
Pacific
Journal of
Mathematics

THE SU(N) CASSON–LIN INVARIANTS FOR LINKS

HANS U. BODEN AND ERIC HARPER

Volume 285 No. 2 December 2016



PACIFIC JOURNAL OF MATHEMATICS
Vol. 285, No. 2, 2016

dx.doi.org/10.2140/pjm.2016.285.257

THE SU(N) CASSON–LIN INVARIANTS FOR LINKS

HANS U. BODEN AND ERIC HARPER

We introduce the SU(N) Casson–Lin invariants for links L in S3 with more
than one component. Writing L = `1 ∪ · · · ∪ `n, we require as input an
n-tuple (a1, . . . , an) ∈ Zn of labels, where aj is associated with `j . The
SU(N) Casson–Lin invariant, denoted hN,a(L), gives an algebraic count
of certain projective SU(N) representations of the link group π1(S3 r L),
and the family hN,a of link invariants gives a natural extension of the SU(2)
Casson–Lin invariant, which was defined for knots by X.-S. Lin and for
2-component links by Harper and Saveliev. We compute the invariants for
the Hopf link and more generally for chain links, and we show that, under
mild conditions on the labels (a1, . . . , an), the invariants hN,a(L) vanish
whenever L is a split link.

Introduction

The goal of this paper is to construct SU(N ) Casson–Lin invariants hN,a(L) for
oriented links L in S3. These invariants are defined as a signed count of conjugacy
classes of certain irreducible projective SU(N ) representations of π1(S3rL) with a
nontrivial 2-cocycle. Given an oriented link L with n components, the 2-cocycle is
determined by an n-tuple a = (a1, . . . , an) ∈ Zn of labels, and the choice of labels
is made so that the resulting 2-cocycle is nontrivial. This is critical in what follows
because it prohibits the existence of reducibles; see Proposition 2.2. We denote the
resulting algebraic count as hN,a(L), and the following theorem is the main result
of this paper.

Main theorem. Suppose L ⊂ S3 is an oriented n-component link with n ≥ 2 and
a = (a1, . . . , an) is an allowable n-tuple of labels. Then the integer hN,a(L) is a
well-defined invariant of L.

We briefly outline how the above theorem is established. By Alexander’s theorem
[1923], every link L⊂ S3 can be realized as the closure L= σ̂ for some braid σ ∈ Bk .
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The braid group Bk acts naturally on the free group Fk , and this induces an action
on the space of SU(N ) representations of Fk , which we denote as

Rk = Hom(Fk,SU(N ))= SU(N )× · · ·×SU(N ).

We extend this action to the wreath product ZN o Bk as follows. Identifying ZN

with the center of SU(N ), for ε= (ε1, . . . , εk)∈ (ZN)
k and X = (X1, . . . , Xk)∈ Rk ,

we set (ε, σ )(X)= (ε1σ(X)1, . . . , εk σ(X)k). This extends the braid group action
on Rk to an action of ZN o Bk , and in fact every fixed point Fix(εσ ) ⊆ Rk can be
identified with a projective representation of the link group GL = π1(S3 r L).

The key result is Proposition 2.2, which shows that every element X ∈ Fix(εσ )
is irreducible. Consequently, writing R∗k ⊂ Rk for the subspace of irreducible
SU(N ) representations, Proposition 2.2 implies that the graph 0∗εσ and the diagonal
1∗k intersect in a compact subset of R∗k × R∗k . It follows that one can arrange
transversality of the intersection 0∗εσ ∩1

∗

k by a compactly supported isotopy, and
using natural orientations on the quotients 0̂εσ =0∗εσ/PU(N ) and 1̂k=1

∗

k/PU(N ),
we define hN,a(εσ ) as the oriented intersection number of 0̂εσ and 1̂k . Our main
result is then established by showing that hN,a(εσ ) is independent of the choice of
compatible k-tuple ε = (ε1, . . . , εk) (Proposition 3.4), and that it is invariant under
the two Markov moves (Propositions 3.5 and 3.6). It follows that hN,a(L) gives a
well-defined invariant of the link L ⊂ S3.

One of the virtues of this approach is that it leads to a direct method for computing
the invariants, and we illustrate this by computing hN,a(L) for the Hopf link and
for chain links (Propositions 4.3 and 4.5) and by showing that the invariants vanish
for split links (Proposition 4.6).

Gauge Theory. One motivation for defining link invariants in terms of the SU(N )
representations of the link group is that these representations can be identified with
flat connections on a principal SU(N ) bundle over the link exterior, which allows
for a gauge theoretic interpretation. This approach was originally used by Taubes
[1990] to interpret Casson’s invariant λ(6) of homology 3-spheres 6 in terms of
flat SU(2) connections, and using similar ideas, Floer [1988] defined Z8-graded
groups HF∗(6) called the instanton Floer homology and whose Euler characteristic
equals the Casson invariant.

The Casson–Lin invariants can also be interpreted gauge theoretically, as we
now explain. X.-S. Lin [1992] originally defined the invariant h(K ) of knots
K ⊂ S3 as an algebraic count of conjugacy classes of tracefree irreducible SU(2)
representations of π1(S3rK ) and proved that h(K )= sign(K )/2, half the signature
of K. More recently, C. Herald [1997] used gauge theory to define an extended
Casson–Lin invariant hα(K ) for knots K ⊂63 in homology 3-spheres which allows
for more general meridional trace conditions, and he generalized Lin’s formula by
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showing that hα(K )= signα(K )/2, half the Tristram–Levine α-twisted signature
of K. (Similar results were obtained by M. Heusener and J. Kroll [1998].) O. Collin
and B. Steer [1999] then used moduli spaces of orbifold connections to define
an associated Floer homology theory for knots whose Euler characteristic equals
hα(K ) and P. Kronheimer and T. Mrowka [2011b] further developed the instanton
Floer homology theory of knots in, and they used it to prove a strong nontriviality
result for Khovanov homology [Kronheimer and Mrowka 2011a].

Harper and N. Saveliev [2010] used projective SU(2) representations to extend
the Casson–Lin invariant to 2-component links L in S3, and they showed that
h(L)=± lk(`1, `2), where lk(`1, `2) is the linking number of L = `1 ∪ `2. They
gave a gauge theoretic description of the invariant h(L) in [2012], where they also
described Floer homology groups with Euler characteristic equal to h(L).

In view of all of these results, it is natural to ask whether the SU(N ) Casson–Lin
invariants introduced here can also be interpreted gauge theoretically. We plan to
address this question in a future article using moduli spaces of projective SU(N )
representations; see [Ruberman and Saveliev 2004]. We hope to use this approach
to extend the Casson–Lin invariants hN,a(L) to links L ⊂63 in homology 3-spheres
and to describe corresponding Floer homology groups. In particular, we expect this
approach will help clarify the relationship between the invariants hN,a(L) studied
here and the SU(N ) instanton Floer groups constructed by Kronheimer and Mrowka
[2011b]. It is possible that this approach will also shed light on other interesting
questions, such as whether and how the Casson–Lin invariants are related to classical
link invariants, such as the higher linking numbers.

We give a brief outline of the contents of this paper. In Section 1, we introduce
the notation for braids σ ∈ Bk , links L ⊂ S3, and SU(N ) representations that is used
throughout the article. In Section 2, we introduce allowable labels (a1, . . . , an) for
a given n-component link L ⊂ S3, and a compatible k-tuple (ε1, . . . , εk) for a braid
σ ∈ Bk with closure L . We also introduce projective SU(N ) representations of the
link group GL and establish irreducibility of elements of Fix(εσ ). In Section 3,
we define the invariant hN,a(L) as an oriented intersection number and prove it
is independent of the various choices involved. In Section 4, we calculate the
invariants hN,a(L) for the Hopf link and the n-component chain link, and we prove
a general vanishing result for the invariants for split links.

