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A STRONG MULTIPLICITY ONE THEOREM FOR SL2

JINGSONG CHAI AND QING ZHANG

It is known that the multiplicity one property holds for SL2 while the strong
multiplicity one property fails. However, in this paper we show that if we
require further that a pair of cuspidal representations π and π ′ of SL2 have
the same local components at the archimedean places and the places above 2,
and they are generic with respect to the same additive character, then they
also satisfy the strong multiplicity one property. The proof is based on a
local converse theorem for SL2.

1. Introduction

Let F be a number field and A = AF be its ring of adeles. Let G be a linear
reductive algebraic group defined over F . The study of the space of automorphic
forms L2(G(F)\G(A)) has been a central topic in the Langlands program and
representation theory. Let L2

0(G(F)\G(A)) be the subspace of cuspidal representa-
tions. Suppose π is an irreducible automorphic representation of G(A). It is known
that π occurs discretely with finite multiplicity mπ in L2

0(G(F)\G(A)).
The multiplicities mπ are important in the study of automorphic forms and

number theory. By [Jacquet and Shalika 1981; Badulescu 2008] and the work of
Piatetski-Shapiro, the group G = GLn and its inner forms have the property of
multiplicity one, that is, mπ ≤ 1 for any π . This is also true for SL2 by the famous
work of D. Ramakrishnan [2000]. But in general the multiplicity one property fails,
for example [Blasius 1994; Gan et al. 2002; Li 1997; Labesse and Langlands 1979]
to list a few.

In the case of GLn a stronger theorem, called the strong multiplicity one, holds.
It says that for two cuspidal representations π1 and π2, if they have isomorphic
local components almost everywhere, then they coincide in the space of cusp forms
(not only isomorphic). It follows from the results in [Labesse and Langlands 1979]
that SL2 does not have this strong multiplicity one property. The multiplicity one
property is already rare and the strong multiplicity one is even rarer. To the authors’
knowledge the examples other than GLn in this direction are the strong multiplicity
one theorems for U(2, 1) [Gelbart and Piatetski-Shapiro 1984; Baruch 1997] and
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GSp4 [Soudry 1987] and the rigidity theorem for SO(2n+ 1) [Jiang and Soudry
2003, Theorem 5.3].

The main purpose of this paper is to prove a weaker version of the strong
multiplicity one result for Sp2= SL2. Although we know strong multiplicity one
does not hold in general for a pair of cuspidal representations π1 and π2 of SL2(A),
if we require that both π1 and π2 are generic with respect to the same additive
character ψ of A, then we can show that they also satisfy the strong multiplicity
one property.

The reason for the failure of the strong multiplicity one for SL2 is the existence
of L-packets. According to the local conjecture of Gan–Gross–Prasad [2012,
Conjecture 17.3] there is at most one ψ-generic representation in each L-packet.
For SL2, the result is known by the local discussion in [Labesse and Langlands
1979]. In this paper, we prove a local converse theorem for SL2(F) when F is a
p-adic field such that its residue characteristic is not 2, which will reprove the result
of Labesse and Langlands [1979] and confirm a local converse conjecture of Jiang,
see [Jiang 2006, Conjecture 3.7] and [Jiang and Nien 2013, Conjecture 6.3]. This
also implies our version of strong multiplicity one easily.

We now give some details of our results. Gelbart and Piatetski-Shapiro [1987]
constructed some Rankin–Selberg integrals to study L-functions on the group
Gn×GL(n), for Gn = Sp(n) and U(n, n). In particular, in Method C in that paper,
if π is a globally generic cuspidal representation of Sp2n(A), then τ is a cuspidal
representation of GLn(A). Consider the global Shimura type zeta-integral

I (s, φ, E)=
∫

Sp2n(F)\Sp2n(A)

φ(g)θ(g)E(g,s)dg,

where φ belongs to the space of π , E(g, s) is a genuine Eisenstein series on
S̃p2n(A) built from the representation induced from the representation τ of GLn(A)

twisted by |det|s and θ(g) is some theta series on S̃p2n(A). Note that the product
θ(g)E(g, s) is well-defined on Sp2n . The global integral is shown to be Eulerian.
The local functional equations and unramified calculations were also carried out by
Gelbart and Piatetski-Shapiro [1987]. Although we will only consider the easiest
case when n = 1 of Gelbart and Piatetski-Shapiro’s construction, we remark here
that Ginzburg, Rallis and Soudry [1997; 1998] generalized the above construction
to Sp2n ×GLk , for any k.

We study more details of Gelbart and Piatetski-Shapiro’s local integral

9(Wv, φv, fs,v)=

∫
N (Fv)\SL2(Fv)

Wv(h)(ωψ−1
v
(h)φv)(1) fs,v(h)dh

(for the unexplained notations, see sections below) when v is finite. These local
zeta-integrals satisfy certain functional equations, which come from the intertwining
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operators on induced representations and certain uniqueness statements. These
functional equations can then be used to define local gamma factors γ (s, πv, ηv, ψv),
where πv is a generic representation of SL2(Fv), ηv is a character of F×v and ψv is
a nontrivial additive character. The main local result of this paper can be formulated
as follows.

Theorem 3.10 (Local converse theorem and stability of γ ). Suppose that the residue
characteristic of the p-adic field F is not 2 and ψ is a nontrivial additive character
of F. Let (π, Vπ ) and (π ′, Vπ ′) be two ψ-generic representations of SL2(F) with
the same central character.

(1) If γ (s, π, η, ψ)= γ (s, π ′, η, ψ) for all quasicharacters η of F×, then π ∼= π ′.

(2) There is an integer l = l(π, π ′) such that if η is a quasicharacter of F× with
conductor cond(η) > l, then

γ (s, π, η, ψ)= γ (s, π ′, η, ψ).

The proof of this result follows closely [Baruch 1995; 1997; Zhang 2015] and
Howe vectors play an important role. With the help of this result, combined with
a nonvanishing result on archimedean local integrals proved in Lemma 4.9, we
follow the argument in [Baruch 1997, Theorem 7.2.13], or in [Casselman 1973,
Theorem 2], to prove the main global result of this paper.

Theorem 4.8 (Strong multiplicity one for SL2). Let ψ be a nontrivial additive
character of F \A and let π = ⊗πv and π ′ = ⊗π ′v be two irreducible cuspidal
automorphic representations of SL2(A) with the same central character. Suppose
that π and π ′ are both ψ-generic. Let S be a finite set of finite places such that no
place in S is above 2. If πv ∼= π ′v for all v /∈ S, then π = π ′.

Remark. The restriction on residue characteristic comes from Lemma 3.3. It is
expected that this restriction can be removed.

Besides the above, we also in this paper include a discussion of relations be-
tween global genericity and local genericity. An irreducible cuspidal automorphic
representation (π, Vπ ) is called globally ψ-generic if for some φ ∈ Vπ , the integral∫

N (F)\N (A)
φ(ug)ψ−1(u)du 6= 0

for some g ∈ SL2(A). The representation π is called locally ψ-generic if each of
its local component is generic for the corresponding local components of ψ . It is
easy to see that if π is globally ψ-generic, then π is also locally ψ-generic. It is a
conjecture that on a reductive algebraic group G, the converse is also true. This
conjecture is closely related to the Ramanujan conjecture. See [Shahidi 2011] for
more detailed discussions. We confirm this conjecture for SL2.
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Theorem 4.3. Let π=⊗vπv be an irreducible cuspidal automorphic representation
of SL2(A) and ψ = ⊗ψv be a nontrivial additive character of F \A. Then π is
ψ-generic if and only if each πv is ψv-generic.

Gelbart, Rogawski and Soudry [1997, Proposition 2.5] proved similar results for
U(1, 1) and for endoscopic cuspidal automorphic representations of U(2, 1). From
the discussions given in [Gelbart et al. 1997] Theorem 4.3 follows directly from
the results of Labesse and Langlands [1979]. Here, we include this result because
we adopt a local argument (see Proposition 2.1) which is different from that given
in [Labesse and Langlands 1979]. Hopefully, this local argument can be extended
to more general groups.

As explained above, there is essentially nothing new in this paper. All the results
and proofs should be known to the experts. Our task here is simply to try to write
down the details and to check everything works out as expected.

This paper is organized as follows. In Section 2 we collect basic results about the
local zeta-integrals which will be needed. In Section 3 we study the Howe vectors
and use them to prove the local converse theorem and stability of local gamma
factors. In Section 4 we prove the main global results.

