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NONORIENTABLE LAGRANGIAN COBORDISMS
BETWEEN LEGENDRIAN KNOTS

ORSOLA CAPOVILLA-SEARLE AND LISA TRAYNOR

In the symplectization of standard contact 3-space, R × R3, it is known that
an orientable Lagrangian cobordism between a Legendrian knot and itself,
also known as an orientable Lagrangian endocobordism for the Legendrian
knot, must have genus 0. We show that any Legendrian knot has a nonori-
entable Lagrangian endocobordism, and that the cross-cap genus of such a
nonorientable Lagrangian endocobordism must be a positive multiple of 4.
The more restrictive exact, nonorientable Lagrangian endocobordisms do
not exist for any exactly fillable Legendrian knot but do exist for any sta-
bilized Legendrian knot. Moreover, the relation defined by exact, nonori-
entable Lagrangian cobordism on the set of stabilized Legendrian knots is
symmetric and defines an equivalence relation, a contrast to the nonsym-
metric relation defined by orientable Lagrangian cobordisms.

1. Introduction

Smooth cobordisms are a common object of study in topology. Motivated by ideas
in symplectic field theory [Eliashberg et al. 2000], Lagrangian cobordisms that
are cylindrical over Legendrian submanifolds outside a compact set have been an
active area of research interest. Throughout this paper, we will study Lagrangian
cobordisms in the symplectization of the standard contact R3, namely the symplectic
manifold (R×R3, d(etα)), where α = dz− y dx , that coincide with the cylinders
R × 3+ (resp., R × 3−) when the R-coordinate is sufficiently positive (resp.,
negative). Our focus will be on nonorientable Lagrangian cobordisms between
Legendrian knots3+ and3− and nonorientable Lagrangian endocobordisms, which
are nonorientable Lagrangian cobordisms with 3+ =3−.

Smooth endocobordisms in R×R3 without the Lagrangian condition are abundant:
for any smooth knot K ⊂R3 and an arbitrary j ≥ 0, there is a smooth 2-dimensional
orientable submanifold M of genus j such that M agrees with the cylinder R× K
when the R-coordinate lies outside an interval [T−, T+]; the analogous statement
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holds for nonorientable M and cross-cap genus1 when j > 0. For any Legendrian
knot 3, it is easy to construct an orientable Lagrangian endocobordism of genus 0,
namely the trivial Lagrangian cylinder R×3. In fact, with the added Lagrangian
condition, orientable Lagrangian endocobordisms must be concordances:

Theorem [Chantraine 2010]. Any orientable Lagrangian endocobordism of any
Legendrian knot has genus 0 .

Nonorientable Lagrangian endocobordisms also exist and have topological re-
strictions:

Theorem 1.1. For an arbitrary Legendrian knot 3, there exists a nonorientable
Lagrangian endocobordism for 3 of cross-cap genus g if and only if g ∈ 4Z+.

Theorem 1.1 is proved in Theorems 3.2 and 3.3. The fact that the cross-cap
genus of a nonorientable Lagrangian endocobordism must be a positive multiple
of 4 follows from a result of Audin [1988] about the obstruction to the Euler
characteristic for closed, Lagrangian submanifolds in R4. It is easy to construct
immersed Lagrangian endocobordisms; the existence of the desired embedded
endocobordisms follows from Lagrangian surgery, as developed, for example, by
Polterovich [1991].

Of special interest are Lagrangian cobordisms that satisfy an additional “ex-
actness” condition. Exactness is known to be quite restrictive: by a foundational
result of Gromov [1985], there are no closed, exact Lagrangian submanifolds in R2n

with its standard symplectic structure. The nonclosed trivial Lagrangian cylinder
R×3 is exact, and Section 2 describes some general methods to construct exact
Lagrangian cobordisms. In contrast to Theorem 1.1, there are some Legendrians
that do not admit exact, nonorientable Lagrangian endocobordisms:

Theorem 1.2. There does not exist an exact, nonorientable Lagrangian endocobor-
dism for any Legendrian knot 3 that is exactly orientably or nonorientably fillable.

A Legendrian knot 3 is exactly fillable if there exists an exact Lagrangian cobor-
dism that is cylindrical over 3 at the positive end and does not intersect {T−}×R3

for T−� 0; precise definitions can be found in Section 2. Theorem 1.2 is proved in
Section 4; it follows from the Seidel isomorphism (Theorem 4.1), which relates the
topology of a filling to the linearized contact cohomology of the Legendrian at the
positive end. Theorem 1.2 implies that on the set of Legendrian knots in R3 that
are exactly fillable, orientably or not, the relation defined by exact, nonorientable
Lagrangian cobordism is antireflexive and antisymmetric; see Corollary 4.2. Figure 6
gives some particular examples of Legendrians that are exactly fillable and thus
do not admit exact, nonorientable Lagrangian endocobordisms. Many of these
examples are maximal tb Legendrian representatives of twist or torus knots. In fact,

1the number of real projective planes in a connected sum decomposition
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Figure 1. The max tb Legendrian representative of m(819).

using the classification results of Etnyre and Honda [2001] and of Etnyre, Ng, and
Vértesi [Etnyre et al. 2013], we show:

Corollary 1.3. Let K be the smooth knot type of either a twist knot or a positive
torus knot or a negative torus knot of the form T (−p, 2k) for p odd and p> 2k> 0.
Then any maximal tb Legendrian representative of K does not have an exact,
nonorientable Lagrangian endocobordism.

However, stabilized Legendrian knots do admit exact, nonorientable Lagrangian
endocobordisms: a Legendrian knot is said to be stabilized if, after Legendrian
isotopy, a strand contains a zig-zag as shown in Figure 4.

Theorem 1.4. For any stabilized Legendrian knot 3 and any k ∈ Z+, there exists
an exact, nonorientable Lagrangian endocobordism for 3 of cross-cap genus 4k.

Some Legendrian knots are neither exactly fillable nor stabilized. Thus, a natural
question is:

Question 1.5. If a Legendrian knot is not exactly fillable and is not stabilized, does
it have an exact, nonorientable Lagrangian endocobordism? In particular, does the
unique Legendrian representative of m(819) = T (−4, 3) with maximal tb whose
front projection is shown in Figure 1 have an exact, nonorientable Lagrangian
endocobordism?

