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THE SU(N) CASSON–LIN INVARIANTS FOR LINKS

HANS U. BODEN AND ERIC HARPER

We introduce the SU(N) Casson–Lin invariants for links L in S3 with more
than one component. Writing L = `1 ∪ · · · ∪ `n, we require as input an
n-tuple (a1, . . . , an) ∈ Zn of labels, where aj is associated with `j . The
SU(N) Casson–Lin invariant, denoted hN,a(L), gives an algebraic count
of certain projective SU(N) representations of the link group π1(S3 r L),
and the family hN,a of link invariants gives a natural extension of the SU(2)
Casson–Lin invariant, which was defined for knots by X.-S. Lin and for
2-component links by Harper and Saveliev. We compute the invariants for
the Hopf link and more generally for chain links, and we show that, under
mild conditions on the labels (a1, . . . , an), the invariants hN,a(L) vanish
whenever L is a split link.

Introduction

The goal of this paper is to construct SU(N ) Casson–Lin invariants hN,a(L) for
oriented links L in S3. These invariants are defined as a signed count of conjugacy
classes of certain irreducible projective SU(N ) representations of π1(S3rL) with a
nontrivial 2-cocycle. Given an oriented link L with n components, the 2-cocycle is
determined by an n-tuple a = (a1, . . . , an) ∈ Zn of labels, and the choice of labels
is made so that the resulting 2-cocycle is nontrivial. This is critical in what follows
because it prohibits the existence of reducibles; see Proposition 2.2. We denote the
resulting algebraic count as hN,a(L), and the following theorem is the main result
of this paper.

Main theorem. Suppose L ⊂ S3 is an oriented n-component link with n ≥ 2 and
a = (a1, . . . , an) is an allowable n-tuple of labels. Then the integer hN,a(L) is a
well-defined invariant of L.

We briefly outline how the above theorem is established. By Alexander’s theorem
[1923], every link L⊂ S3 can be realized as the closure L= σ̂ for some braid σ ∈ Bk .

Boden was supported by a grant from the Natural Sciences and Engineering Research Council of
Canada. Harper was supported by CIRGET and McMaster postdoctoral fellowships.
MSC2010: 20C15, 57M25.
Keywords: braids, links, representation spaces, Casson–Lin invariant.
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The braid group Bk acts naturally on the free group Fk , and this induces an action
on the space of SU(N ) representations of Fk , which we denote as

Rk = Hom(Fk,SU(N ))= SU(N )× · · ·×SU(N ).

We extend this action to the wreath product ZN o Bk as follows. Identifying ZN

with the center of SU(N ), for ε= (ε1, . . . , εk)∈ (ZN)
k and X = (X1, . . . , Xk)∈ Rk ,

we set (ε, σ )(X)= (ε1σ(X)1, . . . , εk σ(X)k). This extends the braid group action
on Rk to an action of ZN o Bk , and in fact every fixed point Fix(εσ ) ⊆ Rk can be
identified with a projective representation of the link group GL = π1(S3 r L).

The key result is Proposition 2.2, which shows that every element X ∈ Fix(εσ )
is irreducible. Consequently, writing R∗k ⊂ Rk for the subspace of irreducible
SU(N ) representations, Proposition 2.2 implies that the graph 0∗εσ and the diagonal
1∗k intersect in a compact subset of R∗k × R∗k . It follows that one can arrange
transversality of the intersection 0∗εσ ∩1

∗

k by a compactly supported isotopy, and
using natural orientations on the quotients 0̂εσ =0∗εσ/PU(N ) and 1̂k=1

∗

k/PU(N ),
we define hN,a(εσ ) as the oriented intersection number of 0̂εσ and 1̂k . Our main
result is then established by showing that hN,a(εσ ) is independent of the choice of
compatible k-tuple ε = (ε1, . . . , εk) (Proposition 3.4), and that it is invariant under
the two Markov moves (Propositions 3.5 and 3.6). It follows that hN,a(L) gives a
well-defined invariant of the link L ⊂ S3.

One of the virtues of this approach is that it leads to a direct method for computing
the invariants, and we illustrate this by computing hN,a(L) for the Hopf link and
for chain links (Propositions 4.3 and 4.5) and by showing that the invariants vanish
for split links (Proposition 4.6).

Gauge Theory. One motivation for defining link invariants in terms of the SU(N )
representations of the link group is that these representations can be identified with
flat connections on a principal SU(N ) bundle over the link exterior, which allows
for a gauge theoretic interpretation. This approach was originally used by Taubes
[1990] to interpret Casson’s invariant λ(6) of homology 3-spheres 6 in terms of
flat SU(2) connections, and using similar ideas, Floer [1988] defined Z8-graded
groups HF∗(6) called the instanton Floer homology and whose Euler characteristic
equals the Casson invariant.

The Casson–Lin invariants can also be interpreted gauge theoretically, as we
now explain. X.-S. Lin [1992] originally defined the invariant h(K ) of knots
K ⊂ S3 as an algebraic count of conjugacy classes of tracefree irreducible SU(2)
representations of π1(S3rK ) and proved that h(K )= sign(K )/2, half the signature
of K. More recently, C. Herald [1997] used gauge theory to define an extended
Casson–Lin invariant hα(K ) for knots K ⊂63 in homology 3-spheres which allows
for more general meridional trace conditions, and he generalized Lin’s formula by
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showing that hα(K )= signα(K )/2, half the Tristram–Levine α-twisted signature
of K. (Similar results were obtained by M. Heusener and J. Kroll [1998].) O. Collin
and B. Steer [1999] then used moduli spaces of orbifold connections to define
an associated Floer homology theory for knots whose Euler characteristic equals
hα(K ) and P. Kronheimer and T. Mrowka [2011b] further developed the instanton
Floer homology theory of knots in, and they used it to prove a strong nontriviality
result for Khovanov homology [Kronheimer and Mrowka 2011a].

Harper and N. Saveliev [2010] used projective SU(2) representations to extend
the Casson–Lin invariant to 2-component links L in S3, and they showed that
h(L)=± lk(`1, `2), where lk(`1, `2) is the linking number of L = `1 ∪ `2. They
gave a gauge theoretic description of the invariant h(L) in [2012], where they also
described Floer homology groups with Euler characteristic equal to h(L).

In view of all of these results, it is natural to ask whether the SU(N ) Casson–Lin
invariants introduced here can also be interpreted gauge theoretically. We plan to
address this question in a future article using moduli spaces of projective SU(N )
representations; see [Ruberman and Saveliev 2004]. We hope to use this approach
to extend the Casson–Lin invariants hN,a(L) to links L ⊂63 in homology 3-spheres
and to describe corresponding Floer homology groups. In particular, we expect this
approach will help clarify the relationship between the invariants hN,a(L) studied
here and the SU(N ) instanton Floer groups constructed by Kronheimer and Mrowka
[2011b]. It is possible that this approach will also shed light on other interesting
questions, such as whether and how the Casson–Lin invariants are related to classical
link invariants, such as the higher linking numbers.

We give a brief outline of the contents of this paper. In Section 1, we introduce
the notation for braids σ ∈ Bk , links L ⊂ S3, and SU(N ) representations that is used
throughout the article. In Section 2, we introduce allowable labels (a1, . . . , an) for
a given n-component link L ⊂ S3, and a compatible k-tuple (ε1, . . . , εk) for a braid
σ ∈ Bk with closure L . We also introduce projective SU(N ) representations of the
link group GL and establish irreducibility of elements of Fix(εσ ). In Section 3,
we define the invariant hN,a(L) as an oriented intersection number and prove it
is independent of the various choices involved. In Section 4, we calculate the
invariants hN,a(L) for the Hopf link and the n-component chain link, and we prove
a general vanishing result for the invariants for split links.

1. Braids and representations

In this section, we introduce the results for braids, links, and SU(N ) representations
that will be used throughout the article.

1A. The braid group. We denote by Bk the group of geometric braids on k strands
with standard generators σ1, . . . , σk−1 and relations σiσj = σjσi for | j − i |> 1 and



260 HANS U. BODEN AND ERIC HARPER

σ1 σ2 σ3

Figure 1. The three generators of B4.

σiσi+1σi = σi+1σiσi+1. The generators are depicted in Figure 1. Note that in this
paper we follow Convention 1.13 of [Kassel and Turaev 2008].

Each braid σ ∈ Bk determines a permutation, and the resulting map Bk → Sk ,
which sends the generator σi to the transposition σi = (i, i + 1), is a surjection.
Given σ ∈ Bk , we let σ ∈ Sk denote the corresponding permutation. Under this map,
the symmetric group Sk acts on the set {1, . . . , k} on the right. For i ∈ {1, . . . , k},
we write (i)σ for the image of i under σ ∈ Sk .

Let Fk be the free group with free generating set x1, . . . , xk . There is a natural
right action of Bk on Fk defined by setting σi : Fk→ Fk to be the map

xi 7→ xi+1,

xi+1 7→ (xi+1)
−1 xi xi+1,

xj 7→ xj , j 6= i, i+1.

This action defines a faithful representation % : Bk → Aut(Fk), and we use it to
identify Bk with its image in Aut(Fk) under %. As this is a right action, we will
use xσi to denote the image of xi under σ ∈ Bk .

Example 1.1. We explain how to read the action of a braid, which is explained in
[Fenn et al. 1997, Section 2.4] for the left action, and we present the details for the
right action.

The basic idea is to view the free group Fk as the fundamental group of a 2-disk
with k punctures and keep track of basepoints as you move the disk vertically, letting
the punctures move along the braid. Specifically, label the top strands x1, . . . , xk

from left to right. Then push the labels down, inserting a Wirtinger relation at
each crossing. At the bottom of the braid the strands will be labeled by words
w1, . . . , wk in x1, . . . , xk , and the right action of σ is given by the automorphism
sending xi to xσi := wi .

Using Figure 2, we determine the actions of σ1σ2 and σ2σ1 on F3 = 〈x1, x2, x3〉

to be given by
xσ1σ2

1 = x2,

xσ1σ2
2 = x3,

xσ1σ2
3 = x−1

3 x−1
2 x1 x2 x3,

and


xσ2σ1

1 = x3,

xσ2σ1
2 = x−1

3 x1 x3,

xσ2σ1
3 = x−1

3 x2 x3.

We point out two facts about the action of Bk on Fk , both of which are easily
verified for each generator. Firstly, for any σ ∈ Bk , the permutation σ acts by
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x1 x2 x3 x1 x2 x3

x2 x3 x−1
3 x−1

2 x1x2x3 x3 x−1
3 x1x3 x−1

3 x2x3

Figure 2. Reading the action of the braids σ1σ2 (left) and σ2σ1 (right).

conjugation and permutation on the generating set x1, . . . , xk for Fk . Indeed,

(1) xσi = w x(i)σ w
−1,

where w ∈ Fk is some word depending on σ and i . Secondly, every braid σ ∈ Bk

preserves the product x1 · · · xk ,

(2) (x1 · · · xk)
σ
= x1 · · · xk .

1B. The group of a link. Every link L in S3 can be realized as the closure L = σ̂
of a braid σ. We regard L as an oriented link, where the strands of the braid σ
are oriented in the downward direction. The link group GL = π1(S3 r L) admits a
standard presentation

(3) GL = π1(S3 r σ̂ )= 〈x1, . . . , xk | xi = xσi , and i = 1, . . . , k 〉.

The number of components of the link L = σ̂ is the number of disjoint cycles in
the permutation σ. We will be interested in n-component links, that is, the closures
of braids σ with

(4) σ = (i1, . . . , ik1)(ik1+1, . . . , ik2) · · · (ikn−1+1, . . . , ikn ),

where 1 ≤ k1 < k2 < · · · < kn = k. We define multi-indices I1, I2, . . . , In by
setting Ij = {ik j−1+1, . . . , ik j } for j = 1, . . . , n, and we denote σ = (I1) · · · (In). If
L = `1 ∪ · · · ∪ `n is the closure of a braid σ, we will assume that the cycles in the
permutation σ = (I1) · · · (In) are written correspondingly, so that the component `j

of L corresponds to the braid closure of the strands in Ij .

1C. The special unitary group. Consider the Lie group SU(N ) of unitary N × N
matrices with determinant one. Recall that SU(N ) has real dimension N 2

− 1 and
has center isomorphic to ZN = {ω

d
| d ∈ Z}, where ω = e2π i/N. Notice that we are

viewing ZN as the subgroup of U (1) consisting of N-th roots of unity, and for this
reason we view it as a multiplicative group and identify it with the center of SU(N )
via the map defined by sending ωd

7→ ωd I.
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Since every matrix in SU(N ) is diagonalizable, conjugacy classes in SU(N ) are
completely determined by their eigenvalues when considered with multiplicities.
Given A∈SU(N ) we denote its conjugacy class by CA. There is a unique conjugacy
class CA which is preserved under multiplication by ω = e2π i/N, and this is the
conjugacy class of the diagonal matrix A whose eigenvalues are the N distinct
N-th roots of (−1)N−1. Setting ξ = e2π i/2N, then A is given by the diagonal
matrix diag(1, ω, . . . , ωN−1) when N is odd and by diag(ξ, ωξ, . . . , ωN−1ξ) when
N is even. In either case, since the eigenvalues of A are all distinct, we see
that the stabilizer of A is the standard maximal torus T N−1 in SU(N ) and that
CA∼=SU(N )/T N−1 is the variety of full flags in CN and has real dimension N 2

−N.

1D. SU(N) representations. For a discrete group G, let R(G)=Hom(G,SU(N ))
denote the variety of SU(N ) representations of G. For convenience, we set Rk =

R(Fk)= SU(N )× · · ·×SU(N ) to be the variety of SU(N ) representations of the
free group Fk . The faithful representation % : Bk→Aut(Fk) induces a representation

(5) %̃ : Bk→ Diff(Rk)

given by %̃(σ)(α)=α◦σ. We will often abuse notation and simply denote %̃(σ) by σ.

Remark 1.2. [Long 1989, Theorem 2.1] implies that %̃ is defined on Aut(Fk) and
is faithful.

Example 1.3. Consider σ1 and σ2 ∈ B3. For X = (X1, X2, X3) ∈ R3, we have

σ1(X)= (X2, X−1
2 X1 X2, X3) and σ2(X)= (X1, X3, X−1

3 X2 X3).

Using this, one can easily compute that

σ 2
1 (X)= (X

−1
2 X1 X2, X−1

2 X−1
1 X2 X1 X2, X3)

and further that
σ1σ2(X)= (X2, X3, X−1

3 X−1
2 X1 X2 X3)

and
σ2σ1(X)= (X3, X−1

3 X1 X3, X−1
3 X2 X3).

Using the standard presentation (3) of the link group, we notice that R(GL) can
be identified with Fix(σ )⊂ Rk ,

R(GL)= {(X1, . . . , Xk) ∈ Rk | Xi = σ(X)i }.

A k-tuple (X1, . . . Xk) ∈ Rk is called reducible if it can be simultaneously conju-
gated by an element of SU(N ) such that each Xi has the form

(6) Xi =

(
Ai 0
0 Bi

)
,
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where Ai is a block of size N1 and Bi is a block of size N2, and N1 + N2 = N.
A k-tuple (X1, . . . Xk) ∈ Rk is irreducible if it is not reducible.

1E. The wreath product ZN o Bk. The wreath product ZN o Bk is the semidirect
product of Bk with (ZN )

k, where Bk acts on (ZN )
k by permutation. In other words,

ZN o Bk consists of pairs (ε, σ ) ∈ (ZN )
k
× Bk , and the group structure is given by

(ε, σ ) · (ε′, σ ′)= (εσ (ε′), σσ ′).

Here, σ acts on ε′ = (ε′1, . . . , ε
′
k) by permutation, i.e., σ(ε′)= (ε′(1)σ , . . . , ε

′
(k)σ )

In particular, it follows that σ(εX)= σ(ε)σ(X).
We extend the representation (5) to the representation

(7) %̃ : ZN o Bk→ Diff(Rk)

defined by sending the pair (ε, σ ) to the diffeomorphism εσ : Rk→ Rk , where

εσ(X)= (ε1σ(X)1, . . . , εkσ(X)k).

Thus ε twists the coordinates of σ(X) by elements of the center ZN.

Example 1.4. For X = (X1, X2, X3) ∈ R3 and ε = (ε1, ε2, ε3) ∈ (ZN )
3, we have

(εσ1)(X1, X2, X3)= (ε1 X2, ε2 X−1
2 X1 X2, ε3 X3)

and
σ1(εX)= σ1(ε)σ1(X)= (ε2 X2, ε1 X−1

2 X1 X2, ε1 X1, ε3 X3).

2. Projective representations of the link group

Our goal in this paper is to define invariants of L , and we will do so by performing
a signed count of certain irreducible projective SU(N ) representations.

2A. Projective representations. Suppose σ ∈ Bk is a braid whose closure σ̂ is
a link L in S3. For any k-tuple ε = (ε1, . . . , εk) ∈ (ZN )

k, an element X =
(X1, . . . , Xk) ∈ SU(N )k in Fix(εσ ) determines a PU(N ) representation of the
link group GL , i.e., a homomorphism α̃ : GL → PU(N ). To see this, note that
for any X ∈ Fix(εσ ), since εi σ(X)i = Xi holds in SU(N ) and εi ∈ ZN is central,
the equation σ(X̃)i = X̃i holds for the k-tuple X̃ ∈ PU(N )k, which shows that X̃
determines a representation α̃ : GL → PU(N ).

Given a discrete group G, we define a projective representation of G to be a func-
tion (not a homomorphism!) α : G→ SU(N ) such that α(gh)α(h)−1α(g)−1

∈ ZN

for all g, h ∈ G. For any projective representation α : G → SU(N ), its com-
position with the surjection Ad : SU(N )→ PU(N ) gives rise to a representation
α̃=Adα :G→PU(N ), and thus every projective representation α :G→SU(N ) is
the lift of an honest representation α̃ :G→PU(N ). Alternatively, any representation
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α̃ :G→ PU(N ) can be lifted to a projective representation α :G→ SU(N ), though
the lift is generally not unique.

Given a projective representation α : G → SU(N ), we can associate a map
c : G×G→ ZN defined by c(g, h)= α(gh)α(h)−1α(g)−1. Notice that the map c
satisfies the condition that c(gh, k)c(g, h) = c(g, hk)c(h, k) for all g, h, k ∈ G,
and hence c is a 2-cocycle of G.

For a fixed 2-cocycle c : G × G → ZN, let PRc(G) denote the set of projec-
tive representations α : G → SU(N ) whose associated 2-cocycle is c. If G is
finitely generated with generating set {g1, . . . , gk}, then any projective represen-
tation α ∈ PRc(G) is completely determined by the 2-cocycle c and the elements
α(g1), . . . , α(gk) ∈ SU(N ), and in this way one can realize PRc(G) as a subset of
SU(N )k. It is a compact real algebraic variety.

2B. Allowable labels and compatible k-tuples. Given a link L in S3 with n com-
ponents, we can write L = `1 ∪ · · · ∪ `n . An n-tuple a = (a1, . . . , an) ∈ Zn of
integers is called allowable if the following three conditions are satisfied:

(i) 0≤ ai < N for i = 1, . . . , n,

(ii) d = gcd(a1, . . . , an) is relatively prime to N,

(iii) a1+ · · ·+ an is a multiple of N.

An allowable n-tuple (a1, . . . , an) is called an n-tuple of labels for L , and aj is the
label corresponding to the j-th component `j of L .

Suppose now that L is the closure of a braid σ ∈ Bk , and write the permutation
σ as a product (I1) · · · (In) of disjoint cycles in such a way that Ij corresponds to
the j-th component `j of L .

Recall that ω = e2π i/N. A k-tuple ε = (ε1, . . . , εk) ∈ (ZN )
k for σ is said to be

compatible with the choice of labels (a1, . . . , an) of L if it satisfies the conditions

(8)
∏
i∈Ij

εi = ω
aj,

for j = 1, . . . , n. This effectively labels each strand of the braid σ so that, upon
closure of the braid, the j-th component `j of L is assigned the number aj for its
label. Note that with this choice εσ also preserves condition (2) since, by (8) and
condition (iii), we have

(9) (εσ )(X)1 · · · (εσ )(X)k = (ε1 · · · εk)X1 · · · Xk

= (ωa1 · · ·ωan )X1 · · · Xk = X1 · · · Xk .

2C. An obstruction to lifting. For X ∈ Fix(εσ ) we will show that the associated
representation α̃ :GL→ PU(N ) does not lift to an SU(N ) representation. Essential
for this conclusion is that the k-tuple ε is compatible with a, the choice of labels
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for L . In particular, we use (8) and condition (ii) to give a nonzero obstruction to
lifting α̃ to an SU(N ) representation.

Proposition 2.1. The representation α̃ : GL → PU(N ) does not lift to an SU(N )
representation.

Proof. Lift α̃ arbitrarily to a map α :GL→ SU(N ). Since α is a lift of α̃, for each i
we see that α(xi ) = ηi Xi for some ηi ∈ ZN. Let η = (η1, . . . , ηk) ∈ (ZN )

k be the
corresponding k-tuple.

We assume that α is a representation. This implies that ηX ∈ Fix(σ ). Since X is
also a fixed point of εσ ,

ηi Xi = σ(ηi Xi )= η(i)σ σ(X)i = (εi )
−1η(i)σ Xi .

By condition (ii), some aj 6= 0, and we assume without loss of generality that a1 6= 0.
Consider the component `1 associated with the multi-index I1 = (i1, . . . , ik1);
then (8) implies that

ηi1 = (εi1)
−1ηi2 = (εi1)

−1(εi2)
−1ηi3 = · · · = (εi1)

−1
· · · (εik )

−1ηi1 = ω
−a1ηi1,

which is a contradiction since ω−a1 6= 1. �

2D. Irreducibility for elements in Fix(εσ ). We now show that for any allowable
n-tuple a = (a1, . . . , an) ∈ Zn of labels and compatible k-tuple ε = (ε1, . . . , εk) ∈

(ZN )
k, every X ∈ Fix(εσ ) is irreducible. The key to the proof is condition (ii) on

the labels.

Proposition 2.2. If X ∈ Fix(εσ ), then X is irreducible.

Proof. Suppose to the contrary that X ∈ Fix(εσ ) is reducible, which means that up
to conjugation, we can assume

Xi =

(
Ai 0
0 Bi

)
,

where Ai has size N1 and Bi has size N2.
The first step is to consider the component `1 of L . It is obtained by closing

the strands of σ associated with the cycle I1 = (i1, . . . , ik1) of σ. By (1), there are
words W1, . . . ,Wk1 in X1, . . . , Xk such that

X i1
= εi1

W1 X i2
W−1

1

= (εi1
εi2
)W1 W2 X i3

W−1
2 W−1

1

...

= (εi1
· · · εik1

)W1 · · ·Wk1
X i1

W−1
k1
· · ·W−1

1

= ωa1 W X i1
W−1,
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where the last step follows by setting W =W1 · · ·Wk1 and applying (8).
Since W is a word in the Xi , and each Xi is block diagonal, it follows that W is

also block diagonal so we can write

W =
(

P 0
0 Q

)
.

Applying this to the equation above, we see that the same relationship must hold
for the blocks, so

(10) Ai1 = ω
a1 P Ai1 P−1,

and taking the determinant of both sides of (10), we see that

det(Ai1)= ω
a1 N1 det(Ai1).

Since det(Ai1) 6= 0, this implies ωa1 N1 = 1.
Now repeat the argument for the other components of the link L . For the

component `j , which is the one obtained by closing the strands of σ associated with
the cycle Ij , (8) implies that ωaj N1 = 1, and we see this holds for each j = 1, . . . , n.
However, since ω= e2π i/N is a primitive N-th root of unity, this can only happen if
N divides aj N1 for each j = 1, . . . , n. This contradicts condition (ii) on the labels,
and we conclude that each X ∈ Fix(εσ ) is in fact irreducible. �

Remark 2.3. We would like to thank the referee for the following observation.
Suppose L = `1∪· · ·∪`n is a link and let 3i ∼= 〈µi 〉×〈λi 〉 ∼=Z×Z denote the i-th
peripheral subgroup of GL , where µi and λi denote the meridian and longitude,
respectively, of `i . Given a representation α̃ :GL→PU(N ), let ω(α̃)∈H 2(GL ,ZN )

denote the obstruction cocycle, which is related to the commutator pairing of
the restriction α̃|3i

as follows. If α : GL → SU(N ) is a set-theoretic lift of α̃,
then the commutator pairing of 3i is the map ci : 3i × 3i → ZN , given by
ci (x, y)= [α(x), α(y)]. Since 3i is free abelian of rank two,

θ : H 2(3i ,ZN )−→
∼ Hom(3i ∧3i ,ZN )∼= ZN ,

and one can show that θ(ω(α̃|3i
))= ci .

In the previous proof, the element W = W1 . . .Wk1 is the image of the longi-
tude λ1 of `1, thus our computation that [X i1,W ] =ωa1 determined the commutator
pairing c1 = θ(ω(α̃|31

)) by showing that c1(µ1, λ1)= ω
a1 . The labels a1, . . . , an

thus determine the commutator pairings associated to the peripheral subgroups
31, . . . , 3n .
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3. The link invariants

Throughout this section, we assume that σ is a braid with closure σ̂ = L , a link
with n components L = `1 ∪ · · · ∪ `n , and that a = (a1, . . . , an) is an n-tuple of
allowable labels, with aj the label for the component `j .

In this section we define hN,a(εσ ) for compatible k-tuples ε, and we show that
it gives rise to an invariant of n-component links in S3.

We define hN,a(εσ ) as an algebraic count of certain projective SU(N ) represen-
tations in Fix(εσ ), namely those that satisfy the monodromy condition Xi ∈ CA.
In other words, we require each Xi to be in the conjugacy class of matrices with
characteristic polynomial pA(t)= t N

+ (−1)N.
We will first show that hN,a(εσ ) is independent of choice of ε, and then we

prove that hN,a(εσ ) gives rise to a well-defined invariant of the underlying link L
by showing that it is invariant under the Markov moves.

3A. The definition of hN,a(εσ ). Recall that A is the diagonal matrix consisting
of the N-th roots of (−1)N−1, i.e.,

A =
{

diag(1, ω, . . . , ωN−1) if N is odd,
diag(ξ, ωξ, . . . , ωN−1ξ) if N is even.

We impose the following monodromy condition and restrict to k-tuples lying in
the subset Qk ⊂ Rk given by

Qk = {(X1, . . . , Xk) ∈ Rk | Xi ∈ CA}.

Since Qk = (CA)
k is a just a k-fold product of CA, we see that Qk is a manifold of

dimension k(N 2
− N ).

Let1k={(X, X)}⊂Qk×Qk be the diagonal and 0εσ ={(X, εσ(X))}⊂Qk×Qk

be the graph of εσ. Notice that we can identify points in the intersection 1k ∩0εσ

with elements in Qk ∩Fix(εσ ).
For certain choices of labels, it will follow that Fix(εσ ) ⊂ Qk , i.e., that these

monodromy conditions are automatically satisfied. This will occur whenever the
labels have the property that each ai is relatively prime to N. For a simple example,
suppose N is prime, n is a positive multiple of N, and d is any positive integer
less than N. Then one can easily verify that a = (d, d, . . . , d) is an allowable
n-tuple of labels, and the next result implies that Fix(εσ ) ⊂ Qk for any k-tuple
ε = (ε1, . . . , εk) compatible with these labels.

Proposition 3.1. Suppose (a1, . . . , an) is an allowable n-tuple of labels such that
each aj is relatively prime to N, and suppose ε= (ε1, . . . , εk)∈ (ZN )

k is compatible
with a. Then Fix(εσ )⊂ Qk , i.e., if X ∈ Fix(εσ ), then each X j is conjugate to A.

Proof. The condition on aj ensures that ωaj generates ZN for each j = 1, . . . , n,
where ω = e2π i/N. Write the induced permutation σ = (I1) · · · (In) as a product of
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disjoint cycles, where Ij corresponds to the j-th component of L = σ̂ . Then for
any i ∈ Ij , we can apply the same argument used to prove Proposition 2.2 to see that

Xi = ω
aj W Xi W−1.

Thus, the set of eigenvalues of Xi is invariant under multiplication by ωaj, and this
shows the eigenvalues of X are given by the set

{ξ, ωaj ξ, . . . , ω(N−1)aj ξ} = {ξ, ωξ, . . . , ωN−1ξ}

for some ξ satisfying ξ N
= (−1)N−1. When N is odd, one can take ξ = 1, and

when N is even, one can take ξ = e2π i/2N . This shows that Xi is conjugate to A.
Alternative argument: consider the characteristic polynomial of both sides of the

above equation; we see that

pXi
(t)= pωaj Xi

(t)= pXi
(ω−aj t).

Since ω−aj has order N, pXi(t) must be a polynomial in t N, and indeed the only
possibility is that pXi(t)= t N

+ (−1)N. �

We define

Hk = {(X, Y ) ∈ Qk × Qk | X1 · · · Xk = Y1 · · · Yk},

and we note that Hk is not a manifold because of the presence of reducibles. Recall
that (X, Y ) ∈ Qk × Qk is called reducible if all Xi and Yi can be simultaneously
conjugated into block diagonal form as in (6). We note that the subset Sk ⊂ Qk×Qk

of reducibles is closed, and that (Qk×Qk)
∗
= (Qk×Qk)r Sk is an open manifold

of dimension 2k(N 2
− N ).

Proposition 3.2. The subset H∗k = Hk r Sk of irreducible representations is an
open manifold of dimension 2k(N 2

− N )− (N 2
− 1).

Proof. Clearly H∗k = f −1(I ), where f : (Qk × Qk)
∗
→ SU(N ) is the map defined

by f (X, Y ) = X1 · · · XkY−1
k · · · Y

−1
1 . We will show that I is a regular value of f ,

i.e., that d f(X,Y ) is surjective for all (X, Y ) ∈ f −1(I ). It is enough to prove this
statement for the map f : Q∗`→ SU(N ) given by f (X1, . . . , X`)= X1 · · · X`.

Clearly the matrix A, since it is diagonal, lies on the standard maximal torus
T N−1

⊂ SU(N ) with Lie algebra

t=


ia1 0

. . .
0 iaN

 ∣∣∣∣∣ a1+ · · ·+ aN = 0

.
Since A has the standard maximal torus as its stabilizer group, we can identify the
tangent space TA(CA) with the orthogonal complement t⊥ in su(N ), which is the
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subspace

t⊥ =




0 z12 . . . z1,N

−z12 0
. . .

...
...

. . .
. . . zN−1,N

−z1,N . . . −zN−1,N 0


∣∣∣∣∣ zi j ∈ C

.
There is a similar decomposition of su(N ) at each Xi in the `-tuple (X1, . . . , X`).

Because each Xi has N distinct eigenvalues, it lies on a unique maximal torus
Ti ∼= T N−1 in SU(N ). We let ti ⊂ su(N ) denote the corresponding Lie subalgebra,
which is the Lie algebra of the stabilizer group of Xi . Using the decomposition
su(N ) = ti ⊕ t⊥i , we can identify the tangent space TXi (CA) with t⊥i Xi , the right
translation of the subspace t⊥i ⊂ su(N ) by Xi . It is helpful to note that, in terms of
the specific subspaces identified above, we have ti = AdPi t and t⊥i = AdPi t

⊥ for
any matrix Pi ∈ SU(N ) such that Xi = Pi AP−1

i .
Using the fact that ti is the Lie algebra of the stabilizer subgroup of Xi , one can

see that irreducibility of the `-tuple (X1, . . . , X`) is equivalent to the condition that
t1 ∩ · · · ∩ t` = {0}.

For ui ∈ t
⊥
i , we set xi = ui Xi ∈ t

⊥
i Xi = TXi (CA). Differentiating and using the

fact that X1 · · · X` = I, we obtain

d
dt
(X1+ t x1)(X2+ t x2) · · · (X`+ t x`)

∣∣
t=0

= x1 X2 · · · X`+ X1 x2 X2 · · · X`+ · · ·+ X1 · · · X`−1x`

= u1+ X2 u2 X−1
2 + · · ·+ (X2 · · · X`)u`(X

−1
` · · · X

−1
2 ).

In order to show that the map d fX is onto, we claim that, given any v ∈ su(N ), we
can find ui ∈ t

⊥
i for i = 1, . . . , ` such that

(11) v = u1+ X2 u2 X−1
2 + · · ·+ (X2 · · · X`)u`(X

−1
` · · · X

−1
2 ).

Notice that we can solve (11) for any

v ∈ t⊥1 ∩ (X1t
⊥

2 X−1
1 )∩ · · · ∩ (X1 · · · X`−1)t

⊥

` (X
−1
`−1 · · · X

−1
1 ).

Notice further that since ti is the Lie algebra of the maximal torus containing Xi ,
we have ti ∩ ti+1 = ti ∩ (Xi ti+1 X−1

i ). More generally, for any subspace V ⊂ su(N ),
we have ti ∩ V = ti ∩ (Xi V X−1

i ). Repeated application gives that

t1 ∩ · · · ∩ t` = t1 ∩ · · · ∩ (X`−1 t`X−1
`−1)

= t1 ∩ · · · ∩ (X`−2 t`−1 X−1
`−2)∩ (X`−2 X`−1t`X−1

`−1 X−1
`−2)

...

= t1 ∩ (X1t2 X−1
1 )∩ · · · ∩ (X1 · · · X`−1)t`(X

−1
`−1 · · · X

−1
1 ).
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The condition of irreducibility implies that t1∩· · ·∩t`={0}, and it then follows from
the above that (11) can be solved for any v ∈ su(N ). This concludes the argument
that d fX is a surjection whenever the `-tuple X = (X1, . . . , X`) is irreducible. �

Since both 1k and 0εσ preserve the product X1 · · · Xk (see (9)), we can restrict
from Qk × Qk to Hk .

Now we are in a position to define the invariant hN,a(εσ ). Set 0∗εσ = 0εσ ∩ H∗k
and 1∗k = 1k ∩ H∗k . Since Sk is closed, it follows that both 0∗ and 1∗k are open
submanifolds of H∗k of dimension k(N 2

− N ).
Both1k and 0εσ are compact, and so is their intersection1k∩0εσ . Consequently,

as Proposition 2.2 implies that every point in this intersection is irreducible, we
have the following result.

Corollary 3.3. The intersection 1∗k ∩0
∗
εσ ⊂ H∗k is compact.

The group PU(N ) acts freely by conjugation on each of H∗k , 1∗k , and 0∗εσ , and
the quotients by this action are the manifolds we denote as

Ĥk = H∗k /PU(N ), 1̂k =1
∗

k/PU(N ), and 0̂εσ = 0
∗

εσ/PU(N ).

Here the dimension of Ĥk equals 2k(N 2
−N )−2(N 2

−1), and both 1̂k and 0̂εσ are
half-dimensional submanifolds of Ĥk . Since the intersection 1̂k ∩ 0̂εσ is compact,
we can deform 0̂εσ into a submanifold 0̃εσ using an isotopy with compact support
so that the intersection 1̂k ∩ 0̃εσ is transverse and consists of finitely many points.
Define

hN,a(εσ )= #Ĥk
(1̂k ∩ 0̃εσ )

as the oriented intersection number. We will describe the orientations in the follow-
ing subsection. The intersection number hN,a(εσ ) is independent of the choice of
isotopy of 0̂εσ , and we denote

hN,a(εσ )= 〈1̂k, 0̂εσ 〉Ĥk
.

3B. Orientations. The following argument is similar to the one found in [Harper
and Saveliev 2010, Section 3.4], and we include it here for completeness.

First, observe that the conjugacy class CA ⊂ SU(N ) is orientable, which follows
for instance by identifying it with a flag variety. So choose an orientation for CA

and give Qk = (CA)
k and Qk × Qk the induced product orientations. The diagonal

1k and the graph 0εσ are naturally diffeomorphic to Qk via projection and so an
orientation for Qk determines orientations for both 1k and 0εσ .

Using the standard orientation of SU(N ), we obtain an orientation on H∗k =
f −1(I ) using the base-fiber rule. Since the adjoint action of PU(N ) on CA is
orientation preserving, the quotients Ĥk, 1̂k , and 0̂εσ are all orientable, and we
orient them using the base-fiber rule.
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Reversing the orientation of CA reverses the orientation of Qk only when k
is odd, and in this case it reverses the orientations of both 1̂k , and 0̂εσ but it
does not affect the oriented intersection number 〈1̂k, 0̂εσ 〉Ĥk

. This shows that the
intersection number is actually independent of the choice of orientation on the
conjugacy class CA.

3C. Independence of ε. The next result shows that hN,a(εσ ) is independent of
the choice of ε compatible with a.

Proposition 3.4. Fix a link L with n > 1 components and an allowable n-tuple a =
(a1, . . . , an) of labels. Fix also a braid σ ∈ Bk with closure σ̂ = L. If ε, ε′ ∈ (ZN )

k

are k-tuples compatible with a, i.e., satisfying (8), then hN,a(εσ )= hN,a(ε
′σ).

Proof. We will define an orientation preserving automorphism ϕ : Ĥk→ Ĥk such
that ϕ(1̂k)= 1̂k and ϕ(0̂εσ )= 0̂ε′σ . Write the permutation

(12) σ = (i1, . . . , ik1)(ik1+1, . . . , ik2) · · · (ikn−1+1, . . . , ikn )

as a product of disjoint cycles as in (4) and define δ = (δ1, . . . , δk) ∈ (ZN )
k recur-

sively with initial values

(13) δi1 = 1= δik1+1 = · · · = δikn−1+1

and by setting

(14) δ( j)σ = δj εj (ε
′

j )
−1.

Writing σ as a product of disjoint cycles as in (12) and noting that ε and ε′ both
satisfy (8), repeated application of the recursion (14) shows that the definition
of δ = (δ1, . . . , δk) is compatible with the initial values taken in (13).

Define the diffeomorphism τ : Qk→ Qk by

τ(X)= δX = (δ1 X1, . . . , δk Xk).

Note that τ may be orientation preserving or reversing. Furthermore, τ preserves
irreducibility and commutes with conjugation.

Consider the product map τ × τ : Qk × Qk → Qk × Qk . Observe that τ × τ
preserves the orientation of Qk × Qk and hence the induced map ϕ : Ĥk→ Ĥk is
orientation preserving.

Since τ may be orientation reversing, ϕ restricted to 1̂k or 0̂εσ may be orientation
reversing. The key observation is that if ϕ is orientation reversing on one, then
it must be orientation reversing on the other. Hence, ϕ preserves the intersection
number hN,a(εσ ),

〈1̂k, 0̂εσ 〉Ĥk
= 〈ϕ(1̂k), ϕ(0̂εσ )〉Ĥk

.
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Clearly, ϕ(1̂k)= 1̂k , so to finish off the proof we check that ϕ(0̂εσ )= 0̂ε′σ , or
that the pair (δX, δεσ(X)) ∈ 0̂ε′σ . By the calculation

(δX, δεσ(X))= (δX, δεσ(δN−1δX))= (δX, δεσ (δN−1)σ(δX)),

this will follow once we verify that δεσ (δN−1) = ε′. Since δN−1
j = δ−1

j , this is
equivalent to showing that δjεj = σ(δj )ε

′

j for j = 1, . . . , k, which follows directly
from (14), and this completes the proof of the proposition. �

3D. Independence under Markov moves. Based on the previous result, we denote
hN,a(εσ ) by hN,a(σ ) assuming that a choice of compatible ε has been made. In
this subsection, we show that hN,a defines an invariant of n-component links, and
this is achieved by showing that hN,a(σ ) is invariant under the Markov moves.

Recall that two braids σ, τ ∈ Bk have isotopic closures σ̂ = τ̂ if and only if σ
can be obtained from τ by a finite sequence of Markov moves; see for example
[Birman 1974]. The first Markov move replaces σ ∈ Bk by ξ−1σξ ∈ Bk for ξ ∈ Bk ,
and the second Markov move exchanges σ ∈ Bk with σσ±1

k ∈ Bk+1.
The following propositions give the SU(N ) analogues of the SU(2) results in

[Harper and Saveliev 2010, Propositions 4.2 and 4.3]; see the proof of [Lin 1992,
Theorem 1.8].

Proposition 3.5. The quantity hN,a(σ ) is invariant under type 1 Markov moves.

Proof. Suppose σ ∈ Bk is a braid with

σ = (I1) · · · (In)= (i1, . . . , ik1) · · · (ikn−1+1, . . . , ikn )

in multi-index notation. Given a braid ξ ∈ Bk , let σ ′ = ξ−1σξ and note that σ ′ has
the same cycle structure as σ, in fact it is given by

σ ′ = (I ξ1 ) · · · (I
ξ
n )= ((i1)

ξ , . . . , (ik1)
ξ ) · · · ((ikn−1+1)

ξ , . . . , (ikn )
ξ ).

We choose ε′ ∈ (ZN )
k compatible with the given labels, which means that ε′

satisfies (8) with respect to the braid σ ′, namely∏
i∈I ξj

ε′i = ω
aj

holds for j = 1, . . . , k. Notice that if we define the k-tuple ε by setting εi = ε
′
(i)ξ ,

then one can show that ε satisfies (8) with respect to σ = (I1) · · · (In); hence ε is
also compatible with the given labels.

The braid ξ determines a map ξ : Qk → Qk , and since it acts by permutation
and conjugation on each of the factors in Qk = CA× · · ·×CA, the fact that CA is
even-dimensional implies that this map is orientation preserving. This induces the
map ξ × ξ on Qk×Qk preserving irreducibility, commuting with the adjoint action
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of PU(n), and preserving (2), thus we obtain a well-defined orientation preserving
map ξ × ξ : Ĥk→ Ĥk .

Clearly, (ξ × ξ)(1̂k) = 1̂k , so the diagonal is preserved, and we consider the
effect of ξ × ξ on the graph 0̂ε′σ ′ . If (X, ε′σ ′(X)) ∈ 0̂ε′σ ′ , then

(ξ × ξ)(X, ε′σ ′(X))= (ξ × ξ)(X, ε′ξ−1σξ(X))= (ξ(X), ξ(ε′)σξ(X)) ∈ 0̂εσ ,

since ξ(ε′)i = ε
′
(i)ξ = εi . Thus (ξ × ξ)(0̂ε′σ ′)= 0̂εσ , and we see that

hN,a(σ
′)= 〈1̂k, 0̂ε′σ ′〉Ĥk

= 〈(ξ × ξ)(1̂k), (ξ × ξ)(0̂ε′σ ′)〉ξ×ξ(Ĥk)

= 〈1̂k, 0̂εσ 〉Ĥk
= hN,a(σ ).

�

The next result is established using the same argument that is used to prove
[Harper and Saveliev 2010, Proposition 4.3; Lin 1992, Theorem 1.8. We leave the
details of the proof to the reader.

Proposition 3.6. The quantity hN,a(σ ) is invariant under type 2 Markov moves.

4. Computations

In this section, we perform computations of hN,a(L) for various links L and we
prove a vanishing condition for hN,a(L) for split links.

4A. The Hopf link and chain links. The chain link L is obtained as the closure of
the braid σ = σ 2

1 σ
2
2 · · · σ

2
n−1 ∈ Bn . In this subsection, we compute hN,a(L) for L the

Hopf link and the chain link with N = n components. In particular, if d is chosen
relatively prime to N and a = (d, . . . , d), then we will show that hN,a(L)= 0 for
the chain link with n > 2 components. For n = 2, L is just the Hopf link, which
we denote by H ⊂ S3. Harper and Saveliev [2010] proved that h2,a(H) = ±1
for a = (1, 1). We generalize this by showing that hN,a(H)=±1 if a = (d, N −d),
where d satisfies 1≤ d < N and is relatively prime to N.

The next result will be used repeatedly in the computations that follow.

Theorem 4.1. Suppose N ≥ 2 and set ω = e2π i/N and ξ = e2π i/2N. Any pair of
matrices (X, Y ) ∈ SU(N )× SU(N ) satisfying [X, Y ] = ωI is, up to conjugation,
given by

X =
{

diag(1, ω, . . . , ωN−1) if N is odd,
diag(ξ, ξω, . . . , ξωN−1) if N is even,

and

Y =


0 · · · ±1

1
. . .

...
. . .

0 · · · 1 0

.
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The pair (X, Y ) ∈ SU(N )× SU(N ) determines an irreducible projective SU(N )
representation of the free abelian group Z⊕Z of rank 2.

Proof. First notice that XY X−1Y−1
= ωI if and only if Y−1 XY = ωX . Every

element of SU(N ) is conjugate to a diagonal matrix, and so we can write

X =

λ1 0
. . .

0 λN

,
where λi ∈U (1) and λ1 · · · λN = 1. However, because X is conjugate to ωX , we
must have

{λ1, . . . , λN } = {ωλ1, . . . , ωλN }.

Reordering the terms, we can arrange that λi = ω
i−1λ1 for i = 1, . . . , N. Since

det X = 1, we have λN
1 = (−1)N−1, and so without loss of generality we can take

λ1 =

{
1 if N is odd,
ξ if N is even.

This shows that X is of the required form.
Next, observe that XY X−1Y−1

=ωI if and only if XY =ωY X . Writing Y = (yi j )

and comparing the (i j) entries on right and left, it follows that

ωi−1 yi j = yi jω
j.

This implies that yi j = 0 unless i ≡ j + 1 mod N. Furthermore, since Y has only
one nonzero entry in each row and column, each entry must lie in U (1) and we find
that

Y =


0 · · · µ1

µ2
. . .

...
. . .

0 µN 0

,
where µi ∈ U (1) satisfy µ1 · · ·µN = (−1)N−1 (since det Y = 1). Because X is
diagonal with N distinct eigenvalues, the stabilizer subgroup Stab(X) is a copy of
the standard maximal torus, i.e.,

Stab(X)= {diag(θ1, . . . , θN ) | θi ∈U (1), θ1 · · · θN = 1} ∼= T N−1.

A matrix P = diag(θ1, . . . , θN ) ∈ Stab(X) acts on Y by

PYP−1
=


0 · · · θ1θ

−1
N µ1

θ2θ
−1
1 µ2

. . .
...

. . .

0 θN θ
−1
N−1µN 0

.
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Setting
θ1 = µ

−1
1

θ2 = θ1µ
−1
2 = µ

−1
1 µ−1

2

θ3 = θ2µ
−1
3 = µ

−1
1 µ−1

2 µ−1
3

...

θN = θN−1µ
−1
N = µ

−1
1 · · ·µ

−1
N = (−1)N−1,

it follows that

PYP−1
=


0 · · · (−1)N−1

1
. . .

...
. . .

0 1 0

.
Since P X P−1

= X , this shows that, up to conjugation, Y is of the required form.
Irreducibility of the pair (X, Y ) follows from the fact that Stab(X)∩Stab(Y )= ZN.

�

Remark 4.2. If XY X−1
=ωY, then XdY X−d

=ωdY by induction. This shows that
if (X, Y ) are as in Theorem 4.1, then (Xd, Y ) satisfies [Xd, Y ] = ωd I . Using this
observation, one can show that solutions (X ′, Y ′) to [X ′, Y ′] = ωd I are irreducible
and unique up to conjugation provided d is relatively prime to N. This fails if d is
not relatively prime to N ; when N = 4 and d = 2, one can construct nonconjugate
families of pairs (X, Y )∈ SU(4)×SU(4) satisfying [X, Y ] =−I . All of these pairs
are reducible.

We now use this to evaluate hN,a(H) for the Hopf link H.

Proposition 4.3. Suppose H is the Hopf link and 1 ≤ d < N is relatively prime
to N. Then hN,a(H)=±1 for a = (d, N − d).

Proof. We motivate the proof with the following argument. The Hopf link H has
link group GH = 〈x, y | [x, y] = 1〉, and Theorem 4.1 implies there is a unique
irreducible projective representation % : GH → SU(N ) with [%(x), %(y)] = ωd I .
Uniqueness of % up to conjugacy implies that hN,a(H)=±1.

More precisely, notice that the Hopf link is the closure of the braid σ 2
1 ∈ B2 and

fix the labels a = (d, N − d) for H, where 1≤ d < N is relatively prime to N. The
braid σ = σ 2

1 acts on pairs (X1, X2) ∈ R2 = SU(N )×SU(N ) in the usual way (see
Example 1.1), and for ε = (ε1, ε2) we have

εσ(X1, X2)= (ε1 X−1
2 X1 X2, ε2 X−1

2 X−1
1 X2 X1 X2).

For (ε1, ε2)= (ω
d, ωN−d), one can easily see that (X1, X2) ∈ Fix(εσ ) if and only

if [X1, X2] = ω
d. By Theorem 4.1 and the preceding remarks, this equation has
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one solution which is irreducible and unique up to conjugation. Lemma 4.4 below
shows that the solution is nondegenerate, and this implies that hN,a(H)=±1 for
the Hopf link. �

The next result establishes the nondegeneracy result required for the above
computation of hN,a(H).

Lemma 4.4. Let H be the Hopf link, GH its link group, and 1≤ d < N relatively
prime to N. Suppose % :GH→ SU(N ) is the projective representation, unique up to
conjugation, of the link group GH with a= (d,N−d). Then H1(GH ;su(N )Ad%)=0.

Proof. Let Z = S3 r τH be the link exterior, and recall that the exterior of every
nonsplit link in S3 is a K (π, 1). Thus H i (Z; su(N )Ad %) = H i (GH ; su(N )Ad %),
where GH = π1(Z) is the link group.

For the Hopf link, the link group GH = Z×Z is the free abelian group of rank
two. Since % is irreducible, it follows that H 0(GH ; su(N )Ad %)= 0, and Poincaré
duality implies that H 2(GH ; su(N )Ad %) = 0. Using χ(Z) = 0, this shows that
H 1(GH ; su(N )Ad %)= 0, which completes the proof of the lemma. �

Next, we consider a chain link L and we establish the following vanishing result
for hN,a(L).

Proposition 4.5. Suppose L is a chain link with n > 2 components and that n = N.
Then hN,a(L)= 0 for a = (d, . . . , d), where d is relatively prime to N.

Proof. We start with the chain link L with n = 3 components. It has link group
with presentation

GL = 〈x, y, z | [x, y] = 1= [y, z]〉.

We will parametrize all triples (X, Y, Z) ∈ SU(3) × SU(3) × SU(3) satisfying
[X, Y ]=ωI =[Y, Z ], and we will use this to show that h3,a(L)= 0 for a= (1, 1, 1).

Applying Theorem 4.1, up to conjugacy, there is a unique irreducible pair
(X, Y ) ∈ SU(3)×SU(3) satisfying the equation [X, Y ] = ωI . This pair is given by

X =

1 0 0
0 ω 0
0 0 ω2

 and Y =

0 0 1
1 0 0
0 1 0

.
In a general group, the commutator satisfies the relations

[x, y]−1
= [y, x] = y [x, y−1

] y−1
= x [x−1, y]x−1.

Setting Z = X−1, this shows that [Y, Z ] = ωI , and thus the triple (X, Y, Z) gives
rise to a projective representation % : GL → SU(3) satisfying

[%(x), %(y)] = ωI = [%(y), %(z)].
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If P ∈ Stab(Y ), then

[Y, P Z P−1
] = P [Y, Z ]P−1

= ωI,

so the action of Stab(Y ) on triples, given by (X, Y, Z) 7→ (X, Y, P Z P−1), preserves
the relations and is nontrivial on conjugacy classes. It follows that the solution set
is 2-dimensional and parametrized by Stab(Y )/Z3, which has Euler characteristic
zero since Stab(Y )∼= T 2 is a copy of a maximal torus. A calculation similar to the
one in the proof of Lemma 4.4 shows that the solution set is a nondegenerate critical
submanifold, and a standard argument then shows that its contribution to the invariant
is given by plus or minus its Euler characteristic; see the proof of Proposition 8
in [Boden and Herald 1999]. It follows that h3,a(L) = 0 for a = (1, 1, 1), and a
similar argument shows that h3,a(L)= 0 for a = (2, 2, 2).

One can also prove this via a direct approach making use of the fact that L is the
closure of the braid σ = σ 2

1 σ
2
2 and parametrizing the fixed point set Fix(εσ ) as was

done for the Hopf link. We leave the details to the reader.
Next, consider the chain link L with 4 components. It has link group with

presentation

GL = 〈x, y, z, w | [x, y] = 1= [y, z] = [z, w]〉.

By Theorem 4.1, up to conjugacy, there is a unique irreducible pair (X, Y ) ∈
SU(4)×SU(4) satisfying the equation [X, Y ] = ωI . This pair is given by

X =


ξ 0 0 0
0 ξ 3 0 0
0 0 ξ 5 0
0 0 0 ξ 7

 and Y =


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

.
Taking Z = X−1 and W = Y−1, one can show that the 4-tuple (X, Y, Z ,W ) gives
rise to a projective representation % : GL → SU(3) with [%(x), %(y)] = ωI =
[%(y), %(z)] = [%(z), %(w)]. The two groups Stab(Y ) and Stab(Z) act on 4-tuples
by {

(X, Y, Z ,W ) 7→ (X, Y, P Z P−1, PWP−1) for P ∈ Stab(Y ),
(X, Y, Z ,W ) 7→ (X, Y, Z , QWQ−1) for Q ∈ Stab(Z),

and these actions preserve the relations and are nontrivial on conjugacy classes. It
follows that the solution set is 6-dimensional and parametrized by Stab(Y )/Z4×

Stab(Z)/Z4, which has Euler characteristic zero. By similar considerations as in
the previous case, it follows that h4,a(L) = 0 for a = (1, 1, 1, 1), and a similar
argument shows that h4,a(L)= 0 for a = (3, 3, 3, 3).

As before, one can perform these computations directly by noting that L is the
closure of the braid σ = σ 2

1 σ
2
2 σ

2
3 and parametrizing the fixed point set Fix(εσ ).
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This argument generalizes to the n-component chain link in a straightforward
manner, as we now explain. The chain link L with n components has link group
with presentation

GL = 〈x1, . . . , xn | [x1, x2] = · · · = [xn−1, xn] = 1〉.

By Theorem 4.1, up to conjugacy, there is a unique irreducible pair (X1, X2) ∈

SU(N )×SU(N ) satisfying the equation [X1, X2] = ωI . A solution is obtained by
taking X1 = X and X2 = Y for X, Y as in the statement of the theorem, and setting
X i+2 = X−1

i for i = 1, . . . , n− 2, the n-tuple

(X1, . . . , Xn) ∈ SU(N )× · · ·×SU(N )

is easily seen to satisfy the relations

[X1, X2] = · · · = [Xn−1, Xn] = ωI.

For i = 3, . . . , n, the group Stab(Xi ) acts on n-tuples by

(X1, . . . , Xn) 7→ (X1, . . . , Xi , P X i+1 P−1, . . . , P Xn P−1)

for P ∈ Stab(Xi ). These actions preserve the relations and are nontrivial on conju-
gacy classes. Since each Stab(Xi )∼= T N−1 is a maximal torus, it follows that the
solution set has dimension (N −1)(N −2) and is parametrized by Stab(X3)/ZN ×

· · ·×Stab(Xn)/ZN, which has Euler characteristic zero. It follows that hN,a(L)= 0
for a= (1, . . . , 1), and a similar argument shows that hN,a(L)=0 for a= (d, . . . , d)
for any d relatively prime to N. �

4B. Split Links. In this section, we consider links L ⊂ S3 that are geometrically
split and prove a vanishing result for hN,a(L) provided that the labels satisfy the
following condition. Assume L is a link with n components, and suppose it is split.
Denoting the components of L by `1∪· · ·∪`n , this means that L = L1∪ L2, where
up to reordering L1 = `1 ∪ · · · ∪ `n1 and L2 = `n1+1 ∪ · · · ∪ `n are sublinks that are
separated by a 2-sphere. We shall assume that the labels (a1, . . . , an) satisfy the
additional condition:

(15) a1+ a2+ · · ·+ an1 is not a multiple of N.

Using Markov moves we can always find a split braid representative β ∈ Bk

of L; see Figure 3. This means that β = β1β2 where

β1 ∈ Im(Bk1

i1
↪→ Bk) and β2 ∈ Im(Bk2

i2
↪→ Bk)

for k = k1+ k2 and i1, i2 are injective maps obtained by stabilizing on the right and
left, respectively. More precisely, i1 takes a braid in Bk1 and adds k2 trivial strands
on the right, and i2 takes a braid in Bk2 and adds k1 trivial strands on the left. Any
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β1 β2

· · · · · ·

· · · · · ·

Figure 3. A split braid.

link L obtained as the closure β̂ of a split braid is obviously a split link, and any
split link L can be obtained as the closure of a split braid.

Proposition 4.6. Suppose L is a split link and that β is a split braid with β̂ = L.
Suppose further that a = (a1, . . . , an) is an n-tuple of labels satisfying (15), and
ε = (ε1, . . . , εk) is a compatible k-tuple. Then the intersection 1k ∩0εβ =∅, and
consequently hN,a(L)= 0.

Proof. Let X ∈1k ∩0εβ , then by (8),

X1 · · · Xk1 = ω
dn1β(X)1 · · ·β(X)k1 .

Since β = β1β2 is a split braid with β1 ∈ Bk1 , by (2) we have that

β(X)1 · · ·β(X)k1 = β1(X)1 · · ·β1(X)k1 = X1 · · · Xk1,

and this implies
X1 · · · Xk1 = ω

a1+···+an1 X1 · · · Xk1 .

But ωa1+···+an1 6= 1 by assumption (15), and this gives the desired contradiction. �

4C. Concluding remarks. One can give an alternative interpretation of the invari-
ants hN,a(L) in terms of a signed count of conjugacy classes of representations
% :GL→PU(N ) of the link group as follows. We begin by recalling the classification
of principal PU(N ) bundles from [Woodward 1982].

The classifying space B PU (N ) is simply connected and has π2(B PU (N ))=ZN,
and an application of the main theorem of [loc. cit.] implies that principal PU(N )
bundles P → X over a 3-complex X are determined by the characteristic class
w(P) ∈ H 2(X;ZN ). In case N = 2, PU(2)= SO(3) and w(P) coincides with the
second Stiefel-Whitney class.

Let L ⊂ S3 be a link and ML = S3 r τ(L) its exterior. A projective SU(N )
representation induces a representation % : GL → PU(N ), and we denote the
associated cohomology class by w(%) ∈ H 2(GL;ZN ). The class w(%) vanishes
if and only if % lifts to an SU(N ) representation. Further, there is a canonical
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injection H 2(GL;ZN )→ H 2(ML;ZN ) which is an isomorphism if and only if ML

is aspherical, i.e., if and only if L is nonsplit.
By reduction mod N, an allowable n-tuple (a1, . . . , an)∈Zn determines a unique

cohomology class w(a1, . . . , an) ∈ H 2(∂ML;ZN )∼= (ZN )
n . The exact sequence in

cohomology for the pair (ML , ∂ML) gives

→ H 2(ML;ZN )
i∗
−→ H 2(∂ML;ZN )→ H 3(ML , ∂ML;ZN )→ 0;

and condition (iii) from Section 2B guarantees that w(a1, . . . , an) lies in the image
of i∗ and hence determines a class w(a1, . . . , an) ∈ H 2(ML;ZN ). Condition (ii)
implies that the class w(a1, . . . , an) has order N.

From this point of view, the invariant hN,a(L) is closely related to the signed
count of conjugacy classes of representations % : GL → PU(N ) such that w(%)=
w(a1, . . . , an). Proposition 4.6 is therefore a direct consequence of the fact that
for split links L and allowable n-tuples (a1, . . . , an) satisfying condition (15), the
associated cohomology class w(a1, . . . , an) does not lie in the image of the map
H 2(GL;ZN )→ H 2(ML;ZN ).

As mentioned in the introduction, it would be interesting to investigate the
relationship between the SU(N ) Casson–Lin invariants studied here and the SU(N )
instanton Floer groups constructed by Kronheimer and Mrowka [2011b; 2011a].
It would also be interesting to understand the relationship between the SU(N )
Casson–Lin invariants and classical link invariants. For example, the main result
of [Harper and Saveliev 2010] equates the SU(2) Casson–Lin invariant h2(L) of a
two component link L = `1 ∪ `2 with the linking number lk(`1, `2). The following
conjecture, if true, would give a generalization to the higher rank setting.

Conjecture 4.7. If L = `1 ∪ `2 is a two component link in S3, then the SU(N )
Casson–Lin invariant satisfies

hN,a(L)= lk(`1, `2)
N−1.

This conjecture is consistent with all known computations of the SU(N ) Casson–
Lin invariants, and it’s possible that the invariants hN,a(L) are generally invariant
under link homotopy. We hope to explore these topics in future work.
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THE SU(2) CASSON–LIN INVARIANT OF THE HOPF LINK

HANS U. BODEN AND CHRISTOPHER M. HERALD

We compute the SU(2) Casson–Lin invariant for the Hopf link and deter-
mine the sign in the formula of Harper and Saveliev relating this invariant
to the linking number.

The Casson–Lin invariant h(K ) was defined for knots K by X.-S. Lin [1992] as
a signed count of conjugacy classes of irreducible SU(2) representations of the knot
group GK = π1(S3

\ K ) with traceless meridional image, and Corollary 2.10 of
the same paper shows that h(K ) is equal to 1

2 sign(K ), one half the knot signature.
E. Harper and N. Saveliev [2010] introduced the Casson–Lin invariant h2(L) of
2-component links, which they defined as a signed count of certain projective SU(2)
representations of the link group GL = π1(S3

\ L). They showed that h2(L) equals
the linking number of L = `1 ∪ `2, up to an overall sign: h2(L) = ± lk(`1, `2).
Harper and Saveliev [2012] also show that h2(L) can be regarded as an Euler
characteristic associated to a certain SU(2) instanton Floer homology theory, defined
by Kronheimer and Mrowka [2011].

The purpose of this note is to determine the sign in the formula of Harper and
Saveliev, establishing the following.

Theorem 1. If L = `1 ∪ `2 is an oriented 2-component link in S3, then its Casson–
Lin invariant satisfies h2(L)=− lk(`1, `2).

We remark that the braid approach in [Harper and Saveliev 2010] is close in
spirit to Lin’s original definition, and it shows that h2(L) is an invariant of oriented
links, because the Alexander and Markov theorems hold for oriented links; see
Theorems 2.3 and 2.8 of [Kassel and Turaev 2008]. The sign of the invariant h2(L)
depends not only on the choice of orientation on the braid, but also on the more
subtle choice of identification of geometric braids with elements in the abstract braid
group Bn , viewed as a subgroup of Aut(Fn). Here we follow Conventions 1.13 of
[Kassel and Turaev 2008] in making this choice.

Note that extensions of the Casson–Lin invariants to SU(N ) and to oriented
links L in S3 with at least two components are presented in [Boden and Harper
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2016], where, as before, they are defined by counting certain projective SU(N )
representations of the link group GL .

The rest of this paper is devoted to proving Theorem 1.

Proof. The proof of Proposition 5.7 in [Harper and Saveliev 2010] shows that the
sign of lk(`1, `2) in our theorem is independent of L . (See also the proof of their
Theorem 2 and their general discussion in Section 5.) Thus Theorem 1 will follow
from a single computation.

To that end, we will determine the Casson–Lin invariant for the right-handed Hopf
link. Since there is just one irreducible projective SU(2) representation of the link
group, up to conjugation, it suffices to determine the sign associated to this one point.

We identify

SU(2)=
{

x + yi + z j +wk
∣∣ |x |2+ |y|2+ |z|2+ |w|2 = 1

}
with the group of unit quaternions and consider the conjugacy class

Ci =
{

yi + z j +wk
∣∣ |y|2+ |z|2+ |w|2 = 1

}
⊂ SU(2)

of purely imaginary unit quaternions. Notice that Ci is diffeomorphic to S2 and
coincides with the set of SU(2) matrices of trace zero.

Let L be an oriented link in S3, represented as the closure of an n-strand
braid σ ∈ Bn . We follow Conventions 1.13 on page 17 of [Kassel and Turaev 2008]
for writing geometric braids σ as words in the standard generators σ1, . . . , σn−1.
In particular, braids are oriented from top to bottom and σi denotes a right-handed
crossing in which the (i+1)-st strand crosses over the i-th strand. The braid group Bn

gives a faithful right action on the free group Fn on n generators, and here we follow
the conventions in [Boden and Harper 2016] for associating an automorphism of Fn

to a given braid σ ∈ Bn , which we write as xi 7→ xσi for i = 1, . . . , n. To be precise,
to each braid group generator σi we associate the map σi : Fn→ Fn given by

xi 7→ xi+1, xi+1 7→ (xi+1)
−1xi xi+1, x j 7→ x j ( j 6= i, i + 1),

and this is a right action, i.e., if σ, σ ′ ∈ Bn are two braids, then (xi )
σσ ′
= (xσi )

σ ′ for
all 1≤ i ≤ n. Note that each braid σ ∈ Bn fixes the product x1 · · · xn .

A standard application of the Seifert–van Kampen theorem shows that the link
complement S3

\ L has fundamental group

π1(S3
\ L)= 〈x1, . . . , xn | xσi = xi , i = 1, . . . , n〉.

We can therefore identify representations in Hom(π1(S3
\ L),SU(2)) with fixed

points in Hom(Fn,SU(2)) under the induced action of the braid σ . We further
identify Hom(Fn,SU(2)) with SU(2)n by associating to a homomorphism % the
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n-tuple (X1, . . . , Xn) = (%(x1), . . . , %(xn)). Note that σ : SU(2)n → SU(2)n is
equivariant with respect to conjugation, so that fixed points come in whole orbits.

Every projective SU(2) representation can be identified with a fixed point in
Hom(Fn,SU(2)) under the action of εσ for some n-tuple ε = (ε1, . . . , εn) with
εi = ±1 such that ε1 · · · εn = 1. Notice that the action of εσ on (X1, . . . , Xn) ∈

SU(2)n preserves the product X1 · · · Xn and is equivariant with respect to conjuga-
tion. The Casson–Lin invariant h2(L) is then defined as a signed count of orbits of
fixed points of εσ for a suitably chosen n-tuple ε= (ε1, . . . , εn). The choice is made
so that the resulting projective representations % all havew2(Ad %) 6=0, meaning that
the representations Ad % do not lift to SU(2) representations. It has the consequence
that for all fixed points % of εσ , each %(xi ) is a traceless SU(2) element.

We therefore restrict our attention to the subset of traceless representations,
which are elements % ∈ Hom(Fn,SU(2)) with %(x j ) ∈ Ci for j = 1, . . . , n. Define
f : Cn

i ×Cn
i → SU(2) by setting

f (X1, . . . , Xn, Y1, . . . , Yn)= (X1 · · · Xn)(Y1 · · · Yn)
−1.

We obtain an orientation on f −1(1) by applying the base-fiber rule, using the
product orientation on Cn

i × Cn
i and the standard orientation on the codomain

of f . The quotient f −1(1)/conj is then oriented by another application of the
base-fiber rule, using the standard orientation on SU(2). This step uses the fact that,
if ε = (ε1, . . . , εn) is chosen so that the associated SO(3) representation Ad % has
nontrivial second Stiefel–Whitney class w2 6= 0, then every fixed point of εσ in
Hom(Fn,SU(2)) is necessarily irreducible.

We view conjugacy classes of fixed points of εσ as points in the intersection
1̂ ∩ 0̂εσ , where 1̂ = 1/conj is the quotient of the diagonal 1 ⊂ Cn

i × Cn
i , and

where 0̂εσ = 0εσ/conj is the quotient of the graph 0εσ of εσ : Cn
i → Cn

i .
If the link L is the closure of a 2-strand braid, as it is for the Hopf link, then

ε = (−1,−1) is the only choice whose associated SO(3) bundle has w2 6= 0.
Furthermore, in this case the intersection 1̂ ∩ 0̂εσ takes place in the pillowcase
f −1(1)/conj, which is defined as the quotient

(1) P = {(a, b, c, d) ∈ C4
i | ab = cd}/conj.

It is well known that P is homeomorphic to S2. To see this, first conjugate so
that a = i , then conjugate by elements of the form eiθ to arrange that b lies in the
(i, j)-circle. A straightforward calculation using the equation ab = cd shows that
d must also lie on the (i, j)-circle. Clearly c is determined by a, b, d. We thus
obtain an embedded 2-torus of elements of C4

i satisfying ab = cd , parametrized by

g(θ1, θ2)= (i, ekθ1 i, ek(θ2−θ1)i, ekθ2 i)
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for θ1, θ2 ∈ [0, 2π), which maps onto P . It is easy to verify that this is a two-to-one
submersion, except when θ1, θ2∈{0, π}. This realizes P as a quotient of the torus by
the hyperelliptic involution. In particular, this involution is orientation-preserving,
and away from the four singular points of P , we can lift all orientation questions
up to the torus.

Let L be the right-handed Hopf link, which we view as the closure of the braid
σ = σ 2

1 ∈ B2, and suppose ε = (−1,−1). The intersection 1̂ ∩ 0̂εσ consists of
only one point, the conjugacy class of g

(
π
2 ,

π
2

)
, that is, the point [(i, j, i, j)] ∈ P .

(This is easily verified using the action of σ 2
1 on F2 = 〈x, y〉; see Figure 1.) Thus,

in order to pin down the sign of the Casson–Lin invariant h2(L), we must determine
the orientations of 1̂, 0̂εσ , and P at this point.

Notice that
∂

∂θ1
g(θ1, θ2)= (0, ekθ1 j,−ek(θ2−θ1) j, 0),

∂

∂θ2
g(θ1, θ2)= (0, 0, ek(θ2−θ1) j, ekθ2 j).

Evaluating at θ1 = θ2 =
π
2 gives two tangent vectors u1 := (0,−i,− j, 0) and

u2 := (0, 0, j,−i) to C4
i which span a complementary subspace in ker d f to the

orbit tangent space. Therefore, an ordering of these vectors determines an orientation
on P = f −1(1)/conj.

