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NATURAL COMMUTING OF VANISHING CYCLES
AND THE VERDIER DUAL

DAVID B. MASSEY

We prove that the shifted vanishing cycles and nearby cycles commute with
Verdier dualizing up to a natural isomorphism, even when the coefficients
are not in a field.

1. Introduction

In this short, technical, paper, we prove a result whose full statement is missing
from the literature, and which may be surprising even to some experts in the field.
To state this result, we need to use technical notions and notations; references
are [Kashiwara and Schapira 1990; Dimca 2004; Schürmann 2003; Massey 2003,
Appendix B]. We should remark immediately that the definition that we use (see
below) for the vanishing cycles is the standard one, which is shifted by one from
the definition in [Kashiwara and Schapira 1990].

We fix a base ring, R, which is a commutative, regular, Noetherian ring, with
finite Krull dimension (e.g., Z, Q, or C). Throughout this paper, by a topological
space, we will mean a locally compact space. When we write that A• is complex
of sheaves on a topological space, X , we mean that A• is an object in Db(X), the
derived category of bounded complexes of sheaves of R-modules on X . When X is
complex analytic, we may also require that A• is (complex) constructible, and write
A• ∈ Db

c (X). We remind the reader that constructibility includes the assumption
that the stalks of all cohomology sheaves are finitely generated R-modules (so
that, by our assumption on R, each stalk complex A•x , for x ∈ X , is perfect, i.e., is
quasi-isomorphic to a bounded complex of finitely generated projective R-modules).

We let D=DX denote the Verdier dualizing operator on Db
c (X). We will always

write simply D, since the relevant topological space will always be clear.
Suppose that f : X→ C is a complex analytic function, where X is an arbitrary

complex analytic space, and suppose that we have a complex of sheaves A• on X .
We let ψ f and φ f denote the nearby and vanishing cycle functors, respectively.
Henceforth, we shall always write these functors composed with a shift by −1,
that is, we shall write ψ f [−1] := ψ f ◦ [−1] and φ f [−1] := φ f ◦ [−1]. In order
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to eliminate any possible confusion over indexing/shifting: with the definitions
that we are using, if F f,p denotes the Milnor fiber of f at p ∈ f −1(0) inside the
open ball B̊ε(p) (using a local embedding into affine space), then, for all k ∈ Z,
H k(ψ f [−1]A•)p ∼= Hk−1(F f,p;A•) and H k(φ f [−1]A•)p ∼= Hk(B̊ε(p), F f,p;A•).

The questions in which we are interested are:

(i) Do isomorphisms D ◦ψ f [−1] ∼= ψ f [−1] ◦D and D ◦φ f [−1] ∼= φ f [−1] ◦D
exist even if R is not a field?

(ii) Do there exist such isomorphisms which are natural?

We show that the answer to both is yes.
Is this result known and/or surprising? Some references, such as [Brylinski and

Monteiro Fernandes 1986; Dimca 2004; Massey 2003, Appendix B], state that there
exist nonnatural isomorphisms, and require that the base ring is a field. Schürmann
[2003, Corollary 5.4.4] proves the natural isomorphism exists on the stalk level,
even when R is not a field.

In the l-adic algebraic context, Illusie [1994] proves that the Verdier dual and
nearby cycles commute, up to natural isomorphism. M. Saito [1988; 1989] proves
the analogous result in the complex analytic setting, with field coefficients. One
can obtain our full result by combining Proposition 8.4.13, Proposition 8.6.3, and
Exercise VIII.15 of [Kashiwara and Schapira 1990], though our proof here is
completely different. In fact, our proof is similar to the discussion on duality of
local Morse data following Remark 5.1.7 in [Schürmann 2003].

Recently, J. Schürmann proved in Proposition A.1 of the Appendix in [Brav
et al. 2015], that the duality isomorphism constructed here fits with a corresponding
(more complicated) duality isomorphism in Saito’s theory of mixed Hodge modules.

Furthermore, this duality result and the half-space description used for the
vanishing cycles have recently become very promising in the study of Donaldson–
Thomas invariants of suitable moduli spaces (as in [Brav et al. 2015] and [Kontsevich
and Soibelman 2011, Section 7]).

Our proof is relatively simple, and consists of three main steps: proving a
small lemma about pairs of closed sets which cover a space, using a convenient
characterization/definition of the vanishing cycles, and using that the stratified
critical values of f are locally isolated. The nearby cycle result follows as a quick
corollary of the result for vanishing cycles.

2. Two lemmas

We shall use ' to denote natural isomorphisms of functors. If A• is a bounded
complex, then, by supp A•, we mean, by definition, the closure of the union of the
support of all (nontrivial) cohomology sheaves.
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The following is an easy generalization of the fact that, if i is the inclusion of an
open set, then i∗ ' i ! (see, for instance, [Dimca 2004, Corollary 3.2.12]).

