
Pacific
Journal of
Mathematics

ON NONRADIAL SINGULAR SOLUTIONS
OF SUPERCRITICAL BIHARMONIC EQUATIONS

ZONGMING GUO, JUNCHENG WEI AND WEN YANG

Volume 284 No. 2 October 2016



PACIFIC JOURNAL OF MATHEMATICS
Vol. 284, No. 2, 2016

dx.doi.org/10.2140/pjm.2016.284.395

ON NONRADIAL SINGULAR SOLUTIONS
OF SUPERCRITICAL BIHARMONIC EQUATIONS

ZONGMING GUO, JUNCHENG WEI AND WEN YANG

We develop a gluing method for fourth-order ODEs and construct infinitely
many nonradial singular solutions for a biharmonic equation with super-
critical exponent.

1. Introduction

In this paper we are concerned with positive singular solutions of the biharmonic
equation

(1-1) 12u = u p in Rn, n ≥ 6,

where p > (n+ 4)/(n− 4).
Equation (1-1) arises in both physics and geometry. In recent decades there has

been much research into classifying solutions to (1-1). When 1< p≤ (n+4)/(n−4),
all nonnegative solutions to (1-1) have been completely classified [Lin 1998; Wei
and Xu 1999]: if p < (n+ 4)/(n− 4), then (1-1) admits no nontrivial nonnegative
regular solution, while for p = (n+ 4)/(n− 4), i.e., the critical case, any positive
regular solution of (1-1) can be written in the form

uλ,ξ =
(
n(n− 4)(n− 2)(n+ 2)

)− 1
8 (n−4)

(
λ

1+ λ2|x − ξ |2

)1
2 (n−4)

, ξ ∈ Rn.

However, the question of the complete classification of positive regular solutions of
(1-1) in the supercritical case, i.e., p > (n+ 4)/(n− 4), remains largely open.

The structure of positive radial solutions of (1-1) with p > (n+ 4)/(n− 4) has
been studied by Gazzola and Grunau [2006] and Guo and Wei [2010]. For the
fourth-order ODE

(1-2)
{
12u(r)= u p(r), r ∈ [0,∞),
u(0)= a, u′′(0)= b, u′(0)= u′′′(0)= 0,
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it is known from [Gazzola and Grunau 2006] that for any a > 0 there is a unique
b0 :=b0(a)<0 such that the unique solution ua,b0 of (1-2) satisfies ua,b0 ∈C4(0,∞),
u′a,b0

(r) < 0 and

lim
r→∞

rαua,b0(r)= K 1/(p−1)
0 ,

where α = 4/(p− 1) and

K0 =
8
(
(n−2)(n−4)(p−1)3+2(n2

−10n+20)(p−1)2−16(n−4)(p−1)+32
)

(p−1)4
.

This implies that ua,b0(r)>0 for all r>0 and ua,b0(r)→0 as r→∞. Moreover, it is
known from [Guo and Wei 2010] that if 5≤n≤12 or if n≥13 and (n+4)/(n−4)<
p < pc(n), then ua,b0 − K 1/(p−1)

0 r−α changes sign infinitely many times in (0,∞),
and if n≥ 13 and p≥ pc(n), then u(r)< K 1/(p−1)

0 r−α for all r > 0 and the solutions
are strictly ordered with respect to the initial value a = ua,b0(0). Here pc(n) refers
to the unique value of p > (n+ 4)/(n− 4) such that

pc(n)=


+∞ if 4≤ n ≤ 12,

n+ 2−
√

n2+ 4− n
√

n2− 8n+ 32

n− 6−
√

n2+ 4− n
√

n2− 8n+ 32
if n ≥ 13.

Very recently, Dávila, Dupaigne, Wang and Wei [Dávila et al. 2014] proved that all
stable or finite Morse index solutions of (1-1) are trivial provided 1< p < pc(n).
According to a result in [Guo and Wei 2010] and [Karageorgis 2009] all radial
solutions are stable when p≥ pc(n). Thus the result in [Dávila et al. 2014] is sharp.

We now turn to the singular solutions of (1-1). It is easily seen that

(1-3) us(x) := K 1/(p−1)
0 |x |−4/(p−1)

is a singular solution of (1-1). In other words, us satisfies the equation

(1-4) 12u = u p, u > 0 in Rn
\{0}.

As far as we know, the radial singular solution in (1-3) is the only singular solution
to (1-4) known so far. The question we shall address in this paper is whether or
not there are nonradial singular solutions to (1-4). To this end, we first discuss the
corresponding second-order Lane–Emden equation

(1-5) 1u+ u p
= 0, u > 0 in Rn,

which has been widely studied. We refer to [Budd and Norbury 1987; Bidaut-Véron
and Véron 1991; Dancer et al. 2011; Farina 2007; Guo 2002; Gidas and Spruck
1981; Gui et al. 1992; Johnson et al. 1993; Joseph and Lundgren 1972/73; Korevaar
et al. 1999; Zou 1995] and the references therein. Farina [2007] proved that if
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(n+2)/(n−2)< p< pc(n), the Morse index of any regular solution u of (1-5) is∞.
Here pc(n) is the Joseph–Lundgren exponent [Joseph and Lundgren 1972/73]:

pc(n)=


+∞ if 2≤ n ≤ 10,
(n− 2)2− 4n+ 8

√
n− 1

(n− 2)(n− 10)
if n ≥ 11.

In [Dancer et al. 2011], Dancer, Du and Guo showed that if �0 is a bounded domain
containing 0, then u is a solution of (1-5) in �0\{0}; if u has finite Morse index
and (n+ 2)/(n− 2) < p < pc(n), then x = 0 must be a removable singularity of u.
They also showed that if �0 is a bounded domain containing 0, u is a solution of
(1-5) in Rn

\�0 that has finite Morse index, and (n+2)/(n−2) < p < pc(n), then
u must be a fast decay solution. It is easily seen that (1-5) has a radial singular
solution

us(x) := us(r)=
(

2
p− 1

(
n− 2−

2
p− 1

))1/(p−1)

|x |−2/(p−1).

Recently, Dancer, Guo and Wei [Dancer et al. 2012] obtained infinitely many positive
nonradial singular solutions of (1-5) provided p ∈ ((n + 1)/(n − 3), pc(n − 1)).
The proof of that result is via a gluing of outer and inner solutions.

The main result in this paper is the following theorem.

Theorem 1.1. Let n ≥ 6. Assume that

n+ 3
n− 5

< p < pc(n− 1).

Then (1-1) admits infinitely many nonradial singular solutions.

The proof of Theorem 1.1 is via a gluing of inner and outer solutions, as in [Dancer
et al. 2012]. In the second-order case, one glues (u(r), u′(r)) at some intermediate
point. However, since (1-1) is of fourth order, we have to match the inner solution
and outer solution up to the third derivative (u(r), u′(r), u′′(r), u′′′(r)). Some
essential obstructions appear when matching the inner and outer solutions. As far as
we know this is the first paper on gluing inner and outer solutions for fourth-order
ODE problems.

In the following, we sketch the proof of Theorem 1.1. After performing a
separation of variables for a solution u of (1-1), u(x)= r−αw(θ), finding a nonradial
singular solution of (1-1) is equivalent to finding a nonconstant solution of the
equation

(1-6) 12
Sn−1w+ k1(n)1Sn−1w+ k0(n)w = w p,
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where
k0(n)= (n− 4−α)(n− 2−α)(2+α)α,

k1(n)=−
(
(n− 4−α)(2+α)+ (n− 2−α)α

)
.

It is clear thatw(θ)= (k0(n))1/(p−1) is the constant solution of (1-6), which provides
the radial singular solution of (1-1) that is given in (1-3).

In order to construct positive nonradial singular solutions of (1-1), we need to
find positive nonconstant solutions of (1-6), which is a fourth-order inhomogeneous
nonlinear ODE; therefore, we shall construct infinitely many positive nonconstant
radially symmetric solutions of (1-6), i.e., solutions that only depend on the geodesic
distance θ ∈[0, π). We only consider the simple casew(θ)=w(π−θ) for 0≤θ ≤ π

2 .
In this case, (1-6) can be written in the form

(1-7)

{
T1w(θ)+ k1(n)T2w(θ)+ k0(n)w = w p, w(θ) > 0, 0< θ < π

2 ,

w′(0), w′′′(0) exist, w′
(
π
2

)
= w′′′

(
π
2

)
= 0,

where T1, T2 are the differential operators defined by

T1w(θ)=
1

sinn−2 θ

d
dθ

(
sinn−2 θ

d
dθ

(
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dw(θ)
dθ

)))
and

T2w(θ)=
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dw(θ)
dθ

)
.

A key observation is that

(1-8) w∗(θ)= Ap(sin θ)−α, θ ∈
(
0, π2

]
,

with
Ap−1

p = (n− 5−α)(n− 3−α)(2+α)α (:= k0(n− 1)),

is a singular solution of (1-7) with a singular point at θ = 0. (Note that this is a
singular solution in one dimension less.) We will construct the inner and outer
solutions of (1-7) and glue them at some point close to 0, which gives solutions of
(1-7). The main difficulty is the matching of four parameters, which correspond to
matching u and its derivatives up to the third order.

This paper is organized as follows. In Section 2, we present some preliminaries.
In Section 3, we construct inner solutions of (1-7) by studying an initial value
problem of (1-7) with large initial values at θ = 0. In Section 4, we construct outer
solutions of (1-7). We first study an initial value problem of (1-7) with the initial
values at θ = π

2 , then we analyze the asymptotic behaviors of the solutions of this
initial value problem near θ = 0. Finally, in Section 5, we match the inner and outer
solutions constructed in Sections 3 and 4 to obtain solutions of (1-1). This completes
the proof of Theorem 1.1. We leave some computational results to the Appendix.
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2. Preliminaries

In this section, we present some known results which will be used subsequently.
Let u = u(r) be a positive radial solution of (1-1). Using the Emden–Fowler

transformation

(2-1) u(r)= r−αv(t), t = ln r,

we see that v(t) satisfies the equation

(2-2) v(4)(t)+K3v
′′′(t)+K2v

′′(t)+K1v
′(t)+K0v(t)= v p(t), t ∈ (−∞,∞),

where the coefficients K0, K1, K2, K3 are given in [Gazzola and Grunau 2006]:

K0 =
8

(p− 1)4
(
(n− 2)(n− 4)(p− 1)3+ 2(n2

− 10n+ 20)(p− 1)2

− 16(n− 4)(p− 1)+ 32
)
,

K1 =−
2

(p− 1)3
(
(n− 2)(n− 4)(p− 1)3+ 4(n2

− 10n+ 20)(p− 1)2

− 48(n− 4)(p− 1)+ 128
)
,

K2 =
1

(p− 1)2
(
(n2
− 10n+ 20)(p− 1)2− 24(n− 4)(p− 1)+ 96

)
,

K3 =
2

p− 1

(
(n− 4)(p− 1)− 8

)
.

