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In this paper we introduce the notion of Einstein-type structure on a Rie-
mannian manifold (M, g), unifying various particular cases recently stud-
ied in the literature, such as gradient Ricci solitons, Yamabe solitons and
quasi-Einstein manifolds. We show that these general structures can be
locally classified when the Bach tensor is null.

1. Introduction and main results

In the last years there has been an increasing interest in the study of Riemannian
manifolds endowed with metrics satisfying some structural equations, possibly
involving curvature and some globally defined vector fields. These objects naturally
arise in several different frameworks; the most important and well studied examples
are Ricci solitons, see, e.g., [Hamilton 1988; Perelman 2002; Ni and Wallach
2008; Naber 2010; Cao and Chen 2012; Brendle 2013] and references therein.
Other examples are, for instance, Ricci almost solitons [Pigola et al. 2011], Yamabe
solitons [Daskalopoulos and Sesum 2013; Cao et al. 2012], Yamabe quasisolitons
[Huang and Li 2014; Wang 2013], conformal gradient solitons [Tashiro 1965;
Catino et al. 2012], quasi-Einstein manifolds [Kim and Kim 2003; Case et al. 2011;
Catino et al. 2013; He et al. 2012], and ρ-Einstein solitons [Catino and Mazzieri
2016; Catino et al. 2015].

In this paper we study Riemannian manifolds satisfying a general structural
condition that includes all the aforementioned examples as particular cases, in order
to hopefully provide a useful compendium that also gives a summary and unification
of classification problems thoroughly studied over the past years.
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Towards this aim we consider a smooth, connected Riemannian manifold (M,g)
of dimension m ≥ 3, and we denote by Ric and S the corresponding Ricci tensor
and scalar curvature, respectively (see the next section for the details). We denote
by Hess( f ) the Hessian of a function f ∈ C∞(M) and by LX g the Lie derivative
of the metric g in the direction of the vector field X . We introduce the following:

Definition 1.1. We say that (M,g) is an Einstein-type manifold (or, equivalently,
that (M,g) supports an Einstein-type structure) if there exist X ∈ X(M) and
λ ∈ C∞(M) such that

(1-1) α Ric+β
2

LX g+µX [
⊗ X [

= (ρS+ λ)g,

for some constants α, β, µ, ρ∈R, with (α, β, µ) 6= (0, 0, 0). If X=∇ f for some f ∈
C∞(M), we say that (M,g) is a gradient Einstein-type manifold. Accordingly (1-1)
becomes

(1-2) α Ric+β Hess( f )+µd f ⊗ d f = (ρS+ λ)g,

for some α, β, µ, ρ ∈ R.

Here X(M) denotes the set of smooth vector fields on M and X [ the 1-form
metrically dual to X .

We note that, from the definition, the term ρS could clearly be absorbed into
the function λ. However, we keep them separate in order to explicitly include and
highlight the case of ρ-Einstein solitons.

In the present paper we focus our analysis on the gradient case.
Leaving aside the case β=0 that will be addressed separately, see Proposition 5.7,

we say that the gradient Einstein-type manifold (M,g) is nondegenerate if β 6= 0
and β2

6= (m− 2)αµ; otherwise, that is if β 6= 0 and β2
= (m− 2)αµ, we have a

degenerate gradient Einstein-type manifold. Note that, in this last case, necessarily
α and µ are not null. The above terminology is justified by the next observation:

(1-3) (M,g) is conformally Einstein

m

(M,g) is a degenerate, gradient, Einstein-type manifold,

for some α, β, µ 6= 0.

For the proof and for the notion of conformally Einstein manifold see Section 2.
In case f is constant we say that the Einstein-type structure is trivial. Note that,

since m ≥ 3, in this case (M,g) is Einstein. However, the converse is generally
false; indeed, if (M,g) is Einstein, then for some constant 3∈R we have Ric=3g
and inserting into (1-2) we obtain

β Hess( f )+µd f ⊗ d f = (ρS+ λ−3α)g.
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Thus, if ρ 6= 0, (M,g) is a Yamabe quasisoliton and f is not necessarily constant
(see [Huang and Li 2014; Wang 2013]).

We will also deal with the case α = 0 separately, see Theorem 1.4. We explicitly
remark that, from the definition, α and β cannot both be equal to zero.

As we have already noted, the class of manifolds satisfying Definition 1.1 gives
rise to the previously quoted examples by specifying, in general not in a unique way,
the values of the parameters and possibly the function λ. In particular we have:

(1) Einstein manifolds: (α, β, µ, ρ)= (1, 0, 0, 1/m), λ= 0 (or, equivalently for
m ≥ 3, ρ = 0 and λ= S/m).

(2) Ricci solitons: (α, β, µ, ρ)= (1, 1, 0, 0), λ ∈ R.

(3) Ricci almost solitons: (α, β, µ, ρ)= (1, 1, 0, 0), λ ∈ C∞(M).

(4) Yamabe solitons: (α, β, µ, ρ)= (0, 1, 0, 1), λ ∈ R.

(5) Yamabe quasisolitons: (α, β, µ, ρ)= (0, 1,−1/k, 1), k ∈ R \ {0}, λ ∈ R.

(6) conformal gradient solitons: (α, β, µ, ρ)= (0, 1, 0, 0), λ ∈ C∞(M).

(7) quasi-Einstein manifolds: (α, β, µ, ρ)= (1, 1,−1/k, 0), λ ∈ R, k 6= 0.

(8) ρ-Einstein solitons: (α, β, µ, ρ)= (1, 1, 0, ρ), ρ 6= 0, λ ∈ R.

Of course one may wonder about the existence of Einstein-type structures. We
know from the literature positive answers to the various examples that we mentioned
earlier. For the general case we can consider three different necessary conditions.
The first two are the general integrability conditions (4-5) and (4-6) contained in
Theorem 4.4 below. The third comes from the simple observation that, in the case
µ 6=0, tracing (1-2) and defining u= e f µ/β , the existence of a gradient Einstein-type
structure on (M,g) yields the existence of a positive solution of

Lu =1u− µ

β2 [mλ+ (mρ−α)S]u = 0,

so that, by a well-known spectral result (see, for instance, [Fischer-Colbrie and
Schoen 1980; Moss and Piepenbrink 1978]), the operator L is stable, or, in other
words, the spectral radius of L , λL

1 (M), is nonnegative. Here we will not further
pursue this direction.

As it appears in Definition 1.1, the fact that (M,g) is an Einstein-type manifold
can be interpreted as a prescribed condition on the Ricci tensor of g (see, for
instance, the nice survey [Bourguignon 1981]), that is, on the “trace part” of the
Riemann tensor. Thus, it is reasonable to expect classification and rigidity results
for these structures only assuming further conditions on the traceless part of the
Riemann tensor, i.e., on the Weyl tensor. Indeed, most of the aforementioned papers
pursue this direction, for instance, assuming that (M,g) is locally conformally
flat or has harmonic Weyl tensor. In the spirit of the recent work of H.-D. Cao
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and Q. Chen [2013], we study the class of gradient Einstein-type manifolds with
vanishing Bach tensor along the integral curves of f . We note that this condition is
weaker than local conformal flatness (see Section 2).