The orbit tangent space is spanned by the three tangent vectors

v1 :=
∂

∂t

∣∣∣
t=0

ei t(i, j, i, j)e−i t
= (0, 2k, 0, 2k),

v2 :=
∂

∂t

∣∣∣
t=0

e j t(i, j, i, j)e− j t
= (−2k, 0,−2k, 0),

v3 :=
∂

∂t

∣∣∣
t=0

ekt(i, j, i, j)e−kt
= (2 j,−2i, 2 j,−2i).

Then {u1, u2, v1, v2, v3} is a basis for ker(d f |(i, j,i, j)) = T(i, j,i, j) f −1(1). We
choose vectors w1 = (k, 0, 0, 0), w2 = (0, k, 0, 0), w3 = ( j, 0, 0, 0) to extend this
to a basis for T(i, j,i, j)C4

i .
The orientation conventions in the definition of h2(L) (see Section 5d of [Harper

and Saveliev 2010]) involve pulling back the orientation from su(2) = T1 SU(2)
by d f to obtain a coorientation for ker(d f |(i, j,i, j)). With that in mind, we compute
the action of d f on {w1, w2, w3}, namely, d f (w1)=− j , d f (w2)= i , d f (w3)= k.

Notice that the ordered triple {d f (w1), d f (w2), d f (w3)} = {− j, i, k} gives the
same orientation as the standard basis for su(2). Thus, the base-fiber rule gives the
coorientation {w1, w2, w3} on ker d f , so we choose the orientation Oker d f on ker d f
such that O{w1,w2,w3}⊕Oker d f agrees with the product orientation on C2

i ×C2
i .

The orientation on the pillowcase P is then obtained by applying the base-fiber
rule a second time to the quotient (1), using Oker d f to orient f −1(1) and giving the
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x y

y−1xy y−1x−1 yxy

Figure 1. The action of σ = σ 2
1 on F2 = 〈x, y〉.

orbit tangent space the orientation induced from that on SU(2) as well. We claim that
the basis {u1, u2} for the tangent space to the pillowcase has the opposite orientation.
To see this, we note that {v1, v2, v3} is the fiber orientation for SO(3)→ f −1(1)→ P
and compare S = {w1, w2, w3, u1, u2, v1, v2, v3} to the product orientation on
C2

i ×C2
i . Using the basis {( j, 0), (k, 0), (0, k), (0, i)} for T(i, j)(C2

i ), we see that

β = {( j, 0, 0, 0), (k, 0, 0, 0), (0, k, 0, 0), (0, i, 0, 0),
(0, 0, j, 0), (0, 0, k, 0), (0, 0, 0, k), (0, 0, 0, i)}

is an oriented basis for T(i, j,i, j)C4
i =T(i, j)C2

i ×T(i, j)C2
i with the product orientation.1

Let M be the matrix expressing the vectors in S in terms of the basis β. Since

M =



0 0 1 0 0 0 0 2
1 0 0 0 0 0 −2 0
0 1 0 0 0 2 0 0
0 0 0 −1 0 0 0 −2
0 0 0 −1 1 0 0 2
0 0 0 0 0 0 −2 0
0 0 0 0 0 2 0 0
0 0 0 0 −1 0 0 −2


,

one easily computes that det M = −8, confirming our claim that {u2, u1} is a
positively oriented basis for the pillowcase tangent space.

Recall that L is the right-handed Hopf link, which we represent as the closure
of the braid σ = σ 2

1 ∈ B2. For ε = (−1,−1), as in Figure 1, one can verify that

εσ (X, Y )= (−Y−1 XY,−Y−1 X−1Y XY ).

Consider the curve α(θ)=(i, ekθ i), passing through the point (i, j)∈C2
i when θ= π

2 ,
which is transverse to the orbit [(i, j)]. Then (α(θ), α(θ)) and (α(θ), εσ ◦α(θ)) are
curves in 1 and 0εσ , respectively, and both are necessarily transverse to the orbit in

1As explained in Section 5d of [Harper and Saveliev 2010], the invariant h2(L) is independent of
the choice of orientation on Ci . In fact, C2

i can be oriented arbitrarily provided one uses the product
orientation on C2

i ×C2
i .
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C4
i /conj. Thus, we can compare the orientations induced by the parametrizations
[(α(θ), α(θ))] and [(α(θ), εσ ◦α(θ))] of 1̂ and 0̂εσ to the pillowcase orientation de-
termined above, namely {u2, u1}. The velocity vectors for the paths (α(θ), α(θ))=
(i, ekθ i, i, ekθ i) and (α(θ), εσ ◦α(θ))= (i, ekθ i,−e2kθ i,−e3kθ i) at θ = π

2 are given
by (0,−i, 0,−i)= u1+ u2 and (0,−i, 2 j,−3i)= u1+ 3u2, respectively.

The Casson–Lin invariant is defined as the intersection number h2(L)=〈1̂, 0̂εσ 〉,
and in our case the sign of the unique intersection point in 1̂∩ 0̂εσ is determined by
comparing the orientation of {u1+ u2, u1+ 3u2} with {u2, u1}. Since the change
of basis matrix

[ 1
1

3
1

]
has negative determinant, it follows that h2(L)=−1. �
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COMMENSURATIONS AND METRIC PROPERTIES
OF HOUGHTON’S GROUPS

JOSÉ BURILLO, SEAN CLEARY, ARMANDO MARTINO AND CLAAS E. RÖVER

We describe the automorphism groups and the abstract commensurators
of Houghton’s groups. Then we give sharp estimates for the word metric
of these groups and deduce that the commensurators embed into the corre-
sponding quasi-isometry groups. As a further consequence, we obtain that
the Houghton group on two rays is at least quadratically distorted in those
with three or more rays.

Introduction

The Houghton groups Hn , introduced in [Houghton 1978], form an interesting
family whose homological finiteness properties were described in [Brown 1987].
Röver [1999] showed that the Hn are all subgroups of Thompson’s group V, and
Lehnert [2009] described the metric for H2. Lee [2012] described isoperimetric
bounds, and de Cornulier, Guyot and Pitsch [CGP 2007] showed that they are
isolated points in the space of groups.

Here, we classify automorphisms and determine the abstract commensurator
of Hn . We also give sharp estimates for the word metric which are sufficient to
show that the map from the abstract commensurator to the group of quasi-isometries
of Hn is an injection.

1. Definitions and background

Let N be the set of natural numbers (positive integers) and n ≥ 1 be an integer.
We write Zn for the integers modulo n with addition and put Rn = Zn ×N. We
interpret Rn as the graph of n pairwise disjoint rays; each vertex (i, k) is connected
to (i, k+1). We denote by Symn , FSymn and FAltn , or simply Sym, FSym and FAlt

if n is understood, the full symmetric group, the finitary symmetric group and the
finitary alternating group on the set Rn , respectively.

The authors thank Charles Cox for his remarks on an earlier version of this paper and NUI Galway for
its hospitality. This work was partially supported by MEC grant #MTM2011-25955 (Burillo), National
Science Foundation grant #1417820 (Cleary) and Simons Foundation grant #234548 (Cleary).
MSC2010: 20F65.
Keywords: Houghton’s groups, commensurations.
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The Houghton group Hn is the subgroup of Sym consisting of those permutations
that are eventually translations (of each of the rays). In other words, the permutation
σ of the set Rn is in Hn if there exist integers N ≥ 0 and ti = ti (σ ) for i ∈ Zn such
that for all k ≥ N, we have (i, k)σ = (i, k+ ti ); throughout we will use right actions.

Note that necessarily the sum of the translations ti must be zero because the
permutation needs of course to be a bijection. This implies that H1 ∼= FSym.

For i, j ∈ Zn with i 6= j let gi j ∈ Hn be the element which translates the line
obtained by joining rays i and j , given by

(i, n)gi j = (i, n− 1) if n > 1,

(i, 1)gi j = ( j, 1),

( j, n)gi j = ( j, n+ 1) if n ≥ 1, and

(k, n)gi j = (k, n) if k /∈ {i, j}.

We also write gi instead of gi i+1. It is easy to see that {gi | i ∈ Zn}, and
{gi j | i, j ∈ Zn, i 6= j}, are generating sets for Hn if n ≥ 3 as we can simply check
that the commutator [g0, g1] = g−1

0 g−1
1 g0g1 transposes (1, 1) and (2, 1). In the

special case of H2, the element g1 is redundant as g1 = g−1
0 . Further, an additional

generator to g0 is required to generate the group; we choose τ which fixes all points
except for transposing (0, 1) and (1, 1).

It is now clear that the commutator subgroup of Hn is given by

H′n =
{
FAlt if n ≤ 2,
FSym if n ≥ 3.

For n ≥ 3, we thus have a short exact sequence

(1) 1→ FSym→Hn
π
−→Zn−1

→ 1,

where π(σ)= (t0(σ ), . . . , tn−2(σ )) is the abelianization homomorphism. We note
that as the sum of all the eventual translations must be zero, the last translation is
determined by the preceding ones:

(2) tn−1(σ )=−

n−2∑
i=0

ti (σ ).

We will use the following facts freely throughout this paper; see [Dixon and
Mortimer 1996] or [Scott 1964].

Lemma 1.1. The group FAlt is simple and equal to the commutator subgroup of
FSym, and Aut(FAlt)= Aut(FSym)= Sym.
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2. Automorphisms of Hn

Here we determine the automorphism group of Hn . First we establish that we have
to look no further than Sym. We let NG(H) denote the normalizer, in G, of the
subgroup H of G.

Proposition 2.1. Every automorphism of Hn , n ≥ 1, is given by conjugation by an
element of Sym; that is to say, Aut(Hn)= NSym(Hn).

Proof. From the above, the finitary alternating group FAlt is the second derived
subgroup of Hn , and hence characteristic in Hn . So every automorphism of Hn

restricts to an automorphism of FAlt. Since Aut(FAlt)= Sym, this restriction yields
a homomorphism Aut(Hn)→ Sym and we need to show that it is injective with
image equal to NSym(Hn).

In order to see this let ψ ∈ Aut(Hn) be an automorphism. Compose this with
an inner automorphism (of Sym) so that the result is an (injective) homomorphism
α :Hn→ Sym whose restriction to FAlt is trivial. We let k ∈ N and consider the
six consecutive points a` = (i, k+ `) of Rn for ` ∈ {0, 1, . . . , 5}.

We denote by gαi the image of gi under α, and by (x y z) the 3-cycle of the points
x , y and z. Using the identities

g−1
i (a1 a2 a3)gi = (a0 a1 a2) and g−1

i (a3 a4 a5)gi = (a2 a3 a4)

and applying α, which is trivial on FAlt, we get

(gαi )
−1(a1 a2 a3)gαi = (a0 a1 a2) and (gαi )

−1(a3 a4 a5)gαi = (a2 a3 a4).

Hence, gαi maps {a1, a2, a3} to {a0, a1, a2}, and then also {a3, a4, a5} to {a2, a3, a4}.
The conclusion is that it maps a3 to a2. Applying a similar argument to all points
in the branches i and i + 1, it follows that gαi = gi , and since i was arbitrary, this
means that α is the identity map. �

With Lemma 1.1 in mind we now present the complete description of Aut(Hn).

Theorem 2.2. For n ≥ 2, the automorphism group Aut(Hn) of the Houghton
group Hn is isomorphic to the semidirect product HnoSn , where Sn is the symmetric
group that permutes the n rays.

Proof. By the proposition, it suffices to prove that every α ∈ Sym which normalizes
Hn must map (i, k+m) to ( j, l +m) for some k, l ≥ 1 and all m ≥ 0.

To this end, we pick α ∈ NSym(Hn) and σ ∈Hn . Since σ α (= α−1σα) is in Hn

and maps the point xα to (xσ)α, these two points must lie on the same ray for all
but finitely many x ∈ Rn . Similarly, x and xσ lie on the same ray for all but finitely
many x ∈ Rn , as σ ∈Hn . In fact, given a ray, we can choose σ so that whenever x
lies on that ray, x and xσ are successors on the same ray. Combining these facts, we
see that α maps all but finitely many points of ray i to one and the same ray, say ray j .
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This defines a homomorphism from Aut(Hn) onto Sn , which is obviously split,
since given a permutation of the n rays, it clearly defines an automorphism of Hn .

So assume that α is now in the kernel of that map, so it does not permute the rays,
and take σ to be a gj i generator of Hn , i.e., an infinite cycle inside Sym. Then, since
conjugating inside Sym preserves cycle types, the element σ α∈Hn is also a single in-
finite cycle. This means that σ α has nonzero translations in only two rays, and these
translations are 1 and−1. Any point in the support of σ is sent into the i-th ray by σ k ,
for all sufficiently large k. Therefore, as α sends almost all points in the i-th ray into
the i-th ray, the same is true for σ α. Hence ti (σ α) is positive, so it must be ti (σ α)=1.
It is quite clear now that α translates by an integer in the ray i , sufficiently far out.
This finishes the proof since this could be done for any i , and hence α ∈Hn . �

3. Commensurations of Hn

First, we recall that a commensuration of a group G is an isomorphism A φ
−→ B,

where A and B are subgroups of finite index in G. Two commensurations φ and ψ
of G are equivalent if there exists a subgroup A of finite index in G such that the
restrictions of φ and ψ to A are equal. The set of all commensurations of G modulo
this equivalence relation forms a group, known as the (abstract) commensurator
of G, and is denoted Com(G). In this section we will determine the commensurator
of Hn .

For a moment, we let H be a subgroup of a group G. The relative commensurator
of H in G is denoted ComG(H) and consists of those g ∈ G such that H ∩ H g

has finite index in both H and H g. Similar to the homomorphism from NG(H) to
Aut(H), there is a homomorphism from ComG(H) to Com(H); its kernel consists
of those elements of G that centralize a finite index subgroup of H .

To pin down Com(Hn), we first establish that every commensuration of Hn can
be seen as conjugation by an element of Sym, and then characterize ComSym(Hn).

Since a commensuration φ and its restriction to a subgroup of finite index in
its domain are equivalent, we can restrict our attention to the following family of
subgroups of finite index in Hn , in order to exhibit Com(Hn). For every integer
p ≥ 1, we define the subgroup Up of Hn by

Up = 〈FAlt, g p
i | i ∈ Zn〉.

We collect some useful properties of these subgroups first, where A⊂ f B means
that A is a subgroup of finite index in B.

Lemma 3.1. Let n ≥ 3.

(i) For every p, the group Up coincides with Hp
n , the subgroup generated by all

p-th powers in Hn , and hence is characteristic in Hn .
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(ii) U ′p =
{
FAlt, p even,
FSym, p odd;

and |Hn :Up| =

{
2pn−1, p even,
pn−1, p odd.

(iii) For every finite index subgroup U of Hn , there exists a p ≥ 1 with FAlt =

U ′p ⊂Up ⊂ f U ⊂ f Hn .

The same is essentially true for the case n = 2, except that U ′p is always equal to
FAlt in this case, with the appropriate change in the index.

Proof. First we establish (ii). We know [gi , gj ] is either trivial, when j /∈{i−1, i+1},
or an odd permutation. So the commutator identities [ab, c] = [a, c]b[b, c] and
[a, bc] = [a, c][a, b]c imply the first part, and the second part follows immediately
using the short exact sequence (1) from Section 1.

Part (i) is now an exercise, using that FAltp
= FAlt.

To show (iii), let U be a subgroup of finite index in Hn . The facts that FAlt is
simple and U contains a normal finite index subgroup of Hn imply that FAlt⊂U.
Let p be the smallest even integer such that (pZ)n−1 is contained in the image of
U in the abelianization of Hn . It is now clear that Up is contained in U. �

Noting that Com(H1)= Aut(H1)= Sym, we now characterize the commensura-
tors of Houghton’s groups.

Theorem 3.2. Let n ≥ 2. Every commensuration of Hn normalizes Up for some
even integer p. The group Np = NSym(Up) is isomorphic to Hnp o (Sp o Sn), and
Com(Hn) is the direct limit of Np with even p under the natural embeddings
Np→ Npq for q ∈ N.

Proof. Let φ ∈ Com(Hn). By Lemma 3.1, we can assume that Up is contained in
the domain of both φ and φ−1 for some even p. Let V be the image of Up under φ.
Then V has finite index in Hn and so contains FAlt, by Lemma 3.1. However, the
set of elements of finite order in V equals [V, V ], whence [V, V ] = FAlt, as FAlt

and FSym are not isomorphic. This means that the restriction of φ to FAlt is an
automorphism of FAlt, and hence yields a homomorphism

ι : Com(Hn)→ Sym.

That ι is an injective homomorphism to ComSym(Hn) follows from an argument
similar to the one in Proposition 2.1 applied to g p

i and six points of the form
a` = (i, k + p`) with ` ∈ {0, 1, . . . , 5}. Since the centralizer in Sym of FAlt, and
hence of any finite index subgroup of Hn , is trivial, the natural homomorphism
from ComSym(Hn) to Com(Hn) mentioned above is also injective, and we conclude
that Com(Hn) is isomorphic to ComSym(Hn), and that ι is the isomorphism:

ι : Com(Hn)→ ComSym(Hn).
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From now on, we assume that φ ∈ ComSym(Hn). In particular, the action of φ is
given by conjugation, and our hypothesis is that Uφ

p ⊂Hn . Now we can apply the
argument from the proof of Theorem 2.2 to σ ∈U and σ φ (instead of σ α). Namely,
consider the i-th ray, and choose a σ = g p

ji ∈Up. So we have ti (σ )= p, tj (σ )=−p
and zero translation elsewhere. Now, except for finitely many points, σ φ preserves
the rays and sends xφ to xσφ. Thus there is an infinite subset of the i-th ray which
is sent to the same ray by φ, say ray k. The infinite subset should be thought of as
a union of congruence classes modulo p, except for finitely many points. We claim
that no infinite subset of ray j can be mapped by φ to ray k. This is because if it
were, the infinite subset would contain a congruence class modulo p (except for
finitely many points) from which we would be able to produce two points x, y in
the support of σ φ such that all sufficiently large positive powers of σ φ send x into
ray k and all sufficiently large negative powers of σ φ send y into ray k, and this
is not possible for an element of Hn . This means that φ maps an infinite subset of
ray i onto almost all of ray k (observe that ray k is almost contained in the support
of σ φ so must be almost contained in the image of the union of rays i and j).
Now applying similar arguments to φ−1 we get that φ is a bijection between rays i
and k except for finitely many points. In fact, φ must induce bijections between the
congruence classes modulo p (except for finitely many points) inside those two rays.

Thus φ induces a permutation of the ray system. Again, looking at large positive
powers, we deduce that tk(σ φ) > 0 and since the support of σ φ is almost equal to
the union of two rays, we must have tk(σ φ)= p, as σ and hence σ φ have exactly
p orbits. In particular, we may deduce that φ normalizes Up. So Uφ

p =Up.
In order to proceed, it will be useful to change the ray system. Specifically, each

ray can be split into p rays, preserving the order. This realizes Up as a (normal)
subgroup of Hnp. We say two of these new rays are equivalent if they came from
the same old ray. Thus there are n equivalence classes, each having p elements. The
group Up acts on this new ray system as the subgroup of Hnp consisting of all σ ∈
Hnp such that ti (σ )= tj (σ ) whenever the i-th and j -th rays are equivalent. Because
we have split the rays, these translation amounts can be arbitrary in Up (as a subgroup
of Hnp) and not just multiples of p. In particular, we have Up =Uφ

p ⊂Hnp and the
previous arguments imply that φ induces a bijection on the new ray system and sends
equivalent rays to equivalent rays (since it is actually permuting the old ray system).
Since φ permutes the rays, but must preserve equivalence classes, we get a homo-
morphism from NSym(Up) to the subgroup of Snp which preserves the equivalence
classes — this is easily seen to be (Sp oSn) and the above homomorphism is split.

As in Theorem 2.2 we now conclude that the kernel of this homomorphism is
Hnp and hence we get that Np = NSym(Up) is Hnp o (Sp oSn). �

We note that Com(Hn) is not finitely generated, for if it were, it would lie in
some maximal Np.
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4. Metric estimates for Hn

In this section we will give sharp estimates for the word length of elements of
Houghton’s groups. This makes no sense for H1, which is not finitely generated. As
mentioned in the Introduction, the metric in H2 was described by Lehnert [2009]. In
order to deal with Hn for n ≥ 3, we introduce the following measure of complexity
of an element.

Given σ ∈ Hn , we define pi (σ ), for i ∈ Zn , to be the largest integer such
that (i, pi (σ ))σ 6= (i, pi (σ ) + ti (σ )). Note that if ti (σ ) < 0, then necessarily
pi (σ )≥ |ti (σ )|, as the first element in each ray is numbered 1.

The complexity of σ ∈Hn is the natural number P(σ ) defined by

P(σ )=
∑
i∈Zn

pi (σ ).

And the translation amount of σ is

T (σ )= 1
2

∑
i∈Zn

|ti (σ )|.

The above remark combined with (2) immediately implies P(σ )≥ T (σ ). It is
easy to see that an element with complexity zero is trivial, and only the generators
gi j have complexity one.

Theorem 4.1. Let n ≥ 3 and σ ∈ Hn , with complexity P = P(σ ) ≥ 2. Then the
word length |σ | of σ with respect to any finite generating set satisfies

P/C ≤ |σ | ≤ KP log P,

where the constants C and K only depend on the choice of generating set.

Proof. Since the word length with respect to two different finite generating sets dif-
fers only by a multiplicative constant, we can and will choose {gi j | i, j ∈Zn, i 6= j}
as the generating set to work with, and show that the statement holds with C = 1
and K = 7.

The lower bound is established by examining how multiplication by a generator
can change the complexity. Suppose σ has complexity P and consider σgi j . It is
not difficult to see that

(3) pk(σgi j )=


pk(σ )+ 1 if k = i and (i, pi (σ )+ 1)σ = (i, 1),
pk(σ )− 1 if k = j, ( j, pj (σ )+ 1)σ = ( j, 1),

and ( j, pj (σ ))σ = (i, 1),
pk(σ ) otherwise,

where the first two cases are mutually exclusive, as i 6= j . Thus |P(σgi j )−P(σ )|≤1,
which establishes the lower bound.
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The upper bound is obtained as follows. Suppose σ ∈ Hn has complexity P.
First we show by induction on T = T (σ ) that there is a word ρ of length at most
T ≤ P such that the complexity of σρ is P with P ≤ P and T (σρ)= 0. The case
T = 0 is trivial. If T > 0, then there are i, j ∈ Zn with ti (σ ) > 0 and tj (σ ) < 0. So
T (σgi j )= T −1. Moreover, P(σgi j )≤ P, because the first case of (3) is excluded,
as it implies that ti (σ )=−pi (σ )≤ 0, contrary to our assumption. This completes
the induction step.

We are now in the situation that σρ ∈ FSym and loosely speaking we proceed as
follows.

1. We push all irregularities into ray 0, i.e., multiply by
∏

g pi (σρ)

i0 .

2. We push all points back into the ray to which they belong, except for those
from ray 0 which we mix into ray 1, say.

3. We push out of ray 1 separating the points belonging to rays 0 and 1 into ray 0
and any other ray, say ray 2, respectively.

4. We push the points belonging to ray 1 back from ray 2 into it.

These four steps can be achieved by multiplying by an element µ of length
at most 4P, such that σρµ is an element which, for each i , permutes an initial
segment Ii of ray i . Notice that σρµ is now an element of Hn which maps each
ray to itself, and hence ti (σρµ)= 0 for all i .

It is clear that µ can be chosen so that the total length of the moved intervals∑
|Ii | is at most P. Finally, we sort each of these intervals using a recursive

procedure, modeled on standard merge sort.
To sort the interval I = I2 say, we push each of its points out of ray 2 and into

either ray 0 if it belongs to the lower half, or ray 1 if it belongs to the upper half
of I . If each of the two halves occurs in the correct order, then we only have to
push them back into ray 2 and are done, having used 2|I | generators. If the two
halves are not yet sorted, then we use the same “separate the upper and lower halves”
approach on each of them recursively in order to sort them. In total this takes at
most 2|I | log2|I | steps.

Altogether we have used at most

P + 4P + 2
∑
i∈Zn

|Ii | log2|Ii | ≤ 7P log2 P

generators to represent the inverse of σ ; we used the hypothesis P ≥ 2 in the last
inequality. �

We note that because there are many permutations, the fraction of elements
which are close to the lower bound goes to zero in much the same way as shown
for Thompson’s group V by Birget [2004] and its generalization nV by Burillo and
Cleary [2010].
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Lemma 4.2. Let n ≥ 3. For Hn take the generating set g1, . . . , gn−1 with n − 1
elements. Consider the following sets:

• Bk is the ball of radius k,

• Ck is the set of elements in Hn which have complexity P = k,

• Dk⊂Ck is the set of elements of Ck which have word length at most k log2n−2 k.

Then

lim
k→∞

|Dk |

|Ck |
= 0.

An element of complexity P, according to the metric estimates proved above, has
word length between P and P log P. What this lemma means is that most elements
with complexity P will have word length closer to P log P than to P.

Proof. Observe that
|Dk |

|Bk log2n−2 k |
≤ 1

because it is a subset. Now, introduce the Ck as

|Dk |

|Ck |

|Ck |

|Bk log2n−2 k |

and the proof will be complete if we show that

lim
k→∞

|Ck |

|Bk log2n−2 k |
=∞.

In Ck there are at least (nk−2)! elements. This is because we can take a transposition
of a point at distance k down one of the rays with another point. Since this already
ensures P = k, we are free to choose any permutation of the other nk−2 points that
are at one of the first k positions in each ray. And inside |Bk log2n−2 k |, counting grossly
according to the number of generators, there are at most (2n − 2)k log2n−2 k

= kk

elements. Now the limit becomes

lim
k→∞

(nk− 2)!
kk ,

which is easily seen to approach infinity using Stirling’s formula and the fact that
n ≥ 3. �

Consequentially, these estimates give an easy way to see that the group has
exponential growth. We note that exponential growth also follows easily from the
fact that g01 and g02 generate a free subsemigroup.

Proposition 4.3. Let n ≥ 3. Then Hn has exponential growth.
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Proof. Consider a finitary permutation of complexity P, and observe that there are
at least P! of those. By the metric estimate, its word length is at most KP log P.
Using again as in the previous lemma the notation Bk for a ball, the group will have
exponential growth if

lim
k→∞

log|Bk |

k
> 0.

In our case, this amounts to

lim
P→∞

log|BKP log P |

KP log P
≥ lim

P→∞

log(P!)
KP log P

=
1
K
. �

5. Subgroup embeddings

We note that each Hn is a subgroup of Hm for n<m and that our estimates together
with work of Lehnert are enough to give at least quadratic distortion for some of
these embeddings.

Theorem 5.1. The group H2 is at least quadratically distorted in Hm for m ≥ 3.

Proof. We consider the element σn of H2 which has T (σn)= 0 and transposes (0, k)
and (1, k) for all k ≤ n. Then σn corresponds to the word gn defined in Theorem 8
of [Lehnert 2009], where it is shown to have length of the order of n2 with respect
to the generators of H2 in Lemma 10 there, which are exactly the generators for H2

given in Section 1. One can easily check that σn = gn
02gn

12g−n
02 g−n

12 in H3. Thus a
family of words of quadratically growing length in H2 has linearly growing length
in H3, which proves the theorem. �

A natural, but seemingly difficult, question is whether Hn is distorted in Hm for
3≤ n <m. Another question, which also seems difficult, is whether Hn is distorted
in Thompson’s group V, under the embeddings mentioned in the Introduction [Röver
1999].

6. Some quasi-isometries of Hn

Commensurations give rise to quasi-isometries and are often a rich source of
examples of quasi-isometries. Here we show that the natural map from the com-
mensurator of Hn to the quasi-isometry group of Hn , which we denote by QI(Hn),
is an injection. That is, we show that each commensuration is not within a bounded
distance of the identity. That this is an injection also follows from the more general
argument of Whyte which appears as Proposition 7.5 in [Farb and Mosher 2002].

Theorem 6.1. The natural homomorphism from Com(Hn) to QI(Hn) is an embed-
ding for n ≥ 2.
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Proof. We will show that for each nontrivial φ ∈ Com(Hn) and every N ∈ N we
can find a σ ∈ Hn such that d(σ, σ φ) ≥ N, so none of the nontrivial images are
within a bounded distance of the identity. By Theorem 3.2, we can and will view φ

as a nontrivial element of Np ⊂ Sym for some even p.
If φ eventually translates a ray i nontrivially to a possibly different ray j , then

we let σ = ((i, N ) (i, N + 1)), a transposition in the translated ray. The image of σ
under conjugation by φ is the transposition (( j, N + t) ( j, N + t ′ + 1)), and the
distance d(σ, σ φ) is the length of σ−1σ φ , which is at least N since it moves at least
one point at distance N down one of the rays.

If φ does not eventually translate a ray but maps almost all of ray j to ray i
with i 6= j , then we can show boundedness away from the identity by taking
σ = (( j, N ) ( j, N + 1)). The point (i, N ) is fixed by σ but is moved to (i, N + 1)
under σ φ ensuring that the length of σ−1σ φ is at least N.

Finally, if φ does not have the preceding two properties, then φ is a nontrivial
finitary permutation. Since Houghton’s group is k-transitive, for every k, we can
find a σ ∈Hn such that φσ has support disjoint from that of φ, and at distance at
least N down one of the rays. Hence σ−1φ−1σφ = σ−1σ φ has length at least N. �

7. Co-Hopficity

Houghton’s groups have been long known to be Hopfian although they are not
residually finite; see [CGP 2007]. In this section we will prove that Hn is not
co-Hopfian, by exhibiting a map which is injective but not surjective:

f :Hn→Hn,

s 7→ f (s),

defined by: if (i, n)s = ( j,m), then

(i, 2n− 1) f (s)= ( j, 2m− 1) and (i, 2n) f (s)= ( j, 2m).

It is straightforward to show that f is a homomorphism. It is injective, because
if s is not the identity with (i, n)s 6= (i, n), then (i, 2n) f (s) 6= (i, 2n). And clearly
the map is not surjective, because the permutation always sends adjacent points
(i, 2n − 1), (i, 2n) to adjacent points, and a permutation which does not do this
cannot be in the image.

In fact, Hn has many proper subgroups isomorphic to the whole group. The
following argument was pointed out to us by Peter Kropholler.

One can well-order the ray system by taking a lexicographic order. The group Hn

is then the group of all almost order-preserving bijections of the well-ordered ray
system. It is then clear that the ray system minus a point is order isomorphic to
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the original ray system, which demonstrates that a point stabilizer is a subgroup
isomorphic to Hn .

Theorem 7.1. Houghton’s groups Hn are not co-Hopfian.
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CONFORMAL HOLONOMY EQUALS AMBIENT HOLONOMY

ANDREAS ČAP, A. ROD GOVER,
C. ROBIN GRAHAM AND MATTHIAS HAMMERL

We study the relation between two notions of holonomy on a conformal man-
ifold. The first is the conformal holonomy, defined to be the holonomy of the
normal tractor connection. The second is the holonomy of the Fefferman–
Graham ambient metric of the conformal manifold. It is shown that the
infinitesimal conformal holonomy and the infinitesimal ambient holonomy
always agree up to the order that the ambient metric is defined.

1. Introduction

The tractor bundle T of a smooth conformal manifold (M, c) of dimension n ≥ 3
and signature (p, q), p+q = n, is a rank-(n+2) vector bundle naturally associated
to the conformal structure, which carries a canonical connection ∇; see [Bailey
et al. 1994]. This connection is characterized by a normalization condition on its
curvature, whence it is called the normal tractor connection [Čap and Gover 2003].
It can be viewed as a conformally invariant analog of the Levi-Civita connection of a
Riemannian manifold and has played an essential role in many recent developments
in conformal geometry. The holonomy of (T ,∇) is called the conformal holonomy
of (M, c). Following early work [Armstrong 2007; Leistner 2006; Leitner 2005], its
study has been the focus of active recent research; see, e.g., [Alt 2012; Armstrong
and Leitner 2012; Lischewski 2015].

Another invariant object associated to a conformal manifold is the ambient metric
of [Fefferman and Graham 1985; 2012]. This is a smooth pseudo-Riemannian
metric of signature (p+ 1, q + 1) on a space of dimension n+ 2, determined up to
diffeomorphism along a canonical hypersurface, to infinite order if n is odd, and to
order n

2 −1 if n is even. Its Levi-Civita connection is another connection associated
to the conformal manifold and one can also consider its holonomy. Because the
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(Čap) of the Austrian Science Fund (FWF) is gratefully acknowledged. Research of Graham is
partially supported by NSF grant # DMS 1308266.
MSC2010: primary 53A30; secondary 53C29.
Keywords: holonomy, ambient metric, tractor, conformal geometry.

303

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2016.285-2
http://dx.doi.org/10.2140/pjm.2016.285.303
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holonomy group of a connection is a global invariant and the ambient metric is
only invariantly defined as a jet along a hypersurface, its holonomy group is not
the appropriate object to study. Instead we consider the infinitesimal holonomy,
which depends only on the jet at a point. The main result of this paper asserts that,
suitably interpreted, the infinitesimal holonomies of the tractor connection and the
Levi-Civita connection of the ambient metric agree at each point.

In order to formulate the result precisely, we describe a realization of the tractor
bundle in ambient terms which was derived in [Čap and Gover 2003]. Details will
be provided in Section 2. If (M, c) is a conformal manifold, its metric bundle is the
ray bundle G ⊂ S2T ∗M whose sections are the metrics g ∈ c. The ambient space is
G ×R, in which G is embedded as the hypersurface G × {0}. There are dilations
δs : G→ G given by δs(x, gx) = (x, s2gx), s > 0, which extend to G ×R acting
in the first factor. For x ∈ M, we denote by Gx the fiber of G over x , and we view
Gx as a 1-dimensional submanifold of G×R via Gx ⊂ G = G×{0} ⊂ G×R. Then
T (G×R)|Gx denotes the tangent bundle to G×R restricted to the submanifold Gx ,
a rank-(n+ 2) vector bundle over Gx . The standard tractor bundle of (M, c) can be
realized as the rank-(n+ 2) vector bundle T → M with fiber

(1-1) Tx =
{
U ∈ 0(T (G×R)|Gx ) : (δs)

∗U = s−1U, s > 0
}
.

The right-hand side of (1-1) is clearly a vector space of dimension n+ 2 varying
smoothly with x . A section of T on M is thus a vector field in G×R defined on G
which is homogeneous of degree −1 with respect to the δs .

As we will also review in Section 2, an ambient metric for (M, c) is a pseudo-
Riemannian metric g̃ which is defined in a dilation-invariant neighborhood G̃ of G in
G×R by certain conditions. As indicated above, it is uniquely determined by (M, c)
up to diffeomorphism to infinite order if n is odd and to order n

2 − 1 if n is even.
It seems that the notion of infinitesimal holonomy was first introduced and

studied systematically by Nijenhuis [1953a; 1953b; 1954]. A standard reference is
[Kobayashi and Nomizu 1963]. If (V,∇) is a smooth vector bundle with connection
on a manifold M and x ∈M, the infinitesimal holonomy algebra holx of (V,∇) at x
is the subspace of EndVx defined by

(1-2) holx = spanR

{
∇ηk∇ηk−1 · · · ∇η3(R(η1, η2))(x) : k ≥ 2, η1, . . . , ηk ∈X(M)

}
.

Here X(M) denotes the space of smooth vector fields on M and R :32TM→EndV
the curvature of ∇. It is a standard fact that holx is a subalgebra of EndVx for
its natural Lie algebra structure with bracket the commutator of endomorphisms.
Clearly holx depends only on the infinite order jet of ∇ at x , and so in particular
there is generally no relation between holx and holy for x 6= y. However, if M and
(V,∇) are real-analytic, then holx is the Lie algebra of Holx , where Holx ⊂AutVx

is the usual holonomy group of (V,∇) defined by parallel translation around loops
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based at x . Of course, Holx is always isomorphic to Holy for M smooth and
connected.

For a conformal manifold (M, c), we denote by holx the infinitesimal holonomy
at x of (T ,∇), where ∇ is the normal tractor connection. Thus holx is a subalgebra
of End Tx . The realization (1-1) of Tx induces the realization

(1-3) End Tx =
{

E ∈ 0(End T (G×R)|Gx ) : (δs)
∗E = E, s > 0

}
of End Tx . Thus an element of holx is realized as a section of the vector bundle
End T (G×R)|Gx over Gx which is homogeneous of degree 0 with respect to the δs .
For any z ∈ Gx , evaluation at z is an isomorphism

evz : End Tx → End Tz(G×R).

So evz(holx) is an isomorphic copy of holx in End Tz(G×R).
If g̃ is an ambient metric for (M, c) and x∈M, the infinitesimal holonomy at z∈Gx

of the Levi-Civita connection ∇̃ of g̃ is a subalgebra of End TzG̃ = End Tz(G×R).
If n is odd, we denote this subalgebra h̃olz . This is clearly independent of the
infinite-order ambiguity in g̃. However, when n is even, the ambient metric is
determined by (M, c) only to order n

2 − 1 along G. So we need to restrict the
number of differentiations transverse to G to avoid this ambiguity. Therefore, when
n ≥ 4 is even, we define

(1-4) h̃olz = spanR

{
∇̃ξ̃k
∇̃ξ̃k−1
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))(z) : k ≥ 2, ξ̃1, . . . , ξ̃k ∈ X(G̃)
}
,

where R̃ is the curvature of ∇̃, but we impose the requirement that no more
than n

2 − 2 of the vector fields ξ̃1, . . . , ξ̃k are somewhere transverse to G. Then
∇̃ξ̃k
∇̃ξ̃k−1
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2)) depends on at most n
2 −1 transverse derivatives of g̃, so

its value at z is independent of the ambiguity at order n
2 . A priori, (1-4) is only

defined as a vector space, but it is a consequence of Theorem 1.1 that it is a Lie
subalgebra of End TzG̃.

Our main result is the following.

Theorem 1.1. Let (M, c) be a conformal manifold of dimension n ≥ 3 and g̃ an
ambient metric for (M, c). If x ∈ M and z ∈ Gx , then

evz(holx)= h̃olz.

An immediate corollary is the equality of restricted tractor and ambient holonomy
groups in the odd-dimensional real-analytic case. Recall that if (V,∇) is a vector
bundle with connection on a smooth manifold M and x ∈ M, then the restricted
holonomy group is

Hol0x(V,∇)= {Lγ } ⊂ AutVx ,
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where γ is a smooth contractible loop based at x and Lγ is the linear transformation
of Vx obtained by parallel translation around γ . Just as with infinitesimal holonomy,
for the tractor connection of a conformal manifold we have that if z ∈ Gx , then
evz(Hol0x(T ,∇)) is an isomorphic copy of Hol0x(T ,∇) in Aut Tz(G×R).

Corollary 1.2. Let (M, c) be an odd-dimensional real-analytic conformal manifold
and g̃ a real-analytic ambient metric for (M, c). If x ∈ M and z ∈ Gx , then

evz(Hol0x(T ,∇))= Hol0z (T G̃, ∇̃).

Corollary 1.2 follows from Theorem 1.1 since evz(Hol0x(T ,∇)) and Hol0z (T G̃, ∇̃)
are connected Lie subgroups of Aut TzG̃ with the same Lie algebra evz(holx)= h̃olz .

The tractor bundle T carries a tractor metric h of signature (p+ 1, q+ 1) which
is parallel with respect to ∇. So by choosing a frame for Tx , one can identify
Hol0(T ,∇) with a subgroup of SOe(p + 1, q + 1) which is well-defined up to
conjugacy independently of x and the choice of frame (assuming M is connected).
Corollary 1.2 immediately implies:

Corollary 1.3. Let (M, c) be an odd-dimensional connected real-analytic con-
formal manifold. Then its restricted conformal holonomy group Hol0(T ,∇) ⊂
SOe(p+ 1, q + 1) is realizable as the restricted holonomy group of a real-analytic
pseudo-Riemannian manifold of signature (p+ 1, q + 1).

Corollary 1.3 is interesting because of the wealth of known information concerning
pseudo-Riemannian holonomy (in particular, Berger’s list) and the restriction it
places on conformal holonomy groups.

If a pseudo-Riemannian manifold admits a nonzero parallel tensor field, then
its holonomy group is constrained to lie in the isotropy group consisting of the
linear transformations preserving the tensor at a point. Of course, many interesting
pseudo-Riemannian holonomy groups arise in this fashion. Likewise, interesting
classes of conformal manifolds are characterized by admitting a parallel tractor-
tensor field (i.e., a section of ⊗rT ∗ for some r ≥ 1) of a particular algebraic type.
A precursor to Theorem 1.1 is the result of [Graham and Willse 2012] asserting
that a parallel tractor-tensor field on a conformal manifold admits an extension to
the ambient space which is parallel with respect to the ambient metric (to infinite
order for n odd, to order n

2 − 1 for n even). This result was one motivation for our
consideration of the question of equality of infinitesimal holonomy in general.

In order to prove Theorem 1.1, one must express the ambient connection and
its curvature in tractor terms. Čap and Gover [2003] showed how the tractor
bundle and connection could be written in ambient terms. This gives the inclusion
evz(holx)⊂ h̃olz in Theorem 1.1. Gover and Peterson [2003] reversed the direction
and showed how to express the full ambient curvature and its covariant derivatives
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in terms of tractor calculus. Our proof of the reverse inclusion in Theorem 1.1, i.e.,
of ambient holonomy in tractor holonomy, is based on these relations.

In Section 2 we review the ambient metric construction and the realization
of the tractor bundle and connection in ambient terms. In Section 3 we discuss
infinitesimal holonomy and prove Theorem 1.1, in the process recalling the tractor
expressions for the ambient curvature and connection.

2. Ambient metrics and tractors

We begin by reviewing background material concerning ambient metrics and tractors.
The main reference for the material on ambient metrics is [Fefferman and Graham
2012]. References for the ambient formulation of tractors are [Čap and Gover 2003]
and [Gover and Peterson 2003].

Let (M, c) be a conformal manifold of dimension n ≥ 3 and signature (p, q),
p + q = n. Metrics in the conformal class c are sections of the metric bundle
G := {(x, gx) : x ∈ M, g ∈ c} ⊂ S2T ∗M. Let π : G→ M denote the projection and
δs : G→ G the dilations defined by δs(x, gx)= (x, s2gx), s > 0. Let T = d

ds δs |s=1

be the infinitesimal generator of the dilations. There is a tautological symmetric
2-tensor g on G defined for X, Y ∈ T(x,gx )G by g(X, Y )= gx(π∗X, π∗Y ).

Regard G as a hypersurface in G×R via ι(z)= (z, 0), z ∈ G. The variable in the
R factor is denoted ρ. A straight preambient metric for (M, c) is a smooth metric g̃
of signature (p+ 1, q + 1) on a dilation-invariant neighborhood G̃ of G satisfying

(1) δ∗s g̃ = s2g̃ for s > 0;

(2) ι∗g̃ = g;

(3) ∇̃T = Id, where Id denotes the identity endomorphism and ∇̃ the Levi-Civita
connection of g̃.

If n is odd, an ambient metric for (M, c) is a straight preambient metric for (M, c)
such that Ric(g̃) vanishes to infinite order on G. (To infinite order, the straightness
condition (3) is a consequence of the infinite order vanishing of Ric(g̃). But this
is a nontrivial result (see [Fefferman and Graham 2012]), and it is convenient to
have (3) holding in a full neighborhood of G. So (3) is included in the definition.)
There exists an ambient metric for (M, c) and it is unique to infinite order up to
pullback by a diffeomorphism defined on a dilation-invariant neighborhood of G×R

which commutes with dilations and which restricts to the identity on G. If M is
a real-analytic manifold and there is a real-analytic metric in the conformal class,
then there exists a real-analytic ambient metric for (M, c) satisfying Ric(g̃)= 0 on
some dilation-invariant G̃ as above.

In order to formulate the definition of ambient metrics for n even, let SIJ be a
symmetric 2-tensor field on an open neighborhood of G in G×R and m≥0. We write
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SIJ = O+IJ (ρ
m) if SIJ = O(ρm) and, for each point z ∈ G, the symmetric 2-tensor

(ι∗(ρ−m S))(z) is of the form π∗s for some symmetric 2-tensor s at x = π(z) ∈ M
satisfying trgx s = 0. If n is even, an ambient metric for (M, c) is a straight
preambient metric such that Ric(g̃)= O+IJ (ρ

n/2−1). There exists an ambient metric
for (M, c) and it is unique up to addition of a term which is O+IJ (ρ

n/2) and up to
pullback by a diffeomorphism defined on a dilation-invariant neighborhood of G
which commutes with dilations and which restricts to the identity on G. For n
even, a conformally invariant tensor, the ambient obstruction tensor, obstructs the
existence of smooth solutions to Ric(g̃)= O(ρn/2).

Let (M, c) be a conformal manifold with metric bundle G π
→M. For x ∈M, write

Gx = π
−1({x}) for the fiber of G over x . Recall that the bundle D(w) of conformal

densities of weight w ∈ C has fiber Dx(w)= { f : Gx → C : (δs)
∗ f = sw f, s > 0}.

Thus sections of D(w) on M are functions on G homogeneous of degree w.
The standard tractor bundle and its normal connection can be similarly realized

in terms of homogeneous vector fields on Gx . As described in the introduction, the
standard tractor bundle can be realized as the rank-(n+ 2) vector bundle T → M
with fiber over x given by (1-1). It can equivalently be described as an R+-quotient
of T G̃|G ; see [Čap and Gover 2003]. If g̃ is an ambient metric for (M, c) and if
U,W ∈ Tx , then g̃(U,W ) is homogeneous of degree 0 on Gx , i.e., g̃(U,W ) ∈ R.
Therefore h(U,W )= g̃(U,W ) defines a metric h of signature (p+ 1, q+ 1) on T ,
the tractor metric. Since T is homogeneous of degree 0 with respect to the δs , it
defines a section of T (1), where in general we denote the effect of tensoring a
bundle with D(w) by appending (w). The set of U in (1-1) which at each point
of Gx is a multiple of T determines a subbundle of T which we denote span{T }.
Its orthogonal complement span{T }⊥ is the set of U which at each point of Gx is
tangent to G. This gives the filtration

(2-1) 0⊂ span{T } ⊂ span{T }⊥ ⊂ T .

In order to realize the tractor connection, observe that π∗ : TG→ TM induces a
realization of the tangent bundle TM as

(2-2) Tx M =
{
η̄ ∈ 0(TG|Gx ) : (δs)

∗η̄ = η̄, s > 0
}
/span{T },

where here span{T } really means the constant multiples of T. If η ∈ Tx M, choose
η̄ ∈ 0(TG|Gx ) representing η. We will call such an η̄ an invariant lift of η. Let g̃ be
an ambient metric for (M, c) and ∇̃ its Levi-Civita connection. If U is a section
of T near x , then ∇̃η̄U ∈ 0(T G̃|Gx ) makes sense since U is defined on G and η̄ is
tangent to G. The straightness of g̃ and the homogeneity of U imply that ∇̃T U = 0.
Therefore ∇̃η̄U is independent of the choice of invariant lift η̄. Also ∇̃η̄U has the
same homogeneity as U, so ∇̃η̄U defines an element of Tx . This realizes the tractor
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connection ∇ on T :

(2-3) ∇ηU = ∇̃η̄U.

The tractor metric h is parallel with respect to ∇ since ∇̃ g̃ = 0. These realizations
of the tractor metric and connection depend on the choice of ambient metric g̃. But
the realizations obtained by changing g̃ by a diffeomorphism are equivalent.

The realization (1-1) of the tractor bundle induces the realizations

(2-4) (⊗rT ∗)x =
{
χ ∈ 0(⊗r T ∗G̃|Gx ) : (δs)

∗χ = srχ, s > 0
}
, r ∈ N,

of the bundles of cotractor-tensors, as well as the realization (1-3) of the bundle
of tractor endomorphisms. The induced tractor connections on these bundles are
also given in terms of the ambient connection and an invariant lift η̄ as in (2-3).
Throughout this paper we will identify weighted tractor-tensors with homogeneous
sections of bundles on G as in (1-1), (1-3), (2-4).

The curvature R of the tractor connection can be expressed in terms of the curva-
ture R̃ of an ambient metric. We have R :32TM→End T and R̃ :32T G̃→End T G̃.
The straightness of the ambient metric implies that Ty R̃=0 on G. So if η1, η2∈Tx M
and η̄1, η̄2 ∈ 0(TG|Gx ) are invariant lifts, then R̃(η̄1, η̄2) ∈ 0(End T G̃|Gx ) is inde-
pendent of the choices of η̄1, η̄2. Moreover, R̃(η̄1, η̄2) is homogeneous of degree 0
with respect to the δs , so it realizes an element of End Tx , and one has

(2-5) R(η1, η2)= R̃(η̄1, η̄2).

We follow usual notational conventions. We label tensors on the ambient space
and therefore also tractors with capital Latin indices and vectors on M with lower
case Latin indices. We use E to denote the space of smooth sections of a bundle
on M, the bundle specified by the accompanying indices. Just as with the bundles
themselves, we denote the spaces of sections of the corresponding weighted bundles
by appending (w). The notation E8(w) signifies the space of sections of a generic
weighted tractor bundle, where 8 denotes an arbitrary collection of upper and lower
capital indices. If 8 consists of r upper indices and s lower indices, we denote by
Ẽ8(w) the space of sections of (⊗r T G̃)⊗ (⊗s T ∗G̃) on G̃ of the same homogeneity
degree as sections of E8(w), i.e., of homogeneity degree w−r+s. Ambient/tractor
indices are raised and lowered using the ambient/tractor metric g̃AB /hAB and lower
case indices using the conformal metric gi j ∈ Ei j (2).

A choice of metric g in the conformal class induces a splitting of the cotractor
bundle

(2-6) T ∗ = D(−1)⊕ T ∗M(1)⊕D(1).

This is the formulation in the original definition of the tractor bundle in [Bailey
et al. 1994]. It can also be viewed in terms of the ambient realization by putting g̃
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in normal form relative to g (see [Gover and Peterson 2003] or [Graham and Willse
2012]). The three inclusions determined by this splitting determine sections

XA ∈ EA(1), ZA
i
∈ EA

i (−1), YA ∈ EA(−1)

so that

(2-7) VA = ϕXA+ψi ZA
i
+ ρYA

corresponds to VA= (ϕ, ψi , ρ)∈ E(−1)⊕Ei (1)⊕E(1). The sections YA and ZA
i are

scale-dependent, i.e., they depend on the choice of g, while XA is scale-independent:
X A
∈ E A(1) is another notation for the weighted tractor defined by the vector

field T |G .

3. Holonomy

Recall from the introduction that the infinitesimal holonomy holx of a vector
bundle with connection (V,∇) on a manifold M is defined pointwise by (1-2), and
Theorem 1.1 is stated in terms of pointwise infinitesimal holonomy. The proof of
Theorem 1.1 goes by induction on the order of differentiation. Thus it is natural to
formulate an induction hypothesis involving objects which can be differentiated.
So we introduce spaces consisting of global sections which restrict at each point to
the infinitesimal holonomy. For k ≥ 2, we define

(3-1) holkM = spanC∞(M)
{
∇ηl∇ηl−1···∇η3(R(η1,η2)) : 2≤ l≤ k, η1,...,ηl ∈X(M)

}
and

holM =
⋃
k≥2

holkM

so that holkM , holM ⊂ 0(EndV). Clearly holx = {E(x) : E ∈ holM}. One has

(3-2) [holkM , hol
l
M ] ⊂ holk+l

M .

In fact, the proof in [Kobayashi and Nomizu 1963] that holx is a subalgebra of
EndVx establishes the analog of (3-2) in the principal bundle setting.

There is an alternate characterization of these spaces in terms of iterated covari-
ant derivatives with respect to a coupled connection. If we choose arbitrarily a
connection on TM and denote also by ∇ the coupled connection on V ⊗ TM, then
the Leibniz formula and induction show that

(3-3) holkM = spanC∞(M)
{
(∇l−2 R)(η1,η2,...,ηl) : 2≤ l ≤ k, η1,...,ηl ∈ X(M)

}
.

R again denotes the curvature of the connection on V. Here it is viewed as a section
of 32T ∗M⊗EndV and ∇l−2 R denotes its iterated covariant derivative with respect
to the coupled connection.



CONFORMAL HOLONOMY EQUALS AMBIENT HOLONOMY 311

If (M, c) is a conformal manifold, we take V = T to be the tractor bundle with
its normal connection and we denote the corresponding spaces by holkM , holM . As
usual, via our realization (1-3) we identify elements of holM as global sections of
End T (G×R)|G which are homogeneous of degree 0 with respect to the δs .

For the ambient metric we modify the definition slightly to respect homogeneity.
If n is odd and g̃ is an ambient metric for (M, c), we define for k ≥ 2

(3-4) h̃olkM= spanC∞(M)
{
∇̃ξ̃l
∇̃ξ̃l−1
···∇̃ξ̃3

(R̃(ξ̃1,ξ̃2))|G :2≤ l≤k, ξ̃1,...,ξ̃l∈X0(G̃)
}
,

where X0(G̃) denotes the space of smooth vector fields on G̃ which are homoge-
neous of degree 0 with respect to the δs and C∞(M) is viewed as the subspace
of C∞(G) of functions homogeneous of degree 0. Observe that by definition,
h̃olkM ⊂ 0(End T G̃|G) consists of sections which are homogeneous of degree 0. If
n is even, we again define h̃olkM for k ≥ 2 by (3-4), except that we require that at
most n

2 − 2 of the ξ̃i are somewhere transverse to G. For general n, we then set

h̃olM =
⋃
k≥2

h̃olkM .

As above, h̃olM also has a description in terms of iterated derivatives of curvature:

(3-5) h̃olkM = spanC∞(M)
{
(∇̃l−2 R̃)(ξ̃1,ξ̃2,...,ξ̃l)|G : 2≤ l ≤ k, ξ̃1,...,ξ̃l ∈X0(G̃)

}
.

Here we take the coupling connection on T G̃ also to be the Levi-Civita connection ∇̃.
As usual, for n even we require that at most n

2−2 of the ξ̃i are somewhere transverse
to G. In this case, the equivalence of the descriptions (3-4) and (3-5) only holds for
k ≤ n

2 −1, since ∇̃ξ̃ η̃ can be transverse to G when both ξ̃ |G and η̃|G are tangent to G.
We claim h̃olz = {E(z) : E ∈ h̃olM}. To see this, choose a frame ζ̃0, ζ̃1, . . . , ζ̃n+1

for T G̃ near z such that ζ̃A|G is tangent to G for 1≤ A ≤ n+ 1, and such that each
ζ̃A is homogeneous of degree 0 with respect to the δs . By writing each ξ̃i in (1-4)
as a linear combination of the ζ̃A, it is not hard to see that

h̃olz = spanR

{
∇̃ζ̃Ak
∇̃ζ̃Ak−1

· · · ∇̃ζ̃A3
(R̃(ζ̃A1, ζ̃A2))(z) : k ≥ 2

}
,

where for n even at most n
2 − 2 of the indices A1, . . . , Ak are equal to 0. It follows

immediately that h̃olz = {E(z) : E ∈ h̃olM}.
In light of these observations, it is clear that Theorem 1.1 is a consequence of

the following theorem.

Theorem 3.1. Let (M, c) be a conformal manifold of dimension n ≥ 3 and g̃ an
ambient metric for (M, c). Then

holM = h̃olM .
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The inclusion holM ⊂ h̃olM follows immediately from the ambient realizations
of the tractor connection and curvature. If η1, . . . , ηk ∈ X(M) and η̄1, . . . , η̄k are
invariant lifts, then (2-3), (2-5) give

(3-6) ∇ηk∇ηk−1 · · · ∇η3(R(η1, η2))= ∇̃η̄k ∇̃η̄k−1 · · · ∇̃η̄3(R̃(η̄1, η̄2)),

so holM ⊂ h̃olM . The right-hand side is in h̃olM also for n even since none of the η̄i

are transverse to G.
We remark that (3-6) is already sufficient to prove Theorem 3.1, and therefore

also Theorem 1.1, when n = 4. In fact, when n = 4, each ξ̃i |G in (3-4) is required
to be everywhere tangent to G, so is an invariant lift of some ηi ∈ X(M).

To prove the opposite inclusion h̃olM ⊂ holM , we must rewrite expressions of the
form ∇̃ξ̃l ∇̃ξ̃l−1

· · · ∇̃ξ̃3
(R̃(ξ̃1, ξ̃2))|G purely in tractor terms when the ξ̃i are allowed

to be transverse to G. We do this using tractor representations of the curvature and
connection of the ambient metric derived in [Gover and Peterson 2003]. These
representations are expressed in terms of the splitting (2-6), (2-7) of the cotractor
bundle determined by a choice of metric g ∈ c. Consider first the case n odd.

Proof of Theorem 3.1 for n odd. We show by induction on k ≥ 2 that h̃olkM ⊂ holM .
For k = 2, we use the tractor expression for ambient curvature

R̃AB
P
Q |G = ZA

a ZB
b Rab

P
Q −

2
n−4

X [AZB]
b
∇

c Rcb
P
Q .

This is (13), (35) of [Gover and Peterson 2003]. The ∇c on the right-hand side
refers to the connection obtained by coupling the tractor connection with the Levi-
Civita connection of the chosen representative metric g. Now h̃ol2M is spanned
by contractions of the left-hand side against ξ̃ A

1 ξ̃
B
2 , where ξ̃1, ξ̃2 ∈ X0(G̃). It is

evident that after such a contraction, the first term on the right-hand side is in hol2M .
For the second term, write ∇c Rcb

P
Q = gcd

∇c Rdb
P
Q and introduce a partition of

unity subordinate to a covering of M in each open set of which gcd can be expressed
as a smooth linear combination of tensor products of vector fields. It follows that
after contraction with ξ̃ A

1 ξ̃
B
2 , the second term is in hol3M . Thus the initial k = 2 step

of the induction is established.
The induction step for higher k will be carried out using the tractor-D operator.

If 8 denotes an arbitrary collection of upper and/or lower tractor indices, then

DA : E8(w)→ E8A(w− 1)

is defined in terms of the splitting determined by a representative metric g by

(3-7) DAV = w(n+ 2w− 2)YAV + (n+ 2w− 2)ZA
a
∇a V − XA�V,
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where �V = ∇ i
∇i V +wJ V and J = R/(2(n− 1)). DA can also be expressed in

ambient terms:

(3-8) DAV = (n+ 2w− 2)∇̃AṼ |G − XA(1̃Ṽ )|G .

These are (8), (31) of [Gover and Peterson 2003]. On the right-hand side, Ṽ ∈ Ẽ8(w)
is an arbitrary homogeneous extension of V ∈ E8(w) and 1̃ denotes the ambient
Laplacian acting on the corresponding space of tensors: 1̃= ∇̃ I

∇̃I . The expression
on the right-hand side turns out to be independent of the choice of Ṽ .

Assume now that k ≥ 2 and h̃olkM ⊂ holM . According to (3-5), in order to prove
that h̃olk+1

M ⊂ holM , it suffices to show that
(
ξ̃ A

1 ξ̃
B
2 · · · ξ̃

E
k+1∇̃

k−1
A···C R̃DE

P
Q
)∣∣

G ∈ holM
for ξ̃1, . . . , ξ̃k+1 ∈ X0(G̃). Set ξ A

s = ξ̃
A
s |G ∈ E A(1), 1≤ s ≤ k+ 1.

Define
Ṽ = ∇̃k−2

B···C R̃DE
P
Q ∈ ẼB···E

P
Q(−k)

and rewrite (3-8) as

(n− 2k− 2)∇̃AṼ |G = DAV + XA(1̃Ṽ )|G,

where V := Ṽ |G ∈ EB···E
P
Q(−k). Since the coefficient (n− 2k− 2) is nonzero for

n odd, it suffices to show that

(3-9) ξ A
1 · · · ξ

E
k+1 DAVB···E

P
Q ∈ holM

and

(3-10) ξ̃ B
2 · · · ξ̃

E
k+11̃ṼB···E

P
Q |G ∈ holM .

For (3-9), contract (3-7) against ξ A
1 · · · ξ

E
k+1. The first term on the right-hand side

gives a multiple of
(ξ A

1 YA)ξ
B
2 · · · ξ

E
k+1VB···E

P
Q,

which is in holM by the induction hypothesis. The second term on the right-hand
side gives a multiple of

(ξ A
1 ZA

a)ξ B
2 · · · ξ

E
k+1∇a VB···E

P
Q .

If we set ηa
= ξ A

1 ZA
a, then this can be rewritten as

ηaξ B
2 · · · ξ

E
k+1∇a VB···E

P
Q

=∇η(ξ
B
2 · · · ξ

E
k+1VB···E

P
Q)−

k+1∑
s=2

ξ B
2 · · · (∇ηξ

R
s ) · · · ξ

E
k+1VB···R···E

P
Q .

The induction hypothesis shows that ξ B
2 · · · ξ

E
k+1VB···E

P
Q ∈ holM , so we conclude

that ∇η(ξ B
2 · · · ξ

E
k+1VB···E

P
Q) ∈ holM . Each term in the sum on the right-hand side

is clearly in holM by the induction hypothesis. Thus the contraction of the second
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term of the right-hand side of (3-7) is in holM . The third term of (3-7) is handled
similarly, namely by expanding the difference

ξ B
2 · · · ξ

E
k+1∇

c
∇cVB···E

P
Q −∇

c
∇c(ξ

B
2 · · · ξ

E
k+1VB···E

P
Q)

using the Leibniz rule and introducing a partition of unity to rewrite sections of
tensor product bundles as sums of tensor products of sections of the factors as in
the proof in the case k = 2. This concludes the proof of (3-9).

It remains to prove (3-10). Now 1̃Ṽ = 1̃∇̃k−2 R̃. It is well-known that the
Laplacian of an iterated covariant derivative of the curvature tensor of a Ricci-flat
metric can be reexpressed as a linear combination of quadratic terms in curvature by
commuting both derivatives in 1̃ all the way to the right and applying the second
Bianchi identity. We will argue using the induction hypothesis that each commutator
term is already in holM .

Write
1̃∇̃k−2 R̃DE

P
Q = g̃ IJ

∇̃I ∇̃J ∇̃
k−2 R̃DE

P
Q .

First commute ∇̃J to the right of all derivatives in ∇̃k−2. Modulo commutator terms,
one obtains

g̃ IJ
∇̃I ∇̃

k−2
∇̃J R̃DE

P
Q = g̃ IJ

∇̃I ∇̃
k−2
∇̃D R̃JE

P
Q + g̃ IJ

∇̃I ∇̃
k−2
∇̃E R̃D J

P
Q .

Now commuting ∇̃I all the way to the right shows that modulo commutators the
above is equal to

g̃ IJ
∇̃

k−2
∇̃D∇̃I R̃JE

P
Q + g̃ IJ

∇̃
k−2
∇̃E ∇̃I R̃D J

P
Q .

This vanishes on G by the second Bianchi identity and the infinite-order vanishing
of Ric g̃.

To analyze the commutator terms, it is convenient to suppress writing the End T G̃
indices P

Q . We will denote by R̃BC the curvature tensor of g̃ viewed as an End T G̃-
valued section of 32T ∗G̃. If U is an End T G̃-valued section of ⊗r T ∗G̃ and V is
an End T G̃-valued section of ⊗s T ∗G̃, we will denote by [U, V ] the End T G̃-valued
section of ⊗r+s T ∗G̃ which is the commutator in the End T G̃ indices and the tensor
product in the T ∗G̃ indices. The Leibniz formula gives

(3-11) ∇̃[U, V ] = [∇̃U, V ] + [U, ∇̃V ].

The Ricci identity for commuting covariant derivatives can be written

(3-12) [∇̃B, ∇̃C ]U = R̃BC .U + [R̃BC ,U ],

where R̃BC .U denotes the action of the endomorphism R̃BC on the ⊗r T ∗G̃ indices
of U.
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Every commutator which arose in the above argument was of the form

∇̃
i
[∇̃B, ∇̃C ]∇̃

jR̃

for some choice of indices B, C , where i ≥ 0, j ≥ 0, and i + j = k− 2. Express
the commutator [∇̃B, ∇̃C ]∇̃

jR̃ using (3-12) with U = ∇̃ jR̃. The first term on the
right-hand side of (3-12) gives terms of the form ∇̃ i (R̃ .∇̃ jR̃). Expanding the ∇̃ i

with the Leibniz rule, it is clear that one obtains a sum of terms, each of which has
the form

(3-13) contr(∇̃ pR̃⊗∇̃qR̃),

with p ≥ 0, q ≥ 0, and p+ q = k− 2. Here contr indicates a single contraction of
the upper End T ∗G̃ index of ∇̃ p R̃ against one of the ⊗q+2T ∗G̃ indices of ∇̃qR̃. In
particular, the suppressed End T ∗G̃ indices are those on ∇̃qR̃. The second term on
the right-hand side of (3-12) gives terms of the form ∇̃ i

[R̃, ∇̃ jR̃]. Expanding the
∇̃

i using (3-11), one obtains a sum of terms of the form

(3-14) [∇̃
pR̃, ∇̃qR̃],

again with p ≥ 0, q ≥ 0, and p+ q = k− 2.
We need to show (3-10). Suppressing the End T G̃ indices, we have

ξ̃ B
2 · · · ξ̃

E
k+11̃ṼB···E |G = ξ̃

B
2 · · · ξ̃

E
k+1g̃ IJ

∇̃I ∇̃J ∇̃
k−2
B···CR̃DE |G .

Upon commuting ∇̃I and ∇̃J to the right as described above, it follows that this
may be written as a sum of contractions of terms of the form (3-13), (3-14) against
ξ̃i and g̃ IJ with all indices contracted except for the suppressed End T G̃ indices.
In a term (3-13), the free End T G̃ indices are those on the second factor ∇̃qR̃.
Consequently, we can introduce a partition of unity and express locally the tensor
arising from g̃ IJ, ∇̃ pR̃, and the ξ̃i which contracts against the other q + 2 indices
of ∇̃qR̃ as a sum of tensor products of vector fields. Since q ≤ k − 2, it follows
by the induction hypothesis that all these terms are in holM when restricted to G.
In a term (3-14), all the indices except the endomorphism indices are contracted
against g̃ IJ and the ξ̃i . Again use a partition of unity and express locally g̃ IJ as
a sum of tensor products of vector fields. Then the induction hypothesis implies
that the restriction to G of the contractions against ∇̃ pR̃ and ∇̃qR̃ are separately
in holM . It follows from (3-2) that the commutator is also in holM . �

Proof of Theorem 3.1 for n even. We have already observed that (3-6) is sufficient
to prove the case n = 4. So we assume that n ≥ 6. We next observe that the same
argument used for n odd applies also when n is even to show h̃ol

n/2−1
M ⊂ holM . In

fact, up to this order the relevant constant n+ 2w− 2 in (3-8) is nonzero and the
argument only uses Ric(g̃)= O(ρn/2−1).
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For n ≥ 6 even, we prove h̃olkM ⊂ holM by induction on k, beginning with the
case k = n

2 −1. So assume for some k ≥ n
2 −1 that h̃olkM ⊂ holM and we will show

h̃olk+1
M ⊂ holM . According to (3-4), we have to show that

∇̃ξ̃k+1
∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G ∈ holM

whenever ξ̃1, . . . , ξ̃k+1 ∈X0(G̃) and at most n
2−2 of the ξ̃i are somewhere transverse

to G. Since k+ 1≥ n
2 , at least two of the ξ̃i are everywhere tangent to G. If ξ̃k+1 is

everywhere tangent to G, then its restriction to G is the invariant lift of some
η ∈ X(M). In this case (2-3) gives

∇̃ξ̃k+1
∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G =∇η
(
∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G
)
.

The induction hypothesis shows that ∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G ∈ holM , from which
it follows that ∇η

(
∇̃ξ̃k
· · · ∇̃ξ̃3

(R̃(ξ̃1, ξ̃2))|G
)
∈ holM , as desired.

If ξ̃i is everywhere tangent to G for some i , 3≤ i ≤ k, then we can commute ∇̃ξ̃i

all the way to the left and reduce to the previous case. Modulo relabeling the indices,
each commutator is of the form

∇̃ξ̃k+1
· · · ∇̃ξ̃ j+1

[
∇̃ξ̃ j
, ∇̃ξ̃ j−1

]
∇̃ξ̃ j−2
· · · ∇̃ξ̃3

R̃(ξ̃1, ξ̃2)

= ∇̃ξ̃k+1
· · · ∇̃ξ̃ j+1

∇̃
[ξ̃ j ,ξ̃ j−1]

∇̃ξ̃ j−2
· · · ∇̃ξ̃3

R̃(ξ̃1, ξ̃2)

+∇̃ξ̃k+1
· · · ∇̃ξ̃ j+1

[
R̃(ξ̃ j , ξ̃ j−1), ∇̃ξ̃ j−2

· · · ∇̃ξ̃3
R̃(ξ̃1, ξ̃2)

]
.

In the first term on the right-hand side, the number of differentiations has decreased
by 1 without increasing the number of vector fields somewhere transverse to G,
since the commutator of two vector fields tangent to G is also tangent to G. So the
restriction to G of this term is in holM by the induction hypothesis. In the second
term on the right-hand side, expand the derivatives outside the commutator using
the Leibniz rule. One obtains a linear combination of commutators of covariant
derivatives of curvature endomorphisms. The restriction to G of each such covariant
derivative itself is in holM by the induction hypothesis. Equation (3-2) then shows
that the commutator is in holM .