By direct calculation it is easy to see that K0 = k0. The characteristic polynomial
(linearized at K 1/(p−1)

0 ) of (2-2) is

ν 7→ ν4
+ K3ν

3
+ K2ν

2
+ K1ν+ (1− p)K0

and the eigenvalues are given by

ν1 =
N1+

√
N2+ 4

√
N3

2(p− 1)
, ν2 =

N1−
√

N2+ 4
√

N3

2(p− 1)
,

ν3 =
N1+

√
N2− 4

√
N3

2(p− 1)
, ν4 =

N1−
√

N2− 4
√

N3

2(p− 1)
,

where

N1 := −(n− 4)(p− 1)+ 8,

N2 := (n2
− 4n+ 8)(p− 1)2,

N3 := (9n− 34)(n− 2)(p− 1)4+ 8(3n− 8)(n− 6)(p− 1)3

+ (16n2
− 288n+ 832)(p− 1)2− 128(n− 6)(p− 1)+ 256.

Let ν̃ j = ν j −α for j = 1, 2, 3, 4.
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Proposition 2.1 [Guo and Wei 2010]. For any n ≥ 5 and p > (n+ 4)/(n− 4),

(2-3) ν̃2 < 2− n < 0< ν̃1.

(1) For any 5 ≤ n ≤ 12 or n ≥ 13 and (n + 4)/(n − 4) < p < pc(n), we have
ν̃3, ν̃4 6∈ R and <(ν̃3)=<(ν̃4)=

1
2(4− n) < 0.

(2) For any n ≥ 13 and p = pc(n), we have ν̃3 = ν̃4 =
1
2(4− n).

(3) For any n ≥ 13 and p > pc(n), we have

(2-4) ν̃2 < 4− n < ν̃4 <
1
2(4− n) < ν̃3 < 0< ν̃1, ν̃3+ ν̃4 = 4− n.

Theorem 2.2 [Gazzola and Grunau 2006]. For any k ≥ 1,

(2-5) lim
t→∞

v(t)= K 1/(p−1)
0 , lim

t→∞
v(k)(t)= 0

Remark. We see that Ki (i = 0, 1, 2, 3) and ν j , ν̃ j ( j = 1, 2, 3, 4) above depend
on n and p. In the following, by abuse of notation, we use Ki , ν j , ν̃ j with the
dimension n replaced by n− 1 and write k0 = k0(n) and k1 = k1(n).

3. Inner solutions

In this section, we construct inner solutions of (1-7).
Let Q� 1 be a large constant and b̃ be a constant which will be given below.

We consider the initial value problem

(3-1)
{

T1w(θ)+ k1T2w(θ)+ k0w = w
p,

w(0)= Q, w′(0)= 0, w′′(0)= (b̃+µ)Q1+2/α, w′′′(0)= 0,

where µ> 0 is a small constant. Since Q� 1, we set Q = ε−4/(p−1) (:= ε−α) with
ε > 0 sufficiently small.

Let w(θ) = ε−αv(θ/ε). Then we have v(0) = 1, v′(0) = 0, v′′(0) = b̃ + µ,
v′′′(0)= 0 and v(r) (for r = θ/ε) satisfies the equation

(3-2) v(4)(r)+2(n−2)ε cot(εr)v′′′(r)

+

(
(n−2)(n−4)

ε2

sin2(εr)
−(n−2)2ε2

+k1ε
2
)
v′′

+

(
(n−2)k1ε

3 cot(εr)−(n−2)(n−4)ε3 cot(εr)

sin2(εr)

)
v′(r)+k0ε

4v(r)= v p(r)

with initial conditions

v(0)= 1, v′(0)= 0, v′′(0)= b̃+µ, v′′′(0)= 0.
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For ε > 0 sufficiently small, we have

ε cot(εr)=
1
r
−

1
3ε

2r +
∞∑

k=1

lkε
2k+2r2k+1,

ε2 sin−2(εr)=
1
r2 +

1
3ε

2
+

∞∑
k=1

mkε
2k+2r2k,

ε3 cot(εr) sin−2(εr)=
1
r3 +

∞∑
k=1

nkε
2k+2r2k−1.

So (3-2) can be written in the form
(3-3)

v(4)(r)+
(

2(n−2)
r
−

2
3(n−2)ε2r+

∞∑
k=1

l ′kε
2k+2r2k+1

)
v′′′(r)

+

(
(n−2)(n−4)

r2 +
( 1

3(n−2)(n−4)−(n−2)2+k1
)
ε2
+

∞∑
k=1

m′kε
2k+2r2k

)
v′′(r)

−

(
(n−2)(n−4)

r3 −(n−2)k1r−1ε2
+

∞∑
k=1

n′kε
2k+2r2k−1

)
v′(r)+k0ε

4v(r)= v p(r)

with initial conditions

v(0)= 1, v′′(0)= b̃+µ, v′(0)= v′′′(0)= 0.

The first approximation to the solution of (3-3) is the radial solution v0(r) of the
problem

(3-4) 12v = v p in Rn−1, v(0)= 1, v′(0)= 0, v′′(0)= b̃+µ, v′′′(0)= 0.

We write v0 = v01+ v02, where v01 satisfies

(3-5) 12v = v p, v(0)= 1, v′(0)= 0, v′′(0)= b̃, v′′′(0)= 0,

and v02 satisfies

(3-6) 12v = v
p
0 − v

p
01, v(0)= 0, v′(0)= 0, v′′(0)= µ, v′′′(0)= 0.

We now choose b̃< 0 to be the unique value such that the solution v01 is the unique
positive radial ground state of (3-5).

Lemma 3.1. Assume that v01(r) and v02(r) are the solutions to (3-5) and (3-6),
respectively. For (n+ 3)/(n− 5) < p < pc(n− 1), there exists R0� 1 such that
for r ≥ R0, the solution v01(r) satisfies

(3-7) v01(r)= Apr−α +
a0 cos(β ln r)+ b0 sin(β ln r)

r (n−5)/2 + O(r2σ−α),
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where β =
√

4
√

N3− N2/(2(p−1)) (with n being replaced by n−1 in N2 and N3)
and

√
a2

0 + b2
0 6= 0.

The solution v02(r) satisfies

(3-8) v02(r)= µBpr ν̃1 + O(µ2rν1+ν̃1 +µr ν̃1+α−(n−5)/2),

with Bp 6= 0 when µ = O(1/(rν1−σ )) for r in any interval [eT , e10T
] with T � 1

and σ = α− 1
2(n− 5).

Proof. The proof of this lemma is divided into two steps. We consider v01(r) in
the first step. The main arguments in the proof are similar to those in the proof of
Theorem 3.1 of [Guo 2014].

Using the Emden–Fowler transformation

(3-9) v01(r)= r−αv(t), t = ln r (r > 0),

and letting v(t)= Ap − h(t), we see that h(t) satisfies

(3-10) h(4)(t)+ K3h′′′(t)+ K2h′′(t)+ K1h′(t)+ (1− p)K0h(t)+ O(h2)= 0

for t > 1. Note that rαv01(r)→ Ap as r→∞ and hence h(t)→ 0 as t→∞. It
follows from Proposition 2.1 that ν̃3, ν̃4 6∈R and <(ν̃3)=<(ν̃4)=

1
2(5−n) < 0 and

ν̃2<3−n<0<ν̃1 provided (n+3)/(n−5)< p< pc(n−1). Let ν3=σ+iβ, where
β =

√
4
√

N3− N2/(2(p−1)) and σ =− 1
2(n−5)+α < 0 for p> (n+3)/(n−5).

We can write (3-10) as

(3-11) (∂t − ν4)(∂t − ν3)(∂t − ν2)(∂t − ν1)h(t)= H(h(t)),

where H(h(t)) = O(h2). We claim that for any T � 1, there exist constants Ai

and Bi (i = 1, 2, 3, 4) such that

h(t)= A1eσ t cosβt+A2eσ t sinβt+A3eν2t
+A4eν1t

+B1

∫ t

T
eσ(t−s) sinβ(t−s)H(h(s))ds+B2

∫ t

T
eσ(t−s) cosβ(t−s)H(h(s))ds

+B3

∫ t

T
eν2(t−s)H(h(s))ds+B4

∫ t

T
eν1(t−s)H(h(s))ds.

Moreover, each Ai depends on T and νi (i = 1, 2, 3, 4), while each Bi depends only
on νi (i = 1, 2, 3, 4). In fact, it follows from (3-11) and the theory of second-order
ODEs (see [Hartman 1982]) that

(3-12) (∂t − ν2)(∂t − ν1)h(t)

= A′1eσ t cosβt + A′2eσ t sinβt +
1
β

∫ t

T
eσ(t−s) sinβ(t − s)H(h(s)) ds,
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where A′1 and A′2 are constants depending on T , ν3 and ν4. Multiplying both sides
of (3-12) by e−ν2t and integrating it from T to t , we obtain

(∂t − ν1)h(t)= A′3eν2t
+

∫ t

T
eν2(t−s)(A′1eσ s cosβs+ A′2eσ s sinβs) ds

+
1
β

∫ t

T
eν2(t−s)

∫ s

T
eσ(s−ξ) sinβ(s− ξ)H(h(ξ)) dξ ds.

We now switch the order of integration and find that

(∂t−ν1)h(t)

= A′′1eσ t cosβt+A′′2eσ t sinβt+A′′3eν2t
+B ′1

∫ t

T
eσ(t−s) sinβ(t−s)H(h(s)) ds

+ B ′2

∫ t

T
eσ(t−s) cosβ(t−s)H(h(s)) ds+ B ′3

∫ t

T
eν2(t−s)H(h(s)) ds,

where A′′1 , A′′2 and A′′3 depend on T and νi (i = 2, 3, 4), and where the B ′i (i = 1, 2, 3)
depend only on νi (i = 2, 3, 4). Repeating the same argument once again, we obtain
our claim. Using the fact that

∫ t
T =

∫
∞

T −
∫
∞

t , we have

B4

∫ t

T
eν1(t−s)H(h(s)) ds = B4

∫
∞

T
eν1(t−s)H(h(s)) ds− B4

∫
∞

t
eν1(t−s)H(h(s)) ds

= B4eν1t
∫
∞

T
e−ν1s H(h(s)) ds−B4

∫
∞

t
eν1(t−s)H(h(s)) ds.

By combining B4eν1t
∫
∞

T e−ν1s H(h(s)) ds and A4eν1t , we can also write h(t) as

h(t)= A1eσ t cosβt + A2eσ t sinβt + A3eν2t
+M4eν1t

+ B1

∫ t

T
eσ(t−s) sinβ(t − s)H(h(s)) ds

+ B2

∫ t

T
eσ(t−s) cosβ(t − s)H(h(s)) ds

+ B3

∫ t

T
eν2(t−s)H(h(s)) ds− B4

∫
∞

t
eν1(t−s)H(h(s)) ds.

