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MAPS FROM THE ENVELOPING ALGEBRA OF THE
POSITIVE WITT ALGEBRA TO REGULAR ALGEBRAS

SUSAN J. SIERRA AND CHELSEA WALTON

We construct homomorphisms from the universal enveloping algebra of the
positive (part of the) Witt algebra to several different Artin–Schelter reg-
ular algebras, and determine their kernels and images. As a result, we
produce elementary proofs that the universal enveloping algebras of the
Virasoro algebra, the Witt algebra, and the positive Witt algebra are neither
left nor right noetherian.

0. Introduction

Let k be a field of characteristic 0. All vector spaces, algebras, and tensor products
are over k, unless stated otherwise. In this work, we construct and study homomor-
phisms from the universal enveloping algebra of the positive part of the Witt algebra
to Artin–Schelter (AS-)regular algebras. The latter serve as homological analogues
of commutative polynomial rings in the field of noncommutative algebraic geometry.

To begin, consider the Lie algebras below.

Definition 0.1 (V , W , WC). We define the following Lie algebras:

(a) The Virasoro algebra is defined to be the Lie algebra V with basis fengn2Z[fcg

and Lie bracket Œen; c�D 0, Œen; em�D .m� n/enCmC
1

12
c.m3�m/ınCm;0.

(b) The Witt (or centerless Virasoro) algebra is defined to be the Lie algebra W

with basis fengn2Z and Lie bracket Œen; em�D .m� n/enCm.

(c) The positive (part of the) Witt algebra is defined to be the Lie subalgebra WC
of W generated by fengn�1.

For any Lie algebra g, we denote its universal enveloping algebra by U.g/.

Further, consider the following algebras.
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Notation 0.2 (S , R). Let S be the algebra generated by u; v; w, subject to the
relations

uv� vu� v2
D uw�wu� vw D vw�wv D 0:

Let R be the Jordan plane generated by u; v, subject to the relation uv�vu�v2D 0.

It is well known that R is an AS-regular algebra of global dimension 2. Moreover,
we see by Lemma 1.3 that S is also AS-regular, of global dimension 3.

This work focuses on maps that we construct from the enveloping algebra U.WC/

to both R and S , given as follows:

Definition 0.3 (�, �a). Let � WU.WC/!S be the algebra homomorphism induced
by defining

(0.4) �.en/D .u� .n� 1/w/vn�1:

For a2 k, let �a WU.WC/!R be the algebra homomorphism induced by defining

(0.5) �a.en/D .u� .n� 1/av/vn�1:

That � and �a are well defined is Lemma 1.5.

Our main result is that we understand fully the kernels and images of the maps
above, as presented below.

Theorem 0.6. We have the following statements about the kernels and images of
the maps � and �a.

(a) [Propositions 2.5, 2.8] ker�a is equal to the ideal .e1e3�e2
2
�e4/ if aD0; 1; or

is an ideal generated by one element of degree 5 and two elements of degree 6

(listed in Proposition 2.8) if a¤ 0; 1.

(b) [Proposition 2.1] �a.U.WC// is equal to kCuR if aD 0; is equal to kCRu

if aD 1; or contains R�4 if a¤ 0; 1. For all a, the image of �a is noetherian.

(c) [Theorem 5.1] ker� is equal to .e1e5� 4e2e4C 3e2
3
C 2e6/.

The image of � will be discussed later in the introduction, after Theorem 0.10.
The result above has a surprising application. In [Sierra and Walton 2014, Theo-

rem 0.5 and Corollary 0.6], we established that U.WC/, U.W /, U.V / are neither
left nor right noetherian through relatively indirect means, using the techniques of
[Sierra 2011]. In particular, we were not able to give an example of a non-finitely-
generated right or left ideal in any of these enveloping algebras. However, in the
course of proving Theorem 0.6, we produce an elementary and constructive proof
of [Sierra and Walton 2014, Theorem 0.5 and Corollary 0.6]. Namely, we obtain:

Theorem 0.7 (Proposition 2.5, Theorem 3.3). The ideal

ker�0 D ker�1 D .e1e3� e2
2 � e4/

is not finitely generated as either a left or a right ideal of U.WC/.
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We prove this theorem by noting that �0 factors through �, and by studying
B WD �.U.WC//. A key step is to compute I WD �.ker�0/, and to show that I is
not finitely generated as a left or right ideal of B.

Note that the map (0.5) can be extended to W to define a map, which we denote by

y�a W U.W /!RŒv�1�:

Theorem 0.8 ((3.10), Theorem 3.12). The ideal ker y�0 D ker y�1 is not finitely
generated as either a left or right ideal of U.W /.

We remark that RŒv�1� is isomorphic to the ring kŒx;x�1; @�, which is a familiar
localization of the Weyl algebra. To see this, set vDx and uDx2@, so @xDx@C1.
Then uv� vuD x2 D v2. We obtain

y�1.en/D v
n�1uD xnC1@:

Thus, y�1 is a well-known homomorphism.
We now compare Theorem 0.7 with our earlier proof (in [Sierra and Walton

2014]) that U.WC/ is not left or right noetherian. The earlier proof used a ring
homomorphism � with a more complicated definition:

Notation 0.9 (X , f , � , �). Take P3 WD P3
k with coordinates w;x;y; z. Let X D

V .xz�y2/� P3 be the projective cone over a smooth conic in P2.
Define an automorphism � of X by

�.Œw W x W y W z�/D Œw� 2xC 2z W z W �y � 2z W xC 4yC 4z�:

Denote the pullback of � on k.X / by ��, so that g� WD ��g D g ı � for g 2 k.X /.
Form the ring k.X /Œt I ��� with multiplication tg D g� t for all g 2 k.X /. Let

f WD
wC 12xC 22yC 8z

12xC 6y
;

considered as a rational function in k.X /. Now let � W U.WC/! k.X /Œt I ��� be
the algebra homomorphism induced by setting �.e1/D t and �.e2/D f t2.

That � is well defined is [Sierra and Walton 2014, Proposition 1.5]. The method
in that paper made a number of reductions to show that �.U.WC// is not left or
right noetherian. That proof can now be streamlined via the next result.

Theorem 0.10 (Theorem 4.1). We have that ker �D ker� D
T

a2k ker�a.

Since we show that �.U.WC// is not left or right noetherian in the course of
proving Theorem 0.7, we have by Theorems 0.6(c) and 0.10 that �.U.WC// Š
�.U.WC//ŠU.WC/=.e1e5�4e2e4C3e2

3
C2e6/ is neither left nor right noetherian.

We end by discussing an open question that was brought to our attention by
Lance Small.
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Question 0.11. Does U.WC/ satisfy the ascending chain condition on two-sided
ideals?

Our result here is only partial:

Proposition 0.12 (Proposition 6.6). The ring B WD �.U.WC// satisfies the ascend-
ing chain condition on two-sided ideals.

Of course, this yields no direct information on the question for U.WC/.
We have the following conventions throughout the paper. We take ND Z�0 to

be the set of nonnegative integers. If r is an element of a ring A, then .r/ denotes
the two-sided ideal ArA generated by r . If AD

L
n2Z An is a graded k-algebra

(or graded module), then we define the Hilbert series

hilb AD
X
n2Z

dimk Antn:

This article is organized as follows. We present preliminary results in Section 1,
including an alternative way of multiplying elements in S and in R (Lemma 1.3);
this method will be employed throughout, sometimes without mention. In Section 2,
we discuss the maps �a and prove parts (a) and (b) of Theorem 0.6. In Section 3
we use the map �0 to establish Theorem 0.7; we also prove Theorem 0.8.

Before proceeding to study the map �, we present its connection with the map �,
the key homomorphism of [Sierra and Walton 2014]. Namely, in Section 4, we
establish Theorem 0.10. Then in Section 5, we verify part (c) of Theorem 0.6. Our
last result, Proposition 0.12, is presented in Section 6. Proofs of computational
claims via Maple and Macaulay2 routines and a known result in ring theory to
which we could not find a reference are provided in the Appendix.

1. Preliminaries

The main focus of this paper is the universal enveloping algebra of the positive Witt
algebra, WC. To begin, we recall some basic facts about the algebra U.WC/.

Lemma 1.1. Recall Definition 0.1(c).

(a) We have the isomorphism

U.WC/Š
khe1; e2i�

Œe1; Œe1; Œe1; e2� � �C 6Œe2; Œe2; e1� �;

Œe1; Œe1; Œe1; Œe1; Œe1; e2� � � � �C 40Œe2; Œe2; Œe2; e1� � �

� :
(b) The set fei1

; ei2
; : : : ; eik

j k 2 N and 1 � i1 � i2 � � � � � ik 2 Ng forms a
k-vector space basis of U.WC/.

Proof. Part (a) is [Sierra and Walton 2014, Lemma 1.1], and part (b) is clear from
the definition of U.WC/. �
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Next, let us present some notation that we will use for the rest of the paper. We
will work with the algebras R and S defined in Notation 0.2; note that we can view
R as a subalgebra of S . In addition:

Notation 1.2 (Q). Take Q to be the subalgebra of S generated by u, v, and vw.

In our first result, we provide an easy way to multiply elements in S . Recall from
[Zhang 1996] that a Zhang twist of a graded algebra L, by an automorphism � of L,
is the algebra L�, where L�DL as graded vector spaces and L� has multiplication
`� `0 D `.`0/�

i

for ` 2Li and `0 2L.
Moreover, recall that an Artin–Schelter (AS-)regular algebra is a connected

graded algebra A of finite global dimension, of finite injective dimension d with
ExtiA.Ak;AA/Š ExtiA.kA;AA/Š ıi;dk (that is, A is AS-Gorenstein), and has finite
Gelfand–Kirillov dimension. These algebras are important in noncommutative ring
theory because they are noncommutative analogues of polynomial rings and share
many of their good properties.

Lemma 1.3 (�, �). Let � 2 Aut.kŒx;y; z�/ be defined by

�.x/D x�y; �.y/D y; �.z/D z:

Then S is isomorphic to the Zhang twist kŒx;y; z��. Further, � restricts to an
automorphism of kŒx;y;yz�, which we also denote by �, and to an automorphism �
of kŒx;y�. We have that RŠ kŒx;y�� and QŠ kŒx;y;yz�� as graded k-algebras.
As a consequence, S , R, and Q are AS-regular algebras.

Proof. To see that S Š kŒx;y; z��, we emphasize that

(1.4)

� the variables u; v; w of S have noncommutative multiplication,
� the variables x;y; z of kŒx;y; z� have commutative multiplication, and
� the symbol � denotes the noncommutative multiplication on kŒx;y; z��

defined by `� `0 D `.`0/�
i

for ` 2 kŒx;y; z�i and `0 2 kŒx;y; z�.

Now,

y �x D yx� D y.x�y/D .x�y/y D xy �y2
D xy��yy� D x �y �y �y;

z �x D zx� D z.x�y/ D .x�y/z D xz�yz D xz��yz� D x � z�y � z;

z �y D zy� D zy D yz D yz� D y � z:

Thus, if we identify u; v; w with x;y; z, respectively, then the relations of S hold
in kŒx;y; z��, and S Š kŒx;y; z�� as graded k-algebras.