1. Braids and representations

In this section, we introduce the results for braids, links, and SU(N ) representations
that will be used throughout the article.

1A. The braid group. We denote by Bk the group of geometric braids on k strands
with standard generators σ1, . . . , σk−1 and relations σiσj = σjσi for | j − i |> 1 and
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σ1 σ2 σ3

Figure 1. The three generators of B4.

σiσi+1σi = σi+1σiσi+1. The generators are depicted in Figure 1. Note that in this
paper we follow Convention 1.13 of [Kassel and Turaev 2008].

Each braid σ ∈ Bk determines a permutation, and the resulting map Bk → Sk ,
which sends the generator σi to the transposition σi = (i, i + 1), is a surjection.
Given σ ∈ Bk , we let σ ∈ Sk denote the corresponding permutation. Under this map,
the symmetric group Sk acts on the set {1, . . . , k} on the right. For i ∈ {1, . . . , k},
we write (i)σ for the image of i under σ ∈ Sk .

Let Fk be the free group with free generating set x1, . . . , xk . There is a natural
right action of Bk on Fk defined by setting σi : Fk→ Fk to be the map

xi 7→ xi+1,

xi+1 7→ (xi+1)
−1 xi xi+1,

xj 7→ xj , j 6= i, i+1.

This action defines a faithful representation % : Bk → Aut(Fk), and we use it to
identify Bk with its image in Aut(Fk) under %. As this is a right action, we will
use xσi to denote the image of xi under σ ∈ Bk .

Example 1.1. We explain how to read the action of a braid, which is explained in
[Fenn et al. 1997, Section 2.4] for the left action, and we present the details for the
right action.

The basic idea is to view the free group Fk as the fundamental group of a 2-disk
with k punctures and keep track of basepoints as you move the disk vertically, letting
the punctures move along the braid. Specifically, label the top strands x1, . . . , xk

from left to right. Then push the labels down, inserting a Wirtinger relation at
each crossing. At the bottom of the braid the strands will be labeled by words
w1, . . . , wk in x1, . . . , xk , and the right action of σ is given by the automorphism
sending xi to xσi := wi .

Using Figure 2, we determine the actions of σ1σ2 and σ2σ1 on F3 = 〈x1, x2, x3〉

to be given by
xσ1σ2

1 = x2,

xσ1σ2
2 = x3,

xσ1σ2
3 = x−1

3 x−1
2 x1 x2 x3,

and


xσ2σ1

1 = x3,

xσ2σ1
2 = x−1

3 x1 x3,

xσ2σ1
3 = x−1

3 x2 x3.

We point out two facts about the action of Bk on Fk , both of which are easily
verified for each generator. Firstly, for any σ ∈ Bk , the permutation σ acts by
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x1 x2 x3 x1 x2 x3

x2 x3 x−1
3 x−1

2 x1x2x3 x3 x−1
3 x1x3 x−1

3 x2x3

Figure 2. Reading the action of the braids σ1σ2 (left) and σ2σ1 (right).

conjugation and permutation on the generating set x1, . . . , xk for Fk . Indeed,

(1) xσi = w x(i)σ w
−1,

where w ∈ Fk is some word depending on σ and i . Secondly, every braid σ ∈ Bk

preserves the product x1 · · · xk ,

(2) (x1 · · · xk)
σ
= x1 · · · xk .

1B. The group of a link. Every link L in S3 can be realized as the closure L = σ̂
of a braid σ. We regard L as an oriented link, where the strands of the braid σ
are oriented in the downward direction. The link group GL = π1(S3 r L) admits a
standard presentation

(3) GL = π1(S3 r σ̂ )= 〈x1, . . . , xk | xi = xσi , and i = 1, . . . , k 〉.

The number of components of the link L = σ̂ is the number of disjoint cycles in
the permutation σ. We will be interested in n-component links, that is, the closures
of braids σ with

(4) σ = (i1, . . . , ik1)(ik1+1, . . . , ik2) · · · (ikn−1+1, . . . , ikn ),

where 1 ≤ k1 < k2 < · · · < kn = k. We define multi-indices I1, I2, . . . , In by
setting Ij = {ik j−1+1, . . . , ik j } for j = 1, . . . , n, and we denote σ = (I1) · · · (In). If
L = `1 ∪ · · · ∪ `n is the closure of a braid σ, we will assume that the cycles in the
permutation σ = (I1) · · · (In) are written correspondingly, so that the component `j

of L corresponds to the braid closure of the strands in Ij .

1C. The special unitary group. Consider the Lie group SU(N ) of unitary N × N
matrices with determinant one. Recall that SU(N ) has real dimension N 2

− 1 and
has center isomorphic to ZN = {ω

d
| d ∈ Z}, where ω = e2π i/N. Notice that we are

viewing ZN as the subgroup of U (1) consisting of N-th roots of unity, and for this
reason we view it as a multiplicative group and identify it with the center of SU(N )
via the map defined by sending ωd

7→ ωd I.
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Since every matrix in SU(N ) is diagonalizable, conjugacy classes in SU(N ) are
completely determined by their eigenvalues when considered with multiplicities.
Given A∈SU(N ) we denote its conjugacy class by CA. There is a unique conjugacy
class CA which is preserved under multiplication by ω = e2π i/N, and this is the
conjugacy class of the diagonal matrix A whose eigenvalues are the N distinct
N-th roots of (−1)N−1. Setting ξ = e2π i/2N, then A is given by the diagonal
matrix diag(1, ω, . . . , ωN−1) when N is odd and by diag(ξ, ωξ, . . . , ωN−1ξ) when
N is even. In either case, since the eigenvalues of A are all distinct, we see
that the stabilizer of A is the standard maximal torus T N−1 in SU(N ) and that
CA∼=SU(N )/T N−1 is the variety of full flags in CN and has real dimension N 2

−N.

1D. SU(N) representations. For a discrete group G, let R(G)=Hom(G,SU(N ))
denote the variety of SU(N ) representations of G. For convenience, we set Rk =

R(Fk)= SU(N )× · · ·×SU(N ) to be the variety of SU(N ) representations of the
free group Fk . The faithful representation % : Bk→Aut(Fk) induces a representation

(5) %̃ : Bk→ Diff(Rk)

given by %̃(σ)(α)=α◦σ. We will often abuse notation and simply denote %̃(σ) by σ.

Remark 1.2. [Long 1989, Theorem 2.1] implies that %̃ is defined on Aut(Fk) and
is faithful.

Example 1.3. Consider σ1 and σ2 ∈ B3. For X = (X1, X2, X3) ∈ R3, we have

σ1(X)= (X2, X−1
2 X1 X2, X3) and σ2(X)= (X1, X3, X−1

3 X2 X3).

Using this, one can easily compute that

σ 2
1 (X)= (X

−1
2 X1 X2, X−1

2 X−1
1 X2 X1 X2, X3)

and further that
σ1σ2(X)= (X2, X3, X−1

3 X−1
2 X1 X2 X3)

and
σ2σ1(X)= (X3, X−1

3 X1 X3, X−1
3 X2 X3).

Using the standard presentation (3) of the link group, we notice that R(GL) can
be identified with Fix(σ )⊂ Rk ,

R(GL)= {(X1, . . . , Xk) ∈ Rk | Xi = σ(X)i }.

A k-tuple (X1, . . . Xk) ∈ Rk is called reducible if it can be simultaneously conju-
gated by an element of SU(N ) such that each Xi has the form

(6) Xi =

(
Ai 0
0 Bi

)
,
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where Ai is a block of size N1 and Bi is a block of size N2, and N1 + N2 = N.
A k-tuple (X1, . . . Xk) ∈ Rk is irreducible if it is not reducible.