Since h(t)→ 0 as t→∞, we have M4 = 0 (note ν1 > 0). Setting

h1(t)= A1eσ t cosβt + A2eσ t sinβt + A3eν2t

and

h2(t)= B1

∫ t

T
eσ(t−s) sinβ(t−s)H(h(s)) ds+B2

∫ t

T
eσ(t−s) cosβ(t−s)H(h(s)) ds

+ B3

∫ t

T
eν2(t−s)H(h(s)) ds− B4

∫
∞

t
eν1(t−s)H(h(s)) ds
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and noting that H(h(t))= O(h2(t)), we see that

(3-13) |h2(t)| ≤ C(h̃1(t)+ h̃2(t)),

where C > 0 is independent of T and

h̃1(t)=max
{∫ t

T
eσ(t−s)

|h1(s)|2 ds,
∫ t

T
eν2(t−s)

|h1(s)|2 ds,
∫
∞

t
eν1(t−s)

|h1(s)|2 ds
}
,

h̃2(t)=max
{∫ t

T
eσ(t−s)

|h2(s)|2 ds,
∫ t

T
eν2(t−s)

|h2(s)|2 ds,
∫
∞

t
eν1(t−s)

|h2(s)|2 ds
}
.

We now show

(3-14) |h2(t)| = o(eσ t).

There are three cases to be considered:

(1) |h2(t)| ≤
(

h̃1(t)+
∫ t

T
eσ(t−s)

|h2(s)|2 ds
)

,

(2) |h2(t)| ≤ C
(

h̃1(t)+
∫ t

T
eν2(t−s)

|h2(s)|2 ds
)

,

(3) |h2(t)| ≤ C
(

h̃1(t)+
∫
∞

t
eν1(t−s)

|h2(s)|2 ds
)

.

We only consider cases (1) and (3); case (2) is similar. For case (1), we have

(3-15) |h2(t)| ≤ C
(

h̃1(t)+
∫ t

T
eσ(t−s)

|h2(s)|2 ds
)
.

Thus,

(3-16) |h2(t)| ≤ C
(

h̃1(t)+max
t≥T
|h2(t)|

∫ t

T
eσ(t−s)

|h2(s)| ds
)
.

Let m(t)=
∫ t

T e−σ s
|h2(s)| ds. Then it can be seen from (3-16) that

(3-17) m′(t)≤ Ch̃1(t)e−σ t
+C max

t≥T
|h2(t)|m(t).

For any ε > 0 sufficiently small, we can choose T sufficiently large so that 0 <
dT := C maxt≥T |h2(t)|< ε. It follows from (3-17) that

(3-18) m(t)≤ CedT t
∫ t

T
h̃1(s)e−σ se−dT s ds.

Substituting m(t) in (3-18) into (3-16), we see that

(3-19) |h2(t)| ≤ Ch̃1(t)+CdT e(σ+dT )t
∫ t

T
h̃1(s)e−σ se−dT s ds.
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Note that σ + dT < 0 for T sufficiently large. We can combine ν2 < σ with
h1(t)= O(eσ t) to get h̃1(t)= o(eσ t). On the other hand, from (3-19) we can obtain
that |h2(t)| = o(e(σ+dT )t). Substituting these into (3-15), we eventually have

(3-20) |h2(t)| = o(eσ t).

For case (3), we have

(3-21) |h2(t)| ≤ C
(

h̃1(t)+
∫
∞

t
eν1(t−s)

|h2(s)|2 ds
)
.

Thus,

(3-22) |h2(t)| ≤ Ch̃1(t)+C max
t≥T
|h2(t)|

∫
∞

t
eν1(t−s)

|h2(s)| ds.

Letting l(t)=
∫
∞

t e−ν1s
|h2(s)| ds, we see from (3-22) that

(3-23) −l ′(t)≤ Ch̃1(t)e−ν1t
+ dT l(t).

It follows from (3-23) that

(3-24) l(s)≤ Ce−dT t
∫
∞

t
h̃1(s)e−ν1sedT s ds.

Since h̃1(t)= o(eσ t), we obtain from (3-24) that

l(s)= o(e(σ−ν1)t).

Substituting this into (3-22), we also have

|h2(t)| = o(eσ t).

We now write h(t) as

h(t)= M1eσ t cosβt +M2eσ t sinβt + A3eν2t

− B1

∫
∞

t
eσ(t−s) sinβ(t − s)H(h(s)) ds

− B2

∫
∞

t
eσ(t−s) cosβ(t − s)H(h(s)) ds

+ B3

∫ t

T
eν2(t−s)H(h(s)) ds− B4

∫
∞

t
eν1(t−s)H(h(s)) ds.

Then, it follows from H(h(t)) = O(h2(t)), h1(t) = O(eσ t), h2(t) = o(eσ t) and
ν2 < 2σ that

(3-25) h(t)= M1eσ t cos(βt)+M2eσ t sin(βt)+ A3eν2t
+ O(e2σ t).
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This implies that (3-7) holds for some a0 and b0. By an argument similar to the one
used in the proof of [Guo and Wei 2010, Theorem 3.3], we can show a2

0 + b2
0 6= 0.

This completes the proof of the first step.
We now proceed to the second step. Setting v02 = µṽ02, we see that ṽ02(r)

satisfies

(3-26) 12ṽ02− pv p−1
01 ṽ02 = µ

−1((v01+µṽ02)
p
− v

p
01− pµv p−1

01 ṽ02
)

with initial conditions

ṽ02(0)= 0, ṽ′02(0)= 0, ṽ′′02(0)= 1, ṽ′′′02(0)= 0.

Using the Emden–Fowler transformation

ṽ02(r)= r−α v̂(t), t = ln r (r > 0),

and the expression obtained for v01(r), we see that v̂(t) satisfies

(3-27) v̂(4)+ K3v̂
′′′
+ K2v̂

′′
+ K1v̂

′
+ (1− p)K0v̂ = f (r, µ, v̂),

where

f (r, µ, v̂)= O(µv̂+ rα−(n−5)/2)v̂

provided that µv̂ = o(1) for t sufficiently large. It follows from (3-27) that

v̂(t)= Â1eσ t cosβt + Â2eσ t sinβt + Â3eν2t
+ Â4eν1t

+ B̂1

∫ t

T
eσ(t−s) sinβ(t − s) f (r, µ, v̂(s)) ds

+ B̂2

∫ t

T
eσ(t−s) cosβ(t − s) f (r, µ, v̂(s)) ds

+ B̂3

∫ t

T
eν2(t−s) f (r, µ, v̂(s)) ds+ B̂4

∫ t

T
eν1(t−s) f (r, µ, v̂(s)) ds,

where Âi = Âi (T, ν1, ν2, ν3, ν4) (i = 1, 2, 3, 4) and B̂i = B̂i (ν1, ν2, ν3, ν4). We
first show that ṽ02 is strictly increasing in (0,∞). Using the initial values, we can
find R ∈ (0,∞) such that ṽ02(r) > 0 for r ∈ (0, R). Writing (3-26) as

µ12ṽ02 = (v01+µṽ02)
p
− v

p
01,

we obtain that (1ṽ02)
′> 0, and hence1ṽ02>1ṽ02(0)= n−1 for r ∈ (0, R), which

implies that (ṽ02)
′(r) > 0 for r ∈ (0, R). Moreover, we can deduce that R =∞ and

ṽ′02(r) > 0 for r ∈ (0,∞). Therefore, v̂ is increasing in (0,∞). Next, we claim
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that Â4 6= 0 for any T � 1 sufficiently large. Indeed, for t ∈ [T, 10T ],

e−ν1t v̂(t)= Â4+ g̃(t)+ B̂1e(σ−ν1)t
∫ t

T
e−σ s sinβ(t−s) f (r, µ, v̂(s)) ds

+ B̂2e(σ−ν1)t
∫ t

T
e−σ s cosβ(t−s) f (r, µ, v̂(s)) ds

+ B̂3e(ν2−ν1)t
∫ t

T
e−ν2s f (r, µ, v̂(s)) ds+ B̂4

∫ t

T
e−ν1s f (r, µ, v̂(s)) ds

≤| Â4|+|g̃(t)|+
( 4∑

j=1

|B̂ j |

)
max

t∈[T,10T ]
(µv̂+e(α−(n−5)/2)t)

∫ t

T
e−ν1s v̂(s) ds,

where

g̃(t)= Â1e(σ−ν1)t cosβt + Â2e(σ−ν1)t sinβt + Â3e(ν2−ν1)t.

Since ( 4∑
j=1

|B̂ j |

)
max

t∈[T,10T ]
(µv̂+ e(α−(n−5)/2)t)= τ = o(1),

we have

(3-28) e−ν1t v̂(t)≤ | Â4| + |g̃(t)| + τ
∫ t

T
e−ν1s v̂(s) ds.

Let `(t)=
∫ t

T e−ν1s v̂(s) ds. We see that

(3-29) (e−τ t`(t))′ ≤ (| Â4| + |g̃(t)|)e−τ t.

Integrating (3-29) in [T, t], we obtain

`(t)≤
| Â4| +maxt∈[T,10T ] |g̃(t)|

τ
eτ(t−T ).

If we choose τ(t − T )≤ C for t ∈ [T, 10T ], i.e., τ = O(1/T ), we see that

(3-30) `(t)≤
(| Â4| +maxt∈[T,10T ] |g̃(t)|)C

τ
.

Substituting this into (3-28), we have

(3-31) e−ν1t v̂(t)≤ | Â4|(1+C)+ |g̃(t)| +C max
t∈[T,10T ]

|g̃(t)|.

Suppose Â4 = 0. We see from (3-31) and the expression of |g̃(t)| that

v̂(t)= o(1) for all t ∈ [T, 10T ].
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This contradicts the fact that v̂ is increasing in (0,∞). Therefore, Â4 6= 0 and our
claim holds. Moreover, it is known from (3-31) and the expression of v̂(t) that

(3-32) v̂(t)= Bpeν1t
+ O(µe2ν1t

+ e(σ+ν1)t)

with Bp 6= 0 and µ= O(e(−ν1+σ)t). Therefore,

v02(r)= µBpr ν̃1 + O(µ2rν1+ν̃1 +µr ν̃1+σ )

with Bp 6= 0 and µ= O(1/rν1−σ ). �

Lemma 3.2. Let p satisfy the conditions of Lemma 3.1 and v1(r) be the unique
solution of the equation

(3-33)



v
(4)
1 (r)+

2(n−2)
r

v′′′1 (r)+
(n−2)(n−4)

r2 v′′1 (r)−
(n−2)(n−4)

r3 v′1(r)

−
2
3(n−2)rv′′′0 (r)+

( 1
3(n−2)(n−4)−(n−2)2+k1

)
v′′0 (r)

+
(n−2)k1

r
v′0(r)= pv p−1

0 (r)v1(r),

v1(0)= 0, v′1(0)= 0, v′′1 (0)= 0, v′′′1 (0)= 0.

