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REMARKS ON QUANTUM UNIPOTENT SUBGROUPS
AND THE DUAL CANONICAL BASIS

YOSHIYUKI KIMURA

We prove the tensor product decomposition of the half of the quantized uni-
versal enveloping algebra associated with a Weyl group element which was
conjectured by Berenstein and Greenstein (preprint, 2014, arXiv 1411.1391;
see Conjecture 5.5) using the theory of the dual canonical basis. In fact, based
on the compatibility between the decomposition and the dual canonical basis,
a weak multiplicity-free property between the factors is established.

1. Introduction

Let g be a symmetrizable Kac—-Moody Lie algebra and w be a Weyl group element.
In [Kimura 2012], we studied the compatibility of the dual canonical basis and the
quantum coordinate ring of the unipotent subgroup associated with a finite subset
Ay NwA_, where Ay (resp. A_) is the set of positive (resp. negative) roots of g.
The purpose of this paper is to study the compatibility of the dual canonical basis
and the “quantum coordinate ring” of the pro-unipotent subgroup associated with a
cofinite subset Ay NwA 4.
Let U, (g) be the quantized enveloping algebra and

Uy(9) ~ Ut (9) @ U (9) ® U, (g)

be its triangular decomposition. Let U, qzo(g) be the subalgebra generated by Uq+ (9)
and qu (9). Let Ty =T, T;,--- T;, : Uy — Uy be Lusztig’s symmetry associated
with a Weyl group element w, where i = (iy, ..., i) is a reduced word of w. It is
known that 7%, € Aut(Uy,(g)) does not depend on the choice of reduced word.
Berenstein and Greenstein [2014, Conjecture 5.5] conjectured the following
tensor product decomposition of the half U, in general. We show the multiplicity-
free property of the multiplications of the dual canonical basis elements between the
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finite part and the cofinite part. We also prove the decomposition in the dual integral
form U, (g)uAp of the Lusztig integral form U, (g) 4 with respect to Kashiwara’s
nondegenerate bilinear form.

Theorem 1.1. (1) For a Weyl group element w € W, multiplication in U~ defines
an isomorphism of vector spaces over Q(q):

U, NTWwU)® (U, NTuU,) = Uy
(2) For a Weyl group element w € W, we set

(U, NTUZ"Y :=Us (9) NTwUS°
and
U, NTwU,)R :=U (94 NTwU, .

Then multiplication in U, (g)uf defines an isomorphism of free A-modules:
Uy NTwUZ)Y @4 (U, NTwU, )Y = Uy (9)F.

Remark 1.2. (1) Theorem 1.1(1) can be shown directly in finite-type cases using
the Poincaré—Birkhoff—Witt bases of Uq_ (see [Berenstein and Greenstein 2014,
Proposition 5.3]). Hence it is a new result only in infinite-type cases.

(2) For the proof of Theorem 1.1(1), we use the dual canonical bases and the
multiplication formula for them; in particular we will prove Theorem 1.1(2). After
finishing this work, the author was informed of a proof which does not involve the
theory of the dual canonical basis by Toshiyuki Tanisaki [2015, Proposition 2.10],
who also proved the tensor product decomposition in Lusztig form, De Concini—Kac
form and De Concini—Procesi form.

We note that the De Concini—Kac form (resp. De Concini—Procesi form) is related
to the dual integral form of Lusztig’s integral form with respect to the Kashiwara
(resp. Lusztig) nondegenerate bilinear form on U,". Since the multiplicative struc-
ture of the dual canonical basis does not depend on the choice of nondegenerate
bilinear form (and hence the definition of the dual canonical basis), our argument
yields results for the tensor product decompositions of the De Concini—Kac form
and the De Concini—Procesi form.

Remark 1.3. We note that the fact that Uq_ NTy quo has a Poincaré—Birkhoff—Witt
basis was shown by Beck, Chari and Pressley [Beck et al. 1999, Proposition 2.3] in
general. (Throughout that paper, it is assumed that the generalized Cartan matrix is
of symmetric affine type, but it should be noted that the assumption is not used in the
proof of [Beck et al. 1999, Proposition 2.3]. For more details, see Theorem 2.18).
The injectivity in Theorem 1.1 can be easily proved by the linear independence of
the Poincaré—Birkhoff—-Witt monomials (see [Lusztig 1993, Theorem 40.2.1(a)])
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and the triangular decomposition of the quantized enveloping algebra (see [Lusztig
1993, Section 3.2]). Hence the nontrivial assertion is the surjectivity in Theorem 1.1.