A description of how the Legendrian knot can be recovered from the front
projection is given on page 322. The max tb version of m(819) is not exactly fillable
since the upper bound on the tb invariant for all Legendrian representatives of
m(819) given by the Kauffman polynomial is not sharp; see Section 6 for more
details. In response to Question 1.5, Chantraine, Dimitroglou Rizell, Ghiggini, and
Golovko [Chantraine et al. 2015, Corollary 12.3] proved an extension of Theorem 1.2
that shows an exact, nonorientable Lagrangian endocobordism does not exist for
an orientable Legendrian that admits an augmentation or, more generally, for
an orientable Legendrian whose characteristic algebra admits a finite-dimensional
representation. The max tb Legendrian representative of m(819)=T (−4, 3) does not
have an augmentation, but by results of Sivek [2013, Corollary 3.5], the characteristic
algebra of this Legendrian does have a 2-dimensional representation. Thus the
answer to Question 1.5 is no; see Section 6 for additional questions.

Given the existence of exact, nonorientable Lagrangian endocobordisms for a
stabilized Legendrian, it is natural to ask: What Legendrian knots can appear as a
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“slice” of such an endocobordism? The parallel question for orientable Lagrangian
endocobordisms has been studied in [Chantraine 2015; Baldwin and Sivek 2014;
Cornwell et al. 2016]. The nonorientable version of this question is closely tied
to the question of whether or not nonorientable Lagrangian cobordisms define an
equivalence relation on the set of Legendrian knots. By a result of Chantraine
[2010], it is known that the relation defined on the set of Legendrian knots by
orientable Lagrangian cobordism is not an equivalence relation since symmetry
fails. In fact, the relation defined on the set of stabilized Legendrian knots by exact,
nonorientable Lagrangian cobordism is symmetric: see Theorem 5.2. In addition,
this relation is transitive by “stacking” (Lemma 2.2) and reflexive by Theorem 1.4.
Thus we get:

Theorem 1.6. On the set of stabilized Legendrian knots, the relation defined by
exact, nonorientable Lagrangian cobordism is an equivalence relation. Moreover,
all stabilized Legendrian knots are equivalent with respect to this relation.

2. Background

In this section we review Legendrian and Lagrangian submanifolds.

Contact manifolds and Legendrian submanifolds. Below is some basic back-
ground on contact manifolds and Legendrian knots. More information can be
found, for example, in [Etnyre 2003; 2005].

A contact manifold (Y, ξ) is an odd-dimensional manifold together with a contact
structure, which consists of a maximally nonintegrable field of tangent hyperplanes.
The standard contact structure on R3 is the field ξp = kerα0(p) for α0(x, y, z)=
dz− y dx . A Legendrian link 3 is a submanifold of R3 diffeomorphic to a disjoint
union of circles such that for all p ∈ 3, we have Tp3 ⊂ ξp; if, in addition, 3 is
connected, 3 is a Legendrian knot. It is common to examine Legendrian links
from their xz-projections, known as their front projections. A Legendrian link will
generically have an immersed front projection with semicubical cusps, no vertical
tangents, and no self-tangencies; any such projection can be uniquely lifted to a
Legendrian link using y = dz/dx .

Two Legendrian links 30 and 31 are equivalent Legendrian links if there exists
a 1-parameter family of Legendrian links 3t , t ∈ [0, 1], joining 30 and 31. In
fact, Legendrian links 30,31 are equivalent if and only if their front projections
are equivalent by planar isotopies that do not introduce vertical tangents and the
Legendrian Reidemeister moves as shown in Figure 2.

Every knot has a Legendrian representative. In fact, every knot has an infinite
number of different Legendrian representatives. For example, Figure 3 shows three
different oriented Legendrians that are all topologically the unknot. These unknots
can be distinguished by classical Legendrian invariants: the Thurston–Bennequin
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Figure 2. The three Legendrian Reidemeister moves. There is
another type-1 move obtained by flipping the planar figure about a
horizontal line, and there are three additional type-2 moves obtained
by flipping the planar figure about a vertical, a horizontal, and both
a vertical and a horizontal line.

Figure 3. Three different Legendrian unknots: the one with maxi-
mal tb invariant of −1 and two others obtained by ±-stabilizations.

number, tb, and the rotation number, r . These invariants can easily be computed
from a front projection; see, for example, [Boranda et al. 2013].

The two unknots in the second line of Figure 3 are obtained from the one at
the top by stabilization. In general, from an oriented Legendrian 3, one can
obtain oriented Legendrians S±(3): the positive (negative) stabilization, S+ (S−),
is obtained by replacing a portion of a strand with a strand that contains a down
(up) zig-zag, as shown in Figure 4. This stabilization procedure will not change the
underlying smooth knot type but will decrease the Thurston–Bennequin number
by 1; adding an up (down) zig-zag will decrease (increase) the rotation number
by 1. It is possible to move a zig-zag to any strand of a Legendrian knot [Fuchs and
Tabachnikov 1997]. Bennequin and slice-Bennequin inequalities (see, for example,
[Etnyre 2005]) show that for any Legendrian representative 3 of a fixed smooth
knot type K , tb(3)+ |r(3)| is bounded above. Because of such bounds, the set of
oriented Legendrian representatives of a fixed smooth knot type can be visualized
by a “mountain range” in the plane where each Legendrian representative 3 is
recorded by a vertex at coordinates (r(3), tb(3)); two vertices are connected by an
edge if the corresponding Legendrians are related by stabilization. Many examples
of known and conjectured mountain ranges can be found in the Legendrian knot
atlas of Chongchitmate and Ng [2013].
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S+

S−

Figure 4. The positive (negative) stabilization of an oriented knot
is obtained by introducing a down (an up) zig-zag.

Symplectic manifolds, Lagrangian submanifolds, and Lagrangian cobordisms.
We will now discuss some basic concepts in symplectic geometry. Additional
background can be found, for example, in [McDuff and Salamon 1998].

A symplectic manifold (M, ω) is an even-dimensional manifold together with a
2-form ω that is closed and nondegenerate; when ω is an exact 2-form, (M, ω= dβ)
is said to be an exact symplectic manifold. A basic example of an exact symplectic
manifold is (R4, ω0 = dx1 ∧ dy1+ dx2 ∧ dy2). The cobordisms constructed in this
paper live inside the symplectic manifold that is constructed as the symplectization
of (R3, ξ0 = kerα0), namely, R×R3 with symplectic form given by ω = d(etα0).
In fact, there is an exact symplectic diffeomorphism between the symplectization
(R×R3, ω) and the standard (R4, ω0); see, for example, [Bourgeois et al. 2015].

