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THE NEF CONES OF AND MINIMAL-DEGREE CURVES IN
THE HILBERT SCHEMES OF POINTS ON CERTAIN SURFACES

ZHENBO QIN AND YUPING TU

We determine the nef cones of the Hilbert schemes of points on certain
surfaces X with h1(X,OX) = 0. Then we apply the results to Hirzebruch
surfaces, and study the minimal-degree curves in the Hilbert schemes of
points on Hirzebruch surfaces. Our results generalize those in Li, Qin, and
Zhang (2003).

1. Introduction

Hilbert schemes are classical objects in algebraic geometry, and have been studied
extensively since their constructions by Grothendieck. Hilbert schemes of points on
smooth surfaces are known to be smooth and irreducible, and have deep connections
with combinatorics, representation theory and string theory. Ample divisors on
these Hilbert schemes were considered in [Beltrametti and Sommese 1991; 1993;
Catanese and Gœttsche 1990]. The nef cones of the Hilbert schemes of points on
smooth surfaces were first investigated in [Li et al. 2003] when the surface is the
projective plane. Recently, these nef cones were further understood in [Arcara et al.
2013; Bertram and Coskun 2013; Bolognese et al. 2015] via Bridgeland stability.

In this paper, we generalize the methods and results in [Li et al. 2003], and prove
a structure theorem for the nef cones of the Hilbert schemes of points on certain
surfaces. To state our result, let X be a smooth projective complex surface. The nef
cone of X is the span of the nef divisors on X . We use NE(X) to denote the cone
spanned by all the effective curves in X . It is well-known that NE(X) is dual to the
nef cone of X . Let X [n] be the Hilbert scheme of points in X . By [Fogarty 1968;
Iarrobino 1977], X [n] is a smooth irreducible variety of dimension 2n.

Theorem 1.1. Let n ≥ 2, and let the surface X satisfy h1(X,OX )= 0. Assume that
the nef cone of X is the span of the divisors F1, . . . , Ft , and the cone NE(X) is the
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span of the curves C1, . . . ,Ct with Fi ·C j = δi, j for all i and j . Assume further that

OX

(
(n− 1)

t∑
i=1

Fi

)
is (n− 1)-very ample. Then

(i) the nef cone of the Hilbert scheme X [n] is spanned by

(1-1) DF1 , . . . , DFt , (n− 1)
t∑

i=1

DFi − Bn/2;

(ii) the cone NE(X [n]) is spanned by the classes

(1-2) βC1 − (n− 1)βn , . . . , βCt − (n− 1)βn , βn.

In the above theorem, Bn denotes the boundary divisor of the Hilbert scheme X [n]

consisting of the elements ξ ∈ X [n] which are not smooth as subschemes of X [n],
and βn is the minimal curve class contracted by the Hilbert–Chow morphism
X [n]→ X (n) sending an element ξ ∈ X [n] to its support (with multiplicities) in the
n-th symmetric product X (n) of X . We refer to (2-4), (2-3) and Definition 2.1 for
the definitions of DF , βC and (n− 1)-very ampleness, respectively. Theorem 1.1
is proved in Section 2. Our main idea in the proof of Theorem 1.1 is to construct
curves in X [n] which provide us with information about the nef divisors in X [n].

In Section 3, we apply Theorem 1.1 to the case when X is a Hirzebruch surface,
and recover a result in [Bertram and Coskun 2013]. Moreover, when X is a
Hirzebruch surface, we classify all the curves in the Hilbert scheme X [n] whose
homology classes are contained in the list (1-2). These curves have minimal degree
in the sense that their intersection numbers with certain very ample divisors in X [n]

are all equal to 1. We compute the normal bundles of these curves, and prove that
their moduli spaces are unobstructed, i.e., are smooth with the expected dimensions.

Conventions. Let 0 ≤ k ≤ n and V be an n-dimensional vector space. We use
the Grassmannian G(V, k) to denote the set of all k-dimensional quotients of V ,
or equivalently, the set of all (n− k)-dimensional subspaces of V . Also, we take
P(V )= G(V, 1). So the set of lines in P(V ) is the Grassmannian G(V, 2).

2. The nef cones of the Hilbert schemes of points on certain surfaces

In this section, we study the nef cones of the Hilbert schemes of points on certain
surfaces with h1(X,OX )= 0. Our goal is to prove Theorem 1.1.