Then for r ∈ [eT , e10T
] with T � 1 and µ= O(1/rν1−σ ),

(3-34) v1(r)= C pr2−α
+ r2−(n−5)/2(a1 cos(β ln r)+ b1 sin(β ln r))

+µDpr2+ν̃1 + O(µ2r ν̃1+ν1+2
+µr ν̃1+σ+2)+ o(r2−(n−5)/2),

where C p satisfies

(3-35) E1C p − p Ap−1
p C p = F1 Ap,

with

E1 = (1+α)(1−α)(2−α)α− 2(n− 2)(2−α)(1−α)α

− (n− 2)(n− 4)(2−α)+ (n− 2)(n− 4)(2−α)(1−α),

F1 =
(
(n− 2)2− k1−

1
3(n− 2)(n− 4)

)
α(α+ 1)
−

2
3(n− 2)α(α+ 1)(α+ 2)+ k1(n− 2)α,

and where Dp satisfies

(3-36) E2 Dp = F2 Bp,
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with

E2 = (2+ ν̃1)(ν̃1+ n− 1)(ν̃1+ n− 3)ν̃1− p Ap−1
p ,

F2 =
2
3(n− 2)(ν̃1− 1)(ν̃1− 2)ν̃1+

(
(n− 2)2− k1−

1
3(n− 2)(n− 4)

)
(ν̃1− 1)ν̃1

− k1(n− 2)ν̃1+ p(p− 1)Ap−2
p C p,

and where (a1, b1) is the solution of{
Aa1− Bb1 = G,
Ba1+ Ab1 = H,

with

A = 1
16(n

4
− 12n3

+ 14n2
+ 132n− 135)− p Ap−1

p +
1
2(n

2
− 6n− 35)β2

+β4,

B = (2n2
− 12n− 6)β + 8β3,

G = p(p− 1)Ap−2
p C pa0+

1
12(n

4
− 11n3

+ 41n2
− 61n+ 30)a0

+
1
4(n

2
− 6n+ 5)k1a0+

1
6(4n2

+ 3n− n3
− 14)b0β − 2k1b0β

+
1
3(n

2
− 9n+ 14)a0β

2
+ a0k1β

2
−

2
3(n− 2)b0β

3,

H = p(p− 1)Ap−2
p C pb0+

1
12(n

4
− 11n3

+ 41n2
− 61n+ 30)b0

+
1
4(n

2
− 6n+ 5)k1b0−

1
6(4n2

+ 3n− n3
− 14)a0β + 2k1a0β

+
1
3(n

2
− 9n+ 14)b0β

2
+ b0k1β

2
+

2
3(n− 2)a0β

3.

Remark. We need to show that E2 6= 0 and that the 2× 2 matrix K =
[ A

B
−B

A

]
is

invertible. This will be proved in the Appendix.

Proof. The uniqueness of solutions to (3-33) follows from standard ODE theory
since all the initial conditions are zero and the inhomogeneous term is locally
Lipschitz. Analyzing the terms which contain v0 in (3-33) and using the Taylor
expansion for v p−1

0 for r ∈ [eT , e10T
], after direct computation we can find the

leading terms which are of the orders

r−2−α, r (1−n)/2 cos(β ln r), r (1−n)/2 sin(β ln r), µr ν̃1−2.

By the above observation, we can assume

v1(r)= C pr2−α
+ f̃ (r)r2−(n−5)/2

+µDpr2+ν̃1

+ o(r2−(n−5)/2)+ O(µ2r ν̃1+ν1+2
+µr ν̃1+σ+2),

where
f̃ (r)= a1 cos(β ln r)+ b1 sin(β ln r).

Using (3-7) and (3-8), we can get C p, Dp, a1 and b1 by direct calculation. �
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Furthermore, we can obtain the following proposition.

Proposition 3.3. Let
n+ 3
n− 5

< p < pc(n− 1)

and v(r) be a solution of (3-2). Then for ε > 0 sufficiently small,

v(r)= v0(r)+
∞∑

k=1

ε2kvk(r).

Moreover, for r ∈ [eT , e10T
] with T � 1 and µ= O(1/rν1−σ ),

(3-37) vk(r)=
k∑

j=1

dk
j r

2 j−α
+

k∑
j=1

ek
jr

2 j−(n−5)/2 sin(β ln r+ Ek
j )+

k∑
j=1

µ f k
j r2 j+ν̃1

+ O(µ2r ν̃1+ν1+2k
+µr ν̃1+σ+2k)+ o(r2k−(n−5)/2),

where dk
j , ek

j , f k
j , Ek

j ( j = 1, 2, . . . , k) are constants. Moreover,

d1
1 = C p, e1

1 =

√
a2

1 + b2
1, f 1

1 = Dp, sin E1
1 = a1/e1

1, cos E1
1 = b1/e1

1,

where C p, a1, b1, Dp are given in Lemma 3.2.

Proof. Substituting

v(r)= v0(r)+
∞∑

i=1

ε2ivi (r)

into (3-3), we expand (3-3) according to the order of ε. Considering the constant
order and the ε2 order, we get (3-4) and (3-33), respectively. We note that only
the terms v0, v1, . . . , vk carry ε2k . Suppose we have found vk−1. Then we can
determine vk by studying the equation of order ε2k in (3-3), i.e.,

v
(4)
k (r)+

2(n− 2)
r

v′′′k (r)+
(n− 2)(n− 4)

r2 v′′k (r)−
(n− 2)(n− 4)

r3 v′k(r)

−
2
3(n− 2)rv′′′k−1(r)+

( 1
3(n− 2)(n− 4)− (n− 2)2+ k1

)
v′′k−1(r)

+
(n− 2)k1

r
v′k−1(r)+

k−1∑
i=1

(
l ′ir

2i+1v′′′k−i−1(r)+m′ir
2iv′′k−i−1(r)

+ n′ir
2i−1v′k−i−1(r)

)
+ k0vk−1(r)=

dk

dtk

( k∑
i=0

t ivi

)p ∣∣∣∣
t=0
,

vk(0)= 0, v′k(0)= 0, v′′k (0)= 0, v′′′k (0)= 0,

where l ′i ,m′i , n′i are given in (3-3). Following our arguments in Lemma 3.2, we
find the leading order of the terms involving v0, v1, . . . , vk−1 in the above equation,
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and then we assume vk has the expansion in (3-37). By substituting (3-37) into
the equation of order ε2k and comparing each order, we can compute the terms
dk

j , ek
j , f k

j , Ek
j ( j = 1, 2, . . . , k). �

Theorem 3.4. Let
n+ 3
n− 5

< p < pc(n− 1)

and winn
ε,µ(θ) be the solution of (1-7) with

w(0)= ε−α, wθ (0)= 0, wθθ (0)= (b̃+µ)ε−α−2, wθθθ (0)= 0.

Then for any sufficiently small ε > 0, θ/ε ∈ [eT , e10T
] with T � 1, and µ =

O((ε/θ)ν1−σ ), there holds

winn
ε,µ(θ)

=
Ap

θα
+

C p

θα−2 + Bpµε
−ν1θ ν̃1 +

∞∑
k=2

k∑
j=1

dk
j ε

2(k− j)θ2 j−α

+ ε(n−5)/2−α

(
a0 cos

(
β ln θ

ε

)
+ b0 sin

(
β ln θ

ε

)
θ (n−5)/2 +

a1 cos
(
β ln θ

ε

)
+ b1 sin

(
β ln θ

ε

)
θ (n−5)/2−2

+

∞∑
k=2

( k∑
j=1

ek
jε

2(k− j)θ2 j−(n−5)/2 sin
(
β ln θ

ε
+Ek

j
)
+o(θ2k−(n−5)/2)

)

+ O(θ2−(n−5)/2)

)

+ ε−α
∞∑

k=1

( k∑
j=1

(µ f k
j ε

2k−2 j−ν̃1θ2 j+ν̃1)

+ O(µ2θ ν̃1+ν1+2kε−ν̃1−ν1 +µθ ν̃1+σ+2kε−ν̃1−σ )

+ O
(
µ2
(
θ

ε

)ν̃1+ν1
+µ

(
θ

ε

)ν̃1+σ
))
.

Proof. This is a direct consequence of Proposition 3.3 by setting r = θ/ε. �

We now obtain some useful lemmas.

Lemma 3.5. Let (n+ 3)/(n− 5) < p < pc(n− 1) and

v(Q, µ, θ)= Qv0(Q(p−1)/4θ).

Then for Q(p−1)/4θ ∈ [eT , e10T
] with T � 1,

µ= O
(

1
(Q(p−1)/4θ)ν1−σ

)
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and n = 0, 1, 2, we have that v(Q, µ, θ) satisfies

∂n

∂Qn (v(Q, µ, θ))

=
∂n

∂Qn

(
Ap

θα

)
+

∂n

∂Qn

(
Cθ−(n−5)/2 Q−((p−1)(n−5)/8−1) sin

(
β ln(Q(p−1)/4θ)+ κ

))
+ Q ν̃2/α+1−n O(θ ν̃2)+µBp Q ν̃1/α+1−nθ ν̃1

+ O
(
µ2 Q(ν̃1+ν1)/α+1−nθ ν̃1+ν1 +µQ(ν̃1+σ)/α+1−nθσ+ν̃1

)
,

∂n

∂Qn (v
′

θ (Q, µ, θ))

=
∂n

∂Qn

(
−α

Ap

θα+1

)
+

∂n+1

∂Qn∂θ

(
Cθ−(n−5)/2 Q−((p−1)(n−5)/8−1) sin

(
β ln(Q(p−1)/4θ)+ κ

))
+ Q ν̃2/α+1−n O(θ ν̃2−1)+µν̃1 Bp Q ν̃1/α+1−nθ ν̃1−1

+ O
(
µ2 Q(ν̃1+ν1)/α+1−nθ ν̃1+ν1−1

+µQ(ν̃1+σ)/α+1−nθσ+ν̃1−1),
∂n

∂Qn

(
∂2

∂θ2 v(Q, µ, θ)
)

=
∂n

∂Qn

(
α(α+ 1)

Ap

θα+2

)
+

∂n+2

∂Qn∂θ2

(
Cθ−(n−5)/2 Q−((p−1)(n−5)/8−1) sin

(
β ln(Q(p−1)/4θ)+ κ

))
+ Q ν̃2/α+1−n O(θ ν̃2−2)+µν̃1(ν̃1− 1)Bp Q ν̃1/α+1−nθ ν̃1−2

+ O
(
µ2 Q(ν̃1+ν1)/α+1−nθ ν̃1+ν1−2

+µQ(ν̃1+σ)/α+1−nθσ+ν̃1−2),
∂n

∂Qn

(
∂3

∂θ3 v(Q, µ, θ)
)

=
∂n

∂Qn

(
−α(α+ 1)(α+ 2)

Ap

θα+3

)
+

∂n+3

∂Qn∂θ3

(
Cθ−(n−5)/2 Q−((p−1)(n−5)/8−1) sin

(
β ln(Q(p−1)/4θ)+ κ

))
+ Q ν̃2/α+1−n O(θ ν̃2−3)+µν̃1(ν̃1− 1)(ν̃1− 2)Bp Q ν̃1/α+1−nθ ν̃1−3

+ O
(
µ2 Q(ν̃1+ν1)/α+1−nθ ν̃1+ν1−3

+µQ(ν̃1+σ)/α+1−nθσ+ν̃1−3),
where κ = tan−1(b0/a0) and C =

√
a2

0 + b2
0.
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For n = 0, 1, we have

∂n

∂µn (v(Q, µ, θ))

= µ1−n Bp Q ν̃1/α+1θ ν̃1 + O
(
µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1 +µ1−n Q(ν̃1+σ)/α+1θσ+ν̃1

)
,

∂n

∂µn

(
∂

∂θ
v(Q, µ, θ)

)
= µ1−n ν̃1 Bp Q ν̃1/α+1θ ν̃1−1

+ O
(
µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1−1

+µ1−n Q(ν̃1+σ)/α+1θσ+ν̃1−1),
∂n

∂µn

(
∂2

∂θ2 v(Q, µ, θ)
)

= µ1−n ν̃1(ν̃1− 1)Bp Q ν̃1/α+1θ ν̃1−2

+ O
(
µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1−2

+µ1−n Q(ν̃1+σ)/α+1θσ+ν̃1−2),
∂n

∂µn

(
∂3

∂θ2 v(Q, µ, θ)
)

= µ1−n ν̃1(ν̃1− 1)(ν̃1− 2)Bp Q ν̃1/α+1θ ν̃1−3

+ O
(
µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1−3

+µ1−n Q(ν̃1+σ)/α+1θσ+ν̃1−3),
while for n = 2, we have

∂2

∂µ2

(
∂m

∂θm v(Q, µ, θ)
)
= O(Q(ν̃1+ν1)/α+1θ ν̃1+ν1−m), m = 0, 1, 2, 3.