A Lagrangian submanifold L of a 4-dimensional symplectic manifold (M, ω) is a
2-dimensional submanifold such that ω|L = 0. When M is an exact symplectic man-
ifold, ω= dβ, β|L is necessarily a closed 1-form; when, in addition, β|L is an exact
1-form, β|L = d f , then L is said to be an exact Lagrangian submanifold. It is easy
to verify that the exactness of the Lagrangian does not depend on the choice of β.

Remark. There is a (nonexact) Lagrangian torus in the standard symplectic R4:
this can be seen as the product of two embedded circles in each of the (x1, y1) and
(x2, y2) planes. By classical algebraic topology, it follows that the torus is the only
compact, orientable surface that admits a Lagrangian embedding into R4: a result
of Whitney equates a signed count of double points of an immersion to the Euler
number of the normal bundle, but for a Lagrangian submanifold, the normal and
tangent bundles are isomorphic [Audin et al. 1994].

We now turn our focus to noncompact Lagrangians that are cylindrical over
Legendrians.

Definition 2.1. Let 3−,3+ be Legendrian links in R3.

(1) A Lagrangian submanifold without boundary L ⊂ R×R3 is a Lagrangian
cobordism from 3+ to 3− if it is of the form

L =
(
(−∞, T−]×3−

)
∪ L ∪

(
[T+,+∞)×3+

)
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for some T− < T+, where L ⊂ [T−, T+] × R3 is compact with boundary
∂L = ({T−}×3−)∪ ({T+}×3+).

(2) A Lagrangian cobordism from 3+ to 3− is orientable (resp., nonorientable)
if L is orientable (resp., nonorientable).

(3) A Lagrangian cobordism from3+ to3− is exact if L is exact, namely etα0|L=

d f |L , and the primitive, f , is constant on the cylindrical ends: there exist
constants C± such that

f |L∩((−∞,T−)×R3) = C−, f |L∩((T+,+∞)×R3) = C+.

A Legendrian knot 3 is (exactly) fillable if there exists an (exact) Lagrangian
cobordism from 3+ =3 to 3− =∅.

An important property of Lagrangian cobordisms is that they can be stacked (or
composed):

Lemma 2.2 (stacking cobordisms [Ekholm et al. 2012]). If L12 is a Lagrangian
cobordism from 3+ =31 to 3− =32, and L23 is a Lagrangian cobordism from
3+=32 to3−=33, then there exists a Lagrangian cobordism L13 from3+=31

to 3− =33. Furthermore, if L12 and L23 are exact, then there exists an exact L13.

Constructions of exact Lagrangian cobordisms are an active area of research.
In this paper, we will use the fact that there exist exact Lagrangian cobordisms
between Legendrians related by isotopy and certain surgeries. The existence of exact
Lagrangian cobordisms from isotopy is well known; see, for example, [Eliashberg
and Gromov 1998; Chantraine 2010; Ekholm et al. 2012; Bourgeois et al. 2015].

Lemma 2.3 (exact cobordisms from isotopy). Suppose that 3 and 3′ are isotopic
Legendrian links. Then there exists an exact, orientable Lagrangian cobordism, in
fact concordance, from 3+ =3 to 3− =3′.

Remark. In general, the trace of a Legendrian isotopy is not a Lagrangian cobor-
dism. However it is possible to add a “correction term” so that it will be Lagrangian.
More precisely, let λt(u) = (x(t, u), y(t, u), z(t, u)), t ∈ R, be a Legendrian iso-
topy such that ∂λ

∂t (t, u) has compact support with Im λt(u)=3− for t ≤−T and
Im λt(u)=3+ for t ≥ T , and let

η(t, u)= α0

(
∂λ

∂t
(t, u)

)
.

Then 0(t, u)= (t, x(t, u), y(t, u), z(t, u)+ η(t, u)) is an exact Lagrangian immer-
sion. If η(t, u) is sufficiently small, which can be guaranteed by “slowing down” the
isotopy via a t-reparametrization, then 0(t, u) is an exact Lagrangian embedding.

In addition, Legendrians 3 and 3′ that differ by “surgery” can be connected by
an exact Lagrangian cobordism. In one of these surgery operations, a Legendrian
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Figure 5. Orientable and nonorientable Legendrian surgeries.

0-tangle, consisting of two strands with no crossings and no cusp points, is replaced
with a Legendrian∞-tangle, consisting of two strands that each have one cusp and
no crossings; see Figure 5. When the strands of the 0-tangle are oppositely oriented,
this is an orientable surgery; otherwise this is a nonorientable surgery. There is
another surgery operation that shows that the maximal tb Legendrian representative
of the unknot, shown at the top of Figure 3, can be filled.

Lemma 2.4 (exact cobordisms from surgery [Ekholm et al. 2012; Dimitroglou Rizell
2014; Bourgeois et al. 2015]).

(1) Suppose 3+ and 3− are Legendrian knots, where 3− is obtained from 3+ by
orientable (nonorientable) surgery, as shown in Figure 5. Then there exists an
exact, orientable (nonorientable) Lagrangian cobordism from 3+ to 3−.

(2) Suppose 3+ is the Legendrian unknot with tb equal to the maximum value
of−1. Then there exists an exact, orientable Lagrangian filling of3+ by a disk.

Remark. By Lemmas 2.2, 2.3, and 2.4, to show there exists an exact Lagrangian
cobordism from 3+ to 3−, it suffices to show that there is a string of Legendrian
links (3+=30,31, . . . , 3n=3−), where each 3i+1 is obtained from 3i by a
single surgery, as shown in Figure 5, and Legendrian isotopy. In the case where
each surgery is orientable, the exact Lagrangian cobordism will be orientable. If
all surgeries are orientable and 3± are both knots, then the length, n, of this string
must be even and will agree with twice the genus of the Lagrangian cobordism;
for more details, see [Boranda et al. 2013]. If there is at least one nonorientable
surgery, the exact Lagrangian cobordism will be nonorientable and the length of the
string agrees with the cross-cap genus of the Lagrangian cobordism. To construct
an exact Lagrangian filling of 3+, it suffices to construct such a string to 3− =U ,
where U is a trivial link of maximal tb Legendrian unknots.

