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We define a filtration of the smooth concordance group based on the genus
of representative knots. We use the Heegaard Floer ε- and ϒ-invariants
to prove the quotient groups with respect to this filtration are infinitely
generated. Results are applied to three infinite families of topologically
slice knots.

1. Introduction

Let C be the smooth concordance group. Let Gk denote the subgroup of C generated
by knots of genus not greater than k. Clearly G0 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gk ⊆ · · · ⊆ C
and

⋃
∞

k=1 Gk = C. This gives a filtration of C. We call it the genus filtration.
There is another way to understand Gk . Recall that the concordance genus gc

of a knot K is defined to be the minimal genus of a knot K ′ concordant to K .
It is obvious that gc(K ) = min{k | K is concordant to K ′ and g(K ′) ≤ k}. This
motivates the following definition.

Definition 1.1. The splitting concordance genus of a knot K is

gsp(K ) :=min{k | K is concordant to K1# · · · #Km for some m
and g(K1), . . . , g(Km)≤ k}.

That is to say, gsp(K ) is the filtration level of K in G0⊆ G1⊆ · · · ⊆ Gk ⊆ · · · ⊆ C.
By [Endo 1995], G1 contains a Z∞ subgroup whose elements are topologically slice.

Let CT S ⊆ C be the subgroup of topologically slice knots. Recently several results
have appeared which reveal that the group CT S is quite large. For example, in [Hom
2015a; Ozsvath et al. 2014] it is shown that CT S contains Z∞ as a direct summand.
In [Hedden et al. 2012] it is shown that CT S contains Z∞ as a subgroup whose
nonzero elements are not concordant to knots of Alexander polynomial one. In
[Hedden et al. 2016] it is shown that CT S contains Z∞2 as a subgroup whose nonzero
elements are not concordant to knots of Alexander polynomial one.
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We will show that CT S is large in another sense. We will prove CT S 6⊆ Gk for
any k. Moreover, the difference between CT S and Gk is large. Corollary 1.4 states
that CT S/(CT S ∩Gk) contains a direct summand isomorphic to Z∞.

Our examples will be built from those of [Hom 2014a; Ozsvath et al. 2014].
Let Wh(K ) denote the untwisted Whitehead double of a knot K . Additionally let
K p,q denote the (p, q)-cable of K , let Jn = (Wh(T2,3))n,n+1#− Tn,n+1, and let
J ′n = (Wh(T2,3))n,2n−1#− Tn,2n−1. These knots are topologically slice and used to
prove the following theorems.

Theorem 1 [Hom 2015a, Theorem 1]. The group CT S contains a summand which
is isomorphic to Z∞ and generated by {Jn}

∞

n=2.

Theorem 2 [Ozsvath et al. 2014, Theorem 1.20]. The topologically slice knots
{J ′n}

∞

n=2 form a basis for a free direct summand of CT S .

We will prove the following results.

Theorem 1.2. {Jn}
∞

n=k forms a basis for a Z∞ summand of CT S/(CT S ∩Gbk/2c) for
any k ≥ 2.

Theorem 1.3. {J ′n}∞n=k forms a basis for a Z∞ summand of CT S/(CT S ∩ Gk−1) for
any k ≥ 2.

Hence we have the following consequence.

Corollary 1.4. For any k ∈ N we have CT S 6⊆ Gk . Moreover, the quotient group
CT S/(CT S ∩Gk) contains a direct summand isomorphic to Z∞.

One can define another subgroup Hk of C generated by knots of 4-genus not
greater than k. Clearly Gk ⊆ Hk . It is natural to ask whether Hk/Gk is infinitely
generated. We show the answer is affirmative by proving the following:

Theorem 1.5. The quotient group CT S/(CT S ∩Gk) contains a subgroup isomorphic
to Z∞ whose basis elements have slice genus 1 for any k ≥ 2.

Conjecture 1.6. (1) For any k ∈N, the quotient (CT S∩Gk+1)/(CT S∩Gk) contains
a direct summand isomorphic to Z∞ whose basis elements have slice genus 1.

(2) For any k ∈ N, the group C/Hn is nontrivial.