Proof. These estimates are obtained by the expansions of v01(r) and v02(r) given
above and direct calculation. �

Lemma 3.6. In the region

θ = |O(Qσ/((2−σ)α))|, µ= O(θ2−2ν1/σ ), σ =− 1
2(n− 5− 2α),

the solution w(Q, µ, θ) of (1-7) with

w(Q, µ, 0)= Q, wθ (Q, µ, 0)= 0,

wθθ (Q, µ, 0)= (b̃+µ)Q1+2/α, wθθθ (Q, µ, 0)= 0

satisfies

(1)
∣∣∣∣ ∂m+n

∂Qn∂θmw(Q, µ, θ)−
∂m+n

∂Qn∂θm v(Q, µ, θ)
∣∣∣∣

= Q−(n−5)(p−1)/8−(n−1) ∣∣o(θ−(n−5)/2−m)
∣∣,
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(2)
∣∣∣∣ ∂m+n

∂µn∂θmw(Q, µ, θ)−
∂n+m

∂µn∂θm v(Q, µ, θ)
∣∣∣∣

=
∣∣O(µ2−n Q(ν̃1+ν1)/α+1θ ν̃1+ν1−m)

∣∣.
Proof. This lemma can be obtained from Lemma 3.5 and Theorem 3.4. Note that

ε = Q−1/α, σ/α = 1
8(p− 1)(n− 5)− 1.

Moreover,
Q(p−1)/4θ ∈ [eT , e10T

]

provided that Q is sufficiently large. �

Now we write the inner solutions obtained in Theorem 3.4 in terms of the
parameters Q and µ.

Theorem 3.7. Let (n+ 3)/(n− 5) < p < pc(n− 1) and let winn
Q,µ(θ) be an inner

solution of problem (1-7) with w(0) = Q, wθ (0) = 0, wθθ (0) = (b̃+µ)Q1+2/α,
wθθθ (0) = 0. Then for any sufficiently large Q > 0 and θ = |O(Qσ/((2−σ)α))| =

|O(µσ/(2σ−2ν1))|,

winn
Q,µ(θ)=

Ap

θα
+

C p

θα−2+BpµQν1/αθ ν̃1+

∞∑
k=2

k∑
j=1

dk
j Q−(p−1)(k− j)/2θ2 j−α

+Qσ/α

(
a0 cos

(
β ln(Q(p−1)/4θ)

)
+b0 sin

(
β ln(Q(p−1)/4θ)

)
θ (n−5)/2

+
a1 cos

(
β ln(Q(p−1)/4θ)

)
+b1 sin

(
β ln(Q(p−1)/4θ)

)
θ (n−5)/2−2

+O(θ2−(n−5)/2)

+

∞∑
k=2

( k∑
j=1

ek
j Q−(p−1)(k− j)/2θ2 j−(n−5)/2

×sin
(
β ln(Q(p−1)/4θ)+Ek

j
)
+o(θ2k−(n−5)/2)

))

+Q
∞∑

k=1

( k∑
j=1

(
µ f k

j Q−(2k−2 j−ν̃1)/αθ2 j+ν̃1
)

+O
(
µ2 Q(ν̃1+ν1)/αθ ν̃1+ν1+2k

+µQ(ν̃1+σ)/αθ ν̃1+σ+2k)).
4. Outer solutions

In this section, we construct outer solutions for (1-7). Let w
∗
(θ) be the singular

solution given in (1-8).

Lemma 4.1. The equation

(4-1) T1φ(θ)+ k1T2φ(θ)+ k0φ = pw p−1
∗

(θ)φ(θ), 0< θ < π
2 ,
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admits a solution, which can be written as

(4-2) φ(θ)=θ−(n−5)/2(c1 cos
(
β ln θ

2

)
+c2 sin

(
β ln θ

2

))
+O(θ2−(n−5)/2) as θ→0,

where c1, c2 are constants such that c2
1+ c2

2 6= 0, and also admits another solution,
which can be written as

(4-3) ψ(θ)= c0θ
ν̃2 + O(θ ν̃2+2) as θ→ 0,

where c0 is a nonzero constant. Here T1 and T2 are differential operators defined
in (1-7).

Proof. For the equations

(4-4)

{
T1φ1(θ)+ k1T2φ1(θ)+ k0φ1(θ)= pw p−1

∗ (θ)φ1(θ), 0< θ < π
2 ,

φ1

(
π
2

)
= 1, φ′1

(
π
2

)
= 0, φ′′1

(
π
2

)
= 0, φ′′′1

(
π
2

)
= 0,

and

(4-5)

{
T1φ2(θ)+ k1T2φ2(θ)+ k0φ2(θ)= pw p−1

∗ (θ)φ2(θ), 0< θ < π
2 ,

φ2

(
π
2

)
= 0, φ′2

(
π
2

)
= 0, φ′′2

(
π
2

)
= 1, φ′′′2

(
π
2

)
= 0,

we claim that both φ1(θ) and φ2(θ) are strictly decreasing for θ ∈
(
0, π2

)
. We only

show the case of φ2(θ); the case of φ1(θ) can be treated similarly.
Let us set

A(θ)=
d

dθ

(
sinn−2 θ

dφ2(θ)

dθ

)
.

Before proving that φ2(θ) is decreasing, we first present a useful fact. If A(θ) > 0
for θ ∈

(
θ0,

π
2

)
, where θ0 ∈

(
0, π2

)
, then for θ ∈

(
θ0,

π
2

)
, we have φ′2(θ) < 0 and

φ2(θ) > 0. The proof of this fact is simple; thus we omit it here. Next, we show
that φ2(θ) is decreasing. By using the boundary condition of φ2 at θ = π

2 , we have
A
(
π
2

)
= 1 and find θ1 ∈

(
0, π2

)
such that A(θ)> 0 for θ ∈

(
θ1,

π
2

)
; then φ2(θ)> 0 for

θ ∈
(
θ1,

π
2

)
. Using the fact that k1(n) < 0 and the second conclusion in Lemma A.1,

we have

T1φ2(θ)= (pw p−1
∗
− k0)φ2(θ)− k1

A(θ)

sinn−2 θ
> 0 for θ ∈

(
θ1,

π
2

)
.

Now we are going to show that θ1 = 0. If not, θ1 ∈
(
0, π2

)
and A(θ1) = 0. For

θ ∈
(
θ1,

π
2

)
, we have

d
dθ

(
sinn−2 θ

d
dθ

(
A(θ)

sinn−2 θ

))
> 0.

Using this inequality and

d
dθ

(
A(θ)

sinn−2 θ

)∣∣∣∣
θ= π2

= 0,
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we have

(4-6)
d

dθ

(
A(θ)

sinn−2 θ

)
< 0 for θ ∈

(
θ1,

π
2

)
.

It follows from (4-6) that

(4-7)
A(θ)

sinn−2 θ
> 1 for θ ∈

(
θ1,

π
2

)
,

which contradicts the fact that A(θ1) = 0. Thus, A(θ) > 0 and φ′2(θ) < 0 for
θ ∈

(
0, π2

)
. Hence, we have proved the claim.

We now prove that there are D1 6= 0 and D2 6= 0 such that for θ near 0,

(4-8) φ1(θ)= D1θ
ν̃2 + O(θ2+ν̃2)

and

(4-9) φ2(θ)= D2θ
ν̃2 + O(θ2+ν̃2).

We only show (4-9). The proof of (4-8) is similar. Using the Emden–Fowler
transformation

φ̃(t)= (sin θ)αφ2(θ), t = ln
(
tan θ

2

)
,

we obtain that φ̃(t), for t ∈ (−∞, 0), satisfies the homogeneous equation

(4-10) φ̃(4)(t)+ a3(t)φ̃′′′(t)+ a2(t)φ̃′′(t)+ a1(t)φ̃′(t)+ a0(t)φ̃(t)= 0,

where
a3(t)= K3+ O(e2t), a2(t)= K2+ O(e2t),

a1(t)= K1+ O(e2t), a0(t)= (1− p)K0.

Therefore,

(4-11) φ̃(4)(t)+ K3φ̃
′′′(t)+ K2φ̃

′′(t)+ K1φ̃
′(t)+ (1− p)K0φ̃(t)

= O(e2t(φ̃′′′(t)+ φ̃′′(t)+ φ̃′(t))).

Following the arguments in the proof of Lemma 3.1, we can write the solutions of
(4-11) as (for any T �−1):

(4-12) φ̃(t)= A5eσ t cosβt + A6eσ t sinβt + A7eν2t
+ A8eν1t

+ B5

∫ t

−∞

eσ(t−s) sinβ(t − s)g(s, φ̃(s)) ds

+ B6

∫ t

−∞

eσ(t−s) cosβ(t − s)g(s, φ̃(s)) ds

+ B7

∫ t

−∞

eν2(t−s)g(s, φ̃(s)) ds+ B8

∫ t

T
eν1(t−s)g(s, φ̃(s)) ds,
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where g(t, φ̃(t)) is the right-hand side of (4-11), A8 depends on T and each Bi+4

depends only on νi (i = 1, 2, 3, 4). It is known from (4-12) that if A7 = 0, then
for |t | sufficiently large,

(4-13) φ̃(t)= A5eσ t cosβt + A6eσ t sinβt + O(e(2+σ)t)

with A2
5+ A2

6 6= 0 or

(4-14) φ̃(t)= A8eν1t
+ O(e(2+ν1)t)

with A8 6=0. Otherwise, if A2
5+A2

6=0 and A8=0, we know that φ̃(t)=O(e(2+ν1)t).
Substituting this into (4-12), we see that φ̃(t)=O(e(4+ν1)t); repeating this procedure,
we eventually obtain that φ̃(t)≡ 0. This is impossible. Therefore, for θ near 0,

φ2(θ)= A5θ
−(n−5)/2 cos

(
β ln θ

2

)
+ A6θ

−(n−5)/2 sin
(
β ln θ

2

)
+ O(θ2−(n−5)/2)

or
φ2(θ)= A8θ

ν̃1 + O(θ2+ν̃1).