That � restricts to automorphisms of kŒx;y� and kŒx;y;yz� is immediate, and the
other isomorphisms hold by a similar argument. Moreover, the last statement follows
as commutative polynomial rings are AS-regular and this property is preserved
under Zhang twisting by [Zhang 1996, Theorem 1.3(i)]. �
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Now we verify that the algebra homomorphisms �a and � from Definition 0.3
are well defined.

Lemma 1.5. The maps � and �a of Definition 0.3 are well-defined homomorphisms
of graded k-algebras.

Proof. We check that � respects the Witt relations given in Definition 0.1(b), by
using Lemma 1.3 and (1.4):

�.enem�emen/

D .u�.n�1/w/vn�1.u�.m�1/w/vm�1
�.u�.m�1/w/vm�1.u�.n�1/w/vn�1

D .x�.n�1/z/.x�.m�1/z/�
n

ynCm�2
�.x�.m�1/z/.x�.n�1/z/�

m

ynCm�2

D
�
.x�.n�1/z/.x�ny�.m�1/z/�.x�.m�1/z/.x�my�.n�1/z/

�
ynCm�2

D .m�n/xynCm�1
C.n.n�1/�m.m�1//ynCm�1z

D .m�n/.x�.nCm�1/z/ynCm�1

D .m�n/.u�.nCm�1/w/vnCm�1

D .m�n/�.enCm/:

So, the claim holds for �.
Similarly, we verify that �a respects the Witt relations:

�a.enem� emen/D .u� .n� 1/av/vn�1.u� .m� 1/av/vm�1

� .u� .m� 1/av/vm�1.u� .n� 1/av/vn�1

D
�
.x� .n� 1/ay/.x� ny � .m� 1/ay/

� .x� .m� 1/ay/.x�my � .n� 1/ay/
�
ynCm�2

D .m� n/.x� a.nCm� 1/y/ynCm�1

D .m� n/.u� a.nCm� 1/v/vnCm�1

D .m� n/�a.enCm/:

Thus, the claim holds for �a. �

Next, we define the key algebras A.a/ and B that we will use throughout.

Notation 1.6 (A.a/, B). Take a2k and let A.a/ denote the subalgebra �a.U.WC//

of R. Further, let B denote the subalgebra �.U.WC// of S .

We point out a useful observation.

Lemma 1.7. We have that B �Q.

Proof. We get that �.e1/ D u and �.e2/ D .u�w/v D uv � vw are in Q. By
Lemma 1.1(a), B is generated by these elements, so we are done. �
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2. The kernel and image of the maps �a

The goal of this section is to analyze the maps �a from Definition 0.3, which are
well defined by Lemma 1.5. In particular, we verify Theorem 0.6(a,b).

To proceed, recall Notations 0.2 and 1.6. We first compute the factor rings A.a/,
proving Theorem 0.6(b).

Proposition 2.1. We have that A.0/D kCuR (a right idealizer in R), that A.1/D

kCRu (a left idealizer in R), and that A.a/�4 DR�4 if a¤ 0; 1. For all a, the
ring A.a/ is noetherian.

Proof. Recall from Lemma 1.1(a) that U.WC/ is generated by e1 and e2. We have
that �0.e1/ D u and �0.e2/ D uv. These elements generate kC uR. Moreover,
�1.e1/D u and �1.e2/D .u�v/vD vu, and these elements generate kCRu. That
the rings A.0/ and A.1/ are noetherian follows from [Stafford and Zhang 1994,
Lemma 2.2(iii) and Theorem 2.3(i.a)].

When a ¤ 0; 1, we must show that R�4 � A.a/. Since uRnCRnu D RnC1

for n� 1 and since dimk R4 D 5, the proof boils down to showing that the set of
elements

�a.e
4
1/; �a.e

2
1e2/; �a.e1e2e1/; �a.e2e2

1/; �a.e
2
2/

is k-linearly independent for a¤ 0; 1. Using Lemma 1.3 and (1.4), consider the
following calculations:

�a.e
4
1/Du4

Dxx�x�
2

x�
3

Dx.x�y/.x�2y/.x�3y/DW r1;

�a.e
2
1e2/Du2.u�av/vDxx�.x�ay/�

2

y�
3

Dx.x�y/.x�.2Ca/y/yDW r2;

�a.e1e2e1/Du.u�av/vuDx.x�ay/�y�
2

x�
3

Dx.x�.1Ca/y/y.x�3y/DW r3;

�a.e2e2
1/D .u�av/vu2

D .x�ay/y�x�
2

x�
3

D .x�ay/y.x�2y/.x�3y/DW r4;

�a.e
2
2/D .u�av/v.u�av/vD .x�ay/y�.x�ay/�

2

y�
3

D .x�ay/y.x�.2Ca/y/yDW r5:

By direct computation, we see that r1; : : : ; r5 are linearly independent if a¤ 0; 1.
Further, since A.a/ and R are equal in large degree and R is noetherian, A.a/

is noetherian by [Stafford 1985, Lemma 1.4]. �

Next we compute the kernels of the maps �a and establish Theorem 0.6(a). We
will use the following notation:

Notation 2.2 (� , �a, �B). Let kht1; t2i be the free algebra, which we grade by
setting deg ti D i . We set the notation below:
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� � W kht1; t2i!U.WC/ is the algebra map given by �.t1/D e1 and �.t2/D e2.

� �a W kht1; t2i ! R is the algebra map given by �a.t1/ D �a.e1/ D u and
�a.t2/D �a.e2/D .u� av/v, for a 2 k. The image of �a is A.a/. Note that
�a D �a ı� .

� �B W kht1; t2i ! S is the algebra map given by �B.t1/ D �.e1/ D u and
�B.t2/D �.e2/D uv� vw. The image of �B is B. Note that �B D � ı� .

In the next result, we compute a presentation of the algebra A.0/.

Lemma 2.3. The kernel of �0 is generated by

q WD t2
1 t2� t2t2

1 � 2t2
2 ;

q0 WD t3
1 t2� 3t2

1 t2t1C 3t1t2t2
1 � t2t3

1 C 6t2
2 t1� 12t2t1t2C 6t1t2

2

as a two-sided ideal.

Proof. Let ADA.0/, and consider the exact sequence of right A-modules

0 �!K �!AŒ�1�˚AŒ�2�
.u;uv/
���!A �! k �! 0:

Claim. As a right A-module, K is generated by

.u2v;�u.uC 2v// and .u2v2;�u.uC 2v/v/:

Assume the claim. It is well known that one may deduce generators and relations
of a connected graded k-algebra from the first few terms in a minimal resolution
of the trivial module k. The precise method is given in Proposition A.1 in the
Appendix. Using the notation of that result, take

b1
1 D u2v; b1

2 D�u.uC 2v/;

b2
1 D u2v2; b2

2 D�u.uC 2v/v:

Moreover, take
Qb1
1 D t1t2;

Qb1
2 D�t2

1 � 2t2;

Qb2
1 D t2

1 t2� t1t2t1;
Qb2
2 D 2t2t1� 3t1t2:

Note that �0. Qb
i
j /D bi

j for i; j D 1; 2. Now we obtain by Proposition A.1 that

q1 WD t1.
Qb1
1/C t2.

Qb1
2/D t2

1 t2� t2t2
1 � 2t2

2 ;

q2 WD t1.
Qb2
1/C t2.

Qb2
2/D t3

1 t2� t2
1 t2t1C 2t2

2 t1� 3t2t1t2

generate ker�0. Observe that q D q1 and that

q0� 4q2 D�3t3
1 t2C t2

1 t2t1C 3t1t2t2
1 � t2t3

1 � 2t2
2 t1C 6t1t2

2 D�3t1qC qt1 2 .q/:

Thus, ker�0 is generated by q and q0, as desired.
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So it remains to prove the claim.

Proof of claim. Note that there is an isomorphism of graded right A-modules
ˇ W uA\uvA!K given by ˇ.r/D .u�1r;�.uv/�1r/.

Take M WDA\vA. Since AD kCuR, it is easy to show that M D uR\vuR,
and in particular, that M is a right R-module. Since .uRC vuR/�2 DR�2, we
get that

dimk Mn D dimk Rn�1C dimk Rn�2� dimk Rn D n� 2

for n � 2, and dimk Mn D 0 for n < 2. Moreover, u2v D vu.uC 2v/ 2M , so
u2vR�M and hilb.u2vR/D hilb M . So, M D u2vR. Now

uA\uvAD uM D u3vR
.�/
D u3vACu3v2AD uvu.uC2v/ACuvu.uC2v/vA;

where the equality .�/ holds as RDAC vA. Apply the map ˇ to the right-hand
side of the equation above to yield the desired result. �

We can now understand ker�0 and ker�1. We first prove:

Lemma 2.4. We have ker�0 D ker�1.

Proof. Working in the quotient division ring of R, we have

u�1�0.en/uD v
n�1uD �1.en/:

So for any f 2 U.WC/, we have �1.f /D u�1�0.f /u. The result follows. �

Proposition 2.5. We have that ker�a D .e1e3� e2
2
� e4/ for aD 0; 1.

Proof. We first check that e1e3� e2
2
� e4 is indeed in ker�0:

�0.e1e3� e2
2 � e4/D u.uv2/� .uv/.uv/�uv3

D u2v2
�u.uv�v2/v�uv3

D 0:

Recall that �0 D �0 ı � . So, Lemma 2.3 implies that ker�0 D �.ker�0/ is
generated by elements �.q/ and �.q0/ in U.WC/. Now �.q0/D 0 by Lemma 1.1(a),
so ker�0 is generated by �.q/. Moreover,

�.q/D e2
1e2�e2e2

1�2e2
2

D 2
�
e1.e1e2�e2e1/�e2

2�
�

1
2
e2

1e2�e1e2e1C
1
2
e2e2

1

��
D 2.e1e3�e2

2�e4/;

using the relation Œen; em�D .m�n/enCm in U.WC/. Thus, ker�0D .e1e3�e2
2
�e4/,

as claimed.
The result for aD 1 now follows by Lemma 2.4. �

It remains to analyze ker�a with a¤ 0; 1. We do this in the next two results.
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Lemma 2.6. For a¤ 0; 1, the kernel of �a is generated in degrees 5 and 6.

Proof. Take A0 WD A.a/. It suffices to show that the kernel of �a is generated in
degrees 5 and 6. Consider the exact sequence of right A0-modules

0 �!K �!A0Œ�1�˚A0Œ�2�
.u;.u�av/v/
�������!A0 �! k �! 0:

We have that uA0 \ .u � av/vA0 Š K as right A0-modules. As in the proof of
Lemma 2.3, it now suffices to show that uA0\.u�av/vA0 is generated in degrees 5

and 6 as a right A0-module.
Let J WD uA0\ .u� av/vA0, and let L WD uR\ .u� av/vR. Note that J �L.