1A. Notations. Let F be a field. In SL2(F), we consider the following subgroups.
Let B be the upper triangular subgroup. Let B = TN be the Levi-decomposition,
where T is the diagonal torus and N is the upper triangular unipotent. Denote

t (a)=
(

a
a−1

)
∈ T, for a ∈ F×, and n(b)=

(
1 b

1

)
∈ N , for b ∈ F.

Let N be the lower triangular unipotent and denote

n(x)=
(

1
x 1

)
and w =

(
1

−1

)
.

Denote by St the natural inclusion SO3(C)→ GL3(C) and view it as the “stan-
dard” representation of LSL2 = SO3(C).

2. The local zeta-integral

2A. The genericity of representations of SL2(F). In this section let F be a local
field and ψ be a nontrivial additive character of F , which is also viewed as a
character of N (F). For κ ∈ F× and g ∈ SL2(F) we define

gκ =
(
κ

1

)
g
(
κ−1

1

)
.
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Explicitly (
x y
z w

)κ
=

(
x κy

κ−1z w

)
.

Note that if κ ∈ F×,2, say κ = a2, then gκ = t (a)gt (a)−1, i.e., g 7→ gκ is an inner
automorphism on SL2(F). Let (π, Vπ ) be an infinite dimensional irreducible smooth
representation of SL2(F). We consider the representation (πκ , Vπκ ) defined by

Vπκ = Vπ and πκ(g)= π(gκ).

Let ψκ be the character of F defined by ψκ(b)=ψ(κb). If (π, Vπ ) is ψ-generic
with a nonzero ψ Whittaker functional 3 : Vπ → C, one verifies that

3(πκ(n)v)=3(π(nκ)v)= ψκ(n)3(v)

for all n ∈ N (F) and all v ∈ Vπκ = Vπ . Hence (πκ , Vπκ ) is ψκ -generic.

Proposition 2.1. If π is both ψ- and ψκ -generic, then π ∼= πκ .

Proof. If F is nonarchimedean, the proof is similar to the U (1, 1) case as in [Zhang
2015].

If F is archimedean the case F = C is easy, as every κ has a square root in C.
Now consider F = R. We will work with the category of smooth representations
of moderate growth of finite length. The Whittaker functional is an exact functor
from this category to the category of vector spaces by [Casselman et al. 2000,
Theorem 8.2].

We first consider the case when I (χ)= IndG
B (χ) for some quasicharacter χ of F×.

For f ∈ I (χ), consider the function f κ on SL2(F) defined by f κ(g)= f (gκ
−1
). It is

clear that f κ ∈ I (χ)κ and the map f 7→ f κ defines an isomorphism I (χ)→ I (χ)κ .
By results in [Vogan 1981, Chapter 2], if π is not a fully induced representation

then it can be embedded into a principal series I (χ). This I (χ) has two irreducible
infinite dimensional subrepresentations, use π ′ to denote the other one. The quotient
of I (χ) by the sum of π and π ′, denoted by π ′′, is finite dimensional, i.e., we have
a short exact sequence

0→ π ⊕π ′→ I (χ)→ π ′′→ 0.

First, by [Casselman et al. 2000, Theorem 6.1], we know that the Whittaker
functionals on I (χ) are one dimensional for either ψ or ψκ . Note that π ′′ cannot
be generic as it is finite dimensional. Since the Whittaker functor is exact, it
follows that the dimension of Whittaker functionals on π ⊕π ′ is also one for either
ψ or ψκ . By the assumption π is both ψ- and ψκ -generic, thus π ′ is neither ψ- nor
ψκ -generic.



350 JINGSONG CHAI AND QING ZHANG

Now since π is ψ-generic, πκ is ψκ -generic. Hence the image of π under the
isomorphism I (χ)→ I (χ)κ given by f 7→ f κ is again ψκ -generic and hence it
has to be ψ-generic and isomorphic to π , which finishes the proof. �

2B. Weil representations of S̃L2. Let S̃L2 be the metaplectic double cover of SL2.
Then we have an exact sequence

0→ µ2→ S̃L2→ SL2→ 0,

where µ2 = {±1}.
The product on S̃L2(F) is given by

(g1, ζ1)(g2, ζ2)= (g1g2, ζ1ζ2c(g1, g2)),

where c : SL2(F)×SL2(F)→ {±1} is defined by Hilbert symbols as

c(g1, g2)= (x(g1), x(g2))F (−x(g1)x(g2), x(g1g2))F ,

where

x
(

a b
c d

)
=

{
c c 6= 0,
d c = 0,

and ( , )F is the Hilbert symbol. For these formulas for the Kubota cocycle see
[Kubota 1969, Section 3].

For a subgroup A of SL2(F), we denote by Ã the preimage of A in S̃L2(F),
which is a subgroup of S̃L2(F). For an element g ∈ SL2(F), we sometimes abuse
notation by writing (g, 1) ∈ S̃L2(F) as g.

A representation π of S̃L2(F) is called genuine if π(ζg) = ζπ(g) for all
g ∈ S̃L2(F) and ζ ∈ µ2. Let ψ be an additive character of F . Then there is a Weil
representation ωψ of S̃L2(F) on the space S(F) of Schwartz–Bruhat functions
on F . For f ∈ S(F), we have the well-known formulas:(

ωψ

(
1

−1

))
f (x)= γ (ψ) f̂ (x),(

ωψ

(
1 b

1

))
f (x)= ψ(bx2) f (x), b ∈ F(

ωψ

(
a

a−1

))
f (x)= |a|1/2

γ (ψ)

γ (ψa)
f (ax), a ∈ F×.

ωψ(ζ ) f (x)= ζ f (x), ζ ∈ µ2.

Here f̂ (x) =
∫

F f (y)ψ(2xy)dy, where dy is normalized so that ˆ̂f (x) = f (−x),
γ (ψ) is the Weil index and ψa(x)= ψ(ax).
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Let T̃ be the inverse image of T ={t (a) :=
(a

a−1

)
, a ∈ F×}⊂SL2(F) in S̃L2(F).

The product in T̃ is given by the Hilbert symbol, i.e.,

(t (a), ζ1)(t (b), ζ2)= (t (ab), ζ1ζ2(a, b)F ).

The function

µψ(a)=
γ (ψ)

γ (ψa)

satisfies
µψ(a)µψ(b)= µψ(ab)(a, b)F ,

and thus extends to a genuine character of T̃ .
The representation ωψ is not irreducible and we have ωψ = ω+ψ ⊕ω

−

ψ , where ω+ψ
and ω−ψ are the subrepresentations on even and odd functions in S(F), respectively.
All the above facts can be found in [Gelbart and Piatetski-Shapiro 1980, Section 1].

2C. The local zeta-integral. Let µψ(a) = γ (ψ)/γ (ψa) be as above, which is
viewed as a character of T̃ . Let η be a quasicharacter of F× and ηs denote
the character η| · |s of F×. Consider the induced representation I (s, η, ψ) =
IndS̃L2(F)

B̃(F)
(ηs−1/2µψ).

Let (π, V ) be a ψ-generic representation of SL2(F) with its Whittaker model
W(π, ψ). Choose W ∈ W(π, ψ), φ ∈ S(F) and fs ∈ I (s, η, ψ−1). Note that
(ωψ−1(h)φ)(1) fs(h) is well-defined as a function on SL2(F) and consider the
integral

9(W, φ, fs)=

∫
N (F)\SL2(F)

W (h)(ωψ−1(h)φ)(1) fs(h)dh.

By results in [Gelbart et al. 1987, Sections 5 and 12], the above integral is absolutely
convergent when Re(s) is large enough and has a meromorphic continuation to the
whole plane.

Remark. Gelbart and Piatetski-Shapiro [1987, Method C] constructed a global
zeta-integral for Sp2n ×GLn which showed that it is Eulerian. They also sketched
a proof of the local functional equation. The above integral is the simplest case of
the Gelbart and Piatetski-Shapiro integral, namely when n = 1.

2D. Local functional equation. The trilinear form (W, φ, fs) 7→9(W, φ, fs) de-
fines an element in

HomSL2(π ⊗ωψ−1 ⊗ I (s, η, ψ−1),C),

which has dimension at most one. The proof of this fact is given in [Gelbart et al.
1987, §11] and also can be deduced by the uniqueness of the Fourier–Jacobi model
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for SL2, see [Sun 2012]. Let

Ms : I (s, η, ψ−1)→ I (1− s, η−1, ψ−1)

be the standard intertwining operator, i.e.,

Ms( fs)(g)=
∫

N
fs(wng)dn.