Finally we must consider the possibility that none of ξ̃3, . . . , ξ̃k+1 is everywhere
tangent to G. (This can only happen in the beginning case k = n

2 − 1, but we will
not use this.) It must be that ξ̃1 and ξ̃2 are everywhere tangent to G. In this case, we
apply the second Bianchi identity to write

∇̃ξ̃3
R̃(ξ̃1, ξ̃2)= ∇̃ξ̃1

R̃(ξ̃3, ξ̃2)+∇̃ξ̃2
R̃(ξ̃1, ξ̃3)+ R̃(∇̃ξ̃3

ξ̃1, ξ̃2)+ R̃(ξ̃1, ∇̃ξ̃3
ξ̃2)

− R̃(∇̃ξ̃1
ξ̃3, ξ̃2)− R̃(ξ̃1, ∇̃ξ̃2

ξ̃3)+ R̃(∇̃ξ̃1
ξ̃2−∇̃ξ̃2

ξ̃1, ξ̃3).

The first two terms of the right-hand side reduce to the previous case. The next
four terms reduce to the induction hypothesis since ξ̃1 and ξ̃2 are tangential and at
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least one occurs as an argument in each term, so the number of transversal vector
fields does not increase. The last term also reduces to the induction hypothesis
since ∇̃ξ̃1

ξ̃2−∇̃ξ̃2
ξ̃1 = [ξ̃1, ξ̃2] is tangential. �
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NONORIENTABLE LAGRANGIAN COBORDISMS
BETWEEN LEGENDRIAN KNOTS

ORSOLA CAPOVILLA-SEARLE AND LISA TRAYNOR

In the symplectization of standard contact 3-space, R × R3, it is known that
an orientable Lagrangian cobordism between a Legendrian knot and itself,
also known as an orientable Lagrangian endocobordism for the Legendrian
knot, must have genus 0. We show that any Legendrian knot has a nonori-
entable Lagrangian endocobordism, and that the cross-cap genus of such a
nonorientable Lagrangian endocobordism must be a positive multiple of 4.
The more restrictive exact, nonorientable Lagrangian endocobordisms do
not exist for any exactly fillable Legendrian knot but do exist for any sta-
bilized Legendrian knot. Moreover, the relation defined by exact, nonori-
entable Lagrangian cobordism on the set of stabilized Legendrian knots is
symmetric and defines an equivalence relation, a contrast to the nonsym-
metric relation defined by orientable Lagrangian cobordisms.

1. Introduction

Smooth cobordisms are a common object of study in topology. Motivated by ideas
in symplectic field theory [Eliashberg et al. 2000], Lagrangian cobordisms that
are cylindrical over Legendrian submanifolds outside a compact set have been an
active area of research interest. Throughout this paper, we will study Lagrangian
cobordisms in the symplectization of the standard contact R3, namely the symplectic
manifold (R×R3, d(etα)), where α = dz− y dx , that coincide with the cylinders
R × 3+ (resp., R × 3−) when the R-coordinate is sufficiently positive (resp.,
negative). Our focus will be on nonorientable Lagrangian cobordisms between
Legendrian knots3+ and3− and nonorientable Lagrangian endocobordisms, which
are nonorientable Lagrangian cobordisms with 3+ =3−.

Smooth endocobordisms in R×R3 without the Lagrangian condition are abundant:
for any smooth knot K ⊂R3 and an arbitrary j ≥ 0, there is a smooth 2-dimensional
orientable submanifold M of genus j such that M agrees with the cylinder R× K
when the R-coordinate lies outside an interval [T−, T+]; the analogous statement

MSC2010: primary 57R17, 53D42; secondary 57M25.
Keywords: Legendrian knot, Lagrangian cobordism, Lagrangian endocobordism, exact Lagrangian,

fillable Legendrian.
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holds for nonorientable M and cross-cap genus1 when j > 0. For any Legendrian
knot 3, it is easy to construct an orientable Lagrangian endocobordism of genus 0,
namely the trivial Lagrangian cylinder R×3. In fact, with the added Lagrangian
condition, orientable Lagrangian endocobordisms must be concordances:

Theorem [Chantraine 2010]. Any orientable Lagrangian endocobordism of any
Legendrian knot has genus 0 .

Nonorientable Lagrangian endocobordisms also exist and have topological re-
strictions:

Theorem 1.1. For an arbitrary Legendrian knot 3, there exists a nonorientable
Lagrangian endocobordism for 3 of cross-cap genus g if and only if g ∈ 4Z+.

Theorem 1.1 is proved in Theorems 3.2 and 3.3. The fact that the cross-cap
genus of a nonorientable Lagrangian endocobordism must be a positive multiple
of 4 follows from a result of Audin [1988] about the obstruction to the Euler
characteristic for closed, Lagrangian submanifolds in R4. It is easy to construct
immersed Lagrangian endocobordisms; the existence of the desired embedded
endocobordisms follows from Lagrangian surgery, as developed, for example, by
Polterovich [1991].

Of special interest are Lagrangian cobordisms that satisfy an additional “ex-
actness” condition. Exactness is known to be quite restrictive: by a foundational
result of Gromov [1985], there are no closed, exact Lagrangian submanifolds in R2n

with its standard symplectic structure. The nonclosed trivial Lagrangian cylinder
R×3 is exact, and Section 2 describes some general methods to construct exact
Lagrangian cobordisms. In contrast to Theorem 1.1, there are some Legendrians
that do not admit exact, nonorientable Lagrangian endocobordisms:

Theorem 1.2. There does not exist an exact, nonorientable Lagrangian endocobor-
dism for any Legendrian knot 3 that is exactly orientably or nonorientably fillable.

A Legendrian knot 3 is exactly fillable if there exists an exact Lagrangian cobor-
dism that is cylindrical over 3 at the positive end and does not intersect {T−}×R3

for T−� 0; precise definitions can be found in Section 2. Theorem 1.2 is proved in
Section 4; it follows from the Seidel isomorphism (Theorem 4.1), which relates the
topology of a filling to the linearized contact cohomology of the Legendrian at the
positive end. Theorem 1.2 implies that on the set of Legendrian knots in R3 that
are exactly fillable, orientably or not, the relation defined by exact, nonorientable
Lagrangian cobordism is antireflexive and antisymmetric; see Corollary 4.2. Figure 6
gives some particular examples of Legendrians that are exactly fillable and thus
do not admit exact, nonorientable Lagrangian endocobordisms. Many of these
examples are maximal tb Legendrian representatives of twist or torus knots. In fact,

1the number of real projective planes in a connected sum decomposition
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Figure 1. The max tb Legendrian representative of m(819).

using the classification results of Etnyre and Honda [2001] and of Etnyre, Ng, and
Vértesi [Etnyre et al. 2013], we show:

Corollary 1.3. Let K be the smooth knot type of either a twist knot or a positive
torus knot or a negative torus knot of the form T (−p, 2k) for p odd and p> 2k> 0.
Then any maximal tb Legendrian representative of K does not have an exact,
nonorientable Lagrangian endocobordism.

However, stabilized Legendrian knots do admit exact, nonorientable Lagrangian
endocobordisms: a Legendrian knot is said to be stabilized if, after Legendrian
isotopy, a strand contains a zig-zag as shown in Figure 4.

Theorem 1.4. For any stabilized Legendrian knot 3 and any k ∈ Z+, there exists
an exact, nonorientable Lagrangian endocobordism for 3 of cross-cap genus 4k.

Some Legendrian knots are neither exactly fillable nor stabilized. Thus, a natural
question is:

Question 1.5. If a Legendrian knot is not exactly fillable and is not stabilized, does
it have an exact, nonorientable Lagrangian endocobordism? In particular, does the
unique Legendrian representative of m(819) = T (−4, 3) with maximal tb whose
front projection is shown in Figure 1 have an exact, nonorientable Lagrangian
endocobordism?

A description of how the Legendrian knot can be recovered from the front
projection is given on page 322. The max tb version of m(819) is not exactly fillable
since the upper bound on the tb invariant for all Legendrian representatives of
m(819) given by the Kauffman polynomial is not sharp; see Section 6 for more
details. In response to Question 1.5, Chantraine, Dimitroglou Rizell, Ghiggini, and
Golovko [Chantraine et al. 2015, Corollary 12.3] proved an extension of Theorem 1.2
that shows an exact, nonorientable Lagrangian endocobordism does not exist for
an orientable Legendrian that admits an augmentation or, more generally, for
an orientable Legendrian whose characteristic algebra admits a finite-dimensional
representation. The max tb Legendrian representative of m(819)=T (−4, 3) does not
have an augmentation, but by results of Sivek [2013, Corollary 3.5], the characteristic
algebra of this Legendrian does have a 2-dimensional representation. Thus the
answer to Question 1.5 is no; see Section 6 for additional questions.

Given the existence of exact, nonorientable Lagrangian endocobordisms for a
stabilized Legendrian, it is natural to ask: What Legendrian knots can appear as a
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“slice” of such an endocobordism? The parallel question for orientable Lagrangian
endocobordisms has been studied in [Chantraine 2015; Baldwin and Sivek 2014;
Cornwell et al. 2016]. The nonorientable version of this question is closely tied
to the question of whether or not nonorientable Lagrangian cobordisms define an
equivalence relation on the set of Legendrian knots. By a result of Chantraine
[2010], it is known that the relation defined on the set of Legendrian knots by
orientable Lagrangian cobordism is not an equivalence relation since symmetry
fails. In fact, the relation defined on the set of stabilized Legendrian knots by exact,
nonorientable Lagrangian cobordism is symmetric: see Theorem 5.2. In addition,
this relation is transitive by “stacking” (Lemma 2.2) and reflexive by Theorem 1.4.
Thus we get:

Theorem 1.6. On the set of stabilized Legendrian knots, the relation defined by
exact, nonorientable Lagrangian cobordism is an equivalence relation. Moreover,
all stabilized Legendrian knots are equivalent with respect to this relation.

2. Background

In this section we review Legendrian and Lagrangian submanifolds.

Contact manifolds and Legendrian submanifolds. Below is some basic back-
ground on contact manifolds and Legendrian knots. More information can be
found, for example, in [Etnyre 2003; 2005].

A contact manifold (Y, ξ) is an odd-dimensional manifold together with a contact
structure, which consists of a maximally nonintegrable field of tangent hyperplanes.
The standard contact structure on R3 is the field ξp = kerα0(p) for α0(x, y, z)=
dz− y dx . A Legendrian link 3 is a submanifold of R3 diffeomorphic to a disjoint
union of circles such that for all p ∈ 3, we have Tp3 ⊂ ξp; if, in addition, 3 is
connected, 3 is a Legendrian knot. It is common to examine Legendrian links
from their xz-projections, known as their front projections. A Legendrian link will
generically have an immersed front projection with semicubical cusps, no vertical
tangents, and no self-tangencies; any such projection can be uniquely lifted to a
Legendrian link using y = dz/dx .

Two Legendrian links 30 and 31 are equivalent Legendrian links if there exists
a 1-parameter family of Legendrian links 3t , t ∈ [0, 1], joining 30 and 31. In
fact, Legendrian links 30,31 are equivalent if and only if their front projections
are equivalent by planar isotopies that do not introduce vertical tangents and the
Legendrian Reidemeister moves as shown in Figure 2.

Every knot has a Legendrian representative. In fact, every knot has an infinite
number of different Legendrian representatives. For example, Figure 3 shows three
different oriented Legendrians that are all topologically the unknot. These unknots
can be distinguished by classical Legendrian invariants: the Thurston–Bennequin
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1 2

3

Figure 2. The three Legendrian Reidemeister moves. There is
another type-1 move obtained by flipping the planar figure about a
horizontal line, and there are three additional type-2 moves obtained
by flipping the planar figure about a vertical, a horizontal, and both
a vertical and a horizontal line.

Figure 3. Three different Legendrian unknots: the one with maxi-
mal tb invariant of −1 and two others obtained by ±-stabilizations.

number, tb, and the rotation number, r . These invariants can easily be computed
from a front projection; see, for example, [Boranda et al. 2013].

The two unknots in the second line of Figure 3 are obtained from the one at
the top by stabilization. In general, from an oriented Legendrian 3, one can
obtain oriented Legendrians S±(3): the positive (negative) stabilization, S+ (S−),
is obtained by replacing a portion of a strand with a strand that contains a down
(up) zig-zag, as shown in Figure 4. This stabilization procedure will not change the
underlying smooth knot type but will decrease the Thurston–Bennequin number
by 1; adding an up (down) zig-zag will decrease (increase) the rotation number
by 1. It is possible to move a zig-zag to any strand of a Legendrian knot [Fuchs and
Tabachnikov 1997]. Bennequin and slice-Bennequin inequalities (see, for example,
[Etnyre 2005]) show that for any Legendrian representative 3 of a fixed smooth
knot type K , tb(3)+ |r(3)| is bounded above. Because of such bounds, the set of
oriented Legendrian representatives of a fixed smooth knot type can be visualized
by a “mountain range” in the plane where each Legendrian representative 3 is
recorded by a vertex at coordinates (r(3), tb(3)); two vertices are connected by an
edge if the corresponding Legendrians are related by stabilization. Many examples
of known and conjectured mountain ranges can be found in the Legendrian knot
atlas of Chongchitmate and Ng [2013].
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S+

S−

Figure 4. The positive (negative) stabilization of an oriented knot
is obtained by introducing a down (an up) zig-zag.

Symplectic manifolds, Lagrangian submanifolds, and Lagrangian cobordisms.
We will now discuss some basic concepts in symplectic geometry. Additional
background can be found, for example, in [McDuff and Salamon 1998].

A symplectic manifold (M, ω) is an even-dimensional manifold together with a
2-form ω that is closed and nondegenerate; when ω is an exact 2-form, (M, ω= dβ)
is said to be an exact symplectic manifold. A basic example of an exact symplectic
manifold is (R4, ω0 = dx1 ∧ dy1+ dx2 ∧ dy2). The cobordisms constructed in this
paper live inside the symplectic manifold that is constructed as the symplectization
of (R3, ξ0 = kerα0), namely, R×R3 with symplectic form given by ω = d(etα0).
In fact, there is an exact symplectic diffeomorphism between the symplectization
(R×R3, ω) and the standard (R4, ω0); see, for example, [Bourgeois et al. 2015].

A Lagrangian submanifold L of a 4-dimensional symplectic manifold (M, ω) is a
2-dimensional submanifold such that ω|L = 0. When M is an exact symplectic man-
ifold, ω= dβ, β|L is necessarily a closed 1-form; when, in addition, β|L is an exact
1-form, β|L = d f , then L is said to be an exact Lagrangian submanifold. It is easy
to verify that the exactness of the Lagrangian does not depend on the choice of β.

Remark. There is a (nonexact) Lagrangian torus in the standard symplectic R4:
this can be seen as the product of two embedded circles in each of the (x1, y1) and
(x2, y2) planes. By classical algebraic topology, it follows that the torus is the only
compact, orientable surface that admits a Lagrangian embedding into R4: a result
of Whitney equates a signed count of double points of an immersion to the Euler
number of the normal bundle, but for a Lagrangian submanifold, the normal and
tangent bundles are isomorphic [Audin et al. 1994].

We now turn our focus to noncompact Lagrangians that are cylindrical over
Legendrians.

Definition 2.1. Let 3−,3+ be Legendrian links in R3.

(1) A Lagrangian submanifold without boundary L ⊂ R×R3 is a Lagrangian
cobordism from 3+ to 3− if it is of the form

L =
(
(−∞, T−]×3−

)
∪ L ∪

(
[T+,+∞)×3+

)
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for some T− < T+, where L ⊂ [T−, T+] × R3 is compact with boundary
∂L = ({T−}×3−)∪ ({T+}×3+).

(2) A Lagrangian cobordism from 3+ to 3− is orientable (resp., nonorientable)
if L is orientable (resp., nonorientable).

(3) A Lagrangian cobordism from3+ to3− is exact if L is exact, namely etα0|L=

d f |L , and the primitive, f , is constant on the cylindrical ends: there exist
constants C± such that

f |L∩((−∞,T−)×R3) = C−, f |L∩((T+,+∞)×R3) = C+.

A Legendrian knot 3 is (exactly) fillable if there exists an (exact) Lagrangian
cobordism from 3+ =3 to 3− =∅.

An important property of Lagrangian cobordisms is that they can be stacked (or
composed):

Lemma 2.2 (stacking cobordisms [Ekholm et al. 2012]). If L12 is a Lagrangian
cobordism from 3+ =31 to 3− =32, and L23 is a Lagrangian cobordism from
3+=32 to3−=33, then there exists a Lagrangian cobordism L13 from3+=31

to 3− =33. Furthermore, if L12 and L23 are exact, then there exists an exact L13.

Constructions of exact Lagrangian cobordisms are an active area of research.
In this paper, we will use the fact that there exist exact Lagrangian cobordisms
between Legendrians related by isotopy and certain surgeries. The existence of exact
Lagrangian cobordisms from isotopy is well known; see, for example, [Eliashberg
and Gromov 1998; Chantraine 2010; Ekholm et al. 2012; Bourgeois et al. 2015].

Lemma 2.3 (exact cobordisms from isotopy). Suppose that 3 and 3′ are isotopic
Legendrian links. Then there exists an exact, orientable Lagrangian cobordism, in
fact concordance, from 3+ =3 to 3− =3′.

Remark. In general, the trace of a Legendrian isotopy is not a Lagrangian cobor-
dism. However it is possible to add a “correction term” so that it will be Lagrangian.
More precisely, let λt(u) = (x(t, u), y(t, u), z(t, u)), t ∈ R, be a Legendrian iso-
topy such that ∂λ

∂t (t, u) has compact support with Im λt(u)=3− for t ≤−T and
Im λt(u)=3+ for t ≥ T , and let

η(t, u)= α0

(
∂λ

∂t
(t, u)

)
.

Then 0(t, u)= (t, x(t, u), y(t, u), z(t, u)+ η(t, u)) is an exact Lagrangian immer-
sion. If η(t, u) is sufficiently small, which can be guaranteed by “slowing down” the
isotopy via a t-reparametrization, then 0(t, u) is an exact Lagrangian embedding.

In addition, Legendrians 3 and 3′ that differ by “surgery” can be connected by
an exact Lagrangian cobordism. In one of these surgery operations, a Legendrian
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Figure 5. Orientable and nonorientable Legendrian surgeries.

0-tangle, consisting of two strands with no crossings and no cusp points, is replaced
with a Legendrian∞-tangle, consisting of two strands that each have one cusp and
no crossings; see Figure 5. When the strands of the 0-tangle are oppositely oriented,
this is an orientable surgery; otherwise this is a nonorientable surgery. There is
another surgery operation that shows that the maximal tb Legendrian representative
of the unknot, shown at the top of Figure 3, can be filled.

Lemma 2.4 (exact cobordisms from surgery [Ekholm et al. 2012; Dimitroglou Rizell
2014; Bourgeois et al. 2015]).

(1) Suppose 3+ and 3− are Legendrian knots, where 3− is obtained from 3+ by
orientable (nonorientable) surgery, as shown in Figure 5. Then there exists an
exact, orientable (nonorientable) Lagrangian cobordism from 3+ to 3−.

(2) Suppose 3+ is the Legendrian unknot with tb equal to the maximum value
of−1. Then there exists an exact, orientable Lagrangian filling of3+ by a disk.

Remark. By Lemmas 2.2, 2.3, and 2.4, to show there exists an exact Lagrangian
cobordism from 3+ to 3−, it suffices to show that there is a string of Legendrian
links (3+=30,31, . . . , 3n=3−), where each 3i+1 is obtained from 3i by a
single surgery, as shown in Figure 5, and Legendrian isotopy. In the case where
each surgery is orientable, the exact Lagrangian cobordism will be orientable. If
all surgeries are orientable and 3± are both knots, then the length, n, of this string
must be even and will agree with twice the genus of the Lagrangian cobordism;
for more details, see [Boranda et al. 2013]. If there is at least one nonorientable
surgery, the exact Lagrangian cobordism will be nonorientable and the length of the
string agrees with the cross-cap genus of the Lagrangian cobordism. To construct
an exact Lagrangian filling of 3+, it suffices to construct such a string to 3− =U ,
where U is a trivial link of maximal tb Legendrian unknots.

3. Constructions of nonorientable Lagrangian endocobordisms

We show that any Legendrian knot has a nonorientable Lagrangian endocobordism
with cross-cap genus an arbitrary multiple of 4. We then show that it is not possible
to get any other cross-cap genera.
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The strategy to show existence is to first construct an immersed orientable
Lagrangian cobordism, and then apply “Lagrangian surgery” to modify it so that it
is embedded. The following description of Lagrangian surgery follows Polterovich’s
construction [1991]; see also [Lalonde and Sikorav 1991].

To describe Lagrangian surgery precisely, we first need to explain the “sign” of a
double point. Suppose that x is a point of self-intersection of a generic, immersed,
oriented 2-dimensional submanifold L of R4. Then sgn(x) ∈ {±1} will denote the
sign of self-intersection of L at x : let (v1, v2) and (w1, w2) be positively oriented
bases of the transverse tangent spaces at x ; then

sgn(x)=+1 ⇐⇒ (v1, v2, w1, w2) is a positively oriented basis of R4,

and otherwise sgn(x)=−1.
By constructing a Lagrangian handle in a Darboux chart, it is possible to remove

double points of a Lagrangian immersion:

Lemma 3.1 (Lagrangian surgery [Polterovich 1991]). Let 6 be a 2-dimensional
manifold. Suppose φ :6→ R4 is a Lagrangian immersion and U ⊂ R4 contains a
single transversal double point x of φ. Then there exists a 2-dimensional manifold
6′ and a Lagrangian immersion φ′ :6′→ R4 such that

(1) Imφ = Imφ′ on R4
−U,

(2) φ′ has no double points in U.

Furthermore, let φ−1({x})= {p1, p2} ⊂6.

(1) If p1, p2 are in disjoint components of 6, then 6′ is obtained from 6 by a
connect sum operation.

(2) If p1, p2 are in the same component of 6, then

(a) if 6 is not orientable, 6′ =6 # K (=6 # T ),
(b) if 6 is orientable, 6′ =6 # T when sgn(x)=+1, and 6′ =6 # K when

sgn(x)=−1,
where K denotes the Klein bottle and T denotes the torus.

We now have the necessary background to show the existence of a nonorientable
Lagrangian endocobordism for any Legendrian knot:

Theorem 3.2. For any Legendrian knot 3 and any k ∈ Z+, there exists a nonori-
entable Lagrangian endocobordism for 3 of cross-cap genus 4k.

Proof. For an arbitrary Legendrian knot 3, begin with a cylindrical Lagrangian
cobordism, L=R×3 in R×R3, which is a space that is symplectically equivalent to
the standard R4. As explained in the remark on page 324, there exists an embedded
Lagrangian torus, T , such that T ∩ L =∅. After a suitable shift and perturbation,
we can assume that L and T intersect at exactly two points, x1 and x2, where
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sgn(x1)=+1 and sgn(x2)=−1. By Lemma 2.4, Lagrangian surgery at x1 results
in the connected, oriented, immersed Lagrangian diffeomorphic to (R×S1)#T with
a double point at x2 of index −1; a second Lagrangian surgery at x2 results in an
embedded, nonorientable Lagrangian cobordism diffeomorphic to (R× S1)# T # K ,
and thus of cross-cap genus 4. Stacking these endocobordisms, using Lemma 2.2,
produces an embedded, nonorientable Lagrangian cobordism of cross-cap genus 4k
for any k ∈ Z+. �

In fact, the possible cross-cap genera that appear in Theorem 3.2 are all that can
exist:

Theorem 3.3. Any nonorientable Lagrangian endocobordism in R×R3 must have
cross-cap genus 4k for some k ∈ Z+.

This cross-cap genus restriction is closely tied to Euler characteristic obstructions
for compact, nonorientable submanifolds that admit Lagrangian embeddings in
(R4, ω0), or equivalently in (R×R3, d(etα)):

Lemma 3.4 [Audin 1988]. Any compact, nonorientable Lagrangian submanifold
of R×R3 has an Euler characteristic divisible by 4.

This result can be seen as an extension, to the nonorientable setting, of a formula
of Whitney that relates the number of double points of a smooth immersion to the
Euler number of the normal bundle of the immersion; see [Audin 1988; Audin et al.
1994].

Remark. Lemma 3.4 implies that any compact, nonorientable Lagrangian sub-
manifold L in R × R3 has cross-cap genus 2 + 4 j for some j ≥ 0. There are
explicit constructions of compact, nonorientable Lagrangian submanifolds of cross-
cap genus 2+ 4 j for all j > 0 [Givental 1986; Audin 1990]. It has been shown
that there is no embedded, Lagrangian Klein bottle ( j = 0) [Nemirovskiı̆ 2009;
Shevchishin 2009].

To utilize the cross-cap genus restrictions for compact Lagrangians, we will
employ the following lemma, which shows that for any Lagrangian endocobordism,
it is possible to construct a compact, nonorientable Lagrangian submanifold into
which we can glue the compact portion of a Lagrangian endocobordism.

Lemma 3.5. For any Legendrian knot 3⊂ R3, any open set D ⊂ R3 containing 3,
and any T ∈ R+, there exists a compact, nonorientable Lagrangian submanifold L
in R×R3 such that

L ∩ ([−T, T ]× D)= [−T, T ]×3.

Proof. The strategy will be to construct a Lagrangian torus with double points,
thought of as two finite cylinders with top and bottom circles identified, and then
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apply Lagrangian surgery to remove the double points. As a first step, we construct
(nondisjoint) Lagrangian embeddings of two cylinders via Legendrian isotopies (see
Lemma 2.3). Namely, start with two disjoint copies of 3: 3 in D and a translated
version 3′ ⊂ R3

− D. Now, for t ∈ [0,U ], consider Legendrian isotopies 3t of 3
and 3′t of 3′ that satisfy the following conditions: 3t =3 for t ∈ [0,U ]; 3′t =3

′

for t ∈ [0, T ]; and for t ∈ [T,U ], 3′t is a Legendrian isotopy of3′ such that3′t =3
for t near U . By repeating an analogous procedure for t ∈ [−U, 0], we can obtain
a smooth immersion of the torus into [−U,U ]×R3. The arguments used to prove
Lemma 2.3 (see the remark on page 325) show that for U −T sufficiently large, the
trace of these isotopies can be perturbed to two nondisjoint embedded Lagrangian
cylinders that do not have any intersection points in [−T, T ] ×R3, and a direct
calculation shows that each double point with t ∈ [T,U ] can be paired up with a
double point with t ∈ [−U,−T ] of opposite sign. Then by applying Lagrangian
surgery (see Lemma 3.1) at each double point we get a compact, nonorientable
Lagrangian submanifold L in R×R3 with the desired properties. �

We are now ready to prove the cross-cap genus restriction for arbitrary nonori-
entable Lagrangian endocobordisms:

Proof of Theorem 3.3. Let C be a nonorientable Lagrangian endocobordism. Sup-
pose C ⊂ R× D and C agrees with a standard cylinder outside [−T, T ]×R3. By
Lemma 3.5, there is a compact, nonorientable Lagrangian submanifold L in R×R3

such that
L ∩ ([−T, T ]× D)= [−T, T ]×3.

Let L ′ be the Lagrangian submanifold obtained by removing the standard cylindrical
portion of L in [−T, T ]×D and replacing it with C∩([−T, T ]×R3). Then L ′ will
be a compact, nonorientable Lagrangian submanifold whose cross-cap genus, k(L ′),
differs from the cross-cap genus of L , k(L), by the cross-cap genus of C , k(C):
k(L ′)= k(L)+k(C). By Lemma 3.4, there exist j, j ′ ∈Z+ such that k(L)= 2+4 j
and k(L ′)= 2+ 4 j ′. Thus we find that k(C) must be divisible by 4. �

Remark. For exact Lagrangian cobordisms that are constructed from isotopy and
surgery (see Lemmas 2.3 and 2.4) it is possible to show that the cross-cap genus
must be a multiple of 4 by an alternate argument that relies on a careful analysis of
the possible changes to tb(3) under surgery [Capovilla-Searle 2015].

4. Obstructions to exact, nonorientable Lagrangian endocobordisms

We will now focus on exact, nonorientable Lagrangian cobordisms. We will prove
Theorem 1.2, which states that any Legendrian knot that is exactly fillable does not
have an exact, nonorientable Lagrangian endocobordism. The proof of this theorem
will involve applying the Seidel isomorphism, which relates the topology of a filling
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to the linearized Legendrian contact cohomology of the Legendrian at the positive
end. We will then apply Theorem 1.2 and give examples of maximal tb Legendrian
knots that do not have exact, nonorientable Lagrangian endocobordisms.

We begin with a brief description of Legendrian contact homology; additional
background information can be found, for example, in [Etnyre 2005]. Legendrian
contact homology is a Floer-type invariant of a Legendrian submanifold that lies
within Eliashberg, Givental, and Hofer’s symplectic field theory framework [Eliash-
berg 1998; Eliashberg et al. 2000; Chekanov 2002]. It is possible to associate to a
Legendrian submanifold3⊂R3 the stable, tame isomorphism class of an associative
differential graded algebra (DGA), (A(3), ∂). The algebra is freely generated by
the so-called Reeb chords of3, and is graded using a Maslov index. The differential
comes from counting pseudoholomorphic curves in the symplectization of R3; for
our interests, we will always use Z/2 coefficients. Legendrian contact homology,
namely the homology of (A(3), ∂), is a Legendrian isotopy invariant. Legendrian
contact homology has been defined for Legendrians in contact manifolds other
than R3; see, for example, [Ekholm et al. 2007; Sabloff 2003].

In general, it is difficult to extract information directly from the Legendrian
contact homology. An important computational technique arises from the existence
of augmentations of the DGA. An augmentation ε of A(3) is a differential algebra
homomorphism ε : (A(3), ∂)→ (Z2, 0); a graded augmentation is an augmentation
such that ε is supported on elements of degree 0. Not all Legendrians have an
augmentation; for any Legendrian 3, there are only a finite number of augmen-
tations. Given a graded augmentation ε, one can linearize (A(3), ∂) to a finite-
dimensional differential graded complex (A(3), ∂ε) and obtain linearized contact
homology, denoted LCH∗(3, ε;Z/2), and its dual linearized contact cohomology,
LCH∗(3, ε;Z/2). The set of all linearized (co)homology groups with respect to
all possible graded augmentations is an invariant of 3. If the augmentation is
ungraded, one can still examine the rank of the nongraded linearized (co)homology,
dim LCH(3, ε;Z/2), and obtain as an invariant of 3 the set of ranks of this to-
tal linearized (co)homology for all possible augmentations. Ungraded linearized
(co)homology is not an effective invariant: of the many examples of Legendrian
knots in the Legendrian knot atlas of Chongchitmate and Ng [2013] that have
the same classical invariants yet can be distinguished through graded linearized
homology, none can be distinguished by examining ungraded homology. However,
ungraded (co)homology will be useful in arguments below.

Ekholm [2008] has shown that an exact Lagrangian filling, F, of a Legendrian
submanifold 3⊂ R3 induces an augmentation εF of (A(3), ∂). When this filling
has Maslov class 0, the augmentation will be graded. Informally, Maslov 0 means
that along each loop in the filling, the corresponding loop of Lagrangian tangent
planes is trivial in the Lagrangian Grassmannian.
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The following result of Seidel will play a central role in showing obstructions
to exact, nonorientable Lagrangian endocobordisms. A proof of this result was
sketched in [Ekholm 2012] and given in detail in [Dimitroglou Rizell 2016]; a paral-
lel result using generating family homology was given in [Sabloff and Traynor 2013].

Theorem 4.1 (Seidel isomorphism [Ekholm 2012; Dimitroglou Rizell 2016; Ekholm
et al. 2012]). Let 3⊂ R2n+1 be an n-dimensional Legendrian submanifold with an
exact Lagrangian filling F ; let εF denote the augmentation induced by the filling.
Then

dim H(F;Z/2)= dim LCH(3, εF ;Z/2).

If the filling F of the n-dimensional Legendrian has Maslov class 0, then a graded
version of the above equality holds:

dim Hn−∗(F;Z/2)= dim LCH∗(3, εF ;Z/2).

The ungraded version of the Seidel isomorphism will be used to prove that
any Legendrian 3 that is exactly fillable does not have an exact, nonorientable
Lagrangian endocobordism:

Proof of Theorem 1.2. For a contradiction, suppose that there is a Legendrian
knot 3 that has an exact Lagrangian filling and an exact, nonorientable Lagrangian
endocobordism. Then by stacking the endocobordisms (see Lemma 2.2) it follows
that 3 has an infinite number of topologically distinct exact, nonorientable La-
grangian fillings. Each of these exact Lagrangian fillings induces an augmentation.
Since there are only a finite number of possible augmentations, there must exist
two topologically distinct fillings that induce the same augmentation. However, this
gives a contradiction to the Seidel isomorphism, Theorem 4.1. �

Theorem 1.2 implies that on the set of Legendrian knots in R3 that are exactly
fillable, orientably or not, the relation defined by exact, nonorientable Lagrangian
cobordism is antireflexive. Thus, by stacking (Lemma 2.2) we immediately also see:

Corollary 4.2. On the set of Legendrian knots in R3 that are exactly fillable, ori-
entably or not, the relation∼ defined by exact, nonorientable Lagrangian cobordism
is antisymmetric: 31 ∼32 =⇒ 32 �31.

We now apply Theorem 1.2 to give examples of Legendrians that do not have
exact, nonorientable Lagrangian endocobordisms. Hayden and Sabloff [2015]
showed that every positive knot type has a Legendrian representative that has an
exact, orientable Lagrangian filling. Combining this with Theorem 1.2 immediately
gives the next result.

Corollary 4.3 [Hayden and Sabloff 2015]. Each positive knot has a Legendrian rep-
resentative that does not have an exact, nonorientable Lagrangian endocobordism.
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m(31)= T (3, 2)= K−2 31 = T (−3, 2)= K1 41 = K2 = K−3

51 = T (−5, 2) m(51)= T (5, 2)

62 m(62)

Figure 6. Examples of max tb Legendrians that do not have exact,
nonorientable Lagrangian endocobordisms. The red lines indicate
points for surgeries.

There is work in progress to show that every +-adequate knot has a Legendrian
representative with an exact filling (J. M. Sabloff, private communication).

Many maximal tb representatives of low crossing knots have fillings, orientable
or not. Figure 6 illustrates some Legendrians that can be verified to have exact,
Lagrangian fillings; see the remark on page 326. Many of the examples in Figure 6
are Legendrian representatives of twist knots, Km , or torus knots, T (p, q). Using
Theorem 1.2 together with classification results of Etnyre and Honda [2001] and
of Etnyre, Ng, and Vértesi [Etnyre et al. 2013], we show that all maximal tb
representatives of twist knots, positive torus knots, and negative torus knots of
the form T (−p, 2k), p > 2k > 0, do not have exact, nonorientable Lagrangian
endocobordisms:

Proof of Corollary 1.3. By Theorem 1.2, to show the nonexistence of an exact,
nonorientable Lagrangian endocobordism, it suffices to show the existence of an
exact Lagrangian filling.

First consider the case where 3 is a maximal tb representative of a twist knot,
whose form is shown in Figure 7. Etnyre, Ng, and Vértesi [Etnyre et al. 2013] have

m

Figure 7. The smooth twist knot Km ; the box contains m right-
handed half-twists if m ≥ 0, and |m| left-handed twists if m < 0.
Notice that K0 and K−1 are unknots.
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m+ 2

Figure 8. Any maximal tb Legendrian representative of a negative
twist knot Km , with m≤−2, is Legendrian isotopic to a Legendrian
of the form on the left with the box containing |m+ 2| half-twists,
where each half-twist has form S (middle) or form Z (right). Two
surgeries produces a max tb Legendrian unknot.

m

Figure 9. Any maximal tb Legendrian representative of a positive
twist knot Km , with m ≥ 1, is Legendrian isotopic to a Legendrian
in the form at left, where the box contains m half-twists of form X ,
right.

m

Figure 10. An inductive argument shows that every max tb repre-
sentative of a positive twist knot has an exact Lagrangian filling.

classified all Legendrian twist knots: every maximal tb Legendrian representative
of Km , for m ≤−2, is Legendrian isotopic to one of the form in Figure 8, and every
maximal tb Legendrian representative of Km , for m ≥ 1, is Legendrian isotopic to
one of the form in Figure 9. For a max tb representative of a negative twist knot,
Figure 8 illustrates the two surgeries that show the existence of an exact Lagrangian
filling. For a max tb Legendrian representative of a positive twist knot, the existence
of an exact filling can be shown by an induction argument: Figure 10 (left) indicates
the surgery point when m = 1; for all m ≥ 1, a maximal tb representative of Km+1

can be reduced to a maximal tb representative of Km by one surgery, as indicated
in Figure 10 (right).

Next consider maximal tb Legendrian representatives of a torus knot, a knot
that can be smoothly isotoped so that it lies on the surface of an unknotted torus
in R3. Every torus knot can be specified by a pair (p, q) of coprime integers: we
will use the convention that the (p, q)-torus knot, T (p, q), winds p times around
a meridional curve of the torus and q times in the longitudinal direction. In fact,
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Figure 11. Surgeries that result in an exact filling of the maximal
tb representative of the positive torus knot T (5, 3).

T (p, q) is equivalent to T (q, p) and to T (−p,−q). We will always assume that
|p|> q ≥ 2, since we are interested in nontrivial torus knots.

Etnyre and Honda [2001] showed there is a unique maximal tb representative of
a positive torus knot T (p, q) with p> 0. The surgeries used in [Boranda et al. 2013,
Theorem 4.2] show that this maximal representative is exactly fillable. Figure 11
illustrates the orientable surgeries for the (5, 3)-torus knot; in this sequence of surg-
eries, one begins with surgeries on the innermost strands, and then performs a Legen-
drian isotopy so that it is possible to do a surgery on the next set of innermost strands.

Lastly consider the case where3 is topologically a negative torus knot, T (−p, 2k)
with p > 2k > 0. In this case, Etnyre and Honda have shown that the number
of different maximal tb Legendrian representations depends on the divisibility
of p by 2k: if |p| = m2k + e, 0 < e < 2k, there are m nonoriented Legendrian
representatives of T (−p, 2k) with maximal tb. These different representatives with
maximal tb are obtained by writing m = 1+ n1+ n2, where n1, n2 ≥ 0, and then
3(n1,n2) is constructed using the form shown in Figure 12 with n1 and n2 copies of
the tangle B inserted as indicated; this figure also shows k surgeries that guarantee
the existence of an exact Lagrangian filling. �

Some comments on obstructions to exact fillings are discussed in Section 6.

}

n1 B
n2 B

e

B =

Figure 12. The general form of a maximal tb representative of
a negative torus knot T (−p, 2k), with p > 2k > 0, with k = 2
and |p| = (1+ n1+ n2)2k+ e; the indicated k surgeries produce a
Legendrian trivial link of maximal tb unknots.
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Figure 13. It is possible to construct exact, nonorientable La-
grangian cobordisms between 3+ = 3 and S−S+(3), left, and
between 3+ = S−S+(3) and 3− = S+(3) or 3− = S−(3), right.

5. Constructions of exact, nonorientable Lagrangian cobordisms

We will construct an exact, nonorientable Lagrangian endocobordism of cross-
cap genus 4 for any stabilized Legendrian knot, and a nonorientable Lagrangian
cobordism between any two stabilized Legendrian knots. All these exact Lagrangian
cobordisms are constructed through isotopy and surgery; see the remark on page 326.

Central to these constructions will be the following lemma, which says that one
can always introduce a pair of “oppositely oriented” zig-zags to 3+, and if one has
a pair of oppositely oriented zig-zags in 3+, then one can remove either element of
this pair; see Figure 13. One needs to be careful when discussing orientations for the
ends of a nonorientable Lagrangian cobordism: given an orientation on 3+, there is
no canonical orientation for 3−. However, although an orientation is needed on 3
to distinguish between S+(3) and S−(3), S−S+(3) is a well-defined operation on
unoriented knots.

Lemma 5.1. Let3 be a Legendrian knot. Then there exists an exact, nonorientable
Lagrangian cobordism

(1) of cross-cap genus 2 between 3+ =3 and 3− = S−S+(3),

(2) of cross-cap genus 1 between3+= S−S+(3) and3−= S+(3) or3−= S−(3).

Proof. The strategy will be to construct the desired exact, nonorientable Lagrangian
cobordism via Legendrian isotopy and surgeries that are performed locally, near
the site of the stabilizations. Figure 14 illustrates the isotopy and surgeries, the
second of which is nonorientable, that imply the existence of a cross-cap genus 2
Lagrangian cobordism between 3+ =3 and 3− = S−S+(3). Figure 15 illustrates
the isotopy and surgery that imply the existence of a cross-cap genus 1 Lagrangian
cobordism between 3+ = S−S+(3) and 3− = S+(3), when the original strand is
oriented from right to left, or 3− = S−(3), when the original strand is oriented
from left to right. �

Exact, nonorientable Lagrangian endocobordisms. In Theorem 1.2, it was shown
that Legendrians that are exactly fillable do not have exact, nonorientable Lagrangian
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≡ ≡

Figure 14. By applying an orientable and a nonorientable surgery,
any strand can have a pair of oppositely oriented zig-zags intro-
duced.

≡ ≡ ≡

≡ ≡

≡

Figure 15. In the presence of oppositely oriented zig-zags, via one
nonorientable surgery, one of the zig-zags can be removed.

endocobordisms. However exact, nonorientable Lagrangian endocobordisms do
exist for stabilized knots:

Proof of Theorem 1.4. First consider the case where3 is the negative stabilization of
a Legendrian: 3= S−(3̂). Then by Lemma 5.1, there exists an exact, nonorientable
Lagrangian cobordism

(1) of cross-cap genus 2 between 3 and S−S+(3),

(2) of cross-cap genus 1 between S−S+(3) and S+(3),

(3) of cross-cap genus 1 between S+(3)= S+(S−(3̂)) and S−(3̂)=3.

Stacking these cobordisms results in an exact, nonorientable Lagrangian endocobor-
dism of cross-cap genus 4. Additional stacking results in arbitrary multiples of
cross-cap genus 4.

An analogous argument proves the case where 3 is the positive stabilization of
a Legendrian: 3= S+(3̂). �

Exact, nonorientable Lagrangian cobordisms between stabilized Legendrians.
Given that every stabilized Legendrian knot has a nonorientable Lagrangian endo-
cobordism, a natural question is: What Legendrian knots can appear as a “slice” of
such an endocobordism? We show that any stabilized Legendrian knot can appear
as such a slice.

Theorem 5.2. For smooth knot types K , K ′, let3 be any Legendrian representative
of K and let 3′ be a stabilized Legendrian representative of K ′. Then there exists
an exact, nonorientable Lagrangian cobordism between 3+ =3 and 3− =3′.



NONORIENTABLE LAGRANGIAN COBORDISMS BETWEEN LEGENDRIAN KNOTS 337

Before moving to the proof of Theorem 5.2, we show that nonorientable La-
grangian cobordisms define an equivalence relation on the set of stabilized Legen-
drian knots:

Proof of Theorem 1.6. Let Ls denote the set of all stabilized Legendrian knots of any
smooth knot type. Define the relation ∼ on Ls by 31 ∼32 if there exists an exact,
nonorientable Lagrangian cobordism from 3+ =31 to 3− =32. Reflexivity of ∼
follows from Theorem 1.4, symmetry follows from Theorem 5.2, and transitivity
follows from Lemma 2.2. Thus ∼ defines an equivalence relation. Moreover, by
Theorem 5.2, we see that with respect to this equivalence relation, there is only one
equivalence class. �

To prove Theorem 5.2, it will be useful to first show that there is an exact,
nonorientable Lagrangian cobordism between any two stabilized Legendrians of a
fixed knot type:

Proposition 5.3. Let K be any smooth knot type, and let 3,3′ be Legendrian rep-
resentatives of K , where 3′ is stabilized. Then there exists an exact, nonorientable
Lagrangian cobordism between 3+ =3 and 3− =3′.

Proof. Fix a smooth knot type K , and let 31,32 be Legendrian representatives,
where 32 is stabilized. By results of Fuchs and Tabachnikov [1997], we know that
there exist r1, `1, r2, `2 such that

S`1
− Sr1
+ (31)= S`2

− Sr2
+ (32).

By applying additional positive stabilizations, if needed, we can assume r1 > `1.
Consider the case where 32 is the negative stabilization of some Legendrian:

32 = S−(3̂2). By applications of Lemma 5.1, there exists an exact, nonorientable
Lagrangian cobordism between

(1) 31 and Sr1
− Sr1
+ (31),

(2) Sr1
− Sr1
+ (31) and S`1

− Sr1
+ (31), and thus between Sr1

− Sr1
+ (31) and S`2

− Sr2
+ (32),

(3) S`2
− Sr2
+ (32) and Sr2

+ (32),

(4) Sr2
+ (32)= Sr2

+ (S−(3̂2)) and S−(3̂2)=32.

By stacking these cobordisms (Lemma 2.2), we have our desired exact, nonori-
entable Lagrangian cobordism between 31 and 32. An analogous argument proves
the case where 32 is the positive stabilization of some Legendrian. �

Proof of Theorem 5.2. The strategy here is to first show that one can construct an
exact, nonorientable Lagrangian cobordism between 3 and a stabilized Legendrian
unknot 30. Similarly, it is possible to construct an exact, nonorientable Lagrangian
cobordism between 3′ and a stabilized Legendrian unknot 3′0; we will show it
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≡

Figure 16. For any Legendrian knot 3, perform a surgery near
each crossing to get a set of disjoint Legendrian unknots.

≡

Figure 17. Surgeries used to convert to a link of Legendrian un-
knots can be “undone”, at the cost of additional stabilizations.

is possible to “reverse” this sequence of surgeries and construct an exact, nonori-
entable Lagrangian cobordism between 3′0 and 3̃′, which is a stabilization of 3′.
By Proposition 5.3, there exists an exact, nonorientable Lagrangian cobordism
between 30 and 3′0 and between 3̃′ and 3′. Thus we will have the desired exact,
nonorientable Lagrangian cobordism between 3 and 3′ by stacking the cobordisms
between 3 and 30, between 30 and 3′0, between 3′0 and 3̃′, and between 3̃′

and 3′.
We first show how it is possible to construct an exact, nonorientable Lagrangian

cobordism from 3 to a Legendrian unknot; cf. [Boranda et al. 2013]. Let 3 be
an arbitrary Legendrian knot. We can assume that 3 has at least one positive
crossing by, if necessary, applying a Legendrian Reidemeister 1 move. As shown
in Figure 16, performing an orientable or nonorientable surgery near a crossing
produces a crossing that can be removed through Legendrian Reidemeister moves.
Perform such a surgery on every crossing in 3 until you have obtained k disjoint
stabilized Legendrian unknots; since 3 has at least one positive crossing, we have
performed at least one nonorientable surgery. Align the k Legendrian unknots
vertically and perform surgeries so that we obtain a single stabilized Legendrian
unknot 30. In this way, we have constructed an exact, nonorientable Lagrangian
cobordism between 3 and 30.

A similar procedure can be used to construct a sequence of surgeries from 3′

to another Legendrian unknot 3′0; now we show it is possible to “reverse” this
procedure and construct a sequence of surgeries from 3′0 to 3̃′, a Legendrian
obtained by applying stabilizations to 3′. Figure 17 illustrates how every surgery
that was used to get to a Legendrian unknot can be undone at the cost of adding
additional zig-zags into the original strands. Figure 18 illustrates this procedure
with an example.
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≡

≡

Figure 18. Top: surgeries that give rise to an exact, nonorientable
Lagrangian cobordism from the max tb version of 31 to a stabilized
unknot. Bottom: surgeries that give rise to an exact, nonorientable
Lagrangian cobordism from the stabilized unknot to a stabilized
representative of 31.

As outlined at the beginning of the proof, these constructions prove the existence
of an exact Lagrangian cobordism from 3+ =3 to 3− =3′. �

6. Additional questions

We end with a brief discussion of some additional questions.
From results above, we know that exactly fillable Legendrian knots do not admit

exact, nonorientable Lagrangian endocobordisms, while stabilized Legendrian knots
do. There are examples of Legendrian knots that are neither exactly fillable nor
stabilized. As mentioned above, Ekholm [2008] has shown that if 3 is exactly
fillable, then there exists an ungraded augmentation of A(3). By work of Sabloff
[2005] and, independently, Fuchs and Ishkhanov [2004], we then know that there
exists an ungraded ruling of 3. (Definitions of graded and ungraded rulings can be
found, for example, in [Kálmán 2008].) Then it follows by [Rutherford 2006] that
the Kauffman bound on the maximal tb value for all Legendrian representatives of
the smooth knot type of 3 is sharp. Thus, if the Kauffman bound is not sharp for
the smooth knot type K , then no Legendrian representative of K is exactly fillable.
So a natural question is:

Question 6.1. If 3 is a maximal tb representative of a knot type K for which
the upper bound on tb for all Legendrian representatives given by the Kauffman
polynomial is not sharp, does 3 have an exact, nonorientable Lagrangian endo-
cobordism?
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The Legendrian representative of m(819) shown in Figure 1 satisfies the hypothe-
ses in Question 6.1; the Kauffman bound is known to be sharp for all knots with
10 or fewer crossings except m(819), m(942), m(10124), m(10128), m(10132), and
m(10136) [Ng 2001; 2005; Rutherford 2006]. As mentioned in the Introduction,
[Chantraine et al. 2015] contains results which imply that the answer to Question 6.1
is no. However, this now spawns new questions. For example, consider the max tb
Legendrian representative of m(10132) given as K2 in [Sivek 2013, Figure 2]. The
Legendrian K2 is not stabilized, does not have an augmentation (and thus is not
exactly fillable), and does not have a finite-dimensional representation. Does K2

have an exact, nonorientable Lagrangian endocobordism?
There are also examples of Legendrians with nonmaximal tb that are not stabilized.

For example, m(10161) is a knot type where the unique maximal tb representative
has a filling. However, there is a Legendrian representative with nonmaximal tb
that does not arise as a stabilization. As shown in [Shonkwiler and Vela-Vick 2011,
Figure 1], this nonmaximal tb, nonstabilized Legendrian does have an ungraded
ruling, and the characteristic algebra of K2 does not have a finite-dimensional
representation [Sivek 2013].

Question 6.2. Does the nonstabilized, nonmaximal tb Legendrian representative
of m(10161) have an exact, nonorientable Lagrangian endocobordism?

Additional examples of nonstabilized and nonmaximal tb representatives can be
found in the Legendrian knot atlas of Chongchitmate and Ng [2013].

There are additional questions that arise from the constructions of fillings. For
example, it is known by results of Chantraine [2010] that orientable fillings realize
the smooth 4-ball genus. In Figure 6, examples are given of nonorientable La-
grangian fillings of maximal tb representatives of 62 and m(62) of cross-cap genus
2 and 4, respectively: the smooth 4-dimensional cross-cap number of both 62 and
m(62) is 1.

Question 6.3. Does there exist a nonorientable Lagrangian filling of these Legen-
drian representatives of 62 and m(62) of cross-cap genus 1?
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A STRONG MULTIPLICITY ONE THEOREM FOR SL2

JINGSONG CHAI AND QING ZHANG

It is known that the multiplicity one property holds for SL2 while the strong
multiplicity one property fails. However, in this paper we show that if we
require further that a pair of cuspidal representations π and π ′ of SL2 have
the same local components at the archimedean places and the places above 2,
and they are generic with respect to the same additive character, then they
also satisfy the strong multiplicity one property. The proof is based on a
local converse theorem for SL2.

1. Introduction

Let F be a number field and A = AF be its ring of adeles. Let G be a linear
reductive algebraic group defined over F . The study of the space of automorphic
forms L2(G(F)\G(A)) has been a central topic in the Langlands program and
representation theory. Let L2

0(G(F)\G(A)) be the subspace of cuspidal representa-
tions. Suppose π is an irreducible automorphic representation of G(A). It is known
that π occurs discretely with finite multiplicity mπ in L2

0(G(F)\G(A)).
The multiplicities mπ are important in the study of automorphic forms and

number theory. By [Jacquet and Shalika 1981; Badulescu 2008] and the work of
Piatetski-Shapiro, the group G = GLn and its inner forms have the property of
multiplicity one, that is, mπ ≤ 1 for any π . This is also true for SL2 by the famous
work of D. Ramakrishnan [2000]. But in general the multiplicity one property fails,
for example [Blasius 1994; Gan et al. 2002; Li 1997; Labesse and Langlands 1979]
to list a few.

In the case of GLn a stronger theorem, called the strong multiplicity one, holds.
It says that for two cuspidal representations π1 and π2, if they have isomorphic
local components almost everywhere, then they coincide in the space of cusp forms
(not only isomorphic). It follows from the results in [Labesse and Langlands 1979]
that SL2 does not have this strong multiplicity one property. The multiplicity one
property is already rare and the strong multiplicity one is even rarer. To the authors’
knowledge the examples other than GLn in this direction are the strong multiplicity
one theorems for U(2, 1) [Gelbart and Piatetski-Shapiro 1984; Baruch 1997] and
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Keywords: strong multiplicity one theorem, local converse theorem, Howe vectors.
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GSp4 [Soudry 1987] and the rigidity theorem for SO(2n+ 1) [Jiang and Soudry
2003, Theorem 5.3].

The main purpose of this paper is to prove a weaker version of the strong
multiplicity one result for Sp2= SL2. Although we know strong multiplicity one
does not hold in general for a pair of cuspidal representations π1 and π2 of SL2(A),
if we require that both π1 and π2 are generic with respect to the same additive
character ψ of A, then we can show that they also satisfy the strong multiplicity
one property.

The reason for the failure of the strong multiplicity one for SL2 is the existence
of L-packets. According to the local conjecture of Gan–Gross–Prasad [2012,
Conjecture 17.3] there is at most one ψ-generic representation in each L-packet.
For SL2, the result is known by the local discussion in [Labesse and Langlands
1979]. In this paper, we prove a local converse theorem for SL2(F) when F is a
p-adic field such that its residue characteristic is not 2, which will reprove the result
of Labesse and Langlands [1979] and confirm a local converse conjecture of Jiang,
see [Jiang 2006, Conjecture 3.7] and [Jiang and Nien 2013, Conjecture 6.3]. This
also implies our version of strong multiplicity one easily.

We now give some details of our results. Gelbart and Piatetski-Shapiro [1987]
constructed some Rankin–Selberg integrals to study L-functions on the group
Gn×GL(n), for Gn = Sp(n) and U(n, n). In particular, in Method C in that paper,
if π is a globally generic cuspidal representation of Sp2n(A), then τ is a cuspidal
representation of GLn(A). Consider the global Shimura type zeta-integral

I (s, φ, E)=
∫

Sp2n(F)\Sp2n(A)

φ(g)θ(g)E(g,s)dg,

where φ belongs to the space of π , E(g, s) is a genuine Eisenstein series on
S̃p2n(A) built from the representation induced from the representation τ of GLn(A)

twisted by |det|s and θ(g) is some theta series on S̃p2n(A). Note that the product
θ(g)E(g, s) is well-defined on Sp2n . The global integral is shown to be Eulerian.
The local functional equations and unramified calculations were also carried out by
Gelbart and Piatetski-Shapiro [1987]. Although we will only consider the easiest
case when n = 1 of Gelbart and Piatetski-Shapiro’s construction, we remark here
that Ginzburg, Rallis and Soudry [1997; 1998] generalized the above construction
to Sp2n ×GLk , for any k.

We study more details of Gelbart and Piatetski-Shapiro’s local integral

9(Wv, φv, fs,v)=

∫
N (Fv)\SL2(Fv)

Wv(h)(ωψ−1
v
(h)φv)(1) fs,v(h)dh

(for the unexplained notations, see sections below) when v is finite. These local
zeta-integrals satisfy certain functional equations, which come from the intertwining
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operators on induced representations and certain uniqueness statements. These
functional equations can then be used to define local gamma factors γ (s, πv, ηv, ψv),
where πv is a generic representation of SL2(Fv), ηv is a character of F×v and ψv is
a nontrivial additive character. The main local result of this paper can be formulated
as follows.

Theorem 3.10 (Local converse theorem and stability of γ ). Suppose that the residue
characteristic of the p-adic field F is not 2 and ψ is a nontrivial additive character
of F. Let (π, Vπ ) and (π ′, Vπ ′) be two ψ-generic representations of SL2(F) with
the same central character.

(1) If γ (s, π, η, ψ)= γ (s, π ′, η, ψ) for all quasicharacters η of F×, then π ∼= π ′.

(2) There is an integer l = l(π, π ′) such that if η is a quasicharacter of F× with
conductor cond(η) > l, then

γ (s, π, η, ψ)= γ (s, π ′, η, ψ).

The proof of this result follows closely [Baruch 1995; 1997; Zhang 2015] and
Howe vectors play an important role. With the help of this result, combined with
a nonvanishing result on archimedean local integrals proved in Lemma 4.9, we
follow the argument in [Baruch 1997, Theorem 7.2.13], or in [Casselman 1973,
Theorem 2], to prove the main global result of this paper.

Theorem 4.8 (Strong multiplicity one for SL2). Let ψ be a nontrivial additive
character of F \A and let π = ⊗πv and π ′ = ⊗π ′v be two irreducible cuspidal
automorphic representations of SL2(A) with the same central character. Suppose
that π and π ′ are both ψ-generic. Let S be a finite set of finite places such that no
place in S is above 2. If πv ∼= π ′v for all v /∈ S, then π = π ′.

Remark. The restriction on residue characteristic comes from Lemma 3.3. It is
expected that this restriction can be removed.

Besides the above, we also in this paper include a discussion of relations be-
tween global genericity and local genericity. An irreducible cuspidal automorphic
representation (π, Vπ ) is called globally ψ-generic if for some φ ∈ Vπ , the integral∫

N (F)\N (A)
φ(ug)ψ−1(u)du 6= 0

for some g ∈ SL2(A). The representation π is called locally ψ-generic if each of
its local component is generic for the corresponding local components of ψ . It is
easy to see that if π is globally ψ-generic, then π is also locally ψ-generic. It is a
conjecture that on a reductive algebraic group G, the converse is also true. This
conjecture is closely related to the Ramanujan conjecture. See [Shahidi 2011] for
more detailed discussions. We confirm this conjecture for SL2.
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Theorem 4.3. Let π=⊗vπv be an irreducible cuspidal automorphic representation
of SL2(A) and ψ = ⊗ψv be a nontrivial additive character of F \A. Then π is
ψ-generic if and only if each πv is ψv-generic.

Gelbart, Rogawski and Soudry [1997, Proposition 2.5] proved similar results for
U(1, 1) and for endoscopic cuspidal automorphic representations of U(2, 1). From
the discussions given in [Gelbart et al. 1997] Theorem 4.3 follows directly from
the results of Labesse and Langlands [1979]. Here, we include this result because
we adopt a local argument (see Proposition 2.1) which is different from that given
in [Labesse and Langlands 1979]. Hopefully, this local argument can be extended
to more general groups.

As explained above, there is essentially nothing new in this paper. All the results
and proofs should be known to the experts. Our task here is simply to try to write
down the details and to check everything works out as expected.

This paper is organized as follows. In Section 2 we collect basic results about the
local zeta-integrals which will be needed. In Section 3 we study the Howe vectors
and use them to prove the local converse theorem and stability of local gamma
factors. In Section 4 we prove the main global results.

1A. Notations. Let F be a field. In SL2(F), we consider the following subgroups.
Let B be the upper triangular subgroup. Let B = TN be the Levi-decomposition,
where T is the diagonal torus and N is the upper triangular unipotent. Denote

t (a)=
(

a
a−1

)
∈ T, for a ∈ F×, and n(b)=

(
1 b

1

)
∈ N , for b ∈ F.

Let N be the lower triangular unipotent and denote

n(x)=
(

1
x 1

)
and w =

(
1

−1

)
.

Denote by St the natural inclusion SO3(C)→ GL3(C) and view it as the “stan-
dard” representation of LSL2 = SO3(C).

2. The local zeta-integral

2A. The genericity of representations of SL2(F). In this section let F be a local
field and ψ be a nontrivial additive character of F , which is also viewed as a
character of N (F). For κ ∈ F× and g ∈ SL2(F) we define

gκ =
(
κ

1

)
g
(
κ−1

1

)
.
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Explicitly (
x y
z w

)κ
=

(
x κy

κ−1z w

)
.

Note that if κ ∈ F×,2, say κ = a2, then gκ = t (a)gt (a)−1, i.e., g 7→ gκ is an inner
automorphism on SL2(F). Let (π, Vπ ) be an infinite dimensional irreducible smooth
representation of SL2(F). We consider the representation (πκ , Vπκ ) defined by

Vπκ = Vπ and πκ(g)= π(gκ).

Let ψκ be the character of F defined by ψκ(b)=ψ(κb). If (π, Vπ ) is ψ-generic
with a nonzero ψ Whittaker functional 3 : Vπ → C, one verifies that

3(πκ(n)v)=3(π(nκ)v)= ψκ(n)3(v)

for all n ∈ N (F) and all v ∈ Vπκ = Vπ . Hence (πκ , Vπκ ) is ψκ -generic.

Proposition 2.1. If π is both ψ- and ψκ -generic, then π ∼= πκ .

Proof. If F is nonarchimedean, the proof is similar to the U (1, 1) case as in [Zhang
2015].

If F is archimedean the case F = C is easy, as every κ has a square root in C.
Now consider F = R. We will work with the category of smooth representations
of moderate growth of finite length. The Whittaker functional is an exact functor
from this category to the category of vector spaces by [Casselman et al. 2000,
Theorem 8.2].

We first consider the case when I (χ)= IndG
B (χ) for some quasicharacter χ of F×.

For f ∈ I (χ), consider the function f κ on SL2(F) defined by f κ(g)= f (gκ
−1
). It is

clear that f κ ∈ I (χ)κ and the map f 7→ f κ defines an isomorphism I (χ)→ I (χ)κ .
By results in [Vogan 1981, Chapter 2], if π is not a fully induced representation

then it can be embedded into a principal series I (χ). This I (χ) has two irreducible
infinite dimensional subrepresentations, use π ′ to denote the other one. The quotient
of I (χ) by the sum of π and π ′, denoted by π ′′, is finite dimensional, i.e., we have
a short exact sequence

0→ π ⊕π ′→ I (χ)→ π ′′→ 0.

First, by [Casselman et al. 2000, Theorem 6.1], we know that the Whittaker
functionals on I (χ) are one dimensional for either ψ or ψκ . Note that π ′′ cannot
be generic as it is finite dimensional. Since the Whittaker functor is exact, it
follows that the dimension of Whittaker functionals on π ⊕π ′ is also one for either
ψ or ψκ . By the assumption π is both ψ- and ψκ -generic, thus π ′ is neither ψ- nor
ψκ -generic.
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Now since π is ψ-generic, πκ is ψκ -generic. Hence the image of π under the
isomorphism I (χ)→ I (χ)κ given by f 7→ f κ is again ψκ -generic and hence it
has to be ψ-generic and isomorphic to π , which finishes the proof. �

2B. Weil representations of S̃L2. Let S̃L2 be the metaplectic double cover of SL2.
Then we have an exact sequence

0→ µ2→ S̃L2→ SL2→ 0,

where µ2 = {±1}.
The product on S̃L2(F) is given by

(g1, ζ1)(g2, ζ2)= (g1g2, ζ1ζ2c(g1, g2)),

where c : SL2(F)×SL2(F)→ {±1} is defined by Hilbert symbols as

c(g1, g2)= (x(g1), x(g2))F (−x(g1)x(g2), x(g1g2))F ,

where

x
(

a b
c d

)
=

{
c c 6= 0,
d c = 0,

and ( , )F is the Hilbert symbol. For these formulas for the Kubota cocycle see
[Kubota 1969, Section 3].

For a subgroup A of SL2(F), we denote by Ã the preimage of A in S̃L2(F),
which is a subgroup of S̃L2(F). For an element g ∈ SL2(F), we sometimes abuse
notation by writing (g, 1) ∈ S̃L2(F) as g.

A representation π of S̃L2(F) is called genuine if π(ζg) = ζπ(g) for all
g ∈ S̃L2(F) and ζ ∈ µ2. Let ψ be an additive character of F . Then there is a Weil
representation ωψ of S̃L2(F) on the space S(F) of Schwartz–Bruhat functions
on F . For f ∈ S(F), we have the well-known formulas:(

ωψ

(
1

−1

))
f (x)= γ (ψ) f̂ (x),(

ωψ

(
1 b

1

))
f (x)= ψ(bx2) f (x), b ∈ F(

ωψ

(
a

a−1

))
f (x)= |a|1/2

γ (ψ)

γ (ψa)
f (ax), a ∈ F×.

ωψ(ζ ) f (x)= ζ f (x), ζ ∈ µ2.

Here f̂ (x) =
∫

F f (y)ψ(2xy)dy, where dy is normalized so that ˆ̂f (x) = f (−x),
γ (ψ) is the Weil index and ψa(x)= ψ(ax).
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Let T̃ be the inverse image of T ={t (a) :=
(a

a−1

)
, a ∈ F×}⊂SL2(F) in S̃L2(F).

The product in T̃ is given by the Hilbert symbol, i.e.,

(t (a), ζ1)(t (b), ζ2)= (t (ab), ζ1ζ2(a, b)F ).

The function

µψ(a)=
γ (ψ)

γ (ψa)

satisfies
µψ(a)µψ(b)= µψ(ab)(a, b)F ,

and thus extends to a genuine character of T̃ .
The representation ωψ is not irreducible and we have ωψ = ω+ψ ⊕ω

−

ψ , where ω+ψ
and ω−ψ are the subrepresentations on even and odd functions in S(F), respectively.
All the above facts can be found in [Gelbart and Piatetski-Shapiro 1980, Section 1].

2C. The local zeta-integral. Let µψ(a) = γ (ψ)/γ (ψa) be as above, which is
viewed as a character of T̃ . Let η be a quasicharacter of F× and ηs denote
the character η| · |s of F×. Consider the induced representation I (s, η, ψ) =
IndS̃L2(F)

B̃(F)
(ηs−1/2µψ).

Let (π, V ) be a ψ-generic representation of SL2(F) with its Whittaker model
W(π, ψ). Choose W ∈ W(π, ψ), φ ∈ S(F) and fs ∈ I (s, η, ψ−1). Note that
(ωψ−1(h)φ)(1) fs(h) is well-defined as a function on SL2(F) and consider the
integral

9(W, φ, fs)=

∫
N (F)\SL2(F)

W (h)(ωψ−1(h)φ)(1) fs(h)dh.

By results in [Gelbart et al. 1987, Sections 5 and 12], the above integral is absolutely
convergent when Re(s) is large enough and has a meromorphic continuation to the
whole plane.

Remark. Gelbart and Piatetski-Shapiro [1987, Method C] constructed a global
zeta-integral for Sp2n ×GLn which showed that it is Eulerian. They also sketched
a proof of the local functional equation. The above integral is the simplest case of
the Gelbart and Piatetski-Shapiro integral, namely when n = 1.

2D. Local functional equation. The trilinear form (W, φ, fs) 7→9(W, φ, fs) de-
fines an element in

HomSL2(π ⊗ωψ−1 ⊗ I (s, η, ψ−1),C),

which has dimension at most one. The proof of this fact is given in [Gelbart et al.
1987, §11] and also can be deduced by the uniqueness of the Fourier–Jacobi model



352 JINGSONG CHAI AND QING ZHANG

for SL2, see [Sun 2012]. Let

Ms : I (s, η, ψ−1)→ I (1− s, η−1, ψ−1)

be the standard intertwining operator, i.e.,

Ms( fs)(g)=
∫

N
fs(wng)dn.

By the one dimensionality of the above Hom space we get the following:

Proposition 2.2. There is a meromorphic function γ (s, π, η, ψ) such that

9(W, φ,Ms( fs))= γ (s, π, η, ψ)9(W, φ, fs),

for all W ∈W(π, ψ), φ ∈ S(F) and fs ∈ I (s, η, ψ−1).

2E. Unramified calculation. The unramified calculation of Method C is in fact
not included in [Gelbart et al. 1987], but it can be simply done in the SL2-case.

Let F be a nonarchimedian local field with odd residue characteristic. Suppose
everything is unramified. Then the character µψ is unramified, [Szpruch 2009,
p. 2188]. Suppose the representation (π, V ) has Satake parameter a, which means
that π is the unramified component IndSL2(F)

B(F) (ν) for an unramified character ν and
a = ν(pF ), where pF is some prime element of F . Let

bk = t (pk
F )= diag(pk

F , p−k
F ),

and W be the spherical Whittaker functional normalized by W (e) = 1. Then
W (bk)= 0 for k < 0 and

W (bk)=
q−k

a− 1
(ak+1

− a−k),

by the general Casselman–Shalika formula [1980, Theorem 5.4]. For k ≥ 0 we have

(ωψ−1(bk)φ)(1)= µψ−1(pk
F )|p

k
F |

1/2,

where φ is the characteristic function of the ring of integers OF . On the other hand,
let fs be the standard spherical section of I (s, η, ψ−1) normalized by fs(1) = 1.
Then we have

fs(bk)= η(pk
F )|p

k
F |

s+1/2µψ−1(pk
F ).
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Since µψ−1(pk
F )µψ−1(pk

F )= (p
k
F , pk

F )F = (pF ,−1)kF , we have

9(W, φ, fs)=

∫
F×

∫
K

W (t (a)k)ωψ−1(t (ak)φ)(1) fs(t (a)k)|a|−2dkda

=

∫
F×

W (t (a))ωψ−1(t (a))φ(1) fs(t (a))|a|−2da

=

∑
k≥0

W (bk)(ωψ−1(bk)φ)(1) fs(bk)|pk
F |
−2

=
1

a− 1

∑
k≥0

(ak+1
− a−k)(pF ,−1)kη(pF )

kq−ks
F

=
1+ c

(1− ac)(1− a−1c)
=

1− c2

((1− ac)(1− c)(1− a−1c)

=
L(s, π, St ⊗ ηχ)

L(2s, η2)
,

where c= (pF ,−1)η(pF )q−s
F , and χ(a)= (a,−1)F . Recall that St is the standard

representation of L SL2 = SO3(C).