It turns out that, as in the case of gradient Ricci solitons (see [Cao and Chen 2012;
2013; Cao et al. 2014]), the leading actor is a three tensor, D, that plays a funda-
mental role in relating the Einstein-type structure to the geometry of the underlying
manifold. D naturally appears when writing the first two integrability conditions
for the structure defining the differential system (1-2). Quite unexpectedly, the
constant ρ and the function λ have no influence on this relation.

Our main purpose is to give local characterizations of complete, noncompact,
nondegenerate gradient Einstein-type manifolds. Denoting with B the Bach tensor
of (M,g) (see Section 2), our first result is

Theorem 1.2. Let (M,g) be a complete, noncompact, nondegenerate, gradient,
Einstein-type manifold of dimension m ≥ 3. If B(∇ f, ·) = 0 and f is a proper
function, then, in a neighborhood of every regular level set of f , the manifold
(M,g) is locally a warped product with (m−1)-dimensional Einstein fibers.

In dimension four we improve this result, obtaining

Corollary 1.3. Let (M4, g) be a complete, noncompact, nondegenerate, gradient,
Einstein-type manifold of dimension four. If B(∇ f, ·)= 0 and f is a proper function,
then, in a neighborhood of every regular level set of f , the manifold (M,g) is locally
a warped product with three-dimensional fibers of constant curvature. In particular,
(M4, g) is locally conformally flat.

As we will show in Section 7, the properness assumption is satisfied by some
important subclasses of Einstein-type manifolds, under quite natural geometric
assumptions. As a consequence, in the case of gradient Ricci solitons, we recover
a local version of the results in [Cao and Chen 2013; Cao et al. 2014], while,
in the cases of ρ-Einstein solitons and Ricci almost solitons, we prove two new
classification theorems (see Theorem 7.1 and 7.2).

In the special case α= 0 (which includes Yamabe solitons, Yamabe quasisolitons
and conformal gradient solitons) we give a version of Theorem 1.2 in the following
local result that provides a very precise description of the metric in this situation.
Note that Theorem 1.4 and Corollary 1.5 also apply to the compact case.

Theorem 1.4. Let (M,g) be a complete, gradient, Einstein-type manifold of dimen-
sion m ≥ 3 with α = 0. Then, in a neighborhood of every regular level set of f ,
the manifold (M,g) is locally a warped product with (m−1)-dimensional fibers.
More precisely, every regular level set 6 of f admits a maximal open neighborhood
U ⊂ Mm on which f only depends on the signed distance r to the hypersurface 6.
In addition, the potential function f can be chosen in such a way that the metric g
takes the form on U
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g = dr ⊗ dr +
( f ′(r)

f ′(0)
eµ f (r)

)2
g6,

where g6 is the metric induced by g on 6. As a consequence, f has at most two
critical points on Mm and we have the following cases:

(1) If f has no critical points, then (M,g) is globally conformally equivalent to
a direct product I × N m−1 of some interval I = (t∗, t∗) ⊆ R with a (m−1)-
dimensional complete Riemannian manifold (N m−1, gN ). More precisely, the
metric takes the form

g = u2(t)
(
dt2
+ gN ),

where u : (t∗, t∗)→ R is some positive smooth function.

(2) If f has only one critical point O ∈ Mm , then (M,g) is globally conformally
equivalent to the interior of a Euclidean ball of radius t∗ ∈ (0,+∞]. More
precisely, on Mm

\ {O}, the metric takes the form

g = v2(t)
(
dt2
+ t2gSm−1)

,

where v : (0, t∗)→ R is some positive smooth function and Sm−1 denotes the
standard unit sphere of dimension m − 1. In particular (M,g) is complete,
noncompact, and rotationally symmetric.

(3) If the function f has two critical points N , S ∈ Mm , then (M,g) is globally
conformally equivalent to Sm . More precisely, on Mm

\ {N , S}, the metric
takes the form

g = w2(t)
(
dt2
+ sin2(t)gSm−1)

,

where w : (0, π)→ R is some smooth positive function. In particular (M,g)
is compact and rotationally symmetric.

In this case we can obtain a stronger global result just assuming nonnegativity
of the Ricci curvature, namely we have the following:

Corollary 1.5. Any nontrivial, complete, gradient, Einstein-type manifold of di-
mension m ≥ 3 with α = 0 and nonnegative Ricci curvature is either rotationally
symmetric or it is isometric to a Riemannian product R× N m−1, where N m−1 is an
(m−1)-dimensional Riemannian manifold with nonnegative Ricci curvature.

The proof of Theorem 1.4 follows immediately from [Catino et al. 2012] by
substituting u = eµ f in the equation. This result covers the cases of Yamabe
solitons [Cao et al. 2012] and conformal gradient solitons [Catino et al. 2012].
Concerning Yamabe quasisolitons, Corollary 1.5 improves the results in [Huang
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and Li 2014]. In particular, this shows that most of the assumptions in [Huang and
Li 2014, Theorem 1.1] are not necessary.

The paper is organized as follows. In Section 2 we recall some useful definitions
and properties of various geometric tensors and fix our conventions and notation. In
Section 3 we collect some useful commutation relations for covariant derivatives of
functions and tensors. In Section 4 we prove the two aforementioned integrability
conditions that follow directly from the Einstein-type structures. In Section 5 we
compute the squared norm of the tensor D in terms of D itself, the Bach tensor B
and the potential function f . In Section 6 we relate the tensor D to the geometry
of the regular level sets of the potential function f . Finally, in Section 7 we prove
Theorem 1.2 and Corollary 1.3, and we give some geometric applications in the spe-
cial cases of gradient Ricci solitons, ρ-Einstein solitons, and Ricci almost solitons.

2. Definitions and notation

In this section we recall some useful definitions and properties of various geometric
tensors and fix our conventions and notation.

To perform computations, we freely use the method of the moving frame referring
to a local orthonormal coframe of the m-dimensional Riemannian manifold (M,g).
We fix the index range 1 ≤ i, j, . . . ≤ m and recall that the Einstein summation
convention will be in force throughout.

We denote by R the Riemann curvature tensor (of type (1, 3)) associated to the
metric g, and by Ric and S the corresponding Ricci tensor and scalar curvature,
respectively. The components of the (0, 4)-versions of the Riemann tensor and of
the Weyl tensor W are related by the formula

(2-1) Ri jkt =Wi jkt +
1

m−2
(Rikδ j t − Ri tδ jk + R j tδik − R jkδi t)

−
S

(m−1)(m−2)
(δikδ j t − δi tδ jk)

and they satisfy the symmetry relations

Ri jkt =−R j ikt =−Ri j tk = Rkti j ,

Wi jkt =−W j ikt =−Wi j tk =Wkti j .

A computation shows that the Weyl tensor is also totally trace-free. The Schouten
tensor A is defined by

A= Ric− S
2(m−1)

g.

Tracing we have tr(A)= At t = ((m− 2))/(2(m− 1))S.

Remark 2.1. Some authors adopt a different convention and define the Schouten
tensor as A/(m− 2).
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According to this convention the (components of the) Ricci tensor and the scalar
curvature are respectively given by Ri j = Ri t j t = Rti t j and S= Rt t . We note that, in
terms of the Schouten tensor and of the Weyl tensor, the Riemann curvature tensor
can be expressed in the form

R =W+ 1
m−2

A ? g,

where ? is the Kulkarni–Nomizu product; in components,

Ri jkt =Wi jkt +
1

m−2
(Aikδ j t − Ai tδ jk + A j tδik − A jkδi t).