Since a¤ 0, we get that R�2 D .uRC .u� av/vR/�2: So,

dimk Ln D dimk Rn�1C dimk Rn�2� dimk Rn D n� 2

for n � 2. So, dimk L3 D 1, and is principally generated as a right R-module by
an element of degree 3. In fact,

(2.7) LD rR; where r WD u.uvC .1� a/v2/D .uv� av2/.uC 2v/:

Since A0
�4
DR�4 by Proposition 2.1, we have J�6DL�6. By direct computation,

one obtains that Ji D 0 for i D 0; : : : ; 4; one can also use Routine A.2 in the
Appendix.

Let J 0 D J5A0CJ6A0. We prove by induction that Jn D J 0n, for all n� 5. The
statement is clear for n D 5; 6. For n D 7, we make the following assertion, the
proof of which is presented in the Appendix; see Claim A.3.

Claim. We have that J5A0
2
6� J6A0

1
.

So for n � 6, we have Jn D Ln D rRn�3. So dimk J7 D 5, and dimk J6A0
1
D

dimk J6 D 4. With the claim, we obtain J7 D J5A0
2
CJ6A0

1
. Thus, J7 D J 0

7
. Now

for the induction step, suppose we have established that J 0n D Jn and J 0
n�1
D Jn�1

for some n� 7. Then

JnC1 � J 0nC1 D J 0nuCJ 0n�1.u� av/v D JnuCJn�1.u� av/v

D r.Rn�3uCRn�4.u� av/v/D rRn�2 D JnC1:

The penultimate equality holds as a¤ 1. Thus, the lemma is verified. �

Proposition 2.8. If a¤ 0; 1, then ker�a is the ideal generated by the elements

h1 WD e1e2
2 � e2

1e3� .2a/e2e3C .1C 2a/e1e4� .a
2
C a/e5;

h2 WD e1e5� 4e2e4C 3e2
3 C 2e6;

h3 WD �4e2
1e2

2 � 4e3
2 C 4e3

1e3C .20a2
C 14a� 7/e2

3

� .16a2
C 18aC 5/e1e5C .16a3

C 36a2
C 16a� 2/e6:
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Proof. By Lemma 2.6, we just need to produce linearly independent elements of
ker�a in degrees 5 and 6. We have by Routine A.2 that dimk.ker�a/5 D 1 and
that we can choose a basis of .ker�a/5 to be the element h1. In fact, we verify that
�a.h1/D 0 using Lemma 1.3 and (1.4), while suppressing some � superscripts:

�a.h1/D u.u� av/v.u� av/v�u2.u� 2av/v2
� .2a/.u� av/v.u� 2av/v2

C .1C 2a/u.u� 3av/v3
� .a2

C a/.u� 4av/v4

D x.x� ay/�y.x� ay/�
3

y �xx�.x� 2ay/�
2

y2

� .2a/.x� ay/y.x� 2ay/�
2

y2

C .1C 2a/x.x� 3ay/�y3
� .a2

C a/.x� 4ay/y4

D x.x� .1C a/y/y.x� .3C a/y/y �x.x�y/.x� .2C 2a/y/y2

� .2a/.x� ay/y.x� .2C 2a/y/y2

C .1C 2a/x.x� .1C 3a/y/y3
� .a2

C a/.x� 4ay/y4

D 0:

On the other hand, we have by Routine A.2 that dimk.ker�a/6 D 4 and that we
can take a basis of .ker�a/6 to be h2; h3 along with

h4 WD 4e3
2 � 4e1e2e3C .7� 4a/e2

3 C .1C 4a/e1e5C .2� 4a� 4a2/e6;

h5 WD 4e3
2 C .7� 14a/e2

3 � 4e2
1e4C .5C 14a/e1e5C .2� 16a� 12a2/e6:

By direct computation we have

e1h1 D e2
1e2

2 � e3
1e3� .2a/e1e2e3C .1C 2a/e2

1e4� .a
2
C a/e1e5;

h1e1 D e1e2
2e1� e2

1e3e1� .2a/e2e3e1C .1C 2a/e1e4e1� .a
2
C a/e5e1

D e2
1e2

2 � e3
1e3� .2C 2a/e1e2e3C .2a/e2

3 C .3C 2a/e2
1e4C .4a/e2e4

� .2C 7aC a2/e1e5C 4.a2
C a/e6:

Claim. We have that h2, h3, e1h1, h1e1 are k-linearly independent and that

h4 D 2a.2aC 1/h2� h3� .6C 4a/e1h1C .2C 4a/h1e1;

h5 D 4a2h2� h3� .4C 4a/e1h1C .4a/h1e1:

The proof is presented in the Appendix; see Claim A.5. Thus, the result holds.
Now for the reader’s convenience, we verify that �a.hi/D 0 for i D 2; 3 using

Lemma 1.3 and (1.4), while suppressing some � superscripts:

�a.h2/D u.u�4av/v4
�4.u�av/v.u�3av/v3

C3.u�2av/v2.u�2av/v2
C2.u�5av/v5

D x.x�4ay/�y4
�4.x�ay/y.x�3ay/�

2

y3

C3.x�2ay/y2.x�2ay/�
3

y2
C2.x�5ay/y5
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D x.x�.1C4a/y/y4
�4.x�ay/y.x�.2C3a/y/y3

C3.x�2ay/y2.x�.3C2a/y/y2
C2.x�5ay/y5

D 0;

�a.h3/D�4u2.u�av/v.u�av/v�4.u�av/v.u�av/v.u�av/vC4u3.u�2av/v2

C.20a2
C14a�7/.u�2av/v2.u�2av/v2

�.16a2
C18aC5/u.u�4av/v4

C.16a3
C36a2

C16a�2/.u�5av/v5

D�4xx�.x�ay/�
2

y.x�ay/�
4

y

�4.x�ay/y.x�ay/�
2

y.x�ay/�
4

yC4xx�x�
2

.x�2ay/�
3

y2

C.20a2
C14a�7/.x�2ay/y2.x�2ay/�

3

y2

�.16a2
C18aC5/x.x�4ay/�y4

C.16a3
C36a2

C16a�2/.x�5ay/y5

D�4x.x�y/.x�.2Ca/y/y.x�.4Ca/y/y

�4.x�ay/y.x�.2Ca/y/y.x�.4Ca/y/y

C4x.x�y/.x�2y/.x�.3C2a/y/y2

C.20a2
C14a�7/.x�2ay/y2.x�.3C2a/y/y2

�.16a2
C18aC5/x.x�.1C4a/y/y4

C.16a3
C36a2

C16a�2/.x�5ay/y5

D 0: �

3. Elementary proofs that U.WC/ and U.W / are not noetherian

In this section, we establish the remaining part of Theorem 0.7, that ker�0 D

ker�1 is not finitely generated as a left or right ideal of U.WC/. We also prove
Theorem 0.8.

We first focus on U.WC/. Recall the map � WU.WC/� B from Definition 0.3,
and consider Notations 0.2, 1.2, 1.6, and 2.2 along with the following.

Notation 3.1 (p, I ). Let p WD�.e1e3�e2
2
�e4/ be an element of B, and let I WD .p/

be a two-sided ideal of B. Note that by Proposition 2.5, ID�.ker�0/D�B.ker�0/.

We begin by establishing some basic facts about p and I .

Lemma 3.2.

(a) p D v3w� v2w2.

(b) p is a normal element of S and of Q.

(c) I DQp.
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Proof. We employ Lemma 1.3 and (1.4) in all parts.

(a) Consider the computation in S below:

p D �.e1e3� e2
2 � e4/

D u.u� 2w/v2
� .u�w/v.u�w/v� .u� 3w/v3

D x.x� 2z/�y�
2

y�
3

� .x� z/y�.x� z/�
2

y�
3

� .x� 3z/y�y�
2

y�
3

D x.x�y � 2z/y2
� .x� z/y.x� 2y � z/y � .x� 3z/y3

D y3z�y2z2

D v3w� v2w2:

(b) From part (a), we get that p is a normal element of S , and of Q, since vpD pv,
wp D pw, and

up D u.v3w� v2w2/D xy�y�
2

y�
3

z�
4

�xy�y�
2

z�
3

z�
4

D .y3z�y2z2/x

D .y3z�y2z2/.xC 4y/�
4

D .v3w� v2w2/.uC 4v/D p.uC 4v/:

(c) On one hand, we get that I DBpB �QpQDQp, by Lemma 1.7 and part (b).
On the other hand, recall that R is the subalgebra of Q generated by u; v. We will
show by induction on i and j that p.vw/iRj�2i � I for all 0 � i �

�
1
2
j
˘
; this

yields pQj � I .
The base case i D j D 0 holds since p 2 I . For the induction step, assume

that p.vw/iRj�2i � I . Now it suffices to show that (i) p.vw/iRjC1�2i � I and
(ii) p.vw/iC1Rj�2i � I .

For (i), we have by induction that

I � up.vw/iRj�2i Cp.vw/iRj�2iuDW I
0;

since u is a generator of B. Now consider the following computations, where we
suppress the action of � on invariant elements and on graded pieces of kŒx;y�:

I 0Dx.y3z�y2z2/.yz/ikŒx;y�j�2iC.y
3z�y2z2/.yz/ikŒx;y�j�2ix

�j C4

D.y3z�y2z2/.yz/ixkŒx;y�j�2iC.y
3z�y2z2/.yz/i.xC.jC4/y/kŒx;y�j�2i

D.y3z�y2z2/.yz/i
�
xkŒx;y�j�2iC.xC.jC4/y/kŒx;y�j�2i

�
D.y3z�y2z2/.yz/ikŒx;y�jC1�2i ;

where the last equality holds since j C 4> 0. Thus (i) holds.
For (ii), we get that p.vw/iRjC2�2i � I by applying (i) twice. Now

I � p.vw/iRjC2�2i Cp.vw/iRj�2i.uv� vw/� p.vw/iRj�2i.vw/:

Note that Rk.vw/D .vw/Rk for all k. So I �p.vw/iC1Rj�2i and we are done. �
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Now we complete the proof of Theorem 0.7.

Theorem 3.3. The ideal I of B is not finitely generated as a left or right ideal. As
a result, the kernel of �0 is not finitely generated as a left or right ideal of U.WC/.

Proof. Recall that ker�0 D .e1e3 � e2
2
� e4/ by Proposition 2.5. It is clear that

if ker�0 is finitely generated as a left/right ideal of U.WC/, then I is finitely
generated as a left/right ideal of B. Therefore, to show that ker�0 is not finitely
generated it suffices to show that BI and IB are not finitely generated.

By way of contradiction, suppose that BI is finitely generated. Then there exists
n� 4 such that BI�n D I . Since B is generated by u and .u�w/v, we get that

(3.4) InC1 D B1InCB2In�1 D uInC .u�w/vIn�1:

By Lemma 3.2, I DQp�SpS DSp. Since vI � vSp�Sp, we get by (3.4) that

(3.5) InC1 � uSpC .u�w/Sp D uSpCwSp:

Using Lemma 1.3 and (1.4), it is easy to see that uSCwSDxkŒx;y; z�CzkŒx;y; z�
and that a positive power of y cannot belong to the right-hand side. So, a positive
power of v cannot belong to uS CwS . Therefore,

(3.6) vn�3p 62 uSpCwSp:

On the other hand, vn�3p 2 InC1 by Lemma 3.2(c). This contradicts (3.5) and
(3.6). Thus, BI is not finitely generated.