Let X be a smooth projective complex surface, and X [n] be the Hilbert scheme of
points in X . An element in X [n] is represented by a length-n 0-dimensional closed
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subscheme ξ of X . For ξ ∈ X [n], let Iξ be the corresponding sheaf of ideals and Oξ
the structure sheaf. The subset

(2-1) Bn = {ξ ∈ X [n] | | Supp (ξ)|< n}

is defined to be the boundary of X [n]. Let C be a real surface in X , and fix distinct
points x1, . . . , xn−1 ∈ X which are not contained in C . Define

βn = {ξ + x2+ · · ·+ xn−1 ∈ X [n] | Supp(ξ)= {x1}},(2-2)

βC = {x + x1+ · · ·+ xn−1 ∈ X [n] | x ∈ C},(2-3)

DC = {ξ ∈ X [n] | Supp(ξ)∩C 6=∅}.(2-4)

Note that βC is a curve, and DC a divisor, in X [n] when C is a smooth algebraic
curve in X . We extend the notions βC and DC to all the divisors C in X by linearity.

Nakajima [1997] and Grojnowski [1996] geometrically constructed a Heisenberg
algebra action on the cohomology of the Hilbert schemes X [n]. Let H∗(X) be the
total cohomology of X with C-coefficients. Denote the Heisenberg operators of
Nakajima and Grojnowski by am(α) where m ∈ Z and α ∈ H∗(X). Set

HX =

+∞⊕
n=0

H∗(X [n]).

Then the space HX is an irreducible representation of the Heisenberg algebra
generated by the operators am(α) with the highest weight vector being

|0〉 = 1 ∈ H∗(X [0])= C.

It follows that the n-th component H∗(X [n]) in the Fock space HX is linearly
spanned by the Heisenberg monomial classes

a−n1(α1) · · · a−nk (αk)|0〉,

where k ≥ 0, n1, . . . , nk > 0 and n1+ · · ·+ nk = n. We have

βn = a−2(x)a−1(x)n−2
|0〉,(2-5)

βC = a−1(C)a−1(x)n−1
|0〉,(2-6)

Bn =
1

(n−2)!
a−1(1X )

n−2a−2(1X )|0〉,(2-7)

DC =
1

(n−1)!
a−1(1X )

n−1a−1(C)|0〉,(2-8)

where x and 1X denote the cohomology classes corresponding to a point x ∈ X
and the surface X , respectively. Abusing notation, we also use C to denote the
cohomology class corresponding to the real surface C .
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The following important definition is from [Beltrametti and Sommese 1991].

Definition 2.1. Let n ≥ 1. A line bundle L on the surface X is (n− 1)-very ample
if the restriction H 0(X, L)→ H 0(X,Oξ ⊗ L) is surjective for every ξ ∈ X [n].

The concept of (n−1)-very ampleness relates X [n] to a Grassmannian as follows.
The surjective map in Definition 2.1 represents an element in G(H 0(X, L), n). So
if L is (n− 1)-very ample, then we obtain a morphism

(2-9) ϕn(L) : X [n]→ G(H 0(X, L), n).

Let h=h0(X, L), and letP :G(Ch, n)→P
((∧h−n

Ch
)∗) be the Plücker embedding.

Then we see from the Appendix of [Beltrametti and Sommese 1991] that

(2-10) (P ◦ϕn(L))∗H=OX [n](Dc1(L)− Bn/2),

where H is the hyperplane line bundle over the projective space P
((∧h−n

Ch
)∗).

Lemma 2.2. If L is (n− 1)-very ample, then the divisor Dc1(L)− Bn/2 is nef. If L
is n-very ample, then the divisor Dc1(L)− Bn/2 is very ample. �

The first statement in Lemma 2.2 follows immediately from (2-10), and the
second statement was proved in [Catanese and Gœttsche 1990].

In X [n]× X , we have the universal codimension-2 subscheme

(2-11) Zn = {(ξ, x) ∈ X [n]× X | x ∈ Supp (ξ)} ⊂ X [n]× X.

Define the incidence variety X [n−1,n]
= {(ξ, η) ∈ X [n−1]

× X [n] | ξ ⊂ η}. It is well-
known [Cheah 1998; Tikhomirov 1994] that X [n−1,n] is smooth and of dimension 2n.
Define

fn : X [n−1,n]
→ X [n−1] with fn(ξ, η)= ξ,

gn : X [n−1,n]
→ X [n] with gn(ξ, η)= η,

ρ : X [n−1,n]
→ X with ρ(ξ, η)= Supp(Iξ/Iη).