Next we introduce the Cotton tensor C as the obstruction to the commutativity
of the covariant derivative of the Schouten tensor, that is

(2-2) Ci jk = Ai j,k − Aik, j = Ri j,k − Rik, j −
1

2(m−1)
(Skδi j − S jδik).

We also recall that the Cotton tensor, for m≥ 4, can be defined as one of the possible
divergences of the Weyl tensor; precisely

(2-3) Ci jk =

(m−2
m−3

)
Wtik j,t =−

(m−2
m−3

)
Wti jk,t .

A computation shows that the two definitions (for m ≥ 4) coincide.

Remark 2.2. It is worthwhile to recall that the Cotton tensor is skew-symmetric
in the second and third indices (i.e., Ci jk = −Cik j ) and totally trace-free (i.e.,
Ci ik = Ciki = Ckii = 0).

We are now ready to define the Bach tensor B, originally introduced by Bach
[1921] in the study of conformal relativity. Its components are

(2-4) Bi j =
1

m−2
(C j ik,k + Rkt Wik j t),

that, in case m ≥ 4, by (2-3) can be alternatively written as

Bi j =
1

m−3
Wik j t,tk +

1
m−2

Rkt Wik j t .

Note that if (M,g) is either locally conformally flat (i.e., C = 0 if m = 3 or W = 0
if m ≥ 4) or Einstein, then B = 0. A computation shows that the Bach tensor is
symmetric (i.e., Bi j = B j i ) and evidently trace-free (i.e., Bi i = 0). As a consequence
we observe that we can write

Bi j =
1

m−2
(Ci jk,k + Rkl Wik jl).

We recall that
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Definition 2.3. The manifold (M,g) is conformally Einstein if its metric g can be
pointwise conformally deformed to an Einstein metric g̃.

We observe that, if g̃ = e2aϕg, for some ϕ ∈ C∞(M) and some constant a ∈ R,
then its Ricci tensor R̃ic is related to that of g by the well-known formula (see
[Besse 2008])

(2-5) R̃ic=Ric−(m−2)a Hess(ϕ)+(m−2)a2dϕ⊗ϕ−[(m−2)a2
|∇ϕ|2+a1ϕ]g.

Here the various operators (for their precise definitions see Section 3) are defined
with respect to the metric g.

Now we can easily prove statement (1-3); indeed, suppose that β 6= 0 and
β2
= (m − 2)αµ, that is, the Einstein-type structure is degenerate. Tracing (1-2)

we obtain

(2-6) 1
α
(ρS+ λ)= 1

m
(
S+ β

α
1 f + µ

α
|∇ f |2

)
.

Choose ϕ = f and a =−β/((m− 2)α) in (2-5) to obtain
(2-7)

R̃ic= 1
α

[
β2

(m−2)α
−µ

]
d f ⊗ d f + 1

α
(ρS+ λ)g+ β

(m−2)α

(
1 f − β

α
|∇ f |2

)
g.

Inserting (2-6) into (2-7) and using the fact that the Einstein-type structure is
degenerate yields

R̃ic= 1
α

[
β2

(m−2)α
−µ

]
d f ⊗ d f + 1

m

[
S+ 2β

α

m−1
m−2

1 f − µ
α
(m− 1)|∇ f |2

]
g.

Hence, since β2
= (m− 2)αµ,

R̃ic= 1
m

[
S+ 2β

α

m−1
m−2

1 f − µ
α
(m− 1)|∇ f |2

]
g,

that is, g̃= e−(2β)/((m−2)α) f g is an Einstein metric (this was also obtained in [Besse
2008, Theorem 1.159]).

Conversely suppose that g̃= e2a f g, a 6= 0, is an Einstein metric, so that R̃ic=3g̃,
for some 3 ∈ R. From (2-5)

(2-8) Ric−(m− 2)a Hess( f )+ (m− 2)a2d f ⊗ d f
=
[
3e2a f

+ (m− 2)a2
|∇ f |2+ a1 f

]
g.

Tracing we get

S
m−1

=
[
(m− 2)a2

|∇ f |2+ a1 f
]
+ a1 f + m

m−1
3e2a f .

Thus, inserting into (2-8),

Ric−(m− 2)a Hess( f )+ (m− 2)a2d f ⊗ d f =
( S

m−1
− a1 f − 3

m−1
e2a f

)
g.
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We choose α = 1, β = −(m − 2)a, µ = (m − 2)a2, ρ = 1/(m − 1), and λ(x) =
−a1 f −3/(m− 1)e2a f . We note that β 6= 0 and

β2
= (m− 2)2a2

= (m− 2)αµ,

so this choice of α, β, µ, ρ, and λ yields a degenerate Einstein-type structure.
To conclude we note that the equivalence of degenerate gradient Ricci solitons

and conformally Einstein metrics is well-known in conformal geometry (see [Catino
2012; Jauregui and Wylie 2015]).

3. Some basics on moving frames and commutation rules

In this section we collect some useful commutation relations for covariant derivatives
of functions and tensors that will be used in the rest of the paper. All of these
formulas are well-known to experts.

Let (M, g) be a Riemannian manifold of dimension m ≥ 3. For the sake of
completeness (see [Alías et al. 2016] for details) we recall that having fixed a (local)
orthonormal coframe {θ i

}, with dual frame {ei }, the corresponding Levi-Civita
connection forms {θ i

j } are the 1-forms uniquely defined by the requirements

dθ i
=−θ i

j ∧ θ
j (first structure equations), and θ i

j + θ
j

i = 0.

The curvature forms {2i
j } associated to the connection are the 2-forms defined via

the second structure equations

dθ i
j =−θ

i
k ∧ θ

k
j +2

i
j .

They are skew-symmetric (i.e., 2i
j +2

j
i = 0) and they can be written as

2i
j =

1
2 Ri

jktθ
k
∧ θ t
=

∑
k<t

Ri
jktθ

k
∧ θ t ,

where Ri
jkt are precisely the coefficients of the ((1, 3)-version of the) Riemann

curvature tensor.
The covariant derivative of a vector field X ∈ X(M) is defined by

∇X = (d X i
+ X jθ i

j )⊗ ei = X i
kθ

k
⊗ ei ,

while the covariant derivative of a 1-form ω is defined by

∇ω = (dωi −wjθ
j

i )⊗ θ
i
= ωikθ

k
⊗ θ i .

The divergence of the vector field X ∈ X(M) is the trace of the endomorphism
(∇X)] : T M→ T M , that is,

div X = tr(∇X)] = g(∇ei X, ei )= X i
i .
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For a smooth function f we can write

d f = fiθ
i ,

for some smooth coefficients fi ∈ C∞(M). The Hessian of f , Hess( f ), is the
(0, 2)-tensor defined as

Hess( f )=∇d f = fi jθ
j
⊗ θ i ,

with
fi jθ

j
= d fi − ftθ

t
i .

Note that (see Lemma 3.1 below)

fi j = f j i .

The Laplacian of f , 1 f , is the trace of the Hessian, in other words

1 f = tr(Hess( f ))= fi i .

The moving frame formalism reveals extremely useful in determining the commu-
tation rules of geometric tensors. Some of them will be essential in our computations.