Remark. From the calculation of the µψ given in [Szpruch 2009, Lemmas 1.5
and 1.10], one can check that

Ms( fs)=
L(2s− 1, η2)

L(2s, η2)
f1−s,

where fs and f1−s are the standard spherical sections in, respectively, I (s, η, ψ−1)

and I (1−s, η−1, ψ−1). Thus the factor L(2s, η2) appearing in the above unramified
calculation will play the role of the normalizing factor of a global intertwining
operator or Eisenstein series.

3. Howe vectors and the local converse theorem

In this section, we assume F is a p-adic field with odd residue characteristic. We
will follow Baruch’s method [1995; 1997] to give a proof of the local converse
theorem for generic representations of SL2(F).

3A. Howe vectors. Let ψ be an unramified character. For a positive integer m,
let Km = (1+M2×2(P

m
F ))∩ SL2(F) where PF = (pF ) denotes the maximal ideal

in OF . Define a character τm of Km by

τm(k)= ψ(p−2m
F k12)

for k = (ki j ) ∈ Km . It is easy to see that τm is indeed a character on Km .
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Let dm = t (p−m
F ). Consider the subgroup Jm = dm Kmd−1

m . Then

Jm =

(
1+Pm

F P−m
F

P3m
F 1+Pm

F

)
∩SL2(F).

Define ψm( j)= τm(d−1
m jdm) for j ∈ Jm . For a subgroup H ⊂ SL2(F), denote

Hm = H ∩ Jm . It is easy to check that ψm |Nm = ψ |Nm .
Let π be an irreducible smooth ψ-generic representation of SL2(F) and let

v ∈ Vπ be a vector such that Wv(1)= 1. For m ≥ 1, as in [Baruch 1995; 1997] we
consider

(3-1) vm =
1

Vol(Nm)

∫
Nm

ψ(n)−1π(n)vdn.

Let L ≥ 1 be an integer such that v is fixed by KL . Following E. M. Baruch, we
call vm,m ≥ L Howe vectors.

Lemma 3.1. We have:

(1) Wvm (1)= 1.

(2) If m ≥ L then π( j)vm = ψm( j)vm for all j ∈ Jm .

(3) If k ≤ m then

vm =
1

Vol(Nm)

∫
Nm

ψ(u)−1π(u)vkdu.

The proof of this lemma is the same as the proof in the U(2, 1) case, which is
given in [Baruch 1997, Lemma 5.2].

Lemma 3.2. Let m ≥ L and t = t (a) for a ∈ F×:

(1) If Wvm (t) 6= 0, we have
a2
∈ 1+Pm

F .

(2) If Wvm (tw) 6= 0, we have
a2
∈ P−3m .

Proof.

(1) Take x ∈ P−m . We then have n(x) ∈ Nm ⊂ Jm . From the relation

tn(x)= n(a2x)t

and (2) of Lemma 3.1 we have

ψ(x)Wvm (t)= ψ(a
2x)Wvm (t).

If Wvm (t) 6= 0 we get ψ(x)= ψ(a2x) for all x ∈ P−m . Since ψ is unramified
we get a2

∈ 1+Pm .
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(2) For x ∈ P3m we have n(x) ∈ N m . From the relation twn(x) = n(−a2x)tw
and Lemma 3.1 (2) we get

Wvm (tw)= ψ(−a2x)Wvm (tw).

Thus if Wvm (tw) 6=0 we get ψ(−a2x)=1 for all x ∈P3m . Thus a2
∈P−3m . �

Lemma 3.3. For m ≥ 1 the squaring map from 1+Pm
→ 1+Pm , sending a 7→ a2,

is well-defined and surjective.

This lemma requires that the residue field of F is not of characteristic 2 which
we assume throughout this section.

Proof. For x ∈ Pm , it is clear that (1+ x)2 = 1+ 2x + x2
∈ 1+Pm . Thus the

square map is well-defined. On the other hand, we take u ∈ 1+Pm and consider
the equation f (X) := X2

− u = 0. We have f ′(X)= 2X . Since q−m
= |1− u| =

| f (1)| < | f ′(1)|2 = |2|2 = 1 by Newton’s Lemma, see for example [Lang 1994,
Proposition 2, Chapter II], there is a root a ∈ OF of f (X) such that

|a− 1| ≤
| f (1)|
| f ′(1)|2

= |1− u| = q−m .

Thus we get a root a ∈ 1+Pm of f (X). This completes the proof. �

Let Z = {±1} and identify Z with the center of SL2(F). Denote by ωπ the
central character of π .

Corollary 3.4. Let m ≥ L. Then we have

Wvm (t (a))=
{
ωπ (z) if a = za′ for some z ∈ Z and a′ ∈ 1+Pm,

0 otherwise.

Proof. Suppose that Wvm (t (a)) 6= 0. Then by Lemma 3.2 we have a2
∈ 1+Pm .

By Lemma 3.3 there exists an a′ ∈ 1+Pm such that a2
= (a′)2. Thus a = za′ for

some z ∈ Z . Since a′ ∈ 1+Pm we get t (a′) ∈ Jm . The assertion follows from
Lemma 3.1. �

From now on, we fix two ψ-generic representations (π, Vπ ) and (π ′, Vπ ′) with
the same central characters. Fix v and v′ such that Wv(1)= 1=Wv′(1). Let L be
an integer such that both v and v′ are fixed by KL . For m ≥ 1 consider the Howe
vectors vm and v′m .

By Corollary 3.4 and the fact that ωπ = ωπ ′ we get the following:

Corollary 3.5. For m ≥ L we have Wvm (g)=Wv′m
(g) for all g ∈ B.

Lemma 3.6 (Baruch). If m ≥ 4L and n ∈ N − Nm we have

Wvm (twn)=Wv′m
(twn),

for all t ∈ T .
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Proof. This is a special case of [Baruch 1995, Lemma 6.2.2]. A similar result
for U(2, 1) is given in [Baruch 1997, Proposition 5.7]. We just remark that the
proof of this lemma depends on Corollary 3.5, and hence requires that the residue
characteristic of F is not 2. �

3B. Induced representations. Note that N (F) and N (F) split in S̃L2(F). More-
over, for g1 ∈ N and g ∈ N we have c(g1, g2)= 1. In fact if g1= n(y) and g2= n(x)
with x 6= 0 we have x(g1)= 1 and x(g2)= x . Thus

c(g1, g2)= (1, x)F (−x, x)F = 1.

This shows that N (F) · N (F) ⊂ SL2(F), where SL2(F) denotes the subset of
S̃L2(F) which consists of elements of the form (g, 1) for g ∈ SL2(F).

Let X be an open compact subgroup of N (F). For x ∈ X and i > 0 consider the
set A(x, i)= {n ∈ N (F) : nx ∈ B · N i }.

Lemma 3.7. (1) For any positive integer c there exists an integer i1 = i1(X, c)
such that for all i ≥ i1, x ∈ X and n ∈ A(x, i) we have

nx = nt (a)n0,

with n ∈ N , n0 ∈ N i and a ∈ 1+Pc.

(2) There exists an integer i0= i0(X) such that for all i ≥ i0 we have A(x, i)= N i .

Proof. By abuse of notation, for x ∈ X we write x = n(x). Since X is compact
there is a constant C such that |x |< C for all n(x) ∈ X ⊂ N .

For n(x) ∈ X and n(y) ∈ A(x, i) we have n(y)n(x) ∈ B · N i . Thus we can
assume that

n(y)n(x)=
(

a b
a−1

)
n(y)

for a ∈ F×, b ∈ F and y ∈ P3i . Rewrite the above expression as

n(−y)
(

a b
a−1

)
= n(x)n(−y),

or (
a b
−ay a−1

− by

)
=

(
1− x y x
−y 1

)
.

Thus we get
a = 1− x y and ay = y.

Since |x |< C and y ∈ P3i it is clear that for any positive integer c we can choose
i1(X, c) such that a = 1− x y ∈ 1+Pc for all n(x) ∈ X and n(y) ∈ A(x, i). This
proves (1).
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If we take i0(X)= i1(X, 1) we get a ∈ 1+P⊂ O× for i ≥ i0. From ay = y we
get y ∈ P3i . Thus for i ≥ i0(X) we have that n(y) ∈ N i , i.e., A(x, i)⊂ N i .

The other direction can be checked similarly if i is large. We omit the details. �

Given a positive integer i and a complex number s ∈C we consider the following
function f i

s on S̃L2(F):

f i
s (g̃)=


ζµψ−1(a)ηs+1/2(a) if g̃ =

((
a b

a−1

)
, ζ

)
n(x),

with a ∈ F×, b ∈ F, ζ ∈ µ2, x ∈ P3i ,

0 otherwise.

Lemma 3.8. (1) There exists an integer i2(η) such that for all i ≥ i2(η), f i
s defines

a section in I (s, η, ψ−1).

(2) Let X be an open compact subset of N . There exists an integer I (X, η)≥ i2(η)

such that for all i ≥ I (X, η) we have

f̃ i
s (wx)= vol(N i )= q−3i

F

for all x ∈ X , where f̃ i
s = Ms( f i

s ) and w =
(

1
−1

)
.

Proof. (1) From the definition it is clear that

f i
s

(((
a b

a−1

)
, ζ

)
g̃
)
= ζµψ−1(a)ηs+1/2(a) f i

s (g̃),

for a ∈ F×, b ∈ F , ζ ∈ µ2 and g̃ ∈ S̃L2(F). It suffices to show that for i large
there is an open compact subgroup H̃i ⊂ S̃L2(F) such that f i

s (g̃h̃)= f i
s (g̃) for all

g̃ ∈ S̃L2(F) and h̃ ∈ H̃i .
If ψ is unramified and the residue characteristic is not 2 as we assumed then the

character µψ−1 is trivial on O×F , see for example [Szpruch 2009, p. 2188].
Let c be a positive integer such that η is trivial on 1 + Pc. Let i2(η) =

max{c, i0(N ∩Kc), i1(N ∩Kc, c)}. For i ≥ i2(η) we take H̃i = K4i = 1+M2(P
4i ).

Note that K4i splits and thus can be viewed as a subgroup of S̃L2. We now check
that for i ≥ i2(η) we have f i

s (g̃h) = fs(g̃) for all g̃ ∈ S̃L2 and h ∈ K4i . We have
the decomposition K4i = (N ∩ K4i )(T ∩ K4i )(N ∩ K4i ). For h ∈ N ∩ K4i ⊂ N i

we have f i
s (g̃h)= f i

s (g̃) by the definition of f i
s . Now we take h ∈ T ∩ K4i . Write

h = t (a0) with a0 ∈ 1+P4i . We have n(x)h = hn(a−2
0 x). It is clear that x ∈P3i if

and only if a−2
0 x ∈ P3i . On the other hand, for any a ∈ F× and b ∈ F we have

c
((

a b
a−1

)
, t (a0)

)
= (a, a0)= 1,
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since a0 ∈ 1+P4i
F ⊂ F×,2 by Lemma 3.3. Thus we get((

a b
a−1

)
, ζ

)
n(x)h =

((
aa0 ba−1

0
a−1a−1

0

)
, ζ

)
n(a−2

0 x).

By the definition of f i
s , if x ∈ P3i for g =

((
a b

a−1

)
, ζ

)
n(x) then we get

f i
s (gh)= µψ−1(a0a)ηs+1/2(aa0)= µψ−1(a)ηs+1/2(a)= f i

s (g)

by the assumption on i .
Finally, we consider h ∈ N ∩ K4i ⊂ N ∩ Kc. By the assumption on i we get

A(h, i)= A(h−1, i)= N i .

In particular, for n ∈ N i we have nh ∈ B · N i and nh−1
∈ B · N i . Now it is clear

that g̃ ∈ B̃ ·N i if and only if g̃h ∈ B̃ ·N i . Thus f i
s (g̃)= 0 if and only if f i

s (g̃h)= 0.
Moreover, for n ∈ N i , we have

nh =
(

a0 b0

a−1
0

)
n0

for a0 ∈ 1+Pc, b0 ∈ F and n0 ∈ N i . Thus for g̃ =
((

a b
a−1

)
, ζ

)
n with n ∈ N i

we get

g̃h =
((

aa0 ab0+ a−1
0 b

a−1
0 a−1

)
, ζ

)
n0.

Here we used the fact that a0 ∈ 1+Pc is a square and thus

c
((

a b
a−1

)
,

(
a0 b0

a−1
0

))
= 1.

Since µψ−1(a0)= 1, (a, a0)= 1 and ηs+1/2(a0)= 1 we get

f i
s (g̃h)= f i

s (g).

This finishes the proof of (1).
(2) As in the proof of (1) let c be a positive integer such that η is trivial on 1+Pc.

Take I (X, η)=max{i1(X, c), i0(X)}. We have

f̃ i
s (wx)=

∫
N

f i
s (w

−1nwx)dn.

By the definition of f i
s , f i

s (w
−1nwx) 6= 0 if and only if w−1nwx ∈ B N i if and

only if w−1nw ∈ A(x, i)= N i for all i ≥ I (X) and x ∈ X . On the other hand, if
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w−1nw ∈ A(x, i), we have

w−1nwx =
(

a b
a−1

)
n0

with a ∈ 1+Pc
F . Thus

f i
s (w

−1nwx)= ηs+1/2(a)µψ−1(a)= 1.

Now the assertion is clear. �

3C. The local converse theorem.

Lemma 3.9. Let φm be the characteristic function of 1+Pm . Then

(1) for n ∈ Nm we have ωψ−1(n)φm
= ψ−1(n)φm , and

(2) for n ∈ N m we have ωψ−1(n)φm
= φm .

Proof.

(1) For n = n(b) ∈ Nm we have b ∈P−m . For x ∈ 1+Pm we have bx2
− b ∈ OF .

Thus
ωψ−1(n)φm(x)= ψ−1(bx2)φm(x)= ψ−1(b)φm(x).

For x /∈ 1+ Pm we have ωψ−1(n)φm(x) = ψ−1(bx2)φm(x) = 0. The first
assertion follows.

(2) For n ∈ N m we can write n =w−1n(b)w with b ∈P3m . Let φ′ = ωψ−1(w)φm .
We have

φ′(x)= γ (ψ−1)

∫
F
φm(y)ψ−1(2xy)dy

= γ (ψ−1)ψ−1(2x)
∫

Pm
ψ−1(2xz)dz

= γ (ψ−1)ψ−1(2x) vol(Pm)Char(P−m)(x),

where Char(P−m) denotes the characteristic function of the set P−m . It is clear
that ωψ−1(n(b))φ′ = φ′. Thus we have

ωψ−1(n)φm
= ωψ−1(w−1n(b))φ′ = ωψ−1(w−1)φ′ = ωψ−1(w−1)ωψ−1(w)φm

= φm .

This completes the proof. �

Given a quasicharacter η of F× recall that we have defined a local gamma factor
γ (s, π, η, ψ) in Proposition 2.2.

Theorem 3.10. Suppose that the residue characteristic of F is not 2 and ψ is a
nontrivial additive character of F. Let (π, Vπ ) and (π ′, Vπ ′) be two ψ-generic
representations of SL2(F) with the same central character.
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(1) If γ (s, π, η, ψ)= γ (s, π ′, η, ψ) for all quasicharacters η of F×, then π ∼= π ′.

(2) There is an integer l = l(π, π ′) such that if η is quasicharacter of F× with
conductor cond(η) > l, then

γ (s, π, η, ψ)= γ (s, π ′, η, ψ).

Remark. Theorem 3.10 can be viewed as one example of a general local converse
conjecture for classical groups, see [Jiang 2006, Conjecture 3.7] or [Jiang and Nien
2013, Conjecture 6.3].

Proof. We will first treat the case where ψ is unramified and prove the general case
at the end. We fix the notations v ∈ Vπ , v′ ∈ Vπ ′ and L as before.

Let η be a quasicharacter of F×. We take an integer m ≥ max{6L , cond(η)}
and consider the Howe vectors vm and v′m . Additionally, we take an integer
i ≥max{i2(η), I (Nm, η),m}. In particular we have a section f i

s ∈ I (s, η, ψ) as in
Section 3C. Let Wm = Wvm or Wv′m

. We compute the integral of 9(Wm, φ
m, f i

s )

on the open dense subset TN (F) = N (F) \ N (F)TN (F) of N (F) \ SL2(F).
For g = nt (a)n we can take the quotient measure as dg = |a|−2dnda. By the
definition of f i

s we get

9(Wm, φ
m, f i

s )=

∫
T×N (F)

Wm(t (a)n)(ωψ−1(t (a)n)φm)(1) f i
s (t (a)n)|a|

−2dnda

=

∫
T×N i

Wm(t (a)n)µψ−1(a)|a|1/2ωψ−1(n)

·φm(a)µψ−1(a)ηs+1/2(a)|a|−2dnda

=

∫
T×N i

Wm(t (a)n)ωψ−1(n)φm(a)χ(a)ηs−1(a)dnda,

where χ(a) = µψ−1(a)µψ−1(a) = (a,−1)F . Since i ≥ m we get N i ⊂ N m . By
Lemmas 3.1 and 3.9 we get Wm(t (a)n)=Wm(t (a)) and ωψ−1(n)φm

= φm . Thus
we get

9(Wm, φ
m, f i

s )= q−3i
∫

F×
Wm(t (a))φm(a)χ(a)ηs−1(a)da.

Since φm
= Char(1 + Pm) and, for a ∈ 1 + Pm , we have Wm(t (a)) = 1. By

Lemma 3.1 we get

9(Wm, φ
m, f i

s )= q−3i
∫

1+Pm
χ(a)η(a)da.

Since χ(a)= 1 for a ∈ 1+Pm and m ≥ cond(η) by assumption we get

9(Wm, φ
m, f i

s )= q−3i−m .
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The above calculation works for both Wvm and Wv′m
. Thus we have

(3-2) 9(Wvm , φ
m, f i

s )=9(Wv′m
, φm, f i

s )= q−3i−m .

Next we compute the other side of the local functional equation, 9(Wm, φ
m, f̃ i

s ),
on the open dense subset N (F)\N (F)TwN (F)⊂N (F)\SL2(F), where f̃ i

s =Ms( f i
s ).

We have

9(Wm, φ
m, f̃ i

s )

=

∫
T×N (F)

Wm(t (a)wn)(ωψ−1(t (a)wn)φm)(1) f̃ i
s (t (a)wn)|a|−2dnda

=

∫
T×Nm

Wm(t (a)wn)(ωψ−1(t (a)wn)φm)(1) f̃ i
s (t (a)wn)|a|−2dnda

+

∫
T×(N (F)−Nm)

Wm(t (a)wn)(ωψ−1(t (a)wn)φm)(1) f̃ i
s (t (a)wn)|a|−2dnda.

By Lemma 3.6 we get Wvm (t (a)wn)=Wv′m
(t (a)wn) for all n ∈ N (F)−Nm . Thus

9(Wvm , φ
m, f̃ i

s )−9(Wv′m
, φm, f̃ i

s )

=

∫
T×Nm

(Wvm (t (a)wn)−Wv′m
(t (a)wn))(ωψ−1(t (a)wn)φm)(1)

· f̃ i
s (t (a)wn)|a|−2dnda.

Since i ≥ I (Nm, η) we get

f̃ i
s (t (a)wn)= µψ−1(a)η−1

3/2−s(a)q
−3i
F

by Lemma 3.8. On the other hand, by Lemma 3.1 and Lemma 3.9, for n ∈ Nm

we get
Wm(t (a)wn)= ψ(n)Wm(t (a)w),

(ωψ−1(t (a)wn)φm)(1)= ψ−1(n)(ωψ−1(t (a)w)φm)(1).

Thus

(3-3) 9(Wvm , φ
m, f̃ i

s )−9(Wv′m
, φm, f̃ i

s )

= q−3i+m
F

∫
T
(Wvm (t (a)w)−Wv′m

(t (a)w))(ωψ−1(w)φm)(a)

·χ(a)η−1(a)|a|−sda.

By (3-2), (3-3) and the local functional equation we get

(3-4) q−2m(γ (s, π, η, ψ)− γ (s, π ′, η, ψ))

=

∫
F×
(Wvm (t (a)w)−Wv′m

(t (a)w))(ωψ−1(w)φm)(a)χ(a)η−1(a)|a|−sda.
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Let k = 4L . Since m ≥ 6L > k, by Lemmas 3.1 and 3.6, we get

Wvm (t (a)w)−Wv′m
(t (a)w)=

1
vol(Nm)

∫
Nm

(Wvk(t (a)wn)−Wv′k
(t (a)wn))ψ−1(n)dn

=
1

vol(Nm)

∫
Nk

(Wvk(t (a)wn)−Wv′k
(t (a)wn))ψ−1(n)dn

=
vol(Nk)

vol(Nm)
(Wvk (t (a)w)−Wv′k

(t (a)w))

= qk−m(Wvk (t (a)w)−Wv′k
(t (a)w)).

Now we can rewrite (3-4) as

(3-5) q−m−k(γ (s, π, η, ψ)− γ (s, π ′, η, ψ))

=

∫
F×
(Wvk (t (a)w)−Wv′k

(t (a)w))(ωψ−1(w)φm)(a)χ(a)η−1(a)|a|−sda.

By Lemma 3.2, if a /∈P−6L , i.e., a2 /∈P−3k , we get Wvk (t (a)w)= 0=Wv′k
(t (a)w).

Thus the integral on the right side of formula (3-5) can be taken over P−6L . For
a ∈ P−6L and m ≥ 6L (as we assumed), by the calculation given in the proof of
Lemma 3.9, we have

(ωψ−1(w)φm)(a)= γ (ψ−1)ψ−1(2a) vol(Pm)Char(P−m)(a)

= γ (ψ−1)ψ−1(2a)q−m .

Plugging this into (3-5) we get

(3-6) q−kγ (ψ−1)−1(γ (s, π, η, ψ)− γ (s, π ′, η, ψ))

=

∫
F×
(Wvk (t (a)w)−Wv′k

(t (a)w))ψ−1(2a)χ(a)η−1(a)|a|−sda.

Now we can prove our theorem. We consider (1) first. Suppose γ (s, π, η, ψ)=
γ (s, π ′, η, ψ) for all quasicharacters η of F×. Then we get∫

F×
(Wvk (t (a)w)−Wv′k

(t (a)w))ψ−1(2a)χ(a)η−1(a)|a|−sda = 0

for all quasicharacters η.
We rewrite the equality as

0=
∫

F×
(Wvk (t (a)w)−Wv′k

(t (a)w))ψ−1(2a)χ(a)η−1(a)|a|−sda

=

∞∑
m=−∞

∫
|a|=qm

(Wvk (t (a)w)−Wv′k
(t (a)w))ψ−1(2a)χ(a)η−1(a)daq−ms .
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It follows that all the coefficients in the above Laurent series in qs have to be
zero. So

(3-7)
∫
|a|=qm

(Wvk (t (a)w)−Wv′k
(t (a)w))ψ−1(2a)χ(a)η−1(a)da = 0

for all quasicharacters η.
Since the set {a ∈ F× : |a| = qm

} is compact open in F×, the left side of
equation (3-7) can be viewed as Mellin transform of a compactly supported function
on F×. By the inverse Mellin transform we get

(Wvk (t (a)w)−Wv′k
(t (a)w))ψ−1(2a)= 0,

or

Wvk (t (a)w)=Wv′k
(t (a)w).

By Lemmas 3.1 and 3.6, Corollary 3.5 and the Bruhat decomposition SL2(F)=
B ∪ BwB we get

Wvk (g)=Wv′k
(g)

for all g ∈ SL2(F). By the uniqueness of Whittaker model we get π ∼= π ′. This
proves (1).

Next we consider (2). Let l = l(π, π ′) be an integer such that l ≥ 6L , then

Wvk (t (a0a)w)=Wvk (t (a)w) and Wv′k
(t (a0a)w)=Wv′k

(t (a)w)

for all a0 ∈ 1 + Pl and all a ∈ P−6L . Such an l exists because the functions
a 7→Wvk (t (a)w) and a 7→Wv′k

(t (a)w) on P−6L
⊂ F× are continuous. Note that

k = 4L and L only depends on the choices of v and v′. On the other hand, for
a ∈ P−6L , it is easy to see that

ψ−1(2a0a)= ψ−1(2a) for all a0 ∈ 1+Pl,

since l ≥ 6L . It is also clear that χ(a0a) = χ(a) for all a0 ∈ 1+Pl , since the
character χ is unramified. As we noted before, the integrand of the right side integral
of (3-6) has support in P−6L . Let η be a quasicharacter of F× with cond(η) > l.
Then it is clear that the integral of the right side of (3-6) vanishes. Thus we get

γ (s, π, η, ψ)= γ (s, π ′, η, ψ).

This finishes the proof when ψ is unramified.
Now let us consider the general case when ψ is ramified. The proof is essentially

the same as the unramified case. We will indicate the necessary changes in the
above proof. If ψ has conductor c, i.e., ψ(Pc

F ) = 1 but ψ(Pc−1
F ) 6= 1, we define
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dm = diag(p−2m+c
F , 1) ∈ GL2(F) and Jm = dm Kmd−1

m . Then

Jm =

(
1+Pm

F P−m+c
F

P3m−c
F 1+Pm

F

)
∩SL2(F).

For j = ( jil)1≤i,l≤2 ∈ Jm we define ψm( j)= ψ( j12). It is clear that ψm defines a
character of Jm . Given a ψ-generic representation (π, V ) of SL2(F) and a vector
v ∈ V we define vm in the same way as before, i.e., by (3-1). In this case, we fix
an integer L such that L ≥ c and v is fixed by KL . We call {vm}m≥L the Howe
vectors. We note that in the proof of Lemma 3.8, we used that ψ is unramified to
make sure µψ−1 is trivial on O×F . If ψ is ramified, by continuity, µψ−1 is trivial on
1+Pi

F for i large. This is all what we need in the proof of Lemma 3.8 to extend
it to the ramified case. Now one can check easily that all of the above proofs go
through and we get the theorem in general. �

4. A strong multiplicity one theorem

Let F be a number field and A be its adele ring.

4A. Global genericity. In this subsection we discuss the relation between global
genericity and local genericity. Let ϕ be a cusp form on SL2(F) \ SL2(A). Since
the group N (F) \ N (A) is compact and abelian we have the Fourier expansion

ϕ(g)=
∑

ψ∈ ̂N (F)\N (A)

Wψ
ϕ (g),

where
Wψ
ϕ (g)=

∫
N (F)\N (A)

ϕ(ng)ψ−1(n)dg.

Since ϕ is a cusp form we get Wψ0
ϕ ≡ 0, where ψ0 is the trivial character of F \A.

Thus we get
ϕ(g)=

∑
ψ∈ ̂N (F)\N (A)

ψ 6=ψ0

Wψ
ϕ (g).

Fix a nontrivial additive character ψ of N (F) \ N (A). Then

( ̂N (F) \ N (A)) \ {ψ0} = {ψκ : κ ∈ F×},

where ψκ(a)= ψ(κa) and a ∈ A. If κ ∈ F×,2, say κ = a2, we have

Wψκ
ϕ (g)=Wψ

ϕ (t (a)g).

Thus we get
ϕ(g)=

∑
κ∈F×/F×,2

∑
a∈F×

Wψκ
ϕ (t (a)g).
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Corollary 4.1. If ϕ is a nonzero cusp form, there exists κ ∈ F× such that

Wψκ
ϕ 6= 0.

Let (π, Vπ ) be a cuspidal automorphic representation of SL2(F) \ SL2(A). We
say π is ψκ -generic if there exists ϕ ∈ Vπ such that

Wψκ
ϕ 6≡ 0.

Corollary 4.2. Let π be a cuspidal automorphic representation of SL2(F)\SL2(A)

and ψ be a nontrivial additive character of F \A. Then there exists κ ∈ F× such
that π is ψκ -generic.

Theorem 4.3. Let π=⊗vπv be an irreducible cuspidal automorphic representation
of SL2(A) and ψ = ⊗ψv be a nontrivial additive character of F \A. Then π is
ψ-generic if and only if each πv is ψv-generic.

Proof. A similar result is proved for U(1, 1) by Gelbart, Rogawski and Soudry
[1997, Proposition 2.5].

It is clear that global genericity implies local genericity. Now we consider the
other direction. We assume each πv is ψv-generic.

We assume π is ψκ -generic for some κ ∈ F×, i.e., there exists ϕ ∈ Vπ such that

Wψκ
ϕ (g)=

∫
N (F)\N (A)

ϕ(ng)ψ−1
κ (n)dn 6= 0.

Then πv is also ψκ,v-generic, where ψκ,v(a) = ψv(κa). By Proposition 2.1 we
get πv ∼= πκv .

For ϕ ∈ Vπ consider the function ϕκ(g)= ϕ(gκ), where gk is defined by

gκ = diag(κ, 1)g diag(κ−1, 1).

Then∫
N (F)\N (A)

ϕκ(ng)dn =
∫

N (F)\N (A)
ϕ((ng)κ)dn =

∫
N (F)\N (A)

ϕ(nκgκ)dn

=

∫
N (F)\N (A)

ϕ(ngκ)dn = 0,

hence ϕκ is also a cusp form. Let V κ
π be the space which consists of functions of

the form ϕκ for all ϕ ∈ Vπ . Let πκ denote the cuspidal automorphic representation
of SL2(A) on V κ

π .

Claim. (πκ)v = πκv .

Proof. Let 3 : Vπ → C be a nonzero ψκ -Whittaker functional for π and let 3v be
a nonzero (ψκ)v-Whittaker functional on Vπv satisfying that if ϕ =⊗vϕv is a pure
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tensor, then
3(π(g)ϕ)=

∏
v

3v(πv(gv)ϕv).

Note that 3 is in fact given by

3(ϕ)=

∫
N (F)\N (A)

ϕ(n)ψ−1
κ (n)dn.

Then the ψκ2-Whittaker functional of πκ is given by∫
N (F)\N (A)

ϕκ(n)ψ−1
κ2 (n)dn.

This means that if Wϕ(g) is a ψκ -Whittaker function of π , then Wϕκ (g)=Wϕ(gκ)
is a ψκ2-Whittaker function of πκ .

Hence, with ϕ = ⊗vϕv a pure tensor, we have Wϕ(g) =
∏
v Wϕv (gv) and

{Wϕv (gv)} is the Whittaker model of πv, while Wϕκ (g)= Wϕ(gκ)=
∏
v Wϕv (g

κ
v )

and {Wϕv (g
κ
v )} is the Whittaker model of (πκ)v . Now Wv(gv)→Wv(gκv ) gives an

isomorphism between πκv and (πκ)v, which proves the claim. �

Now let us continue the proof of the theorem. By the claim we have πv ∼= (πκ)v
or π ∼= πκ . By the multiplicity one theorem for SL2 of Ramakrishnan [2000]
we get π = πκ . Since π is ψκ -generic we get that πκ is ψκ2-generic and hence
ψ-generic. Since π = πκ the theorem follows. �

4B. Eisenstein series on S̃L2(A). Let S̃L2(A) be the double cover of SL2(A). It
is well-known that SL2(F) splits over the projection S̃L2(A)→ SL2(A). Let µψ
be the genuine character of T (F) \ T̃ (A) whose local components are µψv as given
in §2.

Let η be a quasicharacter of F× \ A× and s ∈ C. We consider the induced
representation

I (s, χ, ψ)= IndS̃L2(A)

B̃(A)
(µψηs−1/2).

For fs ∈ I (s, η, ψ) we consider the Eisenstein series E(g, fs) on S̃L2(A):

E(g, fs)=
∑

B(F)\SL2(F)

fs(γ g), g ∈ S̃L2(A).

The above sum is absolutely convergent when Re(s)� 0 and can be meromorphi-
cally continued to the whole s-plane.

There is an intertwining operator Ms=Ms(η) : I (s, η, ψ)→ I (1−s, η−1, ψ)with

Ms( fs)(g)=
∫

N (F)\N (A)
fs(wng)dn.
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The above integral is absolutely convergent for Re(s)�0 and defines a meromorphic
function of s ∈ C.

Proposition 4.4. (1) If η2
6= 1, then the Eisenstein series E(g, fs) is holomorphic

for all s. If η2
= 1, the only possible poles of E(g, fs) are at s = 0 and s = 1.

Moreover, the order of the poles are at most 1.

(2) We have the functional equation

E(g, fs)= E(g,Ms( fs)) and Ms(η) ◦M1−s(η
−1)= 1.

See [Gan et al. 2014, Proposition 6.1] for example.

4C. The global zeta-integral. Let ψ be a nontrivial additive character of F \A.
Then there is a global Weil representation ωψ of S̃L2(A) on S(A). For φ ∈ S(A)

we consider the theta series

θψ(φ)(g)=
∑
x∈F

(ωψ(g)φ)(x).

It is well-known that θψ defines an automorphic form on S̃L2(A).
Let (π, Vπ ) be a ψ-generic cuspidal automorphic representation of SL2(A). For

ϕ ∈ Vπ , φ ∈ S(A) and fs ∈ I (s, η, ψ−1) consider the integral

(4-1) Z(ϕ, θψ−1(φ), E( · , fs))=

∫
SL2(F)\SL2(A)

ϕ(g)θψ−1(φ)(g)E(g, fs)dg.

Proposition 4.5 [Gelbart et al. 1987, Theorem 4.C]. For Re(s)� 0, the integral
Z(ϕ, θψ−1(φ), E( · , fs)) is absolutely convergent and

Z(ϕ, θψ−1(φ), E( · , fs))=

∫
N (A)\SL2(A)

Wψ
ϕ (g)(ωψ−1(g))φ(1) fs(g)dg,

where Wψ
ϕ (g)=

∫
N (F)\N (A) ϕ(ng)ψ−1(n)dn is the ψ-th Whittaker coefficient of ϕ.

Corollary 4.6. We take ϕ = ⊗ϕv, φ = ⊗vφv and fs = ⊗ fs,v to be pure tensors.
Let S be a finite set of places such that for all v /∈ S, v is finite and πv , ψv , fs,v are
unramified. Then for Re(s)� 0 we have

Z(ϕ, θψ−1(φ), E( · , fs))=
∏
v∈S

9(Wϕv , φv, fs,v)
L S(s, π, St ⊗ (χη))

L S(2s, η2)
,

where χ is the character of F× \A× defined by

χ((av))=
∏
v

(av,−1)Fv , (av)v ∈ A×.

Moreover, we have the following functional equation

Z(ϕ, θψ−1(φ), E( · , fs))= Z(ϕ, θψ−1(φ), E( · ,Ms( fs))).
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This follows directly from Proposition 2.2, the unramified calculation, and the
functional equation of Eisenstein series in Proposition 4.4.

Corollary 4.7. (1) The partial L-function L S(s, π, St ⊗χη) can be extended to
a meromorphic function of s.

(2) If η2
6= 1, then L S(s, π, St ⊗χη) is holomorphic for Re(s) > 1/2.

(3) If η2
= 1, then, on the region Re(s) > 1/2, the only possible pole of the

function L S(s, π, St ⊗ χη) is at s = 1. Moreover, the order of the pole of
L S(s, π, St ⊗ (χη)) at s = 1 is at most 1.

(4) Let S∞ be the set of infinity places of F , then we can find data ϕv ∈ Vπv ,
φv ∈ S(Fv) and fs,v ∈ I (s, ηv, ψv) for v ∈ S∞ such that

L S(s, π, St ⊗ (χη))
L S(1− s, π, St ⊗ (χη−1))

=

∏
v∈S∞

9(Wϕv , φv,Ms( fs,v))

9(Wϕv , φv, fs,v)
·

∏
v∈S−S∞

γ (s, πv, ηv, ψv) ·
L S(2s− 1, η2)

L S(2− 2s, η−2)
,

where S is a large enough finite set of places which contains S∞, all finite
places v such that v|2 and all finite places such that our data is ramified. Here
γ (s, πv, ηv, ψv) is the local gamma factors defined in Proposition 2.2.

Proof. By Proposition 4.4 and Corollary 4.6 to prove (1)-(3) it suffices to show that,
for each place v and for any fixed point s ∈C, we can choose the data (Wv, φv, fs,v)

such that 9(Wϕv , φv, fs,v) 6= 0. If v is nonarchimedean this is shown in the proof
of Theorem 3.10, see equation (3-2). We will prove the general case later, see
Lemma 4.9. We now consider (4). For s ∈ C with Re(s) � 0 we choose data
ϕ =⊗ϕv, φ =⊗φv and fs=⊗ fs,v such that 9(Wϕv , φv, fs,v) 6= 0 for each v ∈ S
and ϕv, φv, fs,v and ψv are unramified for v /∈ S. By the Remark at the end of §2,
for v /∈ S, we have

Ms( fs,v)=
L(2s− 1, η2

v)

L(2s, η2
v)

f1−s,v.

Thus, by Corollary 4.6, for Re(s)� 0 we have

Z(ϕ, θψ−1(φ), E( · ,Ms( fs)))

=

∏
v∈S

9(Wϕv , φv,Ms( fs,v))
L S(1− s, π, St ⊗ (χη−1))

L S(2− 2s, η−2)
·

L S(2s− 1, η2)

L S(2s, η2)
.

Note that the above equation also holds after meromorphic continuation. Now (4)
follows from Corollary 4.6 and Proposition 2.2 directly. �
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4D. A strong multiplicity one theorem. With the above preparation, we are now
ready to prove the main global result of this paper.

Theorem 4.8. Let π =⊗πv and π ′=⊗π ′v be two irreducible cuspidal automorphic
representations of SL2(A) with the same central character. Suppose that π and π ′

are both ψ-generic. Let S be a finite set of finite places such that no place in S is
above 2. If πv ∼= π ′v for all v /∈ S, then π = π ′.

Proof. The following argument follows from the proof of [Casselman 1973, Theo-
rem 2, p. 307].

Let S1 be a large finite set of places which contains S∞ ∪ S. Since πv ∼= π ′v
for all v /∈ S, we have L S1(s, π, St ⊗ (χη)) = L S1(s, π ′, St ⊗ (χη)) and L S1(1−
s, π, St ⊗ (χη−1)) = L S1(1− s, π, St ⊗ (χη−1)). Thus, by Corollary 4.7 (4), for
each quasicharacter η, we can find data ϕv ∈ Vπv , φv ∈ S(Fv) and fs,v for v ∈ S∞
such that∏
v∈S∞

9(Wϕv , φv,Ms( fs,v))

9(Wϕv , φv, fs,v)
·

∏
v∈S1−S∞

γ (s, πv, ηv, ψv)

=

∏
v∈S∞

9(Wϕ′v
, φv,Ms( fs,v))

9(Wϕ′v
, φv, fs,v)

·

∏
v∈S1−S∞

γ (s, π ′v, ηv, ψv),

where ϕ′v is the image of ϕv under a fixed isomorphism πv ∼= π
′
v for v ∈ S∞. Since

πv ∼= π
′
v for v ∈ S1− S, we get∏

v∈S

γ (s, πv, ηv, ψv)=
∏
v∈S

γ (s, π ′v, ηv, ψv).

Fix v0 ∈ S. By [Jacquet and Langlands 1970, Lemma 12.5], given an arbitrary
character ηv0 , we can find a character η of A× which restricted to v0 is ηv0 and
has arbitrarily high conductor at the other places of S. By Theorem 3.10 (2) we
conclude that

γ (s, πv0, ηv0, ψv0)= γ (s, π
′

v0
, ηv0, ψv0)

for all characters ηv0 . Thus, by Theorem 3.10 (1), we conclude that πv0
∼= π ′v0

.
This applies also to the other places of S. Thus we proved that πv ∼= π ′v for all
places v. Now the theorem follows from the multiplicity one theorem for SL2 of
[Ramakrishnan 2000]. �

Remark. We expect that the restriction about residue characteristics on the finite
set S in Theorem 4.8 can be removed.

Finally, we prove a nonvanishing result about the archimedean local zeta-integrals
which is used in the above proof. We formulate and prove the result both for the
p-adic and the archimedean cases simultaneously.
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Lemma 4.9. Let F be a local field, ψ be a nontrivial additive character of F , η
be a quasicharacter of F× and π be a ψ-generic representation of SL2(F). Then
there exists W ∈W(π, ψ), φ ∈ S(F) and fs ∈ IndS̃L2(F)

B̃
(ηs−1/2µψ) such that

9(W, φ, fs)=

∫
N (F)\SL2(F)

W (h)(ωψ−1φ)(h) fs(h) 6= 0.

Proof. We note that the Bruhat cell�=N (F)TwN (F) is open and dense in SL2(F).
Thus the above integral is reduced to

9(W, φ, fs)

=

∫
TN (F)

W (wt (a)n(u))(ωψ−1(wt (a)n(u))φ)(1) fs(wt (a)n(u))1(a)dadu,

where 1(a)= |a|−2.
Using the formulas for the Weil representation ωψ−1 we find

(ωψ−1(wt (a)n(u))φ)(x)

= |a|1/2
γ (ψ−1)

γ (ψ−1
a )

∫
F
ψ(ua2 y2)φ(ay)ψ(2xy)dy = |a|1/2

γ (ψ−1)

γ (ψ−1
a )

8̂a,u(x),

where 8a,u(x) = ψ(ua2x2)φ(ax) which is again a Schwartz function on F and
depends continuously on a and u.

We next explain that the set {(g, 1) : g ∈ N (F)TwN (F)}, still denoted as �, is
open in S̃L2(F). Note that there is a double covering map p : S̃L2(F)→ SL2(F).
For any (g, 1) ∈� its projection under p is g. As p is a covering map there exists
an open neighborhood Ug of g contained in N (F)TwN (F) such that p−1(Ug) is a
disjoint union of two open subsets of S̃L2(F), each is homeomorphic to Ug by p.
Then one component of p−1(Ug) is an open neighborhood of (g, 1) in �, which
shows that � is open in S̃L2(F).

Now define fs ∈ I (s, η, ψ−1) on the set {(g, 1) : g ∈ SL2(F)} by

fs(g)=
{
δ(b)1/2(ηs−1/2µψ−1)(b) f2(u) if g = bwn(u) ∈�,
0 otherwise,

where b ∈ B(F) = TN (F), u ∈ F and f2 is a compactly supported function to
be determined later. Then we extend the definition of f2 to the set {(g,−1) :
g ∈ SL2(F)} to make it genuine, i.e., fs(g,−1)=−1 fs(g, 1).

Then the integral 9 can be reduced further to

(4-2) 9(W, φ, fs)

=

∫
TN (F)

W (wau)|a|1/2
γ (ψ−1)

γ (ψ−1
a )

8̂a,u(1)δ(a)1/2(ηs−1/2µψ−1)(a)

· f2(u)1(a)dadu.
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Case 1 (F is p-adic). Consider the Howe vector Wvm . By Corollary 3.4, taking m
large enough, Wvm can have arbitrarily small compact open support around 1 when
restricted to T . Then Ww.vm (t (a

−1)w) has small compact open support around a=1.
First choose φ so that 8̂a,u(1) 6= 0 when a = 1, u = 0. Then choose m so

that Ww.vm (wt (a)) = Ww.vm (t (a
−1)w) has small compact support around 1 and

all the other data involving a in the integral (*) are nonzero constants. For this
Ww.vm , consider Ww.vm (wt (a)u) with u ∈ N . When u is close to 1 enough, we have
Ww.vm (wt (a)u)=Ww.vm (wt (a)) for all a in that small compact support around 1.
Then take f2 with support u close to 1 satisfying the above. With these choices of
Ww.vm (g), f2, φ, the integral (4-2) is nonzero.

Case 2 (F is archimedean). We will concentrate on the case F = R. The case
F = C is similar as we have the same formulas for the Weil representation by
[Jacquet and Langlands 1970, Proposition 1.3]. We begin with the formulas

(4-3) 9(W, φ, fs)

=

∫
TN (F)

W (wau)|a|1/2
γ (ψ−1)

γ (ψ−1
a )

8̂a,u(1)δ(a)1/2(ηs−1/2µψ−1)(a)

· f2(u)1(a)dadu,

where 8a,u(x) = ψ(ua2x2)φ(ax) is again a Schwartz function, as is φ, and it
depends on a and u continuously. Since the Fourier transform is an isometry of the
Schwartz space we can choose φ so that the Fourier transform 8̂a,u(1) > 0 when
a = 1 and u = 0, and it depends on a and u continuously.

Now let (π, V ) be an irreducible generic smooth representation of SL2(R) of
moderate growth. Realize π as a quotient of a smooth principal series I (χ, s), i.e.,

0→ V ′→ I (χ, s)→ V → 0.

Let λ : V → C be the unique nonzero continuous Whittaker functional on V . Then
the composition

3 : I (χ, s)−→ V λ
−→C

gives the unique nonzero continuous Whittaker functional on I (χ, s) up to a scalar.
It follows that the two spaces {λ(π(g)v) : g ∈ SL2(F), v ∈ V } and {3(R(g). f ) :
g ∈ SL2(F), f ∈ I (χ, s)} are the same, although the first is the Whittaker model
of π while the later may not be a Whittaker model of I (χ, s).

The Whittaker functional on I (χ, s) is given by the following

3( f )=
∫

N (F)
f (wu)ψ−1(u)du,

when s is in some right half plane and its continuation gives Whittaker functionals
for all I (χ, s). Also when f has support inside � = N (F)TwN (F) the above
integral always converges for any s and gives the Whittaker functional.
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Now for such f one computes that, for a = t (a) ∈ T ,

3(I (a). f )=
∫

N (F)
f (wua)ψ−1(u)du = χ ′(a)

∫
F

f (wu)ψ−1(a2u)du

= χ ′(a)
∫

F
f1(u)ψ−1(a2u)du = χ ′(a) f̂1(a2),

where f1 is the restriction of f to wN which can be chosen to be a Schwartz
function, f̂1 is its Fourier transform and χ ′ is a certain character. Again, as the
Fourier transform gives an isometry of Schwartz functions, we can always choose f
so that its Whittaker function W f (a) has arbitrarily small compact support around 1.
By a right translation byw we show that one can always choose f so that Ww. f (aw)
has small compact support around 1.

In order to prove the proposition note that we have chosen 8. Let

R(a, u)= |a|1/2
γ (ψ−1)

γ (ψ−1
a )

8̂a,u(1)δ(a)1/2(ηs−1/2µψ−1)(a)1(a).

Then R(a, u) is a continuous function of a and u, and R(1, 0) 6= 0. This means
that there exist neighborhoods U1 of a = 1 and U2 of u = 0, such that R(a, u) >
R(1, 0)/2> 0 for all a ∈U1 and u ∈U2.

Now choose f so that Ww. f (aw) has small compact support in a neighborhood
V1 of 1 with V1 ⊂ U1 and Ww. f (w) > 0. For this Whittaker function, since
Ww. f (awu) is continuous on u, we can choose f2 so that it is positively supported
in a neighborhood V2 of 0 such that:

(1) V2 ⊂U2.

(2) Ww. f (awu) > Ww. f (w)/2> 0 for all u ∈ V2.

Then (4-3) becomes∫
Ww. f (awu)R(a, u) f2(u)dadu >

Ww. f (w)

2
R(1, 0)

2

∫
V1

∫
V2

f2(u)dadu > 0,

which proves the nonvanishing. �
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THE YAMABE PROBLEM ON NONCOMPACT CR MANIFOLDS

PAK TUNG HO AND SEONGTAG KIM

Let .M; �/ be a noncompact complete strictly pseudoconvex CR manifold of
real dimension 2nC1� 3 with positive Webster scalar curvature. We show
that there exists a conformal contact form Q� D u2=n� with positive constant
Webster scalar curvature if the CR-Yamabe invariant Y.M; �/ of .M; �/ is
positive and strictly less than the CR-Yamabe invariant at infinity Y.M; �/.

1. Introduction

Suppose that .M;g/ is a compact Riemannian manifold of dimension n� 3. As
a generalization of the uniformization theorem, the Yamabe problem is to find a
metric conformal to g such that its scalar curvature is constant. This was solved by
Trudinger [1968], Aubin [1976] and Schoen [1984]. The uniqueness of the solution
of the Yamabe problem was studied in [Kazdan and Warner 1975; Lou 1998]. See
the survey article [Lee and Parker 1987] for more about the Yamabe problem. See
also [Brendle 2005; 2007; Chow 1992; Schwetlick and Struwe 2003; Ye 1994] for
results related to the Yamabe flow, which is the geometric flow introduced to study
the Yamabe problem.

The Yamabe problem was also studied on complete noncompact Riemannian
manifolds. In this case, there is a simple counterexample such that the Yamabe
problem does not have a solution (see [Jin 1988]). See also [Aviles and McOwen
1988; Bland and Kalka 1989; Große and Nardmann 2014; Kim 1997; 2000; Zhang
2003] and references therein for results related to the Yamabe problem on noncom-
pact Riemannian manifolds. In particular, we mention the following result which is
related to our main theorem. If .M;g/ is a noncompact Riemannian manifold with
positive scalar curvature Rg, we define

Y .M;g/D inf
u2C1

0
.M /

Z
M

jrguj2C
n�2

4.n�1/
Rgu2 dVg�Z

M

u
2n

n�2 dV�

�n�2
n

MSC2010: primary 32V20, 53C21; secondary 32V05, 58J05.
Keywords: CR manifolds, CR Yamabe problem, Webster scalar curvature, conformal changes,

noncompact complete manifolds.
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and

Y .M;g/D lim
r!1

inf
u2C1

0
.M�Br /

Z
M�Br

jrguj2C
n�2

4.n�1/
Rgu2 dVg�Z

M�Br

u
2n

n�2 dVg

�n�2
n

;

where r is the distance induced by the Riemannian metric g from x to a fixed
point x0 in M, and Br is the ball of radius r centered at x0. The second author
[Kim 1996] proved the following:

Theorem 1.1. Suppose .M;g/ is a noncompact Riemannian manifold with positive
scalar curvature with 0 < Y .M;g/ < Y .M;g/. Then there exists a Riemannian
metric conformal to g which has positive constant scalar curvature.

The Yamabe problem can also be formulated in the context of CR manifolds.
Suppose that .M; �/ is a compact strictly pseudoconvex CR manifold of real
dimension 2nC1 with a given contact form �. The CR Yamabe problem is to find a
contact form conformal to � such that its Webster scalar curvature is constant. This
was introduced by Jerison and Lee [1987], and was solved by them for the case
when n � 2 and M is not locally CR equivalent to the sphere S2nC1 in [Jerison
and Lee 1987; 1988; 1989]. The remaining cases, namely when nD 1 or when M

is locally CR equivalent to the sphere, were studied respectively in [Gamara and
Yacoub 2001] and in [Gamara 2001]. See also the recent work of Cheng, Chiu and
Yang [Cheng et al. 2014] and Cheng, Malchiodi and Yang [Cheng et al. 2013] for
the study of these two cases. The uniqueness of the solution of the CR Yamabe
problem was studied in [Ho 2013; Jerison and Lee 1987]. On the other hand, the
CR Yamabe flow, the geometric flow introduced to study the CR Yamabe problem,
was studied in [Chang and Cheng 2002; Chang et al. 2010; Ho 2012; 2015].

In this paper, we study the CR Yamabe problem on noncompact manifolds.
We suppose that .M; �/ is a noncompact strictly pseudoconvex CR manifold of
real dimension 2nC 1 such that its Webster scalar curvature R� is positive. We
would like to find another contact form conformal to � such that its Webster scalar
curvature is constant. This is equivalent to finding a positive solution to the equation

(1-1) ���uC
n

2nC 2
R�uD qu1C 2

n ;

where q is a positive constant. We define

Y .M; �/D inf
u2C1

0
.M /

Z
M

jr�uj2C
n

2nC2
R�u2 dV��Z

M

u2C 2
n dV�

� n
nC1
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and

Y .M; �/D lim
r!1

inf
u2C1

0
.M�Br /

Z
M�Br

jr�uj2C
n

2nC2
R�u2 dV��Z

M�Br

u2C 2
n dV�

� n
nC1

;

where r� is the subgradient with respect to �, dV� D � ^ .d�/
n is the volume form

of �, r is the Carnot–Carathéodory distance from x to a fixed point x0 2M with
respect to the contact form �, and Br is the ball of radius r centered at x0. We refer
readers to the book [Dragomir and Tomassini 2006] or the paper [Jerison and Lee
1987] for more about the definitions and concepts related to CR manifolds.

Note that Y .M; �/ is well defined. Indeed, if we let

f .r/D inf
u2C1

0
.M�Br /

Z
M�Br

jr�uj2C
n

2nC2
R�u2 dV��Z

M�Br

u2C 2
n dV�

� n
nC1

;

then it follows from the definition that f .r/ is nondecreasing as a function of r.
Since f .r/ is bounded above by Y .S2nC1; �S2nC1/, limr!1 f .r/ exists.

The following is our main theorem, which is the CR version of Theorem 1.1.

Theorem 1.2. Let .M; �/ be a noncompact strictly pseudoconvex CR manifold of
real dimension 2nC 1� 3 with positive Webster scalar curvature. Assume that

0< Y .M; �/ < Y .M; �/:

Then there exists a positive solution u of (1-1). That is, the contact form u2=n�

conformal to � has positive constant Webster scalar curvature.

2. Proof

Since we have assumed that

0< Y .M; �/ < Y .M; �/ .� Y .S2nC1; �S2nC1//;

there exists a sequence of smooth compact domains Ki such that Y .Ki ; �/ <

Y .M; �/ with Ki � KiC1 satisfying
S

Ki D M. Using the work on the CR
Yamabe problem in the compact case (see [Jerison and Lee 1987]) for 2nC 1� 3,
we have a positive smooth function ui on each Ki with

(2-1) ���ui C
n

2nC 2
R�ui D qiu

1C 2
n

i on Ki ;



378 PAK TUNG HO AND SEONGTAG KIM

ui D 0 on @Ki and

(2-2)
Z

Ki

u
2C 2

n

i dV� D 1;

where

qi D Y .Ki ; �/! Y .M; �/ as i !1:

We extend the domain of ui by defining ui D 0 outside Ki , and we still denote
its extension by ui . Then the extension of ui is in S2

1
.M; �/, the completion of

C1
0
.M / with the norm

kuk2
S2

1
.M;�/

D

Z
M

jr�uj2C
n

2nC 2
R�u2 dV� :

For sufficiently large i, let zK and K0 be fixed smooth compact subsets of M with
zK � K0 � Ki . We shall show that

R
zK

u
.1Cb/.2C2=n/
i dV� is uniformly bounded

for some positive b. The constant c.�/ in the Sobolev embedding for ui on a
noncompact complete Riemannian manifold depends on the domain and does not
have to be uniformly bounded (see (2-7)); therefore the Sobolev embedding is
not directly applicable in (6) of [Kim 1996]. However, the Sobolev embedding
holds for ui' on a fixed domain K0, where ' is a cutoff function supported in K0.
The uniform bound of ui in L.1Cb/.2C2=n/. zK/ can be obtained on each compact
subset zK, by applying the same method of [Kim 1996] to ui'. The detailed proof
for the CR case is provided in the following steps.

Take

�D fx 2K0 j ui.x/� 1g

with

Y .K0; �/ < Y .S2nC1; �S2nC1/:

Then

(2-3) j�j D

Z
�

dV� < 1

by (2-2). Now let ui D 1Cwi . Then

(2-4) �D fx 2K0 j wi.x/� 0g

by definition, for sufficiently large i, and (2-1) is equivalent to

(2-5) ���wi C
n

2nC 2
R� .1Cwi/D qi.1Cwi/

1C 2
n on Ki :
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Take a smooth cutoff function ' 2 C1
0
.K0/ with ' � 1 on zK and j'j � 1 on K0.

Multiplying (2-5) by '2C2bw1C2b
i , where b > 0, and integrating it over �, we get

(2-6)

qi

Z
�

'2C2bw1C2b
i .1Cwi/

1C 2
n dV�

D �

Z
�

'2C2bw1C2b
i ��wi dV�C

n

2nC2

Z
�

R� .1Cwi/'
2C2bw1C2b

i dV�

D

Z
�

1C2b

.1Cb/2
'2C2b

jr� .w
1Cb
i /j2C

2

1Cb
'1Cbw1Cb

i r�w
1Cb
i �r�'

1Cb dV�

C
n

2nC2

Z
�

R� .1Cwi/w
1C2b
i '2C2b dV�

�

Z
�

1C2b��1

.1Cb/2
'2C2b

jr� .w
1Cb
i /j2�

1

�1

jr�'
1Cb
j
2w2C2b

i dV�

C
n

2nC2

Z
�

R� .1Cwi/w
1C2b
i '2C2b dV� ;

where we used integration by parts, Hölder’s inequality and (2-4).
We are going to estimate the terms on the right-hand side of (2-6). Applying

(A-1) in the Appendix for 'wi 2 C1
0
.�/, where ��Ki �M, we obtain that for

any given � > 0, there exists C.�/, which depends on the given domain �, such that

(2-7)�Z
�

.'1Cbw1Cb
i /2C

2
n dV�

� n
nC1

�
1C�

Y .S2nC1; �S2nC1/

Z
�

jr� .'
1Cbw1Cb

i /j2 dV�CC.�/

Z
�

.'1Cbw1Cb
i /2 dV�

�
1C�

Y .S2nC1; �S2nC1/

Z
�

.1C�2/'
2C2b
jr�w

1Cb
i j

2

C
1

�2
w2C2b

i jr�'
1Cb
j
2 dV�CC.�/

Z
�

.'1Cbw1Cb
i /2 dV�

�
1C�

Y .S2nC1; �S2nC1/

�Z
�

.1Cb/2.1C�2/

1C2b��1

�

�
qi'

2C2bw1C2b
i .1Cwi/

1C 2
n C

1

�1
jr�'

1Cb
j
2w2C2b

i

�
n

2nC2
R� .1Cwi/w

1C2b
i '2C2b

�
C

1

�2
w2C2b

i jr�'
1Cb
j
2 dV�

�
CC.�/

Z
�

.'1Cbw1Cb
i /2 dV� ;
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where we have used (2-6) in the last inequality. Now let �1 D fx 2� j wi � 2g

and �2 D ���1. Let a D 1C 2=n and x D 1=wi . Note that if wi 2 �1, i.e.,
wi � 2, then jxj � 1

2
and

(2-8) .1Cwi/
a
�wa

i D w
a
i

�
1C

1

wi

�a
�wa

i

D wa
i .1Cx/a�wa

i

D wa
i

�
1C axC 1

2
a.a� 1/x2

C � � � � 1
�

� c1w
2=n
i

for some constant c1. Using (2-8), the integral in (2-7) can be estimated as follows:

(2-9)�Z
�

.'1Cbw1Cb
i /2C

2
n dV�

� n
nC1

�
1C �

Y .S2nC1; �S2nC1/

 
.1C b/2.1C �2/

1C 2b� �1

�

�Z
�1

qi'
2C2bw

2C2bC 2
n

i CC'2C2bw
1C2bC 2

n

i dV�

C

Z
�2

qi'
2C2bw1C2b

i .1Cwi/
1C 2

n dV�

C

Z
�

1

�1

jr�'
1Cb
j
2w2C2b

i

�
n

2nC 2
R� .1Cwi/w

1C2b
i '2C2b dV�

�
C

Z
�

1

�2

w2C2b
i jr�'

1Cb
j
2 dV�

!

CC.�/

Z
�

.'1Cbw1Cb
i /2 dV� :

By Hölder’s inequality, we have

(2-10)
Z
�

'2C2bw
2C2bC 2

n

i dV�

�

�Z
�

.'1Cbw1Cb
i /2C

2
n dV�

� n
nC1
�Z

�

w
2
n
.nC1/

i dV�

� 1
nC1

�

�Z
�

.'1Cbw1Cb
i /2C

2
n dV�

� n
nC1

;
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where the last inequality follows fromZ
�

w
2C 2

n

i dV� �

Z
�

u
2C 2

n

i dV� � 1

by (2-2) and the definition of wi and �. Since �1 ��, we can combine (2-9) and
(2-10) to get

(2-11)�Z
�

.'1Cbw1Cb
i /2C

2
n dV�

� n
nC1

�
1C�

Y .S2nC1; �S2nC1/

�

 
.1Cb/2.1C�2/

1C2b��1

�

 
qi

�Z
�

.'1Cbw1Cb
i /2C

2
n dV�

� n
nC1

CC

Z
�1

'2C2bw
1C2bC 2

n

i dV�

C

Z
�2

qi'
2C2bw1C2b

i .1Cwi/
1C 2

n dV�C

Z
�

1

�1

jr�'
1Cb
j
2w2C2b

i

�
n

2nC2
R� .1Cwi/w

1C2b
i '2C2b dV�

!

C

Z
�

1

�2

w2C2b
i jr�'

1Cb
j
2 dV�

!
CC.�/

Z
�

.'1Cbw1Cb
i /2 dV� :

Since qi < Y .K0; �/ < Y .M; �/� Y .S2nC1; �S2nC1/, we can take �; �1; �2 and
0< b < 1=n sufficiently small such that

1C �

Y .S2nC1; �S2nC1/

.1C b/2.1C �2/

1C 2b� �1

qi � c0 < 1:

Combining this with (2-11), we obtain

(2-12)

.1�c0/

�Z
�

.'wi/
.1Cb/.2C2=n/ dV�

� n
nC1

CC

Z
�

R� .1Cwi/w
1C2b
i '2C2b dV�

� C

Z
�1

w
1C 2

n
C2b

i '2C2b dV�CC

Z
�2

w1C2b
i .1Cwi/

1C 2
n'2C2b dV�

CC

Z
�

.w1Cb
i /2'2C2b dV�CC

Z
�

jr�'
1Cb
j
2w2C2b

i dV�
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Here C is a constant independent of i. We are going to estimate the terms on the
right-hand side of (2-12). Since �2 D���1, we have

j�2j< 1 and 0� wi � 2 on �2:

This implies that Z
�2

w1C2b
i .1Cwi/

1C 2
n'2C2b dV� � C

for some constant C independent of i. Also, since b < 1=n, we have

t1 WD
1C b

1C 1
n

< 1:

Then it follows from Hölder’s inequality thatZ
�

.w1Cb
i /2'2C2b dV� �

�Z
�

w
2C 2

n

i dV�

�t1

j�j1�t1 �

�Z
�

u
2C 2

n

i dV�

�t1

� 1;

where we have used (2-2), (2-3) and (2-4). On the other hand, since wi � 2 in �1

and b < 1=n, we haveZ
�1

w
1C 2

n
C2b

i '2C2b dV� �

Z
�1

w
2C 2

n

i dV� �

Z
�

u
2C 2

n

i dV� � 1;

where we have used (2-2). Since ' is a smooth fixed cutoff function, the last term
of (2-12) is also bounded. Combining all these, we can conclude that the right-hand
side of (2-12) is uniformly bounded. Thus, the left-hand side of (2-12) is uniformly
bounded; i.e.,

.1�c0/

�Z
�

.'wi/
.1Cb/.2C2=n/ dV�

� n
nC1

CC

Z
�

R� .1Cwi/w
1C2b
i '2C2b dV� �C:

In particular, this implies that

(2-13)
�Z

�

.'wi/
.1Cb/.2C2=n/ dV�

� n
nC1

� C0

and

(2-14)
Z
zK

w
.1Cb/.2C2=n/
i dV� � C 00

for some constants C0 and C 0
0

independent of i. Therefore, ui is uniformly bounded
in L.1Cb/.2C2=n/. zK/ for each compact subset zK of M and some positive b.

We can now show that wi is C 2;˛ bounded on each compact subset of M in the
following way: Consider sufficiently large compact subsets K �K0 �K1 �K2
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with smooth boundary satisfying Y .K; �/ < Y .S2nC1; �S2nC1/. It follows from
(2-14) that Z

K2

w
2C 2

n
C2 Nb

i dV� � C0;

where Nb D b.1C 1=n/ and C0 is a constant independent of i. Also, we have

j��wi j D

ˇ̌̌̌
n

2nC 2
R� .1Cwi/� qi.1Cwi/

1C 2
n

ˇ̌̌̌
� C.1Cwi/

1C 2
n on K2;

where C is a constant that depends only on K2 and maxK2
R�. Hence, ��wi 2

Lq.K2/, where q D .2nC2C2n Nb/=.nC2/. By the regularity theory (see [Jerison
and Lee 1987, Proposition 5.7(c)]), we have wi 2 S

q
2
.K1/. From the Folland-

Stein embedding theorem (see [Jerison and Lee 1987, Proposition 5.5]), we have
wi 2Ls.K1/, where

s D

�
2C

2

n
C 2 Nb

�
nC 1

nC 1� 2 Nb
> 2C

2

n
C 2 Nb:

Continuing this procedure, we get wi 2S t
2
.K0/ for all t > 1. Again by the Folland–

Stein embedding theorem (see [Jerison and Lee 1987, Proposition 5.7(a–b)]), we
have w2C2=n

i 2 C ˛.K0/ for some ˛ > 0. By the regularity theory again (see
[Jerison and Lee 1987, Proposition 5.9(b)]), we can conclude that wi 2 C 2;˛.K/,
as required.

By the definition of � and since ui D 1Cwi , we have a uniform C 2;˛ bound
for ui on each compact subset of M. Therefore, we can find a subsequence, which
we still denote by fuig, that converges to some u uniformly on each compact subset
by the Arzelà–Ascoli theorem.

To sum up, we have proved the following:

Lemma 2.1. If Y .M; �/ < Y .M; �/, then there exists a subsequence fuig which
converges to a solution u of (1-1) uniformly on each compact subset of M.

We remark that we do not know whether u is strictly positive. Note that if uD 0

at some point of M, then by applying Proposition 2.2 (stated below) to (1-1), we
can conclude that u is identically equal to zero.

Proposition 2.2. Suppose that u is a nonnegative function on M satisfying

���uCP .x/u� 0;

where P .x/ is a smooth function on M. Then for any compact set K in M, there
exists a constant C such thatZ

K

u2C 2
n dV� � C

�
min
K

u
��

max
K

u
�nC2

n
:
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We skip the proof of Proposition 2.2, because it is essentially the same as the
proof of Proposition A.1 in [Ho 2012].

We are going to show that it is impossible for u to be identically equal to zero.
First, we have the following:

Lemma 2.3. As i !1,Z
M

jui j
2C 2

n dV� �

Z
M

ju�ui j
2C 2

n dV� !

Z
M

juj2C
2
n dV� :

Proof. Note thatZ
M

jui j
2C 2

n dV� �

Z
M

ju�ui j
2C 2

n dV�

D�

Z
M

Z 1

0

@

@t
jui � tuj2C

2
n dt dV�

D

�
2C

2

n

� Z
M

Z 1

0

u.ui � tu/jui � tuj
2
n dt dV�

!

�
2C

2

n

� Z
M

Z 1

0

u.u� tu/ju� tuj
2
n dt dV�

D

Z
M

juj2C
2
n dV�

as i !1. �
For abbreviation, we let

vi D ui �u and E.v/D

Z
M

�
jr�vj

2
C

n

2nC 2
R�v

2

�
dV� :

Lemma 2.4. As i !1,

E.ui/�E.vi/!E.u/:

Proof. We compute

E.ui/�E.vi/DE.uC vi/�E.vi/

DE.u/C 2

Z
M

�
���uC

n

2nC 2
R�u

�
vi dV�

!E.u/

as i !1, since vi tends to 0 weakly in S2
1
.M /. This proves the assertion. �

Lemma 2.5. For any fixed Br , we have

E.vi/� Y .M �Br ; �/

�Z
M�Br

jvi j
2C 2

n dV�

� n
nC1

C o.1/ as i !1:
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Proof. Note that

E.vi/D

Z
M

�
jr�vi j

2
C

n

2nC2
R�v

2
i

�
dV�

D

Z
M�Br

�
jr�vi j

2
C

n

2nC2
R�v

2
i

�
dV�C

Z
Br

�
jr�vi j

2
C

n

2nC2
R�v

2
i

�
dV�

�

Z
M�Br

�
jr�vi j

2
C

n

2nC2
R�v

2
i

�
dV�Co.1/

� Y .M�Br ; �/

�Z
M�Br

jvi j
2C 2

n dV�

� n
nC1

Co.1/;

where the first inequality follows from the fact that vi ! 0 uniformly on Br by
Lemma 2.1. This proves the assertion. �

Note that ui * u weakly in S2
1
.M; �/. Assume thatZ

M

juj2C2=n dV� D �:

Note that if � > 0, then

(2-15) E.u/D �
n

nC1 E
�
��

n
2nC2 u

�
� �

n
nC1 Y .M; �/:

Furthermore, if � < 1, then

(2-16) E.vi/D .1��/
n

nC1 E
�
.1��/�

n
2nC2 vi

�
� .1��/

n
nC1 Y .M; �/CO.1/

by the definition of Y .M; �/.
We have the following three cases:

Case 1. If 0< � < 1, then

Y .M; �/DE.ui/C o.1/

DE.u/CE.vi/C o.1/

� �
n

nC1 Y .M; �/C .1��/
n

nC1 Y .M; �/C o.1/

� .�
n

nC1 C .1��/
n

nC1 /Y .M; �/C o.1/;

where the second equality follows from Lemma 2.4, the first inequality follows
from (2-15) and (2-16), and the last inequality follows from the assumption that
Y .M; �/ < Y .M; �/. But this is a contradiction, since

�t
C .1��/t > .1��C�/t D 1 for 0< � < 1 and 0< t < 1:
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Case 2. If �D 0, then

Y .M; �/DE.ui/C o.1/

DE.u/CE.vi/C o.1/

�E.vi/C o.1/

� Y .M; �/C o.1/;

where the second equality follows from Lemma 2.4, and the last inequality follows
from (2-16) with � D 0. But this contradicts the assumption that Y .M; �/ <

Y .M; �/.

Case 3. Therefore, we must have �D 1; i.e.,Z
M

juj2C
2
n dV� D 1:

This implies that u is not identically equal to zero. As pointed out in the remark
after Lemma 2.1, u is strictly positive. Therefore, we have a positive solution u in
S2

1
.M; �/ for (1-1).
Now it follows from Theorem 5.15 in [Jerison and Lee 1987] that u is smooth.

