions of higher order conformally invariant equations", Math. Ann. 313:2 (1999), 207-228. MR Zbl
[Zou 1995] H. Zou, "Symmetry of positive solutions of $\Delta u+u^{p}=0$ in \mathbb{R}^{n} ", J. Differential Equations 120:1 (1995), 46-88. MR Zbl

Received October 2, 2015. Revised December 26, 2015.

Zongming Guo

Department of Mathematics
Henan Normal University
XinXiang 453007
China
gzm@htu.cn

Juncheng Wei

Department of Mathematics
University of British Columbia
VANCouver, BC V6T 1 Z2
Canada
jcwei@math.ubc.ca
Wen Yang
Current address:
Center for Advanced Study in Theoretical Science
National Taiwan University
No. 1, SEC. 4
Roosevelt Road
TAIPEI 106
Taiwan
math.yangwen@gmail.com
Department of Mathematics
University of British Columbia
Vancouver, BC V6T $1 \mathrm{Z2}$
CANADA

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@ math.ucla.edu
Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Robert Finn
Department of Mathematics Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu
Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Igor Pak
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 pak.pjm@gmail.com

Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu
Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY UNIV. OF CALIF., SANTA CRUZ
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2016 is US $\$ 440 / y$ year for the electronic version, and $\$ 600 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2016 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 284 No. $2 \quad$ October 2016
Spherical CR Dehn surgeries 257
Miguel Acosta
Degenerate flag varieties and Schubert varieties: a characteristic free approach 283
Giovanni Cerulli Irelli, Martina Lanini and Peter
Solitons for the inverse mean curvature flow 309Gregory Drugan, Hojoo Lee and Glen Wheeler
Bergman theory of certain generalized Hartogs triangles 327
Luke D. Edholm
Transference of certain maximal Hilbert transforms on the torus 343
Dashan Fan, Huoxiong Wu and Fayou Zhao
The Turaev and Thurston norms 365
Stefan Friedl, Daniel S. Silver and Susan G. Williams
A note on nonunital absorbing extensions 383
James Gabe
On nonradial singular solutions of supercritical biharmonic equations 395
Zongming Guo, Juncheng Wei and Wen Yang
Natural commuting of vanishing cycles and the Verdier dual 431
David B. Massey
The nef cones of and minimal-degree curves in the Hilbert schemes of points 439
on certain surfacesZhenbo Qin and Yuping Tu
Smooth approximation of conic Kähler metric with lower Ricci curvature 455
bound
Liangming Shen
Maps from the enveloping algebra of the positive Witt algebra to regular 475algebras
Susan J. Sierra and Chelsea Walton

[^0]: MSC2010: primary 35B40, 35J91; secondary 58J55.
 Keywords: nonradial solutions, biharmonic supercritical equations, gluing method.