3. Constructions of nonorientable Lagrangian endocobordisms

We show that any Legendrian knot has a nonorientable Lagrangian endocobordism
with cross-cap genus an arbitrary multiple of 4. We then show that it is not possible
to get any other cross-cap genera.
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The strategy to show existence is to first construct an immersed orientable
Lagrangian cobordism, and then apply “Lagrangian surgery” to modify it so that it
is embedded. The following description of Lagrangian surgery follows Polterovich’s
construction [1991]; see also [Lalonde and Sikorav 1991].

To describe Lagrangian surgery precisely, we first need to explain the “sign” of a
double point. Suppose that x is a point of self-intersection of a generic, immersed,
oriented 2-dimensional submanifold L of R4. Then sgn(x) ∈ {±1} will denote the
sign of self-intersection of L at x : let (v1, v2) and (w1, w2) be positively oriented
bases of the transverse tangent spaces at x ; then

sgn(x)=+1 ⇐⇒ (v1, v2, w1, w2) is a positively oriented basis of R4,

and otherwise sgn(x)=−1.
By constructing a Lagrangian handle in a Darboux chart, it is possible to remove

double points of a Lagrangian immersion:

Lemma 3.1 (Lagrangian surgery [Polterovich 1991]). Let 6 be a 2-dimensional
manifold. Suppose φ :6→ R4 is a Lagrangian immersion and U ⊂ R4 contains a
single transversal double point x of φ. Then there exists a 2-dimensional manifold
6′ and a Lagrangian immersion φ′ :6′→ R4 such that

(1) Imφ = Imφ′ on R4
−U,

(2) φ′ has no double points in U.

Furthermore, let φ−1({x})= {p1, p2} ⊂6.

(1) If p1, p2 are in disjoint components of 6, then 6′ is obtained from 6 by a
connect sum operation.

(2) If p1, p2 are in the same component of 6, then

(a) if 6 is not orientable, 6′ =6 # K (=6 # T ),
(b) if 6 is orientable, 6′ =6 # T when sgn(x)=+1, and 6′ =6 # K when

sgn(x)=−1,
where K denotes the Klein bottle and T denotes the torus.

We now have the necessary background to show the existence of a nonorientable
Lagrangian endocobordism for any Legendrian knot:

Theorem 3.2. For any Legendrian knot 3 and any k ∈ Z+, there exists a nonori-
entable Lagrangian endocobordism for 3 of cross-cap genus 4k.

Proof. For an arbitrary Legendrian knot 3, begin with a cylindrical Lagrangian
cobordism, L=R×3 in R×R3, which is a space that is symplectically equivalent to
the standard R4. As explained in the remark on page 324, there exists an embedded
Lagrangian torus, T , such that T ∩ L =∅. After a suitable shift and perturbation,
we can assume that L and T intersect at exactly two points, x1 and x2, where
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sgn(x1)=+1 and sgn(x2)=−1. By Lemma 2.4, Lagrangian surgery at x1 results
in the connected, oriented, immersed Lagrangian diffeomorphic to (R×S1)#T with
a double point at x2 of index −1; a second Lagrangian surgery at x2 results in an
embedded, nonorientable Lagrangian cobordism diffeomorphic to (R× S1)# T # K ,
and thus of cross-cap genus 4. Stacking these endocobordisms, using Lemma 2.2,
produces an embedded, nonorientable Lagrangian cobordism of cross-cap genus 4k
for any k ∈ Z+. �

In fact, the possible cross-cap genera that appear in Theorem 3.2 are all that can
exist:

Theorem 3.3. Any nonorientable Lagrangian endocobordism in R×R3 must have
cross-cap genus 4k for some k ∈ Z+.

This cross-cap genus restriction is closely tied to Euler characteristic obstructions
for compact, nonorientable submanifolds that admit Lagrangian embeddings in
(R4, ω0), or equivalently in (R×R3, d(etα)):

Lemma 3.4 [Audin 1988]. Any compact, nonorientable Lagrangian submanifold
of R×R3 has an Euler characteristic divisible by 4.

This result can be seen as an extension, to the nonorientable setting, of a formula
of Whitney that relates the number of double points of a smooth immersion to the
Euler number of the normal bundle of the immersion; see [Audin 1988; Audin et al.
1994].

Remark. Lemma 3.4 implies that any compact, nonorientable Lagrangian sub-
manifold L in R × R3 has cross-cap genus 2 + 4 j for some j ≥ 0. There are
explicit constructions of compact, nonorientable Lagrangian submanifolds of cross-
cap genus 2+ 4 j for all j > 0 [Givental 1986; Audin 1990]. It has been shown
that there is no embedded, Lagrangian Klein bottle ( j = 0) [Nemirovskiı̆ 2009;
Shevchishin 2009].

To utilize the cross-cap genus restrictions for compact Lagrangians, we will
employ the following lemma, which shows that for any Lagrangian endocobordism,
it is possible to construct a compact, nonorientable Lagrangian submanifold into
which we can glue the compact portion of a Lagrangian endocobordism.

Lemma 3.5. For any Legendrian knot 3⊂ R3, any open set D ⊂ R3 containing 3,
and any T ∈ R+, there exists a compact, nonorientable Lagrangian submanifold L
in R×R3 such that

L ∩ ([−T, T ]× D)= [−T, T ]×3.

Proof. The strategy will be to construct a Lagrangian torus with double points,
thought of as two finite cylinders with top and bottom circles identified, and then
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apply Lagrangian surgery to remove the double points. As a first step, we construct
(nondisjoint) Lagrangian embeddings of two cylinders via Legendrian isotopies (see
Lemma 2.3). Namely, start with two disjoint copies of 3: 3 in D and a translated
version 3′ ⊂ R3

− D. Now, for t ∈ [0,U ], consider Legendrian isotopies 3t of 3
and 3′t of 3′ that satisfy the following conditions: 3t =3 for t ∈ [0,U ]; 3′t =3

′

for t ∈ [0, T ]; and for t ∈ [T,U ], 3′t is a Legendrian isotopy of3′ such that3′t =3
for t near U . By repeating an analogous procedure for t ∈ [−U, 0], we can obtain
a smooth immersion of the torus into [−U,U ]×R3. The arguments used to prove
Lemma 2.3 (see the remark on page 325) show that for U −T sufficiently large, the
trace of these isotopies can be perturbed to two nondisjoint embedded Lagrangian
cylinders that do not have any intersection points in [−T, T ] ×R3, and a direct
calculation shows that each double point with t ∈ [T,U ] can be paired up with a
double point with t ∈ [−U,−T ] of opposite sign. Then by applying Lagrangian
surgery (see Lemma 3.1) at each double point we get a compact, nonorientable
Lagrangian submanifold L in R×R3 with the desired properties. �

We are now ready to prove the cross-cap genus restriction for arbitrary nonori-
entable Lagrangian endocobordisms:

Proof of Theorem 3.3. Let C be a nonorientable Lagrangian endocobordism. Sup-
pose C ⊂ R× D and C agrees with a standard cylinder outside [−T, T ]×R3. By
Lemma 3.5, there is a compact, nonorientable Lagrangian submanifold L in R×R3

such that
L ∩ ([−T, T ]× D)= [−T, T ]×3.