This proves Theorem 1.2.

Appendix

We prove the following inequality related to the Folland–Stein embedding:

Theorem A.1. Suppose K is a smooth compact subset in M. For any � > 0, there
exists a constant C.�;K/ such that

(A-1) Y .S2nC1; �S2nC1/

�Z
K

j'j2C
2
n dV�

� n
nC1

� .1C �/

Z
K

jr�'j
2 dV� CC.�;K/

Z
K

j'j2 dV�

for all ' 2 S2
1
.M; �/ with its compact support lying in K.

We remark that Theorem A.1 is probably well known. But we cannot find it in
the literature. Therefore we provide the proof here. In particular, the Riemannian
version of Theorem A.1 can be found in Theorem 2.21 of [Aubin 1998].

Proof of Theorem A.1. Given any ı > 0, for any point p 2 M, there exists a
neighborhood Up of p and a diffeomorphism fp from Up to a neighborhood of the
origin of Hn such that (see [Jerison and Lee 1987, Theorem 4.3])

(A-2)
.fp/�.dV� /D .1CO.ı//dV�Hn ;

.fp/�.jr�'j
2/D .1CO.ı//jr�Hn .' ıf /j

2
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for any function ' in M. It follows from [Jerison and Lee 1988, Corollary C] that

(A-3)
�Z

Hn

j'j2C
2
n dV�Hn

� n
nC1

�K.n; 2/

Z
Hn

jr�Hn'j
2 dV�Hn

for any smooth function ' which has compact support in Hn, where

K.n; 2/D
1

2�n.nC 1/

D
1

Y .S2nC1; �S2nC1/
:

This implies that (A-3) is also true for ' 2 S2
1
.Hn; �Hn/ which is compactly sup-

ported. Combining (A-2) and (A-3), we get

(A-4)
�Z

Up

j'j2C
2
n dV�

� n
nC1

D

�Z
fp.Up/

j' ıfpj
2C 2

n .fp/�.dV� /

� n
nC1

� .1CO.ı//

�Z
fp.Up/

j' ıfpj
2C 2

n dV�Hn

� n
nC1

� .1CO.ı//K.n; 2/

Z
fp.Up/

jr�Hn .' ıfp/j
2 dV�Hn

� .1CO.ı//K.n; 2/

Z
Up

jr�'j
2 dV�

for any function ' which has compact support in Up.
Since K is compact, there exists a finite subcovering fUpi

gk
iD1

; i.e.,

K D

k[
iD1

Upi
:

Suppose fhig
k
iD1

is a partition of unity subordinate to fUpi
gk
iD1

; i.e., the support of
hi lies in Upi

,

(A-5)
kX

iD1

hi D 1 and jr� .h
1=2
i /j �H:

For abbreviation, we write

k'kp D

�Z
M

j'jp dV�

�1
p

:
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Therefore, for any function ' compactly supported in K, we have

(A-6)
kX

iD1

k'2hiknC1
n

D

kX
iD1

k'h
1=2
i k

2

2C 2
n

� .1CO.ı//K.n;2/

kX
iD1

kr� .'h
1=2
i /k22

� .1CO.ı//K.n;2/

kX
iD1

Z
.jr�'jh

1=2
i C'jr� .h

1=2
i /j/2 dV�

� .1CO.ı//K.n;2/

�

Z kX
iD1

�
jr�'j

2hiC2jr�'jh
1=2
i j'jjr� .h

1=2
i /jCj'j2jr� .h

1=2
i /j2

�
dV�

� .1CO.ı//K.n;2/
�
kr�'k

2
2C2kHkr�'k2k'k2CkHk'k22

�
;

where the first inequality follows from (A-4), the last inequality follows from (A-5)
and � kX

iD1

h
1=2
i

�2

� k

kX
iD1

hi D k

by Hölder’s inequality.
For any � > 0, we can choose ı small enough such that

(A-7) .1CO.ı//K.n; 2/�K.n; 2/C
�

2
:

Since the last expression of (A-6) is independent of i, we establish the inequality

k'k2
2C 2

n

Dk'2
knC1

n

D

'2
kX

iD1

hi


nC1

n

�

kX
iD1

k'2hiknC1
n

� .1CO.ı//K.n;2/
�
kr�'k

2
2C2kHkr�'k2k'k2CkHk'k22

�
�

�
K.n;2/C

�

2

��
kr�'k

2
2C2kHkr�'k2k'k2CkHk'k22

�
�

�
K.n;2/C

�

2

��
.1C�/kr�'k

2
2CC.�;k;H /k'k22

�
;
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where we have used (A-7) and Young’s inequality. Here C.�; k;H / is a constant
depending only on �, k and H . This proves the assertion. �
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ISOMETRY TYPES OF FRAME BUNDLES

WOUTER VAN LIMBEEK

We consider the oriented orthonormal frame bundle SO(M) of an oriented
Riemannian manifold M. The Riemannian metric on M induces a canon-
ical Riemannian metric on SO(M). We prove that for two closed oriented
Riemannian n-manifolds M and N , the frame bundles SO(M) and SO(N)

are isometric if and only if M and N are isometric, except possibly in di-
mensions 3, 4, and 8. This answers a question of Benson Farb except in
dimensions 3, 4, and 8.
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1. Introduction

Let M be an oriented Riemannian manifold, and let X := SO(M) be the oriented
orthonormal frame bundle of M . The Riemannian structure g on M induces in a
canonical way a Riemannian metric gSO on SO(M). This construction was first
carried out by O’Neill [1966] and independently by Mok [1978], and is very similar
to Sasaki’s [1958; 1962] construction of a metric on the unit tangent bundle of M , so
we will henceforth refer to gSO as the Sasaki–Mok–O’Neill metric on SO(M). Let
us sketch the construction of gSO and refer to Section 2 for the details. Consider the
natural projection π :SO(M)→M . Each of the fibers of p is naturally equipped with
a free and transitive SO(n)-action, so that this fiber carries an SO(n)-bi-invariant
metric gV . The metric gV is determined uniquely up to scaling. Further, the Levi-
Civita connection on the tangent bundle TM→ M induces a horizontal subbundle
of TM . This in turn induces a horizontal subbundle H of T SO(M). We can pull
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back the metric on M along π to get a metric gH on H. The Sasaki–Mok–O’Neill
metric on SO(M) is defined to be gSO := gV ⊕ gH.

Note that gSO is determined uniquely up to scaling of gV , and hence determined
uniquely after fixing a bi-invariant metric on SO(n). The work of O’Neill [1966],
Mok [1978], and later Takagi and Yawata [1991; 1994] has established many natural
properties of Sasaki–Mok–O’Neill metrics and connections between the geometry
of M and SO(M). The following natural question then arises, which was to my
knowledge first posed by Benson Farb.

Question 1.1. Let M , N be Riemannian manifolds. If SO(M) is isometric to
SO(N ) (with respect to Sasaki–Mok–O’Neill metrics on each), is M isometric
to N?

The purpose of this paper is to answer Question 1.1 except when dim M = 3, 4
or 8. The question is a bit subtle, for it is not true in general that an isometry of
SO(M) preserves the fibers of SO(M)→ M , as shown by the following example.

Example 1.2. Let M be a constant curvature sphere Sn . Then SO(M) is diffeomor-
phic to SO(n+ 1). (To see this, identify Sn with the unit sphere in Rn+1. If p ∈ Sn

and v1, . . . , vn is a positively oriented orthonormal frame at p, then the matrix
with columns p, v1, . . . , vn belongs to SO(n+ 1).) There is a unique Sasaki–Mok–
O’Neill metric that is isometric to the bi-invariant metric on SO(n+ 1). However,
of course there are many isometries of SO(n+ 1) that do not preserve the fibers of
SO(n+ 1)→ Sn .

By differentiating the action of SO(n+1) in the above example, we obtain many
Killing fields that do not preserve the fibers of SO(n+ 1)→ Sn . However, by a
theorem of Takagi and Yawata [1991], manifolds with constant positive curvature
are the only Riemannian manifolds whose orthonormal frame bundles admit Killing
fields that do not preserve the fibers. More examples of non-fiber-preserving
isometries appear if we consider isometries that are not induced by Killing fields,
as the following example shows.

Example 1.3. Let M be a flat 2-torus obtained as the quotient of R2 by the subgroup
generated by translations by (l1, 0) and (0, l2) for some l1, l2 > 0. Further fix l3 > 0
and equip SO(M) with the Sasaki–Mok–O’Neill metric associated to the scalar l3.
It is easy to see SO(M) is the flat 3-torus obtained as the quotient of R3 by the
subgroup generated by translations by (l1, 0, 0), (0, l2, 0) and (0, 0, l3).

Now let N be the flat 2-torus obtained as the quotient of R2 by the subgroup
generated by translations by (l1, 0) and (0, l3), and equip SO(N ) with the Sasaki–
Mok–O’Neill metric associated to the scalar l2. Then SO(M) and SO(N ) are
isometric but if l1, l2, l3 are distinct, M and N are not isometric.

On the other hand if l1 = l3 6= l2, then this construction produces an isometry
SO(M)→ SO(M) that is not a bundle map.
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Example 1.3 produces counterexamples to Question 1.1. Note that we used
different bi-invariant metrics gV on the fibers. Therefore to give a positive answer
to Question 1.1 we must normalize the volume of the fibers of SO(M)→ M .

Our main theorem is that under the assumption of normalization, Question 1.1
has the following positive answer, except possibly in dimensions 3, 4 and 8.

Theorem A. Let M, N be closed oriented connected Riemannian n-manifolds.
Equip SO(M) and SO(N ) with Sasaki–Mok–O’Neill metrics where the fibers of
SO(M)→ M and SO(N )→ N have fixed volume ν > 0. Assume n 6= 3, 4, 8. Then
M, N are isometric if and only if SO(M) and SO(N ) are isometric.

We do not know if counterexamples to Question 1.1 exist in dimensions 3, 4,
and 8.

Outline of proof. If f : M→ N is an isometry, then the induced map

SO( f ) : SO(M)→ SO(N )

is also an isometry (see Proposition 2.5). This proves one direction of the theorem.
For the other direction, our strategy is to identify the fibers of the bundle

SO(M)→ M using only the geometry of SO(M). To accomplish this, note that
X = SO(M) carries an action of SO(n) by isometries, and the orbits of this action
are exactly the fibers of SO(M)→M . This action gives rise to an algebra of Killing
fields isomorphic to o(n).

The full Lie algebra i(X) of Killing fields on X = SO(M) has been computed by
Takagi and Yawata [1994] except in dimensions 2, 3, 4 or 8, or when M has positive
constant curvature. We show that if this computation applies, either i(X) contains
a unique copy of o(n) or Isom(M) is extremely large or M is flat. If i(X) contains
a unique copy of o(n), then the fibers of X = SO(M)→ M and X = SO(N )→ N
coincide, and we deduce that M and N are isometric.

We are able to resolve the flat case separately. If Isom(M) is large we use
classification theorems from the theory of compact transformation groups to prove
that M and N are isometric.

Finally we prove the theorem in two situations where the computation of Takagi
and Yawata does not apply, namely constant positive curvature and dimension 2. In
these situations it is in general impossible to identify the fibers of SO(M)→ M
using the geometry of SO(M) alone as shown by Examples 1.2 and 1.3. However,
we are still able to obtain the main result using the scarcity of manifolds with a
metric of constant positive curvature, and the classification of surfaces.

Outline of the paper. In Section 3 we will review preliminaries about actions of Lie
groups G on a manifold M when dim G is large compared to dim M . In Section 4
we will prove Theorem A except when M and N are surfaces or have metrics of
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constant positive curvature. The proof in the case that at least one of M or N has
constant positive curvature will be given in Section 5. We prove Theorem A in the
case that M and N are surfaces in Section 6.

2. Preliminaries

In this section we introduce the Sasaki–Mok–O’Neill metric, and we recall some
basic properties. Then we discuss the classical relationship between isometries and
Killing fields, and Takagi and Yawata’s computations of Killing fields of Sasaki–
Mok–O’Neill metrics. We end this section with a useful lemma for normalizing
Sasaki–Mok–O’Neill metrics, and some general remarks about frame bundles of
fiber bundles that will also be useful later.

Definition of the Sasaki–Mok–O’Neill metric. Our discussion here follows the
construction of Mok [1978], where more details can be found. Let (M, g) be an
oriented Riemannian manifold of dimension n, and let X := SO(M) be the oriented
orthonormal frame bundle of M with natural projection map π : SO(M)→ M .
For e ∈ SO(M), the vertical subspace at e is defined to be Ve := ker Deπ . The
collection of vertical subspaces forms a subbundle V→ TM of T SO(M)→ TM .

Let ω be the Riemannian connection o(n)-valued 1-form associated to the Rie-
mannian metric on M . Explicitly, if p ∈ M and e = (e1, . . . , en) is a frame at p,
we define for X ∈ Te SO(M):

ωi j (X) := θj (∇X (ei )) (1≤ i, j ≤ n),

where θj is the form dual to ej with respect to the Riemannian metric g.
We set He := kerωe. We call He the horizontal subspace at e. We have a

decomposition Te SO(M)= Ve⊕He. Define an inner product on Te SO(M) via

gSO(X, Y )= 〈ω(X), ω(Y )〉+ g(π∗X, π∗Y ),

where 〈 · , · 〉 is an O(n)-invariant inner product on o(n). Note that the choice of
an O(n)-invariant inner product on o(n) is uniquely determined up to scaling by a
positive number λ, so that we obtain a 1-parameter family of Sasaki–Mok–O’Neill
metrics. Explicitly such an inner product is given by

〈A, B〉λ := −λ tr(AB)= λ
∑
i, j

Ai j Bi j ,

for A, B ∈ o(n). We call 〈 · , · 〉1 the standard metric on o(n).

Remark 2.1. The oriented orthonormal frame bundle SO(M)→ M is an example
of a SO(n)-principal bundle of over M , and it has a natural connection form ω as
defined above. For a principal G-bundle E→ B with a principal connection form θ ,
one can construct a so called connection metric (see, e.g., [Ziller 2001, Section 1]).
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The Sasaki–Mok–O’Neill metric is exactly this connection metric in the case of the
principal SO(n)-bundle SO(M)→ M with the connection form ω.

As mentioned above, the geometry of the above defined metric was first investi-
gated by O’Neill and Mok. In particular they showed:

Proposition 2.2 [O’Neill 1966, p. 467, Mok 1978, Theorem 4.3]. The fibers of
SO(M)→ M are totally geodesic submanifolds of SO(M) with respect to any
Sasaki–Mok–O’Neill metric.

Vector fields on frame bundles. Let X be a vector field on SO(M). If Xe ∈ Ve for
any e ∈ SO(M), we say X is vertical. If Xe ∈He for any e ∈ SO(M), we say X is
horizontal.

We will now discuss how to lift a vector field Y on M to a vector field X on
SO(M) such that π∗X =Y . There are two useful constructions, called the horizontal
and complete lift of Y . Both constructions start by considering the derivative of the
bundle map π : SO(M)→ M . For a frame e ∈ SO(M), we have a decomposition
Te SO(M)=Ve⊕He as discussed above. Here Ve= kerπ∗, and hence π∗ restricts to
an isomorphism He→ Tπ(e)M . Therefore for a vector field Y on M , there exists a
unique horizontal vector field Y H on M with Y =π∗Y H . We call Y H the horizontal
lift of Y .

The complete lift Y C of Y was first introduced in [Kobayashi and Nomizu 1963].
First observe that given a map f : M → M , we can consider its induced map
SO( f ) : SO(M)→ SO(M) on frames. Then we can define Y C as follows: Let ϕt

be the 1-parameter family of diffeomorphisms of M obtained by integrating Y , so
that Y = d

dt

∣∣
t=0 ϕt . Then we define

Y C
:=

d
dt

∣∣∣
t=0

SO(ϕt).

Note that Y C is in general neither vertical nor horizontal. Mok [1979, Section 3]
has given a description of Y C in terms of local coordinates.

Killing fields and isometries. Before considering the isometries of SO(M) equipped
with a Sasaki–Mok–O’Neill metric gSO, we will review some classical facts about
the structure of the group of isometries Isom(M) of a Riemannian manifold M .

Myers and Steenrod [1939] have proved that Isom(M) of a Riemannian manifold
is a Lie group. If (ht)t is a 1-parameter group of isometries, then Y := d

dt

∣∣
t=0 ht is

a vector field on M . Differentiating the condition h∗t g= g gives the Killing relation
for Y ,

(2-1) LY g = 0,

where L is the Lie derivative. Any vector field Y satisfying equation (2-1) is called
a Killing field. Given a Killing field Y on M , the 1-parameter group (ht)t obtained
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by integrating Y consists of isometries. The Killing fields on M form a Lie algebra
i(M) of vector fields. We have:

Theorem 2.3. Let M be a Riemannian manifold. Then Isom(M) is a Lie group
(possibly not connected), with Lie algebra i(M).

The Takagi–Yawata theorem on Killing fields. We will now discuss a complete
description due to Takagi and Yawata [1994] of the Killing fields on SO(M) in
terms of the geometry of M for many manifolds M . Let us first discuss three
constructions of Killing fields on SO(M).

For the first construction, recall that Sasaki [1958, Corollary 1] showed that
whenever f : M→ M is an isometry of M , the derivative D f : TM→ TM is an
isometry of TM (where TM is equipped with a Sasaki metric). Therefore if Y is
a Killing field on M , then the complete lift of Y is a Killing field on TM . This is
also true for frame bundles:

Proposition 2.4 [Mok 1978, Proposition 5.3]. If Y is a Killing field on M , then Y C

is a Killing field on SO(M) with respect to any Sasaki–Mok–O’Neill metric.

In fact the following more general statement is true:

Proposition 2.5. Let M be a Riemannian manifold and f : M→ M any isometry.
Then the induced map SO( f ) : SO(M)→ SO(M) is an isometry of SO(M) with
respect to any Sasaki–Mok–O’Neill metric.

Proof. Note that since the Riemannian connection form ω is canonically associated
to the metric, we have f ∗ω = ω. In particular SO( f ) preserves the horizontal
subbundle H := kerω. Also note that SO( f ) is a bundle map of π : SO(M)→ M
(i.e., we have SO( f ) ◦π = π ◦ f ), and in particular SO( f ) preserves the vertical
subbundle V :=kerπ∗. Using these facts it is easy to check SO( f ) is an isometry. �

The second construction of Killing fields comes from the structure of SO(M)→
M as a principal SO(n)-bundle. There is an action of SO(n) on the fibers of
SO(M)→M , which is easily seen to be isometric with respect to any Sasaki–Mok–
O’Neill metric. Differentiating any 1-parameter subgroup of SO(n) then gives a
Killing field on SO(M). Explicitly, we can define these as follows: for A ∈ o(n),
define the vector field A∗ on SO(M) via ω(A∗)= A and π∗(A∗)= 0, where ω is
the connection form as above. Then A∗ is a vertical Killing field. Write i M

V for the
Killing fields thus obtained. In particular i M

V
∼= o(n) as Lie algebras.

Finally, here is the third construction of a Killing field on SO(M). Let ϕ be a
2-form on M , so that it defines a skew-symmetric bilinear form on every tangent
space Tp M for p ∈ M . With respect to a frame e of Tp M , the skew-symmetric
form ϕp can be represented as a skew-symmetric matrix Ae ∈ o(n). We then define
a vector field Xϕ on SO(M) via ωe(X

ϕ
e ) := Ae and π∗(X

ϕ
e )= 0. Note that the latter



ISOMETRY TYPES OF FRAME BUNDLES 399

condition just means that we define Xϕ to be a vertical vector field. An explicit
computation shows that if ϕ is parallel, then Xϕ is a Killing field (see, e.g., [Takagi
and Yawata 1991]). Denote by (32 M)0 the Lie algebra of parallel 2-forms on M .

It is known that for many manifolds, these three constructions are the only ways
of producing Killing fields on SO(M):

Theorem 2.6 [Takagi and Yawata 1994]. Let M be a closed Riemannian manifold
and equip SO(M) with the Sasaki–Mok–O’Neill metric corresponding to the stan-
dard inner product 〈 · , · 〉1 on o(n). Suppose M does not have constant curvature 1

2
and dim M 6= 2, 3, 4, 8. Then for any Killing field X on SO(M) there exist unique
Y ∈ i(M), A ∈ o(n), and ϕ ∈ (32 M)0 such that

X = Y C
+ A∗+ Xϕ.

Remark 2.7. Of course a version of the above result holds for different Sasaki–
Mok–O’Neill metrics as well: If we use the inner product 〈 · , · 〉λ = λ〈 · , · 〉1 on
o(n), the same conclusion holds except that we should now require that M does
not have constant curvature 1/(2

√
λ).

An explicit computation shows that if Y ∈ i(M), A ∈ o(n) and ϕ ∈ (32 M)0,
then the vector fields Y C , A∗ and Xϕ pairwise commute. Combining this with
Theorem 2.6, we obtain the following Lie algebra decomposition of Killing fields
on SO(M):

Corollary 2.8 [Takagi and Yawata 1994]. Let M be a Riemannian manifold satisfy-
ing the hypotheses of Theorem 2.6. Then there is a Lie algebra decomposition

i(SO(M))= i(M)⊕ i M
V ⊕ (3

2 M)0,

where i(M) (resp. i M
V , (32 M)0) corresponds to the subalgebra of Killing fields

consisting of Y C (resp. A∗, Xϕ) for Y ∈ i(M) (resp. A ∈ o(n), ϕ ∈ (32 M)0).

Normalizing volume. Given a closed oriented Riemannian manifold M , we have
previously obtained a 1-parameter family of Sasaki–Mok–O’Neill metrics on M .
These can be parametrized by a choice of O(n)-invariant inner product on o(n)
(which is unique up to scaling), or, equivalently, by the volume of a fiber of
SO(M)→M . The following easy lemma will be useful to us on multiple occasions
in the rest of the paper.

Lemma 2.9. Fix ν > 0. Let M , N be closed orientable connected Riemannian
n-manifolds and equip SO(M) and SO(N ) with Sasaki–Mok–O’Neill metrics where
the fibers of SO(M)→ M and SO(N )→ N have volume ν. Suppose that SO(M)
and SO(N ) are isometric. Then vol(M)= vol(N ).
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Proof. Set X := SO(M)∼= SO(N ). Since the fiber bundle X→ M has fibers with
volume ν, we have vol(X) = vol(M)/ν. Likewise we have vol(X) = vol(N )/ν.
Combining these we get vol(M)= vol(N ). �

3. High dimensional isometry groups of manifolds

In this section we review some known results about effective actions of a compact
Lie group G on a closed n-manifold M when dim G is large compared to n. We
will be especially interested in actions of SO(n) on an n-manifold M . First, there
is the following classical upper bound for the dimension of a compact group acting
smoothly on an n-manifold.

Theorem 3.1 [Kobayashi 1972, II.3.1]. Let M be a closed n-manifold and G a
compact group acting smoothly, effectively, and isometrically on M. Then dim G ≤
1
2 n(n+ 1). Further equality holds if and only if

(i) M is isometric to Sn with a metric of constant positive curvature, and we have
G = SO(n+ 1) or O(n+ 1) acting on M in the standard way, or

(ii) M is isometric or RPn with a metric of constant positive curvature, and
G = PSO(n+ 1) or PO(n+ 1), acting on M in the standard way.

Note that in the above case G = Spin(n+ 1) does not occur because there is no
effective action on Sn or RPn . Theorem 3.1 leads us to study groups of dimension
< 1

2 n(n+ 1). First, there is the following remarkable “gap theorem” due to H. C.
Wang.

Theorem 3.2 [Wang 1947]. Let M be a closed n-manifold with n 6= 4. Then there
is no compact group G acting effectively on M with

n(n−1)
2
+ 1< dim G <

n(n+1)
2

.

Therefore the next case to consider is dim G = 1
2 n(n− 1)+ 1. The following

characterization is independently due to Kuiper and Obata; see [Kobayashi 1972,
II.3.3].

Theorem 3.3 (Kuiper, Obata). Let M be a closed Riemannian n-manifold with
n > 4 and G a connected compact group of dimension 1

2 n(n − 1) + 1 acting
smoothly, effectively, and isometrically on M. Then M is isometric to Sn−1

× S1 or
RPn−1

× S1 equipped with a product of a round metric on Sn−1 or RPn−1 and the
standard metric on S1. Further G = SO(n)× S1 or PSO(n)× S1.

After Theorem 3.3, the natural next case to consider is dim G = 1
2 n(n−1). There

is a complete classification due to Kobayashi and Nagano.
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Theorem 3.4 [Kobayashi and Nagano 1972]. Let M be a closed Riemannian n-
manifold with n > 5 and G a connected compact group of dimension 1

2 n(n − 1)
acting smoothly, effectively, and isometrically on M. Then M must be one of the
following.

(1) M is diffeomorphic to Sn or RPn and G = SO(n) or PSO(n). In this case G
has a fixed point on M. Every orbit is either a fixed point or has codimension 1.
Regarding Sn as the solution set of

∑n
i=0 x2

i = 1 in Rn+1, the metric on M (or
its double cover if M is diffeomorphic to RPn) is of the form

ds2
= f (x0)

n∑
i=0

dx2
i

for a smooth positive function f on [−1, 1].

(2) M is diffeomorphic to a quotient (L ×R)/0 where L = Sn−1 or L = RPn−1

and G = SO(n) or PSO(n). Further, we have 0 ∼= Z. If L = Sn−1, then 0 is
generated either by the map (v, t) 7→ (v, t + 1) or by (v, t) 7→ (−v, t + 1). If
L =RPn−1, then 0 is generated by the map (x, t) 7→ (x, t+1). In all cases the
projection on the second coordinate Sn−1

×R→R descends to a map M→ S1

that is a fiber bundle with fibers diffeomorphic to L. The G-action preserves
the fibers of M→ S1 and restricts to an orthogonal action on each fiber.

(3) M is a quotient (Sn−1
×R)/0 where 0 is generated by

(v, t) 7→ (v, t + 2) and (v, t) 7→ (−v,−t).

In this case G = SO(n) acts on Sn−1
×R by acting orthogonally on each copy

Sn−1
× {t}. This action commutes with the action of 0, so that the G-action

descends to M. We have M/G = [0, 1]. The G-orbits lying over the endpoints
0, 1 are isometric to round projective spaces RPn−1 and the G-orbits lying
over points in (0, 1) are round spheres.

(4) If n = 6 there is the additional case that M ∼= CP3, equipped with the Fubini–
Study metric and the standard action of G = SO(6)∼= SU(4)/{± id}.

(5) If n = 7 there are the additional cases M ∼= Spin(7)/G2 and G = Spin(7), or
M ∼= SO(7)/G2 and G = SO(7). In this case M is isometric to S7 or RP7

with a constant curvature metric.

Remark 3.5. Actually Kobayashi and Nagano prove a more general result that
includes the possibility that M is noncompact, and there are more possibilities. Since
we will not need the noncompact case, we have omitted these. In their formulation
of case (4), M is a manifold of complex dimension 3 with constant holomorphic
sectional curvature, and G is the largest connected group of holomorphic isometries.
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Specializing to the compact case gives an explicit description of case (4) as
follows. Hawley [1953] and Igusa [1954] independently proved that a simply
connected complex n-manifold of constant holomorphic sectional curvature is
isometric to either Cn,Bn or CPn (with standard metrics). Therefore in case (4)
we obtain that M is isometric to CP3 (equipped with a scalar multiple of the
Fubini–Study metric) and G = SO(6)∼= SU(4)/{± id}.

Remark 3.6. If M admits the description in case (2) above, and is in addition
assumed to be orientable, it follows that the bundle M→ S1 is trivial. In particular
M is diffeomorphic to L × S1.

To see this, note that the only other case to consider is that M = (Sn−1
×R)/0

where 0 ∼= Z is generated by the map (v, t) 7→ (−v, t + 1). This is a bundle with
monodromy −id ∈ Diff(Sn−1). Two bundles over S1 are equivalent if and only if
their monodromies are isotopic (i.e., belong to the same component of Diff(Sn−1).
So let us check that −id is isotopic to the identity map: Indeed, because M is
orientable, the map (v, t) 7→ (−v, t + 1) is orientation preserving on Sn−1

×R. It
follows that n is even, so that −id ∈ SO(n) and hence is clearly isotopic to the
identity map.

Theorem 3.4 does not cover the case n = 5. In the following proposition we
resolve this case for semisimple groups. We would like to thank an anonymous ref-
eree for the following statement and its proof, which improve upon those contained
in an earlier version of this paper.

Proposition 3.7. Let M be a closed oriented Riemannian 5-manifold and suppose
G is a semisimple compact connected Lie group that acts on M smoothly, effectively
and isometrically, and that dim(G)= 10. Then M admits a description as in cases
(1), (2) or (3) of Theorem 3.4.

Proof. The proof of Theorem 3.4 (see [Kobayashi and Nagano 1972, Section 3])
shows that the assumption that n > 5 is only used to show that no G-orbit has
codimension 2. We will show under the stated assumptions there are still no
codimension 2 orbits, so that the rest of the proof of Theorem 3.4 applies.

Clearly we can assume that G is connected. Note that dim(G) = rk(G)+ 2k,
where k is the number of root spaces of G. Hence the rank of G is even. Any
semisimple Lie group with rank ≥ 4 has dimension > 10, so that we must have that
rk(G)= 2 and therefore G is a quotient of Spin(5).

Suppose now that x ∈M and that the orbit G(x) has codimension 2 in M . Let Gx

be the stabilizer of x . Note that Gx has rank either 1 or 2, and since the orbit of x
is codimension 2, we must have that dim Gx = 7.

If Gx has rank 1, then it must be S1 or Spin(3) (possibly up to a finite quotient),
but then we see that dim Gx < 7, so this is impossible.
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On the other hand if rk(Gx)=2, then the dimension of Gx is even, which is also
a contradiction. �

4. Geometric characterization of the fibers of SO(M)→ M

We will now start the proof of Theorem A. In this section we aim to prove the
following theorem, which proves Theorem A in all cases except for round spheres
and surfaces. The remaining cases are resolved in Section 5 (round spheres) and
Section 6 (surfaces).

Theorem 4.1. Let M, N be closed oriented connected Riemannian n-manifolds
and fix λ > 0. Equip SO(M) and SO(N ) with Sasaki–Mok–O’Neill metrics using
the metric 〈 · , · 〉λ on o(n). Assume that n 6= 2, 3, 4, 8 and that M does not have
constant curvature 1/(2

√
λ). Then M, N are isometric if and only if SO(M) and

SO(N ) are isometric.

Proof. Write X := SO(M)∼= SO(N ), and let

πM : X→ M and πN : X→ N

be the natural projections. The strategy of the proof is to characterize the fibers of
πM and πN just in terms of the geometry of X , except when M is flat or Isom(M) has
dimension at least 1

2 n(n−1). It automatically follows that in all but the exceptional
cases the fibers of πM and πN must agree, and we will use this to show that M
and N are isometric. Finally we will show that in the exceptional cases M and N
also have to be isometric.

Note that the assumptions of Theorem 4.1 guarantee that we can use Takagi and
Yawata’s computation of the Lie algebra of Killing fields on X , so we can write
(see Corollary 2.8)

i(X)= i(M)⊕ i M
V ⊕ (3

2 M)0.

Here, as before, i(M) denotes the space of Killing fields on M , and i M
V consists of

the Killing fields A∗ for A∈ o(n) (in particular i M
V
∼= o(n)), and (32 M)0 denotes the

space of parallel 2-forms on M . On the other hand, the natural action of SO(n) on
the fibers of πN induces an embedding of SO(n) in Isom(X), hence an embedding
of Lie algebras

o(n)∼= i N
V ↪→ i(X)= i M

V ⊕ (3
2 M)0⊕ i(M).

We identify i N
V with its image throughout. Now consider the projections of i N

V onto
each of the factors of this decomposition. We have the following cases:

(1) i N
V = i M

V , or

(2) i N
V projects nontrivially to (32 M)0, or

(3) i N
V projects trivially to (32 M)0 but nontrivially to i(M).
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We will show below that these cases correspond to (1) the fibers of πM coincide
with the fibers of πN , (2) M is flat, and (3) dim Isom(M) ≥ 1

2 n(n − 1). We will
complete the proof of Theorem 4.1 in each of these cases below.

Case 1 (vertical directions agree). Assume that i N
V = i M

V . For any x ∈ X , the values
of i M

V at x , i.e., the set of vectors

{Z(x) | Z ∈ i M
V },

span the tangent space to the fiber of πM through x . On the other hand, this set also
spans the tangent space to the fiber of πN through x . It follows that the fibers of
πM and πN actually coincide. Hence we have a natural map f : M→ N defined as
follows: For p ∈ M , let x ∈ π−1

M (p) be any point in the fiber of πM over p. Then
set f (p) := πN (x). The fact that the fibers of πM and πN coincide proves that
f (p) does not depend on the choice of x .

We claim f is an isometry. Denote by HM and VM the horizontal and vertical
subbundles with respect to πM : X→ M . Because πM is a Riemannian submersion,
the metric on Tx M coincides with the metric on the horizontal subbundle HM

u at a
point u ∈ π−1

M (x). We have

HM
u = (V

M
u )
⊥
= (ker(πM)∗)

⊥
= (ker(πN )∗)

⊥.

Here the first identity is because by definition of the Sasaki–Mok–O’Neill metric
on X , the horizontal and vertical subbundles are orthogonal. The last identity
follows because we know the fibers of πM and πN agree. Finally, note that the
space (ker(πN )∗)

⊥ is just the horizontal subbundle of πN : X→ N . Since πN is a
Riemannian submersion, we conclude that the metric on HM

u coincides with the
metric on TπN (u)N . This proves the naturally induced map f : M→ N is a local
isometry. Since f is also injective, M and N are isometric.

Case 2 (many parallel forms). Assume that i N
V
∼= o(n) projects nontrivially to

(32 M)0. Note that the kernel of the projection of i N
V to (32 M)0 is an ideal in i N

V . On
the other hand i N

V
∼= o(n) is simple (because n> 4), so the projection i N

V → (32 M)0
must be an isomorphism onto its image. Therefore

(4-1) dim(32 M)0 ≥ dim o(n)= n(n−1)
2

.

We claim that we actually have equality in equation (4-1). To see this, note that
since a parallel form is invariant under parallel transport, it is determined by its
values on a single tangent space, so that we have an embedding

(4-2) (32 M)0 ↪→32Tx M.
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Therefore dim(32 M)0 ≤ 1
2 n(n− 1), and equality in equation (4-1) holds. Hence

by a dimension count, the projection i N
V → (32 M)0 is not only injective, but also

surjective.
So we have o(n)∼= (32 M)0, and M has the maximal amount of parallel forms it

can possibly have (i.e., a space of dimension 1
2 n(n− 1)). Note that a torus is an

example of such a manifold. Motivated by these examples, we claim that M is a
flat manifold.

To prove that M is flat, let us first show that for any x ∈ M , the holonomy group
at x is trivial. Recall that the holonomy group consists of linear maps Tx M→ Tx M
obtained by parallel transport along a loop in M based at x . Therefore any holonomy
map will fix parallel forms pointwise. Suppose now that T : Tx M → Tx M is
a holonomy map at x ∈ M . We showed above that the evaluation at x is an
isomorphism (32 M)0 ↪→32Tx M (see equation (4-2)). Since T fixes parallel forms,
it is therefore clear that 32T = id (i.e., T acts trivially on oriented planes in Tx M).
Since dim(M) > 2, it follows that T = id.

So M has trivial holonomy. Since the holonomy algebra (i.e., the Lie algebra
of the holonomy group) contains the Lie algebra generated by curvature operators
R(v,w) where v,w ∈ Tx M (see, e.g., [Petersen 2006, Section 8.4]), it follows that
R(v,w)= 0 for all v,w ∈ Tx M , so M is flat.

We will use that M is flat to obtain more information about the Killing fields
i(M) of M . Recall that the structure of flat manifolds is described by the Bieberbach
theorems. Namely, any closed flat manifold is of the form Rn/0 for some discrete
torsion-free subgroup 0 ⊆ Isom(Rn), and there is a finite index normal subgroup
3 ⊆ 0 that consists of translations of Rn (so Rn/3 is a torus). In particular the
Killing fields on Rn/3 are just obtained by translations of Rn , so i(Rn/3)∼= Rn as
a Lie algebra.

The Killing fields on M=Rn/0 are exactly those Killing fields of Rn/3 invariant
under the deck group 0/3 of the (regular) cover Rn/3→ M . In particular i(M)
is a Lie subalgebra of Rn .

Therefore i(M) is abelian. Recall that we have

i(X)∼= i M
V ⊕ (3

2 M)0⊕ i(M).

We know that i N
V
∼=o(n) has no abelian quotients, so we must have i N

V ⊆ i M
V ⊕(3

2 M)0.
Hence for any x ∈ N and x̃ ∈ π−1

N (x), we have

Tx̃π
−1
N (x)= i N

V

∣∣
x̃ ⊆

(
i M
V ⊕ (3

2 M)0
)∣∣

x̃ ⊆ Tx̃π
−1
M (πM(x̃)),

where the last inclusion holds since the vector fields in i M
V ⊕ (3

2 M)0 are vertical
with respect to πM (see page 398). Since π−1

N (x) and π−1
M (πM(x̃)) are connected

submanifolds with the same dimension, we must have π−1
N (x) = π−1

M (πM(x̃)).
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Therefore the fibers of πM and πN agree. We conclude that M and N are isometric
in the same way as case 1.

Case 3 (many Killing fields). Assume i N
V projects nontrivially to i(M). Again

we use that o(n) is a simple Lie algebra because we have n > 4. By assumption
i N
V
∼= o(n) projects nontrivially to i(M), hence i N

V projects isomorphically to i(M).
Let h be the image of i N

V in i(M). At this point we would like to say that i N
V ⊆ i(M).

We cannot in general establish this, but we have the following.

Claim 4.2. Assume that o(n)* (32 M)0 and that o(n)* (32 N )0. Then

(1) i N
V ⊆ i(M), and

(2) i M
V ⊆ i(N ).

Therefore M and N have isometry groups of dimension ≥ 1
2 n(n− 1).

Proof. Note that i M
V and h centralize each other and are isomorphic to o(n). Consider

the projection

p1 : h⊕ i M
V ⊆ i(X)∼= i N

V ⊕ (3
2 N )0⊕ i(N )→ i N

V .

Note that dim(h⊕ i M
V )= 2 dim i N

V , so p1 cannot be injective. If p1 is trivial, then
we have

h⊕ i M
V ⊆ (3

2 N )0⊕ i(N ).

Using again that o(n) is simple, and since (32 N )0 does not contain a copy of o(n)
by assumption, we must have that h⊕ i M

V projects isomorphically to i(N ). However
note that dim i(N )≤ 1

2 n(n+ 1) by Theorem 3.1. Again by comparing dimensions
we see that this is impossible. Therefore ker p1 is a proper ideal of h⊕ i M

V , so ker p1

is either h or i M
V .

Now consider the projection

p2 : h⊕ i M
V ⊆ i(X)∼= i N

V ⊕ (3
2 N )0⊕ i(N )→ i(N ).

As above we see that p2 can be neither injective nor trivial. Hence we have that
ker p2 is either h or i M

V .
If ker p2= i M

V , then we have i M
V = i N

V , but this contradicts the assumption that i N
V

projects nontrivially to i(M). Therefore we must have ker p1 = i M
V and ker p2 = h.

The latter implies i N
V = h, which proves (1).

Since ker p1 = i M
V , we have i M

V ⊆ (3
2 N )0⊕ i(N ) and i M

V projects trivially to
(32 N )0. Therefore we have i M

V ⊆ i(N ), which proves (2). �

If o(n)⊆ (32 M)0 or o(n)⊆ (32 N )0, the proof is finished in case 2. Therefore
we assume i N

V ⊆ i(M) and i M
V ⊆ i(N ). Write HM := exp(i N

V ) and HN := exp(i M
V ),

where exp is the exponential map on the Lie group Isom(X). Then HM and HN are
subgroups of Isom(X), each isomorphic to SO(n), and M = X/HN and N = X/HM .
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Since HM and HN are commuting subgroups of Isom(X), the action of HM

on X descends to an action on M = X/HN with kernel HM ∩ HN . We will write
HM := HM/(HM ∩ HN ) for the group of isometries of M thus obtained. Similarly,
HN acts by isometries on N = X/HM with kernel HM ∩ HN , and we will write
HN := HN/(HM ∩ HN ) for this group of isometries.

Note that HM ∩HN is discrete, since its Lie algebra is i M
V ∩ i N

V = 0. In particular,
since HM and HN are compact, it follows that HM ∩ HN is finite. Therefore the
natural quotient map HM→ HM is a covering of finite degree, and HM and HM have
the same Lie algebra. Similarly, HN and HN have the same Lie algebra. Therefore
HM and HN are groups of isometries of closed n-manifolds with Lie algebras
isomorphic to o(n). The results of Section 3 exactly apply to such actions; these
results will restrict the possibilities for M and N tremendously, as we will see below.

Motivated by the results of Section 3, we will now consider two cases: either
one of HM or HN acts transitively, or neither acts transitively.

Case 3(a) (HM or HN acts transitively). Suppose HM acts transitively on M . Since
HM has Lie algebra o(n) and dim M = n, Theorem 3.4 and Proposition 3.7 give a
classification of the possibilities for M and HM . Since in cases (1), (2), and (3) of
Theorem 3.4 the group of isometries is not transitive, but by assumption HM acts
transitively on M , we know that either

• M is isometric to S7∼= Spin(7)/G2, equipped with a constant curvature metric,
and HM = Spin(7), or

• M is isometric to RP7∼=SO(7)/G2, equipped with a constant curvature metric,
and HM = SO(7), or

• M is isometric to CP3, equipped with a metric of constant holomorphic
sectional curvature, and HM = SO(6)∼= SU(4)/{± id}.

We will show that the first case is impossible, and that in the other cases M and
N are isometric.

Lemma 4.3. M is not isometric to S7.

Proof. Since HM = HM/(HM∩HN ), we know that HM is a quotient of HM ∼=SO(7).
In particular, HM is not simply connected. On the other hand, Spin(7) is simply
connected. This is a contradiction. �

Lemma 4.4. If M is isometric to RP7, then M and N are isometric.

Proof. Suppose now M is isometric to RP7, and consider the action of HN on N .
From the classification in Theorem 3.4 and Remark 3.6, and using that dim(N )=
dim(M)= 7, we see that N must be diffeomorphic to one of the following:



408 WOUTER VAN LIMBEEK

(1) RP7,

(2) S7,

(3) LN × S1 where LN is S6 or RP6, or

(4) (S6
×R)/0 where 0 ∼= D∞ is generated by

(v, t) 7→ (−v,−t) and (v, t) 7→ (v, t + 2).

Claim 4.5. We must have that N is diffeomorphic to RP7 (and hence to M).

Proof. We will show that we can distinguish the frame bundles of the manifolds
appearing in cases (2), (3), and (4) from SO(RP7) by their fundamental group.

First, let us compute the fundamental group of SO(N ) = SO(RP7). Note that
SO(S7)∼=SO(8) (see Example 1.2). It easily follows that SO(RP7)∼=SO(8)/{± id}.
In particular, π1 SO(RP7) is obtained as an extension

1→ π1 SO(8)→ π1 SO(RP7)→ {± id} → 1.

So π1(SO(RP7)) has order 4. So let us now show that in each of the cases (2), (3),
and (4), π1 does not have order 4.

• In case (2), note that π1 SO(S7)= π1 SO(8)∼= Z/(2Z) has order 2.

• In case (3), π1N is infinite. By the long exact sequence on homotopy groups
for the fiber bundle SO(7)→ SO(N )→ N , we see that π1 SO(N ) surjects
onto π1N . Therefore π1 SO(N ) is also infinite.

• In case (4), π1N ∼= D∞ is infinite as well. The above argument for case (3)
shows that π1 SO(N ) is infinite as well.

The only remaining possibility is that N is diffeomorphic to RP7 (and hence also
to M). �

So we find that N is diffeomorphic to RP7. We will now determine the metric
on N :

Claim 4.6. N has constant curvature.

Proof. Theorem 3.4 classifies the possible metrics on N . Namely, if HN acts
transitively on N , then N has constant curvature, as desired.

Suppose now that HN does not act transitively on N . Identify the universal cover
Ñ of N (which is diffeomorphic to S7) with the solution set of

∑7
i=0 x2

i = 1 in R8.
Then by Theorem 3.4(3) the metric on Ñ is of the form

ds2
Ñ = f (x0)

7∑
i=0

dx2
i ,
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for some smooth positive function f on [−1, 1]. The function |x0| descends from
Ñ to N , and HN acts isometrically and transitively on each level set{

[x0, . . . , x7] ∈ RP7 |
7∑

i=1

x2
i = 1− c2

}
,

for 0≤ c ≤ 1. For c = 0 this level set is a copy of RP6 (the image of the equator
S6
⊆ S7 ∼= Ñ in RP7 ∼= N ) and for c= 1 the level set consists of a single point (the

image of the north and south pole). For 0< c < 1, the level set is a copy of S6.
Let x ∈ N be any point with 0 < x0 < 1, so that the HN -orbit of x is a copy

of S6. Since the metric on HN x is given by f (x0)
∑

i dx2
i , we have

vol(HN x)= ( f (x0))
1
2 n vol(S6),

where on the right-hand side vol(S6) is computed with respect to the standard metric∑
i dx2

i . Now consider the fiber bundle πN : SO(N )→ N . Recall that each fiber
in SO(N ) has a fixed volume ν > 0, and is an HM -orbit. Therefore for e ∈ π−1

N (x),
we have

(4-3) vol(HM HN e)= ν vol(HN x)= ν( f (x0))
6
2 vol(S6).

On the other hand, e is a frame at some point y∈M . Since the fibers of SO(M)→M
also have volume ν, it follows that

vol(HM HN e)= ν vol(HM y).

Since HM acts transitively on M , the right-hand side is just equal to ν vol(M). In
particular, the left-hand side does not depend on e. Using equation (4-3), we see
that f (x0) does not depend on the point x chosen. Since the only requirements for x
were that −1< x0 < 1 and x0 6= 0, we see that f is constant on (−1, 1)\ {0}. Since
f is also continuous, it is in fact constant on [−1, 1], so the metric on Ñ is given by

ds2
Ñ = c

7∑
i=0

dx2
i ,

for some c> 0. Therefore the metric is some multiple of the standard round metric,
so N has constant curvature. �

So we have shown that both M and N are diffeomorphic to RP7 with constant
curvature metrics. Since by Lemma 2.9, we also have that vol(M)= vol(N ), it fol-
lows that M and N have the same curvature, so that they are isometric, as desired. �

Lemma 4.7. If M is isometric to CP3, equipped with a metric of constant holomor-
phic sectional curvature, then M and N are isometric.

Proof. Again consider the action of HN on N . From the classification in Theorem 3.4,
and using that dim(N )= dim(M)= 6, we see that N must be one of the following:
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(1) diffeomorphic to S6 or RP6,

(2) diffeomorphic to LN × S1 where LN is S5 or RP5,

(3) diffeomorphic to (S5
×R)/0 where 0∼= D∞ is generated by (v, t) 7→ (−v,−t)

and (v, t) 7→ (v, t + 2), or

(4) isometric to CP3 with a metric of constant holomorphic sectional curvature.

We can rule out cases (1), (2), and (3) by computations of π2. Namely, let us
first compute π2(SO(CP3)). The long exact sequence on homotopy groups of the
fibration SO(6)→ SO(CP3)→ CP3 gives

1= π2 SO(6)→ π2(SO(CP3))→ π2(CP3)→ π1(SO(6))= Z/(2Z).

Since π2(CP3)∼=Z it follows that π2(SO(CP3))∼=Z. On the other hand, in case (1),
we have π2(SO(S6))= π2(SO(7))= 1 and similarly π2(SO(RP6))= 1. In case (2),
we have that π2 N ∼= π2LN since S1 is aspherical. Since LN is diffeomorphic
to either S5 or RP5, we have π2LN = 1. Again by the long exact sequence on
homotopy groups for the fibration SO(N )→ N , we see that π2 SO(N )= 1. Finally
in case (3) we have π2 N = π2S5

= 1. As in case (2) we have that π2 SO(N )= 1.
Therefore in cases (1), (2), and (3), we cannot have SO(N ) ∼= SO(CP3), so

we conclude that M and N are both isometric to CP3 with a metric of constant
holomorphic sectional curvature.

A metric of constant holomorphic sectional curvature on CP3 is determined by
a bi-invariant metric on SU(4), which is then induced on the quotient

SU(4)/S(U(1)×U(3))∼= CP3.

Hence the metrics on M and N differ only by scaling, so M and N are isometric
if and only if vol(M)= vol(N ). By Lemma 2.9 we indeed have vol(M)= vol(N )
so M and N are isometric. �

Above we assumed that HM acts transitively on M . If instead HN acts transitively
on N , the same proof applies verbatim.

Case 3(b) (HM and HN do not act transitively). Theorem 3.4 and Proposition 3.7
imply that M and N are of one of the following types:

(1) diffeomorphic to Sn or RPn equipped with a metric as in Theorem 3.4(1),

(2) L × S1 where each copy L ×{z} is an isometrically embedded round sphere
or projective space, or

(3) (Sn−1
×R)/0 where 0 ∼= D∞ is generated by

(v, t) 7→ (v, t + 2) and (v, t) 7→ (−v,−t).

Claim 4.8. M and N belong to the same types in the above classification.
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Proof. Again we will show that the different types can be distinguished by the
fundamental group of the frame bundle. Since SO(M) = SO(N ), it must then
follow that M and N belong to the same type.

The fundamental group of X = SO(M) can be computed using the long exact
sequence on homotopy groups for the fiber bundle X→ M (or X→ N ). Namely,
we have

π2(M)→ π1(SO(n))→ π1(X)→ π1(M)→ 1,

and likewise for N . Since π2(M)= π2(N )= 1 for all of the above types, we have
a short exact sequence

1→ Z/2Z→ π1(X)→ π1(M)→ 1,

and likewise for N . We see that π1(X)∼= Z/2Z precisely when M is diffeomorphic
to Sn , and π1(X) has order 4 precisely when M is diffeomorphic to RPn . If π1(X)
is infinite then M is of type (2) or (3). If the maximal finite subgroup of π1(X)
has order 2 then M is of type (2), and if the maximal finite subgroup of π1(X) has
order 4 then M is of type (3). Therefore we can distinguish all the possible cases
by considering π1(X), so M and N are of the same type. �

We will now show that in each of these cases, M and N are isometric.

Case A (M and N are of type (1)). Identify Sn with the solution set of
∑n

i=0 x2
i = 1

in Rn+1. By Theorem 3.4(1), the metric on M (or its double cover if M is diffeo-
morphic to RPn) is of the form

(4-4) ds2
M = fM(x0)

n∑
i=0

dx2
i .

Similarly the metric on N (or its double cover) can be written as

(4-5) ds2
N = fN (x0)

n∑
i=0

dx2
i .

We will now show that fM(x) = fN (x) for all x . We will just do this in case M
and N are diffeomorphic to Sn , since the proof for RPn is similar (note that it is
not possible that one of M and N is diffeomorphic to Sn , and the other to RPn ,
since SO(Sn) and SO(RPn) are not diffeomorphic). Theorem 3.4(1) also describes
the action of HN on N . Namely, HN leaves the coordinate x0 invariant and acts
transitively on each level set of x0. This yields an identification

N/HN ∼= [−1, 1].

The HN -orbits lying over the points in (−1, 1) are copies of Sn−1, and the orbits
lying over±1 are fixed points (corresponding to the north and south pole). Similarly
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we can identify M/HM with [−1, 1]. Of course we can also write M = X/HM ,
and this yields an identification

X/(HM HN )= M/HM .

Let −1 < x < 1 and choose a lift yM ∈ M of x . Equation (4-4) shows that
vol(HM yM)= fM(x) vol(Sn−1) where Sn−1 is equipped with the metric

∑n
i=1 dx2

i .
Similarly if yN is a lift of x to N we have vol(HN yN ) = fN (x) vol(Sn−1). Now
choose a common lift ỹ of yM and yN to X , i.e., ỹ is an oriented orthonormal frame
at the point yM ∈ M and at the point yN ∈ N . Recall that the volume of a fiber of
X→ M is a fixed constant ν > 0. Hence we have

vol(HM HN ỹ)= ν vol(HM yM)= ν fM(x) vol(Sn−1).

Since the volume of a fiber of X→ N is also equal to ν, we also have

vol(HM HN ỹ)= ν vol(HN yN )= ν fN (x) vol(Sn−1).

It follows that fM(x)= fN (x). Hence M and N are isometric.

Case B (M and N are of type (2)). In this case M is diffeomorphic to LM × S1

where each copy LM ×{z} of LM is isometric to a round sphere or projective space.
The group HN acts orthogonally on each fiber. However, note that the metric on
M is not assumed to be a product metric, but in this case it has to be:

Lemma 4.9. M is isometric to a product LM × S1 where LM is either a round
sphere or projective space.

Proof. Let q : M→ S1 be the projection onto the second coordinate. Of course the
fibers of q are just the submanifolds LM × {z} for z ∈ S1, and form a foliation L
of M . Fix an orientation of LM and define SOL(M) to be the space of pairs (x, e)
where x ∈ M and e is a positively oriented frame for the tangent space at x of the
leaf of L through x . There is a natural bundle map p : SOL(M)→ M defined by
p(x, e) := x . Further because HM acts isometrically on M preserving the leaves
of L, it follows that HM acts on SOL(M).

Of course, explicitly we have SOL(M) ∼= SO(LM)× S1, and the bundle map
p : SOL(M)→ M is given by applying the natural bundle map SO(LM)→ LM to
the first coordinate. Next we can explicitly describe the action of HM on SOL(M).
Namely, the action of HM on LM is just the standard action of SO(n) on Sn−1 (or
the standard action of PSO(n) on RPn−1). Using that SO(LM)∼= SO(n) or PSO(n),
we see that HM just acts by left-translations on SO(LM). Finally, the action of HM

on SOL(M)∼= SO(LM)× S1 is just by left-translations on each copy SO(LM)×{z}
of SO(LM).
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The advantage of initially defining SOL(M) more abstractly (in terms of frames
for the fibers of q), is that we can define an embedding

j : SOL(M) ↪→ SO(M)

in the following way. A point (x, e) ∈ SOL(M) consists of an oriented orthonormal
frame e of the copy of LM through x . Hence e can be extended to a frame for M at x
by adding to e the unique unit vector v∈ Tx M such that (e, v) is a positively oriented
orthonormal frame for M . We define j (x, e) := (x, e, v). Using that HM preserves
each copy LM × {z} of LM , it is easy to see that j (SOL(M)) is an HM -invariant
submanifold of SO(M).

We equip SOL(M) with the Riemannian metric on j (SOL(M)) induced from
SO(M). Since the HM -orbits in SO(M) are the fibers of the map πN : X → N ,
the HM -orbits are totally geodesic in SOL(M) (see Proposition 2.2). We conclude
that the foliation F of SOL(M) by HM -orbits is a totally geodesic codimension 1
foliation of SOL(M). Of course this is just the foliation of SOL(M)=SO(LM)×S1

by copies SO(LM)×{z} for z∈ S1. Consider the horizontal foliation F⊥ of SOL(M).
Since F⊥ is 1-dimensional, it is integrable.

Johnson and Whitt [1980, Theorem 1.6] proved that if the horizontal distribution
associated to a totally geodesic foliation is integrable, then the horizontal distribution
is also totally geodesic. Further they showed that a manifold with two orthogonal
totally geodesic foliations is locally a Riemannian product [Johnson and Whitt
1980, Proposition 1.3]. Therefore SOL(M) is locally a Riemannian product F ×U
where F (resp. U ) is an open neighborhood in a leaf of F (resp. F⊥).

Now we show the metric on M has to locally be a product. Recall that the
map p : SOL(M)→ M is defined by p(x, e) = x . We have p = πM ◦ j , where
j : SOL(M) ↪→ SO(M) is the isometric embedding defined above, and πM :

SO(M)→ M is the natural projection. Since j is an isometric embedding and πM

is a Riemannian submersion, it follows that p is also a Riemannian submersion.
Now let x ∈ M be any point and choose x̃ ∈ SOL(M) with p(x̃)= x . Since the

metric on SOL(M) is locally a product, we can choose a neighborhood Ũ × Ṽ of
x̃ on which the metric is a product.

Now let w = (u, v) ∈ Tx M ∼= TxLx ⊕ Tq(x)S1, where u ∈ TxLx and v ∈ Tq(x)S1.
Let ũ (resp. ṽ) be a lift of u (resp. v) to Tx̃ SOL(M) that is horizontal with respect
to p. Set w̃ := (ũ, ṽ) ∈ Tx̃ SOL M , so that w̃ is a horizontal lift of w. Then we have

‖w‖2 = ‖w̃‖2 = ‖ũ‖2+‖ṽ‖2 = ‖u‖2+‖v‖2,

where in the first and last step we used that p is a Riemannian submersion, and
in the second step we used that the metric on SOL(M) is locally a Riemannian
product. This shows that the metric on M is locally a product.
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It remains to show that the metric on M is globally a product. Recall that M is
diffeomorphic to LM × S1, and that each copy LM ×{z} (for z ∈ S1) is isometric
to a round sphere or projective space, say with curvature κ(z). Therefore to show
that the metric is globally a product, it suffices to show that κ is constant. This is
immediate because the metric on M is locally a product. �

Of course, the same proof applies to N , and shows that N is also isometric to a
product LN×S1. Further the metrics on the constant curvature spheres or projective
spaces LM and LN only depend on their curvatures.

Claim 4.10. LM and LN have the same curvature.

Proof. Recall that we normalized the Sasaki–Mok–O’Neill metrics on SO(M)∼=
SO(N ) so that the fibers of SO(M)→ M and SO(N )→ N have volume ν. These
fibers are exactly HM and HN -orbits in SO(M), and by definition of the Sasaki–
Mok–O’Neill metric, the metric restricted to an HM or HN -orbit is bi-invariant. On
the other hand, if we restrict πM : X → M to the HM -orbit of a point x ∈ X , we
obtain a bundle

(4-6) πM : HM x→ HMπM(x)∼= LπM (x).

Here HM x is diffeomorphic to SO(n) (if the leaves of L are spheres) or PSO(n)
(if the leaves of L are projective spaces), and the fiber of the bundle in equation
(4-6) is diffeomorphic to SO(n− 1).

Since the metric on HM x (viewed as a submanifold of SO(M)) is a bi-invariant
metric, the above bundle is isometric to a standard bundle

SO(n)→ Sn−1(rM) if LπM (x)
∼= Sn−1,

or

PSO(n)→ RPn−1 if LπM (x)
∼= RPn−1,

where the base is a round sphere or projective space of some radius rM . It
follows that the volume of HM x only depends on rM . Likewise the volume of
HN x will only depend on the radius rN of LN . On the other hand we know that
vol(HM x)= vol(HN x)= ν, so we must have that rM = rN , as desired. �

At this point we know that there are r > 0, `M > 0 and `N > 0 such that
M is isometric to Sn(r) × S1(`M) (or RPn(r) × S1(`M) and N is isometric to
Sn(r)× S1(`N ) (or RPn(r)× S1(`N )). It only remains to show that `M = `N .

To see this, we need only recall that by normalization of the Sasaki–Mok–O’Neill
metrics, we have vol(M)= vol(N ) (see Lemma 2.9).
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Case C (M and N are of type (3)). The unique torsion-free, index-2 subgroups of
π1(M) and π1(N ) give double covers M ′ and N ′. We claim that the frame bundles
SO(M ′) and SO(N ′) are also isometric. The fiber bundle SO(n)→ X→ M gives

1→ Z/2Z→ π1(X)→ D∞→ 1.

Now π1(SO(M ′)) and π1(SO(N ′)) are both index-2 subgroups of π1(X). Since M ′

and N ′ are diffeomorphic to Sn−1
× S1 we see that π1(SO(M ′))∼= (Z/2Z)×Z and

likewise for π1(SO(N ′)). Therefore π1(SO(M ′)) and π1(SO(N ′)) correspond to
the same index 2 subgroup of π1(X). It follows that SO(M ′) and SO(N ′) are also
isometric.

Since M ′ and N ′ are diffeomorphic to Sn−1
× S1 and HM acts on Sn−1 orthog-

onally, the argument from case B applies and yields that M ′ and N ′ are isometric
to the same product Sn−1

× S1. Then M and N are obtained as the quotient of
Sn−1
× S1 by the map (v, z) 7→ (−v, z−1). Hence M and N are isometric. �

5. Proof for M with positive constant curvature

In the previous section we have proved Theorem A in all cases except when M has
constant curvature 1/(2

√
λ) or M is a surface. We will resolve the latter case in

the next section. In this section we will prove:

Theorem 5.1. Let M, N be closed oriented connected Riemannian n-manifolds
and assume M has constant curvature 1/(2

√
λ) for some λ > 0. Equip SO(M) and

SO(N ) with Sasaki–Mok–O’Neill metrics using the invariant inner product 〈 · , · 〉λ
on o(n). Assume n 6= 2, 3, 4, 8. Then M, N are isometric if and only if SO(M) and
SO(N ) are isometric.

Proof. By simultaneously rescaling the metrics on M and N we can assume that
the universal cover of M is a round sphere of radius 1. (Note that in the rescaling,
we should also rescale the inner product on o(n) that is used in the definition of the
Sasaki–Mok–O’Neill metric.)

Since M has positive constant curvature, M is a Riemannian quotient of Sn

by a finite group of isometries. Since the group of orientation-preserving isome-
tries of Sn is SO(n + 1), we can write M = Sn/π1(M) for some (finite) group
π1(M)⊆ SO(n+ 1).

Further we can write Sn
= SO(n)\SO(n+1) where the quotient is on the left by

the standard copy SO(n)⊆ SO(n+1). The action of SO(n+1) on Sn by isometries
is then just the action of SO(n+ 1) by right-translations on SO(n) \SO(n+ 1), so
that we have

M ∼= SO(n) \SO(n+ 1)/π1(M).



416 WOUTER VAN LIMBEEK

Passing to the frame bundle, we obtain X ∼= SO(n+ 1)/π1(M), where the cover
SO(n+1) is equipped with a bi-invariant metric. Further N is a quotient of X by a
group HM ∼= SO(n) acting effectively and isometrically on X .

Consider now the cover SO(n + 1)→ X . The (effective) action of HM on X
lifts to an effective action of a unique connected cover ĤM of HM on SO(n+ 1).
Note that SO(n) has only one nontrivial connected cover, namely its universal cover
Spin(n). Therefore we have either ĤM ∼= SO(n) or ĤM ∼= Spin(n). We can actually
describe the action of ĤM on SO(n+ 1) precisely:

Claim 5.2. ĤM is isomorphic to SO(n) and acts on SO(n + 1) by either left- or
right-translations.

Proof. Consider the full isometry group of SO(n+1) (with respect to a bi-invariant
metric), which has been computed by d’Atri and Ziller [1979]. Namely, they
show that the isometry group of a simple compact Lie group G equipped with a
bi-invariant metric is

Isom(G)∼= GoAut(G),

where the copy of G acts by left-translations on G. We apply this to the group
G=SO(n+1). Since ĤM is connected, it follows that the image of ĤM ↪→ Isom(G)
is contained in the connected component Isom(G)0 of Isom(G) containing the
identity. We can explicitly compute Isom(G)0. Namely, since Out(G) is discrete,
Isom(G)0 is isomorphic to

Go Inn(G)∼= (G×G)/Z(G),

where Z(G) is the center of G, and Z(G) ↪→ G ×G is the diagonal embedding.
The two copies of G act by left- and right-translations on G.

It will be convenient to work with the product G×G, rather than (G×G)/Z(G).
Note that the preimage of ĤM under the natural projection

G×G→ (G×G)/Z(G)

is a (possibly disconnected) cover of ĤM . Let H̃M denote the connected component
containing the identity (so H̃M is a connected cover of HM , and hence isomorphic
to either SO(n) or Spin(n)).

We will first show that H̃M has to be contained in a single factor of G × G.
To see this, let pi : H̃M → G be the projection to the i-th factor (where i = 1, 2).
Since H̃M is a simple connected Lie group, pi either has finite kernel or is trivial.

Further at least one of the projections has to be faithful: First, if one of the
projections is trivial, then H̃M is contained in a single factor, so that the other
projection is faithful. Therefore to show one of the projections has to be faithful,
it suffices to consider the case where neither projection is trivial, so that both
projections have finite kernel. Let Ki , i = 1,2, be the kernels of the projections
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of H̃M onto the i-th factor. Then Ki is a discrete normal subgroup of H̃M , and
hence central. As discussed above, the only possibilities for H̃M are SO(n) and
Spin(n). The center Z(H̃M) of H̃M is then

Z(H̃M)∼=


1 if H̃M ∼= SO(n), n is odd,
Z/(2Z) if H̃M ∼= SO(n), n is even,
Z/(2Z) if H̃M ∼= Spin(n), n is odd,
Z/(4Z) if H̃M ∼= Spin(n), n is even.

Further, since no nontrivial element of H̃M projects trivially to both factors (for
such an element would be trivial in G ×G), we must have K1 ∩ K2 = 1. On the
other hand, none of the possibilities for Z(H̃M) have two nontrivial subgroups that
intersect trivially, so we conclude that K1 or K2 is trivial. Without loss of generality,
we assume that K1 = 1.

Therefore to prove the claim that H̃M is contained in a single factor, we must
show that p2(H̃M) is trivial. Suppose it is not. Then p2 has finite kernel, so p2(H̃M)

is a subgroup of G = SO(n+ 1) of dimension dim H̃M =
1
2 n(n− 1). Fortunately,

there are very few possibilities by the following fact:

Lemma 5.3 [Kobayashi 1972, Lemma 1 in II.3]. Let H be a closed connected
subgroup of SO(n+ 1) of dimension 1

2 n(n− 1) with n+ 1 6= 4. Then either

(1) H ∼= SO(n) and H fixes a line in Rn+1, or

(2) H ∼= Spin(7) (and hence n+ 1= 8), and H is embedded in SO(8) via a spin
representation.

Here we say that a representation of Spin(n) is spin if it does not factor through
the covering map Spin(n)→ SO(n). To obtain the desired contradiction, we will
now consider various cases depending on which of the above possibilities describe
p1(H̃M) and p2(H̃M). For ease of notation we set H̃i := pi (H̃M) for i =1, 2. Before
considering each case separately, let us first make the following basic observation
that underlies the argument in each case:

Recall that HM acts freely on X . It follows that H̃M/(Z(G)∩ H̃M) acts freely
on G: namely, if h ∈ H̃M fixes x ∈ G, then the image of h under H̃M → HM fixes
the image of x under the covering map G→ X . Since HM acts freely on X , we
see that h belongs to the kernel of H̃M → X . Since the map G→ X is equivariant
with respect to the morphism H̃M → HM , it follows that for any g ∈ G, the points
g and h · g of G have the same image in X . This exactly means that the action of
h on G is a deck transformation of the covering G→ X . Since h fixes the point
x ∈ G and any deck transformation that fixes a point is trivial, h acts trivially on G.
Since the kernel of the action of G×G on G is the center Z(G), it follows that h
is central, as desired.
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Therefore if h = (h1, h2) ∈ H̃M ⊆ G×G fixes a point in G, then h1 = h2 and hi

are central in G. Since (h1, h2)·g= h1gh−1
2 , the stabilizer of g ∈G consists exactly

of the elements of the form (h1, gh1g−1) where h1 ∈G. Our strategy for obtaining a
contradiction in each of the cases below is to find an element h= (h1, gh1g−1)∈ H̃M

but with h1 /∈ Z(G).

Case 1 (H̃1 and H̃2 are both of type (1) of Lemma 5.3). By assumption, there are
nonzero vectors v1 and v2 ∈Rn+1 such that H̃i ∼= SO(n) fixes vi . The representation
of H̃i on (Rvi )

⊥ is the standard representation of SO(n). Therefore there is some an
intertwiner T : (Rv1)

⊥
→ (Rv2)

⊥ of these representations. Recall that an irreducible
representation leaves invariant at most one inner product up to positive scalars (for
if Q1 and Q2 are linearly independent invariant bilinear forms, then a suitable
linear combination Q = αQ1+βQ2 is invariant and degenerate as a bilinear form;
the kernel of Q is then a proper invariant subspace). It follows that after possibly
replacing T by λT for some λ > 0, the intertwiner T is orthogonal.

We can extend T to an intertwiner Rn+1
→ Rn+1 between H̃1 and H̃2 by setting

T v1 :=µv2 for some µ 6=0. We will denote the extension by T as well. By choosing
µ suitably, we can arrange that T is orthogonal, and after possibly changing the
sign of µ, we can also arrange that det T = 1.

The map T then belongs to SO(n+ 1), so that we have that

H̃M = {(h, T hT−1) | h ∈ H̃1}.

As observed above, it follows that H̃M does not act freely on X .

Case 2 (At least one of H̃1 and H̃2 is of type (2) of Lemma 5.3). Note that it is
not possible that H̃1 is of type (1) and H̃2 is of type (2). Namely, in this case we
would have that H̃M ∼= SO(n) (because H̃M ∼= H̃1), but the map H̃M → H̃2 would
be a covering SO(n)→ Spin(n), which is impossible (since the latter is simply
connected but the former is not).

So we must have that H̃1 is of type (2). In particular we have n=7. Unfortunately,
we cannot immediately apply the same argument as in case 1, because Spin(7)
has multiple faithful representations of dimension 8. This difficulty is resolved
by passing to a suitable subgroup of Spin(7): Namely given a spin representation
of Spin(7), the stabilizer of any nonzero v ∈ R8 is isomorphic to the exceptional
simple Lie group G2.