Lemma 3.1. Let f ∈ C3(M). The following equalities hold.

fi j = f j i .(3-1)

fi jk = f j ik .(3-2)

fi jk = fik j + ft Rti jk .(3-3)

fi jk = fik j + ft Wti jk +
1

m−2
( ft Rt jδik − ft Rtkδi j + f j Rik − fk Ri j )(3-4)

−
S

(m−1)(m−2)
( f jδik − fkδi j ).

fi jk = fik j + ft Wti jk +
1

m−2
( ft At jδik − ft Atkδi j + f j Aik − fk Ai j ).(3-5)

In particular, tracing (3-3), we deduce

fi t t = ft ti + ft Rti .(3-6)

For the Riemann curvature tensor we recall the classical Bianchi identities that
in our formalism become

Ri jkt + Ri t jk + Rikt j = 0 (first Bianchi identity),

Ri jkt,l + Ri jlk,t + Ri j tl,k = 0 (second Bianchi identity).

For the derivatives of the curvature we have the well known formulas
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Lemma 3.2.

Ri jkt,lr − Ri jkt,rl = Rs jkt Rsilr + Riskt Rs jlr + Ri jst Rsklr + Ri jks Rstlr ,

Ri j,k − Rik, j =−Rti jk,t = Rtik j,t ,

Ri j,kt − Ri j,tk = Rlikt Rl j + Rl jkt Rli .

The first Bianchi identities imply that

(3-7) Ci jk +C jki +Cki j = 0.

From the definition of the Cotton tensor we also deduce that

Ci jk,t = Ai j,kt − Aik, j t = Ri j,kt − Rik, j t −
1

2(m−1)
(Sktδi j − S j tδik).

On the other hand, by Lemma 3.2 and Schur’s identity Si =
1
2 Rik,k ,

Rik, jk = Rik,k j + Rti jk Rtk + Rtk jk Rti =
1
2

Si j − Rtk Ri t jk + Ri t Rt j .

This enables us to obtain the following expression for the divergence of the Cotton
tensor:

Ci jk,k = Ri j,kk −
m−2

2(m−1)
Si j + Rtk Ri t jk − Ri t Rt j −

1
2(m−1)

1Sδi j .

The previous relation also shows that

(3-8) Ci jk,k = C j ik,k,

thus confirming the symmetry of the Bach tensor, see (2-4).
Taking the covariant derivative of (3-7) and using (3-8) we also deduce

Cki j,k = 0.

4. The tensor D and the integrability conditions

The main result of this section concerns two natural integrability conditions that
follow directly from the Einstein-type structure; as in the case of Ricci solitons
and Yamabe (quasi-)solitons, there is a natural tensor that turns out to play a
fundamental role in relating the Einstein-type structure to the geometry of the
underlying manifold. Quite surprisingly, as it is shown in Theorem 4.4, the presence
of the constant ρ and of the function λ seems to be completely irrelevant.

Let (M,g) be gradient Einstein-type manifold of dimension m≥3. Equation (1-2)
in components reads as

(4-1) αRi j +β fi j +µ fi f j = (ρS+ λ)δi j .
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Tracing the previous relation we immediately deduce that

(4-2) (α−mρ)S+β1 f +µ|∇ f |2 = mλ.

Definition 4.1. We define the tensor D by its components

(4-3) Di jk =
1

m−2
( fk Ri j − f j Rik)+

1
(m−1)(m−2)

ft(Rtkδi j − Rt jδik)

−
S

(m−1)(m−2)
( fkδi j − f jδik).

Note that D is skew-symmetric in the second and third indices (i.e., Di jk=−Dik j )
and totally trace-free (i.e., Di ik = Diki = Dkii = 0).

Remark 4.2. We explicitly note that our conventions for the Cotton tensor and for
the tensor D differ from those in [Cao and Chen 2013].

Lemma 4.3. Let (M,g) be a gradient Einstein-type manifold of dimension m ≥ 3.
The tensor D can be written as

(4-4) Di jk =
β

α

[
1

m−2
( f j fik − fk fi j )+

1
(m−1)(m−2)

ft( ft jδik − ftkδi j )

−
1 f

(m−1)(m−2)
( f jδik − fkδi j )

]
.

The proof is just a simple computation, using the definitions of the tensors
involved, (4-1) and (4-2).

The following theorem should be compared with [Cao and Chen 2013, Lemma 3.1
and Equation (4.1)], [Cao et al. 2014, Lemma 2.4 and Equation (2.12)] and [Huang
and Li 2014, Proposition 2.2]. This result highlights the geometric relevance of
D in this general situation and shows that, even in this more general framework,
similar structural equations hold.

Theorem 4.4. Let (M,g) be a gradient Einstein-type manifold with β 6= 0 of
dimension m ≥ 3. Then the following integrability conditions hold

αCi jk +β ft Wti jk =

[
β −

(m−2)αµ
β

]
Di jk,(4-5)

αBi j =
1

m−2

{[
β −

(m−2)αµ
β

]
Di jk,k +β

(m−3
m−2

)
ftC j i t −µ ft fk Wi t jk

}
.(4-6)

Proof. We begin with the covariant derivative of (4-1) to get

αRi j,k +β fi j,k +µ( fik f j + fi f jk)= (ρSk + λk)δi j .

Skew-symmetrizing with respect to j and k and using (3-3) we obtain

(4-7) α(Ri j,k − Rik, j )+β ft Rti jk +µ( fik f j − fi j fk)

= ρ(Skδi j − Sjδik)+ (λkδi j − λjδik).
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To get rid of the two terms on the right-hand side of (4-7) we proceed as follows.
First we trace the equation with respect to i and j and we use Schur’s identity
Sk = 2Rtk,t to deduce

(4-8) [α− 2ρ(m− 1)]Sk = 2β ft Rtk + 2(m− 1)λk − 2µ( ft ftk −1 f fk).

Second, from equations (4-1) and (4-2) we respectively have

(4-9) ftk =
1
β

[
(ρS+ λ)δtk −αRtk −µ ft fk

]
bu

and

1 f = 1
β

[
(mρ−α)S+mλ−µ|∇ f |2

]
.

Inserting the two previous relations into (4-8) and simplifying we deduce the
following important equation

(4-10) [α− 2ρ(m− 1)]Sk = 2
(
β +

αµ

β

)
ft Rtk + 2(m− 1)λk

−
2µ
β
[α− ρ(m− 1)]S fk +

2µ
β
(m− 1)λ fk .

From (2-1) and (4-4) we deduce that

(4-11) ft Rti jk = ft Wti jk − Di jk −
1

m−1
( ft Rtkδi j − ft Rt jδik).

Inserting now (4-11), (2-2), and (4-10) into (4-7) and simplifying we get (4-5).
Taking the divergence of (4-5) we obtain

αCi jk,k −β ftk Wi t jk −β
(m−3

m−2

)
ftC j i t =

[
β −

(m−2)αµ
β

]
Di jk,k .

Using the definition of the Bach tensor (2-4), (4-9), and the symmetries of W we
immediately deduce (4-6). �

Remark 4.5. Equation (4-10) is the analogue of the fundamental relation Sk =

2 ft Rtk , valid for every gradient Ricci soliton.