Let L ′ be the Lagrangian submanifold obtained by removing the standard cylindrical
portion of L in [−T, T ]×D and replacing it with C∩([−T, T ]×R3). Then L ′ will
be a compact, nonorientable Lagrangian submanifold whose cross-cap genus, k(L ′),
differs from the cross-cap genus of L , k(L), by the cross-cap genus of C , k(C):
k(L ′)= k(L)+k(C). By Lemma 3.4, there exist j, j ′ ∈Z+ such that k(L)= 2+4 j
and k(L ′)= 2+ 4 j ′. Thus we find that k(C) must be divisible by 4. �

Remark. For exact Lagrangian cobordisms that are constructed from isotopy and
surgery (see Lemmas 2.3 and 2.4) it is possible to show that the cross-cap genus
must be a multiple of 4 by an alternate argument that relies on a careful analysis of
the possible changes to tb(3) under surgery [Capovilla-Searle 2015].

4. Obstructions to exact, nonorientable Lagrangian endocobordisms

We will now focus on exact, nonorientable Lagrangian cobordisms. We will prove
Theorem 1.2, which states that any Legendrian knot that is exactly fillable does not
have an exact, nonorientable Lagrangian endocobordism. The proof of this theorem
will involve applying the Seidel isomorphism, which relates the topology of a filling
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to the linearized Legendrian contact cohomology of the Legendrian at the positive
end. We will then apply Theorem 1.2 and give examples of maximal tb Legendrian
knots that do not have exact, nonorientable Lagrangian endocobordisms.

We begin with a brief description of Legendrian contact homology; additional
background information can be found, for example, in [Etnyre 2005]. Legendrian
contact homology is a Floer-type invariant of a Legendrian submanifold that lies
within Eliashberg, Givental, and Hofer’s symplectic field theory framework [Eliash-
berg 1998; Eliashberg et al. 2000; Chekanov 2002]. It is possible to associate to a
Legendrian submanifold3⊂R3 the stable, tame isomorphism class of an associative
differential graded algebra (DGA), (A(3), ∂). The algebra is freely generated by
the so-called Reeb chords of3, and is graded using a Maslov index. The differential
comes from counting pseudoholomorphic curves in the symplectization of R3; for
our interests, we will always use Z/2 coefficients. Legendrian contact homology,
namely the homology of (A(3), ∂), is a Legendrian isotopy invariant. Legendrian
contact homology has been defined for Legendrians in contact manifolds other
than R3; see, for example, [Ekholm et al. 2007; Sabloff 2003].

In general, it is difficult to extract information directly from the Legendrian
contact homology. An important computational technique arises from the existence
of augmentations of the DGA. An augmentation ε of A(3) is a differential algebra
homomorphism ε : (A(3), ∂)→ (Z2, 0); a graded augmentation is an augmentation
such that ε is supported on elements of degree 0. Not all Legendrians have an
augmentation; for any Legendrian 3, there are only a finite number of augmen-
tations. Given a graded augmentation ε, one can linearize (A(3), ∂) to a finite-
dimensional differential graded complex (A(3), ∂ε) and obtain linearized contact
homology, denoted LCH∗(3, ε;Z/2), and its dual linearized contact cohomology,
LCH∗(3, ε;Z/2). The set of all linearized (co)homology groups with respect to
all possible graded augmentations is an invariant of 3. If the augmentation is
ungraded, one can still examine the rank of the nongraded linearized (co)homology,
dim LCH(3, ε;Z/2), and obtain as an invariant of 3 the set of ranks of this to-
tal linearized (co)homology for all possible augmentations. Ungraded linearized
(co)homology is not an effective invariant: of the many examples of Legendrian
knots in the Legendrian knot atlas of Chongchitmate and Ng [2013] that have
the same classical invariants yet can be distinguished through graded linearized
homology, none can be distinguished by examining ungraded homology. However,
ungraded (co)homology will be useful in arguments below.

Ekholm [2008] has shown that an exact Lagrangian filling, F, of a Legendrian
submanifold 3⊂ R3 induces an augmentation εF of (A(3), ∂). When this filling
has Maslov class 0, the augmentation will be graded. Informally, Maslov 0 means
that along each loop in the filling, the corresponding loop of Lagrangian tangent
planes is trivial in the Lagrangian Grassmannian.
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The following result of Seidel will play a central role in showing obstructions
to exact, nonorientable Lagrangian endocobordisms. A proof of this result was
sketched in [Ekholm 2012] and given in detail in [Dimitroglou Rizell 2016]; a paral-
lel result using generating family homology was given in [Sabloff and Traynor 2013].

Theorem 4.1 (Seidel isomorphism [Ekholm 2012; Dimitroglou Rizell 2016; Ekholm
et al. 2012]). Let 3⊂ R2n+1 be an n-dimensional Legendrian submanifold with an
exact Lagrangian filling F ; let εF denote the augmentation induced by the filling.
Then

dim H(F;Z/2)= dim LCH(3, εF ;Z/2).

If the filling F of the n-dimensional Legendrian has Maslov class 0, then a graded
version of the above equality holds:

dim Hn−∗(F;Z/2)= dim LCH∗(3, εF ;Z/2).