This paper is organized as follows. In Section 2 we use Alexander polynomials
to prove the splitting concordance genus can be arbitrarily large. In Section 3
we review Hom’s ε-invariant and develop an obstruction, which is used to prove
Theorems 1.2 and 1.5. In Section 4 we use the ϒ-invariant to develop an obstruction
and prove Theorem 1.3.
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2. A first glance at the genus filtration

Given a knot K , let 1K (t) be its Alexander polynomial, and breadth(1K (t)) be the
maximal exponent of 1K (t) minus the minimal exponent of 1K (t). Recall that for
any K , breadth(1K (t))≤ 2g(K ). Moreover, if K is slice, recall that it must satisfy
the Fox–Milnor condition, factoring as t±n f (t) f (t−1). Based on these facts, we
can prove the following theorem, generalizing [Livingston 2004, Theorem 2.2].

Proposition 2.1. For any knot K , if p(t) appears an odd number of times in the
irreducible factorization of 1K (t) in Z[t, t−1

], then

gsp(K )≥ 1
2 breadth(p(t)).

Proof. By definition, we can choose knots K1, . . . , Km such that K is concordant to
K1# · · · #Km and g(Ki )≤ gsp(K ) for each 1≤ i ≤ m. Thus K #− K1# · · · #− Km

is a slice knot and its Alexander polynomial 1K (t)1K1(t) · · ·1Km (t) must factor
as t±n f (t) f (t−1) for some f ∈ Z[t, t−1

]. If some p(t) appears an odd number of
times in the irreducible factorization of 1K (t), it must appear in the irreducible
factorization of one of 1K1(t), . . . ,1Km (t). Since 2gsp(K )≥ breadth(1Ki (t)) for
each 1≤ i ≤ m, we conclude that 2gsp(K )≥ breadth(p(t)). �

Example 2.2. The Alexander polynomial of the torus knot Tp,q is

1Tp,q (t)= ((t
pq
− 1)(t − 1))/((t p

− 1)(tq
− 1)),

in whose irreducible factorization the cyclotomic polynomial 8pq appears exactly
once. Hence gsp(Tp,q)≥ ϕ(pq)/2, where ϕ is Euler’s totient function. If p and q
are prime, we have gsp(Tp,q) ≥ ((p− 1)(q − 1))/2. This is actually an equality,
because g(Tp,q)= ((p− 1)(q − 1))/2.

Corollary 2.3. C/Gk is nontrivial for any k ∈ N.

Working a little harder, we can show the following.

Proposition 2.4. C/Gk contains an infinitely generated free subgroup for any k ∈N.

Proof. Let {pn}
∞

n=1 be a sequence of strictly increasing prime numbers with p1 > k.
We will prove that the torus knots {Tp2n−1,p2n }

∞

n=1 are linearly independent in C/Gk .
Suppose towards a contradiction that # l

i=1ci Tp2ni−1,p2ni
, where 0< n1 < · · ·< nl

and c1, . . . , cl are nonzero integers, is concordant to K1# · · · #Km with g(K j )≤ k
for 1 ≤ j ≤ m. Notice that 1Tp2ni−1,p2ni

(t) = 8p2ni−1 p2ni
, where 8p2ni−1 p2ni

is the
cyclotomic polynomial, which is irreducible of degree (p2ni−1 − 1)(p2ni − 1).
By a combinatorial formula [Litherland 1979, Proposition 1] for the Tristram–
Levine signature functions of torus knots, σω(Tp2ni−1,p2ni

) jumps by ±2 at the
primitive (p2ni−1 p2ni )-th roots of unity. Since the products p2ni−1 p2ni are dis-
tinct for i = 1, . . . , l, we know σω(# l

i=1ci Tp2ni−1,p2ni
) has a jump discontinuity
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at a primitive (p2n1−1 p2n1)-th root of unity. Hence σω(K1# · · · #Km) also has a
jump discontinuity at a primitive (p2n1−1 p2n1)-th root of unity, and so does one of
σω(K1), . . . , σω(Km). Without loss of generality, assume that σω(K1) has a jump
discontinuity at a primitive (p2n1−1 p2n1)-th root of unity. Since jump discontinuities
of the Tristram–Levine signature function can only appear at roots of the Alexander
polynomial, it follows that 1K1(t) has a root at a primitive (p2n1−1 p2n1)-th root of
unity and thus is divisible by 8p2ni−1 p2ni

, but this is impossible because

deg1K1(t)≤ 2g(K1)≤ 2k < (p2ni−1− 1)(p2ni − 1). �

3. Obstruction by ε-invariant

We assume the reader is familiar with knot Floer homology defined by Ozsváth and
Szabó [2004b] and independently Rasmussen [2003] and the ε-invariant defined by
Hom [2014a]. We briefly recall some of their properties for later use.