1E. The wreath product ZN o Bk. The wreath product ZN o Bk is the semidirect
product of Bk with (ZN )

k, where Bk acts on (ZN )
k by permutation. In other words,

ZN o Bk consists of pairs (ε, σ ) ∈ (ZN )
k
× Bk , and the group structure is given by

(ε, σ ) · (ε′, σ ′)= (εσ (ε′), σσ ′).

Here, σ acts on ε′ = (ε′1, . . . , ε
′
k) by permutation, i.e., σ(ε′)= (ε′(1)σ , . . . , ε

′
(k)σ )

In particular, it follows that σ(εX)= σ(ε)σ(X).
We extend the representation (5) to the representation

(7) %̃ : ZN o Bk→ Diff(Rk)

defined by sending the pair (ε, σ ) to the diffeomorphism εσ : Rk→ Rk , where

εσ(X)= (ε1σ(X)1, . . . , εkσ(X)k).

Thus ε twists the coordinates of σ(X) by elements of the center ZN.

Example 1.4. For X = (X1, X2, X3) ∈ R3 and ε = (ε1, ε2, ε3) ∈ (ZN )
3, we have

(εσ1)(X1, X2, X3)= (ε1 X2, ε2 X−1
2 X1 X2, ε3 X3)

and
σ1(εX)= σ1(ε)σ1(X)= (ε2 X2, ε1 X−1

2 X1 X2, ε1 X1, ε3 X3).

2. Projective representations of the link group

Our goal in this paper is to define invariants of L , and we will do so by performing
a signed count of certain irreducible projective SU(N ) representations.

2A. Projective representations. Suppose σ ∈ Bk is a braid whose closure σ̂ is
a link L in S3. For any k-tuple ε = (ε1, . . . , εk) ∈ (ZN )

k, an element X =
(X1, . . . , Xk) ∈ SU(N )k in Fix(εσ ) determines a PU(N ) representation of the
link group GL , i.e., a homomorphism α̃ : GL → PU(N ). To see this, note that
for any X ∈ Fix(εσ ), since εi σ(X)i = Xi holds in SU(N ) and εi ∈ ZN is central,
the equation σ(X̃)i = X̃i holds for the k-tuple X̃ ∈ PU(N )k, which shows that X̃
determines a representation α̃ : GL → PU(N ).

Given a discrete group G, we define a projective representation of G to be a func-
tion (not a homomorphism!) α : G→ SU(N ) such that α(gh)α(h)−1α(g)−1

∈ ZN

for all g, h ∈ G. For any projective representation α : G → SU(N ), its com-
position with the surjection Ad : SU(N )→ PU(N ) gives rise to a representation
α̃=Adα :G→PU(N ), and thus every projective representation α :G→SU(N ) is
the lift of an honest representation α̃ :G→PU(N ). Alternatively, any representation
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α̃ :G→ PU(N ) can be lifted to a projective representation α :G→ SU(N ), though
the lift is generally not unique.

Given a projective representation α : G → SU(N ), we can associate a map
c : G×G→ ZN defined by c(g, h)= α(gh)α(h)−1α(g)−1. Notice that the map c
satisfies the condition that c(gh, k)c(g, h) = c(g, hk)c(h, k) for all g, h, k ∈ G,
and hence c is a 2-cocycle of G.

For a fixed 2-cocycle c : G × G → ZN, let PRc(G) denote the set of projec-
tive representations α : G → SU(N ) whose associated 2-cocycle is c. If G is
finitely generated with generating set {g1, . . . , gk}, then any projective represen-
tation α ∈ PRc(G) is completely determined by the 2-cocycle c and the elements
α(g1), . . . , α(gk) ∈ SU(N ), and in this way one can realize PRc(G) as a subset of
SU(N )k. It is a compact real algebraic variety.

2B. Allowable labels and compatible k-tuples. Given a link L in S3 with n com-
ponents, we can write L = `1 ∪ · · · ∪ `n . An n-tuple a = (a1, . . . , an) ∈ Zn of
integers is called allowable if the following three conditions are satisfied:

(i) 0≤ ai < N for i = 1, . . . , n,

(ii) d = gcd(a1, . . . , an) is relatively prime to N,

(iii) a1+ · · ·+ an is a multiple of N.

An allowable n-tuple (a1, . . . , an) is called an n-tuple of labels for L , and aj is the
label corresponding to the j-th component `j of L .

Suppose now that L is the closure of a braid σ ∈ Bk , and write the permutation
σ as a product (I1) · · · (In) of disjoint cycles in such a way that Ij corresponds to
the j-th component `j of L .

Recall that ω = e2π i/N. A k-tuple ε = (ε1, . . . , εk) ∈ (ZN )
k for σ is said to be

compatible with the choice of labels (a1, . . . , an) of L if it satisfies the conditions

(8)
∏
i∈Ij

εi = ω
aj,

for j = 1, . . . , n. This effectively labels each strand of the braid σ so that, upon
closure of the braid, the j-th component `j of L is assigned the number aj for its
label. Note that with this choice εσ also preserves condition (2) since, by (8) and
condition (iii), we have

(9) (εσ )(X)1 · · · (εσ )(X)k = (ε1 · · · εk)X1 · · · Xk

= (ωa1 · · ·ωan )X1 · · · Xk = X1 · · · Xk .

2C. An obstruction to lifting. For X ∈ Fix(εσ ) we will show that the associated
representation α̃ :GL→ PU(N ) does not lift to an SU(N ) representation. Essential
for this conclusion is that the k-tuple ε is compatible with a, the choice of labels
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for L . In particular, we use (8) and condition (ii) to give a nonzero obstruction to
lifting α̃ to an SU(N ) representation.

Proposition 2.1. The representation α̃ : GL → PU(N ) does not lift to an SU(N )
representation.

Proof. Lift α̃ arbitrarily to a map α :GL→ SU(N ). Since α is a lift of α̃, for each i
we see that α(xi ) = ηi Xi for some ηi ∈ ZN. Let η = (η1, . . . , ηk) ∈ (ZN )

k be the
corresponding k-tuple.

We assume that α is a representation. This implies that ηX ∈ Fix(σ ). Since X is
also a fixed point of εσ ,

ηi Xi = σ(ηi Xi )= η(i)σ σ(X)i = (εi )
−1η(i)σ Xi .

By condition (ii), some aj 6= 0, and we assume without loss of generality that a1 6= 0.
Consider the component `1 associated with the multi-index I1 = (i1, . . . , ik1);
then (8) implies that

ηi1 = (εi1)
−1ηi2 = (εi1)

−1(εi2)
−1ηi3 = · · · = (εi1)

−1
· · · (εik )

−1ηi1 = ω
−a1ηi1,

which is a contradiction since ω−a1 6= 1. �

2D. Irreducibility for elements in Fix(εσ ). We now show that for any allowable
n-tuple a = (a1, . . . , an) ∈ Zn of labels and compatible k-tuple ε = (ε1, . . . , εk) ∈

(ZN )
k, every X ∈ Fix(εσ ) is irreducible. The key to the proof is condition (ii) on

the labels.

Proposition 2.2. If X ∈ Fix(εσ ), then X is irreducible.

Proof. Suppose to the contrary that X ∈ Fix(εσ ) is reducible, which means that up
to conjugation, we can assume

Xi =

(
Ai 0
0 Bi

)
,

where Ai has size N1 and Bi has size N2.
The first step is to consider the component `1 of L . It is obtained by closing

the strands of σ associated with the cycle I1 = (i1, . . . , ik1) of σ. By (1), there are
words W1, . . . ,Wk1 in X1, . . . , Xk such that

X i1
= εi1

W1 X i2
W−1

1

= (εi1
εi2
)W1 W2 X i3

W−1
2 W−1

1

...