The ungraded version of the Seidel isomorphism will be used to prove that
any Legendrian 3 that is exactly fillable does not have an exact, nonorientable
Lagrangian endocobordism:

Proof of Theorem 1.2. For a contradiction, suppose that there is a Legendrian
knot 3 that has an exact Lagrangian filling and an exact, nonorientable Lagrangian
endocobordism. Then by stacking the endocobordisms (see Lemma 2.2) it follows
that 3 has an infinite number of topologically distinct exact, nonorientable La-
grangian fillings. Each of these exact Lagrangian fillings induces an augmentation.
Since there are only a finite number of possible augmentations, there must exist
two topologically distinct fillings that induce the same augmentation. However, this
gives a contradiction to the Seidel isomorphism, Theorem 4.1. �

Theorem 1.2 implies that on the set of Legendrian knots in R3 that are exactly
fillable, orientably or not, the relation defined by exact, nonorientable Lagrangian
cobordism is antireflexive. Thus, by stacking (Lemma 2.2) we immediately also see:

Corollary 4.2. On the set of Legendrian knots in R3 that are exactly fillable, ori-
entably or not, the relation∼ defined by exact, nonorientable Lagrangian cobordism
is antisymmetric: 31 ∼32 =⇒ 32 �31.

We now apply Theorem 1.2 to give examples of Legendrians that do not have
exact, nonorientable Lagrangian endocobordisms. Hayden and Sabloff [2015]
showed that every positive knot type has a Legendrian representative that has an
exact, orientable Lagrangian filling. Combining this with Theorem 1.2 immediately
gives the next result.

Corollary 4.3 [Hayden and Sabloff 2015]. Each positive knot has a Legendrian rep-
resentative that does not have an exact, nonorientable Lagrangian endocobordism.
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m(31)= T (3, 2)= K−2 31 = T (−3, 2)= K1 41 = K2 = K−3

51 = T (−5, 2) m(51)= T (5, 2)

62 m(62)

Figure 6. Examples of max tb Legendrians that do not have exact,
nonorientable Lagrangian endocobordisms. The red lines indicate
points for surgeries.

There is work in progress to show that every +-adequate knot has a Legendrian
representative with an exact filling (J. M. Sabloff, private communication).

Many maximal tb representatives of low crossing knots have fillings, orientable
or not. Figure 6 illustrates some Legendrians that can be verified to have exact,
Lagrangian fillings; see the remark on page 326. Many of the examples in Figure 6
are Legendrian representatives of twist knots, Km , or torus knots, T (p, q). Using
Theorem 1.2 together with classification results of Etnyre and Honda [2001] and
of Etnyre, Ng, and Vértesi [Etnyre et al. 2013], we show that all maximal tb
representatives of twist knots, positive torus knots, and negative torus knots of
the form T (−p, 2k), p > 2k > 0, do not have exact, nonorientable Lagrangian
endocobordisms:

Proof of Corollary 1.3. By Theorem 1.2, to show the nonexistence of an exact,
nonorientable Lagrangian endocobordism, it suffices to show the existence of an
exact Lagrangian filling.

First consider the case where 3 is a maximal tb representative of a twist knot,
whose form is shown in Figure 7. Etnyre, Ng, and Vértesi [Etnyre et al. 2013] have

m

Figure 7. The smooth twist knot Km ; the box contains m right-
handed half-twists if m ≥ 0, and |m| left-handed twists if m < 0.
Notice that K0 and K−1 are unknots.
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m+ 2

Figure 8. Any maximal tb Legendrian representative of a negative
twist knot Km , with m≤−2, is Legendrian isotopic to a Legendrian
of the form on the left with the box containing |m+ 2| half-twists,
where each half-twist has form S (middle) or form Z (right). Two
surgeries produces a max tb Legendrian unknot.

m

Figure 9. Any maximal tb Legendrian representative of a positive
twist knot Km , with m ≥ 1, is Legendrian isotopic to a Legendrian
in the form at left, where the box contains m half-twists of form X ,
right.

m

Figure 10. An inductive argument shows that every max tb repre-
sentative of a positive twist knot has an exact Lagrangian filling.

classified all Legendrian twist knots: every maximal tb Legendrian representative
of Km , for m ≤−2, is Legendrian isotopic to one of the form in Figure 8, and every
maximal tb Legendrian representative of Km , for m ≥ 1, is Legendrian isotopic to
one of the form in Figure 9. For a max tb representative of a negative twist knot,
Figure 8 illustrates the two surgeries that show the existence of an exact Lagrangian
filling. For a max tb Legendrian representative of a positive twist knot, the existence
of an exact filling can be shown by an induction argument: Figure 10 (left) indicates
the surgery point when m = 1; for all m ≥ 1, a maximal tb representative of Km+1

can be reduced to a maximal tb representative of Km by one surgery, as indicated
in Figure 10 (right).

Next consider maximal tb Legendrian representatives of a torus knot, a knot
that can be smoothly isotoped so that it lies on the surface of an unknotted torus
in R3. Every torus knot can be specified by a pair (p, q) of coprime integers: we
will use the convention that the (p, q)-torus knot, T (p, q), winds p times around
a meridional curve of the torus and q times in the longitudinal direction. In fact,
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Figure 11. Surgeries that result in an exact filling of the maximal
tb representative of the positive torus knot T (5, 3).

T (p, q) is equivalent to T (q, p) and to T (−p,−q). We will always assume that
|p|> q ≥ 2, since we are interested in nontrivial torus knots.

Etnyre and Honda [2001] showed there is a unique maximal tb representative of
a positive torus knot T (p, q) with p> 0. The surgeries used in [Boranda et al. 2013,
Theorem 4.2] show that this maximal representative is exactly fillable. Figure 11
illustrates the orientable surgeries for the (5, 3)-torus knot; in this sequence of surg-
eries, one begins with surgeries on the innermost strands, and then performs a Legen-
drian isotopy so that it is possible to do a surgery on the next set of innermost strands.

Lastly consider the case where3 is topologically a negative torus knot, T (−p, 2k)
with p > 2k > 0. In this case, Etnyre and Honda have shown that the number
of different maximal tb Legendrian representations depends on the divisibility
of p by 2k: if |p| = m2k + e, 0 < e < 2k, there are m nonoriented Legendrian
representatives of T (−p, 2k) with maximal tb. These different representatives with
maximal tb are obtained by writing m = 1+ n1+ n2, where n1, n2 ≥ 0, and then
3(n1,n2) is constructed using the form shown in Figure 12 with n1 and n2 copies of
the tangle B inserted as indicated; this figure also shows k surgeries that guarantee
the existence of an exact Lagrangian filling. �

Some comments on obstructions to exact fillings are discussed in Section 6.