Next, suppose that IB is finitely generated. Then there exists n � 4 such that
I�nB D I , with

(3.7) InC1D InB1CIn�1B2D InuCIn�1.u�w/vD InuCIn�1v.uCv�w/:

We get that I; Iv � pS by Lemma 3.2(b). So, the right-hand side of (3.7) is
contained in pSuCpS.v�w/. With an argument similar to that in the previous
paragraph, we obtain that SuCS.v �w/ does not contain positive powers of v.
So, pvn�3 62 InuC In�1v.uC v � w/. On the other hand, pvn�3 2 InC1 by
Lemma 3.2(b,c), which contradicts (3.7). Thus, IB is not finitely generated. �

Remark 3.8. We do not know whether or not ker�a is finitely generated for a¤0; 1.

One can of course deduce from Theorem 3.3 that U.W / and U.V / are neither
left nor right noetherian; see [Sierra and Walton 2014, Lemma 1.7]. Nevertheless,
a direct proof that U.W / is not left or right noetherian is of independent interest,
and we give such a result to end the section. First, we establish some notation.

Notation 3.9 ( yS , yR, yB, y�, y�a, �a, yI ). Since v is normal in S and in R, we may
invert it. Let yS WD S Œv�1�, and let yR WDRŒv�1�.
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Note that � extends to an algebra homomorphism y� WU.W /! yS defined by (0.4)
for all n 2 Z. Likewise, �a extends to an algebra homomorphism y�a W U.W /! yR

defined by (0.5) for all n 2 Z. For a 2 k define �a W
yS ! yR by u 7! u, v 7! v,

w 7! av. Note that y�a D �a
y�.

Let yB WD y�.U.W //. Finally, let yI D y�.ker y�0/. Note that yI D yB \ ker �0.

We first note that the proof of Lemma 2.4 extends to U.W / to give

(3.10) ker y�0 D ker y�1:

Proposition 3.11. Recall p D �.e1e3� e2
2
� e4/Dw.v�w/v

2 from Notation 3.1
and Lemma 3.2. We have

yI D yB \ ker �0 D
yB \ ker �1 D

yBp yB D ySp D p yS :

Proof. We first show that yBp yBD ySpDp yS . Certainly, yBp yB� ySp yS D ySpDp yS ,
where the last two equalities hold because a normal element of S will also be
normal in yS .

For the other direction, we will show yRwjp � yBp yB for all j � 0 by induction.
Since yS D yR �kŒw�, this will imply ySp � yBp yB. So assume wjp 2 yBp yB for some
j � 0 (it is clear for j D 0). Since up D p.uC 4v/, we get that for all n 2 Z,

yBp yB 3 Œy�.en/; w
jp�D .u� .n� 1/w/vn�1wjp�wjp.u� .n� 1/w/vn�1

D .j C 4/vnwjp:

So, kŒv; v�1� �wjp � yBp yB. Since uD y�.e1/ 2 yB, we have

yRwjp D kŒu� � kŒv; v�1� �wjp � yBp yB:

Finally, since we have seen that v�1wjp 2 yRwjp � yBp yB, we have that

yBp yB 3 .y�.e1/� y�.e2/v
�1/wjp D wjC1p:

By induction, yBp yB D ySp, as desired.
From the definitions, p 2 .ker �0/\ .ker �1/. So

yBp yB � .ker �0/\ .ker �1/\ yB D w yS \ .v�w/ yS D w.v�w/ yS D p yS :

Combining this with the first part of the proof, yBp yB D .ker �0/\ .ker �1/\ yB.
Then by (3.10) and the definition of yI , we have

yI D .ker �0/\ yB D y�.ker y�0/D y�.ker y�1/D .ker �1/\ yB;

completing the proof. �
From Proposition 3.11 we obtain:

Theorem 3.12. The ideal yI of yB is not finitely generated as a left or right ideal. As
a result, the kernel of y�0 is not finitely generated as a left or right ideal of U.W /.
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Proof. This argument is similar to the proof of Theorem 3.3. It suffices to show
that yI is not finitely generated as a left or right ideal of yB.

By way of contradiction, suppose we have yI D yB.yI�n ˚ � � � ˚
yIn/ for some

n 2N. For all k 2Z, we have y�.ek/ 2 u ySCw yS . So, yBk � u ySCw yS for all k ¤ 0,
and yIk � u ySCw yS for all k with jkj> n. Note that a power of v cannot belong to
u yS Cw yS . So, vn�3p 62 yI . However, by Proposition 3.11, we get that yI D ySp and
vn�3p 2 yI . This contradiction shows that yB

yI is not finitely generated.
The proof that yI yB is not finitely generated is similar; we leave the details to the

reader. �
Corollary 3.13. The universal enveloping algebra U.V / is neither left nor right
noetherian.

Proof. This follows directly from Theorem 3.12, since U.W /D U.V /=.c/. �
Remark 3.14. After the first draft of this paper was finished, we learned of the
results of Conley and Martin [2007]. We thank the referee for calling that work to
our attention. The paper considers a family of homomorphisms defined as (using
their notation)

�
 W U.W /! kŒx;x�1; @�; en 7! xnC1@C .nC 1/
xn:

Using the identification uD x2@, v D x from the discussion after Theorem 0.7, we
have

y�a.en/D .x
2@� .n� 1/ax/xn�1

D xnC1@C .1� a/.n� 1/xn:

The reader may verify that

y�a.e/D x2.1�a/�1�a.e/x
�2.1�a/

for all e 2 U.W / (where here one uses a suitable extension of kŒx;x�1; @� to carry
out computations). As a result,

(3.15) ker y�a D ker�1�a

for all a 2 k.
Conley and Martin [2007, Theorem 1.2] showed (using (3.15)) that

ker y�0 D ker y�1 D .e�1e2� e0e1� e1/:

Recall from Proposition 2.5 that ker�0 is generated as a two-sided ideal by g4 WD

e1e3� e2
2
� e4. A computation gives that

ad.e3
�1/.g4/D Œe�1; Œe�1; Œe�1;g4� � �D 12.e�1e2� e0e1� e1/;

and it follows that

.g4/D ker y�0 D ker y�1 D .e�1e2� e0e1� e1/:
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4. The connection between the maps � and �

For the remainder of the paper, we return to considering U.WC/. The main goal of
this section is to relate the map � (of Definition 0.3) that played a crucial role in the
proof of Theorem 3.3 to the map � (of Notation 0.9) that was the focus of [Sierra
and Walton 2014]. We show that ker� D ker �; in fact, we have the next result.

Theorem 4.1. We have that ker � D ker� D
T

a2k ker�a. As a consequence,
�.U.WC//Š �.U.WC//.

Consider Notation 0.2 and the following notation for this section. Recall the
definitions of X; f; � from Notation 0.9. So, � 2Aut.X / and �� W k.X /! k.X / is
the pullback of � . Here we take � 2 Aut.P2/ and � 2 Aut.P1/ to be morphisms of
varieties, defined by

�.Œx W y W z�/D Œx�y W y W z� and �.Œx W y�/D Œx�y W y�:

We denote the respective pullback morphisms by �� and ��. However, to be
consistent with Lemma 1.3 (and abusing notation slightly), we still write

S Š kŒx;y; z�� and RŠ kŒx;y�� :

We also establish the convention that h� WD ��h for h 2 k.X /, and similarly for
pullback by other morphisms.

Before proving Theorem 4.1, we provide some preliminary results.

Lemma 4.2 ( a, ‰a). For a 2 k, we have the following statements.

(a) We have a well-defined morphism  a W P
1!X given by

 a.Œx Wy�/D Œ2x2
�4xy�6ay2

Wx2
�2xyCy2

W�x2
C3xy�2y2

Wx2
�4xyC4y2�:

(b)  a� D � a.

(c)  �a extends to an algebra homomorphism ‰a W k.X /Œt I ���! k.P1/ŒsI ���,
where ‰a.t/D s.

Proof. (a,b) Both are straightforward. Part (a) is a direct computation. On page 508
in the Appendix, we verify that . a�/

� D �� �a D  
�
a �
� D .� a/

� as maps from
k.X /! k.P1/. Thus, (b) holds.

(c) We have for all h; ` 2 k.X / and n;m 2 N that

‰a.htn`tm/D‰a.h`
�n

tnCm/D  �a .h/ 
�
a .`

�n

/snCm

D  �a .h/ 
�
a .`/

�n

snCm
D  �a .h/s

n �a .`/s
m
D‰a.htn/‰a.`t

m/:

Thus, ‰a is an algebra homomorphism. �
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Lemma 4.3 (Ca). For a 2 k, define the curve

Ca D V .wC 6axC .4C 12a/yC .2C 6a/z;xz�y2/�X:

Then  a defines an isomorphism from P1! Ca.

Proof. That the image of  a of Lemma 4.2(a) is contained in Ca is a straightforward
verification. The inverse map to  a is defined by the birational map Œw W x W y W z� 7!
Œ2xCy W xCy�; we leave the verification of the details to the reader. �

Lemma 4.4 (
 ). Define a map 
 WR!k.P1/ŒsI ��� as follows: if h2RnDkŒx;y�n,
let


 .h/D
h

x.x�y/ � � � .x� .n� 1/y/
sn:

Then 
 is an injective k-algebra homomorphism.

Proof. Let h 2 kŒx;y�n and ` 2 kŒx;y�m. Then


 .h�`/D 
 .h`�
n

/D
h`�

n

x.x�y/ � � � .x�.nCm�1/y/
snCm

D
h

x.x�y/ � � � .x�.n�1/y/

�
`

x.x�y/ � � � .x�.m�1/y/

��n

smCn

D
h

x.x�y/ � � � .x�.n�1/y/
sn `

x.x�y/ � � � .x�.m�1/y/
sm
D 
 .h/
 .`/:

So, 
 is a homomorphism; injectivity is clear. �

Proposition 4.5. Retain the notation of Lemmas 4.2 and 4.4. Let a 2 k. Then
‰a�D 
�a as maps from U.WC/! k.P1/ŒsI ���, and ker‰a�D ker�a.

Proof. By Lemma 1.1(a), it suffices to verify that the maps ‰a� and 
�a agree on
e1 and e2. We have

‰a.�.e1//D‰a.t/D s D 
 .u/D 
 .�a.e1//:

We verify that

(4.6)  �a .f /D
xy � ay2

x2�xy

on page 508 in the Appendix. Thus,

‰a.�.e2//D  
�
a .f /s

2
D

xy � ay2

x2�xy
s2
D 
 .uv� av2/D 
�a.e2/:

The final statement follows from the fact that 
 is injective (Lemma 4.4). �
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Proof of Theorem 4.1. By Lemma 4.3,  �a hD 0 if and only if hjCa
� 0. Now, the

curves Ca cover an open subset of X . (One way to see this is that, because
S

a Ca

is dense in X and is clearly constructible, by [Hartshorne 1977, Exercise II.3.19(b)]
it contains an open subset of X .) Thus if h 2 k.X / is in the intersection

T
a ker �a ,

then h vanishes on this open subset and so h D 0. So,
T

a ker‰a D f0g. Thus,
ker �D

T
a ker‰a�D

T
a ker�a, where the last equality holds by Proposition 4.5.