= (εi1
· · · εik1

)W1 · · ·Wk1
X i1

W−1
k1
· · ·W−1

1

= ωa1 W X i1
W−1,
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where the last step follows by setting W =W1 · · ·Wk1 and applying (8).
Since W is a word in the Xi , and each Xi is block diagonal, it follows that W is

also block diagonal so we can write

W =
(

P 0
0 Q

)
.

Applying this to the equation above, we see that the same relationship must hold
for the blocks, so

(10) Ai1 = ω
a1 P Ai1 P−1,

and taking the determinant of both sides of (10), we see that

det(Ai1)= ω
a1 N1 det(Ai1).

Since det(Ai1) 6= 0, this implies ωa1 N1 = 1.
Now repeat the argument for the other components of the link L . For the

component `j , which is the one obtained by closing the strands of σ associated with
the cycle Ij , (8) implies that ωaj N1 = 1, and we see this holds for each j = 1, . . . , n.
However, since ω= e2π i/N is a primitive N-th root of unity, this can only happen if
N divides aj N1 for each j = 1, . . . , n. This contradicts condition (ii) on the labels,
and we conclude that each X ∈ Fix(εσ ) is in fact irreducible. �

Remark 2.3. We would like to thank the referee for the following observation.
Suppose L = `1∪· · ·∪`n is a link and let 3i ∼= 〈µi 〉×〈λi 〉 ∼=Z×Z denote the i-th
peripheral subgroup of GL , where µi and λi denote the meridian and longitude,
respectively, of `i . Given a representation α̃ :GL→PU(N ), let ω(α̃)∈H 2(GL ,ZN )

denote the obstruction cocycle, which is related to the commutator pairing of
the restriction α̃|3i

as follows. If α : GL → SU(N ) is a set-theoretic lift of α̃,
then the commutator pairing of 3i is the map ci : 3i × 3i → ZN , given by
ci (x, y)= [α(x), α(y)]. Since 3i is free abelian of rank two,

θ : H 2(3i ,ZN )−→
∼ Hom(3i ∧3i ,ZN )∼= ZN ,

and one can show that θ(ω(α̃|3i
))= ci .

In the previous proof, the element W = W1 . . .Wk1 is the image of the longi-
tude λ1 of `1, thus our computation that [X i1,W ] =ωa1 determined the commutator
pairing c1 = θ(ω(α̃|31

)) by showing that c1(µ1, λ1)= ω
a1 . The labels a1, . . . , an

thus determine the commutator pairings associated to the peripheral subgroups
31, . . . , 3n .
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3. The link invariants

Throughout this section, we assume that σ is a braid with closure σ̂ = L , a link
with n components L = `1 ∪ · · · ∪ `n , and that a = (a1, . . . , an) is an n-tuple of
allowable labels, with aj the label for the component `j .

In this section we define hN,a(εσ ) for compatible k-tuples ε, and we show that
it gives rise to an invariant of n-component links in S3.

We define hN,a(εσ ) as an algebraic count of certain projective SU(N ) represen-
tations in Fix(εσ ), namely those that satisfy the monodromy condition Xi ∈ CA.
In other words, we require each Xi to be in the conjugacy class of matrices with
characteristic polynomial pA(t)= t N

+ (−1)N.
We will first show that hN,a(εσ ) is independent of choice of ε, and then we

prove that hN,a(εσ ) gives rise to a well-defined invariant of the underlying link L
by showing that it is invariant under the Markov moves.

3A. The definition of hN,a(εσ ). Recall that A is the diagonal matrix consisting
of the N-th roots of (−1)N−1, i.e.,

A =
{

diag(1, ω, . . . , ωN−1) if N is odd,
diag(ξ, ωξ, . . . , ωN−1ξ) if N is even.

We impose the following monodromy condition and restrict to k-tuples lying in
the subset Qk ⊂ Rk given by

Qk = {(X1, . . . , Xk) ∈ Rk | Xi ∈ CA}.

Since Qk = (CA)
k is a just a k-fold product of CA, we see that Qk is a manifold of

dimension k(N 2
− N ).

Let1k={(X, X)}⊂Qk×Qk be the diagonal and 0εσ ={(X, εσ(X))}⊂Qk×Qk

be the graph of εσ. Notice that we can identify points in the intersection 1k ∩0εσ

with elements in Qk ∩Fix(εσ ).
For certain choices of labels, it will follow that Fix(εσ ) ⊂ Qk , i.e., that these

monodromy conditions are automatically satisfied. This will occur whenever the
labels have the property that each ai is relatively prime to N. For a simple example,
suppose N is prime, n is a positive multiple of N, and d is any positive integer
less than N. Then one can easily verify that a = (d, d, . . . , d) is an allowable
n-tuple of labels, and the next result implies that Fix(εσ ) ⊂ Qk for any k-tuple
ε = (ε1, . . . , εk) compatible with these labels.

Proposition 3.1. Suppose (a1, . . . , an) is an allowable n-tuple of labels such that
each aj is relatively prime to N, and suppose ε= (ε1, . . . , εk)∈ (ZN )

k is compatible
with a. Then Fix(εσ )⊂ Qk , i.e., if X ∈ Fix(εσ ), then each X j is conjugate to A.

Proof. The condition on aj ensures that ωaj generates ZN for each j = 1, . . . , n,
where ω = e2π i/N. Write the induced permutation σ = (I1) · · · (In) as a product of
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disjoint cycles, where Ij corresponds to the j-th component of L = σ̂ . Then for
any i ∈ Ij , we can apply the same argument used to prove Proposition 2.2 to see that

Xi = ω
aj W Xi W−1.

Thus, the set of eigenvalues of Xi is invariant under multiplication by ωaj, and this
shows the eigenvalues of X are given by the set

{ξ, ωaj ξ, . . . , ω(N−1)aj ξ} = {ξ, ωξ, . . . , ωN−1ξ}

for some ξ satisfying ξ N
= (−1)N−1. When N is odd, one can take ξ = 1, and

when N is even, one can take ξ = e2π i/2N . This shows that Xi is conjugate to A.
Alternative argument: consider the characteristic polynomial of both sides of the

above equation; we see that

pXi
(t)= pωaj Xi

(t)= pXi
(ω−aj t).

Since ω−aj has order N, pXi(t) must be a polynomial in t N, and indeed the only
possibility is that pXi(t)= t N

+ (−1)N. �

We define

Hk = {(X, Y ) ∈ Qk × Qk | X1 · · · Xk = Y1 · · · Yk},

and we note that Hk is not a manifold because of the presence of reducibles. Recall
that (X, Y ) ∈ Qk × Qk is called reducible if all Xi and Yi can be simultaneously
conjugated into block diagonal form as in (6). We note that the subset Sk ⊂ Qk×Qk

of reducibles is closed, and that (Qk×Qk)
∗
= (Qk×Qk)r Sk is an open manifold

of dimension 2k(N 2
− N ).

Proposition 3.2. The subset H∗k = Hk r Sk of irreducible representations is an
open manifold of dimension 2k(N 2

− N )− (N 2
− 1).

Proof. Clearly H∗k = f −1(I ), where f : (Qk × Qk)
∗
→ SU(N ) is the map defined

by f (X, Y ) = X1 · · · XkY−1
k · · · Y

−1
1 . We will show that I is a regular value of f ,

i.e., that d f(X,Y ) is surjective for all (X, Y ) ∈ f −1(I ). It is enough to prove this
statement for the map f : Q∗`→ SU(N ) given by f (X1, . . . , X`)= X1 · · · X`.

Clearly the matrix A, since it is diagonal, lies on the standard maximal torus
T N−1

⊂ SU(N ) with Lie algebra

t=


ia1 0

. . .
0 iaN

 ∣∣∣∣∣ a1+ · · ·+ aN = 0

.
Since A has the standard maximal torus as its stabilizer group, we can identify the
tangent space TA(CA) with the orthogonal complement t⊥ in su(N ), which is the
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subspace

t⊥ =




0 z12 . . . z1,N

−z12 0
. . .