Lemma 2.1. Suppose Z is a locally compact subset of X , and let j : Z ↪→ X
denote the inclusion. Let Db

Z (X) denote the full subcategory of Db(X) of complexes
A• such that Z ∩ supp A• is an open subset of supp A•. Then, there is a natural
isomorphism of functors j ! ' j∗ from Db

Z (X) to Db(Z).

Proof. Let A• ∈ Db
Z (X). We will show that the natural map j !→ j∗ of functors

from Db(X) to Db(Z) yields an isomorphism j !A•→ j∗A•.
Let Y := supp A•. Let m : Y ↪→ X , m̂ : Z ∩ Y ↪→ Z and ̂ : Z ∩ Y ↪→ Y denote

the inclusions. Then,

j !A• ∼= j !m∗m∗A• ∼= m̂∗̂ !m∗A• ∼= m̂! ̂∗m∗A• ∼= j∗m!m∗A• ∼= j∗A•,

where we used, in order, that A• ∼= m∗m∗A•, since Y is the support of A•, Proposi-
tion 2.6.7 of [Kashiwara and Schapira 1990] on Cartesian squares, that m̂∗' m̂! and
̂ ! ' ̂∗, since m̂ is a closed inclusion and ̂ is an open inclusion, Proposition 2.6.7
of [Kashiwara and Schapira 1990] again, and that A• ∼= m!m∗A•. �

The lemma that we shall now prove certainly looks related to many propositions
we have seen before, and may be known, but we cannot find a reference. The
lemma tells us that, in our special case, the morphism of functors described in
Proposition 3.1.9(iii) of [Kashiwara and Schapira 1990] is an isomorphism.

Lemma 2.2. Let X be a locally compact space, and let Z1 and Z2 be closed subsets
of X such that X = Z1 ∪ Z2. Denote the inclusion maps by

j1 : Z1 ↪→ X, j2 : Z2 ↪→ X, ̂1 : Z1 ∩ Z2 ↪→ Z2,

̂2 : Z1 ∩ Z2 ↪→ Z1, m = j1̂2 = j2̂1 : Z1 ∩ Z2 ↪→ X.

Then, we have the following natural isomorphisms

(1) m∗ j2! j
!

2 ' ̂
∗

1 j !2 ' ̂
!

2 j∗1 ' m∗ j1∗ ̂2! ̂
!

2 j∗1 .

Proof. Let i1 : X − Z1 ↪→ X and i2 : X − Z2 ↪→ X denote the open inclusions.
We make use of Proposition 2.6.7 of [Kashiwara and Schapira 1990] on Cartesian
squares repeatedly. We also use repeatedly that, if j is a closed inclusion, then
j∗ ' j! and j∗ j∗ ' j∗ j! ' id.

We find
m∗ j2! j

!

2 = ( j2̂1)
∗ j2! j

!

2 ' ̂
∗

1 j∗2 j2! j
!

2 ' ̂
∗

1 j !2,

which proves the first isomorphism in (1).
We also find

m∗ j1∗̂2! ̂
!

2 j∗1 = ( j1 ̂2)
∗ j1∗̂2! ̂

!

2 j∗1 ' ̂
∗

2 j∗1 j1∗̂2! ̂
!

2 j∗1 ' ̂
∗

2 ̂2! ̂
!

2 j∗1 ' ̂
!

2 j∗1 ,
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which proves the last isomorphism in (1).
It remains for us to demonstrate the middle isomorphism.
Let l2 : X − Z2 = Z1− (Z1 ∩ Z2)→ X denote the (open) inclusion. Then, we

have the natural distinguished triangle

j2! j2
!
→ id→ l2∗l2

∗ [1]
−→,

which yields the distinguished triangle

̂ !2 j∗1 j2! j2
!
→ ̂ !2 j∗1 → ̂ !2 j∗1 l2∗l2

∗ [1]
−→ .

Now, ̂ !2 j∗1 j2! j2
!
' ̂ !2 ̂2! ̂

∗

1 j !2 ' ̂
∗

1 j !2 and so, if we can show that ̂ !2 j∗1 l2∗l2
∗
= 0,

then we will be finished.
This is easy. The support of l2∗ l2

∗ is contained in Z1; hence j∗1 l2∗l2
∗
' j !1l2∗l2

∗.
Therefore,

̂ !2 j∗1 l2∗ l2
∗
' ̂ !2 j !1 l2∗ l2

∗
' ̂ !1 j !2 l2∗ l2

∗,

and j !2l2∗ = 0. �

3. The main theorem

Let f : X→C be complex analytic, and let A• ∈ Db
c (X). For any real number θ , let

Zθ := f −1(eiθ
{v ∈ C | Re v ≤ 0})

and let
Lθ := f −1(eiθ

{v ∈ C | Re v = 0}).

Let jθ : Zθ ↪→ X and p : f −1(0) ↪→ X denote the inclusions.
By Lemma 1.3.2 of [Schürmann 2003], or following Exercise VIII.13 of [Kashi-

wara and Schapira 1990] (but reversing the inequality, and using a different shift),
we define (or characterize up to natural isomorphism) the shifted vanishing cycles
of A• along f to be

φ f [−1]A• := p∗R0Z0(A
•)' p∗ j0! j

!