Remark 4.6. In the case β = 0 (and thus α 6= 0), by direct calculations, using (2-2),
(4-3), and (4-1), one can show that D=0 and equations (4-5) and (4-6) take the form

αCi jk =−µ( f j fik − fk fi j )−
µ

m−1
ft( ft jδik − ftkδi j )+

µ1 f
m−1

( f jδik − fkδi j ),

αBi j =
1

m−2
{
αCi jk,k −µ ft fk Wi t jk

}
.
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5. Vanishing of the tensor D

In this section we compute the squared norm of the tensor D in terms of D itself,
the Bach tensor B, and the potential function f . Moreover, under the assumption
of Theorem 1.2, we prove the vanishing of D. We begin with

Lemma 5.1. Let (M,g) be a nondegenerate gradient Einstein-type manifold of
dimension m ≥ 3. If α 6= 0,

(5-1)
(m−2

2

)[
β −

(m−2)αµ
β

]
|D|2

=−β(m− 2) fi f j Bi j +
β

α

[
β −

(m−2)αµ
β

]
( fi f j Di jk)k,

while if α = 0

(5-2)
(m−2

2

)
|D|2 =−(m− 2) fi f j Bi j + ( fi f j Ci jk)k .

Proof. We observe that, since D is totally trace-free and Di jk =−Dik j ,

|D|2 = Di jk Di jk =
1

m−2
Di jk( fk Ri j − f j Rik)=

1
m−2

( fk Ri j Di jk + f j Rik Dik j ),

so that

|D|2 = 2
m−2

fk Ri j Di jk .

The nondegeneracy condition β − (m − 2)αµ/β 6= 0 implies that, using (4-5)
and the definition of the Bach tensor, we can write(m−2

2

)[
β−

(m−2)αµ
β

]
|D|2 = fk Ri j (αCi jk +β ft Wti jk)

= α fk Ri j Ci jk −β fi f j Rtk Wi t jk

= α fk Ri j Ci jk −β(m− 2) fi f j Bi j +β fi f j Ci jk,k .

By the symmetries of the Cotton tensor we also have

fi f j Ci jk,k = fi ( f j Ci jk)k − fi f jkCi jk

= ( fi f j Ci jk)k − fik f j Ci jk

= ( fi f j Ci jk)k + fi j fkCi jk .

Therefore we obtain

(5-3)
(m−2

2

)[
β −

(m−2)αµ
β

]
|D|2

= α fk Ri j Ci jk −β(m− 2) fi f j Bi j +β( fi f j Ci jk)k +β fi j fkCi jk .
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If α = 0, using (4-1) in (5-3) we immediately get(m−2
2

)
|D|2 =−(m− 2) fi f j Bi j + ( fi f j Ci jk)k,

that is (5-2).
If α 6= 0, using equations (4-1) and (4-5) in (5-3) and simplifying we deduce

(5-4)
(m−2

2

)[
β −

(m−2)αµ
β

]
|D|2

=−β(m− 2) fi f j Bi j +
β

α

[
β −

(m−2)αµ
β

]
( fi f j Di jk)k,

that is, (5-1). �

Remark 5.2. In the case α 6= 0, (5-1) can be obtained in a direct way. One takes the
second integrability condition (4-6), multiplies both members by fi f j and simplifies,
using the symmetries of the tensors involved and (4-5).

Theorem 5.3. Let (M,g) be a complete nondegenerate gradient Einstein-type
manifold of dimension m ≥ 3. If B(∇ f, ·)= 0 and f is proper, then D = 0.

Proof. We define the vector field Y = Y (α) of components

(5-5) Yk =

{
(β/α) fi f j Di jk if α 6= 0,
fi f j Ci jk if α = 0.

By the symmetries of D and C we immediately have

(5-6) g(Y,∇ f )= 0.

If B(∇ f, ·)= 0 and α 6= 0, from (5-1) we obtain(m−2
2

)
|D|2 = β

α
( fi f j Di jk)k,

while if α = 0 from (5-2) we deduce(m−2
2

)
|D|2 = ( fi f j Ci jk)k .

In both cases

(5-7)
(m−2

2

)
|D|2 = div Y.

Now let c be a regular value of f and �c and 6c be, respectively, the corre-
sponding sublevel set and level hypersurface, i.e., �c = {x ∈ M : f (x) ≤ c} and
6c = {x ∈M : f (x)= c}. Integrating (5-7) on �c and using the divergence theorem
we get ∫

�c

(m−2
2

)
|D|2 =

∫
�c

div Y =
∫
6c

g(Y, ν),
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where ν is the unit normal to 6c. Since ν is in the direction of ∇ f , using (5-6) and
letting c→+∞ we immediately deduce∫

M

(m−2
2

)
|D|2 = 0,

which implies D = 0 on M . �

Remark 5.4. The validity of Theorem 5.3 is based on that of the divergence theorem
in this situation. Thus, instead of using properness of f , we can use [Gol′dshtein
and Troyanov 1999, Theorem A] to obtain the above conclusion, that is D ≡ 0,
under the following assumptions; for some p > 1, M is p-parabolic and the vector
field Y ∈ Lq(M), where q is the conjugate exponent of p. We note that a sufficient
condition for p-parabolicity is

1

vol(∂Br )
1

p−1
6∈ L1(+∞)

(see, e.g., [Troyanov 1999]), and, according to (5-5), Y ∈ Lq(M) if for some pair
of conjugate exponents P, P ′ we have

|∇ f | ∈ L2Pq(M) and |D| ∈ L P ′q(M) if α 6= 0

or
|∇ f | ∈ L2Pq(M) and |C | ∈ L P ′q(M) if α = 0.

Remark 5.5. A simple computation using the definition of the tensor D gives

fi Di jk =
1

m−1
( ft fk Rt j − ft f j Rtk),

and then

fi f j Di jk =
1

m−1
(Ric(∇ f,∇ f ) fk − |∇ f |2 ft Rtk).

This shows that, in the case α 6= 0, the vector field Y defined in (5-5) can be
expressed in the remarkable form

Y = β

α(m−1)
[
Ric(∇ f,∇ f )∇ f − |∇ f |2

(
Ric(∇ f, ·)]

)]
,

where ] denotes the usual musical isomorphism.
Moreover, in the special case of a gradient Ricci soliton (M, g, f, λ), using the

fundamental relation Sk = 2 ft Rtk , the vector field Y can also be written in the
equivalent form

Y = 1
2(m−1)

[
g(∇S,∇ f )∇ f − |∇ f |2∇S

]
.
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We also observe that

g(Y,∇ f )= 0, g(Y,∇S)= 1
2(m−1)

[
g(∇S,∇ f )2− |∇S|2|∇ f |2

]
≤ 0,

and that

|Y |2 = 1
4(m−1)2

|∇ f |2
[
|∇S|2|∇ f |2− g(∇S,∇ f )2

]
=−

1
2(m−1)

|∇ f |2g(Y,∇S).

Remark 5.6. In case β = 0 and µ 6= 0, using Remark 4.6 and arguing as in
Lemma 5.1, one can obtain the following identity

α

2µ
|C |2 = (m− 2) fi f j Bi j − ( fi f j Ci jk)k .

Then, following the proof of Theorem 5.3, we obtain

Proposition 5.7. Let (M,g) be a complete nondegenerate gradient Einstein-type
manifold of dimension m ≥ 3 and with β = 0. If B(∇ f, ·) = 0 and f is proper,
then C = 0.