The knot Floer complex and ε-invariant. The knot Floer complex associates to a
knot K ⊂ S3 a doubly filtered, free, finitely generated chain complex over F[U,U−1

],
denoted by CFK∞(K ), where F is the field with two elements. The two filtrations
are called the algebraic and Alexander filtrations and the grading of the chain
complex is called the homological or Maslov grading. Multiplication by U shifts
each filtration down by one and lowers the homological grading by two. CFK∞(K )
is an invariant of K up to filtered chain homotopy equivalence. Furthermore, up to
filtered chain homotopy equivalence, one can assume the differential strictly lowers
at least one of the filtrations [Rasmussen 2003].

A quick corollary from [Ozsváth and Szabó 2004a, Theorem 1.2] is the following.

Proposition 3.1. If K has genus g, then there exists a representative of the filtered
chain homotopy equivalence class of CFK∞(K ) all of whose elements have filtration
levels (i, j) such that −g ≤ i − j ≤ g.

For a subset S ⊆ Z⊕ Z that is downward closed under the standard product
partial order on Z⊕Z, let C{S} denote the subcomplex of CFK∞(K ) generated
by elements with filtration levels in S. If S is the difference of two such subsets,
let C{S} denote the corresponding subquotient complex of CFK∞(K ). For example,
C{i=0}=C{i≤0}/C{i<0}=CFK∞(K ){i≤0}/CFK∞(K ){i<0}. The invariant

τ(K )=min{s | the inclusion map C{i = 0, j ≤ s} → C{i = 0}
induces a nontrivial map on homology}

is proven to be a smooth concordance invariant in [Ozsváth and Szabó 2003].
For any knot K , Hom [2014a] defines an invariant called ε taking on values −1,

0 or 1, which has the following properties.



THE GENUS FILTRATION IN THE SMOOTH CONCORDANCE GROUP 505

Proposition 3.2 [Hom 2014a, Proposition 3.6]. The invariant ε satisfies the follow-
ing properties:

(1) If K is smoothly slice, then ε(K )= 0.

(2) ε(−K )=−ε(K ).

(3) If ε(K )= ε(K ′), then ε(K #K ′)= ε(K )= ε(K ′).

(4) If ε(K )= 0, then ε(K #K ′)= ε(K ′).

Thus the relation ∼, defined by K ∼ K ′⇔ ε(K #− K ′)= 0, is an equivalence
relation coarser than smooth concordance. It gives an equivalence relation on C
called ε-equivalence. The ε-equivalence class of K is denoted by [[K ]]. The set of
all ε-equivalence classes forms a group F (also denoted by CFK in [Hom 2015a]),
which is a quotient group of C. The kernel of the natural homomorphism from
C to F is {[K ] ∈ C | ε(K )= 0}, where [K ] denotes the concordance class of K .

According to [Hom 2014b, Proposition 4.1], ε induces a total order on F . The
proof uses Proposition 3.2. The total order is defined by

[[K ]]> [[K ′]] ⇔ ε(K #− K ′)= 1.

Moreover, this order respects the addition operation on F . Therefore there is a
quotient homomorphism from C to the totally ordered abelian group F , which can
be used to show linear independence in C.

Some facts about totally ordered abelian groups. Let G be a totally ordered
abelian group, that is an abelian group with a total order respecting the addition
operation. Denote its identity element by 0.

The absolute value of an element a ∈ G is defined to be

|a| =
{

a if a ≥ 0,
−a if a < 0.

Definition 3.3. Two nonzero elements a and b of G are Archimedean equivalent,
denoted by a ∼A b, if there exists a natural number N such that N · |a|> |b| and
N · |b|> |a|. If a and b are not Archimedean equivalent and |a|< |b|, we say that
b dominates a. We write a� b if a > 0, b > 0 and b dominates a.