Theorem 1.4. (1) For a Weyl group element w € W and for a reduced word
i =(i1,...,ig) of w, we have

v, n"TwU, =0, nT,U, nT;, ;,,U, n---NT;---T;, U,
(2) We have that U, N Ty, Uy~ is compatible with the dual canonical basis; that is,

B*NU; NTywU, isa Q(q)-basis of U; N TywU, . In fact, there exists a
subset (U, N TyU,") C %(00) such that

Uy NTwU; = a Q(q)G™(b).
bexr(U; NTyU,)

Using the theory of crystal bases, we can obtain the characterization of the subset
#U,; NTyU, ). For w € W, we have the decomposition theorem of the crystal
basis #(0c0) of U, associated with a Weyl group element (and a reduced word)
and the corresponding multiplication formula. We consider the map €2, associated
with a Weyl group element which was introduced by Saito [1994] (and Baumann,
Kamnitzer and Tingley [Baumann et al. 2014]):

Qu 1= (T<w. T>w) : B(00) > BWU,; NTLUZ") x ZU; NT,U,),
where <y (b) and 7>, (b) are defined by crystal bases as follows:
L(b.i):= (61, (D). £1,(6] D). ... &, (6]_ - 6]b)) e 7Ly,
ble.i)i= fEVT (fS) - Thy o Tip L (£9) mod g 2 (c0) € B(00).
7<;i(b) :=b(L(b,i),i) € B(c0),
i (b) := 0+ 0,6}y - 6]\ b € B(00).

The following is the multiplicity-free result of the multiplication of the dual
canonical basis elements in the finite part and the cofinite part.

Theorem 1.5. Let w be a Weyl group element and i = (iy,...,iy) be a reduced
word of w. For a crystal basis element b € %B(c0), we have

G (1<i (b)) G (=i (b)) €GP (B)+ Y qZ[q]G*™ (b)),
L(b,i)<L(b,i)

where L(b',i) < L(b,1) in the left lexicographic order on Zéo associated with a
reduced word i.

Using induction on the lexicographic order on each root space, we obtain the
surjectivity in Theorem 1.1(2). In particular, Theorem 1.1(1) can be shown.
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Since the subalgebras Uq_ N Ty UqZO and Uq_ N Ty Uq_ are compatible with the
dual canonical basis and since the dual bar-involution o which characterizes the
dual canonical basis is a (twisted) anti-involution, we obtain the tensor product
factorization in the opposite order.

Corollary 1.6. For a Weyl group element w € W, multiplication in U, defines an
isomorphism of vector spaces:

(U, NTwU;)®@ (U, NTyUZ%) = U,

2. Review of quantum unipotent subgroups and the dual canonical basis

2A. Quantum universal enveloping algebra. In this subsection, we give a brief
review of the definition of quantum universal enveloping algebra. The reader is
referred to [Kashiwara 1991; 1993a; 1993b] for more details.

2A1. Let I be a finite index set.
Definition 2.1. A root datum is a quintuple (A4, P, IT, PV, ITY) which consists of
(1) asquare matrix (@;;);, jer, called the symmetrizable generalized Cartan matrix,
that is, an /-indexed Z-valued matrix which satisfies
(@) ajj =2foriel,
(b) ajj € Z<o fori # j,
(c) there exists a diagonal matrix diag(d;);es such that (d;a;j); jer is sym-
metric and d; are positive integers;
(2) P: afree abelian group (the weight lattice);
(3) Il ={wa; |i eI} C P: the set of simple roots such that IT C P ®z Q is
linearly independent;
(4) PY =Homyz(P,Z): the dual lattice (the coweight lattice) of P with perfect
pairing (-,-): PV ®z P — Z,
(5) IV ={h; |i e I} C PV : the set of simple coroots, satisfying
(@) ajj = (hi,a;) foralli, j e,
(b) there exists {A;};e; C P, called the set of fundamental weights, satisfying
(hi, Aj) =6;j fori, jel.

We say A € P is dominant if (h;, A) > 0 for any i € I and denote by P4+ the
set of dominant integral weights. Let Q = €D, c; Za; C P be the root lattice. Let
Qr==%) ey 2500 Foré =3 ;o &iai € O, weset [E] =3 ;) &
2A2. Let (A, P,TI, PY,I1Y) be a root datum. We set h := PV ®z C. A triple
(b, IT, ITV) is called a Cartan datum or a realization of a generalized Cartan ma-
trix 4.

It is known that there exists a symmetric bilinear form (-,-) on h* satisfying
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(D) (i) =djaij,

(2) (hi, A) =2(xj, A)/(aj, ;) fori € I and A € h*

Definition 2.2. Let g be the symmetrizable Kac—Moody Lie algebra associated
with a realization (b, IT, ITY) of a symmetrizable generalized Cartan matrix 4 =
(aij)i,jer» thatis, a Lie algebra which is generated by {e;}ic; U{ fi}ier Ub with
the following relations:

(1) [y, h2] =0 for hy, hy €D,

2) [h,ei]={h,a;j)e; and [h, fil=—(h,a;) fi forhebhandi € I,

(3) lei, fij1=6ij) fori, j e,

(4) ad(e;)!™9i(ej)=0and ad( f;)! 79/ ( f;) =0fori # j, where ad(x)(y) =[x, y].

Let n4 (resp. n—) be the Lie subalgebra which is generated by {e;};cs (resp.
{ fitier). We have the triangular decomposition and the root space decomposition

g=n-@henr=he P o
ach*\{0}

where go ={x €g|[h, x]=(h,a)x Vhebh}. Theset A:={aeh*\{0}|gay #0}
is called the root system of g.