But these contradict the fact that φ2(θ) is strictly decreasing for θ ∈
(
0, π2

)
. Thus,

we prove the claim and get (4-9).
Let φ(θ)= φ1(θ)− (D1/D2)φ2(θ). Then φ(θ) satisfies the problem

(4-15)

{
T1φ(θ)+ k1T2φ(θ)+ k0φ(θ)= pw p−1

∗ (θ)φ(θ), 0< θ < π
2 ,

φ
(
π
2

)
= 1, φ′

(
π
2

)
= 0, φ′′

(
π
2

)
=−D1/D2, φ

′′′
(
π
2

)
= 0.

We claim that for θ near 0,

(4-16) φ(θ)= θ−(n−5)/2(c1 cos
(
β ln θ

2

)
+ c2 sin

(
β ln θ

2

))
+ O(θ2−(n−5)/2)

with c2
1+ c2

2 6= 0. Using the Emden–Fowler transformation

(4-17) φ̂(t)= (sin θ)αφ(θ), t = ln
(
tan θ

2

)
,

(4-8) and (4-9), we obtain that for t near −∞,

(4-18) φ̂(t)= eσ t(c1 cos(βt)+ c2 sin(βt))+ c3eν1t
+ O(e(2+σ)t)

provided c2
1+ c2

2 6= 0 or

(4-19) φ̂(t)= c3eν1t
+ O(e(2+ν1)t)

provided c2
1+ c2

2 = 0 and c3 6= 0. (Note that if both c2
1+ c2

2 = 0 and c3 = 0, we can
obtain φ̂(t)≡ 0. This is impossible.) We now show that (4-19) cannot occur. On
the contrary, we see that for θ near 0,

φ(θ)= c3θ
ν̃1 + O(θ2+ν̃1).
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This implies that φ(θ)→ 0 as θ→ 0. Since

φ̂(t)= O(eν1t), φ̂′(t)= O(eν1t), φ̂′′(t)= O(eν1t), φ̂′′′(t)= O(eν1t),

we obtain from (4-17) that

φ′(θ)= O(θ ν̃1−1),

sinn−2 θ
dφ(θ)

dθ
= O(θn−3+ν̃1),

d
dθ

(
sinn−2 θ

dφ(θ)
dθ

)
= O(θn−4+ν̃1).

Similar arguments imply that

sinn−2 θ
d

dθ

(
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dφ(θ)
dθ

))
= O(θn−5+ν̃1).

If we define

e(θ)= sinn−2 θ
d

dθ

(
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dφ(θ)
dθ

))
,

we see that e(0)= 0. Then, we claim that φ changes sign in
(
0, π2

)
. Suppose that

this is not true. Without loss of generality, we assume φ > 0 in
(
0, π2

)
. Then it

follows from the equation of φ that for θ ∈
(
0, π2

)
,

(4-20)
d

dθ

(
e(θ)+ k1

(
sinn−2 θ

dφ(θ)
dθ

))
= sinn−2 θ(pw p−1

∗
− k0)φ(θ) > 0.

But integrating both sides of (4-20) in
(
0, π2

)
and using the boundary conditions

φ′
(
π
2

)
= φ′′′

(
π
2

)
= 0, we obtain∫ π

2

0
sinn−2 θ(pw p−1

∗
− k0)φ(θ) dθ = 0.

This is clearly impossible. Noticing that φ 6= 0 for θ near 0, we see that there is
a minimal zero point θ̂ ∈

(
0, π2

)
of φ. Without loss of generality, we assume that

φ > 0 in (0, θ̂ ). It follows from (4-20) that E(θ) := e(θ)+ k1 sinn−2 θ(dφ(θ)/dθ)
is increasing for θ ∈ (0, θ̂ ). Noticing E(0)= 0, we then obtain that E(θ) > 0 for
θ ∈ (0, θ̂ ). Therefore,

(4-21)
d

dθ

(
1

sinn−2 θ

d
dθ

(
sinn−2 θ

dφ(θ)
dθ

)
+ k1φ(θ)

)
> 0 for θ ∈ (0, θ̂ ).

Moreover, by a similar argument, we have

(4-22)
d

dθ

(
sinn−2 θ

dφ(θ)
dθ

)
> 0 for θ ∈ (0, θ̂ ),
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and

(4-23)
dφ(θ)

dθ
> 0 for θ ∈ (0, θ̂ ).

But (4-23) implies φ(θ̂) > 0, which contradicts the fact that φ(θ̂)= 0. This contra-
diction implies that (4-19) cannot occur and thus (4-18) holds. As a consequence,
(4-16) holds and hence (4-2) holds.

Let ψ(θ)= φ1(θ). We easily see that (4-3) can be obtained from (4-8). �

For any sufficiently small δ > η > 0, we set ψ1(θ) to be the solution of the
problem

(4-24)


T1ψ1(θ)+ k1T2ψ1(θ)+ k0ψ1(θ)

= η−2
(
(w∗+8+9)

p
−w

p
∗ − pw p−1

∗ (8+ η2ψ)
)
,

(ψ1+ψ)
(
π
2

)
= 2, (ψ1+ψ)

′
(
π
2

)
= 0,

(ψ1+ψ)
′′
(
π
2

)
= D1δ

2/(D2η
2), (ψ1+ψ)

′′′
(
π
2

)
= 0,

where ψ(θ) is given in Lemma 4.1, 8= δ2φ(θ) and 9 = η2(ψ1(θ)+ψ(θ)). We
can see that 9 satisfies the problem

(4-25)

{
T19(θ)+ k1T29(θ)+ k09(θ)= (w∗+8+9)

p
−w

p
∗ − pw p−1

∗ 8,

9
(
π
2

)
= 2η2, 9 ′

(
π
2

)
= 0, 9 ′′

(
π
2

)
= D1δ

2/D2, 9
′′′
(
π
2

)
= 0.

This implies

(4-26)


T1(9 +8)+ k1T2(9 +8)+ k0(9 +8)= (w∗+8+9)

p
−w

p
∗ ,

(9 +8)
(
π
2

)
= 2η2

+ δ2, (9 +8)′
(
π
2

)
= 0,

(9 +8)′′
(
π
2

)
= 0, (9 +8)′′′

(
π
2

)
= 0.

Arguments similar to those in the proof of Lemma 4.1 imply that 9(θ)+8(θ) is
strictly decreasing. Then

(4-27) 9(θ)+8(θ) > 0 for θ ∈
(
0, π2

)
.

Setting ψ2(θ)= ψ(θ)+ψ1(θ), we easily see that ψ2 satisfies the problem

(4-28)


T1ψ2(θ)+ k1T2ψ2(θ)+ k0ψ2(θ)

= pw p−1
∗ ψ2+ η

−2
(
(w∗+8+ η

2ψ2)
p
−w

p
∗ − pw p−1

∗ (8+ η2ψ2)
)
,

ψ2

(
π
2

)
= 2, ψ ′2

(
π
2

)
= 0, ψ ′′2

(
π
2

)
= D1δ

2/(D2η
2), ψ ′′′2

(
π
2

)
= 0.

By the Emden–Fowler transformation

ψ̃2(t)= (sin θ)αψ2(θ), t = ln tan θ
2 ,
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we see that ψ̃2(t) satisfies the problem

(4-29)


ψ̃
(4)
2 (t)+ a3(t)ψ̃ ′′′2 (t)+ a2(t)ψ̃ ′′2 (t)

+a1(t)ψ̃ ′2(t)+ a0(t)ψ̃2(t)= G(ψ̃2(t)), −∞< t < 0,

ψ̃ ′2(0)= 0, ψ̃ ′′′2 (0)= 0,

where a0(t), a1(t), a2(t), a3(t) are defined in (4-10), and

G(ψ̃2(t))

= (sin θ)4+αη−2((w∗+8+ η2 sin−α θψ̃2)
p
−w p

∗
− pw p−1

∗
(8+ η2 sin−α θψ̃2)

)
.

Moreover, we can rewrite (4-29) in the following form (see the proof of Lemma 4.1):

(4-30) ψ̃
(4)
2 (t)+ K3ψ̃

′′′

2 (t)+ K2ψ̃
′′

2 (t)+ K1ψ̃
′

2(t)+ (1− p)K0ψ̃2(t)

= G(ψ̃2(t))+ g(t, ψ̃2(t)),

where
g(t, ψ̃2(t))= O

(
e2t(ψ̃ ′′′2 (t)+ ψ̃

′′

2 (t)+ ψ̃
′

2(t))
)

for t �−1. Therefore, for t < T with any T �−1,

(4-31) ψ̃2(t)= D5eν2t
+ D6eσ t cosβt + D7eσ t sinβt + D8eν1t

+ B5

∫ t

−∞

eσ(t−s) sinβ(t−s)(G(ψ̃2(s))+ g(s, ψ̃2(s))) ds

+ B6

∫ t

−∞

eσ(t−s) cosβ(t−s)(G(ψ̃2(s))+ g(s, ψ̃2(s))) ds

+ B7

∫ t

−∞

eν2(t−s)(G(ψ̃2(s))+ g(s, ψ̃2(s))) ds

+ B8

∫ t

T
eν1(t−s)(G(ψ̃2(s))+ g(s, ψ̃2(s))) ds,

where B5, B6, B7, B8 depend only on νi (i = 1, 2, 3, 4). Using the fact9(θ)+8(θ)
is strictly decreasing in

(
0, π2

)
and (4-2), we conclude that D5 6= 0. Letting φ(θ)=

sin−α θφ̃(t), we see that for t ∈ [10T, 2T ] and δ2
= O(e(2−σ)t), η2

= O(e(2−ν2)t),

(4-32) G(ψ̃2(t))= η−2O((δ2φ̃(t)+ η2ψ̃2(t))2)= O(e(2+ν2)t).

Note that
φ̃(t)= eσ t(c1 cos(βt)+ c2 sin(βt))+ O(e(2+σ)t)

and ψ̃2(t)= D5eν2t
+ O(e(2+ν2)t). Then

δ2φ̃(t)+ η2ψ̃2(t)= O(e2t).
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Therefore, it follows from (4-31) and (4-32) that

(4-33) ψ̃2(t)= D5eν2t
+ D6eσ t cosβt + D7eσ t sinβt + O(e(2+ν2)t)

provided δ2
= O(e(2−σ)t) and η2

= O(e(2−ν2)t). Hence, for θ near 0,

(4-34) 9(θ)=η2(D5θ
ν̃2+θ−(n−5)/2(D6 cos

(
β ln θ

2

)
+D7 sin

(
β ln θ

2

))
+O(θ2+ν̃2)

)
with D5 6= 0 provided that

θ = O(δ2/(2−σ))= O(η2/(2−ν2)).