To show that ker� D
T

a ker�a, define closed immersions ia W P1 ! P2 for
a 2 k by ia.Œx W y�/D Œx W y W ay�. Then im.ia/D V .z�ay/, and pullback along ia
induces the ring homomorphism

i�a W kŒx;y; z�! kŒx;y�; x 7! x; y 7! y; z 7! ay:

The reader may verify that ia� D �ia, and that i�a is also a homomorphism from
S D kŒx;y; z�� to RD kŒx;y�� . In terms of u; v; w, we have

i�a .u/D u; i�a .v/D v; i�a .w/D av:

That is, i�a D �ajS , where �a was defined in Notation 3.9. We see that i�a� D �a.
As with the first paragraph, the curves V .z�ay/ cover an open subset of P2: in

fact,
S

a V .z�ay/� .P2XV .y//. So
T

a ker i�a Df0g. Thus, ker�D
T

a ker i�a�DT
a ker�a, completing the proof. �

5. The kernel of �

In this section, we analyze the map � from Definition 0.3. In particular, we verify
part (c) of Theorem 0.6. To proceed, recall Notations 0.2, 1.2, 1.6, and 2.2.

Theorem 5.1. The kernel of � is generated as a two-sided ideal by

g WD e1e5� 4e2e4C 3e2
3 C 2e6:

Proof. First, observe that as e1e5; e2e4; e
2
3
; e6 are elements of the standard basis for

U.WC/ (by Lemma 1.1(b)), they are linearly independent. So, we have that g ¤ 0.
Now we verify that �.g/D 0 by using Lemma 1.3 and (1.4):

�.g/Du.u�4w/v4
�4.u�w/v.u�3w/v3

C3.u�2w/v2.u�2w/v2
C2.u�5w/v5

D x.x� 4z/�y4
� 4.x� z/y.x� 3z/�

2

y3

C 3.x� 2z/y2.x� 2z/�
3

y2
C 2.x� 5z/y5

D x.x�y � 4z/y4
� 4.x� z/y.x� 2y � 3z/y3

C 3.x� 2z/y2.x� 3y � 2z/y2
C 2.x� 5z/y5

D 0:

We take the following notation for the rest of the proof.
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Notation 5.2 (M , M 0, b5, b6, b7, �). Consider the right B-modules

M WD uB \ .u�w/vB and M 0
WD b5BC b6BC b7B;

with

b5 D .uv�vw/.u
3
�6.uv�vw/uC12u.uv�vw//;

b6 D .uv�vw/.�48.uv�3vw/v2
�36u.uv�2vw/vCu4/;

b7 D .uv�vw/.u
5
�40..uv�vw/2u�3.uv�vw/u.uv�vw/C3u.uv�vw/2//:

Further, take � WB!A.0/ to be the map induced by the projection �0 W
yS � yRD

yS=.w/ from Notation 3.9.

The remainder of the proof will be established through a series of lemmas.

Lemma 5.3. We obtain that b5; b6; b7 2uB\.u�w/vB. In other words, M 0�M .

Proof. Let

r5 WD e2.e
3
1 � 6e2e1C 12e1e2/;(5.4)

r6 WD e2.�48e4� 36e1e3C e4
1/;(5.5)

r7 WD e2.e
5
1 � 40.e2

2e1� 3e2e1e2C 3e1e2
2//:(5.6)

We have as a consequence of the degree-5 relation of U.WC/ in Lemma 1.1(a) that

(5.7) r5 D e1.e
2
1e2� 3e1e2e1C 3e2e2

1 C 6e2
2/;

and as a consequence of the degree-7 relation of U.WC/ in Lemma 1.1(a) that

(5.8) r7 D e1.e
4
1e2� 5e3

1e2e1C 10e2
1e2e2

1 � 10e1e2e3
1 C 5e2e4

1 � 40e3
2/:

Thus r5; r7 2 e1U.WC/\ e2U.WC/. Since b5 D �.r5/ and b7 D �.r7/, these are
both in uB \ .uv� vw/B.

Note that r6 2 e2U.WC/, so b6 D �.r6/ 2 .u�w/vB. Further,

r6 D e1.�36e2e3� 18e5C 2e4e1� e3e2
1 C e2e3

1/C 12g:

Thus, b6 2 uB as well. �

Lemma 5.9. Suppose that M DM 0. Then ker� D .g/ and the theorem holds.

Proof. Let K be the kernel of

˛ W BŒ�1�˚BŒ�2�! B; .b; b0/ 7! .ubC .uv� vw/b0/:

It is a standard fact that the map

ˇ WM !K
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defined by ˇ.r/ D .u�1r;�.uv � vw/�1r/ is an isomorphism of graded right
B-modules, as in the proof of Lemma 2.3. Thus, K is generated by ˇ.b5/, ˇ.b6/,
and ˇ.b7/ by the assumption. By Proposition A.1 in the Appendix, the kernel
of �B is generated as a two-sided ideal of kht1; t2i by a degree-5 element q5, a
degree-6 element q6, and a degree-7 element q7. We compute q5 and q7 by applying
the formula from Proposition A.1 to ˇ.b5/ and ˇ.b7/, and by using (5.4)–(5.8).
Namely, take

Qb1
1 D t2

1 t2� 3t1t2t1C 3t2t2
1 C 6t2

2 ;

Qb1
2 D�t3

1 C 6t2t1� 12t1t2;

Qb2
1 D t4

1 t2� 5t3
1 t2t1C 10t2

1 t2t2
1 � 10t1t2t3

1 C 5t2t4
1 � 40t3

2 ;

Qb2
2 D�t5

1 C 40.t2
2 t1� 3t2t1t2C 3t1t2

2 /:

So, we have that

q5 D t1 Qb
1
1 C t2 Qb

1
2 D Œt1; Œt1; Œt1; t2� � �C 6Œt2; Œt2; t1� �;

q7 D t1 Qb
2
1 C t2 Qb

2
2 D Œt1; Œt1; Œt1; Œt1; Œt1; t2� � � � �C 40Œt2; Œt2; Œt2; t1� � �:

By Lemma 1.1(a), q5 and q7 generate the kernel of � . So, ker� D �.ker�B/D

.�.q6//. We see immediately that .ker�/6 is a 1-dimensional k-vector space,
generated by �.q6/. Since g 2 .ker�/6 is nonzero, we have g D �.q6/ up to a
scalar multiple. Therefore, ker� D .g/. �

Our goal now is to show that M DM 0; we do this by comparing Hilbert series.

Lemma 5.10. The Hilbert series of M is t5.1� t/�2.1� t2/�1.

Proof. Since A.0/D k˚uR we have

hilb A.0/D 1C t.hilb R/D 1C
t

.1� t/2
D

1� t C t2

.1� t/2
:

On the other hand, it is well known that

hilb QD hilb kŒx;y;yz�D
1

.1� t/2.1� t2/
:

Since �0 D � ı �, we get that ker � D �.ker�0/ (which is denoted by I in
Notation 3.1). So, by Lemma 3.2(c), we get

hilb ker �D
t4

.1� t/2.1� t2/
:
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Then

hilb B D hilb A.0/C hilb ker �

D
1� t C t3� t4

.1� t/2.1� t2/
C

t4

.1� t/2.1� t2/
D

1� t C t3

.1� t/2.1� t2/
:

Finally, we compute hilb M from the exact sequence

0 �!M
ˇ
�!BŒ�1�˚BŒ�2�

˛
�!B �! k �! 0;

where ˛; ˇ are as in the proof of Lemma 5.9. This gives

hilb M D .t2
C t � 1/.hilb B/C 1D

t5

.1� t/2.1� t2/
;

as claimed. �

We now provide results on the Hilbert series of M 0.

Lemma 5.11. We have that hilb �.M 0/� t5.1� t/�2.

Proof. Let a5 WD �.b5/ and a6 WD �.b6/. Then

a5 D uvu.u2
� 6vuC 12uv/

D xy.x� 2y/
�
.x� 3y/.x� 4y/� 6y.x� 4y/C 12.x� 3y/y

�
D x2.x�y/.x� 2y/y;

a6 D uvu.u3
� 36uv2

� 48v3/

D xy.x� 2y/
�
.x� 3y/.x� 4y/.x� 5y/� 36.x� 3y/y2

� 48y3
�

D x2.x�y/.x� 2y/y.x� 11y/

D a5.u� 6v/:

Since a5u and a5.u�6v/ are in �.M 0/ and u and u�6v span R1, we have a5R1�

�.M 0/. We get that �.M 0/�a5A.0/Ca5R1A.0/, as �.M 0/ is a right A.0/-module
and contains a5R�1. Since A.0/CR1A.0/ D R, we obtain that �.M 0/ � a5R.
Now as hilb RD .1� t/�2, we conclude that hilb �.M 0/� t5.1� t/�2. �

Lemma 5.12. We have that hilb.M 0\ ker �/� t7.1� t/�2.1� t2/�1.

Proof. Again, recall that ker �D �.ker�0/, which is denoted by I in Notation 3.1.
Moreover by Lemma 3.2(c), we have I DQpD pQ, where pD v3w�v2w2. Let

h WD .uv� vw/.uC 2v/p D .xy �yz/x.y3z�y2z2/:

Claim. We have

b5QC b6QC b7Q 3 x.xy �yz/.xyzCy2z/D .uv� vw/.uC 2v/.uC 4v/vw:
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The proof of this claim is provided in the Appendix; see Claim A.6(a).
Since M 0\ I �M 0I D b5QpC b6QpC b7Qp, we have

(5.13) M 0
\ I � .uv� vw/.uC 2v/.uC 4v/vwpQ

D .xy �yz/x.y3z�y2z2/.xCy/yzQD h.xCy/yzQ:

We now show by induction that M 0\ I � hQn for all n� 0.

Claim. M 0\ I � hQn for nD 0; 1; 2.