Property A. An element a ∈ G satisfies Property A if for every b ∈ G such that
b ∼A a, we have that b = ka+ c, where k is an integer and c is dominated by a.

We have the following two facts:

Lemma 3.4 [Hom 2014b, Lemma 4.7]. If 0 < a1 � a2 � a3 � · · · in G, then
a1, a2, a3, . . . are linearly independent in G.
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Lemma 3.5 [Hom 2015a, Proposition 1.3]. If 0 < a1 � a2 � a3 � · · · in G
and each ai satisfies Property A, then a1, a2, a3, . . . generate (as a basis) a direct
summand isomorphic to Z∞ in G.

The following lemmas are proven in [Hom 2014b] and [Hom 2015a] respectively.

Lemma 3.6 [Hom 2014b, Remark 4.9]. We have 0< [[Jn]]� [[Jn+1]] for any n ≥ 2.

Lemma 3.7 [Hom 2015a, Proposition 4.1, Lemmas 5.2 and 5.3]. The class [[Jn]]

satisfies Property A for any n ≥ 2.

It is straightforward to check that {a : |a| � x} is a subgroup of G for any x > 0
in G. Denote this subgroup by Gx . Let ϕx be the quotient homomorphism. Define
a relation < in G/Gx by ϕx(a) < ϕx(b) if and only if a < b and b− a 6∈ Gx .

Proposition 3.8. The relation < makes G/Gx into a totally ordered abelian group
with the following properties: If 0<a�b in G and b 6∈Gx , then 0≤ϕx(a)�ϕx(b)
in G/Gx . If a satisfies Property A in G, then ϕx(a) satisfies Property A in G/Gx .

Proof. First we check that the relation < in G/Gx is well defined. Suppose
ϕx(a)<ϕx(b). Let c∈Gx . We must show ϕx(a+c)<ϕx(b) and ϕx(a)<ϕx(b+c).
Since b−a > 0 and b−a 6∈ Gx it is easy to verify that b−a� |y| for any y ∈ Gx .
Thus b − a ± c > 0. Additionally b − a 6∈ Gx implies b − a ± c 6∈ Gx . Hence
ϕx(a + c) < ϕx(b) and ϕx(a) < ϕx(b+ c), which means the definition does not
depend on the choices of a and b.

Next we verify < is a strict total order on G/Gx that respects the addition
operation. For trichotomy, let ϕx(a) and ϕx(b) be two distinct elements in G/Gx .
Then b−a 6∈Gx . Thus b−a 6= 0 and exactly one of a < b and b< a is true. Hence
exactly one of ϕx(a)<ϕx(b) and ϕx(b)<ϕx(a) is true by definition. For transitivity,
let ϕx(a), ϕx(b), ϕx(c) ∈ G/Gx satisfy ϕx(a) < ϕx(b) and ϕx(b) < ϕx(c). Then
a < b, b < c and b − a, c − b 6∈ Gx . Immediately a < c. Suppose towards a
contradiction that c − a ∈ Gx . Then the fact that b − a � |y| for any y ∈ Gx

implies b − a − (c − a) > 0, which contradicts b < c. Hence c − a 6∈ Gx and
ϕx(a) < ϕx(c) by definition. For consistency with the addition operation, let ϕx(a),
ϕx(b), ϕx(c) ∈ G/Gx and ϕx(a) < ϕx(b). Then a < b and b − a 6∈ Gx . Thus
a + c < b+ c and (b+ c)− (a + c) 6∈ Gx . Hence ϕx(a)+ ϕx(c) = ϕx(a + c) <
ϕx(b+ c)= ϕx(b)+ϕx(c) by definition.

Next, we show that if b dominates a in G and b 6∈Gx , then ϕx(b) dominates ϕx(a).
Suppose 0< a� b in G and b 6∈Gx . Then 0< Na< b for any N ∈N. Additionally,
the fact that b� |y| for any y ∈ Gx implies Na+ y < b, ∀y ∈ Gx . It follows that
b−Na> 0 and that b−Na 6∈Gx . Hence 0≤ϕx(a)�ϕx(b) in G/Gx by definition.