Since ν̃2 < 3 − n, we easily see that ν̃2 + 2 < −(n − 5) < −(n − 5)/2. Thus,
θ−(n−5)/2

= o(θ2+ν̃2).
Now we can obtain the following theorem.

Theorem 4.2. For any δ > η > 0 sufficiently small, problem (1-7) admits outer
solutions wout

δ,η ∈ C4
(
0, π2

)
satisfying

(4-35) wout
δ,η(θ)= w∗(θ)+8(θ)+9(θ), θ ∈

(
0, π2

)
,

with (wout
δ,η)
′
(
π
2

)
= (wout

δ,η)
′′′
(
π
2

)
= 0. Moreover,

(4-36) wout
δ,η(θ)=

Ap

θα
+

2Ap

3(p− 1)
1

θα−2

+ δ2
(
ϑ1 cos

(
β ln θ

2

)
+ϑ2 sin

(
β ln θ

2

)
θ (n−5)/2 + O

(
1

θ (n−5)/2−2

))
+ η2(ϑ3θ

ν̃2 + O(θ ν̃2+2)
)

provided that
θ = O(δ2/(2−σ))= O(η2/(2−ν2)),

where ϑ1, ϑ2, ϑ3 are constants independent of δ, η such that ϑ2
1 +ϑ

2
2 6= 0, ϑ3 6= 0.

Proof. The proof can be obtained from the expressions of w∗(θ), 8(θ) and 9(θ)
given in (1-8), (4-16) and (4-34). �

5. Infinitely many solutions of (1-7) and proof of Theorem 1.1

In this section, we construct infinitely many regular solutions for (1-7) by matching
the inner and outer solutions.

We construct solutions of the problem

(5-1)

{
T1w+ k1T2w+ k0w = w

p, w(θ) > 0, 0< θ < π
2 ,

w(0)= Q (:= ε−α), w′
(
π
2

)
= 0, w′′(0)= (b̃+µ)ε−α−2, w′′′

(
π
2

)
= 0
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by matching the inner and outer solutions given in Theorems 3.7 and 4.2. To do so,
we will find 2 ∈

(
0, π2

)
with

2= O(Qσ/((2−σ)α)) (Q� 1)

such that the following identities hold:(
winn

Q,µ(θ)−w
out
δ,η(θ)

)∣∣
θ=2
= 0,(5-2) (

winn
Q,µ(θ)−w

out
δ,η(θ)

)′
θ

∣∣
θ=2
= 0,(5-3) (

winn
Q,µ(θ)−w

out
δ,η(θ)

)′′
θ

∣∣
θ=2
= 0,(5-4) (

winn
Q,µ(θ)−w

out
δ,η(θ)

)′′′
θ

∣∣
θ=2
= 0.(5-5)

These will be done by arguments similar to those in the proof of Lemma 6.1 of
[Budd and Norbury 1987] and Theorem 1.1 of [Dancer et al. 2012]. Then, we obtain
a C4 function w(θ) defined by w(θ)=winn

Q,µ(θ) for θ ≤2 and w(θ)=wout
δ,η(θ) for

θ ≥2 which is a solution to (5-1).
First, we observe that

(5-6)
2Ap

3(p− 1)
= C p

by (3-35), where Ap,C p are given in Section 3.
Define Q

∗
, δ2
∗
, η2
∗

and µ
∗

by

β ln Q(p−1)/4
∗

+ κ = β ln 2−1
+ω+ 2mπ,(5-7)

δ2
∗
=

√
a2

0 + b2
0

ϑ2
1 +ϑ

2
2

Qσ/α
∗
,(5-8)

η2
∗
= O(Q(2−ν2)σ/((2−σ)α)

∗
), µ

∗
= O(Q(2σ−2ν1)/((2−σ)α)

∗
),(5-9)

µ
∗

Bp Qν1/α
∗
= ϑ3η

2
∗
2ν̃2−ν̃1
∗

,(5-10)

where

κ = tan−1
(

a0

b0

)
, ω = tan−1

(
ϑ1

ϑ2

)
and m� 1 is an integer. The integer m is chosen such that the results in Sections 3
and 4 hold.
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Note that

O(δ2/(2−σ)
∗

)= O(Qσ/(α(2−σ))
∗

),

a0 cos(β ln(Q(p−1)/4θ))+ b0 sin(β ln(Q(p−1)/4θ))

=

√
a2

0 + b2
0 sin(β ln θ +β ln Q(p−1)/4

+ κ),

ϑ1 cos
(
β ln θ

2

)
+ϑ2 sin

(
β ln θ

2

)
=

√
ϑ2

1 +ϑ
2
2 sin(β ln θ +β ln 2−1

+ω).

We will see that the Q, µ, δ2 and η2 required to satisfy the matching conditions
(5-2)–(5-5) can be obtained as small perturbations of Q

∗
, µ
∗
, δ2
∗

and η2
∗

given in
(5-7)–(5-10), i.e.,

Q = Q
∗
(1+ O(Q2σ/((2−σ)α)

∗
)),(5-11)

µ= µ
∗
(1+ O(Q2σ/((2−σ)α)

∗
)),(5-12)

δ2
= δ2
∗
(1+ O(Q2σ/((2−σ)α)

∗
)),(5-13)

η2
= η2
∗
(1+ O(Q2σ/((2−σ)α)

∗
)).(5-14)

To show this we define the function F(Q, µ, δ, η) by

F(Q, µ, δ2, η2)=


2(n−5)/2(winn

Q,µ(2)−w
out
δ,η(2))

2
(
θ (n−5)/2(winn

Q,µ(θ)−w
out
δ,η(θ))

)′
θ

∣∣
θ=2

22
(
θ (n−5)/2(winn

Q,µ(θ)−w
out
δ,η(θ))

)′′
θ

∣∣
θ=2

23
(
θ (n−5)/2(winn

Q,µ(θ)−w
out
δ,η(θ))

)′′′
θ

∣∣
θ=2



T

.

Now, we regard δ2, η2 as new variables. Taking Q
∗
, µ
∗
, δ2
∗

and η2
∗
, we find a bound

for F(Q
∗
, µ
∗
, δ2
∗
, η2
∗
) by using the behaviors of winn

Q,µ(θ) and wout
δ,η(θ) given in The-

orems 3.7 and 4.2 respectively. Accordingly we find for some M > 1 suitably large,

(5-15)
∣∣2−(n−5)/2 F(Q

∗
, µ
∗
, δ2
∗
, η2
∗
)
∣∣≤ M24−σ−(n−5)/2

+ small terms.

We seek values of Q, µ, δ2, η2 which are small perturbations of Q
∗
, µ
∗
, δ2
∗
, η2
∗

and such that F(Q, µ, δ2, η2)= 0. As in [Dancer et al. 2012], we need to evaluate
the Jacobian of F at (Q

∗
, µ
∗
, δ2
∗
, η2
∗
):

∂F(Q, µ, δ2, η2)

∂(Q, µ, δ2, η2)
=


I1+ I3 I4 −D sin τ I5

β I2+ q1 I3 q1 I4 −βD cos τ q4 I5

I6 q2 I4 I8 q5 I5

I7 q3 I4 I9 q6 I5

+ higher-order terms,
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where

I1 = C
(
σ

α
sin τ +

β(p− 1)
4

cos τ
)

Qσ/α−1
∗

,

I2 = C
(
σ

α
cos τ −

β(p− 1)
4

sin τ
)

Qσ/α−1
∗

,

I3 =
ν1

α
Bpµ∗2

ν̃1+(n−5)/2 Qν1/α−1
∗

, I4 = Bp Qν1/α
∗

2ν̃1+(n−5)/2,

I5 =−ϑ32
ν̃2+(n−5)/2, I6 =−β

2 I1−β I2+ q2 I3,

I7 =−β
3 I2+ 3β2 I1+ 2β I2+ q3 I3, I8 = β

2 D sin τ +βD cos τ,

I9 = β
3 D cos τ − 3β2 D sin τ − 2βD cos τ,

q1 = ν̃1+
1
2(n− 5), q2 =

(
ν̃1+

1
2(n− 7)

)
q1, q3 =

(
ν̃1+

1
2(n− 9)

)
q2,

q4 = ν̃2+
1
2(n− 5), q5 =

(
ν̃2+

1
2(n− 7)

)
q4, q6 =

(
ν̃2+

1
2(n− 9)

)
q5,

C =
√

a2
0 + b2

0, D =
√
ϑ2

1 +ϑ
2
2 ,

and
τ = β ln2+β ln Q(p−1)/4

∗
+ κ = β ln2+β ln 2−1

+ω+ 2mπ.

We define the function G(x, y, z, w) by

G(x, y, z, w)

= F(Q
∗
+ x Q1−σ/α

∗
, µ
∗
+2−ν̃1−(n−5)/2 Q−ν1/α

∗
y, δ2
∗
+ z, η2

∗
+2−ν̃2−(n−5)/2w).

Using (5-15), (4-36) and the results in Lemmas 3.5 and 3.6, we express G(x, y, z, w)
in the form

G(x, y, z, w)= C +


I ′1+ I ′3 I ′4 −D sin τ I ′5

β I ′2+ q1 I ′3 q1 I ′4 −βD cos τ q4 I ′5
I ′6 q2 I ′4 I ′8 q5 I ′5
I ′7 q3 I ′4 I ′9 q6 I ′5

+ small terms




x
y
z
w


+ E(x, y, z, w, Q

∗
, µ
∗
, δ2
∗
, η2
∗
),

where

I ′1 = C
(
σ

α
sin τ +

β(p− 1)
4

cos τ
)
, I ′2 = C

(
σ

α
cos τ −

β(p− 1)
4

sin τ
)
,

I ′3 =
ν1

α
Bpµ∗2

ν̃1+(n−5)/2 Q(ν1−σ)/α
∗

, I ′4 = Bp,

I ′5 =−ϑ3, I ′6 =−β
2 I ′1−β I ′2+ q2 I ′3,

I ′7 =−β
3 I ′2+ 3β2 I ′1+ 2β I ′2+ q3 I ′3, I ′8 = β

2 D sin τ +βD cos τ,

I ′9 = β
3 D cos τ − 3β2 D sin τ − 2βD cos τ,
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and where C is a constant vector independent of (x, y, z, w)which is bounded above
by M24−σ , and |E| is bounded independently of x , y, z, w, Q, µ, δ and η. Thus,

G(x, y, z, w)= C + L


x
y
z
w

+ T (x, y, z, w),

where L is a linear operator which is invertible; we shall prove this fact in Lemma A.1.
If we define the operator J mapping R4 into itself by

J(x, y, z, w)=−(L−1C + L−1T (x, y, z, w)),

then, provided that Q∗ is sufficiently large, a direct calculation shows that J maps
the set I into itself, where I is the ball

(5-16) I = {(x, y, z, w) : (x2
+ y2
+ z2
+w2)1/2 ≤ 4M(det L)−124−σ

},

and det L is the determinant of L , which depends on
√

a2
0 + b2

0, β, D, α, Bp, ϑ3

and νi (i = 1, 2, 3, 4). We apply the Brouwer fixed point theorem to conclude that
J has a fixed point in I . This point (x, y, z, w) satisfies G(x, y, z, w)= 0 and

(x2
+ y2
+ z2
+w2)1/2 ≤ M ′24−σ,

where M ′ is a constant defined in (5-16) and is independent of Q
∗
, µ
∗
, δ
∗
, η
∗

and2.
By substituting for Q, µ, δ and η, then taking 2 to have the upper limiting value
of Qσ/((2−σ)α)

∗
, we obtain (5-11)–(5-14). Therefore, we can find a solution to (5-1)

such that (5-2)–(5-5) hold.
We have shown that (5-2)–(5-5) have a solution for each large fixed m. This

yields a solution of (5-1) and also gives the proof of Theorem 1.1. Hence we have:

Theorem 5.1. For m � 1 large and Q, µ, δ and η as given in (5-11)–(5-14),
problem (5-1) admits a classical solution wQ,µ,δ,η(θ). Moreover, there is 2 =
|O(Qσ/((2−σ)α))| such that (5-2)–(5-5) hold.