The proof of this assertion is provided in the Appendix; see Claim A.6(b). We
will prove the result for larger n by geometric arguments. The maximal graded
nonirrelevant ideals of kŒx;y;yz� are in bijective correspondence with k-points of
the weighted projective plane P.1; 1; 2/ [Harris 1992, Example 10.27]. We use the
notation .a W b W c/ to denote a point of P.1; 1; 2/. Let

K.n/ WD .x� ny/kŒx;y;yz�C .y2
�yz/kŒx;y;yz�

be the graded ideal of polynomials vanishing at .n W 1 W 1/.
Suppose now that M 0\ I � hQn for some n� 2. Then M 0\ I contains

h.QnuCQn�1.uv� vw//

D h
�
.x� .nC 7/y/kŒx;y;yz�C ..x� .nC 6/y/y �yz/kŒx;y;yz�

�
nC1

D h
�
.x� .nC 7/y/kŒx;y;yz�C .y2

�yz/kŒx;y;yz�
�
nC1

D hK.nC 7/nC1:

From (5.13), we get .M 0\I/nC1 3h.xyzCy2z/yn�2. Since .xyzCy2z/yn�2

does not vanish at .nC 7 W 1 W 1/, it is not in hK.nC 7/nC1. Thus,

hK.nC 7/nC1C kh.xyzCy2z/yn�2
D hkŒx;y;yz�nC1 �M 0

\ I;

where the equality holds as hK.nC 7/nC1 is codimension 1 in hkŒx;y;yz�nC1.
Hence, hQnC1 �M 0\ I .

Now, by induction, we obtain M 0\I � hQ. Since hilb QD .1� t/�2.1� t2/�1,
we have

hilb.M 0
\ I/�

t7

.1� t/2.1� t2/
: �

Lemma 5.14. We have that hilb M D hilb M 0D t5.1� t/�2.1� t2/�1. As a result,
M DM 0.

Proof. Combining Lemmas 5.11 and 5.12, we have

hilb.M 0/�
t5

.1� t/2
C

t7

.1� t/2.1� t2/
D

t5

.1� t/2.1� t2/
:
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On the other hand, by Lemmas 5.3 and 5.10,

hilb.M 0/�
t5

.1� t/2.1� t2/
:

Thus, hilb M D hilb M 0. Since M 0 �M again by Lemma 5.3, we conclude that
M DM 0. �

Theorem 5.1 now follows from Lemmas 5.9 and 5.14. �

Remark 5.15. A shorter proof of Theorem 5.1 follows from the results of [Conley
and Martin 2007]. Recall from Notation 3.9 that we may extend � to a map
y� W U.W /! yS , using the same formula (0.4) for y�.en/ with n� 0. Then [Conley
and Martin 2007, Theorem 1.3] and (3.15), together with Theorem 4.1, give that
ker y� D .e�1e3� 4e0e2C 3e2

1
C 2e2/. The reader may verify that

ad.e4
�1/.g/D Œe�1; Œe�1; Œe�1; Œe�1;g� � � �D 24.e�1e3� 4e0e2C 3e2

1 C 2e2/:

Since y�.g/D 0, we have .g/� ker y� D .e�1e3�4e0e2C3e2
1
C2e2/� .g/, so all

are equal.

6. A partial result on chains of two-sided ideals

It is not known whether U.WC/ satisfies the ascending chain condition (ACC) on
two-sided ideals; see Question 0.11. We do not answer this question here; however,
we prove the partial result that the non-noetherian factor B of U.WC/ does have
ACC on two-sided ideals.

Recall Notations 0.2, 1.2, 1.6; in particular, Q is the subalgebra of S generated by
u; v; vw. Throughout, we consider B as a subalgebra of Q. We begin by proving:

Lemma 6.1. Let h be a nonzero, homogeneous, normal element of Q, and let a 2 k.
Then the Q-bimodules

N WD hQ=hvQ and Ma D hQ=h.vw� av2/Q

are noetherian B-bimodules under the action induced from Q.

Proof. We remark that any normal element of Q must be in the commutative
subalgebra kŒv; vw�, and thus, must commute with v and vw. In particular, vQN D0

and .vw� av2/QMa D 0DMa.vw� av2/Q.
Let � WQ!Q=vQ be the canonical projection. (Note that vw 62 ker � .) Since

u.vw/� .vw/uD 2v2w is contained in ker � , the image Q=vQ is commutative. It
is easy to see that Q=vQŠ kŒs; t � under the identification s D �.u/, t D �.vw/D

�.uv�vw/. Note that sD �.�.e1// and t D �.�.e2// are in B. So, �.B/DQ=vQ.
Thus, a left B-submodule of hQ=hvQ is simply an ideal of kŒs; t �. So, hQ=hvQ
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is noetherian as a left B-module. As chains of B-bimodules are also chains of left
B-modules, hQ=hvQ is also a noetherian B-bimodule.

Now define an algebra homomorphism ı W Q ! R by ı.u/ D u, ı.v/ D v,
and ı.vw/D av2. (Note that ı D �ajQ from Notation 3.9.) It is easy to see that
ker ı D .vw � av2/Q and that ı is surjective. Note also that ı.�.e1// D u and
ı.�.e2//D uv � av2. Thus, ı.B/D A.a/ as subalgebras of R. If a¤ 0; 1, then
by Proposition 2.1, A.a/�R�4 is noetherian, and R is a finitely generated right
A.a/-module. If a D 0, then R D A.0/C vA.0/ is again a finitely generated
right A.0/-module, and A.0/ is noetherian. Thus for a¤ 1, Ma is also a finitely
generated right A.a/-module. So, Ma is noetherian as a right B-module, let alone
a B-bimodule.

If a D 1 then we have, similarly, that ı.B/ D A.1/ is noetherian, and that
RDA.1/CA.1/v is a finitely generated left A.1/-module. It follows that Ma is a
finitely generated left A.a/-module. So, Ma is noetherian as a left B-module, and
again as a B-bimodule. �

We now use geometric arguments to show:

Proposition 6.2. Suppose that k is algebraically closed, and let K � Q be a
nonzero graded ideal. Then Q=K is a noetherian B-bimodule.

Proof. Let T be the commutative ring kŒx;y;yz�. We consider K as a subset of T ,
since (via Lemma 1.3) QD T � and T have the same underlying vector space. For
all n;m 2 N, we have

(6.3) KnCm �KnQm DKn.Tm/
�n

DKnTm;

and so K is also an ideal of T . Further,

(6.4) KnCm �QmKn D Tm.Kn/
�m

:

If T were generated in degree 1, one could obtain directly from (6.3) and (6.4) that
Kn is �-invariant for n� 0 (or see [Artin and Stafford 1995, Lemma 4.4]). A
similar statement holds in our case; however, a proof would take us too far afield
so we work more directly with the graded pieces of K.

Choose n0 so that Kn0
¤0. For all n�n0, let hn¤0 be a greatest common divisor

of Kn, considered as a subset of Tn. By (6.3), hnC1 j hnx; hny. Since x;y have
no common divisor, we have hnC1 j hn for all n� n0. This chain of divisors must
stabilize, and thus there is n1 � n0 such that hnC1h�1

n 2 k for n� n1. Let h WD hn1
.

By (6.4), h j�m.h/ for all m 2N, so h is an eigenvector of �. Thus, h is normal
in Q. Since h jf for all f 2K, we can write K D hJ for some J �Q. Since h

is normal, J is again an ideal of Q. So, (6.3) and (6.4) apply to J .
Since h 2 kŒv; vw� and k is algebraically closed, we have

hD .vw� a1v
2/ � � � .vw� anv

2/vk
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for some n; k 2 N and a1; : : : ; an 2 k. Applying Lemma 6.1 repeatedly, we obtain
that Q=hQ is a noetherian B-bimodule.

From the exact sequence

0! hQ=hJ !Q=K!Q=hQ! 0;

it suffices to prove that hQ=hJ is a noetherian B-bimodule. We make a geometric
argument to do so.

Graded ideals of T correspond to subschemes of the weighted projective plane
P.1; 1; 2/. Note that � acts on P.1; 1; 2/ by �.a W b W c/D .a� b W b W c/.

Let Yn be the subset of P.1; 1; 2/ defined by the vanishing of the polynomials
in Jn, considered now as a subset of T . By the definition of h, for n � n1 the
polynomials in Jn have no nontrivial common factor, and so dim Yn � 0. By (6.3)
and (6.4), we have

YnC1 � Yn\�.Yn/

for n� n1. It follows that there exists n2 � n1 such that

(6.5) YnC1 D Yn D �.Yn/

for n� n2. Let Y WD Yn2
. Since �-orbits in P.1; 1; 2/ are either infinite or trivial,

each point of Y is �-invariant. Note that Y is the subset of P.1; 1; 2/ defined by J ,
considered as an ideal of T .

Let P be an associated prime of J . Since J is graded, P is graded. By using
the Nullstellensatz, with the fact that dim Y � 0, we get that either P D TC, or P

defines some point .a W b W c/ 2 Y . In the first case, certainly y 2 P . In the second
case, .a W b W c/D �.a W b W c/D .a� b W b W c/ and so b D 0. Again, y 2 P .

The radical
p

J is the intersection of the associated primes of J . Since y is
contained in all associated primes, y 2

p
J . Thus, there is some n such that

yn D vn 2 J . So, hQ=hJ is a factor of hQ=hvnQ. Applying Lemma 6.1 again,
we see that hQ=hJ is a noetherian B-bimodule, as desired. �

We now prove Proposition 0.12. In fact, we show:

Proposition 6.6. The ring Q is noetherian as a B-bimodule. As a consequence, B

satisfies ACC on two-sided ideals.

Proof. Let k0 be an algebraic closure of k. If Q˝k k0 were a noetherian bimodule
over B˝kk0, then Q would be a noetherian B-bimodule; this holds as k0 is faithfully
flat over k [Goodearl and Warfield 2004, Exercise 17T]. So it suffices to prove
the result in the case that k is algebraically closed. By standard arguments, it is
sufficient to show that Q satisfies ACC on graded B-subbimodules, or equivalently,
that any nonzero graded B-subbimodule of Q is finitely generated.
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Let K be a nonzero graded B-subbimodule of Q. Since B � Qp D pQ by
Lemma 3.2(c), we have that K D BKB �QpKpQ. Since Q is noetherian, there
is a finite-dimensional graded vector space V �K with QpKpQDQpVpQ.

By Proposition 6.2, the B-bimodule Q=QpVpQ is noetherian. Thus the B-
subbimodule K=QpVpQ of Q=QpVpQ is finitely generated. So, there is a finite-
dimensional vector space W �K such that KDBWBCQpVpQ�BWBCBVB.
As V;W � K, certainly K � BWB CBVB. Thus, K is finitely generated by
V CW , as needed. �

Appendix

We first give a general result from ring theory to which we were not able to find
a reference; it is the converse to [Rogalski 2014, Lemma 2.11]. We then finish
by presenting Maple and Macaulay2 routines and proofs of computational claims
asserted above.

A result in ring theory. Consider the following setting. Let T D kht1; : : : ; tni
be the free algebra. Set deg ti D di 2 Z�1, and grade T by the induced grading.
Suppose that � W T !A is a surjective homomorphism of graded algebras, and let
ai D �.ti/. By definition, the ai generate A as an algebra. Let J D ker� . Consider
the map

˛ WAŒ�d1�˚ � � �˚AŒ�dn�
.a1;:::;an/
������!A

that sends .r1; : : : ; rn/ 7!
Pn

iD1 airi . Note that ˛ is a homomorphism of graded
right A-modules, and set K D ker˛. Let b1; : : : ; bm be homogeneous elements
of K, where bjD .b

j
1
; : : : ; b

j
n /2AŒ�d1�˚ � � � ˚AŒ�dn�. For all 1 � i � n and

1 � j � m, choose homogeneous elements Qbj
i 2 T so that �. Qbj

i / D b
j
i . Let

qj D
Pn

iD1 ti Qb
j
i . (Note that the qi are homogeneous; in fact, deg qj D deg bj.)