2A3. We fix a root datum (A4, P, IT, PV, I1V). We introduce an indeterminate ¢.

Fori € I, we set ¢; = q%. For £ = Y & a; € O, we set qe = [lier qigi.
ForneZandi € I, we set

qa —4; "

g —q;"

and [n];! = [n]i[n —1]; ---[1]; for n > 0 and [0]! = 1.

[n]; ==

Definition 2.3. The quantized enveloping algebra U, (g) associated with a root da-
tum (A4, P, I1, PY, I1V) is the Q(q)-algebra which is generated by {¢; }icr, { fi}icr
and {¢" | h € PV} with the following relations:

(1) ¢° =1 and ¢g" " = ¢"4" tor h, ' € PV,

(2) qeig™ = g\h2ile; and ¢" fig™" = g~ %) f; fori € I and h € PV,

(3) ei f; — fiei = 8ij (ki — k1) /(qi — ¢ "), where k; = g%,

1—a;; 1—ajj
(1—-aij—k) k (1—a;;—k) k
@ D Dre T ey = 3 ) TS =0
k=0 k=0 (¢q-Serre relations),

where ¢ = e{‘/ [k];! and fi(k) = fik/[k],-! fori e Iand k € Z~y.

i
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2A4. Let qu be the subalgebra of U, (g) which is generated by {g" | he PVY;it
is isomorphic to the group algebra

Q@)IPY]:= P Qg)q"

hePv

over Q(q). For £ =) .. & € O, we set

ke = [ [ &5 =] q%™

iel iel
Let UqJr be the Q(g)-subalgebra generated by {e;}ies, let U, be the Q(g)-

subalgebra generated by { f;}icr, let UqZO be the Q(g)-subalgebra generated by
qu and Uq"', and let Uq50 be the Q(g)-subalgebra generated by qu and U,

Theorem 2.4 [Lusztig 1993, Corollary 3.2.5]. The multiplication of Uy induces
the triangular decomposition of Uy (g) as vector spaces over Q(q):

(2-1) Uy9)=U, U U; ~U; 9U)QU,".

2AS5. For & € £0Q, we define qu (9)e by

(2-2) qu(g)g ={x € qu(g) | qhxq_h = q(h’s)x forhe PV},
Then we have a root space decomposition

+ +
U @)= P U e
§€0y
An element x € qu (g) is called homogeneous if x € qu (9)g for some £ € Q.
2A6. We define a (O(¢g)-algebra anti-involution * : U, (g) — Uy (g) by
(2-3) se)=e. *(D)=fi. *@")=q7"

We call this the star involution.
We define a Q-algebra automorphism ~ : Uy (g) — Uy, (g) by

>

(2-4) G=ci, fi=fi, a=q L q¢'=q"

We call this the bar involution.
These two involutions preserve Uq+ (9) and U, (g), and we have ~o% = x o

2A7. In this article, we choose the following comultiplication A = A_ on Uy (g):

25 Alg")=4¢"®q", Al =ei@ki'+1®er, A(fi)=fi®1+ki® fi.
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2A8. We define a Q(g)-algebra structure on U,” Q U~ by

(2-6) (X1 ® 1) (x2 ® ya) = ¢~ MEDMID) 3y @ )y,

where x;, y; (i = 1, 2) are homogeneous elements. Let r =r—: U, - U, Q U,
be the Q(g)-algebra homomorphism defined by

r(f)=fiel+1efi (el).

We call this the twisted comultiplication. Then it is known that there exists a unique
Q(g)-valued nondegenerate symmetric bilinear form (-,-) : U, ® U, — Q(q)
with the following properties:

(L D=1, (fi. j)=38ij, (r(x), y1®y2) =(x, y1y2), (X1®x2,r(y)) =(x1x2,y)
for homogeneous x, y1, y2 € U, where the form

(®.-®): (U U, )® U, U, ) — Q(q)
is defined by (x1 ® x2, y1 ® y2) = (X1, y1)(x2 ® y2) for x1,x2, y1, y2 €U,

2A9. For i € I, we define the unique Q(g)-linear map ;r : U, — U, (resp.
i Uq_ — Uq_) by

(ir(x),y) = (x, fiy),

(ri(x), y) = (x, yfi).

Lemma 2.5 [Lusztig 1993, Section 1.2.13]. For x,y € U;, we have q-boson

q 9
relations:
ir(ep) =ir(0)y 4™ xir (),
ri(xy) = g™ (x) p + xri(p).
Lemma 2.6 [Lusztig 1993, Proposition 3.1.6]. We have
ri () ki — k7 Yir(x
(2-7) [ei, x] = 1Okt =k i) JorxelU,.

qi —9q; !
Using the g-boson relation, we obtain the following result.

Lemma 2.7 [Lusztig 1993, Lemma 38.1.2, Proposition 38.1.6]. For eachi € I,
any element x € U~ can be written uniquely as

X = Z fl.(c)xc with x. € Ker(;r).
c=0

2B. Canonical basis and dual canonical basis. We give a brief review of the
theory of the canonical basis and the dual canonical basis following Kashiwara.
Note that Kashiwara called them the lower global basis and the upper global basis.
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2B1. We define Q-subalgebras Ag, Ax and A of Q(g) by

Ao :={f€Q(q)] f isregular at g =0},
Ao :={f €Q(q) | f isregular at ¢ = o0},
A:=Q[¢E".