0 A•.

In fact, for each θ , we define the shifted vanishing cycles of A• along f at the angle
θ to be

φθf [−1]A• := p∗ jθ ! j
!

θ A•.

There are the well-known natural isomorphisms T̃ θ
f : φ

0
f [−1] → φθf [−1], induced

by rotating C counterclockwise by an angle θ around the origin. The natural
isomorphism T̃ 2π

f : φ f [−1] → φ f [−1] is the usual monodromy automorphism on
the vanishing cycles.

In the proof of the main theorem below, we shall use that D ◦ (−)∗ ' (−)! ◦D
always holds; we shall also use that D ◦ (−)! ' (−)∗ ◦D holds in our context, but
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note that this uses biduality, i.e., that D ◦D ' id, for subanalytically constructible
complexes of sheaves (see of [Schürmann 2003, Corollary 2.2.7] or [Kashiwara and
Schapira 1990, Exercise VIII.3]), which uses the assumption that the commutative
base ring R is regular, Noetherian of finite Krull dimension, so that, for such a
subanalytically constructible complex of sheaves, all stalk complexes are perfect.

We now prove the main theorem.

Theorem 3.1. There is a natural isomorphism

φ f [−1] ◦D ' D ◦φ f [−1]

of functors from Db
c (X) to Db

c ( f −1(0)).

Proof. Let m denote the inclusion of L0 = Lπ into X . Now, apply Lemma 2.2 to
X = Z0 ∪ Zπ , and conclude that

m∗ j0! j
!

0 ' ̂
!

0 j∗π .

Dualizing, we obtain

(2) D(m∗ j0! j
!

0)' D(̂ !0 j∗π )' ̂
∗

0 j !πD ' m∗ jπ ! j
!

πD,

where the second isomorphism uses that D “commutes” with the standard operations,
and the last isomorphism results from using that m = jπ ̂0.

Let q denote the inclusion of f −1(0) into L0= Lπ , so that the inclusion p equals
mq . Applying q∗ to (2), we obtain

q∗D(m∗ j0! j
!

0)' q∗m∗ jπ ! j
!

πD ' p∗ jπ ! j
!

πD = φ
π
f [−1] ◦D ' φ f [−1] ◦D,

where, in the last step, we used the natural isomorphism
(
T̃ π

f

)−1.
As D(q !m∗ j0! j

!

0)' q∗D(m∗ j0! j
!

0), it remains for us to show that q !m∗ j0! j
!

0 is
naturally isomorphic to q∗m∗ j0! j

!

0 ' p∗ j0! j
!

0 ' φ f [−1]. This will follow from
Lemma 2.1, once we show that, for all A• ∈ Db

c (X), f −1(0)∩ supp(m∗ j0! j
!

0A•) is
an open subset of supp(m∗ j0! j

!

0A•).
Suppose that x ∈ f −1(0)∩ supp(m∗ j0! j

1
0 A•). We need to show that there exists

an open neighborhood W of x in X such that W ∩ supp(m∗ j0! j
1
0 A•)⊆ f −1(0).

Fix a Whitney stratification of X , with respect to which A• is constructible. Then,
select W so that all of the stratified critical points of f , inside W , are contained in
f −1(0). Suppose that there were a point y ∈W such that y ∈ f −1(L0)− f −1(0)
and the stalk cohomology of m∗ j0! j

!

0A• at y is nonzero. Then, by definition, y
would be a point in the support φ f− f (y)[−1]A•, which, again, is contained in the
stratified critical locus of f and, hence, is contained in f −1(0). This contradiction
concludes the proof. �

We continue to let p : f −1(0) ↪→ X denote the closed inclusion, and now let
i : X − f −1(0) ↪→ X denote the open inclusion. Consider the two fundamental
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distinguished triangles related to the nearby and vanishing cycles:

p∗[−1]
comp
−→ ψ f [−1]

can
−→ φ f [−1]

[1]
−→

and
φ f [−1]

var
−→ ψ f [−1] → p! [1]

[1]
−→ .

The morphisms comp, can, and var are usually referred to as the comparison map,
canonical map, and variation map. As p∗i!= 0= p!i∗ and as ψ f [−1] depends only
on the complex outside of f −1(0), the top triangle, applied to i!i ! and the bottom
triangle applied to i∗i∗ yield natural isomorphisms

α : ψ f [−1]
'
−→ φ f [−1]i! i ! and β : φ f [−1]i∗ i∗

'
−→ ψ f [−1].

Corollary 3.2. There is a natural isomorphism

ψ f [−1] ◦D ' D ◦ψ f [−1]

of functors from Db
c (X) to Db

c ( f −1(0)).

Proof. ψ f [−1] ◦D ' φ f [−1]i! i ! ◦D ' D ◦φ f [−1]i∗i∗ ' D ◦ψ f [−1]. �
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