Set φn = ( fn, ρ) : X [n−1,n]
→ X [n−1]

× X . By Proposition 2.2 in [Ellingsrud and
Strømme 1998], φn is the blowing-up morphism of X [n−1]

× X along Zn−1.
Next, let C be an irreducible curve in X . Let ξ = x1 + · · · + xn−1 ∈ X [n−1],

where x1, . . . , xn−1 are distinct smooth points on C . Let (C + ξ) be the closure of
(C −Supp(ξ))+ ξ in X [n]. Alternatively, consider

(2-12)
C̃ξ ⊂ X̃ξ ⊂ X [n−1,n] gn

−→ X [n]y y yφn

{ξ}×C ⊂ {ξ}× X ⊂ X [n−1]
× X

where C̃ξ and X̃ξ are the strict transforms of {ξ} × C and {ξ} × X in X [n−1,n],
respectively. Since φn is the blowing-up morphism of X [n−1]

× X along Zn−1, it
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follows that X̃ξ is isomorphic to the blowup of {ξ}× X ∼= X at x1, . . . , xn−1. For
1≤ i ≤ (n− 1), let Ei be the exceptional divisor in X̃ξ over xi . Then we obtain

(2-13) (φn|X̃ξ )
∗({ξ}×C)= C̃ξ +

n−1∑
i=1

Ei

in the Chow group A1(X̃ξ ). Notice that gn(C̃ξ )= (C + ξ) and

gn(Ei )= M2(xi )+ x1+ · · ·+ xi−1+ xi+1+ · · ·+ xn−1.

In fact, since gn|X̃ξ : X̃ξ → gn(X̃ξ ) is an isomorphism, we have

(2-14) (gn|X̃ξ )∗(C̃ξ )= (C + ξ) and (gn|X̃ξ )∗(Ei )= βn.

Lemma 2.3. With the above notation, (C + ξ)= βC − (n− 1)βn in A1(X [n]).

Proof. Choose two smooth curves C1 and C2 in X such that C =C1−C2 in A1(X)
and Supp(ξ)∩ (C1 ∪C2)=∅. Then in A1(X [n]), we have

(2-15) (gn|X̃ξ )∗(φn|X̃ξ )
∗({ξ}×C)

= (gn|X̃ξ )∗(φn|X̃ξ )
∗({ξ}×C1)− (gn|X̃ξ )∗(φn|X̃ξ )

∗({ξ}×C2)

= (C1+ ξ)− (C2+ ξ)

= βC1−βC2 = βC .

On the other hand, applying (2-13) and (2-14), we conclude that

(gn|X̃ξ )∗(φn|X̃ξ )
∗({ξ}×C)= (gn|X̃ξ )∗

(
C̃ξ +

n−1∑
i=1

Ei

)
= (C + ξ)+ (n− 1)βn.

Combining this with (2-15), we see that (C + ξ)= βC − (n− 1)βn in A1(X [n]). �

Lemma 2.4. Let F be a divisor on X. If DF − d(Bn/2) is nef , then d ≥ 0 and
F ·C ≥ d(n− 1) for every irreducible curve C ⊂ X. In particular, F is nef.

Proof. Note that DF ·βn = 0 and Bn ·βn =−2. Thus, we have

0≤ (DF − d(Bn/2)) ·βn = d.

Since DF ·βC = F ·C and Bn ·βC = 0, we conclude from Lemma 2.3 that

0≤ (DF − d(Bn/2)) · (βC − (n− 1)βn)= F ·C − d(n− 1). �

Lemma 2.5. Let F be a divisor in X. Let C be a smooth rational curve in X , and
consider the n-th symmetric product C (n)

= Hilbn(C)⊂ X [n]. Then

(i) every line in C (n) ∼= Pn is homologous to βC − (n− 1)βn;

(ii) OX [n](DF )|C (n) =OC (n)(C · F) and OX [n](Bn/2)|C (n) =OC (n)(n− 1).
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Proof. (i) Let x1, . . . , xn−1 ∈ C be distinct, and put γ = C + (x1 + · · · + xn−1).
Then γ is a line in the projective space C (n) ∼= Pn . By Lemma 2.3,

γ ∼ βC − (n− 1)βn,

where ∼ denotes homologous relation. So every line in C (n) ∼= Pn is homologous
to the class βC − (n− 1)βn .

(ii) Since γ · DF |C (n) = γ · DF = (βC − (n− 1)βn) · DF = C · F , we get

OX [n](DF )|C (n) =OC (n)(C · F).

Using a similar method, we obtain OX [n](Bn/2)|C (n) =OC (n)(n− 1). �

In the rest of the paper, we assume that h1(X,OX )= 0. Then

(2-16) Pic(X [n])∼= Pic(X)⊕Z · (Bn/2)

by [Fogarty 1973]. Under this isomorphism, the divisor DC ∈Pic(X [n]) corresponds
to C ∈ Pic(X). Let {α1, . . . , αs} be a linear basis of H 2(X). Then

(2-17) {Dα1, . . . , Dαs , Bn}

is a linear basis of H 2(X [n]). Represent α1, . . . , αs by real surfaces C1, . . . ,Cs ⊂ X ,
respectively. Then a linear basis of H2(X [n]) is given by

(2-18) {βC1, . . . , βCs , βn}.