Finally we show that if a has Property A in G, then ϕx(a) has Property A
in G/Gx . Suppose a satisfies Property A in G, that is, if b∼A a in G then b= ka+c
for some integer k and some c ∈ G dominated by a. Without loss of generality
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we assume ϕx(a) 6= 0. Let ϕx(b) ∼A ϕx(a), so b ∼A a in G. Otherwise either
|a| � |b| or |b| � |a|, which would imply |ϕx(a)| � |ϕx(b)| or |ϕx(b)| � |ϕx(a)|.
Thus b = ka + c for some integer k and some c ∈ G dominated by a. Thus
ϕx(b)= kϕx(a)+ϕx(c). Since c is dominated by a, we know ϕx(c) is dominated
by ϕx(a). Hence ϕx(a) satisfies Property A in G/Gx . �

Restriction on the Archimedean equivalence class by genus. Given a knot K
with ε(K ) = 1, Hom [2015a, Section 3] defines a tuple of numerical invariants
a+(K ) = (a1(K ), . . . , an(K )). Here each ai (K ) is a positive integer, and the
number n depends on K . It is shown that a+(K ) is an invariant of the ε-equivalence
class [[K ]] (see [Hom 2015a, Proposition 3.1]).

Computations in [Hom 2014b] show the following result.

Lemma 3.9 [Hom 2014b, p.568]. We have a+(Jp)= (1, p, . . .).

The integers a1 and a2 are useful in determining domination.

Lemma 3.10 [Hom 2014b, Lemmas 6.3 and 6.4]. If a+(K ) = (a1(K ), . . .) and
a+(K ′)= (a1(K ′), . . .) with a1(K ) > a1(K ′) > 0, then [[K ]] � [[K ′]].

Additionally, if a+(K )=(a1(K ), a2(K ),. . .) and a+(K ′)=(a1(K ′), a2(K ′),. . .)
with a1(K )= a1(K ′) > 0 and a2(K ) > a2(K ′) > 0, then [[K ]] � [[K ′]].

Based on Proposition 3.1, the following is shown.

Lemma 3.11 ([Hom 2015b, Theorem 1.2 and Lemma 2.3]). Suppose that ε(K )= 1,
and a2(K ) is defined, then |τ(K )− a1(K )− a2(K )| ≤ g(K ).

Next we prove our obstruction theorem.

Proposition 3.12. Suppose J is a knot with a+(J ) = (1, b, . . .) with b ≥ 2n for
some positive integer n. Then for any knot K ∈ Gn , we have |[[K ]]| � [[J ]].

Proof. Before proving the proposition for K ∈ Gn , first consider the case g(K )≤ n.
We may further assume that [[K ]] > 0, since [[−K ]] > 0 if [[K ]] < 0 and the
proposition is trivial if [[K ]] = 0. Notice that a1(K ) is always defined [Hom 2014b,
§6]. If a1(K ) > 1, then [[K ]] � [[J ]] by Lemma 3.10. If a1(K )= 1, then a2(K ) is
defined [Hom 2015a, Lemma 3.7]. Observe that τ(K )− a1(K )− a2(K )≥−g(K )
by Lemma 3.11. Combining this with τ(K ) ≤ g4(K ) ≤ g(K ), it follows that
g(K )− a1(K )− a2(K ) ≥ −g(K ). This implies a2(K ) ≤ 2n − 1, if a1(K ) = 1.
Hence |[[K ]]| � [[J ]] by Lemma 3.10.

Generally, let K ∈Gn . Then K =K1+· · ·+Km , where g(Ki )≤n for i=1, . . . ,m.
Since [[K ]] = [[K1]]+· · ·+[[Km]], we know |[[K ]]| ≤ |[[K1]]|+· · ·+|[[Km]]|. Then
the conclusion follows from the last paragraph. �
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Applying the obstruction to concrete families of knots.