6. D and the geometry of the level sets of f

In this section we relate the tensor D to the geometry of the regular level sets of the
potential function f . Our first result highlights, in the case α 6= 0, the link between
the squared norm of the tensor D and the second fundamental form of the level sets
of f . This should be compared with [Cao and Chen 2013, Proposition 3.1] and
[Cao and Chen 2012, Lemma 4.1]. For the case α = 0 we refer to [Huang and Li
2014, Proposition 2.3].

From now on, we extend our index convention assuming 1≤ i, j, k, . . .≤m and
1≤ a, b, c, . . .≤ m− 1.

Proposition 6.1. Let (M,g) be a complete, m-dimensional, gradient, Einstein-
type manifold with α, β 6= 0 and m ≥ 3. Let c be a regular value of f and let
6c = {x ∈ M | f (x) = c} be the corresponding level hypersurface. For p ∈ 6c

choose an orthonormal frame such that {e1, . . . , em−1} are tangent to 6c and
em =∇ f/|∇ f | (i.e., {e1, . . . , em−1, em} is a local first order frame along f ). Then,
in p, the squared norm of the tensor D can be written as

(6-1) |D|2 =
(
β

α

)2 2|∇ f |4

(m−2)2
|hab− hδab|

2
+

2|∇ f |2

(m−1)(m−2)
Ram Ram,

where hab are the coefficients of the second fundamental tensor and h is the mean
curvature of 6c.

Remark 6.2. Note that |hab− hδab|
2 is the squared norm of the traceless second

fundamental tensor 8 of components 8ab = hab− hδab.
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Proof. First of all, we observe that in the chosen frame we have

d f = faθ
a
+ fmθ

m
= |∇ f |θm,

since fa = 0, a = 1, . . . ,m− 1.
The second fundamental tensor II of the immersion 6c ↪→ M is

II = habθ
b
⊗ θa
⊗ ν,

where the coefficients hab = hba are defined as

∇em =∇ν = θ
a
m ⊗ ea =−θ

m
a ⊗ ea =−habθ

b
⊗ ea

(see also [Alías et al. 2016]), so that

hab = g(II (ea, eb), ν)=−g(∇eaν, eb)=−(∇ν)
[(ea, eb).

In the present setting we have

∇ν =
1
|∇ f |
∇(∇ f )+∇

( 1
|∇ f |

)
⊗∇ f

and
(∇ν)[ =

1
|∇ f |

Hess( f )+ d
( 1
|∇ f |

)
⊗ d f.

Thus, using (4-1), we deduce

(6-2) hab =−
1
|∇ f |

fab =
1

β|∇ f |
[αRab− (ρS+ λ)δab].

The mean curvature h is defined as h = haa/(m− 1). Tracing (6-2) we get

(6-3) h = 1
β|∇ f |

[(
α

m−1
− ρ

)
S− α

m−1
Rmm − λ

]
.

Now we compute the squared norm of the traceless second fundamental tensor 8.

(6-4) |hab− hδab|
2
= |hab|

2
− 2hhaa + (m− 1)h2

= |hab|
2
− (m− 1)h2

=
1

β2|∇ f |2
{[
αRab− (ρS+ λ)δab

]2
− (m− 1)

[(
α

m−1
− ρ

)
S− α

m−1
Rmm − λ

]2}
=

α2

β2|∇ f |2
{
|Ric|2− 2Ram Ram − (Rmm)

2

−
1

m−1
[
S2
− 2S Rmm + (Rmm)

2]}
=

α2

β2|∇ f |2
[
|Ric|2− 2Ram Ram −

m
m−1

(Rmm)
2

−
1

m−1
S2
+

2
m−1

S Rmm

]
.
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On the other hand, from the definition of D we have

(6-5) |D|2 =
( fk Ri j− f j Rik)

2

(m−2)2

+
( ft Rtkδi j− ft Rt jδik)

2

(m−1)2(m−2)2
+

S2

(m−1)2(m−2)2
( fkδi j − f jδik)

2

+
2

(m−1)(m−2)2
( fk Ri j − f j Rik)( ft Rtkδi j − ft Rt j )

−
2S

(m−1)(m−2)2
( fk Ri j − f j Rik)( fkδi j − f jδik)

−
2S

(m−1)2(m−2)2
( ft Rtkδi j − ft Rt jδik)( fkδi j − f jδik)

=
2|∇ f |2

(m−2)2
(
|Ric|2− Ram Ram − Rmm Rmm

)
+

2|∇ f |2

(m−1)(m−2)2
(Ram Ram + Rmm Rmm)

+
2S2

(m−1)(m−2)2
|∇ f |2

+
4|∇ f |2

(m−1)(m−2)2
(S Rmm − (Rmm)

2
− Ram Ram)

−
4S|∇ f |2

(m−1)(m−2)2
(S− Rmm)−

4S|∇ f |2

(m−1)(m−2)2
Rmm .

Simplifying, rearranging, and comparing (6-4) and (6-5) we arrive at

(m−2)2

2|∇ f |2
|D|2 =

(
β

α

)2
|∇ f |2|hab− hδab|

2
+

(m−2
m−1

)
Ram Ram,

which easily implies (6-1). �

Proposition 6.1 is one of the key ingredients in the proof of the following theorem,
which generalizes [Cao and Chen 2013, Proposition 3.2 ] (compare also with [Huang
and Li 2014, Proposition 2.4]). Our proof is similar to those in [Cao and Chen
2013; Huang and Li 2014], but the presence of µ and the nonconstancy of λ require
extra care, in particular in showing that S is constant on 6c.

Theorem 6.3. Let (M,g) be a complete, m-dimensional (m≥ 3), gradient, Einstein-
type manifold with α, β 6= 0 and tensor D ≡ 0. Let c be a regular value of f and let
6c = {x ∈ M | f (x)= c} be the corresponding level hypersurface. Choose any local
orthonormal frame such that {e1, . . . , em−1} are tangent to 6c and em =∇ f/|∇ f |
(i.e., {e1, . . . , em−1, em} is a first order frame along f ). Then

(1) |∇ f |2 is constant on 6c;

(2) Ram = Rma = 0 for every a = 1, . . . ,m− 1 and em is an eigenvector of Ric;

(3) 6c is totally umbilical;
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(4) the mean curvature h is constant on 6c;

(5) the scalar curvature S and λ are constant on 6c;

(6) 6c is Einstein with respect to the induced metric;

(7) on 6c the (components of the) Ricci tensor of M can be written as Rab =

(S −31)/(m − 1)δab, where 31 ∈ R is an eigenvalue of multiplicity 1 or m
(and in this latter case S=m31); in either case em is an eigenvector associated
to 31.

Proof. If D = 0, from Proposition 6.1 we immediately deduce that

(6-6) hab− hδab = 0,

that is, property (3), and

Ram = 0, (a = 1, . . . ,m− 1).

From (6-6) a simple computation using (6-2) and (6-3) shows that

(6-7) Rab =
S−Rmm

m−1
δab,

which also implies

Ric(ν, ν)=
Ri j fi f j

|∇ f |2
= Rmm = Rmm |ν|

2.

This complete the proof of (2). To prove (1) we take the covariant derivative of
β|∇ f |2 and use (4-1).

β(|∇ f |2)k = 2β fi fik

= 2
[
(ρS+ λ−µ|∇ f |2) fk −α ft Rtk

]
= 2

[
(ρS+ λ−µ|∇ f |2) fk −α fc Rck −α|∇ f |Rmk

]
.