We are now ready to prove our main result in this paper.

Theorem 2.6. Let n ≥ 2, and let the surface X satisfy h1(X,OX )= 0. Assume that
the nef cone of X is the span of the divisors F1, . . . , Ft , and the cone NE(X) is the
span of the curves C1, . . . ,Ct with Fi ·C j = δi, j for all i and j . Assume further
that OX

(
(n− 1)

∑t
i=1 Fi

)
is (n− 1)-very ample. Then

(i) the nef cone of the Hilbert scheme X [n] is spanned by

(2-19) DF1 , . . . , DFt , (n− 1)
t∑

i=1

DFi − Bn/2;

(ii) the cone NE(X [n]) is spanned by the classes

(2-20) βC1 − (n− 1)βn , . . . , βCt − (n− 1)βn , βn.

Proof. (i) For 1≤ j ≤ n, let p j : Xn
→ X be the projection to the j-th factor. Let

X (n) be the n-th symmetric product of X , and let υn : Xn
→ X (n) be the quotient

map. Let ρn : X [n]→ X (n) be the Hilbert–Chow morphism sending an element
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ξ ∈ X [n] to its support (with multiplicities) in X (n). For each Fi , there exists a
divisor Hi on X (n) such that

ρ∗n Hi = DFi , υ∗n Hi =

n∑
j=1

p∗j Fi .

It follows that since Fi is nef, the divisor DFi is nef as well. Since the line bundle
OX
(
(n − 1)

∑t
i=1 Fi

)
is (n − 1)-very ample, we conclude from Lemma 2.2 that

(n−1)
∑t

i=1 DFi−Bn/2 is a nef divisor. Thus, the cone C1 spanned by the divisors
in (2-19) is contained in the nef cone of X [n].

Conversely, assume that DF−d Bn/2 is a nef divisor on X [n]. Let F =
∑t

i=1 ai Fi .
By Lemma 2.4, d ≥ 0 and F ·C ≥ d(n− 1) for every irreducible curve C ⊂ X . So

ai = F ·Ci ≥ d(n− 1)

for every i . Now the nef divisor DF − d Bn/2 can be written as
t∑

i=1

ai DFi − d Bn/2=
t∑

i=1

(ai − d(n− 1))DFi + d
(
(n− 1)

t∑
i=1

DFi − Bn/2
)
.

Therefore, DF − d Bn/2 ∈ C1. It follows that C1 is the nef cone of X [n].

(ii) First of all, note that since the divisor Fi is nef and Fi ·Ci = 1, the curve Ci

contains at least one reduced irreducible component. So the curve βCi − (n− 1)βn

is well-defined, and the cone C2 spanned by the curves in (2-20) is contained
in the cone NE(X [n]). Conversely, assume that

∑t
i=1 biβCi + cβn is contained

in NE(X [n]). Then
(∑t

i=1 biβCi + cβn
)
· H ≥ 0 for every nef divisor H in X [n].

Letting H = DFi , we get bi ≥ 0 for every i . Letting H = (n−1)
∑t

i=1 DFi − Bn/2,
we obtain (n− 1)

∑t
i=1 bi + c ≥ 0. Therefore, we have

t∑
i=1

biβCi + cβn =

t∑
i=1

bi (βCi − (n− 1)βn)+

(
(n− 1)

t∑
i=1

bi + c
)
βn ∈ C2.

It follows that C2 coincides with the cone NE(X [n]). �

Corollary 2.7. Under the same assumptions as in Theorem 2.6, if γ is an irreducible
curve in the Hilbert scheme X [n], then γ is homologous to

t∑
i=1

bi (βCi − (n− 1)βn)+ cβn

for some nonnegative integers b1, . . . , bt , c not all equal to zero.

Proof. By Theorem 2.6 (ii), b1, . . . , bt , c are nonnegative and not all equal to 0.
Intersecting the curve γ with the divisors DF1, . . . , DFt and (n−1)

∑t
i=1 DFi−Bn/2,

respectively, we see that b1, . . . , bt , c must be integers. �
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3. Application to Hirzebruch surfaces

In this section, we apply Theorem 2.6 to the Hirzebruch surfaces and recover a
result in [Bertram and Coskun 2013]. Then we study the curves in the Hilbert
schemes of points on the Hirzebruch surfaces, which have the minimal degree. We
compute their normal bundles, and prove that their moduli spaces are unobstructed.