2B2. We introduce the crystal basis of U,". For more details, see [Kashiwara 1991,
Section 3]. We define the Kashiwara operators ¢; and f; on U, by

Gix = Z fi(c_l)xc

c=>1
fix =3 e,
c=0
and we set
(o)=Y Aofiyfil Uy,
{>0
i1ye0ig€1

B(0) == { fi, - fi,1 modq.Z(c0) |1 = 0,i1,...,i¢ € 1} C L(00)/qL(00).

Then .Z(o0) is an Ajp-lattice with Q(g) ® 4, £ (00) >~ U that is stable under
¢ and f,, and Z(0o0) is a Q-basis of £ (00)/q.£(c0). We also have induced maps
f, PB(00) — B(00) and ¢; : B(00) — B(oc0) LI{0} with the property that fl eib=>b
for b € #(oc0) with €;b # 0. We call (%(00), £ (c0)) the (lower) crystal basis of
U, and call .Z(co) the (lower) crystal lattice. We denote 1 mod ¢.#(00) by Uoo.

2B3. It is also known that the star involution * : Uq_ — Uq_ induces an Agp-
linear isomorphism * : .Z(00) — .Z(o0) and a bijection * : Z(c0) — ZB(00); see
[Kashiwara 1991, Proposition 5.2.4; 1993b, Theorem 2.1.1]. We set

f¥i=%0 fiox: B(c0) - B(c0),
el 1=x08&; 0% :%B(c0) > H(c0) U{0}.
2B4. Let £(00) = {X | x € £(0c0)}. Then the natural map
Z(00) N ZL(00) NU, (g)a = £(00)/q £ (00)

is an isomorphism of Q-vector spaces. Let G'°% be the inverse of this isomorphism.
The image

B = {G"Y(b) | b € B(c0)} C L(00) N L(00) NU; ()4

is an A-basis of U, (9) 4 and is called the canonical basis or the lower global basis
of U .
q
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2BS5. The important property of the canonical basis is the following compatibility
with the left and right ideals which are generated by Chevalley generators { f;};cy.

Theorem 2.8 [Lusztig 1993, Theorems 14.3.2 and 14.4.3; Kashiwara 1991, Theo-
rem 7). Fori € I andn =1, f"U; and U, f" are compatible with the canonical
basis; that is, f'U; N B oW (resp. U, /"nB oWy is a basis of SU, (resp. Uy f).
In fact, we have

U7 @a= P AG™®).
be#(0)
gi(b)=m

Uy N0 @a= @ AG™®).

beB(c0)
gf (b)=m

2B6. Leto : U, — U, be the Q-linear map defined by

(@(x).y) = (x.7)

for arbitrary x, y € U,". Let 0(Z(00)) := {o(x) | x € £(0c0)} and set the dual
integral form:

Uy ()% :={x €U, | (x,U; (9)4) C A}
U, (g)uAp has an A-subalgebra of U,". The natural map
Z(00) N (Z(00) NU, (9) — £(00)/qZ(00)

is also an isomorphism of Q-vector spaces, so let G'? be the inverse of the above
isomorphism. Then

B ={G"™(b) | b e B(c0)} C ZL(c0) No(Z(00))N Uq_(g)uj

is an A-basis of U~ (g)uA}j and is called the dual canonical basis or the upper global
basis of U,

Proposition 2.9 [Kimura 2012, Proposition 4.26(1)]. Fori € I and ¢ > 1, let
fi{C} — fi(C)/ (f;(C)’ fi(C))‘ Then we have

-1)/2
fi{c}:qu(C )/ fic'

2B7. For the dual canonical basis, we have the following expansion of left and right
multiplication with respect to the Chevalley generators and their (shifted) powers.
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Theorem 2.10 [Kashiwara 2012, Proposition 2.2; Oya 2015, Proposition 4.14 (ii)].
Forb € #(00), i € I and ¢ > 1, we have

@80 9600 =g VGG + Y F @G,
8i (b)<ei(b)+c

Gup(fi*cb) + Z l*l{)cli/(q)Gup(b )
gf (b')<ef (b)+c

Q2-8b)  GUP(b) £ = g P

where

Fio) (@)= (96" 1), G 1) = g7 26 1), (1) G ()
—cei(b)

€y, 9214},
Fiih @)= (G (0) 1,6V B) = g7 TG (B), (1) G (1))
—ce} (b)
€y q971q).

2C. Braid group action and the (dual) canonical basis. In this subsection, we
recall the compatibility between Lusztig’s braid symmetry and the (dual) canonical
basis (for more details, see [Kimura 2012, Sections 4.4 and 4.6]).

2C1. Braid group action on quantized enveloping algebra. Let W be the Weyl
group and {s;};es be the set of simple reflections, and let £ : W — Z>( be the
length function.