}

n1 B
n2 B

e

B =

Figure 12. The general form of a maximal tb representative of
a negative torus knot T (−p, 2k), with p > 2k > 0, with k = 2
and |p| = (1+ n1+ n2)2k+ e; the indicated k surgeries produce a
Legendrian trivial link of maximal tb unknots.
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Figure 13. It is possible to construct exact, nonorientable La-
grangian cobordisms between 3+ = 3 and S−S+(3), left, and
between 3+ = S−S+(3) and 3− = S+(3) or 3− = S−(3), right.

5. Constructions of exact, nonorientable Lagrangian cobordisms

We will construct an exact, nonorientable Lagrangian endocobordism of cross-
cap genus 4 for any stabilized Legendrian knot, and a nonorientable Lagrangian
cobordism between any two stabilized Legendrian knots. All these exact Lagrangian
cobordisms are constructed through isotopy and surgery; see the remark on page 326.

Central to these constructions will be the following lemma, which says that one
can always introduce a pair of “oppositely oriented” zig-zags to 3+, and if one has
a pair of oppositely oriented zig-zags in 3+, then one can remove either element of
this pair; see Figure 13. One needs to be careful when discussing orientations for the
ends of a nonorientable Lagrangian cobordism: given an orientation on 3+, there is
no canonical orientation for 3−. However, although an orientation is needed on 3
to distinguish between S+(3) and S−(3), S−S+(3) is a well-defined operation on
unoriented knots.

Lemma 5.1. Let3 be a Legendrian knot. Then there exists an exact, nonorientable
Lagrangian cobordism

(1) of cross-cap genus 2 between 3+ =3 and 3− = S−S+(3),

(2) of cross-cap genus 1 between3+= S−S+(3) and3−= S+(3) or3−= S−(3).

Proof. The strategy will be to construct the desired exact, nonorientable Lagrangian
cobordism via Legendrian isotopy and surgeries that are performed locally, near
the site of the stabilizations. Figure 14 illustrates the isotopy and surgeries, the
second of which is nonorientable, that imply the existence of a cross-cap genus 2
Lagrangian cobordism between 3+ =3 and 3− = S−S+(3). Figure 15 illustrates
the isotopy and surgery that imply the existence of a cross-cap genus 1 Lagrangian
cobordism between 3+ = S−S+(3) and 3− = S+(3), when the original strand is
oriented from right to left, or 3− = S−(3), when the original strand is oriented
from left to right. �

Exact, nonorientable Lagrangian endocobordisms. In Theorem 1.2, it was shown
that Legendrians that are exactly fillable do not have exact, nonorientable Lagrangian
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≡ ≡

Figure 14. By applying an orientable and a nonorientable surgery,
any strand can have a pair of oppositely oriented zig-zags intro-
duced.

≡ ≡ ≡

≡ ≡

≡

Figure 15. In the presence of oppositely oriented zig-zags, via one
nonorientable surgery, one of the zig-zags can be removed.

endocobordisms. However exact, nonorientable Lagrangian endocobordisms do
exist for stabilized knots:

Proof of Theorem 1.4. First consider the case where3 is the negative stabilization of
a Legendrian: 3= S−(3̂). Then by Lemma 5.1, there exists an exact, nonorientable
Lagrangian cobordism

(1) of cross-cap genus 2 between 3 and S−S+(3),

(2) of cross-cap genus 1 between S−S+(3) and S+(3),

(3) of cross-cap genus 1 between S+(3)= S+(S−(3̂)) and S−(3̂)=3.

Stacking these cobordisms results in an exact, nonorientable Lagrangian endocobor-
dism of cross-cap genus 4. Additional stacking results in arbitrary multiples of
cross-cap genus 4.

An analogous argument proves the case where 3 is the positive stabilization of
a Legendrian: 3= S+(3̂). �

Exact, nonorientable Lagrangian cobordisms between stabilized Legendrians.
Given that every stabilized Legendrian knot has a nonorientable Lagrangian endo-
cobordism, a natural question is: What Legendrian knots can appear as a “slice” of
such an endocobordism? We show that any stabilized Legendrian knot can appear
as such a slice.

Theorem 5.2. For smooth knot types K , K ′, let3 be any Legendrian representative
of K and let 3′ be a stabilized Legendrian representative of K ′. Then there exists
an exact, nonorientable Lagrangian cobordism between 3+ =3 and 3− =3′.
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Before moving to the proof of Theorem 5.2, we show that nonorientable La-
grangian cobordisms define an equivalence relation on the set of stabilized Legen-
drian knots:

Proof of Theorem 1.6. Let Ls denote the set of all stabilized Legendrian knots of any
smooth knot type. Define the relation ∼ on Ls by 31 ∼32 if there exists an exact,
nonorientable Lagrangian cobordism from 3+ =31 to 3− =32. Reflexivity of ∼
follows from Theorem 1.4, symmetry follows from Theorem 5.2, and transitivity
follows from Lemma 2.2. Thus ∼ defines an equivalence relation. Moreover, by
Theorem 5.2, we see that with respect to this equivalence relation, there is only one
equivalence class. �

To prove Theorem 5.2, it will be useful to first show that there is an exact,
nonorientable Lagrangian cobordism between any two stabilized Legendrians of a
fixed knot type:

Proposition 5.3. Let K be any smooth knot type, and let 3,3′ be Legendrian rep-
resentatives of K , where 3′ is stabilized. Then there exists an exact, nonorientable
Lagrangian cobordism between 3+ =3 and 3− =3′.

Proof. Fix a smooth knot type K , and let 31,32 be Legendrian representatives,
where 32 is stabilized. By results of Fuchs and Tabachnikov [1997], we know that
there exist r1, `1, r2, `2 such that

S`1
− Sr1
+ (31)= S`2

− Sr2
+ (32).

By applying additional positive stabilizations, if needed, we can assume r1 > `1.
Consider the case where 32 is the negative stabilization of some Legendrian:

32 = S−(3̂2). By applications of Lemma 5.1, there exists an exact, nonorientable
Lagrangian cobordism between

(1) 31 and Sr1
− Sr1
+ (31),

(2) Sr1
− Sr1
+ (31) and S`1

− Sr1
+ (31), and thus between Sr1

− Sr1
+ (31) and S`2

− Sr2
+ (32),

(3) S`2
− Sr2
+ (32) and Sr2

+ (32),

(4) Sr2
+ (32)= Sr2

+ (S−(3̂2)) and S−(3̂2)=32.