Proposition A.1. Retain the notation above. If fb1; : : : ; bmg generate K as a right
A-module, then fq1; : : : ; qmg generate J as an ideal of T .

Proof. Let J 0 be the ideal of T generated by q1; : : : ; qm. Since

�.qj /D
X

i

�.ti/�. Qb
j
i /D

X
i

aib
j
i D ˛.b

j /D 0;

we get that J 0 � J .
We prove by induction that J 0

k
DJ

k
for all k 2N. Certainly J 0

0
DJ

0
D0. Assume

that we have shown that J 0
<k
D J

<k
, and let h 2 J

k
. Because T is generated by

t1; : : : ; tn, there are homogeneous elements f1; : : : ; fn 2 T , with degfi D k � di ,
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such that hD
P

i tifi . Then

0D �.h/D

nX
iD1

ai�.fi/D ˛.�.f1/; : : : ; �.fn//:

Since the bj generate K D ker˛, there are homogeneous elements r1; : : : ; rm 2A

with .�.f1/; : : : ; �.fn// D
Pm

jD1 bj rj . Let Qr1; : : : ; Qrm be homogeneous lifts of
r1; : : : ; rm. Then for each i we have

�.fi/D
X

j

b
j
i rj D

X
j

�. Qb
j
i Qrj /:

So, fi�
P

j
Qb
j
i Qrj 2 J D ker� . Since degfi D k�di < k, each fi�

P
j
Qb
j
i Qrj 2 J 0.

Thus J 0 containsX
i

tifi �

X
i

ti

�X
j

Qb
j
i Qrj

�
D h�

X
j

�X
i

ti Qb
j
i

�
Qrj D h�

X
j

qj Qrj :

As
P

i ti Qb
j
i D qj 2 J 0 by definition, we have

P
j qj Qrj 2 J 0. Therefore, h 2 J 0

k
. �

Proof of assertions: Maple routines. We begin with the following Maple routine.

Routine A.2. A Maple routine to compute the kernel of �a at a specific degree n

is presented as follows.
Recall from Lemma 1.1(b) that a k-vector space basis of U.WC/n is given by

partitions of n. Moreover, we employ Lemma 1.3 and (1.4) to input a function
f .i; j /D �a.ei/�

j, considered as an element of kŒx;y�.
with(combinat,partition): with(LinearAlgebra):
# Choose value of n
n:=1;
N:=partition(n): f:=(i,j)->((x-j*y)-(i-1)*a*y)*y^(i-1):

Given a partition d WD .n1; : : : ; nk/ of n, we create a list of double-indexed entries
mD .mŒi1; j1�; : : : ;mŒik ; jk �/. Here, i` D n`, and j1 D 0 with j` D j`�1C n`�1

for `� 2. Then
�a.en1

� � � enk
/DmŒi1; j1� � � �mŒik ; jk �;

denoted by P . (Here, P is in list form, which we put in matrix form later for
multiplication. The k-loop enables us to form the product of elements mŒi�; j��.)
P:=[]:
for d from 1 to nops(N) do M:=[]: j[1]:=0:
for l from 1 to nops(N[d]) do

j[l+1]:=j[l]+ N[d][l]: M:=[op(M),f(N[d][l],j[l])]: S[0]:=1:
for k from 1 to nops(M) do S[k]:=S[k-1]*M[k]:
end do: end do:
P:=[op(P),expand(S[nops(M)])]:
end do:
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Next, we define an arbitrary element of �a.U.WC/n/, namely p WD
Pk

iD1 bi�a.eni
/.

B:=[];
for i from 1 to nops(N) do B:=[op(B),b[i]]: end do:
Bvec:=convert(B,Matrix): Pvec:=convert(P,Matrix):
q:=Multiply(Bvec,Transpose(Pvec)):
p:=expand(q[1][1]):

Then we set the coefficients of p equal to 0 and solve for the bi . We rule out the
case when aD 0; 1.
Coeffs:=[coeffs(collect(p,[x,y], ’distributed’),[x,y])]:
solve([op(Coeffs),a<>0,a<>1]);

Note that the number of free bi equals the k-vector space dimension of .ker�a/n.
We continue by verifying the claim from the proof of Lemma 2.6.

Claim A.3. Retain the notation from Section 2, especially that in Lemma 2.6. We
have that J5A.a/2 6� J6A.a/1.

Proof. Nonzero elements in J5 arise as elements of .u�av/vA.a/3 that are divisible
by u on the left. We obtain that

.u�av/vA.a/3

D kŒ.uv�av2/.u3/�˚kŒ.uv�av2/.u.u�av/v/�˚kŒ.uv�av2/..u�2av/v2/�

D kŒr1�˚kŒr2�˚kŒr3�;

where

r1 WD u4v� .3C a/u3v2
C .6C 6a/u2v3

� .6C 18a/uv4
C 24av5;

r2 WD u3v2
� .2C 2a/u2v3

C .2C 5aC a2/uv4
� .6aC 2a2/v5;

r3 WD u2v3
� .1C 3a/uv4

C .2aC 2a2/v5:

We see this as vku D uvk � kvkC1 for all k � 1, vu2 D u2v � 2uv2 C 2v3,
v2u2 D u2v2 � 4uv3 C 6v4, vu3 D u3v � 3u2v2 C 6uv3 � 6v4, and v2u3 D

u3v2� 6u2v3C 18uv4� 24v5 in R. Eliminating the v5 term of r1; r2; r3, we get
that J5 is generated by

s1 WD .3C a/r1C 12r2;

s2 WD .1C a/r1� 12r3;

s3 WD .1C a/r2C .3C a/r3:

By way of contradiction, suppose that J5A.a/2 � J6A.a/1. Recall that J �L,
where L WD uR\ .u� av/vR. Further, J6 DL6, and LD rR for

r D u.uvC .1� a/v2/D .uv� av2/.uC 2v/:

So, si D r.ci1u2Cci2uvCci3v
2/2 J5 � rR2, for some cij 2 k. We produce these

coefficients cij below.
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r1:=x*(x-y)*(x-2*y)*(x-3*y)*y-(3+a)*x*(x-y)*(x-2*y)*y^2
+(6+6*a)*x*(x-y)*y^3-(6+18*a)*x*y^4+24*a*y^5:

r2:=x*(x-y)*(x-2*y)*y^2-(2+2*a)*x*(x-y)*y^3
+(2+5*a+a^2)*x*y^4-(6*a+2*a^2)*y^5:

r3:=x*(x-y)*y^3-(1+3*a)*x*y^4+(2*a+2*a^2)*y^5:
s1:=(3+a)*r1+12*r2: s2:=(1+a)*r1-12*r3: s3:=(1+a)*r2+(3+a)*r3:
r:=x*((x-y)*y+(1-a)*y^2):
eq1:=s1 - r*(c11*(x-3*y)*(x-4*y)+c12*(x-3*y)*y+c13*y^2):
eq2:=s2 - r*(c21*(x-3*y)*(x-4*y)+c22*(x-3*y)*y+c23*y^2):
eq3:=s3 - r*(c31*(x-3*y)*(x-4*y)+c32*(x-3*y)*y+c33*y^2):
Coeffs1:=[coeffs(collect(eq1,[x,y], ’distributed’),[x,y])]:
Coeffs2:=[coeffs(collect(eq2,[x,y], ’distributed’),[x,y])]:
Coeffs3:=[coeffs(collect(eq3,[x,y], ’distributed’),[x,y])]:
solve(Coeffs1); solve(Coeffs2); solve(Coeffs3);
> {a = a, c11 = 3 + a, c12 = 6 - 2 a, c13 = -4 a}
> {a = a, c21 = 1 + a, c22 = -2 - 2 a, c23 = -4 + 8 a}

2
> {a = a, c31 = 0, c32 = 1 + a, c33 = 1 - 2 a - a }

Therefore,
s1 D r..3C a/u2

C .6� 2a/uv� 4av2/;

s2 D r..1C a/u2
� .2C 2a/uv� .4� 8a/v2/;

s3 D r..1C a/uvC .1� 2a� a2/v2/:

By assumption, for iD1; 2; 3 we have si.u�av/vDwiu for somewi 2J6. Take
an arbitrary element of J6DL6D rR3, namely r.di1u3Cdi2u2vCdi3uv2Cdi4v

3/

for dij 2 k. Then, for some ˛i 2 k,

(A.4) pi WD si.u� av/v D ˛ir.di1u4
C di2u2vuC di3uv2uC di4v

3u/:

Continuing with the code we enter:
s1:=r*((3+a)*(x-3*y)*(x-4*y)+(6-2*a)*(x-3*y)*y-4*a*y^2):
s2:=r*((1+a)*(x-3*y)*(x-4*y)-(2+2*a)*(x-3*y)*y-(4-8*a)*y^2):
s3:=r*((1+a)*(x-3*y)*y+(1-2*a-a^2)*y^2):
p1:=s1*(x-(5+a)*y)*y: p2:=s2*(x-(5+a)*y)*y: p3:=s3*(x-(5+a)*y)*y:
Eq1:=p1 - alpha1*r*(d11*(x-3*y)*(x-4*y)*(x-5*y)*(x-6*y)

+ d12*(x-3*y)*(x-4*y)*y*(x-6*y)
+ d13*(x-3*y)*y^2*(x-6*y) + d14*y^3*(x-6*y)):

Eq2:=p2 - alpha2*r*(d21*(x-3*y)*(x-4*y)*(x-5*y)*(x-6*y)
+ d22*(x-3*y)*(x-4*y)*y*(x-6*y)
+ d23*(x-3*y)*y^2*(x-6*y) + d24*y^3*(x-6*y)):

Eq3:=p3 - alpha3*r*(d31*(x-3*y)*(x-4*y)*(x-5*y)*(x-6*y)
+ d32*(x-3*y)*(x-4*y)*y*(x-6*y)
+ d33*(x-3*y)*y^2*(x-6*y) + d34*y^3*(x-6*y)):

CCoeffs1:=[coeffs(collect(Eq1,[x,y], ’distributed’),[x,y])]:
CCoeffs2:=[coeffs(collect(Eq2,[x,y], ’distributed’),[x,y])]:
CCoeffs3:=[coeffs(collect(Eq3,[x,y], ’distributed’),[x,y])]:
L1:=solve(CCoeffs1): L2:=solve(CCoeffs2): L3:=solve(CCoeffs3):
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for i from 1 to nops([L1]) do print(L1[i][1]); end do;
> a = 9, a = 1
for i from 1 to nops([L2]) do print(L2[i][1]); end do;
> a = 1, a = 1/2
for i from 1 to nops([L3]) do print(L3[i][1]); end do;

2
> a = 1, a = RootOf(-2 - 3 _Z + _Z ) - 1

So in order for (A.4) to hold for i D 1; 2; 3, we must have a D 1. This yields a
contradiction, as desired. �

We now verify the claim from the proof of Proposition 2.8.