By the one dimensionality of the above Hom space we get the following:

Proposition 2.2. There is a meromorphic function γ (s, π, η, ψ) such that

9(W, φ,Ms( fs))= γ (s, π, η, ψ)9(W, φ, fs),

for all W ∈W(π, ψ), φ ∈ S(F) and fs ∈ I (s, η, ψ−1).

2E. Unramified calculation. The unramified calculation of Method C is in fact
not included in [Gelbart et al. 1987], but it can be simply done in the SL2-case.

Let F be a nonarchimedian local field with odd residue characteristic. Suppose
everything is unramified. Then the character µψ is unramified, [Szpruch 2009,
p. 2188]. Suppose the representation (π, V ) has Satake parameter a, which means
that π is the unramified component IndSL2(F)

B(F) (ν) for an unramified character ν and
a = ν(pF ), where pF is some prime element of F . Let

bk = t (pk
F )= diag(pk

F , p−k
F ),

and W be the spherical Whittaker functional normalized by W (e) = 1. Then
W (bk)= 0 for k < 0 and

W (bk)=
q−k

a− 1
(ak+1

− a−k),

by the general Casselman–Shalika formula [1980, Theorem 5.4]. For k ≥ 0 we have

(ωψ−1(bk)φ)(1)= µψ−1(pk
F )|p

k
F |

1/2,

where φ is the characteristic function of the ring of integers OF . On the other hand,
let fs be the standard spherical section of I (s, η, ψ−1) normalized by fs(1) = 1.
Then we have

fs(bk)= η(pk
F )|p

k
F |

s+1/2µψ−1(pk
F ).



A STRONG MULTIPLICITY ONE THEOREM FOR SL2 353

Since µψ−1(pk
F )µψ−1(pk

F )= (p
k
F , pk

F )F = (pF ,−1)kF , we have

9(W, φ, fs)=

∫
F×

∫
K

W (t (a)k)ωψ−1(t (ak)φ)(1) fs(t (a)k)|a|−2dkda

=

∫
F×

W (t (a))ωψ−1(t (a))φ(1) fs(t (a))|a|−2da

=

∑
k≥0

W (bk)(ωψ−1(bk)φ)(1) fs(bk)|pk
F |
−2

=
1

a− 1

∑
k≥0

(ak+1
− a−k)(pF ,−1)kη(pF )

kq−ks
F

=
1+ c

(1− ac)(1− a−1c)
=

1− c2

((1− ac)(1− c)(1− a−1c)

=
L(s, π, St ⊗ ηχ)

L(2s, η2)
,

where c= (pF ,−1)η(pF )q−s
F , and χ(a)= (a,−1)F . Recall that St is the standard

representation of L SL2 = SO3(C).

Remark. From the calculation of the µψ given in [Szpruch 2009, Lemmas 1.5
and 1.10], one can check that

Ms( fs)=
L(2s− 1, η2)

L(2s, η2)
f1−s,

where fs and f1−s are the standard spherical sections in, respectively, I (s, η, ψ−1)

and I (1−s, η−1, ψ−1). Thus the factor L(2s, η2) appearing in the above unramified
calculation will play the role of the normalizing factor of a global intertwining
operator or Eisenstein series.

3. Howe vectors and the local converse theorem

In this section, we assume F is a p-adic field with odd residue characteristic. We
will follow Baruch’s method [1995; 1997] to give a proof of the local converse
theorem for generic representations of SL2(F).

3A. Howe vectors. Let ψ be an unramified character. For a positive integer m,
let Km = (1+M2×2(P

m
F ))∩ SL2(F) where PF = (pF ) denotes the maximal ideal

in OF . Define a character τm of Km by

τm(k)= ψ(p−2m
F k12)

for k = (ki j ) ∈ Km . It is easy to see that τm is indeed a character on Km .
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Let dm = t (p−m
F ). Consider the subgroup Jm = dm Kmd−1

m . Then

Jm =

(
1+Pm

F P−m
F

P3m
F 1+Pm

F

)
∩SL2(F).

Define ψm( j)= τm(d−1
m jdm) for j ∈ Jm . For a subgroup H ⊂ SL2(F), denote

Hm = H ∩ Jm . It is easy to check that ψm |Nm = ψ |Nm .
Let π be an irreducible smooth ψ-generic representation of SL2(F) and let

v ∈ Vπ be a vector such that Wv(1)= 1. For m ≥ 1, as in [Baruch 1995; 1997] we
consider

(3-1) vm =
1

Vol(Nm)

∫
Nm

ψ(n)−1π(n)vdn.

Let L ≥ 1 be an integer such that v is fixed by KL . Following E. M. Baruch, we
call vm,m ≥ L Howe vectors.

Lemma 3.1. We have:

(1) Wvm (1)= 1.

(2) If m ≥ L then π( j)vm = ψm( j)vm for all j ∈ Jm .

(3) If k ≤ m then

vm =
1

Vol(Nm)

∫
Nm

ψ(u)−1π(u)vkdu.

The proof of this lemma is the same as the proof in the U(2, 1) case, which is
given in [Baruch 1997, Lemma 5.2].

Lemma 3.2. Let m ≥ L and t = t (a) for a ∈ F×:

(1) If Wvm (t) 6= 0, we have
a2
∈ 1+Pm

F .

(2) If Wvm (tw) 6= 0, we have
a2
∈ P−3m .

Proof.

(1) Take x ∈ P−m . We then have n(x) ∈ Nm ⊂ Jm . From the relation

tn(x)= n(a2x)t

and (2) of Lemma 3.1 we have

ψ(x)Wvm (t)= ψ(a
2x)Wvm (t).

If Wvm (t) 6= 0 we get ψ(x)= ψ(a2x) for all x ∈ P−m . Since ψ is unramified
we get a2

∈ 1+Pm .
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(2) For x ∈ P3m we have n(x) ∈ N m . From the relation twn(x) = n(−a2x)tw
and Lemma 3.1 (2) we get

Wvm (tw)= ψ(−a2x)Wvm (tw).

Thus if Wvm (tw) 6=0 we get ψ(−a2x)=1 for all x ∈P3m . Thus a2
∈P−3m . �

Lemma 3.3. For m ≥ 1 the squaring map from 1+Pm
→ 1+Pm , sending a 7→ a2,

is well-defined and surjective.

This lemma requires that the residue field of F is not of characteristic 2 which
we assume throughout this section.

Proof. For x ∈ Pm , it is clear that (1+ x)2 = 1+ 2x + x2
∈ 1+Pm . Thus the

square map is well-defined. On the other hand, we take u ∈ 1+Pm and consider
the equation f (X) := X2

− u = 0. We have f ′(X)= 2X . Since q−m
= |1− u| =

| f (1)| < | f ′(1)|2 = |2|2 = 1 by Newton’s Lemma, see for example [Lang 1994,
Proposition 2, Chapter II], there is a root a ∈ OF of f (X) such that

|a− 1| ≤
| f (1)|
| f ′(1)|2

= |1− u| = q−m .

Thus we get a root a ∈ 1+Pm of f (X). This completes the proof. �

Let Z = {±1} and identify Z with the center of SL2(F). Denote by ωπ the
central character of π .

Corollary 3.4. Let m ≥ L. Then we have

Wvm (t (a))=
{
ωπ (z) if a = za′ for some z ∈ Z and a′ ∈ 1+Pm,

0 otherwise.

Proof. Suppose that Wvm (t (a)) 6= 0. Then by Lemma 3.2 we have a2
∈ 1+Pm .

By Lemma 3.3 there exists an a′ ∈ 1+Pm such that a2
= (a′)2. Thus a = za′ for

some z ∈ Z . Since a′ ∈ 1+Pm we get t (a′) ∈ Jm . The assertion follows from
Lemma 3.1. �

From now on, we fix two ψ-generic representations (π, Vπ ) and (π ′, Vπ ′) with
the same central characters. Fix v and v′ such that Wv(1)= 1=Wv′(1). Let L be
an integer such that both v and v′ are fixed by KL . For m ≥ 1 consider the Howe
vectors vm and v′m .

By Corollary 3.4 and the fact that ωπ = ωπ ′ we get the following:

Corollary 3.5. For m ≥ L we have Wvm (g)=Wv′m
(g) for all g ∈ B.