Following Lusztig [1993, Section 37.1.3], we define the (2(g)-algebra automor-
phisms

T} . Uy(g) > Uy(g)
and

Tl//e 1 Uq(9) — Uy (9)

fori € I and € € {£1} by the following formulae:

(2-9) T} (¢") = ¢"'®;
—kfei for j =1,
’ _
(2-9b) T; (ej) = Z (—1) " l.(r) e l(s) for j #1;
r4+s=—(h;,a;)
—ejk; € for j =1,
/ . fr — . .
(2-9¢) T; e (J7) > (=D'g; ”fl.(s)fj fl.(r) for j #1i;

r+s=—(h;,a;)



REMARKS ON QUANTUM UNIPOTENT SUBGROUPS AND DUAL CANONICAL BASIS 135

and

@102 T/ (¢") =¢"®;

— fik;7€ for j =1,
" _

(2-100) T (ej) = Y ) gsrePee”  for j # i
r+s=—(h;,a;)

—kfe; for j =i,

1" ) — _ . .

(2—10C) Ti,—e(f}) Z (_l)rqi erfi(r)fjfi(s) for Jj 75 i.
r+s=—(h;,a;)

Itis known that {7} }ier and {7}’ };e; satisfy the braid relation.
Lemma 2.11 [Lusztig 1993, Proposition 37.1.2(d), Section 37.2.4].
(1) We have Tl’E o Ti,,,—e = Ti/,/—e o Tl’E =id.

2) Wehave*oTl{eo*: Tl/”_efori €l ande € {1}

In the following, we write 7; = T, and Ti_1 = T/ _, as in [Saito 1994, Propo-
sition 1.3.1].

2C2.
Proposition 2.12 [Lusztig 1993, Proposition 38.1.6, Lemma 38.1.5].
(1) Fori €I, we have
U, NTU; ={xel, |ir(x) =0},
U NT;7 U7 ={xeU; |ri(x)=0}.

(2) For i € I, we have the following orthogonal decomposition with respect

to ( , .)_:
Uy =U; NTUD ® fiU7 =W, NT7'0) @ Uy f;.

Corollary 2.13. For i € I, the subalgebra U, N T;U, (resp. Uy N T;U,) is
compatible with the dual canonical basis; that is, we have

Uy NTU NU (@F= @ AG™®).

be#(0)
g; (b)=0
- —1y7— — (U u
Uy NT7'U; nU; (@ = €D AG™®).
beA(0)

gf (b)=0
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2C3.
Proposition 2.14 [Saito 1994, Proposition 3.4.7, Corollary 3.4.8].
(1) Letx e U, € L(o0) N Ti_1 U, with b := x mod q.£(c0) € #(00). We have
Ti(x) € Z(c0) NT; U,
Ti(x) = ﬂ*wi(b)éf" ®h mod q-ZL(00) € %(00).
(2) Let
0i : {b € B(c0) | &7 (b) =0} — {b € B(00) | £i(b) = 0}

be the map defined by o;(b) = fi*(p" ®) e Ob. Then oy is bijective and its
inverse is given by

O'i*(b) = (>|< 00;0 *)(b) — Jflfpl*(b)él*é‘l*(b)b

The bijections o; and o are called Saito crystal reflections. In [Saito 1994,
Corollary 3.4.8], 0; and o;* are denoted by A; and Ai_l. Following Baumann,
Kamnitzer and Tingley [Baumann et al. 2014, Section 5.5], for convenience, we
extend o; and 0, to #(co) by setting

6i(b) 1= 0;(e] ™™ (D)),
so we can consider 6; and 61.* as maps from Z(o0) to itself.
2C4. Let 'n : Uy — Uy NT;U; (resp. 7' : Uy — Uy N T;7'U; ) be the
orthogonal projection whose kernel is f;U,~ (resp. U, i) in Proposition 2.12(2).

We have the following relations among the braid group action and the (dual)
canonical basis.

Theorem 2.15 [Lusztig 1996, Theorem 1.2; Kimura 2012, Theorem 4.23].
(1) For b € %(c0) with €} (b) = 0, we have
Ti(x' G'™ (b)) = 'w(G' (0i ())),
(1 =g WP, G (b) = G (0ib).
(2) For b € B(c0) with €;(b) = 0, we have
T (G (b)) = ' (G (o] (b)),
(1—g)WMOTTIGR (b) = G* (0] b).

We note that the constant term (1 — ql.z)(h" Wb} depends on the choice of nonde-
generate bilinear form on U, (g).
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2D. Poincaré-Birkhoff-Witt bases. Let W = (s; | i € I) be the Weyl group of g,
where {s; | i € I} is the set of simple reflections associated with i € I, and let
£: W — Z>¢ be the length function. For a Weyl group element w, let

I(w) = {(i1, 2. . igaw) € TP 51y Sige, = w}
be the set of reduced words of w.