Let X denote the Hirzebruch surface Fe with e≥ 0. Let f be a fiber of the ruling
π : X→ P1, and σ ⊂ X be a section of π such that σ 2

=−e. Then

Pic(X)= Z · σ ⊕Z · f.

It is well-known that aσ +b f is nef if and only if a ≥ 0 and b ≥ ae. The following
lemma was proved in [Beltrametti and Sommese 1993].

Lemma 3.1. OX (aσ + b f ) is n-very ample if and only if a ≥ n and b ≥ n+ ae. �

Proposition 3.2. Let n ≥ 2, and let X be the Hirzebruch surface Fe. Then

(i) the nef cone of the Hilbert scheme X [n] is spanned by

(3-1) D f , Dσ + eD f , (n− 1)Dσ + (n− 1)(1+ e)D f − Bn/2;

(ii) the cone NE(X [n]) is spanned by the classes

(3-2) βσ − (n− 1)βn, β f − (n− 1)βn, βn.

Proof. The nef cone of X is the span of F1 = f and F2 = σ + e f , and the cone
NE(X) is the span of C1= σ and C2= f . Note that Fi ·C j = δi, j for all i and j . In
addition, by Lemma 3.1, the line bundle OX ((n−1)F1+ (n−1)F2) is (n−1)-very
ample. Hence our proposition follows from Theorem 2.6. �

Proposition 3.2 has been proved in [Bertram and Coskun 2013]. We now study
the curves in X [n] whose homology classes are contained in the list (3-2). Let

Ln = nσ + n(1+ e) f.

By Lemma 3.1, the line bundle OX (Ln) is n-very ample. By Lemma 2.2, the divisor

DLn − Bn/2= nDσ + n(1+ e)D f − Bn/2

in X [n] is very ample. Our next lemma characterizes the homology classes in (3-2).

Lemma 3.3. Let γ be a curve in X [n] with γ ·(nDσ+n(1+e)D f −Bn/2)=1. Then
γ is a smooth rational curve. Moreover, γ ∼ βn , β f − (n−1)βn or βσ − (n−1)βn .

Proof. Since nDσ +n(1+e)D f − Bn/2 is very ample, γ is a smooth rational curve.
By Corollary 2.7, γ ∼ a(βσ − (n − 1)βn)+ b(β f − (n − 1)βn)+ cβn for some
nonnegative integers a, b, c. Since γ · (nDσ + n(1+ e)D f − Bn/2)= 1, we obtain

a+ b+ c = 1.

Therefore, we have γ ∼ βn , β f − (n− 1)βn or βσ − (n− 1)βn . �
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The curves in X [n] homologous to βn have been classified in [Li et al. 2003].
In the rest of this section, we study the curves γ ⊂ X [n] which are homologous to
β f − (n− 1)βn or βσ − (n− 1)βn . By Lemma 3.1, the line bundle OX (Ln−1) is
(n− 1)-very ample. So by (2-9), we have the morphism

ϕ := ϕn(OX (Ln−1)) : X [n]→ G
(
H 0(X,OX (Ln−1)), n

)
.

Lemma 3.4. Let γ be an irreducible curve in X [n] satisfying

γ · ((n− 1)Dσ + (n− 1)(1+ e)D f − Bn/2)= 0.

Then γ ∼ β f − (n− 1)βn or βσ − (n− 1)βn . Moreover, γ is contracted by ϕ.

Proof. The first part of the lemma is proved by an argument similar to the proof of
Lemma 3.3. For the second part, we notice from (2-10) that

(P ◦ϕ)∗H=OX [n](DLn−1 − Bn/2)

=OX [n]((n− 1)Dσ + (n− 1)(1+ e)D f − Bn/2).

Therefore, the curve γ is contracted by the morphism P ◦ ϕ. Since P is an
embedding, the curve γ is contracted by the morphism ϕ. �

In the following, we fix a curve γ ⊂ X [n] homologous to β f − (n − 1)βn

or βσ −(n−1)βn . Let X (n) be the n-th symmetric product of X and υn : Xn
→ X (n)

the quotient map. Let ρn : X [n]→ X (n) be the Hilbert–Chow morphism sending an
element ξ ∈ X [n] to its support (with multiplicities) in X (n). Let p1 be the projection
from Xn to the first factor.

Definition 3.5. Define Cγ to be the union of all the curves in p1(υ
−1
n (ρn(γ ))).

Lemma 3.6. Let γ ∼ β f − (n− 1)βn or βσ − (n− 1)βn . Then Cγ ∼ σ or f .