Lemma 3.6 (Baruch). If m ≥ 4L and n ∈ N − Nm we have

Wvm (twn)=Wv′m
(twn),

for all t ∈ T .
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Proof. This is a special case of [Baruch 1995, Lemma 6.2.2]. A similar result
for U(2, 1) is given in [Baruch 1997, Proposition 5.7]. We just remark that the
proof of this lemma depends on Corollary 3.5, and hence requires that the residue
characteristic of F is not 2. �

3B. Induced representations. Note that N (F) and N (F) split in S̃L2(F). More-
over, for g1 ∈ N and g ∈ N we have c(g1, g2)= 1. In fact if g1= n(y) and g2= n(x)
with x 6= 0 we have x(g1)= 1 and x(g2)= x . Thus

c(g1, g2)= (1, x)F (−x, x)F = 1.

This shows that N (F) · N (F) ⊂ SL2(F), where SL2(F) denotes the subset of
S̃L2(F) which consists of elements of the form (g, 1) for g ∈ SL2(F).

Let X be an open compact subgroup of N (F). For x ∈ X and i > 0 consider the
set A(x, i)= {n ∈ N (F) : nx ∈ B · N i }.

Lemma 3.7. (1) For any positive integer c there exists an integer i1 = i1(X, c)
such that for all i ≥ i1, x ∈ X and n ∈ A(x, i) we have

nx = nt (a)n0,

with n ∈ N , n0 ∈ N i and a ∈ 1+Pc.

(2) There exists an integer i0= i0(X) such that for all i ≥ i0 we have A(x, i)= N i .

Proof. By abuse of notation, for x ∈ X we write x = n(x). Since X is compact
there is a constant C such that |x |< C for all n(x) ∈ X ⊂ N .

For n(x) ∈ X and n(y) ∈ A(x, i) we have n(y)n(x) ∈ B · N i . Thus we can
assume that

n(y)n(x)=
(

a b
a−1

)
n(y)

for a ∈ F×, b ∈ F and y ∈ P3i . Rewrite the above expression as

n(−y)
(

a b
a−1

)
= n(x)n(−y),

or (
a b
−ay a−1

− by

)
=

(
1− x y x
−y 1

)
.

Thus we get
a = 1− x y and ay = y.

Since |x |< C and y ∈ P3i it is clear that for any positive integer c we can choose
i1(X, c) such that a = 1− x y ∈ 1+Pc for all n(x) ∈ X and n(y) ∈ A(x, i). This
proves (1).
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If we take i0(X)= i1(X, 1) we get a ∈ 1+P⊂ O× for i ≥ i0. From ay = y we
get y ∈ P3i . Thus for i ≥ i0(X) we have that n(y) ∈ N i , i.e., A(x, i)⊂ N i .

The other direction can be checked similarly if i is large. We omit the details. �

Given a positive integer i and a complex number s ∈C we consider the following
function f i

s on S̃L2(F):

f i
s (g̃)=


ζµψ−1(a)ηs+1/2(a) if g̃ =

((
a b

a−1

)
, ζ

)
n(x),

with a ∈ F×, b ∈ F, ζ ∈ µ2, x ∈ P3i ,

0 otherwise.

Lemma 3.8. (1) There exists an integer i2(η) such that for all i ≥ i2(η), f i
s defines

a section in I (s, η, ψ−1).

(2) Let X be an open compact subset of N . There exists an integer I (X, η)≥ i2(η)

such that for all i ≥ I (X, η) we have

f̃ i
s (wx)= vol(N i )= q−3i

F

for all x ∈ X , where f̃ i
s = Ms( f i

s ) and w =
(

1
−1

)
.

Proof. (1) From the definition it is clear that

f i
s

(((
a b

a−1

)
, ζ

)
g̃
)
= ζµψ−1(a)ηs+1/2(a) f i

s (g̃),

for a ∈ F×, b ∈ F , ζ ∈ µ2 and g̃ ∈ S̃L2(F). It suffices to show that for i large
there is an open compact subgroup H̃i ⊂ S̃L2(F) such that f i

s (g̃h̃)= f i
s (g̃) for all

g̃ ∈ S̃L2(F) and h̃ ∈ H̃i .
If ψ is unramified and the residue characteristic is not 2 as we assumed then the

character µψ−1 is trivial on O×F , see for example [Szpruch 2009, p. 2188].
Let c be a positive integer such that η is trivial on 1 + Pc. Let i2(η) =

max{c, i0(N ∩Kc), i1(N ∩Kc, c)}. For i ≥ i2(η) we take H̃i = K4i = 1+M2(P
4i ).

Note that K4i splits and thus can be viewed as a subgroup of S̃L2. We now check
that for i ≥ i2(η) we have f i

s (g̃h) = fs(g̃) for all g̃ ∈ S̃L2 and h ∈ K4i . We have
the decomposition K4i = (N ∩ K4i )(T ∩ K4i )(N ∩ K4i ). For h ∈ N ∩ K4i ⊂ N i

we have f i
s (g̃h)= f i

s (g̃) by the definition of f i
s . Now we take h ∈ T ∩ K4i . Write

h = t (a0) with a0 ∈ 1+P4i . We have n(x)h = hn(a−2
0 x). It is clear that x ∈P3i if

and only if a−2
0 x ∈ P3i . On the other hand, for any a ∈ F× and b ∈ F we have

c
((

a b
a−1

)
, t (a0)

)
= (a, a0)= 1,
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since a0 ∈ 1+P4i
F ⊂ F×,2 by Lemma 3.3. Thus we get((

a b
a−1

)
, ζ

)
n(x)h =

((
aa0 ba−1

0
a−1a−1

0

)
, ζ

)
n(a−2

0 x).

By the definition of f i
s , if x ∈ P3i for g =

((
a b

a−1

)
, ζ

)
n(x) then we get

f i
s (gh)= µψ−1(a0a)ηs+1/2(aa0)= µψ−1(a)ηs+1/2(a)= f i

s (g)

by the assumption on i .
Finally, we consider h ∈ N ∩ K4i ⊂ N ∩ Kc. By the assumption on i we get

A(h, i)= A(h−1, i)= N i .

In particular, for n ∈ N i we have nh ∈ B · N i and nh−1
∈ B · N i . Now it is clear

that g̃ ∈ B̃ ·N i if and only if g̃h ∈ B̃ ·N i . Thus f i
s (g̃)= 0 if and only if f i

s (g̃h)= 0.
Moreover, for n ∈ N i , we have

nh =
(

a0 b0

a−1
0

)
n0

for a0 ∈ 1+Pc, b0 ∈ F and n0 ∈ N i . Thus for g̃ =
((

a b
a−1

)
, ζ

)
n with n ∈ N i

we get

g̃h =
((

aa0 ab0+ a−1
0 b

a−1
0 a−1

)
, ζ

)
n0.

Here we used the fact that a0 ∈ 1+Pc is a square and thus

c
((

a b
a−1

)
,

(
a0 b0

a−1
0

))
= 1.

Since µψ−1(a0)= 1, (a, a0)= 1 and ηs+1/2(a0)= 1 we get

f i
s (g̃h)= f i

s (g).

This finishes the proof of (1).
(2) As in the proof of (1) let c be a positive integer such that η is trivial on 1+Pc.

Take I (X, η)=max{i1(X, c), i0(X)}. We have

f̃ i
s (wx)=

∫
N

f i
s (w

−1nwx)dn.

By the definition of f i
s , f i

s (w
−1nwx) 6= 0 if and only if w−1nwx ∈ B N i if and

only if w−1nw ∈ A(x, i)= N i for all i ≥ I (X) and x ∈ X . On the other hand, if
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w−1nw ∈ A(x, i), we have

w−1nwx =
(

a b
a−1

)
n0

with a ∈ 1+Pc
F . Thus

f i
s (w

−1nwx)= ηs+1/2(a)µψ−1(a)= 1.

Now the assertion is clear. �

3C. The local converse theorem.

Lemma 3.9. Let φm be the characteristic function of 1+Pm . Then

(1) for n ∈ Nm we have ωψ−1(n)φm
= ψ−1(n)φm , and

(2) for n ∈ N m we have ωψ−1(n)φm
= φm .

Proof.

(1) For n = n(b) ∈ Nm we have b ∈P−m . For x ∈ 1+Pm we have bx2
− b ∈ OF .

Thus
ωψ−1(n)φm(x)= ψ−1(bx2)φm(x)= ψ−1(b)φm(x).

For x /∈ 1+ Pm we have ωψ−1(n)φm(x) = ψ−1(bx2)φm(x) = 0. The first
assertion follows.