...
...

. . .
. . . zN−1,N

−z1,N . . . −zN−1,N 0


∣∣∣∣∣ zi j ∈ C

.
There is a similar decomposition of su(N ) at each Xi in the `-tuple (X1, . . . , X`).

Because each Xi has N distinct eigenvalues, it lies on a unique maximal torus
Ti ∼= T N−1 in SU(N ). We let ti ⊂ su(N ) denote the corresponding Lie subalgebra,
which is the Lie algebra of the stabilizer group of Xi . Using the decomposition
su(N ) = ti ⊕ t⊥i , we can identify the tangent space TXi (CA) with t⊥i Xi , the right
translation of the subspace t⊥i ⊂ su(N ) by Xi . It is helpful to note that, in terms of
the specific subspaces identified above, we have ti = AdPi t and t⊥i = AdPi t

⊥ for
any matrix Pi ∈ SU(N ) such that Xi = Pi AP−1

i .
Using the fact that ti is the Lie algebra of the stabilizer subgroup of Xi , one can

see that irreducibility of the `-tuple (X1, . . . , X`) is equivalent to the condition that
t1 ∩ · · · ∩ t` = {0}.

For ui ∈ t
⊥
i , we set xi = ui Xi ∈ t

⊥
i Xi = TXi (CA). Differentiating and using the

fact that X1 · · · X` = I, we obtain

d
dt
(X1+ t x1)(X2+ t x2) · · · (X`+ t x`)

∣∣
t=0

= x1 X2 · · · X`+ X1 x2 X2 · · · X`+ · · ·+ X1 · · · X`−1x`

= u1+ X2 u2 X−1
2 + · · ·+ (X2 · · · X`)u`(X

−1
` · · · X

−1
2 ).

In order to show that the map d fX is onto, we claim that, given any v ∈ su(N ), we
can find ui ∈ t

⊥
i for i = 1, . . . , ` such that

(11) v = u1+ X2 u2 X−1
2 + · · ·+ (X2 · · · X`)u`(X

−1
` · · · X

−1
2 ).

Notice that we can solve (11) for any

v ∈ t⊥1 ∩ (X1t
⊥

2 X−1
1 )∩ · · · ∩ (X1 · · · X`−1)t

⊥

` (X
−1
`−1 · · · X

−1
1 ).

Notice further that since ti is the Lie algebra of the maximal torus containing Xi ,
we have ti ∩ ti+1 = ti ∩ (Xi ti+1 X−1

i ). More generally, for any subspace V ⊂ su(N ),
we have ti ∩ V = ti ∩ (Xi V X−1

i ). Repeated application gives that

t1 ∩ · · · ∩ t` = t1 ∩ · · · ∩ (X`−1 t`X−1
`−1)

= t1 ∩ · · · ∩ (X`−2 t`−1 X−1
`−2)∩ (X`−2 X`−1t`X−1

`−1 X−1
`−2)

...

= t1 ∩ (X1t2 X−1
1 )∩ · · · ∩ (X1 · · · X`−1)t`(X

−1
`−1 · · · X

−1
1 ).
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The condition of irreducibility implies that t1∩· · ·∩t`={0}, and it then follows from
the above that (11) can be solved for any v ∈ su(N ). This concludes the argument
that d fX is a surjection whenever the `-tuple X = (X1, . . . , X`) is irreducible. �

Since both 1k and 0εσ preserve the product X1 · · · Xk (see (9)), we can restrict
from Qk × Qk to Hk .

Now we are in a position to define the invariant hN,a(εσ ). Set 0∗εσ = 0εσ ∩ H∗k
and 1∗k = 1k ∩ H∗k . Since Sk is closed, it follows that both 0∗ and 1∗k are open
submanifolds of H∗k of dimension k(N 2

− N ).
Both1k and 0εσ are compact, and so is their intersection1k∩0εσ . Consequently,

as Proposition 2.2 implies that every point in this intersection is irreducible, we
have the following result.

Corollary 3.3. The intersection 1∗k ∩0
∗
εσ ⊂ H∗k is compact.

The group PU(N ) acts freely by conjugation on each of H∗k , 1∗k , and 0∗εσ , and
the quotients by this action are the manifolds we denote as

Ĥk = H∗k /PU(N ), 1̂k =1
∗

k/PU(N ), and 0̂εσ = 0
∗

εσ/PU(N ).

Here the dimension of Ĥk equals 2k(N 2
−N )−2(N 2

−1), and both 1̂k and 0̂εσ are
half-dimensional submanifolds of Ĥk . Since the intersection 1̂k ∩ 0̂εσ is compact,
we can deform 0̂εσ into a submanifold 0̃εσ using an isotopy with compact support
so that the intersection 1̂k ∩ 0̃εσ is transverse and consists of finitely many points.
Define

hN,a(εσ )= #Ĥk
(1̂k ∩ 0̃εσ )

as the oriented intersection number. We will describe the orientations in the follow-
ing subsection. The intersection number hN,a(εσ ) is independent of the choice of
isotopy of 0̂εσ , and we denote

hN,a(εσ )= 〈1̂k, 0̂εσ 〉Ĥk
.

3B. Orientations. The following argument is similar to the one found in [Harper
and Saveliev 2010, Section 3.4], and we include it here for completeness.

First, observe that the conjugacy class CA ⊂ SU(N ) is orientable, which follows
for instance by identifying it with a flag variety. So choose an orientation for CA

and give Qk = (CA)
k and Qk × Qk the induced product orientations. The diagonal

1k and the graph 0εσ are naturally diffeomorphic to Qk via projection and so an
orientation for Qk determines orientations for both 1k and 0εσ .

Using the standard orientation of SU(N ), we obtain an orientation on H∗k =
f −1(I ) using the base-fiber rule. Since the adjoint action of PU(N ) on CA is
orientation preserving, the quotients Ĥk, 1̂k , and 0̂εσ are all orientable, and we
orient them using the base-fiber rule.
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Reversing the orientation of CA reverses the orientation of Qk only when k
is odd, and in this case it reverses the orientations of both 1̂k , and 0̂εσ but it
does not affect the oriented intersection number 〈1̂k, 0̂εσ 〉Ĥk

. This shows that the
intersection number is actually independent of the choice of orientation on the
conjugacy class CA.

3C. Independence of ε. The next result shows that hN,a(εσ ) is independent of
the choice of ε compatible with a.

Proposition 3.4. Fix a link L with n > 1 components and an allowable n-tuple a =
(a1, . . . , an) of labels. Fix also a braid σ ∈ Bk with closure σ̂ = L. If ε, ε′ ∈ (ZN )

k

are k-tuples compatible with a, i.e., satisfying (8), then hN,a(εσ )= hN,a(ε
′σ).

Proof. We will define an orientation preserving automorphism ϕ : Ĥk→ Ĥk such
that ϕ(1̂k)= 1̂k and ϕ(0̂εσ )= 0̂ε′σ . Write the permutation

(12) σ = (i1, . . . , ik1)(ik1+1, . . . , ik2) · · · (ikn−1+1, . . . , ikn )

as a product of disjoint cycles as in (4) and define δ = (δ1, . . . , δk) ∈ (ZN )
k recur-

sively with initial values

(13) δi1 = 1= δik1+1 = · · · = δikn−1+1

and by setting

(14) δ( j)σ = δj εj (ε
′

j )
−1.

Writing σ as a product of disjoint cycles as in (12) and noting that ε and ε′ both
satisfy (8), repeated application of the recursion (14) shows that the definition
of δ = (δ1, . . . , δk) is compatible with the initial values taken in (13).

Define the diffeomorphism τ : Qk→ Qk by

τ(X)= δX = (δ1 X1, . . . , δk Xk).