Evaluating the previous relation at k = a and using property (2) we immediately get(
|∇ f |2

)
a = 0,

that is (1). To prove (4) we start from the Codazzi equations, that in our setting read

−Rmabc = hab,c− hac,b.

Tracing with respect to a and c we get

−Rmaba =−Rmkbk + Rmmbm = hab,a − haa,b,

that is, using (2),

(6-8) 0=−Rmb = hab,a − haa,b.
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On the other hand, from (3) we have

hab,a = hb and haa,b = (m− 1)hb,

so that (6-8) immediately implies

0= (m− 2)hb, for b = 1, . . . ,m− 1,

that is (4). To show the validity of (5) we first observe that, evaluating (4-10) at
k = a and using (2), we deduce

[α− 2ρ(m− 1)]Sa − 2(m− 1)λa = 0,

which implies

(6-9) [α− 2ρ(m− 1)]S− 2(m− 1)λ is constant on 6c.

From (6-3), the constancy of h and of |∇ f | on 6c also give that

(6-10) [α− ρ(m− 1)]S−αRmm − (m− 1)λ is constant on 6c.

Combining (6-9) and (6-10) we arrive at

(6-11) S− 2Rmm is constant on 6c.

Now we evaluate (4-10) at k = m, we use (2) and rearrange to deduce

[α−2ρ(m−1)]Sm

= 2
(
β+

αµ

β

)
|∇ f |Rmm+2(m−1)λm−

2µ|∇ f |
β
{[α−ρ(m−1)]S−(m−1)λ}

= 2β|∇ f |Rmm+2(m−1)λm−
2µ|∇ f |
β
{[α−ρ(m−1)]S−αRmm−(m−1)λ}.

Since by (1) and (6-10) the quantity (2µ|∇ f |)/β{[α−ρ(m−1)]S−αRmm−(m−1)λ}
is constant on 6c we infer that

(6-12) [α− 2ρ(m− 1)]Sm − 2β|∇ f |Rmm − 2(m− 1)λm is constant on 6c.

Now we take the covariant derivative of (6-12) and evaluate at k = a to obtain

(6-13) [α− 2ρ(m− 1)]Sma − 2β|∇ f |Rmm,a − 2(m− 1)λma = 0 on 6c.

But Sma = Sam and λma = λam , thus (6-13) can be written as

{[α− 2ρ(m− 1)]S− 2(m− 1)λ}am = 2β|∇ f |Rmm,a on 6c,

which implies, by (6-9), that

Rmm is constant on 6c.
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The previous relation, (6-11), and (6-9) show that S and λ are constant on 6c, that
is (5). To prove (6) we start from the Gauss equations

6c Rabcd = Rabcd + hachbd − hadhbc,

which, by property (3), can be rewritten as

(6-14) 6c Rabcd = Rabcd + h2(δacδbd − δadδbc).

Tracing (6-14) with respect to b and d gives

(6-15) 6c Rac = Rac− Ramcm + (m− 2)h2δac.

Tracing again we deduce that

(6-16) 6c S = S− 2Rmm + (m− 1)(m− 2)h2 is constant on 6c.

Now a simple computation using decomposition (2-1) of the Riemann tensor, (6-7)
and the fact that Wamcm = 0 (see Proposition 6.4) shows that

(6-17) Ramcm =
1

m−1
Rmmδac.

Next, inserting (6-7) and (6-17) into (6-15), we get

6c Rac =

[ S−2Rmm
m−1

+ (m− 2)h2
]
δac,

which shows the validity of (6). Now (7) is an easy consequence of the other
properties. �

The next two results are analogues of, respectively, Lemmas 4.2 and 4.3 of [Cao
and Chen 2013].

Proposition 6.4. Let (M,g) be a complete, noncompact, m-dimensional (m ≥ 3),
nondegenerate, Einstein-type manifold with α 6= 0. If D = 0 then C = 0, unless f
is locally constant.

Proof. First of all, by analyticity, it is sufficient to prove the result where {∇ f 6= 0}.
We choose a local first order frame along f (so that fa = 0, a = 1, . . . ,m− 1 and
fm = |∇ f |). The vanishing of D implies, by the first integrability condition (4-5),
that

αCi jk +β ft Wti jk = 0,

which implies, since α 6= 0,

(6-18) Ci jk =−
β

α
ft Wti jk

and consequently

fi Ci jk = fmCmjk = |∇ f |Cmjk = 0, ( j, k = 1, . . . ,m).



ON THE GEOMETRY OF GRADIENT EINSTEIN-TYPE MANIFOLDS 61

Thus
Cmjk = 0

at all points where |∇ f | 6= 0. Using (3) and (4) of Theorem 6.3 we have

hab,c = 0,

and from the Codazzi equations we get

−Rmabc = hab,c− hac,b = 0.

Since Ram = 0 by (2) of Theorem 6.3, from the decomposition (2-1) we easily
deduce

Wambc = 0,

which implies by (6-18) that
Cabc = 0.

By the symmetries of C , to conclude it only remains to show that Cabm = 0=Camb.
First we observe that Ram = 0 implies, by the definition of covariant derivative,

0= d Ram

= Rkmθ
k
a + Rakθ

k
m + Ram,kθ

k

= Rbmθ
b
a + Rmmθ

m
a + Rabθ

b
m + Ramθ

m
m + Ram,kθ

k

= Rmmθ
m
a + Rabθ

b
m + Ram,kθ

k,

so that, using (6-7),

Ram,kθ
k
= Ram,bθ

b
+ Ram,mθ

m
= Rabθ

m
b − Rmmθ

m
a(6-19)

=

( S−Rmm
m−1

δab

)
θm

b − Rmmθ
m
a

=

( S−m Rmm
m−1

)
θm

a .

Now we want to show that Ram,m = 0. To see that we first evaluate (4-1) for i = a
and j = m, obtaining fam = 0; then we take the covariant derivative of the same
equation

αRi j,k +β fi jk +µ( fik f j + fi f jk)= (ρSk + λk)δi j ,

which for i = k = m and j = a gives (using fam = 0)

αRam,m =−β fmam;

but
fmam = fmma + fi Rimam = fmma,

while (4-2) and Theorem 6.3 tell us that the (globally defined) quantity 1 f is
constant on 6c, so that

(1 f )a = 0.
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On the other hand, from (4-1) and (6-7) we deduce

(6-20) β fab =−
1

m−1
{[α− ρ(m− 1)]S−αRmm − (m− 1)λ}δab

which implies, by tracing, that

β(1 f − fmm) is constant on 6c.

In particular
fmam = fmma = (1 f )a = 0,

and thus
Ram,m = 0.

Getting back to (6-19) we now have

Ram,bθ
b
=

( S−m Rmm
m−1

)
θm

a ,

and thus

Ram,b =

( S−m Rmm
m−1

)
θm

a (eb)(6-21)

=
1
|∇ f |

(m Rmm−S
m−1

)
fab.

Schur’s identity implies

(6-22) Sm = 2Rim,i = 2Ram,a + 2Rmm,m .