(2) For n ∈ N m we can write n =w−1n(b)w with b ∈P3m . Let φ′ = ωψ−1(w)φm .
We have

φ′(x)= γ (ψ−1)

∫
F
φm(y)ψ−1(2xy)dy

= γ (ψ−1)ψ−1(2x)
∫

Pm
ψ−1(2xz)dz

= γ (ψ−1)ψ−1(2x) vol(Pm)Char(P−m)(x),

where Char(P−m) denotes the characteristic function of the set P−m . It is clear
that ωψ−1(n(b))φ′ = φ′. Thus we have

ωψ−1(n)φm
= ωψ−1(w−1n(b))φ′ = ωψ−1(w−1)φ′ = ωψ−1(w−1)ωψ−1(w)φm

= φm .

This completes the proof. �

Given a quasicharacter η of F× recall that we have defined a local gamma factor
γ (s, π, η, ψ) in Proposition 2.2.

Theorem 3.10. Suppose that the residue characteristic of F is not 2 and ψ is a
nontrivial additive character of F. Let (π, Vπ ) and (π ′, Vπ ′) be two ψ-generic
representations of SL2(F) with the same central character.
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(1) If γ (s, π, η, ψ)= γ (s, π ′, η, ψ) for all quasicharacters η of F×, then π ∼= π ′.

(2) There is an integer l = l(π, π ′) such that if η is quasicharacter of F× with
conductor cond(η) > l, then

γ (s, π, η, ψ)= γ (s, π ′, η, ψ).

Remark. Theorem 3.10 can be viewed as one example of a general local converse
conjecture for classical groups, see [Jiang 2006, Conjecture 3.7] or [Jiang and Nien
2013, Conjecture 6.3].

Proof. We will first treat the case where ψ is unramified and prove the general case
at the end. We fix the notations v ∈ Vπ , v′ ∈ Vπ ′ and L as before.

Let η be a quasicharacter of F×. We take an integer m ≥ max{6L , cond(η)}
and consider the Howe vectors vm and v′m . Additionally, we take an integer
i ≥max{i2(η), I (Nm, η),m}. In particular we have a section f i

s ∈ I (s, η, ψ) as in
Section 3C. Let Wm = Wvm or Wv′m

. We compute the integral of 9(Wm, φ
m, f i

s )

on the open dense subset TN (F) = N (F) \ N (F)TN (F) of N (F) \ SL2(F).
For g = nt (a)n we can take the quotient measure as dg = |a|−2dnda. By the
definition of f i

s we get

9(Wm, φ
m, f i

s )=

∫
T×N (F)

Wm(t (a)n)(ωψ−1(t (a)n)φm)(1) f i
s (t (a)n)|a|

−2dnda

=

∫
T×N i

Wm(t (a)n)µψ−1(a)|a|1/2ωψ−1(n)

·φm(a)µψ−1(a)ηs+1/2(a)|a|−2dnda

=

∫
T×N i

Wm(t (a)n)ωψ−1(n)φm(a)χ(a)ηs−1(a)dnda,

where χ(a) = µψ−1(a)µψ−1(a) = (a,−1)F . Since i ≥ m we get N i ⊂ N m . By
Lemmas 3.1 and 3.9 we get Wm(t (a)n)=Wm(t (a)) and ωψ−1(n)φm

= φm . Thus
we get

9(Wm, φ
m, f i

s )= q−3i
∫

F×
Wm(t (a))φm(a)χ(a)ηs−1(a)da.

Since φm
= Char(1 + Pm) and, for a ∈ 1 + Pm , we have Wm(t (a)) = 1. By

Lemma 3.1 we get

9(Wm, φ
m, f i

s )= q−3i
∫

1+Pm
χ(a)η(a)da.

Since χ(a)= 1 for a ∈ 1+Pm and m ≥ cond(η) by assumption we get

9(Wm, φ
m, f i

s )= q−3i−m .
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The above calculation works for both Wvm and Wv′m
. Thus we have

(3-2) 9(Wvm , φ
m, f i

s )=9(Wv′m
, φm, f i

s )= q−3i−m .

Next we compute the other side of the local functional equation, 9(Wm, φ
m, f̃ i

s ),
on the open dense subset N (F)\N (F)TwN (F)⊂N (F)\SL2(F), where f̃ i

s =Ms( f i
s ).

We have

9(Wm, φ
m, f̃ i

s )

=

∫
T×N (F)

Wm(t (a)wn)(ωψ−1(t (a)wn)φm)(1) f̃ i
s (t (a)wn)|a|−2dnda

=

∫
T×Nm

Wm(t (a)wn)(ωψ−1(t (a)wn)φm)(1) f̃ i
s (t (a)wn)|a|−2dnda

+

∫
T×(N (F)−Nm)

Wm(t (a)wn)(ωψ−1(t (a)wn)φm)(1) f̃ i
s (t (a)wn)|a|−2dnda.

By Lemma 3.6 we get Wvm (t (a)wn)=Wv′m
(t (a)wn) for all n ∈ N (F)−Nm . Thus

9(Wvm , φ
m, f̃ i

s )−9(Wv′m
, φm, f̃ i

s )

=

∫
T×Nm

(Wvm (t (a)wn)−Wv′m
(t (a)wn))(ωψ−1(t (a)wn)φm)(1)

· f̃ i
s (t (a)wn)|a|−2dnda.

Since i ≥ I (Nm, η) we get

f̃ i
s (t (a)wn)= µψ−1(a)η−1

3/2−s(a)q
−3i
F

by Lemma 3.8. On the other hand, by Lemma 3.1 and Lemma 3.9, for n ∈ Nm

we get
Wm(t (a)wn)= ψ(n)Wm(t (a)w),

(ωψ−1(t (a)wn)φm)(1)= ψ−1(n)(ωψ−1(t (a)w)φm)(1).

Thus

(3-3) 9(Wvm , φ
m, f̃ i

s )−9(Wv′m
, φm, f̃ i

s )

= q−3i+m
F

∫
T
(Wvm (t (a)w)−Wv′m

(t (a)w))(ωψ−1(w)φm)(a)

·χ(a)η−1(a)|a|−sda.

By (3-2), (3-3) and the local functional equation we get

(3-4) q−2m(γ (s, π, η, ψ)− γ (s, π ′, η, ψ))

=

∫
F×
(Wvm (t (a)w)−Wv′m

(t (a)w))(ωψ−1(w)φm)(a)χ(a)η−1(a)|a|−sda.
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Let k = 4L . Since m ≥ 6L > k, by Lemmas 3.1 and 3.6, we get

Wvm (t (a)w)−Wv′m
(t (a)w)=

1
vol(Nm)

∫
Nm

(Wvk(t (a)wn)−Wv′k
(t (a)wn))ψ−1(n)dn

=
1

vol(Nm)

∫
Nk

(Wvk(t (a)wn)−Wv′k
(t (a)wn))ψ−1(n)dn

=
vol(Nk)

vol(Nm)
(Wvk (t (a)w)−Wv′k

(t (a)w))

= qk−m(Wvk (t (a)w)−Wv′k
(t (a)w)).

Now we can rewrite (3-4) as

(3-5) q−m−k(γ (s, π, η, ψ)− γ (s, π ′, η, ψ))

=

∫
F×
(Wvk (t (a)w)−Wv′k

(t (a)w))(ωψ−1(w)φm)(a)χ(a)η−1(a)|a|−sda.

By Lemma 3.2, if a /∈P−6L , i.e., a2 /∈P−3k , we get Wvk (t (a)w)= 0=Wv′k
(t (a)w).

Thus the integral on the right side of formula (3-5) can be taken over P−6L . For
a ∈ P−6L and m ≥ 6L (as we assumed), by the calculation given in the proof of
Lemma 3.9, we have

(ωψ−1(w)φm)(a)= γ (ψ−1)ψ−1(2a) vol(Pm)Char(P−m)(a)

= γ (ψ−1)ψ−1(2a)q−m .

Plugging this into (3-5) we get

(3-6) q−kγ (ψ−1)−1(γ (s, π, η, ψ)− γ (s, π ′, η, ψ))

=

∫
F×
(Wvk (t (a)w)−Wv′k

(t (a)w))ψ−1(2a)χ(a)η−1(a)|a|−sda.