Proof. First of all, we claim that Cγ 6=∅. Indeed, if Cγ =∅, then p1(υ
−1
n (ρn(γ )))

is a finite set of points in X . Since the divisor σ + (1+ e) f is very ample, we can
choose a smooth curve F ∈ |σ+(1+e) f | such that F∩ p1(υ

−1
n (ρn(γ )))=∅. Since

the elements of γ are supported in p1(υ
−1
n (ρn(γ ))), we must have γ ∩ DF =∅. It

follows that γ · DF = 0. However, this contradicts γ · DF = 1.
Next, assume that Cγ ·(σ+(1+e) f )≥ 2. Take a point ξ ∈ γ and a smooth point

x ∈Cγ such that x /∈ Supp(ξ). Since x ∈Cγ ⊂ p1(υ
−1
n (ρn(γ ))), there exists ξx ∈ γ

such that ρn(ξx)= nx x+ηx , where nx ≥ 1, ηx ∈ X (n−nx ) and x /∈ Supp(ηx). Choose
a smooth curve F ∈ |σ + (1+e) f | missing Supp(ηx)∪Supp(ξ), passing through x ,
and intersecting Cγ transversally. Then F ∩Cγ is a finite set. Since Cγ · F ≥ 2,
F∩Cγ contains one more point y 6= x . Hence there exists ξy ∈ γ with y ∈ Supp(ξy).
Thus ξx , ξy ∈ γ ∩ DF . Since y 6= x , y ∈ F and F misses Supp(ηx), we get

y /∈ {x} ∪Supp(ηx)= Supp(ξx).
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So ξx 6= ξy . Since Supp(ξ)∩F =∅, we have ξ 6∈ DF . Since ξ ∈ γ and γ is a smooth
rational curve, γ is not contained in DF . Therefore, γ ∩ DF is a finite set of points.
Since ξx , ξy ∈γ∩DF and ξx 6= ξy , we obtain γ ·DF ≥2, which contradicts γ ·DF =1.

It follows that Cγ · (σ + (1+ e) f )= 1. Since the cone NE(Fe) is spanned by σ
and f , we conclude that Cγ ∼ σ or f . �

By Lemma 3.6, Cγ ∼ σ or f . So Cγ is a smooth rational curve, and

OX (Ln−1)|Cγ
∼=OCγ (n− 1).

Let VCγ ⊂ H 0(X,OX (Ln−1)) be the image of the injection

H 0(X,OX (Ln−1−Cγ ))→ H 0(X,OX (Ln−1)),

which is induced by the exact sequence

(3-3) 0→OX (Ln−1−Cγ )→OX (Ln−1)→OCγ (n− 1)→ 0.

Similarly, for ξ ∈ γ , let Vξ ⊂ H 0(X,OX (Ln−1)) be the image of the injection

H 0(X,OX (Ln−1)⊗ Iξ )→ H 0(X,OX (Ln−1)).

Since OX (Ln−1) is (n− 1)-very ample, we obtain

(3-4) dim Vξ = h0(X,OX (Ln−1))− h0(Oξ )= h0(X,OX (Ln−1))− n.

Since the curve γ is contracted to a point by the morphism ϕ, the subspaces Vξ of
H 0(X,OX (Ln−1)) are independent of ξ ∈ γ . Set Vγ = Vξ where ξ ∈ γ .

Lemma 3.7. If n ≥ e+ 1, then VCγ = Vγ .

Proof. Since K X =−2σ−(2+e) f , the divisor Ln−1−Cγ −K X is ample if Cγ = σ .
Similarly, since n ≥ e+ 1, Ln−1−Cγ − K X is ample if Cγ = f . By the Kodaira
vanishing theorem, H 1(X,OX (Ln−1−Cγ ))= 0. So we see from (3-3) that

dim VCγ = h0(X,OX (Ln−1))− h0(Cγ ,OCγ (n− 1))= h0(X,OX (Ln−1))− n.

In view of (3-4), we conclude that

dim VCγ = dim Vξ = dim Vγ .

Thus, to prove our lemma, it remains to prove that Vγ ⊂ VCγ . Indeed, let f ∈ Vγ
be a section. Let x ∈ Cγ . Since Cγ ⊂ p1(υ

−1
n (ρn(γ ))), there exists ξ ∈ γ such

that x ∈Supp(ξ). Since Vγ =Vξ , f vanishes at every point in Supp(ξ). In particular,
f vanishes at x . Hence, f vanishes along the smooth curve Cγ . Therefore, f ∈ VCγ .
It follows that Vγ ⊂ VCγ . �
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Proposition 3.8. Let n ≥max(2, e+ 1). Then a curve γ ⊂ X [n] is homologous to
β f − (n− 1)βn or βσ − (n− 1)βn if and only if there is a curve C ⊂ X such that
C ∼ σ or f , and that γ is a line in Hilbn(C) ⊂ X [n]. Moreover, the curve C is
uniquely determined by the curve γ .