For the rest of the proof we fix some nonzero v ∈ R8 and let L be the stabilizer
in H̃1 of v. We have two representations of L on R8: On the one hand we have
L ⊆ H̃1. On the other hand we can consider p2(p−1

1 (L))⊆ H̃2. We analyze these
representations in turn and will show they are equivalent. Before doing so, it will
be helpful to recall some classical facts about the representation theory of G2 (see
[Adams 1996, Chapter 5]) for (a) – (d) and [Helgason 1978, Table X.6.IV] for (e)):
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(a) G2 is obtained as the subgroup of matrices of SO(8) that preserve the product
of the octonions O,

(b) G2 has no nontrivial representations of dimension less than 7,

(c) G2 has a single representation of dimension 7 (the action on the purely imagi-
nary octonions) that by fact (b) is necessarily irreducible,

(d) G2 has no irreducible representation of dimension 8, and

(e) G2 has trivial center.

We will write 1 for the trivial representation and Im(O) for the unique 7-dimensional
faithful representation.

Let us now consider the first representation, obtained by considering L as a
subgroup of H̃1. This representation is automatically faithful and has Rv as a trivial
summand. The summand (Rv)⊥ is therefore a faithful 7-dimensional representation
and by (c) equivalent to Im(O). Therefore the first representation is equivalent to
1⊕ Im O.

We turn to the second representation, obtained by the map p2◦p−1
1 : L→ H̃2. This

is a map with finite kernel (because p2 has finite kernel and p1 is an isomorphism),
so that the kernel is contained in the center. Since G2 has no center (see (e)),
it follows that this representation is also faithful. Since G2 has no irreducible
representation of dimension 8 (see (d)), we must have that the second representation
also decomposes as 1⊕Im O. Therefore there is an intertwiner T :R8

→R8 between
these representations. The rest of the argument proceeds exactly as in case 1.

This concludes the proof that H̃M is contained in one of the factors of G×G. To
complete the proof of the claim, we must show that H̃M ∼=SO(n). By the dichotomy
from Lemma 5.3, the only other possibility is that n = 7 and H̃M is given by a spin
representation of Spin(7).

In the latter case, we can see that N has constant positive curvature: Namely,
since M has constant curvature, the metric on X ∼= SO(8)/π1(M) lifts to a bi-
invariant metric on SO(8) and hence to a bi-invariant metric on Spin(8). On the
other hand N = X/HM is finitely covered by SO(8)/Spin(7), and hence also by
Spin(8)/Spin(7). It is well known that a bi-invariant metric on Spin(8) induces a
metric of constant positive curvature on S7 ∼= Spin(8)/Spin(7).

Since N has constant positive curvature, we can write N =SO(7)\SO(8)/π1(N )
for some finite subgroup π1(N ) ⊆ SO(8) acting by right-translations. The frame
bundle of N is then X = SO(8)/π1(N ) with HM ∼= SO(7) acting by left-translations.
This contradicts that H̃M was given by a spin representation into SO(8), and hence
finishes the proof of the claim. �

Since HM acts by left- or right-translations on SO(n+ 1), we will identify HM

with a subgroup of SO(n+ 1). Then we can conjugate HM to a standard copy of
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SO(n) by an element of SO(n+ 1). Therefore without loss of generality we have
N ∼= SO(n) \SO(n+ 1)/π1(N ), and we have an isometry

f : SO(n+ 1)/π1(M)∼= SO(M)→ SO(N )∼= SO(n+ 1)/π1(N ).

By composing with a left-translation of SO(n + 1), we can also assume that
f (eπ1(M))= eπ1(N ). It remains to show there is an isometry

M ∼= SO(n) \SO(n+ 1)/π1(M)→ SO(n) \SO(n+ 1)/π1(N )∼= N .

Claim 5.4. f lifts to an isometry SO(n+ 1)→ SO(n+ 1).

Proof. The universal cover of SO(M) and SO(N ) is Spin(n+1), so f lifts to a map

f̃ : Spin(n+ 1)→ Spin(n+ 1).

We can choose the lift f̃ such that f̃ (e) = e, where e is the identity element of
SO(n+ 1). Note that since f is an isometry, f̃ is an isometry as well (with respect
to a bi-invariant metric on Spin(n + 1)). As previously mentioned, d’Atri and
Ziller [1979] computed the group of isometries of a connected compact semisimple
Lie group G. Indeed, Isom(G) = GoAut(G), where the copy of G acts by left-
translations. It immediately follows that any isometry fixing the identity element e
is an automorphism. Therefore f̃ is an automorphism of Spin(n+ 1).

Recall that Spin(n+ 1) has a unique central element z of order 2, and we have
SO(n + 1) = Spin(n + 1)/〈z〉. Since z is the unique central element of order 2,
we must have that f̃ (z) = z. It follows that f̃ descends to an automorphism of
SO(n+ 1), as desired. �

Let
f̂ : SO(n+ 1)→ SO(n+ 1)

denote a lift of f . As above, by choosing an appropriate lift, we can assume that
f̂ (e)= e, and hence that f̂ is an automorphism of SO(n+ 1) (here we again used
the computation of d’Atri and Ziller of the isometry group of SO(n+ 1)). Because
f̂ is a lift of f , we know that f̂ restricts to an isomorphism π1M→ π1N .

Since f̂ is an automorphism of SO(n+ 1), there is some g ∈ SO(n+ 1) such
that f̂ (SO(n))= g SO(n)g−1. Here, as well as well as below, we identify SO(n)
with a fixed standard copy in SO(n+ 1). Define a map

ϕ̂ : SO(n+ 1)→ SO(n+ 1)

by ϕ̂(x) := g−1 f̂ (x).

Claim 5.5. (1) ϕ̂ is an isometry,

(2) For any x ∈ SO(n+ 1), we have ϕ̂(SO(n)x)= SO(n)ϕ̂(x).

(3) For any x ∈ SO(n+ 1), we have ϕ̂(xπ1(M))= ϕ̂(x)π1(N ).
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Proof. (1) Since left-translation by g is an isometry of SO(n+ 1), and f̂ is also an
isometry of SO(n+ 1), it follows that the map ϕ̂ is an isometry.

(2) Let x ∈ SO(n + 1). We have ϕ̂(SO(n)x) = g−1 f̂ (SO(n)x). Since f̂ is an
automorphism of SO(n+ 1), we then have

ϕ̂(SO(n)x)= g−1 f̂ (SO(n)) f̂ (x).

Using that f̂ (SO(n))= g SO(n)g−1, we see that

ϕ̂(SO(n)x)= SO(n)g−1 f̂ (x)= SO(n)ϕ̂(x).

(3) Let x ∈ SO(n + 1). This is similar to the proof of (2), but now using that
f̂ (π1(M))= π1(N ). We have

ϕ̂(xπ1(M))= g−1 f̂ (xπ1(M))= g−1 f̂ (x) f̂ (π1(M))= ϕ̂(x)π1(N ). �

From properties (2) and (3) of Claim 5.5, it is immediate that ϕ̂ descends to a
map

ϕ : SO(n) \SO(n+ 1)/π1(M)→ SO(n) \SO(n+ 1)/π1(N ).

Claim 5.6. ϕ is an isometry M→ N.

Proof. Recall that at the end of case 1 of the proof of Theorem 4.1, we showed
that an isometry X → X that maps the fibers of πM : X → M to the fibers of
πN : X→ N , descends to an isometry M→ N .

In the current setting, the map ϕ̂ : SO(n+ 1)→ SO(n+ 1) descends to a map

ϕ : X ∼= SO(n+ 1)/π1(M)→ SO(n+ 1)/π1(N )∼= X

by property (3) of Claim 5.5. Since ϕ̂ is an isometry and the maps

SO(n+ 1)→ SO(n+ 1)/π1(M) and SO(n+ 1)→ SO(n+ 1)/π1(N )

are Riemannian coverings, it follows that ϕ is an isometry.
Therefore to prove the claim, it suffices to show that ϕ maps fibers of X→M

to fibers of X → N . If we make the identifications X ∼= SO(n + 1)/π1(M) and
M ∼= SO(n)\SO(n+ 1)/π1(M), the map X→ M is just the natural orbit map

SO(n+ 1)/π1(M)→ SO(n) \SO(n+ 1)/π1(M).

Therefore the fibers of X→ M are exactly the SO(n)-orbits in SO(n+ 1)/π1(M)
(under the action by left-translation). Likewise, the fibers of X → N are the
SO(n)-orbits in SO(n+ 1)/π1(N ) under the action by left-translation. It follows
immediately from property (3) of Claim 5.5 that ϕ̂ maps SO(n)-orbits to SO(n)-
orbits, and hence so does ϕ. �
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We have shown that the map ϕ is an isometry M → N , so that M and N are
isometric, which finishes the proof of Theorem 5.1. �

6. Proof of the main theorem for surfaces

In this section we prove Theorem A for surfaces. We cannot use the Takagi–Yawata
theorem (Theorem 2.6) that computes i(X) in this situation, but instead we use the
classification of surfaces and Lie groups in low dimensions.

Let M and N be closed oriented surfaces with SO(M)∼= SO(N ). Therefore M
and N are each diffeomorphic to one of 6g with g ≥ 2, S2, or T 2. We know that

• SO(S2) is diffeomorphic to SO(3),

• SO(T 2) is diffeomorphic to T 3, and

• SO(6g) is diffeomorphic to T 16g = PSL2 R/0 for a cocompact torsion-free
lattice 0 ⊆ PSL2 R.

In particular the diffeomorphism type of the frame bundle of a surface determines
the diffeomorphism type of the surface. It follows that M and N are diffeomorphic.

Consider the Lie algebra of Killing fields i(X) of X . Then i(X) contains the
(1-dimensional) subalgebras i M

V and i N
V . If i M

V = i N
V , then we proceed as in case (1)

in Section 4, and we find that M and N are isometric. Therefore we will assume
that i M

V 6= i N
V . In particular we must have dim i(X)≥ 2.

As before, let HM (resp. HN ) be the subgroup of Isom(X) obtained by exponen-
tiating the Lie algebra i N

V (resp. i M
V ). Then HM and HN are closed subgroups of

Isom(X) isomorphic to S1.
We will now consider each of the possibilities of the diffeomorphism types of

M and N , and prove that M and N have to be isometric.

Case 1 (M and N are diffeomorphic to 6g, g ≥ 2). Then X = T 16g is a closed
aspherical manifold. Conner and Raymond [1970] proved that if a compact con-
nected Lie group G acts effectively on a closed aspherical manifold L , then G is a
torus and dim G ≤ rkZ Z(π1L), where Z(π1L) is the center of π1(L). In particular
we find that dim i(X)≤ rkZ Z(π1T 16g)= 1. This contradicts our assumption that
dim i(X)≥ 2.

Case 2 (M and N are diffeomorphic to S2). Let G be the connected component of
Isom(X) containing the identity. Then G is a compact connected Lie group acting
effectively and isometrically on X = SO(3), and G contains HM and HN .

If dim G = 2, then G is a 2-torus. In particular HM and HN centralize each other.
Therefore HN acts on X/HM = N and similarly HM acts on M . The kernel of
either of these actions is HM ∩ HN , which is a finite subgroup of both HM and HN .
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Since an S1-action on S2 has at least one fixed point (because χ(S2) 6= 0), we
see that N/HN ∼= [−1, 1] ∼= M/HM . It is then straightforward to see that the metric
on M (resp. N ) is of the form

ds2
M = fM(x0)(dx2

0 + dx2
1 + dx2

2)

(resp. ds2
N = fN (x0)(dx2

0 + dx2
1 + dx2

2)) as in Theorem 3.4(1). We can apply the
reasoning from case A of the proof of case 3(b) in Section 4 to show M and N are
isometric.

Therefore we will assume dim G ≥ 3. In addition we know that dim G ≤ 6 by
Theorem 3.1. Finally, we must have rk(G)≤ 2: Namely let T be a maximal torus in
G containing HN . Since T centralizes HN , the group T/HN acts effectively on M .
However, a torus of dimension ≥ 2 does not act effectively on S2. (To see this,
note that any 1-parameter subgroup H has a fixed point on S2 because the Killing
field generated by H has a zero on S2. We can take H to be dense, so that the
entire torus fixes a point p. The isotropy action on Tp M is a faithful 2-dimensional
representation of the torus, which is impossible unless the torus is 1-dimensional.)

Therefore the only possibilities for the Lie algebra g of G are

(a) g∼= o(3),

(b) g∼= R⊕ o(3), and

(c) g∼= o(3)⊕ o(3).

We will now consider each of these cases separately.

Case 2(a) (g ∼= o(3)). Since G has rank 1, HM and HN are both maximal tori
of G. Since all maximal tori are conjugate, there is some element g ∈ G so that
gHN g−1

= HM . Then g induces an obvious isometry M→ N .

Case 2(b) (g ∼= R⊕ o(3)). We can conjugate HN by an element g ∈ G so that
gHN g−1 and HM centralize each other. Then either gHN g−1

= HM , in which
case g induces an isometry M→ N , or gHN g−1 and HM generate a 2-torus. In the
latter case the argument above in case dim G = 2 shows that the metrics on M and
N are of the form

ds2
= f (x0)(dx2

0 + dx2
1 + dx2

2),

for some function f on [−1, 1]. Then the argument of case A of case 3(b) in
Section 4 shows that M and N are isometric.

Case 2(c) (g ∼= o(3) ⊕ o(3)). In this case dim Isom(X) = 6 is maximal. By
Theorem 3.1 the metric on X has positive constant curvature. Therefore the metrics
on M and N have positive constant curvature. Further by Lemma 2.9 we have
vol(M)= vol(N ). It follows that M and N are isometric.
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Case 3 (M and N are diffeomorphic to T 2). In this case X is diffeomorphic to T 3.
Again by the theorem of Conner and Raymond [1970] on actions of compact Lie
groups on aspherical manifolds, we know that a connected compact Lie group acting
effectively on a torus is a torus. Therefore HN and HM centralize each other, so
HM and HN generate a 2-torus. Further HM acts on M = X/HN with finite kernel
HM ∩ HN . Again by [Conner and Raymond 1970], the action of HM/(HM ∩ HN )

on M is free, so that the map

M→ M/HM ∼= S1

is a fiber bundle (with S1 fibers). The argument of case B in case 3(b) of the proof
of Theorem A constructs a (unit length) Killing field XM on M that is orthogonal to
the fibers of M→M/HM . It follows that M is a 2-torus equipped with a translation
invariant metric. Any such metric is automatically flat: Namely, because the torus is
abelian, the metric is automatically bi-invariant. Then we use the following general
fact: on a Lie group H with a bi-invariant metric, the Lie structure and sectional
curvature are tied by the identity (see, e.g., [Petersen 2006, Proposition 3.4.12])

K (X, Y )= 1
4
‖[X, Y ]‖2,

where X, Y are orthonormal vectors in h (which is identified with Te H in the usual
way), and the bracket is the Lie bracket. Since T 2 is abelian, it follows that the
sectional curvatures with respect to any invariant metric vanish.

We conclude that M is flat. By carrying out the same construction for N , we
obtain a Killing field XN on N that is orthogonal to the HN -orbits, and we conclude
that N is flat.

To show that M and N are isometric, recall that the isometry type of a flat 2-torus
is specified by the length of two orthogonal curves that generate its fundamental
group. For M we can consider the curves given by an HM -orbit on M and an
integral curve of XM . Similarly for N we can consider an HN -orbit on N and an
integral curve of XN .

For x ∈ M and x̃ ∈ X lying over x , we have a covering

HM x̃→ HM x

of degree |HN ∩ HM |. Recall that the HM -orbits in X have a fixed volume ν, since
we normalized the Sasaki–Mok–O’Neill metric on X in this way. Therefore

`(HM x)= 1
|HN∩HM |

`(HM x̃)= ν

|HN∩HM |
.

Combining this with a similar computation for the length of an HN -orbit on N
gives `(HM x) = `(HN y) for every x ∈ M and y ∈ N . Therefore we see that the
length of an integral curve of XM (resp. XN ) is vol(M)/(`(HM · x)) for x ∈ M
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(resp. vol(N )/(`(HN · y)) for y ∈ N ). Since vol(M) = vol(N ) by Lemma 2.9, it
follows that M and N are isometric.
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BUNDLES OF SPECTRA AND ALGEBRAIC K-THEORY

JOHN A. LIND

A parametrized spectrum E is a family of spectra Ex continuously parame-
trized by the points x ∈ X of a topological space. We take the point of
view that a parametrized spectrum is a bundle-theoretic geometric object.
When R is a ring spectrum, we consider parametrized R-module spectra
and show that they give cocycles for the cohomology theory determined by
the algebraic K -theory K (R) of R in a manner analogous to the description
of topological K -theory K 0(X) as the Grothendieck group of vector bun-
dles over X . We prove a classification theorem for parametrized spectra,
showing that parametrized spectra over X whose fibers are equivalent to
a fixed R-module M are classified by homotopy classes of maps from X
to the classifying space BAutR M of the topological monoid of R-module
equivalences from M to M.
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1. Introduction

Contemporary algebraic topology features a vast array of generalized cohomology
theories, but our knowledge of their geometric content remains limited to the
examples of ordinary cohomology theories, topological K -theory and cobordism
theories. In this paper we describe the geometry underlying the cohomology
theory associated to the algebraic K -theory of a ring, or more generally a ring
spectrum. The higher algebraic K -groups Kn(R) of a ring spectrum R may be
defined as the homotopy groups of the algebraic K -theory spectrum K (R). By
the geometry of K (R)-theory, we mean a geometric description of the cocycles
whose equivalence classes form the cohomology groups K (R)∗(X) associated
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428 JOHN A. LIND

to the spectrum K (R). Our methods only give a description of the degree zero
cohomology group K (R)0(X) and the result is reminiscent of the description of
topological K -theory K 0(X) in terms of the Grothendieck group of vector bundles
over X . The analogue of vector bundles for K (R)-theory are parametrized spectra
that are modules over the ring spectrum R. We call these objects R-bundles. The
main result is the following:

Theorem 1.1. Let R be a connective ring spectrum and let K (R) be the algebraic
K -theory spectrum of R. Then for any finite CW complex X , there is a natural
isomorphism

K (R)0(X)∼= Gr[ lifted, free, finite rank R-bundles over X ]

between the degree zero K (R)-cohomology classes of X and the Grothendieck
group of the abelian monoid of equivalence classes of lifted R-bundles over X that
are free and finite rank as parametrized R-modules.

We will give a precise meaning to all of the terms occurring in the statement of
the theorem in §5 and §6, but for now we note that an R-bundle E over X is free
of finite rank if every fiber Ex admits an equivalence of R-modules to the n-fold
wedge R∨n for some n ≥ 0.

Our geometric description of K (R)-theory is inspired by previous work. For
R a discrete ring, Karoubi [1987] gave a similar description of the cocycles for
K (R)-theory in terms of fibrations of projective R-modules. For the case where R is
the connective complex K -theory spectrum ku, Baas, Dundas, Richter and Rognes
[Baas et al. 2004; 2011] interpreted the cocycles of K (ku)-theory as 2-vector
bundles, which are a categorification of complex vector bundles.

By definition, K (R)0(X) is the group of homotopy classes of maps from X
to the underlying infinite loop space of the algebraic K -theory spectrum, whose
homotopy type can be described using Quillen’s plus construction:

�∞K (R)' K0(R)× BGL+
∞
(R).

Here K0(R) = K f
0 (π0 R) is the Grothendieck group of free modules over the

discrete ring π0 R and BGL+
∞
(R) is Quillen’s plus construction applied to the

H-space BGL∞(R)= colimn BGLn(R), where BGLn(R) is the classifying space
of the derived mapping space GLn(R) = AutR(R∨n) of R-module equivalences
R∨n
→ R∨n .

One important point is that, unlike the case of vector bundles and complex
K -theory, the plus construction can radically change the homotopy type. This
forces the bundles that define cocycles for K (R)-theory to be lifted R-bundles over
X , meaning R-bundles defined up to covers of X with homologically trivial fibers —
see Section 6 for a precise definition.
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The term “bundle” is perhaps a little naive: as one continuously varies the
basepoint in X , the fibers of a parametrized spectrum are weak homotopy equivalent,
but need not be strictly isomorphic. Put another way, to describe a parametrized
spectrum in terms of cocycle data would require a derived or infinitely homotopy
coherent descent condition. This point of view naturally leads to a description
of parametrized objects as homotopy sheaves with values in a quasicategory, as
developed by Ando, Blumberg, Gepner, Hopkins and Rezk [Ando et al. 2010;
2011; 2014a]. Rather than using quasicategories, we follow the foundations of
parametrized stable homotopy theory developed by May and Sigurdsson [2006].
In their framework, parametrized spectra are defined in terms of a “total object”
over X instead of cocycle data. Homotopical control of the fiber homotopy type of
parametrized spectra is maintained via the framework of Quillen model categories.

Theorem 1.1 follows from a general classification theorem for parametrized
R-module spectra. In this paper, a spectrum means an orthogonal spectrum, and
we use the stable model structure on orthogonal ring and module spectra from
Mandell, May, Schwede and Shipley [2001]. Given an R-module M, we say
that a parametrized R-module spectrum E over X has fiber M if the fiber Ex of
E over every point x ∈ X admits a stable equivalence Ex ' M of R-modules.
We use the terms “R-bundle with fiber M” and “parametrized R-module with
fiber M” interchangeably. Let AutR M be the derived mapping space of homotopy
automorphisms of M as an R-module. In Section 5, we explain how to realize
this homotopy type as a group-like topological monoid, so that we may form the
classifying space BAutR M, and prove the following classification theorem:

Theorem 1.2. Let X be a CW complex, let R be a ring spectrum and let M be
an R-module. There is a natural bijection between stable equivalence classes of
R-bundles over X with fiber M and homotopy classes of maps [X, BAutR M].

When M = R, Theorem 1.2 says that line R-bundles over X are classified by the
classifying space BGL1 R of the units of R. The construction of the line R-bundle
associated to a map f : X → BGL1 R is the generalized Thom spectrum studied
by Ando, Blumberg, Gepner, Hopkins and Rezk [2014a; 2014b]; see Remark 5.2.
From another point of view, a parametrized spectrum with fiber M gives a twisted
form of the cohomology theory M. We can then view Theorem 1.2 as giving a
general classification theorem of the twists of M-theory.

Ando, Blumberg and Gepner, in their∞-categorical approach to parametrized
homotopy theories, proved in Theorem B.4 of [Ando et al. 2011] that the quasicate-
gory of morphisms 5∞X→S∞ from the singular simplicial complex of a space
X to the quasicategory of spectra S∞ is equivalent to the quasicategory associated
to the May-Sigurdsson model category of parametrized spectra over X . Variants of
their arguments can be used to prove results in the same vein as Theorem 1.2. The
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proof in this paper is more concrete, using the pullback of a universal bundle to
induce the equivalence instead of Lurie’s straightening functor [Lurie 2009, §3.2.1].

In order to prove Theorem 1.2, we compare R-bundles with fiber M and principal
AutR M-fibrations, where AutR M is a point-set model for the derived mapping space
of homotopy automorphisms constructed out of appropriate cofibrant and fibrant
approximations. Much of the technical material in the paper goes into maintaining
control of the fiberwise homotopy type of the principal fibration associated to an
R-bundle with fiber M. By carefully intertwining a Quillen-type model structure
and a Hurewicz-type model structure, we show that this construction induces a
bijection of equivalence classes, and reduce the proof of the classification theorem
for R-bundles with fiber M to the classification theorem for principal fibrations.

The classification theorem for R-bundles and the construction of the principal
fibration associated to an R-bundle has recently been used by Cohen and Jones
[2013a; 2013b] in their study of the gauge group of parametrized spectra and the
K -theory of string topology.

Outline. In Section 2, we collect the necessary facts about model category structures
on parametrized spaces, introduce a homotopical notion of a G-torsor and compare
it to that of a principal G-fibration, where G is a topological monoid. The model
category structures on parametrized spectra are recalled in Section 3, then in
Section 4 we construct the principal AutR M-fibration associated to a bundle with
fiber M. We prove in Section 5 that this construction provides an inverse up to
homotopy to the associated bundle construction

Y 7→ M ∧6∞+ AutR M 6
∞

B Y,

and prove Theorem 1.2. The proof of Theorem 1.1 is given in Section 6.

Topological conventions. We will rely heavily on the foundations for parametrized
homotopy theory developed by May and Sigurdsson [2006]. As explained there, it is
advantageous to leave the category U of compactly generated spaces. By a “space”
we mean a k-space as defined in [May and Sigurdsson 2006, Definition 1.1.1], and
we denote the category of spaces by K . We will always assume that the base space
(denoted by B or X ) is compactly generated. We assume throughout that the ring
spectrum R is well-grounded, meaning that each constituent space is compactly
generated and nondegenerately based.

2. Model category theory and principal fibrations

In this section, we recall some basic material on model category structures on
the category of parametrized spaces from [May and Sigurdsson 2006]. We then
introduce a homotopical notion of a G-torsor, where G is a topological monoid,
and show that it is equivalent to that of a principal G-fibration.
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The category K of k-spaces admits a compactly generated topological model
structure with weak equivalences the weak homotopy equivalences, fibrations the
Serre fibrations, and cofibrations the retracts of relative cell complexes. We refer
to this model structure as the q-model structure, and use the terms q-equivalences,
q-fibrations, and q-cofibrations for its weak equivalences, fibrations, and cofibra-
tions. Let B be a compactly generated topological space. The category K /B
of spaces (X, p) = (p : X → B) over B admits a model structure whose weak
equivalences and fibrations are detected by the forgetful functor (X, p) 7→ X
to the q-model structure on K . An ex-space is a space (X, p) over B along
with a map s : B → X such that p ◦ s = idB . The category KB of ex-spaces
(X, p, s) also admits a model structure given by the forgetful functor to the q-
model structure on K . We refer to these model structures as the q-model structure
on K /B and KB , respectively. While both of these model structures are compactly
generated and topological, they are not well-grounded, in the sense of [May and
Sigurdsson 2006, §5.3–5.6]. The problem is that the generating q-cofibrations and
acyclic q-cofibrations do not satisfy the homotopy extension property defined in
terms of fiberwise or fiberwise pointed homotopies in K /B or KB , as given by
Definitions 5.1.7 and 5.1.8. of the same work. Instead, they are only Hurewicz
cofibrations in the underlying category of spaces. As a result, applications of the
gluing lemma that would allow standard inductive arguments over cell complexes
built out of the generating sets fail for these model structures. In attempting to
construct a stable model structure on parametrized spectra based on the q-model
structure, the verification that relative cell complexes built out of the generating
acyclic cofibrations are weak equivalences is unattainable.

As an alternative, May and Sigurdsson [2006, §6.1–6.2] develop the q f -model
structure on K /B and KB . The q f -model structure also has the q-equivalences as
weak equivalences, so that the associated homotopy category is still the homotopy
category of spaces over B, but there are fewer q f -cofibrations than q-cofibrations.
A q f -fibration need not be a Serre fibration but is a quasifibration. Here, we do
not need the details of the definitions, only the fact that in each case the q f -model
structure is a well-grounded compactly generated model category. We will work
in the unsectioned context, building well-grounded compactly generated model
structures on parametrized diagram spaces out of the q f -model structure on K /B.

The category of spaces over B is tensored over the category of spaces via the
cartesian product

K ×K /B→K /B, (X, Y p
−→ B) 7→ (X × Y p◦π2

−−→ B).

If G is a topological monoid, then we use this structure to define the notion of
an object of K /B with a strictly associative and unital (left) action of G, which
we call a G-space over B. The G-spaces over B form a category GK /B with
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morphisms the G-equivariant maps over B. Equivalently, the category GK /B is
the comma category (GK ↓ B) formed in the category of G-spaces, where we
consider B to have a trivial action of G. We will also need the q f -model structure
on the category of G-spaces over B.

Proposition 2.1. Let G be a topological monoid. There is a well-grounded com-
pactly generated model category structure on the category of GK /B of G-spaces
over B with weak equivalences and fibrations created by the forgetful functor to
the q f -model structure on spaces over B. If f : A→ B is a map of spaces, then
the pullback functor f ∗ : GK /B→ GK /A and its left adjoint f! form a Quillen
adjoint pair for the q f -model structure. If f is a q-equivalence of spaces, then
( f!, f ∗) is a Quillen equivalence.

Proof. The corresponding statements when G = ∗ are Theorem 6.2.5 and Proposi-
tions 7.3.4 and 7.3.5 of [May and Sigurdsson 2006]. The generating cofibrations
and acyclic cofibrations for the associated model structure on the category of
parametrized G-spaces are obtained by applying the free G-space functor G× (−),
defined in terms of the tensor of a space and a space over B, to the generating sets
for the q f -model structure on K /B. The result then follows by directly checking
the criteria for compactly generated model structures in [May and Sigurdsson 2006,
Theorem 5.5.1]. Note that the q f -model structure on GK /B inherits the property
of being right proper from K /B, so it is a well-grounded model structure, see
Definition 5.5.4 of the same work. The claims about the adjunction follow directly
from the case G = ∗. �

In particular, the fiber functor i∗b = (−)b is right Quillen on the category of
G-spaces over B. We let Fb = Ri∗b denote its right derived functor. In other words,
FbY is the object of the homotopy category of G-spaces determined by the fiber
(Rq f Y )b of a q f -fibrant approximation of Y .

While the following terminology is nonstandard, it will be useful as an inter-
mediary between the highly structured notion of a principal G-fibration and the
model-theoretic fiber conditions on parametrized spectra.

Definition 2.2. A G-torsor over B is a G-space (Y, p) over B for which every
derived fiber FbY admits a zigzag of q-equivalences of G-spaces to G, considered
as a G-space via left multiplication. We write Ho(G Tor /B) for the full subcategory
of the homotopy category Ho(GK /B) of G-spaces over B that is spanned by the
G-torsors.

The notion of a G-torsor is native to the Quillen model structure. The following
definition instead uses the Hurewicz model structure.

Definition 2.3. A principal G-fibration over B is a G-space (Y, p) over B for which



BUNDLES OF SPECTRA AND ALGEBRAIC K-THEORY 433

• the structure map p : Y → B is an h-fibration of G-spaces, meaning that it has
the homotopy lifting property in the category of G-spaces,

• for every b ∈ B, there is a zigzag of weak equivalences of G-spaces Yb ' G.

We now construct an approximation functor 0 in order to compare G-torsors
with principal G-fibrations. Given a G-space (Y, p) over B, let (0Y, 0p) be the
G-space over B defined by the mapping path-space construction

0p : 0Y = B I
×B Y ev1−→ B, (γ, y) 7→ γ (1),

and note that the fiber (0Y )b of 0p is the homotopy fiber of Y at b ∈ B. Note that
the map 0p is an h-fibration of G-spaces, since the lifting problem in the category
of G-spaces

X
(γ, f )

//

i0
��

B I
×B Y

ev1

��

X × I h
//

h̃
99

B

has a solution given by h̃(x, t)= (λt(x), f (x)), where λt(x) is the path

λt(x)(s)=
{
γ (x)(s+ st) for 0≤ s ≤ 1/(1+ t),
h(x, s+ ts− 1) for 1/(1+ t)≤ s ≤ 1,

and the map h̃ is evidently G-equivariant.
The construction of mapping path-spaces is functorial, so that 0 defines an

endofunctor of the category of G-spaces over B with the following easily verifiable
properties:

Lemma 2.4. (i) If p is a quasifibration and every fiber Yb is q-equivalent to G,
then (0Y, 0p) is a principal G-fibration over B.

(ii) Suppose that the map (X, p)→ (Y, q) is a q-equivalence of G-spaces over B.
Then the induced map (0X, 0p)→ (0Y, 0q) is a q-equivalence of principal
G-fibrations.

(iii) The map (Y, p)→ (0Y, 0p) defined by the inclusion into constant paths is a
homotopy equivalence of G-spaces over B. If p is a quasifibration, then the
map restricts to a q-equivalence on fibers.

Proposition 2.5. The functor 0 induces a natural isomorphism between the set of
q-equivalence classes of G-torsors over B and the set of q-equivalence classes of
principal G-fibrations over B.

Proof. Let (Y, p) be a G-space over B. The inclusion of the fiber into the homotopy
fiber for both (Y, p) and a q f -fibrant approximation (Rq f Y, Rq f p) are related by
the commutative diagram
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(2.6)

Yb

��

// (Rq f Y )b

'

��

(0Y )b
'
// (0Rq f Y )b

induced by fibrant approximation and the inclusion of constant paths. Since the
fibrant approximation is a q-equivalence of total spaces, it induces a q-equivalence
of the homotopy fibers. The q f -fibration Rq f p is in particular a quasifibration,
which gives the other displayed q-equivalence. It follows that the derived fiber FbY
is canonically q-equivalent to the homotopy fiber (0Y )b.

Thus 0 takes G-torsors to principal G-fibrations and preserves q-equivalences.
Conversely, every principal G-fibration is a G-torsor. The map η : Y → 0Y in
Lemma 2.4.(iii) is a q-equivalence of G-spaces, so 0 is bijective on q-equivalence
classes. �

Using the proposition, the next theorem is a restatement of May’s classification
theorem [1975, Theorem 9.2] for principal G-fibrations.

Theorem 2.7. Let G be a grouplike topological monoid with nondegenerate base-
point and let B be a CW complex. Taking the pullback of 0EG→ BG along a
given map B→ BG defines a natural bijective correspondence between the set of
homotopy classes of maps [B, BG] and the set of equivalence classes of G-torsors
over B.

3. Model categories of parametrized spectra

We now summarize what we need from the theory of parametrized spectra, following
[May and Sigurdsson 2006, Chapters 11–12]. A spectrum over B is an orthogonal
spectrum in the category of ex-spaces over B. That is, a parametrized spectrum
X consists of an O(V )-equivariant ex-space (X (V ), p(V ), s(V )) for each finite-
dimensional real inner product space V , along with compatible (O(V )× O(W ))-
equivariant structure maps

σ : X (V )∧B SW
B → X (V ⊕W )

over and under B. Here SV
B = r∗SV

= SV
× B is the trivially twisted ex-space

with fiber the one-point compactification SV . The section of SV
B is determined

by the basepoint of SV . The smash product ∧B is the fiberwise smash product of
ex-spaces. A map f : X → Y of spectra over B consists of an equivariant map
f (V ) : X (V )→ Y (V ) of ex-spaces for each indexing space V that are suitably
compatible with the structure maps σ . For each point b ∈ B, the fiber of X over
b is the spectrum Xb = i∗b X given by the pullback of X along the inclusion map
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ib : {b} → B. The fiber spectrum is described levelwise in terms of the fibers of its
constituent ex-spaces by the formula Xb(V )= X (V )b.

The level model structure on the category SB of spectra over B has as weak
equivalences, respectively fibrations, those maps f such that each f (V ) is a
q-equivalence, respectively q f -fibration, of ex-spaces. We refer to these maps
as the levelwise q-equivalences and levelwise q f -fibrations, respectively. The
homotopy groups of a levelwise q f -fibrant spectrum X over B are the homotopy
groups πq Xb of all of the fibers of X . The homotopy groups of a spectrum X
over B are the homotopy groups πq(Rl X)b of the fibers of a levelwise q f -fibrant
approximation Rl X of X . We say that a map X→ Y of spectra over B is a stable
equivalence if it induces an isomorphism on all homotopy groups of all fibers. An
�-spectrum over B is a level q f -fibrant spectrum X over B whose adjoint structure
maps

σ̃ : X (V )→�W
B X (V ⊕W )

are q-equivalences of ex-spaces over B.

Theorem 3.1 [May and Sigurdsson 2006, Theorem 12.3.10]. The category SB of
spectra over B admits the structure of a well-grounded compactly generated model
category whose weak equivalences are the stable equivalences. The fibrations and
cofibrations are called the s-fibrations and the s-cofibrations, and the s-fibrant
objects are the �-spectra over B. We refer to this model structure as the s-model
structure (or stable model structure) on SB .

In the case B = ∗, this coincides with the stable model structure on orthogonal
spectra from Mandell, May, Schwede and Shipley [2001].

Parametrized spaces and parametrized spectra are related by suspension spectrum
and underlying infinite loop space functors. If (Y, p) is a space over B, the fiberwise
suspension spectrum 6∞B Y is the spectrum over B defined by

(6∞B Y )(V )= (Y, p)+ ∧B SV
B ,

where

(Y, p)+ = (Y q B, pq idB, idB)

is the ex-space over B obtained from (Y, p) by adjoining a disjoint section. The right
adjoint �∞B of 6∞B is defined by �∞B X = X (0). By inspecting the definitions, we
see that there are natural isomorphisms of fibers (6∞B Y )b ∼=6∞+ Yb and (�∞B X)b ∼=
�∞Xb.

The category SB of spectra over B is enriched and tensored over the category
S of spectra with tensor the fiberwise smash product ∧. We use this structure to
define parametrized module spectra. Let R be a (nonparametrized) ring spectrum.
We assume, once and for all, that R is well-grounded, meaning that each R(V ) is
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well-based and compactly generated. An R-module over B is a spectrum N over B
with an associative and unital map of spectra R ∧ N → N over B.

Theorem 3.2 [May and Sigurdsson 2006, Theorem 14.1.7]. The category RModB

of R-modules over B is a well-grounded compactly generated model category with
weak equivalences and fibrations created by the forgetful functor to SB . We refer to
this model structure as the s-model structure on RModB .

If X is a space and Y is a space over B, then there is a natural isomorphism of
parametrized spectra over B

6∞B (X × Y )∼=6∞+ X ∧6∞B Y

that satisfies the analogues of the associativity and unit diagrams for a monoidal
natural transformation. Similarly, �∞B preserves the monoidal structure up to
a lax monoidal transformation, so that if G is a topological monoid, then the
adjunction (6∞B , �

∞

B ) restricts to give an adjunction between G-spaces over B and
6∞
+

G-module spectra over B.

Proposition 3.3. (i) The adjoint pair (6∞B , �
∞

B ) is a Quillen adjunction between
the q f -model structure on spaces over B and the s-model structure on spectra
over B.

(ii) Let G be a topological monoid. The adjoint pair (6∞B , �
∞

B ) is a Quillen ad-
junction between the q f -model structure on G-spaces over B and the s-model
structure on 6∞

+
G-modules over B.

Proof. In both cases, this follows by examining the effect of 6∞B on generating
cofibrations and acyclic cofibrations; since the s-model structure on SB is a left
Bousfield localization of the level q f -model structure, its generating sets contain all
maps of the form 6∞B i , where i runs through the generating sets for the q f -model
structure on K /B. �

It is a formal consequence that the left Quillen functor 6∞B preserves weak
equivalences between cofibrant objects. However, it will be useful to know that a
stronger result is true.

Lemma 3.4. The functor 6∞B :K /B→SB preserves all weak equivalences.

Proof. If f : X → Y is a weak homotopy equivalence of spaces over B, then
each map of ex-spaces f+ ∧B SV

B is a weak homotopy equivalence on total spaces.
This means that 6∞B f is a levelwise weak homotopy equivalence and thus a stable
equivalence of parametrized spectra by [May and Sigurdsson 2006, Lemma 12.3.5].

�

We will work in the nonparametrized setting for a moment in order to fix notation
on some constructions. Suppose that R and A are ring spectra. Consider the function
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spectrum F R(− ,−) of R-modules. If P is an A-module, M is an (R, A)-bimodule
and N is an R-module, then F R(M, N ) is an A-module and we have the following
adjunction:

(3.5) ModR(M ∧A P, N )∼=ModA(P, F R(M, N )).

It is a consequence of the fact that the category of R-modules is a spectrally enriched
model category via the function spectra F R(− ,−) that if M ′ is a cofibrant R-
module, then the functor F R(M ′,−) preserves stable equivalences between fibrant
R-modules, and similarly if N is a fibrant R-module, then the functor F R(−, N )
preserves stable equivalences between cofibrant R-modules.

We will be interested in the generalization of the adjunction (3.5) where N
and P are parametrized spectra. The smash product M ∧A P occurring in the
parametrized version of the adjunction is built out of the external smash product
∧ :S ×SB→SB , as described in [May and Sigurdsson 2006, §14.1]. In particular,
there is never a need to internalize the smash product by taking the pullback 1∗ of
a spectrum over B × B along the diagonal map. In this situation, we are able to
maintain homotopical control of the smash product.

Lemma 3.6. Let i : X → Y be an s-cofibration of R-modules and let j : Z → W
be an s-cofibration of spectra over B. Then the pushout product

i � j : (Y ∧ Z)∪X∧Z (X ∧W )→ Y ∧W

is an s-cofibration of R-modules over B and a stable equivalence if either i or j is.

Proof. Since parametrized spectra and R-modules are well-grounded categories,
we may induct up the cellular filtration of i and j , so it suffices to verify the result
when i and j are generating cofibrations or generating acyclic cofibrations. This
follows from the case when R = S [May and Sigurdsson 2006, Proposition 12.6.5]
because R ∧ (−) takes s-cofibrations and acyclic s-cofibrations of spectra over B
to s-cofibrations and acyclic s-cofibrations of R-modules over B. �

The lemma has the following consequence:

Proposition 3.7. Suppose that M is an (R, A)-bimodule that is cofibrant as an
R-module. Then the adjunction

(A-modules over B)
M∧A(−)

//
(R-modules over B)

F R(M,−)
oo

is a Quillen adjunction.

Proof. It follows from the lemma that the adjunction is Quillen when A = S. In
particular, the functor F R(M,−) is right Quillen when we consider its codomain
to be parametrized spectra. The general case then holds as well because s-fibrations
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and weak equivalences of A-modules over B are created by the forgetful functor to
parametrized spectra. �

4. The principal AutR M-fibration associated to an R-bundle

Let R be a ring spectrum and let M be an R-module. In this section, we will define
the topological monoid AutR M of autoequivalences of R-modules M→ M. We
then describe the construction of an AutR M-torsor from an R-bundle with fiber M.

Suppose that G is a topological monoid. While G may not be grouplike, there is
a maximal grouplike submonoid G× ⊂ G defined as the pullback

(4.1)

G× //

��

G

��

(π0G)× // π0G

where (π0G)× ⊂ π0G is the subset of invertible elements of the monoid π0G.
In other words, the inclusion G× → G is given by the inclusion of those path
components that are invertible under the monoid multiplication. For example, if
G =�∞R = R(0) is the multiplicative topological monoid underlying an s-fibrant
ring spectrum R, then G× = GL1 R is the space of units of R. A more delicate
construction is required if R is commutative and one wants to keep control of the
resulting E∞-space structure on GL1 R [Lind 2013; Schlichtkrull 2004; Sagave and
Schlichtkrull 2013], but we will not need this for our purposes.

We assume for the rest of the section that R is an s-cofibrant ring spectrum and
that M is an s-fibrant and s-cofibrant R-module. The function spectrum F R(M,M)
is a ring spectrum under composition of maps and our assumptions guarantee that
it is s-fibrant. Let

EndR M =�∞F R(M,M)= F R(M,M)(0)

be the underlying topological monoid. We define AutR M to be the units of the ring
spectrum F R(M,M):

AutR M = GL1 F R(M,M)= (�∞F R(M,M))×.

We think of AutR M as the space of weak equivalences of R-modules M → M,
with monoid multiplication given by composition. The suspension spectrum of
the monoid AutR M is a ring spectrum 6∞

+
AutR M. The R-module M also has the

structure of a right 6∞
+

AutR M-module, with action map

M ∧S 6
∞

+
AutR M→ M
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the adjoint of the composite map of ring spectra

6∞
+

AutR M→6∞
+
�∞F R(M,M)

ε
→ F R(M,M)

induced by the canonical inclusion GL1→ �∞ and the counit of the adjunc-
tion (6∞

+
, �∞). Thus M is a (R, 6∞

+
AutR M)-bimodule.

We write Fb = Ri∗b (−) for the right derived fiber functor. If N is an R-module
over B, the derived fiber Fb R is the object of the homotopy category of R-modules
determined by the fiber i∗b RsN of an s-fibrant approximation of N as an R-module
over B.

Definition 4.1. An R-bundle over B with fiber M is an R-module N over B such
that every derived fiber Fb N of N admits a zigzag of stable equivalences of R-
modules to M.

Let N be an R-bundle over B. The function spectrum F R(M, N ) is a6∞
+

EndR M-
module over B. Applying �∞B we get an EndR M-space �∞B F R(M, N ) over B
which is q f -fibrant when N is s-fibrant. The following lemma allows us to keep
control of its fiber homotopy type. It is a direct consequence of the cofibrancy of
M as an R-module.

Lemma 4.2. Suppose that N is s-fibrant and fix a point b ∈ B. A stable equivalence
of R-modules Nb ' M determines

(i) a stable equivalence of 6∞
+

EndR M-modules F R(M, N )b ' F R(M,M), and

(ii) a q-equivalence of EndR M-spaces �∞B F R(M, N )b '�∞F R(M,M).

Notice that the second condition in the lemma implies that �∞B F R(M, N ) is an
EndR M-torsor. We will now construct an AutR M-torsor

E R(M, N )⊂�∞B F R(M, N ).

The idea of the construction is to restrict to the subspace whose fiber over b ∈ B
consists of the stable equivalences of R-modules M → Nb. To make this idea
rigorous, we need to access the components π0�

∞

B F R(M, N )b of each fiber in a
way that remembers the topology of B.

To this end, we define the parametrized components π B
0 X of a parametrized

space p : X→ B. As a set, π B
0 X consists of all components of all fibers of X :

π B
0 X =

⋃
b∈B

π0 Xb.

Give π B
0 X the quotient topology induced by the map X → π B

0 X that sends a
point x ∈ X to its component [x] ∈ π0 X p(x). Since the quotient map is a map over
B, the space π B

0 X is a parametrized space over B.
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Construction 4.3. We now define a fiberwise version of (4.1). Let G be a topologi-
cal monoid and let (Y, p) be a G-torsor over B whose structure map p : Y→ B is a
quasifibration. A choice of q-equivalence of G-spaces Yb'G gives an isomorphism
of π0G-spaces π0Yb ∼= π0G. Define π0Y×b to be the subset of π0Yb corresponding
to π0G× under this isomorphism. Although the isomorphism π0Y×b ∼= π0G× of
π0G×-spaces depends on the choice of q-equivalence Yb ' G, the subset π0Y×b
does not. Let π B

0 Y× ⊂ π B
0 Y be the subspace consisting of the sets π0Y×b in each

fiber. Define the space Y× over B to be the following pullback:
Y× ι

//

��

Y

��

π B
0 Y× // π B

0 Y

Notice that there is a canonical isomorphism (Y×)b ∼= Y×b , and that a map X→ Y
of spaces over B factors through Y× if and only if for every b ∈ B, the induced
map π0 Xb→ π0Yb has image lying in π0Y×b .

It is straightforward to verify that the construction Y 7→ Y× is functorial for
maps of G-spaces. We will at times write µ = (−)× for the resulting functor.
The assumption that p is a quasifibration is the minimal hypothesis necessary for
the construction to be possible. In practice, p will be either a q f -fibration or an
h-fibration.

Lemma 4.4. Suppose that the base space B is semilocally contractible and that
(Y, p) is a principal G-fibration over B. Then ι : Y× → Y is the inclusion of a
subspace of path components.

Proof. Let γ be a path in Y with γ (0) ∈ Y×. Assuming that γ (1) /∈ Y×, let
t0= inf{t ∈ [0, 1] | γ (t) /∈Y×}. Set b0= p(γ (t0)) and choose an open neighborhood
U of b0 along with a nullhomotopy h : U × I → B of U in B. Consider the G-
space h∗Y over U × I obtained from Y by pullback along h. The restriction
h∗Y |U×{0} is isomorphic to Y |U , while the restriction h∗Y |U×{1} is isomorphic to
U×Yb0 . It follows that we may find a fiberwise homotopy equivalence of G-spaces
ρ :Y |U→U×Yb0 over U . Applying the functor (−)× to ρ, we have a commutative
diagram

Y×|U
ρ×
//

��

U × Y×b0

��

Y |U
ρ
// U × Yb0

which shows that in a neighborhood of t0, the path ρ ◦γ must lie in U ×Y×b0
. Since

ρ is a fiberwise homotopy equivalence, it follows that γ (t) ∈ Y×p(γ (t)) for t near t0,
contradicting our initial assumption. �
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Proposition 4.5. Suppose that (Y, p) is a G-torsor over a semilocally contractible
space B.

(i) The space Y× is a G×-space over B and the canonical inclusion ι : Y×→ Y
is a map of G×-spaces.

(ii) If the structure map p : Y → B is an h-fibration of G-spaces, so that Y is a
principal G-fibration, then p× : Y×→ B is a G×-torsor.

(iii) The functor µ : Y 7→ Y× preserves q-equivalences between principal G-
fibrations.

Proof. Claim (i) is immediate from the definitions. For (ii), observe that by
Lemma 4.4, p× is an h-fibration of spaces. It follows that the natural map Y×b →
FbY× from the fiber to the homotopy fiber is a q-equivalence. A given chain of
q-equivalences of G-spaces Yb'G induces a chain of q-equivalences of G×-spaces
Y×b ' G×, so we conclude that Y× is a G×-torsor.

For (iii), assume that (Y, p)→ (Z , q) is a q-equivalence of G-torsors with p and
q both h-fibrations of G-spaces. For any b ∈ B, the induced map of fibers Yb→ Zb

is a q-equivalence of G-spaces, and so the induced map of G×-spaces Y×b → Z×b
is a q-equivalence. Since p× and q× are h-fibrations, it follows that Y×→ Z× is a
q-equivalence on total spaces. �

As a consequence of Proposition 4.5, we may define the derived functor of µ to
be the functor from the homotopy category of G-torsors to the homotopy category
of G×-torsors

µ : Ho(G Tor /B)→ Ho(G× Tor /B),

Y 7→ µ(0Y )= (0Y )×,

where 0 is the h-fibrant approximation functor from Section 2. Lemma 4.4 implies
that when p : Y → B is an h-fibration, the fiber Y×b ∼= (Y

×)b represents the derived
fiber FbY× of Y×. In other words:

Lemma 4.6. There is a canonical isomorphism of derived functors Fbµ∼= µFb.

We will also need to know how to construct maps into µ.

Lemma 4.7. A morphism X → Y in the homotopy category of G×-spaces over
B factors through ι : µY → Y if and only if for every b ∈ B, the induced map
π0Fb X→ π0FbY has image contained in the subset π0µFbY .

Proof. First notice that the functor π0Fb is invariant under weak equivalences of
spaces over B. We may represent a map in the homotopy category of G×-spaces
over B by a zigzag of map where the wrong way maps are weak equivalences, and
we assume without loss of generality that the final object in this zigzag is a h-fibrant
G×-space over B. The result then follows by using the universal mapping property
of the pullback of spaces defining µ. �
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Definition 4.8. Let N be an R-bundle with fiber M and let RsN be an s-fibrant
approximation of N as an R-module over B. Since M is an s-cofibrant R-module,
the EndR M-torsor �∞B F R(M, RsN ) is q f -fibrant as an EndR M-module. Applying
Construction 4.3 defines an AutR M-space over B

E R(M, RsN )= (�∞B F R(M, RsN ))×,

which need not be an AutR M-torsor. If we instead take the derived functor µ by
applying the h-fibration approximation functor 0 before (−)×, then the value of
the associated derived functor

ER(M, N )= µ�∞B F R(M, RsN )

is our definition of the AutR M-torsor associated to the R-bundle N . Since �∞B
and F R(M,−) are both right Quillen functors, we can summarize the definition by
saying that

E= ER(M,−) : Ho(R-bundles with fiber M)→ Ho(AutR M-torsors)

is the composite derived functor E= µ ◦�, where � is the right derived functor of
�=�∞B F R(M,−).

5. The classification of R-bundles

In the previous section we constructed an AutR M-torsor from an R-bundle with
fiber M. We now construct an R-bundle with fiber M from an AutR M-torsor and
show that the constructions are homotopy inverse to each other. At the end of the
section, we complete the proof of Theorem 1.2. We assume that B is a CW complex,
in particular semilocally contractible, so the functor µ from the previous section is
well-behaved. We continue to assume that R is an s-cofibrant ring spectrum and
that M is an s-bifibrant R-module.

For technical reasons, it will be useful to work with a q-cofibrant approximation
AutcR M → AutR M of AutR M as a topological monoid. By pullback along the
approximation map, any AutR M-torsor is also an AutcR M-torsor, so we consider
the functor E=µ◦� from the previous section as taking values in AutcR M-torsors.
Similarly, the right 6∞

+
AutR M-module structure of M pulls back to give a right

6∞
+

AutcR M-module structure on M.

Definition 5.1. If Y is an AutcR M-space over B, then the fiberwise suspension
spectrum 6∞B Y is a 6∞

+
AutcR M-module spectrum over B. The construction

T (Y )= M ∧6∞+ AutcR M 6
∞

B Y

defines a functor from AutcR M-spaces over B to R-module spectra over B which
is left Quillen by Propositions 3.3 and 3.7. We let T= LT denote its left derived
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functor. Note that T is left adjoint to the right derived functor �=�∞B FR(M,−).
In Proposition 5.6, we will prove that when Y is an AutcR M-torsor over B, then TY
is an R-bundle with fiber M, so that we have a functor

T : Ho(AutcR M-torsors)→ Ho(R-bundles with fiber M).

Remark 5.2. In the case M = R, the definition recovers the construction of gen-
eralized Thom spectra from [Ando et al. 2014a, 2014b]. Given a map of spaces
f : B→ BGL1 R, the classification of principal GL1 R-fibrations gives a principal
GL1 R-fibration Y f over B. Applying the functor T then gives a rank one R-bundle
over B. The Thom spectrum associated to the map f is the (nonparametrized)
R-module spectrum

M f = r!T Y f ∼= R ∧6∞+ GLc
1 R 6

∞

+
Y f ,

where r! :SB→S is left adjoint to the pullback functor r∗ :S →SB .

The fiber functor (−)b = i∗b is a left adjoint, but is not left Quillen for either
the stable model structure on parametrized spectra or the q f -model structure on
parametrized spaces. However, i∗b is a right Quillen functor. On the other hand,
T = M ∧6∞+ AutcR M 6

∞

B (−) is a left Quillen functor. There is a natural isomorphism
of functors

(M ∧6∞+ AutcR M 6
∞

B Y )b ∼= M ∧6∞+ AutcR M 6
∞

+
Yb

at the point-set level, but this does not imply an isomorphism of derived functors
after passage to homotopy categories because we are composing left and right
derived functors.

In order to prove the commutation of derived functors, we will make a slight
modification to the functor T . By identifying R ∧S (6

∞
+

AutcR M)op-modules
with (R, 6∞

+
AutcR M)-bimodules, the category of (R, 6∞

+
AutcR M)-bimodules is

a well-grounded compactly generated model category with weak equivalences
and fibrations created in the s-model structure on spectra [Mandell et al. 2001,
Theorem 12.1]. Let M◦ → M be an s-cofibrant approximation of M as an
(R, 6∞

+
AutcR M)-bimodule and define

T ◦(Y )= M◦ ∧6∞+ AutcR M 6
∞

B Y.

Note that since 6∞
+

is left Quillen, 6∞
+

AutcR M is s-cofibrant as a ring spectrum,
and thus s-cofibrant as a spectrum. We record a basic consequence.

Lemma 5.3. The underlying left R-module of M◦ is s-cofibrant. The underlying
right 6∞

+
AutcR M-module of M◦ is s-cofibrant.

Proof. The right adjoint of the forgetful functor from (R, 6∞
+

AutcR M)-bimodules
to left R-modules is the function spectrum functor F S(6∞

+
AutcR M,−). This func-

tor preserves fibrations and acyclic fibrations because 6∞
+

AutcR M is s-cofibrant.
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Therefore its left adjoint, the forgetful functor, preserves cofibrations and acyclic
cofibrations. This proves the first claim. The second claim follows using a similar
argument and the fact that R is s-cofibrant. �

When B = ∗, the fact that M◦ is s-cofibrant as a 6∞
+

AutcR M-module implies
that the functor M◦ ∧6∞+ AutcR M (−) preserves stable equivalences [Mandell et al.
2001, Proposition 12.7]. Along with Lemma 3.4, this shows that the functor T ◦

takes q-equivalences to stable equivalences when the base is a point. The proof
of the next result is inspired by Shulman’s examples in [Shulman 2011, §9]. To
improve clarity, we temporarily revert to the usual notation L and R for left and
right derived functors.

Lemma 5.4. Let f : ∗ → B be the inclusion of a point. Then there is a natural
isomorphism of derived functors R f ∗LT ∼= LT R f ∗.

Proof. The equivalence M◦ → M induces an isomorphism of derived functors
RF R(M,−) ∼= RF R(M◦,−) since M and M◦ are cofibrant R-modules. This
determines an isomorphism of derived functors LT ◦ ∼= LT , so it suffices to prove
the result with T replaced by T ◦.

Suppose that X is a q f -bifibrant AutcR M-space over B, and consider the following
natural transformation of R-modules:

(5.5) T ◦Qq f f ∗X→ T ◦ f ∗X
∼=
−→ f ∗T ◦X→ f ∗Rs T ◦X,

where the first and third maps are induced by q f -cofibrant approximation and
s-fibrant approximation, respectively. Since T ◦ preserves all weak equivalences
when the base is a point, the first map is a stable equivalence. The second map is the
canonical isomorphism. It remains to show that f ∗ preserves the stable equivalence
T ◦X→ Rs T ◦X .

Factor f as a q-equivalence followed by a q-fibration, and consider the two cases
separately. In the first case, the Quillen adjunction ( f!, f ∗) is a Quillen equivalence
both for parametrized AutcR M-spaces (Proposition 2.1) and parametrized R-modules
(the case of R = S is Proposition 12.6.7 in [May and Sigurdsson 2006] and the
general case follows since stable equivalences and s-fibrations of R-modules are
detected by the forgetful functor to parametrized spectra). It follows that the natural
transformation of derived functors

LT ◦R f ∗ η
−→R f ∗L f!LT ◦R f ∗ ∼= R f ∗LT ◦L f!R f ∗ ε

−→R f ∗LT ◦

is an isomorphism. As discussed in [Shulman 2011, §7], this isomorphism of derived
functors is represented by the composite (5.5). In particular, f ∗T ◦X→ f ∗Rs T ◦X
is a stable equivalence in this case, since the map f is still the inclusion of a point.

When f is a q-fibration, we instead consider a levelwise q f -fibrant approximation
T ◦X→ Rl T ◦X . There is a stable equivalence Rl T ◦X→ Rs T ◦X under T ◦X [May
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and Sigurdsson 2006, Lemma 12.6.1] and the induced map f ∗Rl T ◦X→ f ∗Rs T ◦X
is a stable equivalence because f ∗ preserves stable equivalences between level-
wise q f -fibrant spectra. Pullback along q-fibrations preserves weak homotopy
equivalences of topological spaces, so f ∗T ◦X → f ∗Rl T ◦X is a levelwise q-
equivalence, hence a stable equivalence. Therefore f ∗T ◦X→ f ∗Rs T ◦X is also a
stable equivalence. �

We return to using boldface letters to denote derived functors: T is the left
derived functor of T and Fb = Ri∗b is the right derived fiber functor. Recall that the
AutcR M-torsor associated to an R-bundle with fiber M is given by

E= ER(M,−)= µ ◦�,

where µ is the derived functor of Construction 4.3 and � is the right derived functor
of �=�∞B F R(M,−).

Proposition 5.6. There are natural isomorphisms of derived functors FbT∼= TFb

and FbE∼= EFb.

Proof. The first isomorphism is Lemma 5.4. For the second, observe that the
canonical isomorphism i∗b�∼=�i∗b descends to a canonical isomorphism of derived
functors Fb�∼=�Fb because i∗b and � are both right Quillen. By Lemma 4.6, there
is a natural isomorphism Fbµ∼= µFb, completing the proof. �

In particular, the derived functor T takes AutcR M-torsors to R-bundles with
fiber M, as promised in Definition 5.1. We are now ready to prove the main theorem
of this section.

Theorem 5.7. The pair of functors (T,E) defines a bijection between the set of
q-equivalence classes of AutcR M-torsors over B and the set of stable equivalence
classes of R-bundles with fiber M over B.

Proof. We work in the homotopy categories of AutcR M-spaces over B and of
R-modules over B. Suppose that Y is an AutcR M-torsor over B. We will construct
a natural transformation of derived functors ζ : Y → ETY by showing that the unit
of the adjunction (T,�) factors through ER(M,TY ) as indicated in the following
diagram:

(5.8)

Y
η
//

ζ
**

�∞B 6
∞

B Y
η
// �∞B FR(M,TY )

ER(M,TY )

ι

OO

By Lemma 4.7, it suffices to prove that if we apply π0Fb, then the unit map has
image lying in the subset π0µFb�TY .
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Apply Fb to diagram (5.8) and commute Fb past the constituent functors to the
input variable Y . Now fix an isomorphism in the derived category FbY ∼= AutcR M
and consider the isomorphic diagram with FbY replaced by AutcR M. The composite
of the two instances of η in this new diagram is the left vertical composite in the
following commutative diagram:

AutcR M

��

// EndR M

��

�∞6∞
+

AutcR M

��

// �∞6∞
+

EndR M

��

�∞FR(M,M ∧6∞+ AutcR M 6
∞
+

AutcR M) //

∼=

++

�∞FR(M,M ∧6∞+ AutcR M 6
∞
+

EndR M)

��

�∞FR(M,M)

Here the horizontal maps are induced by the composite

AutcR M→ AutR M→ EndR M

of the cofibrant approximation map and the canonical inclusion. The diagonal
map is induced by the action map for the right 6∞

+
AutcR M-module structure on

M and it is an isomorphism as indicated. Since M is bifibrant, we may choose to
represent the value of the derived functor �∞FR(M,M) in the homotopy category
by EndR M. A diagram chase involving the triangle identities for the adjunctions
shows that the right vertical composite is then the identity map. It follows that the
left vertical composite factors through AutR M via the cofibrant approximation map,
and so the map of components

π0FbY → π0Fb�
∞

B FR(M,TY )

lands in the subset π0µFb�
∞

B FR(M,TY ). This establishes the factorization in
diagram (5.8), and so we have constructed the natural transformation ζ : Y →ETY .

As a consequence of the preceding argument, we see that up to natural isomor-
phisms in the domain and codomain, Fbζ may be identified with the cofibrant
approximation map AutcR M→ AutR M. It follows that ζ is a natural isomorphism
of derived functors.

Now let N be an R-bundle with fiber M. Define ξ : TEN → N to be the
composite

TER(M, N ) ι
−→T�∞B FR(M, N ) ε

−→ N
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of the map induced by the inclusion ι : ER(M, N )→�∞B FR(M, N ) followed by
the counit of the adjunction (T,�). After applying the derived fiber functor Fb,
commuting it through to the variable N , and using a chosen equivalence Fb N ' M,
an argument similar to that just given for ζ proves that Fbξ is a fiberwise equivalence.
Hence ξ also induces a natural isomorphism of derived functors. �

Proof of Theorem 1.2. We return to the general situation of a well-grounded ring
spectrum R and an R-module M. Take an s-cofibrant approximation R′ of R
as a ring spectrum and an s-bifibrant approximation M ′ of M as an R-module
so that the material in the last two sections applies. The derived mapping space
AutR M of homotopy automorphisms of M has a point-set model given by the space
AutcR′M

′. Theorem 2.7 and Theorem 5.7 combine to give that homotopy classes
of maps [X, BAutR M] are in bijective correspondence with equivalence classes
of R′-bundles with fiber M ′. The homotopy category of parametrized R-modules
and the homotopy category of parametrized R′-modules are equivalent by pullback
along the approximation map [May and Sigurdsson 2006, Proposition 14.1.9], and
the definition of an R-bundle with fiber M is invariant under stable equivalences in
the entry M, so it follows that equivalence classes of R-bundles with fiber M are
in bijective correspondence with equivalence classes of R′-bundles with fiber M ′.
This completes the proof. �

6. Lifted R-bundles and algebraic K -theory

In this section we will prove Theorem 1.1. The arguments are adapted from [Karoubi
1987; Baas et al. 2004]. Let X be a finite CW complex and let R be a connective
ring spectrum. Let

GLn R = AutR(R∨n)

be the derived mapping space of homotopy automorphisms of the n-fold wedge sum
R∨n with the topological monoid structure coming from composition of maps. By
Theorem 1.2, the classifying space BGLn R classifies stable equivalence classes of
R-bundles with fiber R∨n . Let BGL∞R = hocolimn BGLn R. Recall the following
description of the infinite loop space underlying the algebraic K -theory spectrum
of R:

�∞K (R)' K0 R× BGL∞R+.

The group K0 R = K f
0 π0 R is the algebraic K -theory of free π0 R-modules, and the

plus denotes Quillen’s plus construction with respect to the commutator subgroup
of π1 BGL∞R. Since the plus construction changes the homotopy type in general,
we will need to work with lifted bundles, in the following sense:

Definition 6.1. A lifted R-bundle over X is the data of:
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(i) An H∗-acyclic fibration p : Y → X of CW complexes, by which we mean a
Serre fibration with H̃∗(fiber(p);Z)= 0.

(ii) An R-bundle E over Y .

We say that a lifted R-bundle (E, Y, p) over X is free if every fiber of E admits a
stable equivalence of R-modules Ey ' R∨n for some n.

Define a relation on lifted R-bundles over X by declaring (E, Y, p)∼ (E ′, Y ′, p′)
if there exists a map f : Y → Y ′ over X such that the induced map of R-modules
E → f ∗E ′ over Y is a stable equivalence. This does not define an equivalence
relation in general, so we work with the equivalence relation on lifted R-bundles over
E generated by∼. When convenient, we make the abbreviation (E, Y )= (E, Y, p).

We assume from now on that X is a finite CW complex. Let 8R(X) be the set of
equivalence classes of lifted free R-bundles over X . The set 8R(X) is an abelian
monoid under the operation (E1, Y1)⊕ (E2, Y2) taking a pair of lifted R-bundles
over X to the lifted R-bundle

(g∗1 E1 ∨Z g∗2 E2, Z),

where Z is the pullback

Z
g2
//

g1

��

Y2

��

Y1 // X

The zero of 8R(X) is the trivial R-bundle (∗X , X) over X . Let K R(X) be the
Grothendieck group of the monoid 8R(X).

We say that a lifted R-bundle is virtually trivial if there exist a space T such
that H̃∗(T ;Z)= 0, and a map f : Y → T (not necessarily over X ) along with an
R-bundle (E ′, T ) over T , and a stable equivalence of R-bundles E ' f ∗E ′.

Lemma 6.2. Let (E1, Y1) be a lifted free R-bundle over X. Then there exists a lifted
free R-bundle (E2, Y2) over X such that (E1, Y1)⊕ (E2, Y2) is virtually trivial.

Proof. Let f1 : Y1→ BGLn R be a classifying map for E1. Let P be the homotopy
fiber of the H∗-acyclic fibration Y1→ X . By Proposition 1.3 in [Hausmann and
Husemoller 1979], the kernel of π1Y1 → π1 X is the perfect normal subgroup
im(π1 P→π1Y1). This is annihilated by the following map to the plus construction:

π1 P→ π1Y1
f1−→π1 BGLn R→ π1 BGLn R+.

By Proposition 3.1 in the same paper, f1 descends to a map g1 : X → BGLn R+.
Use the grouplike H -space structure on BGL∞R+ to find g2 : X → BGLm R+
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such that g1⊕ g2 : X→ BGLm+n R+ is nullhomotopic. Define Y2 as the following
pullback:

Y2
f2
//

��

BGLm R

��

X
g2
// BGLm R+

We choose a model for the plus construction such that the right vertical map (and thus
the left vertical map) is a q-fibration of CW complexes. Let E2 be the free R-bundle
over Y2 classified by the map f2. The sum (E1, Y1)⊕ (E2, Y2) is a lifted R-bundle
over the pullback Y = Y1×X Y2 that is classified by a lift f : Y → BGLm+n R of
g1 ⊕ g2. Thus f is nullhomotopic, so it factors through the H∗-acyclic fiber of
BGLm+n R→ BGLm+n R+, proving that (E1, Y1)⊕ (E2, Y2) is virtually trivial. �

Given any space X , we generically write r : X→∗ for the canonical map to a
point, so that the pullback r∗M is the trivially twisted R-bundle with fiber M.

Lemma 6.3. Suppose that (E, Y ) is a virtually trivial lifted R-bundle over X. Then
there exists a lifted R-bundle (r∗M, Y ′) over X that is equivalent to (E, Y ) as a
lifted R-bundle: [(E, Y )] = [(r∗M, Y ′)] in 8R(X). If E is a free R-bundle, then
M = R∨n for some n.

Proof. We are given an H∗-acyclic fibration p : Y → X , a map f : Y → T where
H̃∗(T ) = 0 and a stable equivalence E ' f ∗E ′ where E ′ is an R-bundle over T .
Choose a point t : ∗→ T . Consider the commutative diagram,

Y
p

{{

g
��

f

""

X T × X
π2

oo
π1

// T

X
id

cc

χ

OO

r
// ∗

t

OO

where g(y) = ( f (y), p(y)) and χ(x) = (t, x). The maps p, π2 and id are all
H∗-acyclic fibrations. Form the R-bundle π∗1 E ′ over T × X . Then we have a
stable equivalence of R-bundles g∗π∗1 E ′ = f ∗E ′ ' E over Y . On the other hand
χ∗π∗1 E ′ ∼= r∗t∗E ′ is a trivial bundle over X with fiber M = t∗E ′, since t ◦ r factors
through a point. The two triangles on the left show that (E, Y )∼ (π∗1 E ′, T × X)
and (π∗1 E ′, T × X)∼ (r∗M, X). �

Consider the abelian group K0(R) as a discrete set and let [X, K0(R)] be the set
of homotopy classes of maps from X , considered as an abelian group under the
pointwise addition in the abelian group K0(R). Let ψ :8R(X)→ [X, K0(R)] be
the function that takes a lifted free R-bundle (E, Y, p) to the map sending x ∈ X
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to the equivalence class of the free R-module Ex = (p ◦ i)∗E , where i : ∗ → Y
is a choice of a point lying in the fiber of p over x . Since the fibers of p are
path-connected, different choices give the same equivalence class in K0(R) and
it is easy to see that the definition depends only on the equivalence class of the
lifted free R-bundle. Since the abelian group structure on K0(R) is induced by the
wedge sum of free R-modules, the function ψ is a monoid homomorphism. Let
ψ : K R(X)→[X, K0(R)] be the extension of ψ to the Grothendieck group. There
is a natural splitting

K R(X)∼= kerψ ⊕[X, K0(R)]

induced by the section of ψ that takes an equivalence class [R∨n
] ∈ K0(R) in-

dexed by a path-component of X to the trivially twisted R-bundle r∗R∨n over that
component. Let 8n

R(X) be the set of equivalence classes of lifted R-bundles of
rank n.