From the definition of C we have, using (6-7) and (6-21),

Cabm = Rab,m − Ram,b−
1

2(m−1)
Smδab(6-23)

=
Sm−Rmm,m

m−1
δab+

1
|∇ f |

(s−m Rmm
m−1

)
fab−

1
2(m−1)

Smδab

=
1

2(m−1)
Smδab−

1
m−1

Rmm,mδab+
1
|∇ f |

( S−m Rmm
m−1

)
fab.

Using (6-22), (6-21), and (6-20) in (6-23) we arrive at

Cabm =
1

m−1
Rcm,cδab+

1
|∇ f |

( S−m Rmm
m−1

)
fab

=−
1

m−1
1
|∇ f |

(S−m Rmm,m) fab+
1
|∇ f |

( S−m Rmm
m−1

)
fab

= 0,

concluding the proof. �

In dimension four, we can prove the following:

Corollary 6.5. Let (M4, g) be a complete, noncompact, nondegenerate, Einstein-
type manifold of dimension four with α 6= 0. If D = 0 then W = 0, unless f is
locally constant.
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Proof. From Proposition 6.4, we know that Ci jk = 0. Hence, from (4-5), we deduce
ft Wti jk = 0 for any i, j, k = 1, . . . , 4. For any p ∈ M4 such that ∇ f (p) 6= 0, we
choose an orthonormal frame {e1, . . . , e4} such that e4 =∇ f/|∇ f |, thus we have

W4i jk(p)= 0, for i, j, k = 1, . . . 4.

It remains to show that Wabcd(p)= 0 for any a, b, c, d = 1, 2, 3. This follows from
the symmetries and the traceless property of the Weyl tensor (see, for instance, [Cao
and Chen 2013, Lemma 4.3]). �

7. Proof of the main theorems and some geometric applications

In this last section we first prove Theorem 1.2 and Corollary 1.3. Then, we give some
geometric applications in the special cases of gradient Ricci solitons, ρ-Einstein
solitons, and Ricci almost solitons. We begin with

Proof of Theorem 1.2 and Corollary 1.3. From Theorem 5.3 we know that the tensor
D has to vanish on M . Let 6 be a regular level set of the function f :Mm

→R, i.e.,
|∇ f | 6= 0 on 6, which exists by Sard’s Theorem and the fact that f is nontrivial. By
Theorem 6.3 (1) we have that |∇ f | must be constant on 6. Thus, in a neighborhood
U of 6 which does not contain any critical point of f , the potential function f
only depends on the signed distance r to the hypersurface 6. Hence, by a suitable
change of variable, we can express the metric gi j as

ds2
= dr2

+ gab(r, θ)dθa
⊗ dθb (r∗ < r < r∗)

for some maximal r∗∈[−∞, 0) and r∗∈ (0,∞], where (θ2, . . . , θm) is any local co-
ordinates system on the level surface6. Moreover, by Theorem 6.3 (3)-(4), we have

∂

∂r
gab =−2hab = φ(r)gab,

where φ(r)=−2h(r). Thus, it follows easily that

gab(r, θ)= e8(r)gab(0, θ), where 8(r)=
∫ r

0
φ(r) dr.

This proves that on U the metric g takes the form of a warped product metric

ds2
= dr2

+w(r)2gE , r ∈ (r∗, r∗),

where w is some positive smooth function on U , and gE
= g6 is the metric defined

on the level surface 6, which is Einstein, by Theorem 6.3 (6). This concludes the
proof of Theorem 1.2.

The proof of Corollary 1.3 follows from the previous considerations combined
with Corollary 6.5. �
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Next we show that the properness assumption on the potential function f in
Theorem 1.2 is automatically satisfied by some classes of Einstein-type manifolds.

First of all, let (M,g) be a complete, noncompact, gradient Ricci soliton with
potential function f . Then, it is well known that f is always proper, provided
that the soliton is either shrinking [Cao and Zhou 2010, Theorem 1.1], or steady
with positive Ricci curvature and scalar curvature attaining its maximum at some
point [Cao and Chen 2012, Proposition 2.3], or expanding with nonnegative Ricci
curvature [Cao et al. 2014, Lemma 5.5]. Hence, in these cases, Theorem 1.2
provides a local version of the classification results obtained in [Cao and Chen
2013; Cao et al. 2014].

Secondly, if (M,g) is a complete, noncompact, gradient shrinking ρ-Einstein
soliton with ρ > 0 and bounded scalar curvature, then it follows by [Catino et al.
2015, Lemma 3.2] that the potential function f is proper. Hence, Theorem 1.2
implies the following

Theorem 7.1. Let (M,g) be a complete, noncompact, gradient shrinking ρ-Einstein
soliton of dimension m≥3 with bounded scalar curvature and ρ>0. If B(∇ f, ·)=0,
then around any regular point of f the manifold (M,g) is locally a warped product
with (m−1)-dimensional Einstein fibers.

Finally, we want to show the following result concerning gradient Ricci almost
solitons which are “strongly” shrinking.

Theorem 7.2. Let (M,g) be a complete, noncompact, gradient Ricci almost soliton
of dimension m ≥ 3 with bounded Ricci curvature and with λ≥ λ > 0, for some λ.
If B(∇ f, ·)= 0, then around any regular point of f the manifold (M,g) is locally a
warped product with (m−1)-dimensional Einstein fibers.

Proof. By Theorem 1.2 it is sufficient to show that under these assumptions the
potential function is proper. To do this we will apply a second variation argument
as in [Cao and Zhou 2010, Theorem 1.1]. Let r(x) = dist(x, o), for some fixed
origin o ∈ M . We will show that, for r(x)� 1,

f (x)≥ 1
2λ
(
r(x)− c

)2
,

for some positive constant c> 0 depending only on m and on the geometry of g on
the unit ball Bo(1). Let γ (s), 0≤ s ≤ s0 for some s0 > 0, be any minimizing unit
speed geodesic starting from o= γ (0) and let γ̇ (s) be the unit tangent vector of γ .
Then by the second variation of the arc length, we have∫ s0

0
φ2(s)Ric(γ̇ , γ̇ ) ds ≤ (m− 1)

∫ s0

0
|φ̇(s)|2 ds,

for every nonnegative function φ : [0, s0] → R. We choose φ(s) = s on [0, 1],
φ(s)= 1 on [1, s0− 1], and φ(s)= s0− s on [s0− 1, s0]. Then, since the solitons
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has bounded Ricci curvature, one has∫ s0

0
Ric(γ̇ , γ̇ ) ds ≤ 2(m− 1)+max

B1(o)
|Ric | + max

B1(γ (s0))
|Ric | ≤ C,

for some positive constant C independent of s0. On the other hand, from the soliton
equation, we have

∇γ̇∇γ̇ f = λ−Ric(γ̇ , γ̇ ).

Integrating along γ , we get

ḟ
(
γ (s0)

)
− ḟ

(
γ (0)

)
=

∫ s0

0
λ ds−

∫ s0

0
Ric(γ̇ , γ̇ ) ds ≥ λs0−C.

Integrating again, we obtain the desired estimate

f (γ (s0))≥
1
2λ(s0− c)2,

for some constant c. This concludes the proof of the theorem. �

Remark 7.3. From the above proof, if λ= λ(r) is such that 1/λ(r)= o(1/r2) as
r→+∞ we have f (r)→+∞ as r→+∞. This suffices to prove Theorem 7.2.

To conclude, we note that Ricci almost solitons which are warped products were
constructed in [Pigola et al. 2011, Remark 2.6].
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