2D1. Let A = A4 U A_ be the root system of the Kac—-Moody Lie algebra g and
the decomposition into positive and negative roots.
For a Weyl group element w € W, we set

Ar(Zw):=AyNwA_={feAi|wfeA_},
Ay(Gw):=ArNwAy ={BeAi v 'BeAL}.
It is well known that A4 (<w) and A (>w) are bracket closed; that is, for
o, BeAL(Zw) (resp.a, e Ay (>w)) witha+f e Ay, wehavea+ € Ay (Sw)
(resp. € A (>w)).

For a reduced word i = (iy,i3,...,i¢) € I(w), we define positive roots B; x
(1 £k =¥) by the formula

Bik =iy Si_y (@) (1 <k <0).

It is well known that Ay (Sw) = {B;ir}1<k<¢ and we put a total order on
A+ (Zw). We note that the convex total order on A4 (<w) is associated with a
reduced word i € I(w).

2D2. For a Weyl group element w € W and a reduced word i = (iy,is,...,ig) €
I(w), we define the root vector f¢(B; x) associated with B; x € A1 (<w) and a
sign € € {£1} by

Je(Big) =TT T _ (fir)
and its divided power by

JeBip) @ = TETE T (i) for ¢ € Zso.
Theorem 2.16 [Lusztig 1993, Propositions 40.2.1 and 41.1.3].

(1) Forw e W, i = (iy,....ig) € I(w), € € {x1} and ¢ € 7, we set
Je(Bi, ) fe(Bi2) D fe(Big) O ife=+1,
Je(Bi.) O fe(Big—1) D+ fe(Bi ) ife=—1.

Then { fe(c,i)}cezt,, is linearly independent.

fe(c,i)::{
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(2) The subspace of U (g) spanned by { fele,i)}e ezt does not depend on the
choice of reduced word i € I(w). We denote this subspace by U, (Sw, €).
The basis { fe(c,i)}cezt,, of Uy (Sw, €) is called the Poincaré-Birkhoff-Wiit
basis or the lower Poincaré—Birkhoff-Witt basis.

Definition 2.17. For a Weyl group element w € W, areduced word i = (iy,...,ip) €
I(w)and ¢ = (¢q,...,¢p) € Zgo, we set
Ee.i)i=— ) cPire 0
1<k=¢
We also have the following characterization of U, (=w, €).

Theorem 2.18 [Beck et al. 1999, Proposition 2.3]. For w € W, € € {x1} and
i =(1,...,00) € I(w), let

- >0

U, NTyeUj
_ U 0Ty T, U ={x e Uy | T - TN () e UF°) ife=+1,
U NI TUZ = {x e Uy | Tiy - Ty (x) € UZ0) if e =—1.

Then the Poincaré-Birkhoff-Witt basis { fe(c,i)}cezt , forms a Q(q)-basis of
U; NTEUZY% that is, Uy (Sw,€) = Uy NTEUZC.

For the convenience of readers checking the notation, we give a proof of the
above theorem.

Proof. Since the ¢ = —1 case can be proved from the € = +1 case by applying the
x-involution, it suffices for us to prove the claim for the € = 41 case. For 1 <k </,
we have

Tizl T TtTI iy Ty (f;-f(ck)) = Tizl e Tizl(fil(:‘k))
= (_l)ck ]"lzl . T._l (e(Ck)kl'le)~

Ig41 N i
Since (ig, ..., i¢) is a reduced word, we have lel ‘e Tl;lrl (el.(lf"')) € Uq+. Hence

Tl,zl ... Til_l Ti,- T, (fif:‘k)) c quo'

So the inclusion Uq_(fw, €)C Uq_ NnT ;;6 quo is shown, and it suffices to prove the
opposite inclusion, that is, that the Poincaré-Birkhoff-Witt basis { fe(c,i)}cezt
spans U, NTE U

Letx e Uy NTy UqZO be a homogeneous element. We write it as the sum

X = Z f;-(lcl)xcl

C1
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with x¢, € U;” NT;, U, Then we have lel (x¢,) € U, . So we write it as the sum
-1 c
Til (xe,) = Z f,g 2)xcl,cz-
2

Repeating this process, we obtain elements xc, ,....c, € U, NT;, Uy for1 = k <{and

—1 _ (Ck+1)
e (Kerpne) = Z flk+1 Xet e ChosClot 1

Cr+1
for 1 <k < £. Then we obtain
- -1
T;, 1"'Ti1 (x)
:ZT;ZI 11 l(jrl((.’l)) 'T'il_l(xcl)
€1

= YT TN T T T T (e )
C1,C2

= 2 T T T T D T e e
C1,€2,...5C¢

By the assumption x € U, N Ty, Uz =0 the left-hand side is in U; =0 By the
triangular decomposition and T;, L.. T, ~1( fl(c")) eU, NTywU; =0 we have that
Xey,mnce € Uy NUZY = Q(g). Hence we obtain

C1,ye.05Cyp
SO Uq_ NTye UqZO C Uq_(fw, €). O

Remark 2.19. The stronger assertion for Lusztig’s integral form is proved in [Beck
et al. 1999, Proposition 2.3].

2D3. Poincaré—Birkhoff-Witt basis and crystal basis.
Theorem 2.20. Forw € W, i € (iy,...,iy) € [(w) and € € {£1}:
(1) We have fc(c,i) € £(c0) and

be(c,i) = fe(e,i) mod g.Z(c0) € B(0).