Proof. The “if” part of the proposition follows from Lemma 2.5 (i). To prove
the “only if” part, let γ ∼ β f − (n − 1)βn or βσ − (n − 1)βn . By Lemma 3.6,
C := Cγ ∼ σ or f . Fix a section f0 ∈ H 0(X,OX (C)) whose zero locus is C .
Let ξ ∈ γ . Since σ + e f is basepoint-free, so is the divisor Ln−1 − C . Thus
there exists f1 ∈ H 0(X,OX (Ln−1−C)) such that f1 does not vanish at any point
in Supp(ξ). Now, f0 ⊗ f1 ∈ VC . By Lemma 3.7, f0 ⊗ f1 ∈ Vγ = Vξ . Since f1

does not vanish at any point in Supp(ξ), f0 vanishes at ξ . Hence, ξ is a closed
subscheme of C . It follows that γ ⊂ Hilbn(C).

To show that γ is a line in Hilbn(C) ⊂ X [n], let F = σ + (e + 1) f . By
Lemma 2.5 (ii), OX [n](DF )|Hilbn(C) = OHilbn(C)(1). So viewing γ as a curve in
Hilbn(C), we obtain

γ · c1(OHilbn(C)(1))= γ · DF = 1.

Therefore, γ is a line in Hilbn(C)⊂ X [n].
Finally, the uniqueness of C follows from the observation that if ξ ∈ X [n]

and n ≥ 2, then ξ is contained in at most one curve C ⊂ X with C ∼ σ or f . �

Next, we determine the normal bundle of a curve γ in X [n] homologous to
β f − (n− 1)βn . By Proposition 3.8, there exists a unique fiber fγ in X such that γ
is a line in the n-th symmetric product f (n)γ = Hilbn( fγ )⊂ X [n]. In particular,

N
γ⊂ f (n)γ

∼=Oγ (1)⊕(n−1).

So we have the following exact sequence of normal bundles:

(3-5) 0→Oγ (1)⊕(n−1)
→ Nγ⊂X [n]→ Nf (n)γ ⊂X [n] |γ → 0.

Lemma 3.9. Let n ≥ max(2, e + 1). Let γ ⊂ X [n] be a curve homologous to
β f − (n− 1)βn , and fγ be the unique fiber in X such that γ is a line in f (n)γ . Then

(i) Nf (n)γ ⊂X [n]
∼=Of (n)γ

⊕Of (n)γ
(−1)⊕(n−1);

(ii) Nγ⊂X [n]
∼=Oγ (1)⊕(n−1)

⊕Oγ ⊕Oγ (−1)⊕(n−1).

Proof. (i) First of all, let C ⊂ X be a smooth irreducible curve. Let πn and qn

be the projections of X [n] × X to X [n] and X respectively. Recall the universal
codimension-2 subscheme Zn ⊂ X [n]× X from (2-11). By the results in [Altman
et al. 1977], we have the isomorphism

NC (n)⊂X [n]
∼= πn∗(q∗nOX (C)|Zn )|C (n) .
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Let Z̃n be the universal subscheme in C (n)
×C . Then we obtain

πn∗(q∗nOX (C)|Zn )|C (n) ∼= π̃n∗(q̃∗n (OX (C)|C)|Z̃n
),

where π̃n and q̃n are the projections from C (n)
×C to C (n) and C , respectively. So

(3-6) NC (n)⊂X [n]
∼= π̃n∗(q̃∗n (OX (C)|C)|Z̃n

).

Replacing C in (3-6) by fγ , we get Nf (n)γ ⊂X [n]
∼= π̃n∗OZ̃n

. It is known that
Z̃n ⊂ f (n)γ × fγ ∼= Pn

×P1 is defined by the equation

a0U n
+ a1U n−1V + · · ·+ anV n

= 0,

where a0, a1, . . . , an and U, V are the homogeneous coordinates on Pn and P1,
respectively. So the line bundle Of (n)γ × fγ

(Z̃n)∼=OPn×P1(Z̃n) is of type (1, n) in

Pic( f (n)γ × fγ )∼= Pic(Pn
×P1)∼= Z⊕Z.

Applying π̃n∗ to the exact sequence

0→Of (n)γ × fγ
(−Z̃n)→Of (n)γ × fγ

→OZ̃n
→ 0,

we obtain the exact sequence

0→Of (n)γ
→ π̃n∗OZ̃n

→Of (n)γ
(−1)⊕(n−1)

→ 0.