By stacking these cobordisms (Lemma 2.2), we have our desired exact, nonori-
entable Lagrangian cobordism between 31 and 32. An analogous argument proves
the case where 32 is the positive stabilization of some Legendrian. �

Proof of Theorem 5.2. The strategy here is to first show that one can construct an
exact, nonorientable Lagrangian cobordism between 3 and a stabilized Legendrian
unknot 30. Similarly, it is possible to construct an exact, nonorientable Lagrangian
cobordism between 3′ and a stabilized Legendrian unknot 3′0; we will show it
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≡

Figure 16. For any Legendrian knot 3, perform a surgery near
each crossing to get a set of disjoint Legendrian unknots.

≡

Figure 17. Surgeries used to convert to a link of Legendrian un-
knots can be “undone”, at the cost of additional stabilizations.

is possible to “reverse” this sequence of surgeries and construct an exact, nonori-
entable Lagrangian cobordism between 3′0 and 3̃′, which is a stabilization of 3′.
By Proposition 5.3, there exists an exact, nonorientable Lagrangian cobordism
between 30 and 3′0 and between 3̃′ and 3′. Thus we will have the desired exact,
nonorientable Lagrangian cobordism between 3 and 3′ by stacking the cobordisms
between 3 and 30, between 30 and 3′0, between 3′0 and 3̃′, and between 3̃′

and 3′.
We first show how it is possible to construct an exact, nonorientable Lagrangian

cobordism from 3 to a Legendrian unknot; cf. [Boranda et al. 2013]. Let 3 be
an arbitrary Legendrian knot. We can assume that 3 has at least one positive
crossing by, if necessary, applying a Legendrian Reidemeister 1 move. As shown
in Figure 16, performing an orientable or nonorientable surgery near a crossing
produces a crossing that can be removed through Legendrian Reidemeister moves.
Perform such a surgery on every crossing in 3 until you have obtained k disjoint
stabilized Legendrian unknots; since 3 has at least one positive crossing, we have
performed at least one nonorientable surgery. Align the k Legendrian unknots
vertically and perform surgeries so that we obtain a single stabilized Legendrian
unknot 30. In this way, we have constructed an exact, nonorientable Lagrangian
cobordism between 3 and 30.

A similar procedure can be used to construct a sequence of surgeries from 3′

to another Legendrian unknot 3′0; now we show it is possible to “reverse” this
procedure and construct a sequence of surgeries from 3′0 to 3̃′, a Legendrian
obtained by applying stabilizations to 3′. Figure 17 illustrates how every surgery
that was used to get to a Legendrian unknot can be undone at the cost of adding
additional zig-zags into the original strands. Figure 18 illustrates this procedure
with an example.
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≡

≡

Figure 18. Top: surgeries that give rise to an exact, nonorientable
Lagrangian cobordism from the max tb version of 31 to a stabilized
unknot. Bottom: surgeries that give rise to an exact, nonorientable
Lagrangian cobordism from the stabilized unknot to a stabilized
representative of 31.

As outlined at the beginning of the proof, these constructions prove the existence
of an exact Lagrangian cobordism from 3+ =3 to 3− =3′. �

6. Additional questions

We end with a brief discussion of some additional questions.
From results above, we know that exactly fillable Legendrian knots do not admit

exact, nonorientable Lagrangian endocobordisms, while stabilized Legendrian knots
do. There are examples of Legendrian knots that are neither exactly fillable nor
stabilized. As mentioned above, Ekholm [2008] has shown that if 3 is exactly
fillable, then there exists an ungraded augmentation of A(3). By work of Sabloff
[2005] and, independently, Fuchs and Ishkhanov [2004], we then know that there
exists an ungraded ruling of 3. (Definitions of graded and ungraded rulings can be
found, for example, in [Kálmán 2008].) Then it follows by [Rutherford 2006] that
the Kauffman bound on the maximal tb value for all Legendrian representatives of
the smooth knot type of 3 is sharp. Thus, if the Kauffman bound is not sharp for
the smooth knot type K , then no Legendrian representative of K is exactly fillable.
So a natural question is:

Question 6.1. If 3 is a maximal tb representative of a knot type K for which
the upper bound on tb for all Legendrian representatives given by the Kauffman
polynomial is not sharp, does 3 have an exact, nonorientable Lagrangian endo-
cobordism?
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The Legendrian representative of m(819) shown in Figure 1 satisfies the hypothe-
ses in Question 6.1; the Kauffman bound is known to be sharp for all knots with
10 or fewer crossings except m(819), m(942), m(10124), m(10128), m(10132), and
m(10136) [Ng 2001; 2005; Rutherford 2006]. As mentioned in the Introduction,
[Chantraine et al. 2015] contains results which imply that the answer to Question 6.1
is no. However, this now spawns new questions. For example, consider the max tb
Legendrian representative of m(10132) given as K2 in [Sivek 2013, Figure 2]. The
Legendrian K2 is not stabilized, does not have an augmentation (and thus is not
exactly fillable), and does not have a finite-dimensional representation. Does K2

have an exact, nonorientable Lagrangian endocobordism?
There are also examples of Legendrians with nonmaximal tb that are not stabilized.

For example, m(10161) is a knot type where the unique maximal tb representative
has a filling. However, there is a Legendrian representative with nonmaximal tb
that does not arise as a stabilization. As shown in [Shonkwiler and Vela-Vick 2011,
Figure 1], this nonmaximal tb, nonstabilized Legendrian does have an ungraded
ruling, and the characteristic algebra of K2 does not have a finite-dimensional
representation [Sivek 2013].

Question 6.2. Does the nonstabilized, nonmaximal tb Legendrian representative
of m(10161) have an exact, nonorientable Lagrangian endocobordism?

Additional examples of nonstabilized and nonmaximal tb representatives can be
found in the Legendrian knot atlas of Chongchitmate and Ng [2013].

There are additional questions that arise from the constructions of fillings. For
example, it is known by results of Chantraine [2010] that orientable fillings realize
the smooth 4-ball genus. In Figure 6, examples are given of nonorientable La-
grangian fillings of maximal tb representatives of 62 and m(62) of cross-cap genus
2 and 4, respectively: the smooth 4-dimensional cross-cap number of both 62 and
m(62) is 1.

Question 6.3. Does there exist a nonorientable Lagrangian filling of these Legen-
drian representatives of 62 and m(62) of cross-cap genus 1?
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