(2) The map Zezo — B(00) which is defined by ¢ +— b¢(c, 1) is injective. We denote
the image by B(w, €), and this does not depend on the choice of reduced word
[ €l(w).
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2D4.
Proposition 2.21 [Kimura 2012, Proposition 4.26(2)]. Forc> 1l and 1 <k <{, let

FEPBii)' S = feBin) O (feBin) s fe(Bin)©).
Then we have f®(Bi ) = ¢¢ ™2 (2 (8, )¢ € B™.

ik
Definition 2.22 (dual Poincaré-Birkhoff—Witt basis). For w € W, i € I(w) and
c e Zezo’ we set

Jele, i)
(Je(e.i). fe(c. i)’

and {f:"(c.i)}e ezt is called the dual Poincaré-Birkhoff-Witt basis or upper
Poincaré-Birkhoff—Witt basis.

JeP(e i) =

By the definition of the dual Poincaré—Birkhoff—Witt basis and the computation
of (fe(c,i), fe(e,i)), we have

S (e, i)
{f:"(ﬂ,-,l)“1}/2“"(18,-,2){02}---f:P(ﬂ,-,e){cz} ife=+1.
S Bi) O [ (B g (B i) ife = —1

(1—g2 )i Ee=2=) g0 (g, Y Te (£ (B;_, 2) (2o £ (i, 0) 1)

_ if e = +1,
(1—g2 )it e=i=dl e (2P, )tk (2P (B;_, 2){2) £P(By,p)ter)
ife=-—1,

where ¢>y = (¢3,...,¢¢) € ZZZ_OI, W>2 =S8iy -8, and i>y = (ia, ..., i) € [(w>2).

Using the Levendorskii—Soibelman formula (see [Kimura 2012, Theorem 4.27])
and the definition of the dual canonical basis, we have the following result.

Theorem 2.23 [Kimura 2012, Theorems 4.25 and 4.29]. Let w € W and i € I(w).
The Poincaré—Birkhoff-Witt basis satisfies the following properties:

(1) The subalgebra U, (Sw, €) is compatible with the dual canonical basis; that
is, there exists a subset Z(=w, €) := Z(U, (sw, €)) C #(c0) such that

U (swe)= P Q@)G*0).
bes(<w,e)

(2) The transition matrix between the dual Poincaré—Birkhoff-Witt basis and the
dual canonical basis is triangular with s on the diagonal with respect to the
(left) lexicographic order < on ZZZO. More precisely, we have

SEP(eni) = GP(bele. D)) + Y di /()G (be(c'. i)

c’'<c
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with
dl o (q) 1= (JEP(e.i). G™ (be(c', 1)) € 4 Zlq).

Remark 2.24. In the symmetric case, we note that it can be shown that

dl .(q) = (f(c.i), G'(be(c', ) € qZ50[q],

by the positivity of the (twisted) comultiplication with respect to the canonical basis
and Proposition 2.21.

In particular, we obtain a proof of the positivity of the transition matrix from the
canonical basis into the lower Poincaré—Birkhoff—Witt basis in simply laced type
for an arbitrary reduced word of the longest element wg using the orthogonality of
the (lower) Poincaré—Birkhoff—Witt basis.

For “adapted” reduced words, it was proved by Lusztig [1990, Corollary 10.7].
For an arbitrary reduced word, it was proved by Kato [2014, Theorm 4.17] using
the categorification of the Poincaré—Birkhoff—Witt basis via the Khovanov-Lauda—
Rouquier algebra. It was also proved by Oya [2015, Theorem 5.2].

3. Proof of the surjectivity

3A. Multiplication formula for U, (<w, €). For a Weyl group element w, a re-
duced word i € I(w) and 0 < p < £, we consider a subalgebra which is generated by

(S (Bij)p+1<ke=e-

It can be shown that this subalgebra is also compatible with the dual canonical
basis. This can be proved using the transition matrix between the dual Poincaré—
Birkhoff—Witt basis and the dual canonical basis.

In this subsection, we give statements for the € = 41 case. We can obtain the
corresponding claims for the € = —1 case by applying the x-involution. So we

denote fc*(Bix), fe' (e.i), be(c,i) by f*(Bix), f*(c,i), b(c,i), omitting €.

Proposition 3.1. Let w € W and i € I(w). Forc € Zezo and 0 < p < £, we set
T<p(c):=(c1,...,¢p,0,...,0) EZZZO,
T=p(€):=(0,...,0,¢cpq1,...,¢) € ZZZO.