As a consequence, problem (1-7) admits infinitely many nonconstant positive
solutions. Hence, we have proved Theorem 1.1.

Appendix

We will prove a lemma which was used in the previous sections.

Lemma A.1. For the terms E2 and k0(n) and the matrices K and L , which were
defined in previous sections, we have

(1) E2 6= 0,
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(2) p ∈
(

n+ 3
n− 5

, pc(n− 1)
)
=⇒ pk0(n− 1)≥ k0(n),

(3) det K 6= 0,

(4) det L 6= 0.

Proof. First, we show that E2 6= 0. It is known that

(A-1) E2= (ν̃1+2)ν̃1(ν̃1+n−3)(ν̃1+n−1)− p(n−5−α)(n−3−α)(2+α)α.

For convenience, we use n instead of n− 1 and ν̃1(n) instead of ν̃1(n− 1); i.e., we
study the term

(A-2) E2 = (ν̃1+ 2)ν̃1(ν̃1+ n− 2)(ν̃1+ n)− p(n− 4−α)(n− 2−α)(2+α)α.

Let f (α)= p(n− 4−α)(n− 2−α)(2+α)α. Through a simple computation, we
get f (α) and its derivative f ′(α):

f (α)=α4
+(12−2n)α3

+(n2
−18n+52)α2

+(6n2
−52n+96)α+8(n−2)(n−4),

and

f ′(α)= 4α3
+ (36− 6n)α2

+ (2n2
− 36n+ 104)α+ (6n2

− 52n+ 96).

We compute the roots of f ′(α) to find its zero points: 1
2(n − 6±

√
n2+ 4) and

1
2(n− 6). It is easy to see that f (α) is strictly increasing for α ∈

(
0, 1

2(n− 6)
)

and
decreasing for α∈

(1
2(n−6), 1

2(n−6+
√

n2+ 4)
)
. We know α=4/(p−1)< 1

2(n−4)
and 1

2(n−4)∈
( 1

2(n−6), 1
2(n−6+

√
n2+ 4)

)
. As a consequence, we can conclude

f (α)≤ f
( 1

2(n− 6)
)
=

1
16 n4
−

1
2 n2
+ 1 for all p ∈

(
n+ 4
n− 4

, pc(n)
)
.

Let g(x)= x(x+2)(x+n)(x+n−2)= x4
+2nx3

+(n2
+2n−4)x2

+(2n2
−4n)x .

We compute its derivative, g′(x) = 4x3
+ 6nx2

+ (2n2
+ 4n − 8)x + (2n2

− 4n),
and find g′(x) > 0 for x > 0 when n ≥ 5. On the other hand, using 4

√
N3 > N2 for

p ∈ ((n+ 4)/(n− 4), pc(n)), we find

ν̃1 >
1
2

(√
2(n2− 4n+ 8)− (n− 4)

)
.

Therefore,

(A-3) g(ν̃1)≥ g
( 1

2

(√
2(n2−4n+8)−(n−4)

))
= 96−40n+11n2

−
1
2 n3
+

1
16 n4
+
√

2(24−4n+n2)
√

8−4n+n2.

Comparing 1
16 n4
−

1
2 n2
+1 and the right-hand side of (A-3), by direct computation,

we can get

g
( 1

2

(√
2(n2− 4n+ 8)− (n− 4)

))
> 1

16 n4
−

1
2 n2
+ 1 for n ∈ (0,∞).
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As a result, g(ν̃1) > f (α). Hence, E2 is nonzero.
Next, we prove pk0(n−1)≥k0(n) for p∈ ((n+3)/(n−5), pc(n−1)). According

to the definition of k0(n), it is enough for us to show

(A-4) p(n− 5−α)(n− 3−α)≥ (n− 4−α)(n− 2−α).

Using the relation p = 4/α+ 1, it is equivalent to show (after computation)

(A-5) 6α2
+ (39− 10n)α+ 4n2

− 32n+ 60≥ 0.

It is known that (A-5) holds provided

α≥ 1
12

(
10n−39+

√
4n2− 12n+ 81

)
or α≤ 1

12

(
10n−39−

√
4n2− 12n+ 81

)
.

On the other hand, since p ∈ ((n+3)/(n−5), pc(n−1)), we have α < 1
2(n−5). It

is easy to show 1
2(n− 5)≤ 1

12

(
10n− 39−

√
4n2− 12n+ 81

)
when n ≥ 5. Hence,

(A-5) holds. Therefore (A-4) holds.
Then, to show K is invertible, it is enough for us to show B 6= 0 or A 6= 0. Recall

B = (2n2
− 12n− 6)β + 8β3

= (2(n− 3)2− 24)β + 8β3.

It is known that 2(n− 3)2− 24< 0 only when n = 6. Since β > 0, we have B 6= 0
when n ≥ 7. When n = 6, we find

A = β4
−

35
2 β

2
−

135
16 − (1−α)(3−α)(2+α)(4+α), B =−6β + 8β3.

If B 6= 0 for n = 6, we have that K is invertible, while if B = 0 for n = 6, then
A=−21− (1−α)(3−α)(2+α)(4+α) < 0 for α ∈

(
0, 1

2

)
and K is also invertible.

Therefore, we have proved the third conclusion.
Finally, we show the matrix L is invertible. Recall that L is given by

(A-6) L :=


I ′1+ I ′3 I ′4 −D sin τ I ′5

β I ′2+ q1 I ′3 q1 I ′4 −βD cos τ q4 I ′5
I ′6 q2 I ′4 I ′8 q5 I ′5
I ′7 q3 I ′4 I ′9 q6 I ′5

 ,
where

I ′1 = C
(
σ

α
sin τ +

β(p− 1)
4

cos τ
)
, I ′2 = C

(
σ

α
cos τ −

β(p− 1)
4

sin τ
)
,

I ′3 =
ν1

α
Bpµ∗2

ν̃1+(n−5)/2 Q(ν1−σ)/α
∗

, I ′4 = Bp,

I ′5 = ϑ3, I ′6 =−β
2 I ′1−β I ′2+ q2 I ′3,

I ′7 =−β
3 I ′2+ 3β2 I ′1+ 2β I ′2+ q3 I ′3, I ′8 = β

2 D sin τ +βD cos τ,

I ′9 = β
3 D cos τ − 3β2 D sin τ − 2βD cos τ.
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Using simple linear transformations, we see that
I ′1+ I ′3 I ′4 −D sin τ I ′5

β I ′2+ q1 I ′3 q1 I ′4 −βD cos τ q4 I ′5
I ′6 q2 I ′4 I ′8 q5 I ′5
I ′7 q3 I ′4 I ′9 q6 I ′5

∼


I ′1 I ′4 −D sin τ I ′5
β I ′2 q1 I ′4 −βD cos τ q4 I ′5

I ′6− q2 I ′3 q2 I ′4 I ′8 q5 I ′5
I ′7− q3 I ′3 q3 I ′4 I ′9 q6 I ′5



∼


I ′1 −D sin τ I ′4 I ′5
β I ′2 −βD cos τ q1 I ′4 q4 I ′5

I ′6− q2 I ′3 I ′8 q2 I ′4 q5 I ′5
I ′7− q3 I ′3 I ′9 q3 I ′4 q6 I ′5

∼


I ′1 −D sin τ I ′4 −I ′5
β I ′2 −βD cos τ q1 I ′4 −q4 I ′5
0 0 I ′10 I ′11
0 0 I ′12 I ′13,

,
where

I ′10 = q2 Bp+q1 Bp+β
2 Bp, I ′11 = q5ϑ3+q4ϑ3+β

2ϑ3,

I ′12 = q3 Bp+β
2q1 Bp−3β2 Bp−2q1 Bp, I ′13 = q6ϑ3+β

2q4ϑ3−3β2ϑ3−2q4ϑ3.

Here we use the first column minus I ′3/I ′4 times the second column in the first step,
change the places of the second and third columns in the second step, and in the end,
add the second row and β times the first row to the third row and add−3β2 times the
first row and β2

−2 times the second row to the fourth row. On the other hand, since

det
[

I ′1 −D sin τ
β I ′2 −βD cos τ

]
6= 0,

to show that L is invertible, it is enough for us to prove that the 2× 2 matrix

(A-7)
[

q2+q1+β
2 q5+q4+β

2

q3+β
2q1−3β2

−2q1 q6+β
2q4−3β2

−2q4

]
.

is invertible. It follows from the definitions of qi (i = 1, 2, 3, 4, 5, 6) and β that
q2+ q1+β

2
= q5+ q4+β

2
6= 0. Let

χ1 = q3+β
2q1− 3β2

− 2q1, χ2 = q6+β
2q4− 3β2

− 2q4.

Then

χ1−χ2= q3−q6−(q1−q4)(2−β2)

= (ν̃1−ν̃2)
(
(ν̃1+ν̃2)

2
−ν̃1ν̃2+

1
2(3n−21)(ν̃1+ν̃2)+

1
4(3n2

−42n+135)+β2)
= (ν̃1−ν̃2)

( 1
4(n

2
−10n+25)−ν̃1ν̃2+β

2),
where we are using the fact that ν̃1+ν̃2=−(n−5). It is known (from Section 2) that

ν̃1ν̃2 =
n2
− 10n+ 25

4
−

N2+ 4
√

N3

4(p− 1)2
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and β2
= (4
√

N3−N2)/(4(p−1)2), where N2 and N3 (with the dimension n being
replaced by n− 1) are defined in Section 2. Therefore,

χ1−χ2 = (ν̃1− ν̃2)
2
√

N3

(p− 1)2
6= 0.

Hence, (A-7) is invertible. �
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