Note that τ may be orientation preserving or reversing. Furthermore, τ preserves
irreducibility and commutes with conjugation.

Consider the product map τ × τ : Qk × Qk → Qk × Qk . Observe that τ × τ
preserves the orientation of Qk × Qk and hence the induced map ϕ : Ĥk→ Ĥk is
orientation preserving.

Since τ may be orientation reversing, ϕ restricted to 1̂k or 0̂εσ may be orientation
reversing. The key observation is that if ϕ is orientation reversing on one, then
it must be orientation reversing on the other. Hence, ϕ preserves the intersection
number hN,a(εσ ),

〈1̂k, 0̂εσ 〉Ĥk
= 〈ϕ(1̂k), ϕ(0̂εσ )〉Ĥk

.
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Clearly, ϕ(1̂k)= 1̂k , so to finish off the proof we check that ϕ(0̂εσ )= 0̂ε′σ , or
that the pair (δX, δεσ(X)) ∈ 0̂ε′σ . By the calculation

(δX, δεσ(X))= (δX, δεσ(δN−1δX))= (δX, δεσ (δN−1)σ(δX)),

this will follow once we verify that δεσ (δN−1) = ε′. Since δN−1
j = δ−1

j , this is
equivalent to showing that δjεj = σ(δj )ε

′

j for j = 1, . . . , k, which follows directly
from (14), and this completes the proof of the proposition. �

3D. Independence under Markov moves. Based on the previous result, we denote
hN,a(εσ ) by hN,a(σ ) assuming that a choice of compatible ε has been made. In
this subsection, we show that hN,a defines an invariant of n-component links, and
this is achieved by showing that hN,a(σ ) is invariant under the Markov moves.

Recall that two braids σ, τ ∈ Bk have isotopic closures σ̂ = τ̂ if and only if σ
can be obtained from τ by a finite sequence of Markov moves; see for example
[Birman 1974]. The first Markov move replaces σ ∈ Bk by ξ−1σξ ∈ Bk for ξ ∈ Bk ,
and the second Markov move exchanges σ ∈ Bk with σσ±1

k ∈ Bk+1.
The following propositions give the SU(N ) analogues of the SU(2) results in

[Harper and Saveliev 2010, Propositions 4.2 and 4.3]; see the proof of [Lin 1992,
Theorem 1.8].

Proposition 3.5. The quantity hN,a(σ ) is invariant under type 1 Markov moves.

Proof. Suppose σ ∈ Bk is a braid with

σ = (I1) · · · (In)= (i1, . . . , ik1) · · · (ikn−1+1, . . . , ikn )

in multi-index notation. Given a braid ξ ∈ Bk , let σ ′ = ξ−1σξ and note that σ ′ has
the same cycle structure as σ, in fact it is given by

σ ′ = (I ξ1 ) · · · (I
ξ
n )= ((i1)

ξ , . . . , (ik1)
ξ ) · · · ((ikn−1+1)

ξ , . . . , (ikn )
ξ ).

We choose ε′ ∈ (ZN )
k compatible with the given labels, which means that ε′

satisfies (8) with respect to the braid σ ′, namely∏
i∈I ξj

ε′i = ω
aj

holds for j = 1, . . . , k. Notice that if we define the k-tuple ε by setting εi = ε
′
(i)ξ ,

then one can show that ε satisfies (8) with respect to σ = (I1) · · · (In); hence ε is
also compatible with the given labels.

The braid ξ determines a map ξ : Qk → Qk , and since it acts by permutation
and conjugation on each of the factors in Qk = CA× · · ·×CA, the fact that CA is
even-dimensional implies that this map is orientation preserving. This induces the
map ξ × ξ on Qk×Qk preserving irreducibility, commuting with the adjoint action
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of PU(n), and preserving (2), thus we obtain a well-defined orientation preserving
map ξ × ξ : Ĥk→ Ĥk .

Clearly, (ξ × ξ)(1̂k) = 1̂k , so the diagonal is preserved, and we consider the
effect of ξ × ξ on the graph 0̂ε′σ ′ . If (X, ε′σ ′(X)) ∈ 0̂ε′σ ′ , then

(ξ × ξ)(X, ε′σ ′(X))= (ξ × ξ)(X, ε′ξ−1σξ(X))= (ξ(X), ξ(ε′)σξ(X)) ∈ 0̂εσ ,

since ξ(ε′)i = ε
′
(i)ξ = εi . Thus (ξ × ξ)(0̂ε′σ ′)= 0̂εσ , and we see that

hN,a(σ
′)= 〈1̂k, 0̂ε′σ ′〉Ĥk

= 〈(ξ × ξ)(1̂k), (ξ × ξ)(0̂ε′σ ′)〉ξ×ξ(Ĥk)

= 〈1̂k, 0̂εσ 〉Ĥk
= hN,a(σ ).

�

The next result is established using the same argument that is used to prove
[Harper and Saveliev 2010, Proposition 4.3; Lin 1992, Theorem 1.8. We leave the
details of the proof to the reader.

Proposition 3.6. The quantity hN,a(σ ) is invariant under type 2 Markov moves.

4. Computations

In this section, we perform computations of hN,a(L) for various links L and we
prove a vanishing condition for hN,a(L) for split links.

4A. The Hopf link and chain links. The chain link L is obtained as the closure of
the braid σ = σ 2

1 σ
2
2 · · · σ

2
n−1 ∈ Bn . In this subsection, we compute hN,a(L) for L the

Hopf link and the chain link with N = n components. In particular, if d is chosen
relatively prime to N and a = (d, . . . , d), then we will show that hN,a(L)= 0 for
the chain link with n > 2 components. For n = 2, L is just the Hopf link, which
we denote by H ⊂ S3. Harper and Saveliev [2010] proved that h2,a(H) = ±1
for a = (1, 1). We generalize this by showing that hN,a(H)=±1 if a = (d, N −d),
where d satisfies 1≤ d < N and is relatively prime to N.

The next result will be used repeatedly in the computations that follow.

Theorem 4.1. Suppose N ≥ 2 and set ω = e2π i/N and ξ = e2π i/2N. Any pair of
matrices (X, Y ) ∈ SU(N )× SU(N ) satisfying [X, Y ] = ωI is, up to conjugation,
given by

X =
{

diag(1, ω, . . . , ωN−1) if N is odd,
diag(ξ, ξω, . . . , ξωN−1) if N is even,

and

Y =


0 · · · ±1

1
. . .

...
. . .

0 · · · 1 0

.
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The pair (X, Y ) ∈ SU(N )× SU(N ) determines an irreducible projective SU(N )
representation of the free abelian group Z⊕Z of rank 2.

Proof. First notice that XY X−1Y−1
= ωI if and only if Y−1 XY = ωX . Every

element of SU(N ) is conjugate to a diagonal matrix, and so we can write

X =

λ1 0
. . .

0 λN

,
where λi ∈U (1) and λ1 · · · λN = 1. However, because X is conjugate to ωX , we
must have

{λ1, . . . , λN } = {ωλ1, . . . , ωλN }.

Reordering the terms, we can arrange that λi = ω
i−1λ1 for i = 1, . . . , N. Since

det X = 1, we have λN
1 = (−1)N−1, and so without loss of generality we can take

λ1 =

{
1 if N is odd,
ξ if N is even.

This shows that X is of the required form.
Next, observe that XY X−1Y−1

=ωI if and only if XY =ωY X . Writing Y = (yi j )

and comparing the (i j) entries on right and left, it follows that

ωi−1 yi j = yi jω
j.

This implies that yi j = 0 unless i ≡ j + 1 mod N. Furthermore, since Y has only
one nonzero entry in each row and column, each entry must lie in U (1) and we find
that

Y =


0 · · · µ1

µ2
. . .

...
. . .