Proof of Theorem 1.2. Fix an integer k ≥ 2. Under the quotient homomorphism
from C to F , the image of Gbk/2c is included in F[[Jk ]] = {[[K ]] : |[[K ]]| � [[Jk]]}

by Proposition 3.12 and Lemma 3.9. This gives a homomorphism from C/Gbk/2c
to F/F[[Jk ]]. By Lemma 3.6 and Proposition 3.8, the family {Jn}

∞

n=k maps to a family
of elements with Property A and each term is dominated by the next. Hence {Jn}

∞

n=k
forms a basis of a direct summand isomorphic to Z∞ by Lemma 3.5. Note that
since the Jn are topologically slice, the above argument can be restricted to the
subgroup CT S/(CT S ∩Gbk/2c) of C/Gbk/2c to complete the proof. �

Proof of Theorem 1.5. Instead of {Jn}, we use another family of topologically slice
knots {Ln}, where Ln = (Wh(T2,3))n,1#− (Wh(T2,3))n−1,1. These knots have slice
genus 1 [Hom 2015b, Lemma 3.1]. Additionally, Hom [2015b] computes that
a1(Ln)= 1 and a2(Ln)= n. By the same argument as the above proof, except for
applying Lemma 3.4 rather than Lemma 3.5, we immediately know {Ln}

∞

n=2k are
linearly independent in CT S/(CT S ∩Gk). �

4. Obstruction by ϒ-invariant

Ozsvath et al. [2014] introduced a new family of knot invariants,ϒK (t). We refer the
reader to their construction, and confine ourselves to recalling the basic properties
of the ϒ-invariant.

For any knot K , the invariantϒK (t) is a piecewise linear function on [0, 2]whose
derivative has finitely many discontinuities [Ozsvath et al. 2014, Proposition 1.4].
Thus, one can define1ϒ ′K (t0)= limt→t+0

ϒ ′K (t)−limt→t−0
ϒ ′K (t) for any t0 ∈ (0, 2).

As an example, the authors of [Ozsvath et al. 2014] compute the family {J ′n}:

1ϒ ′J ′n
(t)=

{
0 for t < 2/(2n− 1),
2n− 1 for t = 2/(2n− 1).

In [Ozsvath et al. 2014, Corollary 1.12] it is shown thatϒ gives a homomorphism
from C to the vector space of continuous functions on [0, 2]. Additionally,

K 7→
{
(1/q)1ϒ ′K (p/q) if p is even,
(1/2q)1ϒ ′K (p/q) if p is odd,

gives a homomorphism from C to Z for any p/q ∈ (0, 2)∩Q.
The location of singularities of ϒ is related to the genus of the knot, as in the

following proposition. The proof of this proposition, much like that of Lemma 3.11,
is based on the fact in Proposition 3.1.

Proposition 4.1 [Livingston 2015, Theorem 8.2]. Suppose that 1ϒ ′K (t) is nonzero
at t = p/q with gcd(p, q) = 1. Then q ≤ g(K ) if p is odd, and q ≤ 2g(K ) if p
is even.
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With this proposition, we can easily prove our obstruction theorem.

Proposition 4.2. Suppose K ∈ Gn for some positive integer n. Then 1ϒ ′K (t)= 0
for t ∈ (0, 1/n)∩Q.

Proof. Before proving the proposition for K ∈ Gn , first consider the case g(K )≤ n.
If ϒK (t) has a singularity at a rational number p/q with gcd(p, q) = 1, then
Proposition 4.1 implies p/q ≥ 1/n.

Generally, let K ∈ Gn . Then K = K1 + · · · + Km , where g(Ki ) ≤ n for
i = 1, . . . ,m. If ϒK (t) has a singularity at a rational number p/q, then so does
one of ϒK1(t), . . . , ϒKm (t), since ϒ is a homomorphism. The conclusion follows
from the last paragraph. �

Proof of Theorem 1.3. Fix an integer k ≥ 2. If K ∈ Gk−1, then ϒK (t) has no
singularities on (0, 1/(k− 1))∩Q. Thus {K 7→ 1/(2n− 1)1ϒ ′K (2/(2n− 1))}∞n=k
gives a homomorphism from C/Gk−1 to Z∞. Hence {J ′n}

∞

n=k form a basis for a Z∞

summand of C/Gk−1. Note that since the J ′n are topologically slice, the above
argument can be restricted to the subgroup CT S/(CT S∩Gk−1) of C/Gk−1 to complete
the proof. �
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