Claim A.5. Retain the notation from Section 2, especially that in Proposition 2.8.
We have that h2, h3, e1h1, h1e1 are k-linearly independent and that

h4 D 2a.2aC 1/h2� h3� .6C 4a/e1h1C .2C 4a/h1e1;

h5 D 4a2h2� h3� .4C 4a/e1h1C .4a/h1e1:

Proof. This is established simply by considering the linear combination

c1h2C c2h3C c3h4C c4h5C c5e1h1C c6h1e1;

setting the coefficients of the basis elements of U.WC/6 equal to 0, and solving for
c1; : : : ; c6. By Lemma 1.1(a), the basis elements of U.WC/6 are

e6
1 ; e4

1e2; e2
1e2

2 ; e3
2 ; e3

1e3; e1e2e3; e2
3 ; e2

1e4; e2e4; e1e5; e6:

So, we establish the claim via the following Maple routine:
with(LinearAlgebra):
M:=Matrix([
[0,0, 0, 0, 0, 0, 3, 0, -4, 1, 2],
[0,0,-4,-4, 4, 0,20*a^2+14*a-7, 0, 0,-16*a^2-18*a-5,16*a^3+36*a^2+16*a-2],
[0,0, 0, 4, 0, -4, 7-4*a, 0, 0, 4*a+1, -4*a^2- 4*a+2],
[0,0, 0, 4, 0, 0, 7-14*a, -4, 0, 14*a+5, -12*a^2-16*a+2],
[0,0, 1, 0,-1, -2*a, 0,2*a+1, 0, -a^2-a, 0],
[0,0, 1, 0,-1,-2*a-2, 2*a,2*a+3,4*a, -a^2-7*a-2, 4*a^2+4*a]
]);
P:=Matrix([
[c1, 0, 0, 0, 0, 0],
[ 0, c2, 0, 0, 0, 0],
[ 0, 0, c3, 0, 0, 0],
[ 0, 0, 0, c4, 0, 0],
[ 0, 0, 0, 0, c5, 0],
[ 0, 0, 0, 0, 0, c6]
]);
B:=Multiply(P,M);
for i from 1 to 11 do

L[i]:=B[1,i]+B[2,i]+B[3,i]+B[4,i]+B[5,i]+B[6,i]:
end do:
V:=solve([L[1],L[2],L[3],L[4],L[5],L[6],L[7],L[8],L[9],L[10],L[11]],

[c1,c2,c3,c4,c5,c6]);
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>[[c1 = -2 (c3 + 2 c3 a + 2 c4 a) a, c2 = c3 + c4, c3 = c3, c4 = c4,
c5 = 6 c3 + 4 c4 + 4 c3 a + 4 c4 a, c6 = -2 c3 - 4 c3 a - 4 c4 a]]

eval(V,[c3=1,c4=0]);
>[[c1 = -2 (2 a + 1) a, c2 = 1, 1 = 1, 0 = 0, c5 = 6 + 4 a, c6 = -2 - 4 a]]
eval(V,[c3=0,c4=1]);
> 2

[[c1 = -4 a , c2 = 1, 0 = 0, 1 = 1, c5 = 4 + 4 a, c6 = -4 a]] �
We now verify the claims from the proof of Lemma 5.12.

Claim A.6. Retain the notation from Lemma 5.12.

(a) b5QCb6QCb7Q3x.xy�yz/.xyzCy2z/D .uv�vw/.uC2v/.uC4v/vw.

(b) .M 0\ ker �/� hQi for i � 2, where

hD .uv� vw/.uC 2v/.v3w� v2w2/D .xy �yz/x.y3z�y2z2/:

Proof. (a) Using Lemma 1.3 and (1.4), we see that �1
6
b5u C b5v C

1
6
b6 D

.uv� vw/.uC 2v/.uC 4v/vw:
b5:=(x*y-y*z)*((x-2*y)*(x-3*y)*(x-4*y)

-6*((x-2*y)*y-y*z)*(x-4*y)+12*(x-2*y)*((x-3*y)*y-y*z)):
b6:=(x*y-y*z)*(-48*((x-2*y)*y-3*y*z)*y^2

-36*(x-2*y)*((x-3*y)*y-2*y*z)*y
+(x-2*y)*(x-3*y)*(x-4*y)*(x-5*y)):

r:=x*(x*y-y*z)*(x*y*z+y^2*z):
p:=c1*b5*(x-5*y)+c2*b5*y+c3*b6 - r:
Coeffs:=[coeffs(collect(p,[x,y,z], ’distributed’),[x,y,z])]:
solve(Coeffs);
> {c1 = -1/6, c2 = 1, c3 = 1/6}

(b) It is easy to see that �.h/ D 0, so it suffices to show that hQ0, hQ1, hQ2

are in M 0 WD b5B C b6B C b7B. Recall that Q is the subalgebra of S gener-
ated by u; v; vw, and B is the subalgebra of S generated by u;uv � vw. Since
deg.h/D 7,

hQ0 D fc1h j c1 2 kg;

hQ1 D fc2huC c3hv j ci 2 kg;

hQ2 D fc4hu2
C c5huvC c6hv2

C c7hvw j ci 2 kg;

and moreover,

M 0
7 D fd1b5u2

C d2b5.uv� vw/C d3b6uC d4b7 j di 2 kg;

M 0
8 D fd5b5u3

C d6b5u.uv� vw/C d7b5.uv� vw/u

C d8b6u2
C d9b6.uv� vw/C d10b7u j di 2 kg;

M 0
9D fd11b5u4

Cd12b5u2.uv�vw/Cd13b5u.uv�vw/uCd14b5.uv�vw/u
2

C d15b5.uv� vw/
2
C d16b6u3

C d17b6u.uv� vw/

C d18b6.uv� vw/uC d19b7u2
C d20b7.uv� vw/ j di 2 kg;
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Continuing with the code in part (a), we enter:

b7:=(x*y-y*z)*((x-2*y)*(x-3*y)*(x-4*y)*(x-5*y)*(x-6*y)
-40*(((x-2*y)*y-y*z)*((x-4*y)*y-y*z)*(x-6*y)
-3*((x-2*y)*y-y*z)*(x-4*y)*((x-5*y)*y-y*z)
+3*(x-2*y)*((x-3*y)*y-y*z)*((x-5*y)*y-y*z))):

h:=(x*y-y*z)*x*(y^3*z-y^2*z^2):
hQ0:=c1*h:
hQ1:=c2*h*(x-7*y)+c3*h*y:
hQ2:=c4*h*(x-7*y)*(x-8*y)+c5*h*(x-7*y)*y+c6*h*y^2+c7*h*y*z:
m7:=d1*b5*(x-5*y)*(x-6*y)+d2*b5*((x-5*y)*y-y*z)+d3*b6*(x-6*y)+d4*b7:
m8:=d5*b5*(x-5*y)*(x-6*y)*(x-7*y)+d6*b5*(x-5*y)*((x-6*y)*y-y*z)

+d7*b5*((x-5*y)*y-y*z)*(x-7*y)+d8*b6*(x-6*y)*(x-7*y)
+d9*b6*((x-6*y)*y-y*z)+d10*b7*(x-7*y):

m9:=d11*b5*(x-5*y)*(x-6*y)*(x-7*y)*(x-8*y)
+d12*b5*(x-5*y)*(x-6*y)*((x-7*y)*y-y*z)
+d13*b5*(x-5*y)*((x-6*y)*y-y*z)*(x-8*y)
+d14*b5*((x-5*y)*y-y*z)*(x-7*y)*(x-8*y)
+d15*b5*((x-5*y)*y-y*z)*((x-7*y)*y-y*z)+d16*b6*(x-6*y)*(x-7*y)*(x-8*y)
+d17*b6*(x-6*y)*((x-7*y)*y-y*z)+d18*b6*((x-6*y)*y-y*z)*(x-8*y)
+d19*b7*(x-7*y)*(x-8*y)+d20*b7*((x-7*y)*y-y*z):

p7:=m7 - hQ0: p8:=m8 - hQ1: p9:=m9 - hQ2:
Coeffs7:=[coeffs(collect(p7,[x,y,z], ’distributed’),[x,y,z])]:
Coeffs8:=[coeffs(collect(p8,[x,y,z], ’distributed’),[x,y,z])]:
Coeffs9:=[coeffs(collect(p9,[x,y,z], ’distributed’),[x,y,z])]:
solve(Coeffs7,[d1,d2,d3,d4]);

c1 c1 c1 c1
> [[d1 = - ----, d2 = ----, d3 = - ----, d4 = ----]]

24 4 48 16
solve(Coeffs8,[d5,d6,d7,d8,d9,d10]);

c2 c3 c3 c2 c3
> [[d5 = - ---- - ----, d6 = ----, d7 = ---- + ----,

24 48 24 4 16

c2 c3 c3 c2 c3
d8 = - ---- + ---, d9 = ----, d10 = ---- + ---- ]]

48 192 48 16 64

solve(Coeffs9,[d11,d12,d13,d14,d15,d16,d17,d18,d19,d20]);
c4 c6 c5 c7

> [[d11 = 8 d16 + ---- + --- - ---- - ----, [...],
8 144 18 18

9 c4 c6 25 c5 11 c7
d20 = -108 d16 - ---- - ---- + ----- + -----]]

4 24 48 24

Thus, all arbitrary elements of hQ0, hQ1, hQ2 are contained, respectively, in M 0
7
,

M 0
8
, M 0

9
, as desired. �
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Proof of assertions: Macaulay2 routines. The following Macaulay2 code verifies
Lemma 4.2(b) and (4.6); see lines o7–o10 and line o13, respectively.

Macaulay2, version 1.4
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,
PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : ringX=QQ[w,x,y,z]/ideal(x*z-y^2);
i2 : taustar=map(ringX,ringX,{w-2*x+2*z,z,-y-2*z,x+4*y+4*z});
i3 : ringP1a=QQ[x,y,a];
i4 : mustar=map(ringP1a, ringP1a, {x-y,y,a});
i5 : psistar=map(ringP1a, ringX, {2*x^2-4*x*y-6*a*y^2,x^2-2*x*y+y^2,

-x^2+3*x*y-2*y^2,x^2-4*x*y+4*y^2});
i6 : use ringX;
i7 : mustar(psistar(w))==psistar(taustar(w)) o7 = true
i8 : mustar(psistar(x))==psistar(taustar(x)) o8 = true
i9 : mustar(psistar(y))==psistar(taustar(y)) o9 = true
i10 : mustar(psistar(z))==psistar(taustar(z)) o10 = true
i11 : num=w+12*x+22*y+8*z;
i12 : den=12*x+6*y;

2
- y a + x*y

i13 : psistar(num)/psistar(den) o13 = ----------- o13 : frac(ringP1a)
2

x - x*y
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