Now we can prove our theorem. We consider (1) first. Suppose γ (s, π, η, ψ)=
γ (s, π ′, η, ψ) for all quasicharacters η of F×. Then we get∫

F×
(Wvk (t (a)w)−Wv′k

(t (a)w))ψ−1(2a)χ(a)η−1(a)|a|−sda = 0

for all quasicharacters η.
We rewrite the equality as

0=
∫

F×
(Wvk (t (a)w)−Wv′k

(t (a)w))ψ−1(2a)χ(a)η−1(a)|a|−sda

=

∞∑
m=−∞

∫
|a|=qm

(Wvk (t (a)w)−Wv′k
(t (a)w))ψ−1(2a)χ(a)η−1(a)daq−ms .
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It follows that all the coefficients in the above Laurent series in qs have to be
zero. So

(3-7)
∫
|a|=qm

(Wvk (t (a)w)−Wv′k
(t (a)w))ψ−1(2a)χ(a)η−1(a)da = 0

for all quasicharacters η.
Since the set {a ∈ F× : |a| = qm

} is compact open in F×, the left side of
equation (3-7) can be viewed as Mellin transform of a compactly supported function
on F×. By the inverse Mellin transform we get

(Wvk (t (a)w)−Wv′k
(t (a)w))ψ−1(2a)= 0,

or

Wvk (t (a)w)=Wv′k
(t (a)w).

By Lemmas 3.1 and 3.6, Corollary 3.5 and the Bruhat decomposition SL2(F)=
B ∪ BwB we get

Wvk (g)=Wv′k
(g)

for all g ∈ SL2(F). By the uniqueness of Whittaker model we get π ∼= π ′. This
proves (1).

Next we consider (2). Let l = l(π, π ′) be an integer such that l ≥ 6L , then

Wvk (t (a0a)w)=Wvk (t (a)w) and Wv′k
(t (a0a)w)=Wv′k

(t (a)w)

for all a0 ∈ 1 + Pl and all a ∈ P−6L . Such an l exists because the functions
a 7→Wvk (t (a)w) and a 7→Wv′k

(t (a)w) on P−6L
⊂ F× are continuous. Note that

k = 4L and L only depends on the choices of v and v′. On the other hand, for
a ∈ P−6L , it is easy to see that

ψ−1(2a0a)= ψ−1(2a) for all a0 ∈ 1+Pl,

since l ≥ 6L . It is also clear that χ(a0a) = χ(a) for all a0 ∈ 1+Pl , since the
character χ is unramified. As we noted before, the integrand of the right side integral
of (3-6) has support in P−6L . Let η be a quasicharacter of F× with cond(η) > l.
Then it is clear that the integral of the right side of (3-6) vanishes. Thus we get

γ (s, π, η, ψ)= γ (s, π ′, η, ψ).

This finishes the proof when ψ is unramified.
Now let us consider the general case when ψ is ramified. The proof is essentially

the same as the unramified case. We will indicate the necessary changes in the
above proof. If ψ has conductor c, i.e., ψ(Pc

F ) = 1 but ψ(Pc−1
F ) 6= 1, we define
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dm = diag(p−2m+c
F , 1) ∈ GL2(F) and Jm = dm Kmd−1

m . Then

Jm =

(
1+Pm

F P−m+c
F

P3m−c
F 1+Pm

F

)
∩SL2(F).

For j = ( jil)1≤i,l≤2 ∈ Jm we define ψm( j)= ψ( j12). It is clear that ψm defines a
character of Jm . Given a ψ-generic representation (π, V ) of SL2(F) and a vector
v ∈ V we define vm in the same way as before, i.e., by (3-1). In this case, we fix
an integer L such that L ≥ c and v is fixed by KL . We call {vm}m≥L the Howe
vectors. We note that in the proof of Lemma 3.8, we used that ψ is unramified to
make sure µψ−1 is trivial on O×F . If ψ is ramified, by continuity, µψ−1 is trivial on
1+Pi

F for i large. This is all what we need in the proof of Lemma 3.8 to extend
it to the ramified case. Now one can check easily that all of the above proofs go
through and we get the theorem in general. �

4. A strong multiplicity one theorem

Let F be a number field and A be its adele ring.

4A. Global genericity. In this subsection we discuss the relation between global
genericity and local genericity. Let ϕ be a cusp form on SL2(F) \ SL2(A). Since
the group N (F) \ N (A) is compact and abelian we have the Fourier expansion

ϕ(g)=
∑

ψ∈ ̂N (F)\N (A)

Wψ
ϕ (g),

where
Wψ
ϕ (g)=

∫
N (F)\N (A)

ϕ(ng)ψ−1(n)dg.

Since ϕ is a cusp form we get Wψ0
ϕ ≡ 0, where ψ0 is the trivial character of F \A.

Thus we get
ϕ(g)=

∑
ψ∈ ̂N (F)\N (A)

ψ 6=ψ0

Wψ
ϕ (g).

Fix a nontrivial additive character ψ of N (F) \ N (A). Then

( ̂N (F) \ N (A)) \ {ψ0} = {ψκ : κ ∈ F×},

where ψκ(a)= ψ(κa) and a ∈ A. If κ ∈ F×,2, say κ = a2, we have

Wψκ
ϕ (g)=Wψ

ϕ (t (a)g).

Thus we get
ϕ(g)=

∑
κ∈F×/F×,2

∑
a∈F×

Wψκ
ϕ (t (a)g).
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Corollary 4.1. If ϕ is a nonzero cusp form, there exists κ ∈ F× such that

Wψκ
ϕ 6= 0.

Let (π, Vπ ) be a cuspidal automorphic representation of SL2(F) \ SL2(A). We
say π is ψκ -generic if there exists ϕ ∈ Vπ such that

Wψκ
ϕ 6≡ 0.

Corollary 4.2. Let π be a cuspidal automorphic representation of SL2(F)\SL2(A)

and ψ be a nontrivial additive character of F \A. Then there exists κ ∈ F× such
that π is ψκ -generic.

Theorem 4.3. Let π=⊗vπv be an irreducible cuspidal automorphic representation
of SL2(A) and ψ = ⊗ψv be a nontrivial additive character of F \A. Then π is
ψ-generic if and only if each πv is ψv-generic.

Proof. A similar result is proved for U(1, 1) by Gelbart, Rogawski and Soudry
[1997, Proposition 2.5].

It is clear that global genericity implies local genericity. Now we consider the
other direction. We assume each πv is ψv-generic.

We assume π is ψκ -generic for some κ ∈ F×, i.e., there exists ϕ ∈ Vπ such that

Wψκ
ϕ (g)=

∫
N (F)\N (A)

ϕ(ng)ψ−1
κ (n)dn 6= 0.

Then πv is also ψκ,v-generic, where ψκ,v(a) = ψv(κa). By Proposition 2.1 we
get πv ∼= πκv .

For ϕ ∈ Vπ consider the function ϕκ(g)= ϕ(gκ), where gk is defined by

gκ = diag(κ, 1)g diag(κ−1, 1).

Then∫
N (F)\N (A)

ϕκ(ng)dn =
∫

N (F)\N (A)
ϕ((ng)κ)dn =

∫
N (F)\N (A)

ϕ(nκgκ)dn

=

∫
N (F)\N (A)

ϕ(ngκ)dn = 0,

hence ϕκ is also a cusp form. Let V κ
π be the space which consists of functions of

the form ϕκ for all ϕ ∈ Vπ . Let πκ denote the cuspidal automorphic representation
of SL2(A) on V κ

π .

Claim. (πκ)v = πκv .

Proof. Let 3 : Vπ → C be a nonzero ψκ -Whittaker functional for π and let 3v be
a nonzero (ψκ)v-Whittaker functional on Vπv satisfying that if ϕ =⊗vϕv is a pure
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tensor, then
3(π(g)ϕ)=

∏
v

3v(πv(gv)ϕv).

Note that 3 is in fact given by

3(ϕ)=

∫
N (F)\N (A)

ϕ(n)ψ−1
κ (n)dn.

Then the ψκ2-Whittaker functional of πκ is given by∫
N (F)\N (A)

ϕκ(n)ψ−1
κ2 (n)dn.

This means that if Wϕ(g) is a ψκ -Whittaker function of π , then Wϕκ (g)=Wϕ(gκ)
is a ψκ2-Whittaker function of πκ .

Hence, with ϕ = ⊗vϕv a pure tensor, we have Wϕ(g) =
∏
v Wϕv (gv) and

{Wϕv (gv)} is the Whittaker model of πv, while Wϕκ (g)= Wϕ(gκ)=
∏
v Wϕv (g

κ
v )

and {Wϕv (g
κ
v )} is the Whittaker model of (πκ)v . Now Wv(gv)→Wv(gκv ) gives an

isomorphism between πκv and (πκ)v, which proves the claim. �

Now let us continue the proof of the theorem. By the claim we have πv ∼= (πκ)v
or π ∼= πκ . By the multiplicity one theorem for SL2 of Ramakrishnan [2000]
we get π = πκ . Since π is ψκ -generic we get that πκ is ψκ2-generic and hence
ψ-generic. Since π = πκ the theorem follows. �

4B. Eisenstein series on S̃L2(A). Let S̃L2(A) be the double cover of SL2(A). It
is well-known that SL2(F) splits over the projection S̃L2(A)→ SL2(A). Let µψ
be the genuine character of T (F) \ T̃ (A) whose local components are µψv as given
in §2.