0 µN 0

,
where µi ∈ U (1) satisfy µ1 · · ·µN = (−1)N−1 (since det Y = 1). Because X is
diagonal with N distinct eigenvalues, the stabilizer subgroup Stab(X) is a copy of
the standard maximal torus, i.e.,

Stab(X)= {diag(θ1, . . . , θN ) | θi ∈U (1), θ1 · · · θN = 1} ∼= T N−1.

A matrix P = diag(θ1, . . . , θN ) ∈ Stab(X) acts on Y by

PYP−1
=


0 · · · θ1θ

−1
N µ1

θ2θ
−1
1 µ2

. . .
...

. . .

0 θN θ
−1
N−1µN 0

.
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Setting
θ1 = µ

−1
1

θ2 = θ1µ
−1
2 = µ

−1
1 µ−1

2

θ3 = θ2µ
−1
3 = µ

−1
1 µ−1

2 µ−1
3

...

θN = θN−1µ
−1
N = µ

−1
1 · · ·µ

−1
N = (−1)N−1,

it follows that

PYP−1
=


0 · · · (−1)N−1

1
. . .

...
. . .

0 1 0

.
Since P X P−1

= X , this shows that, up to conjugation, Y is of the required form.
Irreducibility of the pair (X, Y ) follows from the fact that Stab(X)∩Stab(Y )= ZN.

�

Remark 4.2. If XY X−1
=ωY, then XdY X−d

=ωdY by induction. This shows that
if (X, Y ) are as in Theorem 4.1, then (Xd, Y ) satisfies [Xd, Y ] = ωd I . Using this
observation, one can show that solutions (X ′, Y ′) to [X ′, Y ′] = ωd I are irreducible
and unique up to conjugation provided d is relatively prime to N. This fails if d is
not relatively prime to N ; when N = 4 and d = 2, one can construct nonconjugate
families of pairs (X, Y )∈ SU(4)×SU(4) satisfying [X, Y ] =−I . All of these pairs
are reducible.

We now use this to evaluate hN,a(H) for the Hopf link H.

Proposition 4.3. Suppose H is the Hopf link and 1 ≤ d < N is relatively prime
to N. Then hN,a(H)=±1 for a = (d, N − d).

Proof. We motivate the proof with the following argument. The Hopf link H has
link group GH = 〈x, y | [x, y] = 1〉, and Theorem 4.1 implies there is a unique
irreducible projective representation % : GH → SU(N ) with [%(x), %(y)] = ωd I .
Uniqueness of % up to conjugacy implies that hN,a(H)=±1.

More precisely, notice that the Hopf link is the closure of the braid σ 2
1 ∈ B2 and

fix the labels a = (d, N − d) for H, where 1≤ d < N is relatively prime to N. The
braid σ = σ 2

1 acts on pairs (X1, X2) ∈ R2 = SU(N )×SU(N ) in the usual way (see
Example 1.1), and for ε = (ε1, ε2) we have

εσ(X1, X2)= (ε1 X−1
2 X1 X2, ε2 X−1

2 X−1
1 X2 X1 X2).

For (ε1, ε2)= (ω
d, ωN−d), one can easily see that (X1, X2) ∈ Fix(εσ ) if and only

if [X1, X2] = ω
d. By Theorem 4.1 and the preceding remarks, this equation has
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one solution which is irreducible and unique up to conjugation. Lemma 4.4 below
shows that the solution is nondegenerate, and this implies that hN,a(H)=±1 for
the Hopf link. �

The next result establishes the nondegeneracy result required for the above
computation of hN,a(H).

Lemma 4.4. Let H be the Hopf link, GH its link group, and 1≤ d < N relatively
prime to N. Suppose % :GH→ SU(N ) is the projective representation, unique up to
conjugation, of the link group GH with a= (d,N−d). Then H1(GH ;su(N )Ad%)=0.

Proof. Let Z = S3 r τH be the link exterior, and recall that the exterior of every
nonsplit link in S3 is a K (π, 1). Thus H i (Z; su(N )Ad %) = H i (GH ; su(N )Ad %),
where GH = π1(Z) is the link group.

For the Hopf link, the link group GH = Z×Z is the free abelian group of rank
two. Since % is irreducible, it follows that H 0(GH ; su(N )Ad %)= 0, and Poincaré
duality implies that H 2(GH ; su(N )Ad %) = 0. Using χ(Z) = 0, this shows that
H 1(GH ; su(N )Ad %)= 0, which completes the proof of the lemma. �

Next, we consider a chain link L and we establish the following vanishing result
for hN,a(L).

Proposition 4.5. Suppose L is a chain link with n > 2 components and that n = N.
Then hN,a(L)= 0 for a = (d, . . . , d), where d is relatively prime to N.

Proof. We start with the chain link L with n = 3 components. It has link group
with presentation

GL = 〈x, y, z | [x, y] = 1= [y, z]〉.

We will parametrize all triples (X, Y, Z) ∈ SU(3) × SU(3) × SU(3) satisfying
[X, Y ]=ωI =[Y, Z ], and we will use this to show that h3,a(L)= 0 for a= (1, 1, 1).

Applying Theorem 4.1, up to conjugacy, there is a unique irreducible pair
(X, Y ) ∈ SU(3)×SU(3) satisfying the equation [X, Y ] = ωI . This pair is given by

X =

1 0 0
0 ω 0
0 0 ω2

 and Y =

0 0 1
1 0 0
0 1 0

.
In a general group, the commutator satisfies the relations

[x, y]−1
= [y, x] = y [x, y−1

] y−1
= x [x−1, y]x−1.

Setting Z = X−1, this shows that [Y, Z ] = ωI , and thus the triple (X, Y, Z) gives
rise to a projective representation % : GL → SU(3) satisfying

[%(x), %(y)] = ωI = [%(y), %(z)].
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If P ∈ Stab(Y ), then

[Y, P Z P−1
] = P [Y, Z ]P−1

= ωI,

so the action of Stab(Y ) on triples, given by (X, Y, Z) 7→ (X, Y, P Z P−1), preserves
the relations and is nontrivial on conjugacy classes. It follows that the solution set
is 2-dimensional and parametrized by Stab(Y )/Z3, which has Euler characteristic
zero since Stab(Y )∼= T 2 is a copy of a maximal torus. A calculation similar to the
one in the proof of Lemma 4.4 shows that the solution set is a nondegenerate critical
submanifold, and a standard argument then shows that its contribution to the invariant
is given by plus or minus its Euler characteristic; see the proof of Proposition 8
in [Boden and Herald 1999]. It follows that h3,a(L) = 0 for a = (1, 1, 1), and a
similar argument shows that h3,a(L)= 0 for a = (2, 2, 2).

One can also prove this via a direct approach making use of the fact that L is the
closure of the braid σ = σ 2

1 σ
2
2 and parametrizing the fixed point set Fix(εσ ) as was

done for the Hopf link. We leave the details to the reader.
Next, consider the chain link L with 4 components. It has link group with

presentation

GL = 〈x, y, z, w | [x, y] = 1= [y, z] = [z, w]〉.

By Theorem 4.1, up to conjugacy, there is a unique irreducible pair (X, Y ) ∈
SU(4)×SU(4) satisfying the equation [X, Y ] = ωI . This pair is given by

X =


ξ 0 0 0
0 ξ 3 0 0
0 0 ξ 5 0
0 0 0 ξ 7

 and Y =


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

.
Taking Z = X−1 and W = Y−1, one can show that the 4-tuple (X, Y, Z ,W ) gives
rise to a projective representation % : GL → SU(3) with [%(x), %(y)] = ωI =
[%(y), %(z)] = [%(z), %(w)]. The two groups Stab(Y ) and Stab(Z) act on 4-tuples
by {

(X, Y, Z ,W ) 7→ (X, Y, P Z P−1, PWP−1) for P ∈ Stab(Y ),
(X, Y, Z ,W ) 7→ (X, Y, Z , QWQ−1) for Q ∈ Stab(Z),

and these actions preserve the relations and are nontrivial on conjugacy classes. It
follows that the solution set is 6-dimensional and parametrized by Stab(Y )/Z4×

Stab(Z)/Z4, which has Euler characteristic zero. By similar considerations as in
the previous case, it follows that h4,a(L) = 0 for a = (1, 1, 1, 1), and a similar
argument shows that h4,a(L)= 0 for a = (3, 3, 3, 3).