Proposition 6.4. There is a natural isomorphism

kerψ ∼= colimn 8
n
R(X).

Proof. Suppose [E] − [F] is a formal difference of lifted free R-bundles in kerψ .
We associate to [E]−[F] the element [E⊕F ′] ∈ colimn 8

n
R(X) where F ′ is a lifted

free R-bundle such that F ⊕ F ′ is virtually trivial (see Lemma 6.2). Conversely, to
a class [E] ∈8n

R(X) we associate the formal difference [E] − [Tn] ∈ kerψ , where
Tn = r∗R∨n is the trivial R-bundle of rank n. �

Proposition 6.5. There is a natural isomorphism

colimn 8
n
R(X)∼= [X, BGL∞(R)+].

Proof. Given the class of a lifted free R-bundle (E, Y ) over X in colimn 8
n
R(X),

the arguments of Lemma 6.2 show that the classifying map f of E extends to a
map g from X to the plus construction:

Y
f
//

p
��

BGLn R

��

X
g
// BGLn R+

Conversely, given a classifying map g define Y as the pullback displayed in the
same diagram. Then p is an H∗-acyclic fibration and f classifies a lifted free
R-bundle (E, Y ) over X . �

All together, we have proved:

K R(X)∼= [X, K0(R)]⊕ [X, BGL∞(R)+] ∼= [X, �∞K (R)].

This completes the proof of Theorem 1.1.
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HIDDEN SYMMETRIES AND COMMENSURABILITY
OF 2-BRIDGE LINK COMPLEMENTS

CHRISTIAN MILLICHAP AND WILLIAM WORDEN

In this paper, we show that any nonarithmetic hyperbolic 2-bridge link
complement admits no hidden symmetries. As a corollary, we conclude that
a hyperbolic 2-bridge link complement cannot irregularly cover a hyper-
bolic 3-manifold. By combining this corollary with the work of Boileau and
Weidmann, we obtain a characterization of 3-manifolds with nontrivial JSJ-
decomposition and rank-two fundamental groups. We also show that the
only commensurable hyperbolic 2-bridge link complements are the figure-
eight knot complement and the 62

2 link complement. Our work requires
a careful analysis of the tilings of R2 that come from lifting the canonical
triangulations of the cusps of hyperbolic 2-bridge link complements.

1. Introduction

Two manifolds are called commensurable if they share a common finite sheeted
cover. Here, we focus on hyperbolic 3-manifolds, that is, M =H3/0 where 0 is a
discrete, torsion-free subgroup of Isom(H3). We are interested in analyzing the set
of all manifolds commensurable with M . Commensurability is a property of interest
because it provides a method for organizing manifolds, and many topological prop-
erties are preserved within a commensurability class. For instance, Schwartz [1995]
showed that two cusped hyperbolic 3-manifolds are commensurable if and only
if their fundamental groups are quasi-isometric. In this paper, we restrict our
attention to hyperbolic 2-bridge link complements; see Section 2 for the definition
of a 2-bridge link. We use the word link to refer to a link in S3 with at least one
component. We use the word knot to only mean a single component link.

A significant challenge in understanding the commensurability class of a hy-
perbolic 3-manifold M = H3/0 is determining whether or not M has any hidden
symmetries. To understand hidden symmetries, we first need to introduce some
terminology. The commensurator of 0 is

C(0)= {g ∈ Isom(H3) : |0 : 0 ∩ g0g−1
|<∞}.

MSC2010: 57M25, 57M50.
Keywords: 2-bridge links, hidden symmetries, commensurability.
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It is a well known fact that two hyperbolic 3-manifolds are commensurable if
and only if their corresponding commensurators are conjugate in Isom(H3); see
Lemma 2.3 of [Walsh 2011]. We denote by C+(0) the restriction of C(0) to
orientation-preserving isometries. We also denote by N (0) the normalizer of
0 in Isom(H3) and by N+(0) the restriction of N (0) to orientation-preserving
isometries. Note that 0 ⊂ N (0) ⊂ C(0). A symmetry of M corresponds to an
element of N (0)/0, and a hidden symmetry of M corresponds to an element of
C(0) that is not in N (0). Geometrically, M admits a hidden symmetry if there
exists a symmetry of a finite cover of M that is a not a lift of an isometry of M . See
Sections 2 and 3 of [Walsh 2011] for more details on commensurators and hidden
symmetries.

In this paper, we give a classification of the hidden symmetries of hyperbolic
2-bridge link complements. Reid and Walsh [2008] used algebraic methods to
determine that hyperbolic 2-bridge knot complements (other than the figure-eight
knot complement) have no hidden symmetries. However, their techniques do not
apply to hyperbolic 2-bridge links with two components. Here, we use a geometric
and combinatorial approach to prove the following theorem.

Theorem 1.1. If M = S3
\ K is a nonarithmetic hyperbolic 2-bridge link com-

plement, then M admits no hidden symmetries (either orientation-preserving or
orientation-reversing).

The only arithmetic hyperbolic 2-bridge links are the figure-eight knot, the White-
head link, the 62

2 link, and the 62
3 link. Though it will not be needed in what follows,

we refer the interested reader to [Maclachlan and Reid 2003, Definition 8.2.1] for
the definition of an arithmetic group 0 ≤ Isom(H3).

We prove Theorem 1.1 by using the canonical triangulation T of a hyperbolic
2-bridge link complement, M = H3/0 = S3

\ K . This triangulation was first
described in [Sakuma and Weeks 1995]. Guéritaud in his thesis [2006a] proved
that this triangulation is geometrically canonical, i.e., topologically dual to the
Ford–Voronoi domain for equal volume cusp neighborhoods. In addition, Akiyoshi,
Sakuma, Wada and Yamashita [2007] have announced a proof of this result where
they analyze the triangulation T via cone deformations of M along the unknot-
ting tunnel. Futer also showed that this triangulation is geometric by applying
Rivin’s volume maximization principle; see the appendix of [Guéritaud 2006b]. By
[Goodman et al. 2008, Theorem 2.6], if any such M is nonarithmetic, then C(0)
can be identified with the group of symmetries of the tiling of H3 obtained by
lifting T , which we call T̃ . We prove that any nonarithmetic hyperbolic 2-bridge
link complement M does not admit hidden symmetries, by showing that any sym-
metry of T̃ actually corresponds to a composition of symmetries of M and deck
transformations of M . In other words, C(0)= N (0).
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Rather than analyze this tiling of H3, we drop down a dimension and instead
analyze the (canonical) cusp triangulation T̃ of R2, induced by T̃ . By intersecting
a cusp cross-section of M with its canonical triangulation T , we obtain a canonical
triangulation T of the cusp(s). If K has two components, we still end up with
the same canonical triangulation on both components of T since there is always
a symmetry exchanging the two components, and we take equal volume cusp
neighborhoods. We can lift T to a triangulation T̃ of R2 (or two copies of R2 if K
has two components). We also place edge labels on T̃ which record edge valences of
corresponding edges in the three-dimensional triangulation. This labeling provides
us with enough rigid structure in T̃ to rule out any hidden symmetries. Goodman,
Heard and Hodgson [2008, Theorem 3.1] use a similar approach to prove that
nonarithmetic hyperbolic punctured-torus bundles do not admit hidden symmetries.

If a hyperbolic 3-manifold M admits no hidden symmetries, then M can not irreg-
ularly cover any hyperbolic 3-orbifolds. A hyperbolic 3-orbifold is any N = H3/0,
where 0 is a discrete subgroup of Isom(H3), possibly with torsion. All of the
previous statements about commensurability of hyperbolic 3-manifolds and the
commensurator of 0 also hold for hyperbolic 3-orbifolds. Theorem 1.1 quickly gives
us the following corollary about coverings of hyperbolic 3-orbifolds by hyperbolic
2-bridge link complements. For the arithmetic cases, volume bounds are taken into
consideration to rule out irregular covers of manifolds.

Corollary 1.2. Let M be any hyperbolic 2-bridge link complement. If M is nonar-
ithmetic, then M does not irregularly cover any hyperbolic 3-orbifolds (orientable
or nonorientable). If M is arithmetic, then M does not irregularly cover any
orientable hyperbolic 3-manifolds.

By combining Corollary 1.2 with the work of Boileau and Weidmann [2005], we
get the following characterization of 3-manifolds with nontrivial JSJ-decomposition
and rank-two fundamental groups. For a more detailed description of this decom-
position see page 478.

Corollary 1.3. Let M be a compact, orientable, irreducible 3-manifold which
has rank(π1(M)) = 2. If M has a nontrivial JSJ-decomposition, then one of the
following holds:

(1) M has Heegaard genus 2.

(2) M decomposes into a Seifert fibered 3-manifold and hyperbolic 3-manifold.

(3) M decomposes into two Seifert fibered 3-manifolds.

The original characterization given by Boileau and Weidmann included a fourth
possibility: a hyperbolic piece of M is irregularly covered by a 2-bridge link
complement. Corollary 1.2 eliminates this possibility.
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Ruling out hidden symmetries also plays an important role in analyzing the com-
mensurability class of a hyperbolic 3-orbifold M=H3/0. By the commensurability
class of a hyperbolic 3-orbifold (or manifold) N , we mean the set of all hyperbolic
3-orbifolds commensurable with N . A fundamental result of Margulis [1991]
implies that C(0) is discrete in Isom(H3) (and 0 is finite index in C(0)) if and
only if 0 is nonarithmetic. Thus, in the arithmetic case, M will have infinitely
many hidden symmetries. In the nonarithmetic case, this result implies that the
hyperbolic 3-orbifold O+ =H3/C+(0) is the unique minimal (orientable) orbifold
in the commensurability class of M . So, in the nonarithmetic case, M and M ′ are
commensurable if and only if they cover a common minimal orbifold. Furthermore,
when M admits no hidden symmetries, C+(0) = N+(0), and so, O+ is just the
quotient of M by its orientation-preserving symmetries.

By using Theorem 1.1 and thinking about commensurability in terms of covering
a common minimal orbifold, we obtain the following result about commensurability
classes of hyperbolic 2-bridge link complements.

Theorem 1.4. The only pair of commensurable hyperbolic 2-bridge link comple-
ments are the figure-eight knot complement and the 62

2 link complement.

We prove Theorem 1.4 by analyzing the cusp of each minimal (orientable)
orbifold, O+, in the commensurability class of a nonarithmetic hyperbolic 2-bridge
link complement. This orbifold always has one cusp since two component 2-bridge
links always have a symmetry exchanging the components. The cusp of this orbifold
inherits a canonical cellulation from the canonical triangulation T of the cusp(s)
of M . By comparing minimal orbifold cusp cellulations, we establish this result.

We now describe the organization of this paper. In Section 2, we provide some
background on 2-bridge links, including an algorithm for building any 2-bridge
link from a word � in Ls and Rs. Section 3 describes how to build the canonical
triangulation of a 2-bridge link complement and the corresponding cusp triangulation
T based on this word �. In this section we also prove some essential combinatorial
properties of T̃ , the lift of T to R2. Section 4 analyzes the possible symmetries of
a 2-bridge link complement in terms of the word �, and describes the actions of
these symmetries on T̃ . In Section 5, we prove Theorem 1.1, Corollary 1.2, and
Corollary 1.3. In Section 6, we prove Theorem 1.4.

2. Background on 2-bridge links

In order to describe 2-bridge links, we first need to define rational tangles. First, a
2-tangle is a pair (B, t), where t is a pair of unoriented arcs embedded in the 3-ball
B so that t only intersects the boundary of B in four specified marked points: SW,
SE, NW, and NE (if we think of ∂B as the unit sphere centered at the origin in R3,
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S 1

S c

S 1

S c

S 2

S 3

S 4

Ω1

Ω2

Ω3 Ω4

Ωc

S c−1

Ωc−1

Figure 1. Left: the link K (�), where �= R2L3 R2L , read from
S1 inward to Sc. Right: the same link, with crossings labeled and
4-punctured spheres Si shown (note that S5 and S6 are omitted for
readability).

then SW is the southwest corner (−1/
√

2,−1/
√

2, 0), SE is the southeast cor-
ner (1/

√
2,−1/

√
2, 0), etc.). Rational tangles are a special class of 2-tangles. The

simplest rational tangles are the 0-tangle and the∞-tangle. The 0-tangle consists of
two arcs that don’t twist about one another, with one arc connecting NW to NE, and
the other arc connecting SW to SE. Similarly, the∞-tangle consists of two unknotted
arcs, with one arc connecting NE to SE and the other arc connecting NW to SW.
Both of these tangles admit an obvious meridian curve contained on ∂B that bounds
an embedded disk in the interior of B. A rational tangle is constructed by taking one
of these trivial tangles and alternating between twisting about the western endpoints
(NW and SW) and twisting about the southern endpoints (SW and SE). This twisting
process maps the meridian of the 0-tangle (∞-tangle) to a closed curve with rational
slope p/q , which determines this tangle, hence the name rational tangle. A 2-bridge
link is constructed by taking a rational tangle, connecting its western endpoints by
an unknotted strand, and connecting its eastern endpoints by an unknotted strand.

Here, we describe a 2-bridge link K ⊂ S3 in terms of a word �, which is a
sequence of Ls and Rs: �= Rα1 Lα2 Rα3 · · · Rαn , αi ∈N (if n is odd and the starting
letter is R). The sequence [α1+1, α2, . . . , αn−1, αn+1] gives the continued fraction
expansion for the rational tangle p/q used to construct a 2-bridge link. Each L
corresponds to performing a left-handed half-twist about the NW and SW endpoints
of a 0-tangle and each R corresponds to performing a right-handed half-twist about
the SW and SE endpoints of an∞-tangle. Each syllable, i.e., each maximal subword
Lαi or Rαi , corresponds to two strands wrapping around each other αi times. This
word � gives a procedure to construct an alternating 4-string braid between two
4-punctured spheres, S1 and Sc, where S1 is exterior to the braid and Sc is interior
to the braid; see Figure 1. To construct a 2-bridge link, we add a single crossing
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to the outside of S1, and we add a single crossing to the inside of Sc. There is a
unique way to add these crossings so that the resulting link diagram is alternating.
Any 2-bridge link can be constructed in this manner and we use the notation K (�)
to designate the 2-bridge link constructed by the word �. The original source for
this notation comes from the appendix of [Guéritaud 2006b], which contains more
details of this construction.

The following are important facts about 2-bridge links that we will use. From
now on, we will state results in terms of K (�) and we assume that any 2-bridge
link has been constructed in the manner described above, unless otherwise noted.

• Given a 2-bridge link K (�), we obtain a mirror image of the same link (with
orientations changed on S3) if we switch Ls and Rs in the word �. Since we
will only be considering unoriented link complements, we consider such links
equivalent.

• 2-bridge links (and their complements) are determined by the sequence of
integers α1, . . . , αn up to inversion. Schubert [1956] gives this classification
of 2-bridge knots and links, and Sakuma and Weeks [1995, Theorem II.3.1]
give this classification of their complements by examining their (now known)
canonical triangulations.

• A 2-bridge link K (�) is hyperbolic if and only if � has at least two sylla-
bles. This follows from Menasco’s [1984] classification of alternating link
complements.

• The only arithmetic hyperbolic 2-bridge links are those listed below. This
classification was given by Gehring, Maclachlan and Martin [1998].

– The figure-eight knot given by RL or L R,
– The Whitehead link given by RL R or L RL ,
– The 62

2 link given by L2 R2 or R2L2, and
– The 62

3 link given by RL2 R or L R2L .
We care about distinguishing between nonarithmetic and arithmetic hyperbolic
link complements because different techniques have to be used for analyzing
hidden symmetries and commensurability classes.

Throughout this paper, we will always assume that K (�) is hyperbolic, i.e., �
has at least two syllables. In Section 3, we will use the diagram of K (�) described
above to build the canonical cusp triangulation of S3

\ K (�).

3. Cusp triangulations of 2-bridge link complements

Let K = K (�) be a 2-bridge link, defined as in Section 2, with � a word in R
and L , and �i its i th letter. We may assume that �1= R, as mentioned in Section 2.
In this section we give a description of the construction of the triangulation T
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S 1

S 2

(a) (b)

Figure 2. On the left (a), we see which edges of S1 are identified
to edges of S2, and what the region between S1 and S2 looks like.
In the right figure (b), it is a little easier to see, with S1 and S2

unfolded, that the region between them is a pair of tetrahedra.

of S3
\ K , and of the induced cusp triangulation T , and its lift T̃ (if K has two

components, then the two cusp triangulations are identical). We then describe an
algorithmic approach for constructing T̃ , and prove some facts about simplicial
homeomorphisms f : T̃ → T̃ . Our description of these triangulations follows that
of [Guéritaud 2006b, Appendix A] and [Sakuma and Weeks 1995, Chapter II], to
which we refer the reader for further details.

To build the triangulation T , we first place a 4-punctured sphere Si at each
crossing �i corresponding to a letter of �, so that every crossing � j for j ≥ i is
on one side of Si , and the remaining crossings are on the other side; see Figure 1
(right). We will start by focusing on S1 and S2. We triangulate both of them as
shown in the first frame of Figure 2(a) (notice that the edge from the lower-left to
upper-right puncture is in front for both). If we push S1 along the link to the other
side of the crossing �1, we see that some of its edges coincide with edges of S2

(in particular, the horizontal edges coincide, and the diagonal edges of S1 become
vertical in S2, see Figure 2(a)). The vertical edges of S1, however, get pushed to
diagonal edges that cannot be identified to the diagonal edges of S2. The top frame
of Figure 2(b) shows S1 and S2 with appropriate edges identified, as seen lifted to
R2
\ Z2 (i.e., cut along top, bottom, and left edges then unfold). If we lift S1 to

R2
\Z2 in such a way that its triangulation has edge slopes 0

1 , 1
1 , 1

0 , this choice forces
S2 to have edge slopes 0

1 ,
1
2 ,

1
1 , as shown in the lower frame of Figure 2(b). This

means that the triangulation of S2 in R2
\ Z2 is obtained by applying the matrix

R =
(

1 1
0 1

)
to the S1 triangulation of R2

\ Z2. If the letter �1 between S1 and S2

had been an L , we would have found by the same analysis that the matrix taking
us from the triangulation of S1 to the triangulation of S2 must be L =

(
1 0
1 1

)
. This

holds in general. If we know the edge slopes of the triangulation of Si , we can
apply the appropriate matrix, depending on whether �i is an R or an L , to get the
triangulation of Si+1 (see Figure 3).
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R =
(
1 1
0 1

)

L =
(
1 0
1 1

)

S i

S i+1

Figure 3. We apply the transformations R or L as shown, depend-
ing on whether �i is an R or an L , to obtain Si+1 from Si .

Remark 3.1. Though we do not use this fact in what follows, the word � can be
viewed as a path in the Farey tessellation, with each letter corresponding to making
a right (for R) or left (for L) turn from one Farey triangle to the next. In this case
each 4-punctured sphere Si corresponds to a Farey triangle, and its slopes are given
by the vertices of that triangle. For details of this approach, we again direct the
interested reader to [Guéritaud 2006b] and [Sakuma and Weeks 1995].

Coming back to S1 and S2, we see in Figure 2(b) that between the (red) triangu-
lation of S2 and the (blue) triangulation of S1 is a layer of two tetrahedra, which
we denote 11. Similarly, between the 4-punctured spheres Si and Si+1 we get a
layer 1i of tetrahedra. This construction results in a “product region” S× I , where
S×{0} = S1 and S×{1} = Sc. We use quotation marks here because S× I is not a
true product for �∈ {RLk, L Rk, RLk R, L Rk L}, since there will be an edge shared
by all the Si .

To obtain S3
\ K from S× I , we first “clasp” S1 by folding along edges with

slope 1
1 and identifying pairs of triangles adjacent to those edges, as shown in

Figure 4. We clasp Sc in the same way, this time folding along either the edge with
greatest slope or the edge with least slope, depending on whether the final letter of
� is R or L , respectively.

To understand the induced triangulation T of a cusp cross section, we first
consider a neighborhood of a single puncture P in S × I . For each layer of
tetrahedra 1i between Si and Si+1, we get a pair of triangles Di and D′i going once
around the puncture, as in Figure 5(a). In this figure vertices of Di ∪ D′i are labeled
according to the edges of 1i that they are contained in, and edges of Di ∪ D′i are
labeled according to the edge of 1i that they are across a face from. Notice in
Figure 5(a) that Di has a vertex (c−) meeting an edge of Si but not meeting Si+1,
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1
1

1
1

0
1

0
1

Figure 4. The clasping of S1. The viewpoint of the reader is the
“inside” of S1, i.e., the side containing the braid in Figure 1.
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D′i
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Figure 5. In (a), a layer1i with a neighborhood of a cusp removed (left),
and the triangles Di ∪D′i that the layer 1i contributes to the cusp triangu-
lation (right). Edges with the same slope have labels that differ by a ∼
decoration. Figure (b) shows Di and D′i after being adjusted as prescribed
in Figure 6, with ∼ decorations removed so that edges with the same
slope are labeled the same.

and D′i has a vertex (c̃) meeting Si+1 but not meeting Si . Thus Di is distinguished
from D′i .

To see how Di ∪ D′i attaches to Di−1∪ D′i−1, we must consider how 1i attaches
to 1i−1. Figure 6(a) shows 1i and 1i−1 in (R2

\Z2)× I (sandwiched between
Si−1∪ Si ∪ Si+1) in the case where �i = R, and the corresponding triangles around
the puncture. There is a unique edge e of Di ∪ D′i , corresponding to an edge of
Si shared by both Si−1 and Si+1, and with vertices v1 ∈ Si−1 and v2 ∈ Si+1. This
means that the edge e moves us along the cusp cross-section in the longitudinal
direction, so it will be part of a longitude in T̃ . It makes sense then to adjust these
edges to be horizontal, as we build the triangulation T̃ (see Figure 6(a)). Figure 6(b)
shows the analogous adjustment when �i = L .

When we clasp S1, an edge of D1 is identified to an edge of D′1, and similarly
for D′c and Dc when Sc is clasped, as illustrated in Figure 7. We will call the
triangles D1 and D′c clasping triangles. For � = R2L3 R2L , the triangulation
around a puncture before clasping and after clasping is shown in Figures 7(b) and
7(c), respectively.



462 CHRISTIAN MILLICHAP AND WILLIAM WORDEN

Di

D′i

Di−1

D′i−1S i−1 S i S i+1∪ ∪

Ωi = R

Di−1

Di

D′i−1

D′i

e

e

e Di

D′i

Di−1

D′i−1

Ωi = L

Di−1

Di

D′i−1

D′i

(a) (b)

Figure 6. Building the cusp triangulation. In (a), the left frame
shows three layers of 4-punctured spheres, with a truncated punc-
ture. Note the special edge e on the truncated puncture, also shown
in the right frame, which connects Si−1 to Si+1. Note that in the
two figures on the right, the top and bottom vertices are identified,
and in (b) we have rotated (vertically) by π to make the picture
more clear.
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Figure 7. The effect of clasping on the triangulation around a
puncture. (a) shows 11, with S1 below S2, and edge colors of S1

corresponding to colors in Figure 4. On the right, (b) and (c) show
the effect of clasping as seen from the cusp cross-section.

Before clasping, it is clear from the construction that the combinatorics around
each of the four punctures is identical. Clasping identifies the punctures on
S1 = S × {0} in pairs, and identifies the punctures on Sc = S × {1} in pairs, in
an orientation-preserving way. This means that for a 2-component link, a cusp
triangulation is obtained by gluing two puncture triangulations (as in Figure 7(c))
along their front edges, and along their back edges, in an orientation-preserving
way. For a knot, the situation is similar, except that we glue all four puncture
triangulations, always identifying front edges to front edges, and back to back, with
orientation preserved. In both cases the lifted triangulation T̃ of R2 is the same,
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−1 1 2 . . . c1 c2+1 c2+2 . . . c3 cn−3 cn−2+1 cn−2+2 . . . cn−1

c0=0 c1+1 c1+2 . . . c2 cn−4 cn−3+1 cn−3+2 . . . cn−2 . . . cn−2 cn−1 cn︸ ︷︷ ︸
α2

︸ ︷︷ ︸
αn−2

︸ ︷︷ ︸
αn

α1︷ ︸︸ ︷ α3︷ ︸︸ ︷ αn−1︷ ︸︸ ︷

Figure 8. Triangulation of D′ = [0, 1] × [0, 1] ⊂ R2. The word
� = Rα1 Lα2 · · · Lαn can be read from the triangulation. Here,
c j =

∑ j
i=1 αi .

except that the fundamental region for a knot is twice as large as for a link. Note
that when �1 6=�c, the clasping triangle on the right is offset vertically from the
clasping triangle on the left (as in Figure 7(c)), whereas if �1 =�c this will not be
the case.

As a result of the above discussion, we can now give an algorithmic approach to
constructing the lifted cusp triangulation T̃ for an arbitrary word�= Rα1 Lα2 · · · Lαn

(we will assume the last letter is L for concreteness; the case where �c = R is
similar). This follows the approach in [Sakuma and Weeks 1995, Section II.4],
with some changes of notation. We start with a rectangle D′ = [0, 1]× [0, 1] ⊂ R2

divided into c =
∑

iαi triangles, each corresponding to a letter of �, as in Figure 8.
Vertices of D′ are labeled as shown, with c j =

∑ j
i=1αi for 1≤ j ≤ n, and c0= 0. To

fill out R2 we first reflect D′ in its top edge to get its mirror D, so that D ∪ D′ is a
triangulation of a puncture (with triangles Di in D and triangles D′i in D′), as in
Figure 7(c). We then rotate D ∪ D′ by π about (0, 1) (i.e., about the vertex labeled
−1), and translate the resulting double of D ∪ D′ vertically and horizontally to fill
R2. Finally, we remove all edges −1, 1 and r, cn , where r = cn−2 if αn = 1, and
r = cn − 1 otherwise (i.e., all images of the red edges in Figure 8).

With this parametrization of the cusp triangulation in R2, deck transformations
are generated by (x, y) 7→ (x, y + 2) and (x, y) 7→ (x + k, y), where k = 2 if
K = K (�) has two components, and k = 4 if it has one component. We observe
that the long edge of each clasping triangle goes all the way around the meridian
of the cusp, and these edges are unique in this respect. For this reason we call
these edges meridional edges (whether we are referring to them in T or T̃ ), and
we call each connected component of their union in T̃ a meridional line (i.e., any
line x = c, c ∈ Z). A strip of adjacent nonclasping triangles that all meet the lines
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Figure 9. Edge/vertex correspondence in T̃ . Vertices and edges
with the same slope (as edges in T̃ ), are labeled the same.

y =m and y =m+ 1 (in an edge or vertex), for some m ∈ Z, is called a horizontal
strip (see Figure 12).

We will now describe a correspondence between edges and vertices of T̃ . Given
an edge e in T̃ , meaning a truncated tip of an ideal triangle in T̃ , we have a
corresponding edge in T̃ : this is just the edge of T̃ across from e in the ideal
triangle, as in Figure 5(a). Similarly, a vertex of T̃ corresponds to the edge in T̃
that it is contained in. We say that an edge e and a vertex v of T̃ correspond if
their corresponding edges in T̃ have the same slope (when viewed in (R2

\Z2)× I ).
Edge and vertex correspondence in T̃ , for edges and vertices that do not come from
S1 or Sc, can be read off Figure 5(b), which shows the cusp cross-section of a layer
1i with vertices and edges of the same slope labeled the same.

As for edges and vertices affected by clasping, we can easily read the correspon-
dences off the labellings in Figure 7 for the clasping of S1, and the Sc clasping
works similarly. This gives edge/vertex correspondences for D ∪ D′, as shown in
Figure 9 (as usual, we assume �1 = R). A fundamental region of T is constructed
by gluing together either two or four copies of D ∪ D′ by orientation-reversing
homeomorphisms {0} × [0, 1] → {0} × [0, 1] and {1} × [0, 1] → {1} × [0, 1], as
previously discussed. Hence, the algorithmic construction of T̃ by rotating D ∪ D′

by π about (0, 1) then translating to tile the plane respects edge valence, and
so edge/vertex correspondence for all of T̃ can be obtained in this way. From
here forward we will consider the edges of T̃ to be labeled by the valence of a
corresponding vertex, and we will refer to this number as the edge valence.

We summarize the preceding discussion in the following lemma, part (d) of
which corrects a minor error in the proof of Theorem II.3.1 in [Sakuma and Weeks
1995] (this error does not, however, affect the validity of their proof). Note that the
relevant notation in [Sakuma and Weeks 1995] differs from ours in several ways:
most importantly, what we call val(i) they denote d(i), and we follow a different
indexing convention for vertices of T̃ .
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Lemma 3.2. The lifted cusp triangulation T̃ for the link given by a word � =
Rα1 Lα2 Rα3 · · · Lαn has the following description:

(a) T̃ is obtained from the triangulated rectangle D′=[0, 1]×[0, 1]⊂R2, described
by Figure 8, as follows: reflect in [0, 1]×{1} to get D, then rotate D∪D′ about (0, 1),
and translate the resulting two copies of D ∪ D′ by (x, y) 7→ (x + 2k, y + 2m),
where k,m ∈ Z, to tile R2.

(b) The deck group of T̃ is generated by (x, y) 7→ (x, y+2) and (x, y) 7→
(
x+ 4

ε
, y
)
,

where ε ∈ {1, 2} is the number of components of the link K (�).

(c) Edge/vertex correspondence in T̃ is as follows (see Figure 9):

• If e is horizontal or e is a meridional edge, then e corresponds to the vertices
across the two triangles adjacent to it.

• If the lower endpoint of e meets the line y = k, and the upper endpoint meets
y = k+ 1, with k even (resp. odd), then e corresponds to the vertex across the
triangle to the left (resp. right) of e.

(d) If � /∈ {R2L2, RLm, RLm R : m ≥ 1}, then the vertices of T̃ , labeled as in
Figure 8, have valence as follows (recall that r = cn−2 if αn = 1, and r = cn − 1
otherwise):

val(ci )=


4αi+1+ 4 for i ∈ {0, n− 1},
2αi+1+ 4 for 2≤ i ≤ n− 3 or i = 1, α1 > 1 or i = n− 2, αn > 1,
2αi+1+ 3 for i = 1, α1 = 1 or i = n− 2, αn = 1,

val(1)=
{

3 for α1 > 1,
2α2+ 3 for α1 = 1,

val(r)=
{

3 for αn > 1,
2αn−1+ 3 for αn = 1,

val( j)= 4 for j /∈ {0, 1, c1, c2, . . . , cn, r}.

In particular, note that for all � /∈ {R2L2, RLm, RLm R : m ≥ 1}, val( j) is odd
if and only if j ∈ {1, r}. This fact is key to showing that nonarithmetic 2-bridge
links cannot have hidden symmetries. Since a hidden symmetry restricts to an
isometry of T̃ , it is a simplicial automorphism of T̃ (i.e., a homeomorphism T̃ → T̃
preserving the simplicial structure) and hence it is a simplicial automorphism of T̃
that preserves edge valence.

Definition 3.3. We denote by Autev(T̃ ) the group of simplicial automorphisms of
T̃ that preserve edge valence. Note that if we identify T̃ with the horoball centered
at p, then there is a natural injection StabAut(T̃ )(p) ↪→ Autev(T̃ ).
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By analyzing Autev(T̃ ), which must preserve these odd valence vertices, we learn
about the possible isometries of T̃ . The first step in this process is the following
lemma:

Lemma 3.4. If� /∈ {RL , R2L2, RL R}, then Autev(T̃ ) preserves clasping triangles
and meridional edges.

Proof. By the symmetry of the problem, we need only show that any triangle 41,0,0

with vertex labels {1, 0, 0} maps to a clasping triangle. Let f ∈ Autev(T̃ ), and let
4a,b,b′ be the image of a triangle 41,0,0 under f , so that 1 7→ a.

Case 1: � /∈ {Rk Lm, RLm Rk
}. Since val( j) is odd if and only if j ∈ {1, r}, we

must have a ∈ {1, r}. We will assume that a = 1; the case a = r is proved similarly.
Then b ∈ {0, c1, c2, c3} since val(0)= 4α1+ 4≥ 8 and all other vertices that could
share an edge with 1 have valence 4.

If val(1) = 3 (i.e., α1 > 1), then b ∈ {0, c1}, since in this case no vertex c2 or
c3 is connected to 1 by an edge. If b = c1, then we must have α1 = 2, so that
val(0) = 4α1+ 4 = 12 = val(c1) = 2α2+ 4 =⇒ α2 = 4, which means that c1+ 1
must have valence 4. But b= c1 also implies that c1+1 is the image of the valence
3 vertex of the clasping triangle that shares a meridional edge with 41,0,0, giving a
contradiction. Thus b = 0, and by the same argument we must also have b′ = 0.

If val(1) 6= 3, then α1 = 1 and val(1) = val(c1) = 2α2 + 3, and we must
have b ∈ {0, c2, c3}. Also, val(0)= 4α1+ 4= 8.

If b = c2, then 2α3 + 4 = val(c2) = val(0) = 8, so α3 = 2. This implies that
val(c2+ 1)= 4 6= 8, so we must have 41,0,0 7→ 41,c2,0. This determines the image
of the two nonclasping triangles 40,c1,c2 adjacent to 41,0,0, and we see that the c2

vertex of one of these must be mapped to a c2+1 vertex, which is impossible since
val(c2+ 1)= 4 6= 8= val(c2).

If b = c3 then 1= c1 and c3 are connected by an edge, so α3 = 1, which forces
the other 0-labeled vertex of 41,0,0 to map to c2, which is impossible by the above
argument. Hence b = 0, and by the same argument we have b′ = 0.

Since � /∈ {Rk Lm, RLm Rk
} implies that clasping triangles have a unique odd

valence vertex (i.e., the vertex not meeting a meridional edge), that meridional
edges map to meridional edges is immediate.

Case 2: � = Rk Lm and � /∈ {RL , R2L2
}. If k = 1, then clasping triangles either

have vertices with valences 8, 8, 4m + 2 or 3, 4m + 2, 4m + 2, and they are the
only triangles in T̃ with such a triple of valences. If k 6= 1 then clasping triangles
either have vertices with valences 3, 4k+ 4, 4k+ 4 or 3, 4m+ 4, 4m+ 4, and they
are the only triangles in T̃ with such a triple of valences. Furthermore, in every
case two of these vertices have equal valence and the third has distinct valence, so
meridional edges must be preserved.
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C

C′

H
(1,1)

e e′ f (γ)γ

Figure 10. If H maps into more than one horizontal strip, then
f (γ ) traverses more than c− 2 triangles, which is impossible.

Case 3:�= RLm Rk ,� 6= RL R. Then α1= 1=⇒ val(0)= 8. If k> 1 then val(1) 6=
val(r), so 1 7→ 1 and we must have vertices labeled 0 mapping to vertices labeled 0
or c2= cn−1. But val(cn−1)= 4k+4 6= 8, so 0 7→ 0. If k = 1 then clasping triangles
all have vertices with valences 8, 8, 2m + 2, and they are the only triangles in T̃
with this triple of valences. Furthermore, meridional edges are preserved since even
when m = 3 (so that 2m + 2 = 8), the vertices labeled 1 = r are combinatorially
distinct from the vertices labeled 0 and cn−1: vertices labeled 1 have four edges
connecting them to valence 4 vertices, while vertices labeled 0 and cn−1 have only
two such edges. �

Corollary 3.5. If � /∈ {RL , R2L2, RL R}, then Autev(T̃ ) preserves horizontal
strips of T̃ .

Proof. Let C be the clasping triangle in the first quadrant of R2 with a vertex at
the origin. C is adjacent to two horizontal strips; let H be the one adjacent to the
x-axis, and let C ′ be the other clasping triangle adjacent to H . Let γ be the path
directly across H connecting the midpoints of the edges of adjacency with C and C ′.
Consider the image of γ under a simplicial automorphism f : T̃ → T̃ . Since γ
crosses exactly c− 2 triangles, so must f (γ ). By Lemma 3.4, f maps e and e′ to
edges of clasping triangles, which are adjacent to distinct meridional lines since
C and C ′ are, and f maps triangles crossed by γ to nonclasping triangles, so γ
must be mapped into some number of vertically stacked horizontal strips. Since γ
crosses all triangles transversely, if f (γ ) jumps from one horizontal strip to another
the number of triangles it crosses must be one more that if it did not make the jump,
as shown in Figure 10. Hence f (γ ) must be contained in one horizontal strip, the
image of H . �

Recall that in our algorithmic construction of T̃ , we chose coordinates so that
the rectangle D′ shown in Figure 8 is identified with [0, 1]× [0, 1] ⊂ R2.
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Theorem 3.6. If � /∈ {RL , R2L2, RL R}, then Autev(T̃ ) is generated by the deck
transformations and a subset of the following:

• Orientation-preserving: the rotations ρ1, ρ2, and ρ3 about (1,1), (2,1), and
( 1

2 ,1
)
,

respectively, by an angle π .

• Orientation-reversing: the glide reflection g given by the reflection across x = 1
2

composed with (x, y) 7→ (x, y+ 1).

Further, we always have ρ1, ρ2 ∈Aut+ev(T̃ ), and ρ3 ∈Aut+ev(T̃ ) (resp. g ∈Autev(T̃ ))
if and only if ρ3 (resp. g) is a simplicial automorphism.

Proof. Let f ∈ Autev(T̃ ), and let E be the union of all edges of horizontal strips
and clasping triangles, as shown in Figure 12. Since f maps clasping triangles
to clasping triangles, and horizontal strips to horizontal strips, it must map E to
itself. Since the simplicial structure of the triangulation within each horizontal strip
must be preserved, and since we may assume all clasping triangles are congruent
and triangles within each strip are uniformly sized, f is forced to be a Euclidean
isometry of R2. Let ρ4 be the rotation by π about the point

( 1
2 ,

1
2

)
, and let ry be the

reflection about the line y = 1. We first consider the possible Euclidean isometries
preserving E :

Translations: Translations must preserve the integer lattice, so modulo deck trans-
formations they have the form τi, j : (x, y) 7→ (x+i, y+ j), i ∈ {0, 1, 2, 3}, j ∈ {0, 1}.
Since τ0,1, and τ2,1 do not preserve E , and τ0,0 is trivial, we are left with

τ1,0 = ρ1 ◦ρ3; τ2,0 = ρ2 ◦ρ1; τ3,0 = ρ2 ◦ρ3; τ1,1 = ρ1 ◦ρ4; τ3,1 = ρ2 ◦ρ4,

and their inverses.

Rotations: Since meridional lines and integer lattice points must be preserved, any
rotation must be by an angle π about a point

( k
2 ,

m
2

)
, k,m ∈ Z. The rotations about(

1, 1
2

)
and

(
2, 1

2

)
do not preserve clasping triangles, so modulo deck transformations

we are left with ρ1, ρ2, ρ3, ρ4, and the rotations

ρ4 ◦ ρ2 ◦ ρ1; ρ3 ◦ ρ2 ◦ ρ1,

about
( 3

2 ,
1
2

)
and

( 3
2 , 1

)
, respectively.

Reflections: Reflections must preserve meridional lines and clasping triangles, so
possible lines of reflection are x = k

2 or y = k, k ∈ Z. Modulo deck transformations,
we get the reflection ry across y = 1, and the reflections ri across the lines x = i ,
i ∈

{ 1
2 , 1, 3

2 , 2
}
. We have

r1 = ry ◦ ρ1; r2 = ry ◦ ρ2; r 1
2
= ry ◦ ρ3; r 3

2
= r 1

2
◦ ρ2 ◦ ρ1.

Glide reflections: Since simplicial automorphisms preserve meridional lines and
clasping triangles, the reflection component of the glide reflection must be across a
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line x = k
2 or y = k, k ∈ Z. If the reflection is across x = k ∈ Z, then the translation

must be (x, y) 7→ (x, y + 2n), n ∈ Z, so modulo deck transformations this is a
pure reflection, and can be ruled out. Thus we are left with the glide reflection
g = τ0,1 ◦ r 1

2
, given by the reflection across x = 1

2 followed by the translation
(x, y) 7→ (x, y+ 1), and the compositions

ry ◦ τ1,0 = ry ◦ ρ1 ◦ ρ3; ry ◦ τ2,0 = ry ◦ ρ2 ◦ ρ1; r 3
2
◦ τ0,1 = g ◦ ρ2 ◦ ρ1,

all others being obtained by composing with deck transformations.

We show that ry /∈Autev(T̃ ) by considering edge valences near a clasping triangle.
Using the edge/vertex correspondences from Figure 9, we obtain the four pictures in
Figure 11, which correspond to the cases α1≥3, α1=2, α1=1 6=α2, and α1=1=α2,
respectively (note that � nonarithmetic implies � /∈ {RL , RL R, R2L2

}). For the
first three pictures it is clear that ry does not preserve edge valence. For the last
picture, if ry ∈Autev(T̃ ) then c= d= 8, so that α3= 2, which implies 8= d= a= 4,
a contradiction. Hence ry /∈ Autev(T̃ ).

In order to rule out ρ4 and the compositions above involving ρ4 and ry , we will
first need to establish the last assertion of the theorem, namely that we always
have ρ1, ρ2 ∈ Autev(T̃ ), and ρ3 and g are in Autev(T̃ ) if and only if they are
simplicial automorphisms of T̃ . To see this, first note that ρ1 and ρ2 are always
simplicial automorphisms (by construction of T̃ ). Thus we need only show that if
any of g, ρ1, ρ2, or ρ3 is a simplicial homeomorphism, then it is in Autev(T̃ ). But
this follows from the fact that each of g, ρ1, ρ2, and ρ3 preserve the edge/vertex
correspondence given in Lemma 3.2(c) (shown graphically in Figure 9). In particular,
each of these maps switches the parity of k in part (c) of the lemma, but also
exchanges right and left. Thus, if g is simplicial, it preserves vertex valence, and
since it also preserves edge/vertex correspondence, it must preserve edge valence,
that is, g ∈ Autev(T̃ ). The same holds for ρ1, ρ2, and ρ3, so the assertion is proved.

Now, suppose that ρ4 ∈ Autev(T̃ ). First, observe that

g = τ0,1 ◦ r 1
2
= r 1

2
◦ τ0,1 = (ρ3 ◦ ry) ◦ (ρ3 ◦ ρ4)= (ρ3 ◦ ry ◦ ρ3) ◦ ρ4 = ry ◦ ρ4.

Since ry is always a simplicial automorphism (by construction of T̃ ), ρ4 ∈Autev(T̃ )
implies that g is a simplicial automorphism, so by the above paragraph, g∈Autev(T̃ ).
But g, ρ4 ∈ Autev(T̃ ) implies that ry ∈ Autev(T̃ ), a contradiction.

Thus we can rule out the compositions τ1,1, τ3,1, ρ4 ◦ρ2 ◦ρ1, r1, r2, and ry ◦ τ2,0.
For r 1

2
and ry◦τ1,0, since ry is always a simplicial homeomorphism, the composition

is simplicial if and only if ρ3 is. But then by the above observation it follows that ρ3

preserves edge valence, so the composition cannot preserve edge valence (because
ry does not). Last, r 3

2
can now be ruled out since r 1

2
/∈ Autev(T̃ ).
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Figure 11. Reflecting by ry about y = 1, for the cases α1 ≥ 3,
α1= 2, α1= 1 6=α2, and α1= 1=α2, from left to right respectively.

(1,1)

x

y

Figure 12. The union E of all edges of horizontal strips and clasp-
ing triangles, in the case where�c= R. If�c= L then the clasping
triangles adjacent to line y = k, k odd, will be shifted vertically
by 1, and horizontal strips will be parallelograms.

Since the only compositions we have not ruled out are generated by ρ1, ρ2, ρ3,
and g, and since compositions involving ρ3 (resp. g) are in Autev(T̃ ) if and only
if ρ3 (resp. g) is, the result follows. �

Remark 3.7. In Theorem 3.6 we have described a set containing the generators
of Autev(T̃ ), but we do not know whether they are all in fact generators. We will
easily obtain in Section 5 a complete description of this group.

4. Symmetries of 2-bridge link complements

Let M =S3
\K (�), and let Sym(M) denote the symmetries of M , i.e., Sym(M) is

the group of self-homeomorphisms of M up to isotopy. Here, we describe the action
of Sym(M) on the triangulation T̃ . First, Theorem 4.1 gives a classification of the
symmetries of M in terms of the word �. This theorem comes from combining
Theorem II.3.2 and Lemma II.3.3 in [Sakuma and Weeks 1995] and translating
from [a1, a2, . . . , an] to the word � given by the following dictionary: a1 = α1+1,
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ai = αi for i ≤ 2 ≤ n− 1, and an = αn + 1. In [Sakuma and Weeks 1995], these
symmetries are called automorphisms of the triangulation T of M described in
Section 3. Since by [Guéritaud 2006a] this triangulation is now known to coincide
with the canonical triangulation of M , we know these automorphisms actually
correspond to all of the symmetries of M .

We let Sym+(M) denote the subgroup of Sym(M) consisting of orientation-
preserving symmetries. We say that� is palindromic if αi =αn−i+1 for all 1≤ i ≤ n.

Theorem 4.1 [Sakuma and Weeks 1995; Guéritaud 2006a]. Let M =S3
\K (�) be

any hyperbolic 2-bridge link complement. Then Sym(M)= Sym+(M)∼= Z2⊕ Z2 if
and only if� is not palindromic. When� is palindromic, then we have the following
possibilities:

• If n is even, then Sym(M)∼= D4 and Sym+(M)∼= Z2⊕ Z2.

• If n is odd and α n+1
2

is odd, then Sym(M)= Sym+(M)∼= D4.

• If n is odd and α n+1
2

is even, then Sym(M)= Sym+(M)∼= Z2⊕ Z2⊕ Z2.

Note that the 2-bridge link complements with orientation-reversing symmetries
are exactly those with n even and � palindromic.

We would like to understand how these symmetries act on T̃ . In order to accom-
plish this, we first show that Sym(M)= Sym(S3, K (�)). Here, Sym(S3, K (�))
denotes the symmetries of (S3, K (�)), that is, the group of self-homeomorphisms of
the pair (S3, K (�)) up to isotopy. Mostow–Prasad rigidity implies that Sym(M)⊇
Sym(S3, K ) for any hyperbolic link K . In fact, if K is a hyperbolic knot, then by the
knot complement theorem of Gordon and Luecke [1989], Sym(M)= Sym(S3, K ).
However, here we do not rely on the knot complement theorem, and in addition,
we prove the desired equality for both hyperbolic 2-bridge knots and hyperbolic
2-bridge links with two components. Once we have established this correspondence,
we can determine how these symmetries act on the cusp triangulation, T . From
here, we just lift this action of Sym(M) on T to the universal cover R2, to get the
corresponding action on T̃ .

The following proposition is certainly known by the experts in the field. However,
the authors were unable to find a reference in the literature.

Proposition 4.2. Let M = S3
\ K (�) be a hyperbolic 2-bridge link complement.

Then Sym(M)= Sym(S3, K (�)).

Proof. The work of Guéritaud [2006a] shows that T is in fact the canonical
triangulation of any such hyperbolic 2-bridge link complement M . Thus, Aut(T ),
the group of combinatorial automorphisms of this triangulation, is isomorphic
to Sym(M). The description of Aut(T ) in [Sakuma and Weeks 1995, pp. 415-416]
implies that it preserves the meridian(s) of K (�), and therefore extends to an
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σ1

σ2

m mM M

M

M

m m

σ2

σ1

Figure 13. Trisymmetric projections of a 2-bridge link with two
components (left) and a 2-bridge knot (right). The axes of symmetry
for σ1 and σ2 are given in both projections. Maxima are labeled
M and minima are labeled m.

M M

mm

σ3

M

M

m

m

σ3 : ~v 7→ −~v

Figure 14. To the left is the standard projection of K (�) with �
palindromic and n odd. To the right is a depiction of K (�) in R3

(with knot strands connecting at infinity) with � palindromic and
n even. Both visuals show a symmetry σ3 of K (�). Maxima are
labeled M and minima are labeled m.

action on (S3, K (�)). As a result, the natural inclusion from Sym(S3, K (�)) into
Sym(M) is surjective, giving the desired isomorphism. �

Since Sym(M) is isomorphic to Sym(S3, K (�)), we will no longer distinguish
between symmetries of a hyperbolic 2-bridge link and its complement. Below, we
provide visualizations of these symmetries, which will be useful in the proofs of
Lemma 4.3 and Proposition 4.4. For more visualizations of 2-bridge link symmetries,
see [Bleiler and Moriah 1988; Bonahon and Siebenmann 2010], and [Sakuma 1986].
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Recall that any 2-bridge link K (�) can be isotoped so that its projection has
exactly two maxima and two minima. In all four link diagrams given in Figure 13
and Figure 14 the corresponding maxima and minima are labeled. In what follows,
we will examine how Sym(M) acts on these maxima and minima, and “meridional
edges” of Aut(T ) that wrap around them. For an arbitrary link L ⊂ S3, this would
be an issue since the maxima and minima don’t have to be preserved up to isotopy,
and Sym(S3, L) is a group of homeomorphisms up to isotopy. However, for a
2-bridge link, from the work of Schubert [1956] we know that the set of maxima
and minima will be preserved up to isotopy, and so, we are justified in using different
projections of K (�) to analyze how symmetries act on the maxima and minima.

Lemma 4.3. Each “meridional edge” of T wraps around a maximum or minimum
of K (�). These meridional edges alternate between ones that wrap around maxima
and minima.

Proof. In all cases, T , the canonical triangulation of S3
\ K (�), has exactly four

meridional edges, and K (�) has exactly four extrema. These meridional edges of
T result from clasping. See Section 3 for details on how clasping the innermost
and outermost 4-punctured spheres, Sc and S1, affects T . Specifically, clasping
S1 introduces two meridional edges, each one going around one of the strands
of the outermost crossing of K (�). We get the other two meridional edges from
clasping Sc, each one going around one of the strands of the innermost crossing.
See Figure 4 for how clasping forms these meridional edges. The two meridional
edges coming from clasping S1 each go around a maximum of K (�), while the two
meridional edges coming from clasping Sc each go around a minimum of K (�).
Since there are exactly four meridional edges in T and exactly four meridional
edges in T , these sets must correspond with one another. Thus, each meridional
edge of T wraps around a maximum or minimum of K (�). These meridional edges
alternate between wrapping around maxima and minima since if we orient K (�),
our path alternates between traversing maxima and minima. �

We now consider the lifts of the meridional edges of T to T̃ . In what follows,
we shall call the lifts of meridional edges of T that wrap around a maximum of
K (�) maximal meridional edges. Similarly, we shall call the lifts of the meridional
edges of T that wrap around a minimum of K (�) minimal meridional edges.

We now describe how the symmetries of a hyperbolic 2-bridge link complement
act on T̃ . Recall that n is the number of syllables in the word �. If K (�) is a two
component link, then we say T̃ = T̃1∪T̃2, where T̃1 and T̃2 are identical triangulations
of R2, coming from lifting an equal volume cusp cross-section of S3

\ K (�).
Recall that σ1, σ2, and σ3 are the symmetries of Sym(S3, K (�)) described above

and shown in Figure 13 and Figure 14.
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Proposition 4.4. Sym(M) = Sym(S3, K (�)) acts on T̃ (up to deck transforma-
tions) in the following manner:

If K (�) is a knot, then

• σ1 acts as a rotation of π about (1, 1), and

• σ2 acts as a rotation of π about (2, 1).

If K (�) is a two component link, then

• σ1 acts as a rotation of π about (1, 1) in both T̃1 and T̃2, and

• σ2 exchanges (R2, T̃1) and (R2, T̃2) by the identity map.

If � is palindromic, then

• if n is odd, σ3 acts as a rotation of π about
( 1

2 , 1
)
, and

• if n is even, σ3 acts as a glide reflection where we reflect across the line x = 1
2

and translate by (x, y)→ (x, y+ 1) (possibly composed with the rotations σ1

and σ2).

Proof. First, we claim that any symmetry of M acts on (R2, T̃ ) by an isometry of R2.
A priori, a symmetry of M gives rise only to an element f of Autev(T̃ ) since this
triangulation is metrically distorted in our construction. By Theorem 3.6, any such
simplicial homeomorphism (that preserves edge valences) of T̃ is a composition of
deck transformations (which are specific translations) and a specific set of rotations,
reflections, and glide reflections. Thus, any such f must be a Euclidean isometry.

First, we consider the symmetries σ1 and σ2 of M that generate a subgroup of
Sym(M) isomorphic to Z2⊕ Z2. By Theorem 4.1, these symmetries are always
orientation-preserving, and so, we just need to consider rotations and translations
of R2. We do this in three cases.

Case 1: K (�) is a knot. In this case, we note the following properties of σ1 and σ2.
These properties come from examining the tri-symmetric projection given in
Figure 13:

• σ1 exchanges the maxima of K (�) while fixing the minima of K (�).

• σ2 exchanges the minima of K (�) while fixing the maxima of K (�).

• σ1 and σ2 change the orientation of the longitude of K (�).

Since both σ1 and σ2 change the orientation of the longitude, they cannot be
translations, and so, must be rotations. By Lemma 4.3, σ1 must exchange the
maximal meridional edges while fixing the two minimal meridional edges. Thus,
up to deck transformations, σ1 must be a rotation of π about (1, 1). Similarly, up
to deck transformations, σ2 must be a rotation of π about (2, 1).
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Case 2: K (�) is a 2-component link. Here, we once again note several important
features of σ1 and σ2 acting on (S3, K (�)) which come from examining the tri-
symmetric projection in Figure 13.
• σ1 sends each component of K (�) to itself, with maxima mapping to maxima

and minima mapping to minima.

• σ2 exchanges the two link components, with maxima mapping to maxima and
minima mapping to minima.

• σ1 changes the orientations of both of the longitudes of K (�), while σ2

preserves these orientations.

Since σ1 is an orientation-preserving symmetry that switches the orientation of
both of the longitudes, it must act as a rotation on both copies of R2. Up to deck
transformations, the only possible rotation that maps the two maximal meridional
edges to themselves and maps the two minimal meridional edges to themselves is
a rotation of π about (1, 1) in both (R2, T̃1) and (R2, T̃2). Since σ2 interchanges
the cusps and preserves orientations of the longitudes, it must take T̃1 to T̃2 by a
translation. Since the minimal meridional edge of T̃1 must map to the minimal
meridional edge of T̃2, σ2 must be the identity map between these triangulations
of R2, up to deck transformations.

Case 3: � is palindromic. Now, consider any additional symmetries of Sym(M),
which occur only if � is palindromic. By examining the projections of K (�) given
in Figure 14, we see that σ3 has the following properties:
• σ3 exchanges the maxima of K (�) with the minima of K (�).

• σ3 changes the orientation of the longitude of K (�) (or both longitudes if
K (�) is a two component link).

First, suppose that n is odd. By Theorem 4.1, σ3 is an orientation-preserving
symmetry, and since it changes the orientation of the longitude, it must be a rotation
of R2. Since σ3 must exchange maximal meridional edges with minimal meridional
edges, it must act as a rotation about

( 1
2 , 1

)
on (R2, T̃ ), or rotations about

(1
2 , 1

)
in

both (R2, T̃1) and (R2, T̃2), if K (�) has two components.
Now, suppose that n is even. By Theorem 4.1, σ3 is an orientation-reversing

symmetry of M , and so, σ3’s action on T̃ is also orientation-reversing. Theorem 3.6
tells us that σ3 must either correspond with the glide reflection g or a composition
of g with the rotations ρ1 and ρ2 (up to deck transformation). This gives the desired
description of σ3. �

5. Hidden symmetries of 2-bridge link complements

Let the commensurator and normalizer of M = H3/0 = S3
\ K (�), be C(0)

and N (0), respectively, as defined in Section 1. Now that we understand the
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symmetries of M (Section 4), and the simplicial homeomorphisms of the canonical
(lifted) cusp triangulation T̃ (Section 3), we are ready to characterize the hidden
symmetries of M , i.e., the elements of C(0) \ N (0). Clearly, arithmetic links
always have hidden symmetries, since in this case C(0) is dense in Isom(H3). But
hidden symmetries of arithmetic links will not necessarily be symmetries of the
canonical cusp triangulation T̃ . We call a hidden symmetry detectable if it is also a
symmetry of T̃ . For nonarithmetic links, all hidden symmetries are detectable.

Recall that Autev(T̃ ) is the group of simplicial automorphisms of T̃ preserving
edge valence, so that Aut+ev(T̃ ) is the subgroup consisting of those that preserve
orientation.

Orientation-preserving hidden symmetries.

Theorem 5.1. If M = S3
\ K (�) is a hyperbolic 2-bridge link complement, then

we have the following classification of orientation-preserving hidden symmetries:

• If M is nonarithmetic, then M admits no hidden symmetries.

• If M is the figure-eight knot complement, then M admits an order 6 detectable
hidden symmetry.

• If M is the Whitehead link complement, then M admits an order 4 detectable
hidden symmetry.

• If M is the 62
2 link complement, then M admits an order 3 detectable hidden

symmetry.

• If M is the 62
3 link complement, then M does not admit any detectable hidden

symmetries.

Proof. Case 1: M is nonarithmetic. Since the triangulation T of M is canonical, it
descends to a cellulation of the minimal (orientable) orbifold O+ = H3/C+(0),
where C+(0) is the orientable commensurator of M . Hence any orientation-
preserving symmetry or hidden symmetry h ∈ C+(0)≤ Isom+(H3) must preserve
the lifted triangulation T̃ , which we may assume has a vertex at∞∈ S∞=R2

∪{∞}.
Since M either has one cusp or has a symmetry exchanging its cusps, N+(0) acts
transitively on the set of vertices of T̃ . Thus for some g ∈ N+(0), h ◦ g fixes
∞∈ S∞. Since h is a symmetry of M if and only if h ◦ g is, we may assume that
h fixes ∞ ∈ S∞. Identifying T̃ with a horosphere about ∞, we see then that h
restricts to a simplicial automorphism of T̃ , and this restriction determines h (if
K has two components, we understand T̃ to mean a component of T̃1 ∪ T̃2). It is
enough, then, to show that any element of Aut+ev(T̃ ) comes from a symmetry of M
(possibly composed with deck transformations of T̃ ).

Let G=Z⊕Z be the deck group of T̃ . By Theorem 3.6, Aut+ev(T̃ )/G is generated
by {ρ1, ρ2, ρ3} if ρ3 is a simplicial automorphism, and is generated by {ρ1, ρ2} if ρ3
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�= RL �= RL R �= R2L2

Figure 15. Lifted cusp triangulation T̃ for the figure-eight knot,
Whitehead link, and 62

2 link complements, from left to right.
Edges/vertices with the same coloring (within each figure) have
the same valence.

is not simplicial. Let σ1, σ2, σ3 be the symmetries described in Proposition 4.4, and
let H be the horizontal strip in the first quadrant with a vertex at the origin.

We first observe that ρ1=σ1, and ρ2 is either σ2, or σ1 composed with a deck trans-
formation, depending on whether K has one or two components. Hence ρ1 and ρ2

come from symmetries of M in both cases, and so for the case where ρ3 is not simpli-
cial, M cannot have hidden symmetries. If ρ3 is simplicial, then since the reflection
ry across y=1 is always a simplicial automorphism (by construction of T̃ ), the reflec-
tion ρ3 ◦ry across x = 1

2 is also simplicial. Hence in this case H is symmetric about
the line x = 1

2 , and so � is palindromic with �c = R, and it follows that ρ3 comes
from the symmetry σ3 of M . Again, we conclude that M has no hidden symmetries.

Case 2: M is arithmetic. There are exactly four arithmetic 2-bridge links: the figure-
eight knot (�= RL), the Whitehead link (�= RL R), the 62

2 link (�= R2L2), and
the 62

3 link (�= RL2 R).
Since �= RL2 R is not an excluded case in Lemma 3.4 and its corollaries, the

arguments in Case 1 above show that, if M is the 62
3 link complement, then every

h ∈ Aut+ev(T̃ ) that preserves edge valence comes from a symmetry of M , i.e., M
admits no detectable orientation-preserving hidden symmetries.

If M is the figure-eight knot, the Whitehead link complement, or the 62
2 link com-

plement, then we can see by edge/vertex (valence) correspondences in T̃ that if e and
e′ are two edges of a tetrahedron in T which are opposite each other (i.e., they do not
share a vertex), then val(e)= val(e′). This is evident in T̃ by the fact that any edge
and vertex of T̃ that are across from each other (i.e., their convex hull is a single tri-
angle of T̃ ) have the same valence. This makes it easy to identify the (unique) hyper-
bolic structure on T . If an edge of a tetrahedron has valence k, then we make the di-
hedral angle at that edge 2π/k. We just need to make sure that this gives a Euclidean
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structure to the cusp cross-sections, but this is confirmed by Figure 15. It follows that
the depictions of T̃ in Figure 15 are actually metrically correct (up to scaling), so the
rotations ρv indicated are isometries of T̃ . Next we check that ρv extends to an isom-
etry of the three-dimensional triangulation T̃ . Viewing T̃ as a horosphere about∞ in
the upper half-space model of H3, the vertex v about which ρv rotates T̃ corresponds
to some edge ev of T̃ connecting∞ to a point pv ∈ ∂H3

\ {∞}. The rotation of H3

about ev that agrees with ρv on T̃ induces a rotation of the lift T̃v of T centered at pv ,
which is an isometry since T̃ and T̃v are isometric and ev appears in both as a vertex
of the same valence. If v1 is some other vertex of T̃ , and ρv(v1)= v2, then since ρv
differs from ρv1 by composition with symmetries of M and deck transformations of
T̃ , the rotation of H3 induced by ρv takes T̃v1 to T̃v2 isometrically. It follows that ρv
induces an isometry on T̃ , of the order indicated in the statement of the theorem. �

Orientation-reversing hidden symmetries.

Theorem 5.2. If M = S3
\ K (�) is a hyperbolic 2-bridge link complement, then

we have the following classification of orientation-reversing hidden symmetries:

• If M is nonarithmetic, then M admits no orientation-reversing hidden symme-
tries.

• If M is the 62
3 link complement, then M admits no detectable orientation-

reversing hidden symmetry.

• If M is the figure-eight knot complement, the Whitehead link complement, or
the 62

2 link complement, then M admits an order 2 orientation-reversing hidden
symmetry.

Proof. Case 1: M is nonarithmetic. The proof will be analogous to the orientation-
preserving case. As in that case, we need only show that any h ∈ Autev(T̃ ) is in
fact a symmetry of M . By Theorem 3.6, h must be a composition of ρ1, ρ2, ρ3,
and g, where ρ1, ρ2, and ρ3 are the rotations by π about (1, 1), (2, 1), and

( 1
2 , 1

)
,

respectively, and g is the glide reflection given by the composition of r 1
2

with
(x, y) 7→ (x, y + 1). If g /∈ Autev(T̃ ), then Autev(T̃ ) = Aut+ev(T̃ ), and we are
done. If g ∈ Autev(T̃ ), then it is clear from the construction of T̃ that we must
have �c = L , and � must be palindromic. In this case, though, g corresponds to
the symmetry σ3 in the notation of Proposition 4.4, so the nonarithmetic case is
proved.

Case 2: M is arithmetic. The proof is analogous to the orientation-preserving case.
�

Irregular coverings by hyperbolic 2-bridge link complements. Theorem 5.1 and
Theorem 5.2 give us the following corollary about irregular coverings of 3-manifolds.
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Corollary 5.3. Let N be any hyperbolic 2-bridge link complement. If N is nonarith-
metic, then N does not irregularly cover any hyperbolic 3-orbifolds (orientable or
nonorientable). If N is arithmetic, then N does not irregularly cover any orientable
hyperbolic 3-manifolds.

Proof. By Theorem 5.1 and Theorem 5.2, any nonarithmetic hyperbolic 2-bridge
link complement N does not have any hidden symmetries (orientation-preserving
or orientation-reversing). Thus, if any such N covers a hyperbolic 3-orbifold, it
must be a regular cover.

If N is arithmetic, then N is the complement of either the figure-eight knot,
the Whitehead link, the 62

2 link, or the 62
3 link. If N irregularly covers some

hyperbolic 3-manifold N ′, then it must be at least a degree 3 covering. Here, we
get a volume contradiction. Cao and Meyerhoff [2001] showed that the figure-eight
knot complement and its sister are the orientable cusped hyperbolic 3-manifolds
of minimal volume, with volume ≥ 2.029. Therefore, vol(N ′) ≥ 2.029, and so,
vol(N ) ≥ 3(2.029) = 6.087. However, the volumes of any of the four arithmetic
hyperbolic 2-bridge link complements are strictly smaller than 6.087. Thus, we
can’t have any such irregular coverings in the arithmetic case. �

Boileau and Weidmann [2005] give a characterization of 3-manifolds that admit
a nontrivial JSJ-decomposition and whose fundamental groups are generated by
two elements. Their work shows that there are four possibilities for such manifolds,
one of which is that the hyperbolic part of the JSJ decomposition admits a finite-
sheeted irregular covering by a hyperbolic 2-bridge link complement. Corollary 5.3
immediately eliminates this possibility, giving the following revised characterization
of such manifolds. In the following corollary, D stands for a disk, A for an annulus,
and Mb for a Möbius band. For an orbifold, cone points are listed in parentheses
after the topological type of the orbifold is given.

Corollary 5.4. Let M be a compact, orientable, irreducible 3-manifold which
has rank(π1(M)) = 2. If M has a nontrivial JSJ-decomposition, then one of the
following holds:

(1) M has Heegaard genus 2.

(2) M = S ∪T H where S is a Seifert manifold with basis D(p, q) or A(p), H
is a hyperbolic manifold and π1(H) is generated by a pair of elements with
a single parabolic element. The gluing map identifies the fiber of S with the
curve corresponding to the parabolic generator of π1(H).

(3) M = S1 ∪T S2 where S1 is a Seifert manifold over Mb or Mb(p) and S2 is a
Seifert manifold over D(2, 2l + 1). The gluing map identifies the fiber of S1

with a curve on the boundary of S2 that has intersection number one with the
fiber of S2.
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6. Commensurability of 2-bridge link complements

In this section, we show that there is only one pair of commensurable hyperbolic
2-bridge link complements. We accomplish this by analyzing the cusp of the unique
minimal orbifold in the commensurability class of a nonarithmetic hyperbolic
2-bridge link complement.

Let M = S3
\ K (�) = H3/0 be any nonarithmetic hyperbolic 2-bridge link

complement. By a theorem of Margulis [1991], there exists a unique minimal (ori-
entable) orbifold in the commensurability class of M , specifically, O+=H3/C+(0).
By Theorem 5.1 we know that M admits no hidden symmetries, and therefore,
C+(0)= N+(0). Since N+(0)/0 = Sym+(M), we only have to quotient M by
its orientation-preserving symmetries to obtain O+.

We will analyze the commensurability class of M by considering the cusp of O+.
Recall that every 2-bridge link is either a knot or a link with two components. If
K has two components, then there always exists a symmetry exchanging those
components; see Section 4. Thus, the orbifold O+ admits a single cusp, C . If we
quotient the cusp(s) of M along with the cusp triangulation T by the symmetries
of M , then we obtain the cusp C of O+, along with a canonical cellulation, TC .
Technically, TC is not a triangulation, but just a quotient of a triangulation (hence
we call it a cellulation). If M and M ′ are commensurable, then their corresponding
minimal orbifolds must admit isometric cusps that have identical cusp triangulations.
In this case, we say that the corresponding cusp cellulations, TC and TC ′ , are
equivalent. We wish to determine when these cusps are equivalent. The following
two lemmas take care of this classification.

Lemma 6.1. Let M = S3
\ K (�) be a nonarithmetic hyperbolic 2-bridge link

complement. Suppose � is not palindromic or n is even. Then C ∼= S2(2, 2, 2, 2)
and TC determines the word � up to inversion and switching Ls and Rs.

Proof. By Theorem 4.1, Sym+(M)∼= Z2⊕ Z2, and Proposition 4.4 tells us exactly
how Sym+(M) acts on T and T̃ . First, assume K (�) is a knot. Here, we choose
the rectangle [0, 4]× [0, 2] in T̃ as a fundamental domain for the torus T . In this
case, σ1◦σ2 acts as a translation of T̃ by (x, y)→ (x+2, y). When we quotient our
fundamental domain by the symmetry σ1 ◦ σ2, we produce a fundamental domain
for a torus given by the rectangle [0, 2]× [0, 2], with opposite sides identified. If
K (�) is a link with two components, then our fundamental domain for T is given
by two copies of [0, 2] × [0, 2]. When we quotient by σ2, we just exchange the
cusps. This again produces a fundamental domain for a (single) torus of the form
[0, 2]× [0, 2] in T̃ . In either case (a knot or a two component link), we just need
to quotient by σ1, which acts as a rotation about (1, 1), to obtain C along with TC .
This gives us a fundamental domain of the form [0, 1]× [0, 2], with identifications
given in Figure 16. We can see that this resulting cusp is S2(2, 2, 2, 2).
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R

R

R R

R

LL L L

Figure 16. This shows the cusp triangulation TC for the word
�= R2L3 R2L2 R. The order two singularities are marked by solid
black circles. The red line segment gives lC .