Let η be a quasicharacter of F× \ A× and s ∈ C. We consider the induced
representation

I (s, χ, ψ)= IndS̃L2(A)

B̃(A)
(µψηs−1/2).

For fs ∈ I (s, η, ψ) we consider the Eisenstein series E(g, fs) on S̃L2(A):

E(g, fs)=
∑

B(F)\SL2(F)

fs(γ g), g ∈ S̃L2(A).

The above sum is absolutely convergent when Re(s)� 0 and can be meromorphi-
cally continued to the whole s-plane.

There is an intertwining operator Ms=Ms(η) : I (s, η, ψ)→ I (1−s, η−1, ψ)with

Ms( fs)(g)=
∫

N (F)\N (A)
fs(wng)dn.
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The above integral is absolutely convergent for Re(s)�0 and defines a meromorphic
function of s ∈ C.

Proposition 4.4. (1) If η2
6= 1, then the Eisenstein series E(g, fs) is holomorphic

for all s. If η2
= 1, the only possible poles of E(g, fs) are at s = 0 and s = 1.

Moreover, the order of the poles are at most 1.

(2) We have the functional equation

E(g, fs)= E(g,Ms( fs)) and Ms(η) ◦M1−s(η
−1)= 1.

See [Gan et al. 2014, Proposition 6.1] for example.

4C. The global zeta-integral. Let ψ be a nontrivial additive character of F \A.
Then there is a global Weil representation ωψ of S̃L2(A) on S(A). For φ ∈ S(A)

we consider the theta series

θψ(φ)(g)=
∑
x∈F

(ωψ(g)φ)(x).

It is well-known that θψ defines an automorphic form on S̃L2(A).
Let (π, Vπ ) be a ψ-generic cuspidal automorphic representation of SL2(A). For

ϕ ∈ Vπ , φ ∈ S(A) and fs ∈ I (s, η, ψ−1) consider the integral

(4-1) Z(ϕ, θψ−1(φ), E( · , fs))=

∫
SL2(F)\SL2(A)

ϕ(g)θψ−1(φ)(g)E(g, fs)dg.

Proposition 4.5 [Gelbart et al. 1987, Theorem 4.C]. For Re(s)� 0, the integral
Z(ϕ, θψ−1(φ), E( · , fs)) is absolutely convergent and

Z(ϕ, θψ−1(φ), E( · , fs))=

∫
N (A)\SL2(A)

Wψ
ϕ (g)(ωψ−1(g))φ(1) fs(g)dg,

where Wψ
ϕ (g)=

∫
N (F)\N (A) ϕ(ng)ψ−1(n)dn is the ψ-th Whittaker coefficient of ϕ.

Corollary 4.6. We take ϕ = ⊗ϕv, φ = ⊗vφv and fs = ⊗ fs,v to be pure tensors.
Let S be a finite set of places such that for all v /∈ S, v is finite and πv , ψv , fs,v are
unramified. Then for Re(s)� 0 we have

Z(ϕ, θψ−1(φ), E( · , fs))=
∏
v∈S

9(Wϕv , φv, fs,v)
L S(s, π, St ⊗ (χη))

L S(2s, η2)
,

where χ is the character of F× \A× defined by

χ((av))=
∏
v

(av,−1)Fv , (av)v ∈ A×.

Moreover, we have the following functional equation

Z(ϕ, θψ−1(φ), E( · , fs))= Z(ϕ, θψ−1(φ), E( · ,Ms( fs))).
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This follows directly from Proposition 2.2, the unramified calculation, and the
functional equation of Eisenstein series in Proposition 4.4.

Corollary 4.7. (1) The partial L-function L S(s, π, St ⊗χη) can be extended to
a meromorphic function of s.

(2) If η2
6= 1, then L S(s, π, St ⊗χη) is holomorphic for Re(s) > 1/2.

(3) If η2
= 1, then, on the region Re(s) > 1/2, the only possible pole of the

function L S(s, π, St ⊗ χη) is at s = 1. Moreover, the order of the pole of
L S(s, π, St ⊗ (χη)) at s = 1 is at most 1.

(4) Let S∞ be the set of infinity places of F , then we can find data ϕv ∈ Vπv ,
φv ∈ S(Fv) and fs,v ∈ I (s, ηv, ψv) for v ∈ S∞ such that

L S(s, π, St ⊗ (χη))
L S(1− s, π, St ⊗ (χη−1))

=

∏
v∈S∞

9(Wϕv , φv,Ms( fs,v))

9(Wϕv , φv, fs,v)
·

∏
v∈S−S∞

γ (s, πv, ηv, ψv) ·
L S(2s− 1, η2)

L S(2− 2s, η−2)
,

where S is a large enough finite set of places which contains S∞, all finite
places v such that v|2 and all finite places such that our data is ramified. Here
γ (s, πv, ηv, ψv) is the local gamma factors defined in Proposition 2.2.

Proof. By Proposition 4.4 and Corollary 4.6 to prove (1)-(3) it suffices to show that,
for each place v and for any fixed point s ∈C, we can choose the data (Wv, φv, fs,v)

such that 9(Wϕv , φv, fs,v) 6= 0. If v is nonarchimedean this is shown in the proof
of Theorem 3.10, see equation (3-2). We will prove the general case later, see
Lemma 4.9. We now consider (4). For s ∈ C with Re(s) � 0 we choose data
ϕ =⊗ϕv, φ =⊗φv and fs=⊗ fs,v such that 9(Wϕv , φv, fs,v) 6= 0 for each v ∈ S
and ϕv, φv, fs,v and ψv are unramified for v /∈ S. By the Remark at the end of §2,
for v /∈ S, we have

Ms( fs,v)=
L(2s− 1, η2

v)

L(2s, η2
v)

f1−s,v.

Thus, by Corollary 4.6, for Re(s)� 0 we have

Z(ϕ, θψ−1(φ), E( · ,Ms( fs)))

=

∏
v∈S

9(Wϕv , φv,Ms( fs,v))
L S(1− s, π, St ⊗ (χη−1))

L S(2− 2s, η−2)
·

L S(2s− 1, η2)

L S(2s, η2)
.

Note that the above equation also holds after meromorphic continuation. Now (4)
follows from Corollary 4.6 and Proposition 2.2 directly. �
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4D. A strong multiplicity one theorem. With the above preparation, we are now
ready to prove the main global result of this paper.

Theorem 4.8. Let π =⊗πv and π ′=⊗π ′v be two irreducible cuspidal automorphic
representations of SL2(A) with the same central character. Suppose that π and π ′

are both ψ-generic. Let S be a finite set of finite places such that no place in S is
above 2. If πv ∼= π ′v for all v /∈ S, then π = π ′.

Proof. The following argument follows from the proof of [Casselman 1973, Theo-
rem 2, p. 307].

Let S1 be a large finite set of places which contains S∞ ∪ S. Since πv ∼= π ′v
for all v /∈ S, we have L S1(s, π, St ⊗ (χη)) = L S1(s, π ′, St ⊗ (χη)) and L S1(1−
s, π, St ⊗ (χη−1)) = L S1(1− s, π, St ⊗ (χη−1)). Thus, by Corollary 4.7 (4), for
each quasicharacter η, we can find data ϕv ∈ Vπv , φv ∈ S(Fv) and fs,v for v ∈ S∞
such that∏
v∈S∞

9(Wϕv , φv,Ms( fs,v))

9(Wϕv , φv, fs,v)
·

∏
v∈S1−S∞

γ (s, πv, ηv, ψv)

=

∏
v∈S∞

9(Wϕ′v
, φv,Ms( fs,v))

9(Wϕ′v
, φv, fs,v)

·

∏
v∈S1−S∞

γ (s, π ′v, ηv, ψv),

where ϕ′v is the image of ϕv under a fixed isomorphism πv ∼= π
′
v for v ∈ S∞. Since

πv ∼= π
′
v for v ∈ S1− S, we get∏

v∈S

γ (s, πv, ηv, ψv)=
∏
v∈S

γ (s, π ′v, ηv, ψv).