As before, one can perform these computations directly by noting that L is the
closure of the braid σ = σ 2

1 σ
2
2 σ

2
3 and parametrizing the fixed point set Fix(εσ ).
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This argument generalizes to the n-component chain link in a straightforward
manner, as we now explain. The chain link L with n components has link group
with presentation

GL = 〈x1, . . . , xn | [x1, x2] = · · · = [xn−1, xn] = 1〉.

By Theorem 4.1, up to conjugacy, there is a unique irreducible pair (X1, X2) ∈

SU(N )×SU(N ) satisfying the equation [X1, X2] = ωI . A solution is obtained by
taking X1 = X and X2 = Y for X, Y as in the statement of the theorem, and setting
X i+2 = X−1

i for i = 1, . . . , n− 2, the n-tuple

(X1, . . . , Xn) ∈ SU(N )× · · ·×SU(N )

is easily seen to satisfy the relations

[X1, X2] = · · · = [Xn−1, Xn] = ωI.

For i = 3, . . . , n, the group Stab(Xi ) acts on n-tuples by

(X1, . . . , Xn) 7→ (X1, . . . , Xi , P X i+1 P−1, . . . , P Xn P−1)

for P ∈ Stab(Xi ). These actions preserve the relations and are nontrivial on conju-
gacy classes. Since each Stab(Xi )∼= T N−1 is a maximal torus, it follows that the
solution set has dimension (N −1)(N −2) and is parametrized by Stab(X3)/ZN ×

· · ·×Stab(Xn)/ZN, which has Euler characteristic zero. It follows that hN,a(L)= 0
for a= (1, . . . , 1), and a similar argument shows that hN,a(L)=0 for a= (d, . . . , d)
for any d relatively prime to N. �

4B. Split Links. In this section, we consider links L ⊂ S3 that are geometrically
split and prove a vanishing result for hN,a(L) provided that the labels satisfy the
following condition. Assume L is a link with n components, and suppose it is split.
Denoting the components of L by `1∪· · ·∪`n , this means that L = L1∪ L2, where
up to reordering L1 = `1 ∪ · · · ∪ `n1 and L2 = `n1+1 ∪ · · · ∪ `n are sublinks that are
separated by a 2-sphere. We shall assume that the labels (a1, . . . , an) satisfy the
additional condition:

(15) a1+ a2+ · · ·+ an1 is not a multiple of N.

Using Markov moves we can always find a split braid representative β ∈ Bk

of L; see Figure 3. This means that β = β1β2 where

β1 ∈ Im(Bk1

i1
↪→ Bk) and β2 ∈ Im(Bk2

i2
↪→ Bk)

for k = k1+ k2 and i1, i2 are injective maps obtained by stabilizing on the right and
left, respectively. More precisely, i1 takes a braid in Bk1 and adds k2 trivial strands
on the right, and i2 takes a braid in Bk2 and adds k1 trivial strands on the left. Any
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β1 β2

· · · · · ·

· · · · · ·

Figure 3. A split braid.

link L obtained as the closure β̂ of a split braid is obviously a split link, and any
split link L can be obtained as the closure of a split braid.

Proposition 4.6. Suppose L is a split link and that β is a split braid with β̂ = L.
Suppose further that a = (a1, . . . , an) is an n-tuple of labels satisfying (15), and
ε = (ε1, . . . , εk) is a compatible k-tuple. Then the intersection 1k ∩0εβ =∅, and
consequently hN,a(L)= 0.

Proof. Let X ∈1k ∩0εβ , then by (8),

X1 · · · Xk1 = ω
dn1β(X)1 · · ·β(X)k1 .

Since β = β1β2 is a split braid with β1 ∈ Bk1 , by (2) we have that

β(X)1 · · ·β(X)k1 = β1(X)1 · · ·β1(X)k1 = X1 · · · Xk1,

and this implies
X1 · · · Xk1 = ω

a1+···+an1 X1 · · · Xk1 .

But ωa1+···+an1 6= 1 by assumption (15), and this gives the desired contradiction. �

4C. Concluding remarks. One can give an alternative interpretation of the invari-
ants hN,a(L) in terms of a signed count of conjugacy classes of representations
% :GL→PU(N ) of the link group as follows. We begin by recalling the classification
of principal PU(N ) bundles from [Woodward 1982].

The classifying space B PU (N ) is simply connected and has π2(B PU (N ))=ZN,
and an application of the main theorem of [loc. cit.] implies that principal PU(N )
bundles P → X over a 3-complex X are determined by the characteristic class
w(P) ∈ H 2(X;ZN ). In case N = 2, PU(2)= SO(3) and w(P) coincides with the
second Stiefel-Whitney class.

Let L ⊂ S3 be a link and ML = S3 r τ(L) its exterior. A projective SU(N )
representation induces a representation % : GL → PU(N ), and we denote the
associated cohomology class by w(%) ∈ H 2(GL;ZN ). The class w(%) vanishes
if and only if % lifts to an SU(N ) representation. Further, there is a canonical
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injection H 2(GL;ZN )→ H 2(ML;ZN ) which is an isomorphism if and only if ML

is aspherical, i.e., if and only if L is nonsplit.
By reduction mod N, an allowable n-tuple (a1, . . . , an)∈Zn determines a unique

cohomology class w(a1, . . . , an) ∈ H 2(∂ML;ZN )∼= (ZN )
n . The exact sequence in

cohomology for the pair (ML , ∂ML) gives

→ H 2(ML;ZN )
i∗
−→ H 2(∂ML;ZN )→ H 3(ML , ∂ML;ZN )→ 0;

and condition (iii) from Section 2B guarantees that w(a1, . . . , an) lies in the image
of i∗ and hence determines a class w(a1, . . . , an) ∈ H 2(ML;ZN ). Condition (ii)
implies that the class w(a1, . . . , an) has order N.

From this point of view, the invariant hN,a(L) is closely related to the signed
count of conjugacy classes of representations % : GL → PU(N ) such that w(%)=
w(a1, . . . , an). Proposition 4.6 is therefore a direct consequence of the fact that
for split links L and allowable n-tuples (a1, . . . , an) satisfying condition (15), the
associated cohomology class w(a1, . . . , an) does not lie in the image of the map
H 2(GL;ZN )→ H 2(ML;ZN ).

As mentioned in the introduction, it would be interesting to investigate the
relationship between the SU(N ) Casson–Lin invariants studied here and the SU(N )
instanton Floer groups constructed by Kronheimer and Mrowka [2011b; 2011a].
It would also be interesting to understand the relationship between the SU(N )
Casson–Lin invariants and classical link invariants. For example, the main result
of [Harper and Saveliev 2010] equates the SU(2) Casson–Lin invariant h2(L) of a
two component link L = `1 ∪ `2 with the linking number lk(`1, `2). The following
conjecture, if true, would give a generalization to the higher rank setting.

Conjecture 4.7. If L = `1 ∪ `2 is a two component link in S3, then the SU(N )
Casson–Lin invariant satisfies

hN,a(L)= lk(`1, `2)
N−1.

This conjecture is consistent with all known computations of the SU(N ) Casson–
Lin invariants, and it’s possible that the invariants hN,a(L) are generally invariant
under link homotopy. We hope to explore these topics in future work.
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