To each such TC we associate a labeled line segment, lC , in the following manner,
depicted in Figure 16. The two endpoints of this line segment come from vertices
placed in the centers of the two clasping triangles of the fundamental domain
of TC . We also place a vertex in the center of each triangle in the top half of the
triangulation of the fundamental domain for TC . We connect two vertices by an
edge if and only if the corresponding triangles in TC share an edge. We label each
vertex of lC (including the endpoints) by L or R corresponding to the label of the
triangle in TC . We say that lC is equivalent to another labeled line segment lC ′ if
there exists a simplicial homeomorphism between the two that preserves labelings
or switches Ls and Rs between labelings.

Now, TC is equivalent to TC ′ if and only if lC is equivalent to lC ′ . This holds
because lC tells you exactly how to build TC and vice versa. However, there are
only two possibilities for how lC can be equivalent to lC ′ : either the left endpoint
maps to the left endpoint, or the left endpoint maps to the right endpoint. In the
first case, � must be the same as �′. In the second case, �′ must be an inversion
of �. �

Lemma 6.2. Let M = S3
\ K (�) be a nonarithmetic hyperbolic 2-bridge link

complement. Suppose � is palindromic and n is odd. Then C ∼= S2(2, 2, 2, 2) and
TC determines the word � up to inversion and switching Ls and Rs.

Proof. By Theorem 4.1, either Sym+(M) ∼= Z2 ⊕ Z2 ⊕ Z2, or Sym+(M) ∼= D4.
Just as in the previous lemma, we can first quotient a fundamental domain for T in
T̃ by the Z2⊕ Z2 subgroup of Sym+(M) to obtain a single S2(2, 2, 2, 2) cusp. To
obtain C and TC , we also quotient by the action of σ3, which is a rotation about( 1

2 , 1
)

in T̃ by Proposition 4.4; see Figure 17.
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Figure 17. This shows the cusp triangulation TC for the word
�= R3L2 R L2 R3. The order two singularities are marked by solid
black circles. The red line segment gives lC .

Similar to Lemma 6.1, we can associate a marked line segment lC to each
cusp TC , as depicted in Figure 17. Once again, we see that this marked line segment
determines TC up to inversions and switching Ls and Rs. We leave the details for
the reader. �

Corollary 6.3. Let M = S3
\ K (�) be a nonarithmetic hyperbolic 2-bridge link

complement. Then C ∼= S2(2, 2, 2, 2) and TC is determined by the word � up to
inversion and switching Ls and Rs.

Proof. We claim that the two types of cusp cellulations coming from Lemma 6.1 and
Lemma 6.2 can not be equivalent. First, note that the tiling TC for an S2(2, 2, 2, 2)
from Lemma 6.1 always has singularities located at vertices. Furthermore, any of
these vertices with singularities have valence 6= 2. Now, the tiling coming from
Lemma 6.2 either has a singularity that is not located at a vertex (this happens
if α n+1

2
is odd) or it has a singularity located at a vertex of valence 2 (this happens

if α n+1
2

is even). Thus, these two types of cusp cellulations can not be equivalent,
and so, the previous two lemmas imply that any such TC is determined by the word
� up to inversion and switching Ls and Rs. �

We can now prove our main theorem.

Theorem 6.4. The only commensurable hyperbolic 2-bridge link complements are
the figure-eight knot complement and the 62

2 link complement.

Proof. It is a well known fact that cusped, arithmetic hyperbolic 3-manifolds
are commensurable if and only if they have the same invariant trace field; see
[Maclachlan and Reid 2003] for details. The figure-eight knot complement and
the 62

2 link complement both have invariant trace field Q(
√
−3), while the White-

head link complement has Q(
√
−1) and the 62

3 link complement has Q(
√
−7).

Thus, among hyperbolic arithmetic 2-bridge link complements, only the figure-
eight knot complement and the 62

2 link complement are commensurable. Now, a
nonarithmetic hyperbolic 2-bridge link complement can not be commensurable
with an arithmetic hyperbolic 2-bridge link complement. This is because their
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commensurators determine their commensurability classes, and by a theorem of
Margulis [1991], the commensurator of a hyperbolic 3-manifold is discrete if and
only if it is nonarithmetic.

It remains to check that nonarithmetic hyperbolic 2-bridge link complements
are pairwise incommensurable. Let M = S3

\ K (�) and M ′ = S3
\ K (�′) be

any two such manifolds. We use TC and TC ′ to denote the cusp cellulations of
the minimal orbifolds in the commensurability classes of M and M ′ respectively.
Recall that if TC is not equivalent to TC ′ , then M and M ′ are not commensurable.
By Corollary 6.3, TC and TC ′ are equivalent only if � and �′ differ by inversion or
switching Ls and Rs. As noted in Section 2, both of these possibilities result in
M and M ′ being isometric. Thus, M and M ′ are commensurable only if they are
isometric, as desired. �
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ON SEAWEED SUBALGEBRAS AND MEANDER GRAPHS
IN TYPE C

DMITRI I. PANYUSHEV AND OKSANA S. YAKIMOVA

In 2000, Dergachev and Kirillov introduced subalgebras of “seaweed type”
in gln (or sln) and computed their index using certain graphs. In this article,
those graphs are called type-A meander graphs. Then the subalgebras of
seaweed type, or just “seaweeds”, were defined by Panyushev (2001) for
arbitrary simple Lie algebras. Namely, if p1,p2 ⊂ g are parabolic subalge-
bras such that p1+p2 = g, then q= p1 ∩p2 is a seaweed in g. If p1 and p2

are “adapted” to a fixed triangular decomposition of g, then q is said to be
standard. The number of standard seaweeds is finite. A general algebraic
formula for the index of seaweeds was proposed by Tauvel and Yu (2004)
and then proved by Joseph (2006).

In this paper, elaborating on the “graphical” approach of Dergachev and
Kirillov, we introduce the type-C meander graphs, i.e., the graphs associated
with the standard seaweed subalgebras of sp2n, and give a formula for the
index in terms of these graphs. We also note that the very same graphs can
be used in the case of the odd orthogonal Lie algebras.

Recall that q is called Frobenius if the index of q equals 0. We provide
several applications of our formula to Frobenius seaweeds in sp2n. In partic-
ular, using a natural partition of the set Fn of standard Frobenius seaweeds,
we prove that #Fn strictly increases for the passage from n to n + 1. The
similar monotonicity question is open for the standard Frobenius seaweeds
in sln, even for the passage from n to n+ 2.

1. Introduction

The index of an (algebraic) Lie algebra q, ind q, is the minimal dimension of the
stabilisers for the coadjoint representation of q. It can be regarded as a generalisation
of the notion of rank. That is, ind q equals the rank of q if q is reductive. In
[Dergachev and Kirillov 2000], the index of the subalgebras of “seaweed type”
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ticle. Yakimova is partially supported by the DFG priority programme SPP 1388 (Darstellungstheorie)
and by the Graduiertenkolleg GRK 1523 (Quanten- und Gravitationsfelder).
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in gln (or sln) were computed using certain graphs. In this article, those graphs
are called type-A meander graphs. Then the subalgebras of seaweed type, or just
seaweeds, were defined and studied for an arbitrary simple Lie algebra g [Panyushev
2001]. Namely, if p1, p2 ⊂ g are parabolic subalgebras such that p1+ p2 = g, then
q = p1 ∩ p2 is a seaweed in g. If p1 and p2 are “adapted” to a fixed triangular
decomposition of g, then q is said to be standard; see Section 2 for details. A
general algebraic formula for the index of seaweeds was proposed in [Tauvel and
Yu 2004, Conjecture 4.7] and then proved in [Joseph 2006, Section 8].

In this paper, elaborating on the “graphical” approach of [Dergachev and Kirillov
2000], we introduce the type-C meander graphs, i.e., the graphs associated with the
standard seaweed subalgebras of sp2n , and give a formula for the index in terms of
these graphs. Although the seaweeds in sp2n are our primary object in Sections 2–4,
we note that the very same graphs can be used in the case of the odd orthogonal
Lie algebras; see Section 5.

Recall that q is called Frobenius if ind q= 0. Frobenius Lie algebras are very im-
portant in mathematics because of their connection with the Yang–Baxter equation.
We provide some applications of our formula to Frobenius seaweeds in sp2n . Let Fn

denote the set of standard Frobenius seaweeds of sp2n . For a natural partition

Fn =

n⊔
k=1

Fn,k

(see Section 4 for details), we construct the embeddings Fn,k ↪→ Fn+1,k+1 for
all n, k > 1. Since Fn+1,1 does not meet the image of the induced embedding
Fn ↪→ Fn+1 and #(Fn+1,1) > 0, this implies that #(Fn) < #(Fn+1). The similar
monotonicity question is open for the standard Frobenius seaweeds in sln , even for
the passage from n to n+ 2. We also show that Fn,1 and Fn,2 are related to certain
Frobenius seaweeds in sln .

The ground field is algebraically closed and of characteristic zero.

2. Generalities on seaweed subalgebras and meander graphs

Let p1 and p2 be two parabolic subalgebras of a simple Lie algebra g. If p1+p2= g,
then p1 ∩ p2 is called a seaweed subalgebra or just a seaweed in g (see [Panyushev
2001]). The set of seaweeds includes all parabolics (if p2 = g), all Levi subalgebras
(if p1 and p2 are opposite), and many interesting nonreductive subalgebras. We
assume that g is equipped with a fixed triangular decomposition, so that there are
two opposite Borel subalgebras b and b−, and a Cartan subalgebra t = b ∩ b−.
Without loss of generality, we may also assume that p1 ⊃ b (i.e., p1 is standard) and
p2= p−2 ⊃ b− (i.e., p2 is opposite-standard). Then the seaweed q= p1∩p

−

2 is said to
be standard, too. Either of these parabolics is determined by a subset of 5, the set
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of simple roots associated with (b, t). Therefore, a standard seaweed is determined
by two arbitrary subsets of 5; see [Panyushev 2001, Section 2] for details.

For classical Lie algebras sln and sp2n , we exploit the usual numbering of 5,
which allows us to identify the standard and opposite-standard parabolic subalgebras
with certain compositions related to n. It is also more convenient to deal with gln
in place of sln .

I. g = gln . We work with the obvious triangular decomposition of gln , where b

consists of the upper-triangular matrices. If p1⊃ b and the standard Levi subalgebra
of p1 is gla1

⊕· · ·⊕glas
, then we set p1= p(a), where a= (a1, a2, . . . , as). Note that

a1+· · ·+as=n and all ai >1. Likewise, if p−2 ⊃b− is represented by a composition
b= (b1, . . . , bt) with

∑
bj = n, then the standard seaweed p1∩p

−

2 ⊂ gln is denoted
by qA(a |b). The corresponding type-A meander graph 0 = 0A(a |b) is defined by
the following rules:

• 0 has n consecutive vertices on a horizontal line numbered from 1 to n.

• The parts of a determine the set of pairwise disjoint arcs (edges) that are drawn
above the horizontal line. Namely, part a1 determines

[ 1
2a1
]

consecutively
embedded arcs above the nodes 1, . . . , a1, where the widest arc joins vertices 1
and a1, the following joins 2 and a1− 1, etc. If a1 is odd, then the middle vertex
1
2(a1+ 1) acquires no arc at all. Next, part a2 determines

[ 1
2a2
]

embedded arcs
above the nodes a1+ 1, . . . , a1+ a2, etc.

• The arcs corresponding to b are drawn following the same rules, but below the
horizontal line.

It follows that the degree of each vertex in 0 is at most 2 and each connected
component of 0 is homeomorphic to either a circle or a segment. (An isolated
vertex is also a segment!) By [Dergachev and Kirillov 2000], the index of qA(a |b)
can be computed via 0 = 0A(a |b) as follows:

(2-1) ind qA(a |b)= 2(number of cycles in 0)+ (number of segments in 0).

Remark 2.1. Formula (2-1) gives the index of a seaweed in gln , not in sln . However,
if q⊂ gln is a seaweed, then q∩ sln is a seaweed in sln and the respective mapping
q 7→ q ∩ sln is a bijection. Here q = (q ∩ sln) ⊕ (1-dim centre of gln); hence
ind (q∩sln)= ind q−1. Since ind qA(a |b)> 1 and the minimal value 1 is achieved
if and only if 0 is a sole segment, we also obtain a characterisation of the Frobenius
seaweeds in sln .

Example 2.2. We have

0A(5, 2, 2|2, 4, 3) = r r r r r r r r r� �� � � � � �� � � �� � 
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and the index of the corresponding seaweed in gl9 (resp. sl9) equals 3 (resp. 2).

II. g= sp2n . We use the embedding sp2n ⊂ gl2n such that

sp2n =

{(
A B

C −Â

)∣∣∣A,B,C ∈ gln, B= B̂, C= Ĉ

}
,

where A 7→ Â is the transpose with respect to the antidiagonal. If b̃⊂ gl2n and b̃−

are the sets of upper-triangular and lower-triangular matrices, respectively, then
b = b̃∩ sp2n and b− = b̃− ∩ sp2n are our fixed Borel subalgebras of g = sp2n . If
p1 ⊃ b, then the standard Levi subalgebra of p is gla1

⊕ · · · ⊕ glas
⊕ sp2d , where

a1+· · ·+as+d = n, all ai > 1, and d > 0. Since d is determined by n and the ‘gl’
parts, p1 can be represented by n and the composition a = (a1, . . . , as). We write
pn(a) for it. Likewise, if p−2 is represented by another composition b= (b1, . . . , bt)

with
∑

bj 6 n, then p1 ∩ p−2 is denoted by qCn (a |b). To a standard parabolic
p1 = pn(a) ⊂ sp2n , one can associate the parabolic subalgebra p̃1 ⊂ gl2n that is
represented by the symmetric composition ã = (a1, . . . , as, 2d, as, . . . , a1) of 2n.
In the matrix form, the standard Levi subalgebra of p̃1 has the consecutive diagonal
blocks gla1

, . . . , glas
, gl2d , glas

, . . . , gla1
and, for the above embedding sp2n ⊂ gl2n

and compatible triangular decompositions, one has p1 = p̃1∩ sp2n (and likewise for
p−2 ⊂ sp2n and p̃−2 ⊂ gl2n); see [Panyushev 2001, Section 5] for details. If ã and b̃
are symmetric compositions of 2n, then the seaweed qA(ã | b̃)⊂ gl2n is said to be
symmetric, too. The above construction provides a bijection between the standard
seaweeds in sp2n and the symmetric standard seaweeds in gl2n (or sl2n).

We define the type-C meander graph 0C
n (a |b) for qCn (a |b) to be the type-A

meander graph of the corresponding symmetric seaweed q̃ = p̃1 ∩ p̃−2 ⊂ gl2n .
Formally,

0C
n (a |b)= 0

A(ã | b̃).

We indicate below new features of these graphs.

• 0C
n (a |b) has 2n consecutive vertices on a horizontal line numbered from 1 to 2n.

• Part a1 determines
[1

2a1
]

embedded arcs above the nodes 1, . . . , a1. By symmetry,
the same set of arcs appears above the vertices 2n− a1+ 1, . . . , 2n. Next, part
a2 determines

[ 1
2a2
]

embedded arcs above the nodes a1 + 1, . . . , a1 + a2 and
also the symmetric set of arcs above the nodes 2n− a1− a2+ 1, . . . 2n− a1, etc.

• If d = n−
∑

ai > 0, then there are 2d unused vertices in the middle, and we
draw d embedded arcs above them. This corresponds to part 2d that occurs in
the middle of ã. The arcs corresponding to b are depicted by the same rules, but
below the horizontal line.

• A type-C meander graph is symmetric with respect to the vertical line between
the n-th and (n+ 1)-th vertices, and the symmetry with respect to this line is
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0C
7 (2, 3|∅)
r r r r r r r r r r r r r r
& %

� � � � � � � �� �� �� �� �" !& %& %& %
Figure 1. The meander graph for a parabolic subalgebra of sp14.

denoted by σ. We also say that this line is the σ-mirror. The arcs crossing the
σ-mirror are said to be central. These are exactly the arcs corresponding to
d = n−

∑
ai and d ′ = n−

∑
bj .

Our main result is the following formula for the index in terms of the connected
components of 0C

n (a |b):

(2-2) ind qCn (a |b)
= (number of cycles)+ 1

2 (number of segments that are not σ-stable).

To illustrate this formula, we recall that, for the parabolic subalgebra p with Levi
part gla1

⊕· · ·⊕glas
⊕sp2d , we have ind p=

[1
2a1
]
+· · ·+

[ 1
2as
]
+d; see [Panyushev

2001, Theorem 5.5]. Here p−2 = sp2n and the composition b is empty. On the other
hand, the graph 0C

n (a |∅) has n central arcs below the horizontal line corresponding
to b = ∅. Hence each part ai gives rise to

[ 1
2ai
]

cycles and, if ai is odd, to one
additional segment, which is σ-invariant. The middle part corresponding to sp2d
gives rise to d cycles. This clearly yields the same answer; cf. Example 2.3. Hence
we already know that (2-2) is correct if q is a parabolic subalgebra, i.e., if a =∅ or
b =∅. Note also that ind p= 0 if and only if d = 0 and all ai = 1, i.e., if p= b.

Example 2.3. See Figure 1. Here a = (2, 3) and n = 7 (hence d = 2), and the
σ-mirror is represented by the vertical dotted line. It is easily seen that the only
segment here is σ-stable and the total number of circles is 4. (The circles are
depicted by blue arcs). Hence ind p= 4.

Remark 2.4. (1) For both gln and sp2n , one has q∗(a |b)' q∗(b |a). Hence one
can freely choose what composition is going to appear first.

(2) Moreover, q∗(a |b) is reductive (i.e., a Levi subalgebra) if and only if a = b.

Convention. If q is a seaweed in either sp2n or gl2n , and the corresponding compo-
sitions are not specified, then the respective meander graph is denoted by 0C(q) or
0A(q).

Remark 2.5. Let q be a seaweed in sp2n or gln . Then there is a point γ ∈q∗ such that
the stabiliser qγ ⊂ q is a reductive subalgebra; see [Panyushev 2005]. A Lie algebra
possessing such a point in the dual space is said to be (strongly) quasi-reductive
[Duflo et al. 2012]; see also [Moreau and Yakimova 2012, Definition 2.1]. One
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of the main results of [Duflo et al. 2012] states that if a Lie algebra q = Lie Q
is strongly quasi-reductive, then there is a reductive stabiliser Qγ (with γ ∈ q∗)
such that any other reductive stabiliser Qβ (with β ∈ q∗) is contained in Qγ up
to conjugation. In [Moreau and Yakimova 2012] this subgroup Qγ is a called
a maximal reductive stabiliser, MRS for short. For a seaweed q = qA(a |b), an
MRS of q can be described in terms of 0A(a |b) [Moreau and Yakimova 2012,
Theorem 5.3]. A similar description is possible in type C if we use 0C

n (a |b). It will
appear elsewhere.

3. Symplectic meander graphs and the index of seaweed subalgebras

In this section, we prove formula (2-2) on the index of the seaweed subalgebras of
type C.

Let us recall the inductive procedure for computing the index of seaweeds in a
symplectic Lie algebra introduced by the first author [Panyushev 2001]. Suppose
that a = (a1, . . . , as) and b= (b1, . . . , bt) are two compositions with

∑
ai 6 n and∑

bj 6 n. Then we consider the standard seaweed qCn (a |b)⊂ sp2n .

Inductive procedure:

(1) If either a or b is empty, then qCn (a |b) is a parabolic subalgebra and the index
is computed using [Panyushev 2001, Theorem 5.5] (see also the Introduction).

(2) Suppose that both a and b are nonempty. Without loss of generality, we can
assume that a1 6 b1. By [Panyushev 2001, Theorem 5.2], ind qCn (a |b) can
inductively be computed as follows:
(i) If a1 = b1, then qCn (a |b)' gla1

⊕ qCn−a1
(a2, . . . , as |b2, . . . , bt); hence

ind qCn (a |b)= a1+ ind qCn−a1
(a2, . . . , as |b2, . . . , bt).

(ii) If a1 < b1, then

ind qCn (a |b)=
{
ind qCn−a1

(a2, . . . , as |b1− 2a1, a1, b2, . . . , bt) if a1 6
1
2 b1,

ind qCn−b1+a1
(2a1− b1, a2, . . . , as |a1, b2, . . . , bt) if a1 >

1
2 b1.

(iii) Step 2 terminates when one of the compositions becomes empty, i.e., one
obtains a parabolic subalgebra in a smaller symplectic Lie algebra, where
Step 1 applies.

Remark 3.1. Iterating transformations of the form 2(ii) yields a formula that
does not require considering cases; see [Panyushev 2001, Theorem 5.3]. Namely,
if a1 < b1, then ind qCn (a |b) = ind qCn−a1

(a′ |b′), where a′ = (a2, . . . , as), b′ =
(b′1, b′′1, b2, . . . , bt), and b′1 and b′′1 are defined as follows. Let p be the unique
integer such that

p
p+ 1

<
a1

b1
6

p+ 1
p+ 2

.
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Then b′1 = (p+ 1)b1− (p+ 2)a1 > 0 and b′2 = (p+ 1)a1− pb1 > 0. (If b′1 = 0,
then it has to be omitted.)

Theorem 3.2. Let q = qCn (a |b) be a seaweed in sp2n and 0C(q) = 0C
n (a |b) the

type-C meander graph associated with q. Then

ind qCn (a |b)

= #{cycles of 0C
n (a |b)}+

1
2 #{segments of 0C

n (a |b) that are not σ-stable}.

Proof. Our argument exploits the above inductive procedure. Let us temporarily
write Tn(a |b) for the topological quantity in the right-hand side of the formula.
Let us prove that for the pairs of seaweeds occurring in either 2(i) or 2(ii) of the
inductive procedure, the required topological quantity behaves accordingly.

If a1=b1 and gla1
is a direct summand of q, then ind qCn−a1

(a2, . . . , as |b2, . . . , bt)

decreases by a1; on the other hand, 0C
n−a1

(a2, . . . , as |b2, . . . , bt) is obtained from
0C(q) by deleting 2

[1
2a1
]

cycles (and two segments, which are not σ-invariant in
case a1 is odd). This is in perfect agreement with the formula.

If a1 < b1, then one step of sp-reduction for q is equivalent to two steps of gl-
reduction for the meander graph of 0A(q̃), where q̃ is the corresponding symmetric
seaweed in gl2n . These two “symmetric” steps are applied one after another to the
left and right sides of 0A(q̃)= 0C(q). According to [Moreau and Yakimova 2012,
Lemma 5.4(i)], the gl-reduction does not change the topological structure of the
graph. Hence Tn(a |b)= Tn−a1(a

′
|b′).

Since we have already observed (in Section 2) that our formula holds for the
parabolic subalgebras, the result follows. �

Example 3.3. For the seaweed q10(3, 3|4, 5) in sp20, the recursive formula of
Remark 3.1 yields the following chain of reductions:

q= qC10(3, 3|4, 5) qC7 (3|1, 5) qC6 (1, 1|5) qC5 (1|3, 1) qC4 (∅|1, 1, 1).

The last term represents the minimal parabolic subalgebra of sp8 corresponding to
the unique long simple root. The respective graphs are gathered in Figure 2. It is
readily seen that both ends of the graphs undergo the symmetric transformations on
each step; also all the segments are σ-stable and the total number of cycles equals 1.
Thus, ind q= 1.

One can notice that each reduction step consists of contracting certain arcs
starting from some end vertices of a meander graph. Clearly, such a procedure
does not change the topological structure of the graph, and this is exactly how
Lemma 5.4(i) in [Moreau and Yakimova 2012] was proved.

Example 3.4. In Figure 3, one finds the graph of a seaweed in sp16 of index 1. The
segments that are not σ-stable are depicted by red arcs.
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0C
10(3, 3|4, 5) q q q q q q q q q q q q q q q q q q q q� �� � � �� �� �' $� �� �
� � � 
 	� �� � 
 	� �� �� 

0C
7 (3|1, 5) q q q q q q q q q q q q q q� � � �� �� �' $� �
 	� �� � 
 	� �
0C

6 (1, 1|5) q q q q q q q q q q q q� �� �� �' $

 	� �� � 
 	� �

0C
5 (1|3, 1) q q q q q q q q q q� �� �� �' $


 	 � � 
 	

0C
4 (∅|1, 1, 1) q q q q q q q q� �� �� �' $

� �
Figure 2. The reduction steps for a seaweed subalgebra of sp20.

r r r r r r r r r r r r r r r r0C
8 (3, 4|5, 3)
� � � �� �� � � �� �� �
 	� �
 	
 	 
 	� �

Figure 3. A seaweed subalgebra of sp16 with index 1.

4. Applications of symplectic meander graphs

In this section, we present some applications of Theorem 3.2. We begin with a
simple property of the index.

Lemma 4.1. If
∑

ai < n and
∑

bj < n, then ind qCn (a |b)= (n−n′)+ ind qCn′(a |b),
where n′ =max

{∑
ai ,
∑

bj
}
.

Proof. Here 0C
n (a |b) contains n− n′ arcs crossing the σ-mirror on both sides of

the horizontal line. They form n− n′ central circles, and removing these circles
reduces the index by n− n′ and yields the graph 0C

n′(a |b). �

Recall that a Lie algebra q is Frobenius if ind q= 0. In the rest of the section, we
apply Theorem 3.2 to studying Frobenius seaweeds. Clearly, if qCn (a |b) is Frobenius,
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r r r r r r r r r r r r r r0C
7 (2, 4|4, 3)
� � � �� � � � � �� � � �
� �� � 
 	
 	 � �� �
r r r r r r r r r r r r r r0C

7 (3, 2|2, 5)
� � � � � �� �� � � �� � 
 	� �� �
 	 � �

Figure 4. Frobenius seaweed subalgebras of sp14.

then 0C
n (a |b) has only σ-stable segments and no cycles. Another consequence of

Theorem 3.2 is the following necessary condition.

Lemma 4.2. If qCn (a |b) is Frobenius, then either
∑

ai < n and
∑

bj = n or vice
versa.

Proof. If
∑

ai < n and
∑

bj < n, then the index is positive in view of Lemma 4.1.
If
∑

ai =
∑

bj = n, then there are no arcs crossing the σ-mirror. Therefore
0C

n (a |b) consists of two disjoint σ-symmetric parts, and the topological quantity of
Theorem 3.2 cannot be equal to 0. (More precisely, in the second case qCn (a |b) is
isomorphic to the seaweed qA(a |b) in gln , and ind q> 1 for all seaweeds q⊂ gln;
see Remark 2.1.) �

Graphically, Lemma 4.2 means that, for a Frobenius seaweed, one must have
some central arcs (= arcs crossing the σ-mirror) on one side of the horizontal line
in the meander graph, and then there must be no central arcs on the other side. The
number of central arcs can vary from 1 to n (the last possibility represents the case
in which one of the parabolics is the Borel subalgebra). Let Fn,k denote the set of
standard Frobenius seaweeds whose meander graph contains k central arcs. Then
Fn =

⊔n
k=1 Fn,k is the set of all standard Frobenius seaweeds in sp2n . If qCn (a |b)

lies in Fn,k , then so does qCn (b |a). As we are interested in essentially different
meander graphs, we will not distinguish graphs and algebras corresponding to (a |b)
and (b |a). Set Fn,k = #(Fn,k/∼) and Fn = #(Fn/∼), where ∼ is the corresponding
equivalence relation. Then

Fn,n = 1; Fn,n−1 =

{
1, n = 2,
2, n > 3;

Fn,n−2 =


2, n = 3,
4, n = 4,
5, n > 5.

It follows from Lemma 4.2 that if qCn (a |b) ∈ Fn and
∑

bj = n, then the integer k
such that qCn (a |b) ∈ Fn,k is determined as k = n−

∑
ai .

In Figure 4, one finds the meander graphs of Frobenius seaweeds in sp14 with
k = 1 and 2.
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Lemma 4.3. If q ∈ Fn,k , then 0C(q) has exactly k connected components (σ-stable
segments) corresponding to the central arcs. Furthermore, the total number of arcs
in 0C(q) equals 2n− k.

Proof. (1) Let Ai be the i-th central arc and 0i the connected component of 0C(q)

that contains Ai . Each 0i is a σ-stable segment.

• If 0i = 0j for i 6= j , then continuations of Ai and A j meet somewhere in
the left half of 0C(q). By symmetry, the same happens in the right half,
which produces a cycle. Hence the connected components 01, . . . , 0k must
be different.

• Assume that there exists yet another connected component 0k+1. Then it
belongs to only one half of 0C(q). By symmetry, there is also the “same”
component 0k+2 in the other half of 0C(q). This would imply that ind q> 0.

(2) Since the graph 0C(q) has 2n vertices and is a disjoint union of k trees, the
number of edges (arcs) must be 2n− k. �

Lemma 4.4. For any k > 1, there is an injective map Fn,k→ Fn+1,k+1. Moreover,
Fn+1 > Fn; that is, the total number of Frobenius seaweeds strictly increases under
the passage from n to n+ 1.

Proof. For any q∈Fn,k (k> 1), we can add two new vertices in the middle of 0C(q)

and connect them by an arc (on the appropriate side!). This yields an injective
mapping Fn,k→ Fn+1,k+1 for any k > 1 and thereby an injection in : Fn ↪→ Fn+1.

Since Fn+1,1 does not intersect the image of in , the second assertion follows
from the fact that Fn+1,1 > 0 for any n > 0; see the example below. �

Example. We point out an explicit element qCn (a |b) ∈ Fn,1. For n = 2k, one takes
a = (2k) and b= (1, 2k−1). For n = 2k+1, one takes a = (2k) and b= (1, 2k). For
n = 4, the meander graph is

s s s s s s s s� � � � � � � �� � � � � �
Proposition 4.5. (i) For a fixed m∈N, the numbers Fn,n−m stabilise for n>2m+1.

In other words, Fn,n−m = F2m+1,m+1 for all n > 2m+ 1.

(ii) Furthermore, F2m+1,m+1 = F2m,m + 1.

Proof. (i) Let q = qCn (a |b) ∈ Fn,n−m . Then
∑s

i=1 ai = m and
∑t

j=1 bj = n.
Consider the n-th vertex of the graph (the one that is closest to the σ-mirror). We
are interested in bt , the size of the last part of b, i.e., the part that contains the
n-th vertex. By the assumption, we have n −m central arcs over the horizontal
line. Therefore, if n > 2m + 2 and bt > 2, then the smallest arc corresponding
to bt hits two vertices covered by central arcs above the line. And this produces
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a cycle in the graph! This contradiction shows that the only possibility is bt = 1.
Then one can safely remove two central vertices from the graph and conclude that
Fn,n−m = Fn−1,n−1−m as long as n > 2m+ 2. (The last step is opposite to one that
is used in the proof of Lemma 4.4.)

(ii) Again, for q = qC2m+1(a |b) ∈ F2m+1,m+1, we consider bt , the last coordinate
of b. If bt = 1, then the central pair of vertices in 0C(q) can be removed, which
yields a seaweed in F2m,m . Next, it is easily seen that if bt ∈ {2, 3, . . . , 2m}, then
0C(q) contains a cycle. Hence this is impossible. While for bt = 2m + 1, one
obtains a unique admissible possibility

a = (1, 1, . . . , 1︸ ︷︷ ︸
m

). �

Remark. Using a similar analysis, one obtains F2m,m = F2m−1,m−1+ 3 if m > 3.

Remark 4.6. Our stabilisation result for Fn,n−m can be compared with [Duflo and
Yu 2015], where Duflo and Yu consider a partition of the set of standard Frobenius
seaweeds in sln into classes and study the asymptotic behaviour of the cardinality
of these classes as n tends to infinity. Let p(a) be the number of nonzero parts of
the composition a and let F̃n,p be the number of the standard Frobenius seaweeds
qA(a |b)∩sln such that p(a)+ p(b)= p. By [Duflo and Yu 2015, Theorem 1.1(b)],
if n is sufficiently large, then F̃n,n+1−t is a polynomial in n of degree

[ 1
2 t
]
, with

positive rational coefficients.

It seems that Fn,1 is the most interesting part of the symplectic Frobenius sea-
weeds. Recall from Section 2 that to any standard seaweed q ⊂ sp2n one can
associate a “symmetric” seaweed q̃⊂ gl2n such that q= q̃∩ sp2n . In this context,
we also set q̃0 = q̃∩ sl2n .

Proposition 4.7.

(i) If q ∈ Fn,1, then ind q̃= 1, hence q̃0 is a Frobenius seaweed in sl2n .

(ii) There is an injective map Fn,1→ Fn+1,1, which is not onto if n > 2.

Proof. (i) If q ∈ Fn,1, then 0C(q) and thereby 0A(q̃) consists of a sole segment
(Lemma 4.3). By (2-1), we have ind q̃= 1 and therefore ind q̃0 = ind q̃− 1= 0.

(ii) If q= qCn (a |b)∈Fn,1, then
∑s

i=1 ai = n−1 and
∑t

j=1 bj = n. We associate to it
a seaweed q̂∈Fn+1,1 as follows. Set q̂=qCn+1(â |b), where â= (a1, . . . , as, 2). Note
that 0C

n (a |b) has one central arc above the horizontal line, while 0C
n+1(â |b) has one

central arc below. The following is a graphical illustration of the transform q 7→ q̂:

s s. . . . . .
� ��� 7→ s s s s. . . . . .

� � � �� � ��
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n ↓ k→ 1 2 3 4 5 6 7 6 = Fn

1 1 - - - - - - 1
2 1 1 - - - - - 2
3 2 2 1 - - - - 5
4 4 4 2 1 - - - 11
5 8 10 5 2 1 - - 26
6 15 20 13 5 2 1 - 56
7 28 44 28 14 5 2 1 122

Table 1. The numbers Fn,k for n 6 7.

This provides a bijection between Fn,1 and the seaweeds in Fn+1,1 whose last
part of the composition that sums to n+ 1 equals 2. If n+ 1 > 3, then there are
seaweeds in Fn+1,1 such that the above-mentioned last part is bigger than 2. Hence
Fn,1 < Fn+1,1. �

Remark 4.8. Another curious observation is that Fn,1 and Fn,2 are related to certain
Frobenius seaweeds in sln:

(i) Suppose that q ∈ Fn,1. Let us remove the only central arc in 0C(q) and take the
remaining left half of the graph as it is. It is a connected type-A meander graph
with n vertices. Therefore, it represents a seaweed of index 1 in gln (= Frobenius
seaweed in sln). Formally, if q= qCn (a |b), with

∑
ai = n− 1 and

∑
bj = n, then

we set q′ = qA(a′ |b)⊂ sln , where a′ = (a, 1). This yields a bijection between Fn,1

and the Frobenius seaweeds of sln such that the last part of a′ equals 1.

(ii) Suppose that q ∈ Fn,2. Let us remove the two central arcs and take the remain-
ing left half. We obtain a graph with n vertices and two connected components
(segments). Joining the last two “lonely” vertices by an arc, we get a connected
type-A meander graph. Formally, if q= qCn (a |b), with

∑
ai = n−2 and

∑
bj = n,

then we set q′ = qA(a′ |b)⊂ sln , where a′ = (a, 2). Again, this yields a bijection
between Fn,2 and the Frobenius seaweeds of sln such that the last part of a′ equals 2.

Unfortunately, such a nice relationship does not extend to Fn,3.

In Table 1 we present the numbers Fn,k for n 6 7. Note that the values 14, 5, 2, 1
in the seventh row are stable in the sense of Proposition 4.5(i). Using the preceding
information, we can also compute the next stable value:

F9,5 = F8,4+ 1= (F7,3+ 3)+ 1= 32.

5. On meander graphs for the odd orthogonal Lie algebras

As in the case of sp2n , the standard parabolic subalgebras of so2n+1 are parametrised
by the compositions a = (a1, . . . , as) such that

∑
ai 6 n. For instance, if pBn (a) is
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the standard parabolic subalgebra corresponding to a, then a Levi subalgebra of
it is of the form gla1

⊕ · · ·⊕ glas
⊕ so2(n−

∑
ai )+1. Therefore, the standard seaweed

subalgebras of so2n+1 are also parametrised by the pairs of compositions a, b such
that

∑
ai 6 n and

∑
bj 6 n; see [Panyushev 2001, Section 5]. Furthermore, the

inductive procedure for computing the index of standard seaweeds (see Section 3,
Step 2), which reduces the case of arbitrary seaweeds to parabolic subalgebras, also
remains the same [Panyushev 2001, Theorem 5.2].

This means that if the formula for the index of parabolic subalgebras of so2n+1 in
terms of a also remains the “same” as in the symplectic case, then one can use our
type-C meander graphs in type Bn as well. Although there are only partial results
on the index of parabolic subalgebras of so2n+1 in [Panyushev 2001, Section 6],
one can use the general Tauvel–Yu–Joseph formula; see [Tauvel and Yu 2004,
Conjecture 4.7; Joseph 2006, Section 8]. Namely, if q = q(S, T ) is the seaweed
corresponding to the subsets S, T ⊂5, then

(5-1) ind q= rk g+ dim ES + dim ET − 2 dim(ES + ET ).

Here dim ET = #K(T ) is the cardinality of the cascade of strongly orthogonal roots
in the Levi subalgebra of g corresponding to T ; see [Tauvel and Yu 2004] for the
details. Our observation is that it easily implies that, for any composition a, one has

(5-2) ind pBn (a)=
[1

2a1
]
+ · · ·+

[1
2as
]
+

(
n−

s∑
i=1

ai

)
= ind pCn (a).

Indeed, for the parabolic subalgebras, we may assume that S=5, and since ind b=0
for the series Bn , we have dim E5 = rk g. Therefore, ind pBn (a)= dim ET = #K(T ).
As we noticed before, for pBn (a), we have l= gla1

⊕ · · ·⊕ glas
⊕ so2(n−

∑
ai )+1. As

is well known, the cardinality of the cascade of strongly orthogonal roots in gla
(resp. so2n+1) equals

[ 1
2a
]

(resp. n); see [Joseph 1977, Section 2]. Therefore, the
cardinality of the cascade in the above l is given by the middle term in (5-2).

There is another interesting formula for the index of a parabolic subalgebra,
which generalises the above observation.

Theorem 5.1. Let g be a simple Lie algebra such that ind b = 0. Let p ⊂ g be a
parabolic subalgebra, with a Levi subalgebra l . If b(l) is a Borel subalgebra of l
and u(l)= [b(l), b(l)], then

(5-3) ind p= ind u(l)= rk l− ind b(l)= rk g− ind b(l).

In particular, ind p= 0 if and only if u(l)= 0, i.e., p= b.

Outline of the proof. Again, under the assumption that ind b= 0, we have S =5,
dim E5= rk g, and l is determined by T. Hence (5-1) implies that ind p= dim ET =

#K(T ). It is implicit in [Joseph 1977, Section 2.6] that #K(T )= ind u(l), and the
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second equality in (5-3) is a consequence of the fact that rk l= ind b(l)+ ind u(l)

for any reductive Lie algebra l . A more detailed explanation and some applications
of the theorem will appear elsewhere. �

Recall that, for a simple Lie algebra g, ind b= 0 if and only if g 6=An,D2n+1,E6.

Conclusion. (1) Given a standard seaweed q = qBn (a |b) ⊂ so2n+1, we can draw
exactly the same meander graph as in type C (with 2n vertices) and use exactly the
same topological formula (Theorem 3.2) to compute the index of q.

(2) Using our type-C meander graphs, we can establish a bijection between the
standard Frobenius seaweeds for the symplectic and odd orthogonal Lie algebras
of the same rank. It would be very interesting to realise whether there is a deeper
reason for such a bijection.

(3) For the even-dimensional orthogonal Lie algebras (type Dn), there is a similar
inductive procedure that reduces the problem of computing the index of arbitrary
seaweeds to parabolic subalgebras. However, ind b= 1 for D2n+1 and Theorem 5.1
does not apply. Furthermore, although ind b= 0 for D2n , the general formula for the
index of parabolic subalgebras cannot be expressed nicely in terms of compositions.
Of course, the reason is that the Dynkin diagram has a branching node!
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THE GENUS FILTRATION IN THE SMOOTH
CONCORDANCE GROUP

SHIDA WANG

We define a filtration of the smooth concordance group based on the genus
of representative knots. We use the Heegaard Floer ε- and ϒ-invariants
to prove the quotient groups with respect to this filtration are infinitely
generated. Results are applied to three infinite families of topologically
slice knots.

1. Introduction

Let C be the smooth concordance group. Let Gk denote the subgroup of C generated
by knots of genus not greater than k. Clearly G0 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gk ⊆ · · · ⊆ C
and

⋃
∞

k=1 Gk = C. This gives a filtration of C. We call it the genus filtration.
There is another way to understand Gk . Recall that the concordance genus gc

of a knot K is defined to be the minimal genus of a knot K ′ concordant to K .
It is obvious that gc(K ) = min{k | K is concordant to K ′ and g(K ′) ≤ k}. This
motivates the following definition.

Definition 1.1. The splitting concordance genus of a knot K is

gsp(K ) :=min{k | K is concordant to K1# · · · #Km for some m
and g(K1), . . . , g(Km)≤ k}.

That is to say, gsp(K ) is the filtration level of K in G0⊆ G1⊆ · · · ⊆ Gk ⊆ · · · ⊆ C.
By [Endo 1995], G1 contains a Z∞ subgroup whose elements are topologically slice.

Let CT S ⊆ C be the subgroup of topologically slice knots. Recently several results
have appeared which reveal that the group CT S is quite large. For example, in [Hom
2015a; Ozsvath et al. 2014] it is shown that CT S contains Z∞ as a direct summand.
In [Hedden et al. 2012] it is shown that CT S contains Z∞ as a subgroup whose
nonzero elements are not concordant to knots of Alexander polynomial one. In
[Hedden et al. 2016] it is shown that CT S contains Z∞2 as a subgroup whose nonzero
elements are not concordant to knots of Alexander polynomial one.

MSC2010: primary 57N70; secondary 57M25.
Keywords: knot concordance, genus, Heegaard Floer homology.
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We will show that CT S is large in another sense. We will prove CT S 6⊆ Gk for
any k. Moreover, the difference between CT S and Gk is large. Corollary 1.4 states
that CT S/(CT S ∩Gk) contains a direct summand isomorphic to Z∞.

Our examples will be built from those of [Hom 2014a; Ozsvath et al. 2014].
Let Wh(K ) denote the untwisted Whitehead double of a knot K . Additionally let
K p,q denote the (p, q)-cable of K , let Jn = (Wh(T2,3))n,n+1#− Tn,n+1, and let
J ′n = (Wh(T2,3))n,2n−1#− Tn,2n−1. These knots are topologically slice and used to
prove the following theorems.

Theorem 1 [Hom 2015a, Theorem 1]. The group CT S contains a summand which
is isomorphic to Z∞ and generated by {Jn}

∞

n=2.

Theorem 2 [Ozsvath et al. 2014, Theorem 1.20]. The topologically slice knots
{J ′n}

∞

n=2 form a basis for a free direct summand of CT S .

We will prove the following results.

Theorem 1.2. {Jn}
∞

n=k forms a basis for a Z∞ summand of CT S/(CT S ∩Gbk/2c) for
any k ≥ 2.

Theorem 1.3. {J ′n}∞n=k forms a basis for a Z∞ summand of CT S/(CT S ∩ Gk−1) for
any k ≥ 2.

Hence we have the following consequence.

Corollary 1.4. For any k ∈ N we have CT S 6⊆ Gk . Moreover, the quotient group
CT S/(CT S ∩Gk) contains a direct summand isomorphic to Z∞.

One can define another subgroup Hk of C generated by knots of 4-genus not
greater than k. Clearly Gk ⊆ Hk . It is natural to ask whether Hk/Gk is infinitely
generated. We show the answer is affirmative by proving the following:

Theorem 1.5. The quotient group CT S/(CT S ∩Gk) contains a subgroup isomorphic
to Z∞ whose basis elements have slice genus 1 for any k ≥ 2.

Conjecture 1.6. (1) For any k ∈N, the quotient (CT S∩Gk+1)/(CT S∩Gk) contains
a direct summand isomorphic to Z∞ whose basis elements have slice genus 1.

(2) For any k ∈ N, the group C/Hn is nontrivial.

This paper is organized as follows. In Section 2 we use Alexander polynomials
to prove the splitting concordance genus can be arbitrarily large. In Section 3
we review Hom’s ε-invariant and develop an obstruction, which is used to prove
Theorems 1.2 and 1.5. In Section 4 we use the ϒ-invariant to develop an obstruction
and prove Theorem 1.3.
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2. A first glance at the genus filtration

Given a knot K , let 1K (t) be its Alexander polynomial, and breadth(1K (t)) be the
maximal exponent of 1K (t) minus the minimal exponent of 1K (t). Recall that for
any K , breadth(1K (t))≤ 2g(K ). Moreover, if K is slice, recall that it must satisfy
the Fox–Milnor condition, factoring as t±n f (t) f (t−1). Based on these facts, we
can prove the following theorem, generalizing [Livingston 2004, Theorem 2.2].

Proposition 2.1. For any knot K , if p(t) appears an odd number of times in the
irreducible factorization of 1K (t) in Z[t, t−1

], then

gsp(K )≥ 1
2 breadth(p(t)).

Proof. By definition, we can choose knots K1, . . . , Km such that K is concordant to
K1# · · · #Km and g(Ki )≤ gsp(K ) for each 1≤ i ≤ m. Thus K #− K1# · · · #− Km

is a slice knot and its Alexander polynomial 1K (t)1K1(t) · · ·1Km (t) must factor
as t±n f (t) f (t−1) for some f ∈ Z[t, t−1

]. If some p(t) appears an odd number of
times in the irreducible factorization of 1K (t), it must appear in the irreducible
factorization of one of 1K1(t), . . . ,1Km (t). Since 2gsp(K )≥ breadth(1Ki (t)) for
each 1≤ i ≤ m, we conclude that 2gsp(K )≥ breadth(p(t)). �

Example 2.2. The Alexander polynomial of the torus knot Tp,q is

1Tp,q (t)= ((t
pq
− 1)(t − 1))/((t p

− 1)(tq
− 1)),

in whose irreducible factorization the cyclotomic polynomial 8pq appears exactly
once. Hence gsp(Tp,q)≥ ϕ(pq)/2, where ϕ is Euler’s totient function. If p and q
are prime, we have gsp(Tp,q) ≥ ((p− 1)(q − 1))/2. This is actually an equality,
because g(Tp,q)= ((p− 1)(q − 1))/2.

Corollary 2.3. C/Gk is nontrivial for any k ∈ N.

Working a little harder, we can show the following.

Proposition 2.4. C/Gk contains an infinitely generated free subgroup for any k ∈N.

Proof. Let {pn}
∞

n=1 be a sequence of strictly increasing prime numbers with p1 > k.
We will prove that the torus knots {Tp2n−1,p2n }

∞

n=1 are linearly independent in C/Gk .
Suppose towards a contradiction that # l

i=1ci Tp2ni−1,p2ni
, where 0< n1 < · · ·< nl

and c1, . . . , cl are nonzero integers, is concordant to K1# · · · #Km with g(K j )≤ k
for 1 ≤ j ≤ m. Notice that 1Tp2ni−1,p2ni

(t) = 8p2ni−1 p2ni
, where 8p2ni−1 p2ni

is the
cyclotomic polynomial, which is irreducible of degree (p2ni−1 − 1)(p2ni − 1).
By a combinatorial formula [Litherland 1979, Proposition 1] for the Tristram–
Levine signature functions of torus knots, σω(Tp2ni−1,p2ni

) jumps by ±2 at the
primitive (p2ni−1 p2ni )-th roots of unity. Since the products p2ni−1 p2ni are dis-
tinct for i = 1, . . . , l, we know σω(# l

i=1ci Tp2ni−1,p2ni
) has a jump discontinuity
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at a primitive (p2n1−1 p2n1)-th root of unity. Hence σω(K1# · · · #Km) also has a
jump discontinuity at a primitive (p2n1−1 p2n1)-th root of unity, and so does one of
σω(K1), . . . , σω(Km). Without loss of generality, assume that σω(K1) has a jump
discontinuity at a primitive (p2n1−1 p2n1)-th root of unity. Since jump discontinuities
of the Tristram–Levine signature function can only appear at roots of the Alexander
polynomial, it follows that 1K1(t) has a root at a primitive (p2n1−1 p2n1)-th root of
unity and thus is divisible by 8p2ni−1 p2ni

, but this is impossible because

deg1K1(t)≤ 2g(K1)≤ 2k < (p2ni−1− 1)(p2ni − 1). �

3. Obstruction by ε-invariant

We assume the reader is familiar with knot Floer homology defined by Ozsváth and
Szabó [2004b] and independently Rasmussen [2003] and the ε-invariant defined by
Hom [2014a]. We briefly recall some of their properties for later use.

The knot Floer complex and ε-invariant. The knot Floer complex associates to a
knot K ⊂ S3 a doubly filtered, free, finitely generated chain complex over F[U,U−1

],
denoted by CFK∞(K ), where F is the field with two elements. The two filtrations
are called the algebraic and Alexander filtrations and the grading of the chain
complex is called the homological or Maslov grading. Multiplication by U shifts
each filtration down by one and lowers the homological grading by two. CFK∞(K )
is an invariant of K up to filtered chain homotopy equivalence. Furthermore, up to
filtered chain homotopy equivalence, one can assume the differential strictly lowers
at least one of the filtrations [Rasmussen 2003].

A quick corollary from [Ozsváth and Szabó 2004a, Theorem 1.2] is the following.

Proposition 3.1. If K has genus g, then there exists a representative of the filtered
chain homotopy equivalence class of CFK∞(K ) all of whose elements have filtration
levels (i, j) such that −g ≤ i − j ≤ g.

For a subset S ⊆ Z⊕ Z that is downward closed under the standard product
partial order on Z⊕Z, let C{S} denote the subcomplex of CFK∞(K ) generated
by elements with filtration levels in S. If S is the difference of two such subsets,
let C{S} denote the corresponding subquotient complex of CFK∞(K ). For example,
C{i=0}=C{i≤0}/C{i<0}=CFK∞(K ){i≤0}/CFK∞(K ){i<0}. The invariant

τ(K )=min{s | the inclusion map C{i = 0, j ≤ s} → C{i = 0}
induces a nontrivial map on homology}

is proven to be a smooth concordance invariant in [Ozsváth and Szabó 2003].
For any knot K , Hom [2014a] defines an invariant called ε taking on values −1,

0 or 1, which has the following properties.
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Proposition 3.2 [Hom 2014a, Proposition 3.6]. The invariant ε satisfies the follow-
ing properties:

(1) If K is smoothly slice, then ε(K )= 0.

(2) ε(−K )=−ε(K ).

(3) If ε(K )= ε(K ′), then ε(K #K ′)= ε(K )= ε(K ′).

(4) If ε(K )= 0, then ε(K #K ′)= ε(K ′).

Thus the relation ∼, defined by K ∼ K ′⇔ ε(K #− K ′)= 0, is an equivalence
relation coarser than smooth concordance. It gives an equivalence relation on C
called ε-equivalence. The ε-equivalence class of K is denoted by [[K ]]. The set of
all ε-equivalence classes forms a group F (also denoted by CFK in [Hom 2015a]),
which is a quotient group of C. The kernel of the natural homomorphism from
C to F is {[K ] ∈ C | ε(K )= 0}, where [K ] denotes the concordance class of K .

According to [Hom 2014b, Proposition 4.1], ε induces a total order on F . The
proof uses Proposition 3.2. The total order is defined by

[[K ]]> [[K ′]] ⇔ ε(K #− K ′)= 1.

Moreover, this order respects the addition operation on F . Therefore there is a
quotient homomorphism from C to the totally ordered abelian group F , which can
be used to show linear independence in C.

Some facts about totally ordered abelian groups. Let G be a totally ordered
abelian group, that is an abelian group with a total order respecting the addition
operation. Denote its identity element by 0.

The absolute value of an element a ∈ G is defined to be

|a| =
{

a if a ≥ 0,
−a if a < 0.

Definition 3.3. Two nonzero elements a and b of G are Archimedean equivalent,
denoted by a ∼A b, if there exists a natural number N such that N · |a|> |b| and
N · |b|> |a|. If a and b are not Archimedean equivalent and |a|< |b|, we say that
b dominates a. We write a� b if a > 0, b > 0 and b dominates a.

Property A. An element a ∈ G satisfies Property A if for every b ∈ G such that
b ∼A a, we have that b = ka+ c, where k is an integer and c is dominated by a.

We have the following two facts:

Lemma 3.4 [Hom 2014b, Lemma 4.7]. If 0 < a1 � a2 � a3 � · · · in G, then
a1, a2, a3, . . . are linearly independent in G.
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Lemma 3.5 [Hom 2015a, Proposition 1.3]. If 0 < a1 � a2 � a3 � · · · in G
and each ai satisfies Property A, then a1, a2, a3, . . . generate (as a basis) a direct
summand isomorphic to Z∞ in G.

The following lemmas are proven in [Hom 2014b] and [Hom 2015a] respectively.

Lemma 3.6 [Hom 2014b, Remark 4.9]. We have 0< [[Jn]]� [[Jn+1]] for any n ≥ 2.

Lemma 3.7 [Hom 2015a, Proposition 4.1, Lemmas 5.2 and 5.3]. The class [[Jn]]

satisfies Property A for any n ≥ 2.

It is straightforward to check that {a : |a| � x} is a subgroup of G for any x > 0
in G. Denote this subgroup by Gx . Let ϕx be the quotient homomorphism. Define
a relation < in G/Gx by ϕx(a) < ϕx(b) if and only if a < b and b− a 6∈ Gx .

Proposition 3.8. The relation < makes G/Gx into a totally ordered abelian group
with the following properties: If 0<a�b in G and b 6∈Gx , then 0≤ϕx(a)�ϕx(b)
in G/Gx . If a satisfies Property A in G, then ϕx(a) satisfies Property A in G/Gx .

Proof. First we check that the relation < in G/Gx is well defined. Suppose
ϕx(a)<ϕx(b). Let c∈Gx . We must show ϕx(a+c)<ϕx(b) and ϕx(a)<ϕx(b+c).
Since b−a > 0 and b−a 6∈ Gx it is easy to verify that b−a� |y| for any y ∈ Gx .
Thus b − a ± c > 0. Additionally b − a 6∈ Gx implies b − a ± c 6∈ Gx . Hence
ϕx(a + c) < ϕx(b) and ϕx(a) < ϕx(b+ c), which means the definition does not
depend on the choices of a and b.

Next we verify < is a strict total order on G/Gx that respects the addition
operation. For trichotomy, let ϕx(a) and ϕx(b) be two distinct elements in G/Gx .
Then b−a 6∈Gx . Thus b−a 6= 0 and exactly one of a < b and b< a is true. Hence
exactly one of ϕx(a)<ϕx(b) and ϕx(b)<ϕx(a) is true by definition. For transitivity,
let ϕx(a), ϕx(b), ϕx(c) ∈ G/Gx satisfy ϕx(a) < ϕx(b) and ϕx(b) < ϕx(c). Then
a < b, b < c and b − a, c − b 6∈ Gx . Immediately a < c. Suppose towards a
contradiction that c − a ∈ Gx . Then the fact that b − a � |y| for any y ∈ Gx

implies b − a − (c − a) > 0, which contradicts b < c. Hence c − a 6∈ Gx and
ϕx(a) < ϕx(c) by definition. For consistency with the addition operation, let ϕx(a),
ϕx(b), ϕx(c) ∈ G/Gx and ϕx(a) < ϕx(b). Then a < b and b − a 6∈ Gx . Thus
a + c < b+ c and (b+ c)− (a + c) 6∈ Gx . Hence ϕx(a)+ ϕx(c) = ϕx(a + c) <
ϕx(b+ c)= ϕx(b)+ϕx(c) by definition.

Next, we show that if b dominates a in G and b 6∈Gx , then ϕx(b) dominates ϕx(a).
Suppose 0< a� b in G and b 6∈Gx . Then 0< Na< b for any N ∈N. Additionally,
the fact that b� |y| for any y ∈ Gx implies Na+ y < b, ∀y ∈ Gx . It follows that
b−Na> 0 and that b−Na 6∈Gx . Hence 0≤ϕx(a)�ϕx(b) in G/Gx by definition.

Finally we show that if a has Property A in G, then ϕx(a) has Property A
in G/Gx . Suppose a satisfies Property A in G, that is, if b∼A a in G then b= ka+c
for some integer k and some c ∈ G dominated by a. Without loss of generality
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we assume ϕx(a) 6= 0. Let ϕx(b) ∼A ϕx(a), so b ∼A a in G. Otherwise either
|a| � |b| or |b| � |a|, which would imply |ϕx(a)| � |ϕx(b)| or |ϕx(b)| � |ϕx(a)|.
Thus b = ka + c for some integer k and some c ∈ G dominated by a. Thus
ϕx(b)= kϕx(a)+ϕx(c). Since c is dominated by a, we know ϕx(c) is dominated
by ϕx(a). Hence ϕx(a) satisfies Property A in G/Gx . �

Restriction on the Archimedean equivalence class by genus. Given a knot K
with ε(K ) = 1, Hom [2015a, Section 3] defines a tuple of numerical invariants
a+(K ) = (a1(K ), . . . , an(K )). Here each ai (K ) is a positive integer, and the
number n depends on K . It is shown that a+(K ) is an invariant of the ε-equivalence
class [[K ]] (see [Hom 2015a, Proposition 3.1]).

Computations in [Hom 2014b] show the following result.

Lemma 3.9 [Hom 2014b, p.568]. We have a+(Jp)= (1, p, . . .).

The integers a1 and a2 are useful in determining domination.

Lemma 3.10 [Hom 2014b, Lemmas 6.3 and 6.4]. If a+(K ) = (a1(K ), . . .) and
a+(K ′)= (a1(K ′), . . .) with a1(K ) > a1(K ′) > 0, then [[K ]] � [[K ′]].

Additionally, if a+(K )=(a1(K ), a2(K ),. . .) and a+(K ′)=(a1(K ′), a2(K ′),. . .)
with a1(K )= a1(K ′) > 0 and a2(K ) > a2(K ′) > 0, then [[K ]] � [[K ′]].

Based on Proposition 3.1, the following is shown.

Lemma 3.11 ([Hom 2015b, Theorem 1.2 and Lemma 2.3]). Suppose that ε(K )= 1,
and a2(K ) is defined, then |τ(K )− a1(K )− a2(K )| ≤ g(K ).

Next we prove our obstruction theorem.

Proposition 3.12. Suppose J is a knot with a+(J ) = (1, b, . . .) with b ≥ 2n for
some positive integer n. Then for any knot K ∈ Gn , we have |[[K ]]| � [[J ]].

Proof. Before proving the proposition for K ∈ Gn , first consider the case g(K )≤ n.
We may further assume that [[K ]] > 0, since [[−K ]] > 0 if [[K ]] < 0 and the
proposition is trivial if [[K ]] = 0. Notice that a1(K ) is always defined [Hom 2014b,
§6]. If a1(K ) > 1, then [[K ]] � [[J ]] by Lemma 3.10. If a1(K )= 1, then a2(K ) is
defined [Hom 2015a, Lemma 3.7]. Observe that τ(K )− a1(K )− a2(K )≥−g(K )
by Lemma 3.11. Combining this with τ(K ) ≤ g4(K ) ≤ g(K ), it follows that
g(K )− a1(K )− a2(K ) ≥ −g(K ). This implies a2(K ) ≤ 2n − 1, if a1(K ) = 1.
Hence |[[K ]]| � [[J ]] by Lemma 3.10.

Generally, let K ∈Gn . Then K =K1+· · ·+Km , where g(Ki )≤n for i=1, . . . ,m.
Since [[K ]] = [[K1]]+· · ·+[[Km]], we know |[[K ]]| ≤ |[[K1]]|+· · ·+|[[Km]]|. Then
the conclusion follows from the last paragraph. �
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Applying the obstruction to concrete families of knots.

Proof of Theorem 1.2. Fix an integer k ≥ 2. Under the quotient homomorphism
from C to F , the image of Gbk/2c is included in F[[Jk ]] = {[[K ]] : |[[K ]]| � [[Jk]]}

by Proposition 3.12 and Lemma 3.9. This gives a homomorphism from C/Gbk/2c
to F/F[[Jk ]]. By Lemma 3.6 and Proposition 3.8, the family {Jn}

∞

n=k maps to a family
of elements with Property A and each term is dominated by the next. Hence {Jn}

∞

n=k
forms a basis of a direct summand isomorphic to Z∞ by Lemma 3.5. Note that
since the Jn are topologically slice, the above argument can be restricted to the
subgroup CT S/(CT S ∩Gbk/2c) of C/Gbk/2c to complete the proof. �

Proof of Theorem 1.5. Instead of {Jn}, we use another family of topologically slice
knots {Ln}, where Ln = (Wh(T2,3))n,1#− (Wh(T2,3))n−1,1. These knots have slice
genus 1 [Hom 2015b, Lemma 3.1]. Additionally, Hom [2015b] computes that
a1(Ln)= 1 and a2(Ln)= n. By the same argument as the above proof, except for
applying Lemma 3.4 rather than Lemma 3.5, we immediately know {Ln}

∞

n=2k are
linearly independent in CT S/(CT S ∩Gk). �

4. Obstruction by ϒ-invariant

Ozsvath et al. [2014] introduced a new family of knot invariants,ϒK (t). We refer the
reader to their construction, and confine ourselves to recalling the basic properties
of the ϒ-invariant.

For any knot K , the invariantϒK (t) is a piecewise linear function on [0, 2]whose
derivative has finitely many discontinuities [Ozsvath et al. 2014, Proposition 1.4].
Thus, one can define1ϒ ′K (t0)= limt→t+0

ϒ ′K (t)−limt→t−0
ϒ ′K (t) for any t0 ∈ (0, 2).

As an example, the authors of [Ozsvath et al. 2014] compute the family {J ′n}:

1ϒ ′J ′n
(t)=

{
0 for t < 2/(2n− 1),
2n− 1 for t = 2/(2n− 1).

In [Ozsvath et al. 2014, Corollary 1.12] it is shown thatϒ gives a homomorphism
from C to the vector space of continuous functions on [0, 2]. Additionally,

K 7→
{
(1/q)1ϒ ′K (p/q) if p is even,
(1/2q)1ϒ ′K (p/q) if p is odd,

gives a homomorphism from C to Z for any p/q ∈ (0, 2)∩Q.
The location of singularities of ϒ is related to the genus of the knot, as in the

following proposition. The proof of this proposition, much like that of Lemma 3.11,
is based on the fact in Proposition 3.1.

Proposition 4.1 [Livingston 2015, Theorem 8.2]. Suppose that 1ϒ ′K (t) is nonzero
at t = p/q with gcd(p, q) = 1. Then q ≤ g(K ) if p is odd, and q ≤ 2g(K ) if p
is even.
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With this proposition, we can easily prove our obstruction theorem.

Proposition 4.2. Suppose K ∈ Gn for some positive integer n. Then 1ϒ ′K (t)= 0
for t ∈ (0, 1/n)∩Q.

Proof. Before proving the proposition for K ∈ Gn , first consider the case g(K )≤ n.
If ϒK (t) has a singularity at a rational number p/q with gcd(p, q) = 1, then
Proposition 4.1 implies p/q ≥ 1/n.

Generally, let K ∈ Gn . Then K = K1 + · · · + Km , where g(Ki ) ≤ n for
i = 1, . . . ,m. If ϒK (t) has a singularity at a rational number p/q, then so does
one of ϒK1(t), . . . , ϒKm (t), since ϒ is a homomorphism. The conclusion follows
from the last paragraph. �

Proof of Theorem 1.3. Fix an integer k ≥ 2. If K ∈ Gk−1, then ϒK (t) has no
singularities on (0, 1/(k− 1))∩Q. Thus {K 7→ 1/(2n− 1)1ϒ ′K (2/(2n− 1))}∞n=k
gives a homomorphism from C/Gk−1 to Z∞. Hence {J ′n}

∞

n=k form a basis for a Z∞

summand of C/Gk−1. Note that since the J ′n are topologically slice, the above
argument can be restricted to the subgroup CT S/(CT S∩Gk−1) of C/Gk−1 to complete
the proof. �
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ANDREAS ČAP, A. ROD GOVER, C. ROBIN GRAHAM and
MATTHIAS HAMMERL

319Nonorientable Lagrangian cobordisms between Legendrian knots
ORSOLA CAPOVILLA-SEARLE and LISA TRAYNOR

345A strong multiplicity one theorem for SL2

JINGSONG CHAI and QING ZHANG

375The Yamabe problem on noncompact CR manifolds
PAK TUNG HO and SEONGTAG KIM

393Isometry types of frame bundles
WOUTER VAN LIMBEEK

427Bundles of spectra and algebraic K-theory
JOHN A. LIND

453Hidden symmetries and commensurability of 2-bridge link complements
CHRISTIAN MILLICHAP and WILLIAM WORDEN

485On seaweed subalgebras and meander graphs in type C
DMITRI I. PANYUSHEV and OKSANA S. YAKIMOVA

501The genus filtration in the smooth concordance group
SHIDA WANG

Pacific
JournalofM

athem
atics

2016
Vol.285,N

o.2


	 vol. 285, no. 2, 2016
	Masthead and Copyright
	Hans U. Boden and Eric Harper
	Introduction
	1. Braids and representations
	1A. The braid group
	1B. The group of a link
	1C. The special unitary group
	1D. SU(N) representations
	1E. The wreath product ZN Bk

	2. Projective representations of the link group
	2A. Projective representations
	2B. Allowable labels and compatible k-tuples
	2C. An obstruction to lifting
	2D. Irreducibility for elements in Fix()

	3. The link invariants
	3A. The definition of h`N,@a()
	3B. Orientations
	3C. Independence of 
	3D. Independence under Markov moves

	4. Computations
	4A. The Hopf link and chain links
	4B. Split Links
	4C. Concluding remarks

	Acknowledgements
	References

	Hans U. Boden and Christopher M. Herald
	Acknowledgements
	References

	José Burillo and Sean Cleary and Armando Martino and Claas E. Röver
	Introduction
	1. Definitions and background
	2. Automorphisms of Hn
	3. Commensurations of Hn
	4. Metric estimates for Hn
	5. Subgroup embeddings
	6. Some quasi-isometries of Hn
	7. Co-Hopficity
	References

	Andreas Cap and A. Rod Gover and C. Robin Graham and Matthias Hammerl
	1. Introduction
	2. Ambient metrics and tractors
	3. Holonomy
	References

	Orsola Capovilla-Searle and Lisa Traynor
	1. Introduction
	2. Background
	Contact manifolds and Legendrian submanifolds
	Symplectic manifolds, Lagrangian submanifolds, and Lagrangian cobordisms

	3. Constructions of nonorientable Lagrangian endocobordisms
	4. Obstructions to exact, nonorientable Lagrangian endocobordisms
	5. Constructions of exact, nonorientable Lagrangian cobordisms
	Exact, nonorientable Lagrangian endocobordisms
	Exact, nonorientable Lagrangian cobordisms between stabilized Legendrians

	6. Additional questions
	Acknowledgements
	References

	Jingsong Chai and Qing Zhang
	1. Introduction
	1A. Notations

	2. The local zeta-integral
	2A. The genericity of representations of SL2(F)
	2B. Weil representations of SL"0365SL2
	2C. The local zeta-integral
	2D. Local functional equation
	2E. Unramified calculation

	3. Howe vectors and the local converse theorem
	3A. Howe vectors
	3B. Induced representations
	3C. The local converse theorem

	4. A strong multiplicity one theorem
	4A. Global genericity
	4B. Eisenstein series on SL"0365SL2(A)
	4C. The global zeta-integral
	4D. A strong multiplicity one theorem

	Acknowledgements
	References

	Pak Tung Ho and Seongtag Kim
	1. Introduction
	2. Proof
	Appendix
	Acknowledgements
	References

	Wouter van Limbeek
	1. Introduction
	2. Preliminaries
	Definition of the Sasaki–Mok–O'Neill metric
	Vector fields on frame bundles
	Killing fields and isometries
	The Takagi–Yawata theorem on Killing fields
	Normalizing volume

	3. High dimensional isometry groups of manifolds
	4. Geometric characterization of the fibers of SO(M)
	5. Proof for M with positive constant curvature
	6. Proof of the main theorem for surfaces
	Acknowledgements
	References

	John A. Lind
	1. Introduction
	2. Model category theory and principal fibrations
	3. Model categories of parametrized spectra
	4. The principal AutRM-fibration associated to an R-bundle
	5. The classification of R-bundles
	6. Lifted R-bundles and algebraic K-theory
	References

	Christian Millichap and William Worden
	1. Introduction
	2. Background on 2-bridge links
	3. Cusp triangulations of 2-bridge link complements
	4. Symmetries of 2-bridge link complements
	5. Hidden symmetries of 2-bridge link complements
	Orientation-preserving hidden symmetries
	Orientation-reversing hidden symmetries
	Irregular coverings by hyperbolic 2-bridge link complements

	6. Commensurability of 2-bridge link complements
	Acknowledgements
	References

	Dmitri I. Panyushev and Oksana S. Yakimova
	1. Introduction
	2. Generalities on seaweed subalgebras and meander graphs
	3. Symplectic meander graphs and the index of seaweed subalgebras
	4. Applications of symplectic meander graphs
	5. On meander graphs for the odd orthogonal Lie algebras
	References

	Shida Wang
	1. Introduction
	2. A first glance at the genus filtration
	3. Obstruction by -invariant
	The knot Floer complex and -invariant
	Some facts about totally ordered abelian groups
	Restriction on the Archimedean equivalence class by genus
	Applying the obstruction to concrete families of knots

	4. Obstruction by ``-invariant
	Acknowledgements
	References

	Index
	Guidelines for Authors
	Table of Contents