Fix v0 ∈ S. By [Jacquet and Langlands 1970, Lemma 12.5], given an arbitrary
character ηv0 , we can find a character η of A× which restricted to v0 is ηv0 and
has arbitrarily high conductor at the other places of S. By Theorem 3.10 (2) we
conclude that

γ (s, πv0, ηv0, ψv0)= γ (s, π
′

v0
, ηv0, ψv0)

for all characters ηv0 . Thus, by Theorem 3.10 (1), we conclude that πv0
∼= π ′v0

.
This applies also to the other places of S. Thus we proved that πv ∼= π ′v for all
places v. Now the theorem follows from the multiplicity one theorem for SL2 of
[Ramakrishnan 2000]. �

Remark. We expect that the restriction about residue characteristics on the finite
set S in Theorem 4.8 can be removed.

Finally, we prove a nonvanishing result about the archimedean local zeta-integrals
which is used in the above proof. We formulate and prove the result both for the
p-adic and the archimedean cases simultaneously.



370 JINGSONG CHAI AND QING ZHANG

Lemma 4.9. Let F be a local field, ψ be a nontrivial additive character of F , η
be a quasicharacter of F× and π be a ψ-generic representation of SL2(F). Then
there exists W ∈W(π, ψ), φ ∈ S(F) and fs ∈ IndS̃L2(F)

B̃
(ηs−1/2µψ) such that

9(W, φ, fs)=

∫
N (F)\SL2(F)

W (h)(ωψ−1φ)(h) fs(h) 6= 0.

Proof. We note that the Bruhat cell�=N (F)TwN (F) is open and dense in SL2(F).
Thus the above integral is reduced to

9(W, φ, fs)

=

∫
TN (F)

W (wt (a)n(u))(ωψ−1(wt (a)n(u))φ)(1) fs(wt (a)n(u))1(a)dadu,

where 1(a)= |a|−2.
Using the formulas for the Weil representation ωψ−1 we find

(ωψ−1(wt (a)n(u))φ)(x)

= |a|1/2
γ (ψ−1)

γ (ψ−1
a )

∫
F
ψ(ua2 y2)φ(ay)ψ(2xy)dy = |a|1/2

γ (ψ−1)

γ (ψ−1
a )

8̂a,u(x),

where 8a,u(x) = ψ(ua2x2)φ(ax) which is again a Schwartz function on F and
depends continuously on a and u.

We next explain that the set {(g, 1) : g ∈ N (F)TwN (F)}, still denoted as �, is
open in S̃L2(F). Note that there is a double covering map p : S̃L2(F)→ SL2(F).
For any (g, 1) ∈� its projection under p is g. As p is a covering map there exists
an open neighborhood Ug of g contained in N (F)TwN (F) such that p−1(Ug) is a
disjoint union of two open subsets of S̃L2(F), each is homeomorphic to Ug by p.
Then one component of p−1(Ug) is an open neighborhood of (g, 1) in �, which
shows that � is open in S̃L2(F).

Now define fs ∈ I (s, η, ψ−1) on the set {(g, 1) : g ∈ SL2(F)} by

fs(g)=
{
δ(b)1/2(ηs−1/2µψ−1)(b) f2(u) if g = bwn(u) ∈�,
0 otherwise,

where b ∈ B(F) = TN (F), u ∈ F and f2 is a compactly supported function to
be determined later. Then we extend the definition of f2 to the set {(g,−1) :
g ∈ SL2(F)} to make it genuine, i.e., fs(g,−1)=−1 fs(g, 1).

Then the integral 9 can be reduced further to

(4-2) 9(W, φ, fs)

=

∫
TN (F)

W (wau)|a|1/2
γ (ψ−1)

γ (ψ−1
a )

8̂a,u(1)δ(a)1/2(ηs−1/2µψ−1)(a)

· f2(u)1(a)dadu.
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Case 1 (F is p-adic). Consider the Howe vector Wvm . By Corollary 3.4, taking m
large enough, Wvm can have arbitrarily small compact open support around 1 when
restricted to T . Then Ww.vm (t (a

−1)w) has small compact open support around a=1.
First choose φ so that 8̂a,u(1) 6= 0 when a = 1, u = 0. Then choose m so

that Ww.vm (wt (a)) = Ww.vm (t (a
−1)w) has small compact support around 1 and

all the other data involving a in the integral (*) are nonzero constants. For this
Ww.vm , consider Ww.vm (wt (a)u) with u ∈ N . When u is close to 1 enough, we have
Ww.vm (wt (a)u)=Ww.vm (wt (a)) for all a in that small compact support around 1.
Then take f2 with support u close to 1 satisfying the above. With these choices of
Ww.vm (g), f2, φ, the integral (4-2) is nonzero.

Case 2 (F is archimedean). We will concentrate on the case F = R. The case
F = C is similar as we have the same formulas for the Weil representation by
[Jacquet and Langlands 1970, Proposition 1.3]. We begin with the formulas

(4-3) 9(W, φ, fs)

=

∫
TN (F)

W (wau)|a|1/2
γ (ψ−1)

γ (ψ−1
a )

8̂a,u(1)δ(a)1/2(ηs−1/2µψ−1)(a)

· f2(u)1(a)dadu,

where 8a,u(x) = ψ(ua2x2)φ(ax) is again a Schwartz function, as is φ, and it
depends on a and u continuously. Since the Fourier transform is an isometry of the
Schwartz space we can choose φ so that the Fourier transform 8̂a,u(1) > 0 when
a = 1 and u = 0, and it depends on a and u continuously.

Now let (π, V ) be an irreducible generic smooth representation of SL2(R) of
moderate growth. Realize π as a quotient of a smooth principal series I (χ, s), i.e.,

0→ V ′→ I (χ, s)→ V → 0.

Let λ : V → C be the unique nonzero continuous Whittaker functional on V . Then
the composition

3 : I (χ, s)−→ V λ
−→C

gives the unique nonzero continuous Whittaker functional on I (χ, s) up to a scalar.
It follows that the two spaces {λ(π(g)v) : g ∈ SL2(F), v ∈ V } and {3(R(g). f ) :
g ∈ SL2(F), f ∈ I (χ, s)} are the same, although the first is the Whittaker model
of π while the later may not be a Whittaker model of I (χ, s).

The Whittaker functional on I (χ, s) is given by the following

3( f )=
∫

N (F)
f (wu)ψ−1(u)du,

when s is in some right half plane and its continuation gives Whittaker functionals
for all I (χ, s). Also when f has support inside � = N (F)TwN (F) the above
integral always converges for any s and gives the Whittaker functional.
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Now for such f one computes that, for a = t (a) ∈ T ,

3(I (a). f )=
∫

N (F)
f (wua)ψ−1(u)du = χ ′(a)

∫
F

f (wu)ψ−1(a2u)du

= χ ′(a)
∫

F
f1(u)ψ−1(a2u)du = χ ′(a) f̂1(a2),

where f1 is the restriction of f to wN which can be chosen to be a Schwartz
function, f̂1 is its Fourier transform and χ ′ is a certain character. Again, as the
Fourier transform gives an isometry of Schwartz functions, we can always choose f
so that its Whittaker function W f (a) has arbitrarily small compact support around 1.
By a right translation byw we show that one can always choose f so that Ww. f (aw)
has small compact support around 1.

In order to prove the proposition note that we have chosen 8. Let

R(a, u)= |a|1/2
γ (ψ−1)

γ (ψ−1
a )

8̂a,u(1)δ(a)1/2(ηs−1/2µψ−1)(a)1(a).

Then R(a, u) is a continuous function of a and u, and R(1, 0) 6= 0. This means
that there exist neighborhoods U1 of a = 1 and U2 of u = 0, such that R(a, u) >
R(1, 0)/2> 0 for all a ∈U1 and u ∈U2.

Now choose f so that Ww. f (aw) has small compact support in a neighborhood
V1 of 1 with V1 ⊂ U1 and Ww. f (w) > 0. For this Whittaker function, since
Ww. f (awu) is continuous on u, we can choose f2 so that it is positively supported
in a neighborhood V2 of 0 such that:

(1) V2 ⊂U2.

(2) Ww. f (awu) > Ww. f (w)/2> 0 for all u ∈ V2.

Then (4-3) becomes∫
Ww. f (awu)R(a, u) f2(u)dadu >

Ww. f (w)

2
R(1, 0)

2

∫
V1

∫
V2

f2(u)dadu > 0,

which proves the nonvanishing. �
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