This exact sequence splits. Thus, π̃n∗OZ̃n
∼=Of (n)γ

⊕Of (n)γ
(−1)⊕(n−1). Hence

Nf (n)γ ⊂X [n]
∼= π̃n∗OZ̃n

∼=Of (n)γ
⊕Of (n)γ

(−1)⊕(n−1).

(ii) By (i) and (3-5), we obtain the exact sequence

0→Oγ (1)⊕(n−1)
→ Nγ⊂X [n]→Oγ ⊕Oγ (−1)⊕(n−1)

→ 0.

Since this exact sequence splits, the proof of (ii) is complete. �

Now we determine the normal bundle of a curve γ in X [n] homologous to
βσ − (n− 1)βn . Recall that the Hirzebruch surfaces Fe are deformation equivalent
to either F0 or F1. If X = F0 = P1

×P1, then σ is a fiber of one of the two rulings
on X , so the normal bundle of a curve γ in X [n] homologous to βσ − (n−1)βn has
been computed by Lemma 3.9 (ii). In the following, we concentrate on X = F1,
which is the blowup of the projective plane at a point.

Lemma 3.10. Let n ≥ 2 and X = F1. Let γ ⊂ X [n] be a curve homologous to
βσ − (n− 1)βn . Then, Nσ (n)⊂X [n]

∼=Oσ (n)(−1)⊕n and

(3-7) Nγ⊂X [n]
∼=Oγ (1)⊕(n−1)

⊕Oγ (−1)⊕n.
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Proof. The proof is similar to that of Lemma 3.9, so we adopt the notation in the
proof of Lemma 3.9. Since σ 2

=−1, we have OX (σ )|σ ∼=Oσ (−1). Replacing the
curve C in (3-6) by σ , we conclude that

Nσ (n)⊂X [n]
∼= π̃n∗(q̃∗nOσ (−1)|Z̃n

).

Applying π̃n∗ to the exact sequence

0→ q̃∗nOσ (−1)⊗Oσ (n)×σ (−Z̃n)→ q̃∗nOσ (−1)→ q̃∗nOσ (−1)|Z̃n
→ 0,

we obtain π̃n∗(q̃∗nOσ (−1)|Z̃n
)∼=Oσ (n)(−1)⊕n . Therefore, we get

(3-8) Nσ (n)⊂X [n]
∼=Oσ (n)(−1)⊕n.

By Proposition 3.8, γ is a line in σ (n) ∼= Pn . Using the exact sequence

0→Oγ (1)⊕(n−1)
→ Nγ⊂X [n]→ Nσ (n)⊂X [n] |γ → 0

and (3-8), we see that Nγ⊂X [n]
∼=Oγ (1)⊕(n−1)

⊕Oγ (−1)⊕n . �

Theorem 3.11. Let X be the Hirzebruch surface Fe with e ≥ 0, let f be a fiber of
the ruling on X , and let σ be a section to the ruling with σ 2

=−e.

(i) If n ≥ max(2, e + 1), then the moduli space M(β f − (n − 1)βn) of all the
curves in X [n] homologous to β f − (n− 1)βn is irreducible and unobstructed,
i.e., is smooth with the expected dimension.

(ii) If e = 1 and n ≥ 2, then the moduli space M(βσ − (n− 1)βn) of all the curves
in X [n] homologous to βσ − (n− 1)βn is irreducible and unobstructed.

Proof. Under the assumptions of (i) and (ii), we see from Lemma 3.9 (ii) and
(3-7) that H 1(γ, Nγ⊂X [n])= 0 if γ is a curve homologous to either β f − (n− 1)βn

or βσ − (n − 1)βn . This implies that the moduli spaces M(β f − (n − 1)βn) and
M(βσ − (n− 1)βn) are unobstructed. By Proposition 3.8, M(β f − (n− 1)βn) is
irreducible with dimension 2n − 1, and M(βσ − (n − 1)βn) is irreducible with
dimension 2n− 2. �

By (2-10), the composition P ◦ ϕn(Ln) : X [n] → PN (for a suitable positive
integer N ) is the embedding associated to the very ample divisor

DLn − Bn/2= nDσ + n(1+ e)D f − Bn/2.

By Lemma 3.3, a curve γ ⊂ X [n] is mapped to a line in PN if and only if γ is
homologous to βn , β f − (n− 1)βn or βσ − (n− 1)βn . Therefore, regarding X [n] as
a closed subvariety of PN , then the Hilbert scheme of lines in X [n] is the disjoint
union of M(βn), M(β f − (n− 1)βn) and M(βσ − (n− 1)βn).
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