Then we have

G (b(t<p(c)).i)G™®(b(t>p(c),i)) € G®(b(c,i)) + ZqZ[q]G“p(b(d, i)).

d<c
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Proof. By the transition from the dual canonical basis to the dual Poincaré—Birkhoff—
Witt basis, we have

G (b(r=p(e).i)) € [P(r=ple) i)+ D qZlql/*P(d=p. i),

d<p<t<p(c)
G(b(t>p(c). i) € fP(r=ple). i)+ Y. qZlgl/*P(d=p.i),
d>p<f>p(c)

and note that we have d <, = 1<, (d <) and d~ , = 7> 5 (d> ) by the Levendorskii—
Soibelman formula in the right-hand sides.
Hence in the product of the right-hand sides, we have four kinds of terms:

JP(e. i) = [Prsple). i) [P (T ple). i),
SP(r<pe) +dsp.i) = [Plr<p(e). i) fP(d>p. 1),
SR pe) +d<p.i) = fPd<p.i) f* (1> p(c). D),
JPUls<p+dsp.i)=fPd<p.i) [P d>p. D).

We note that <, (¢) +d>p<c, >p(c) +d<p<candd<p, +d=, < c by the
construction. Hence, using the transition from the dual Poincaré-Birkhoff—Witt
basis to the dual canonical basis, we obtain the claim. O

3B. Compatibility of U, (>w, €). For a Weyl group element, we consider the
cofinite subset A+ NwA 4 and corresponding quantum coordinate ring U, (>w, €).

Definition 3.2. For w € W and € € {£1}, we set
- e € yr—
U, Gw,e)=U, NTyU, .
The following is the main result in this subsection.

Theorem 3.3. For w € W and € € {1}, U, (>w, €) is compatible with the dual
canonical basis; namely, B"(>w,€) := B N U, (>w,¢) is a Q(q)-basis of
U, Gw,e).

The proof of this theorem occupies the rest of this subsection, and we give the
characterization of the subset B"P(>w, €).

3B1. We provide an alternative description of U, (>w, €) which is more convenient
for proving the compatibility of the dual canonical basis.

Proposition 3.4. Forw e W, i = (i1,...,iy) € I(w) and € € {£1}, we have

Uy (Gw.e)= Uy NTEU; ATETEU, NN T TEU,

In fact, the right-hand side does not depend on the choice of reduced word
i € I(w). The above proposition can be shown by the following lemmas.
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Lemma 3.5. For a Weyl group element w € W, a reduced wordi = (iy,...,iy) €
I(w) and a homogeneous element x € U, there exists xc € Uy N T; ZU for
ce Zﬁo with

(3-1)
Tujl(x) = Z lel 11 l(fl(C1)) 1@ ](fliczl 1))lel(flic€))Tl;1(xc)
cezgo
€ Z ]“l.zl...]"l_;l(elglcl))_ (el(z‘zll))e(Cz)U

74
ceZZO

Proof. Following the proof in [Beck et al. 1999, Proposition 2.3], we proceed by
induction on the length £(w). By Lemma 2.7, we have the decomposition

=" £, withxe, €Uy NT3, U
So we have TITI (xe,) €Uy N TITI Uq_l. Applying TITI to x, we obtain
T ) = DTN T (),
c1=0

so we obtain the claim for £(w) = 1.
By induction on the length £, we assume that

Tl T = Y T T ) T T ()

c€Z>

with 7.~ (xc1 ,,,,, co_1) € U N T U Since T 1 (xc1 _____ co_y) € Uq_, we have

le—1
the decomposition

(ce) , - -
15 1(x6‘1, HCp— 1) Z ]Fl ¢ Xcl,...,Cg Wlth x()],...,C@ S Uq m E@ Uq .

ce=0
So we obtain the following claim:
Tizl ... Til_l (x)
— Z lel 11 l(fl(Cl)) 15 1 (fl(Ce 1)) l(f;(cz)) l(xcl,...,Cg)-
celgo

The second claim is clear from the definition of {7;} and the defining relations
of Uy. O

Lemma 3.6. If {(s;w) > £(w), we have U, N Ty, U, C U, NTU,

Proof. Let (i, ...,ig) be areduced word of w such that (i,iy,...,i¢) is a reduced
word of s;w. For a homogeneous element x € U, we decompose x =) _ .~ f;.(c)xc
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with x. € Uq_ N T,~Uq_. So we have

T 'x = Z T,'_l(fl-(c))ﬂ_l(xc) c Zel(c)quo

c=0 c=0
with Ti_l (xe) €U, N Ti_l U, Apply T, ! to both sides, we have

T, Ty

1

=3 T AT ONTR T (e

c=0

_ — - — d — dy_ d
c Z Tl_el___Till(elgc))Tiz1'__Tizl(ei(11))__'Ti€1(e§e 1))61’(g£)Uq§0‘

le—1

Suppose x € U;” N Ty, U, is a homogeneous element; that is, Tulei_lx €
U, NT,; U, . Since

— — - — d — de— d
{Tie 1...Tl,l l(el'(C))Tig 1...Ti2 1(e§ l))Tlg 1(6.( Y4 1))61(8 e)|(C,d1, o ,dg)ezgl}

31 Le—1

is linearly independent by the assumption £(s;w) > £(w), we have x, = 0 for ¢ > 0.
So we obtain x = xg € Uq_ N Tqu_. O

Proof of Proposition 3.4. We proceed by induction on the length £(w) of a Weyl
group element. When £(w) = 1, this is tautological, so we have the claim. By the
induction hypothesis, we can assume that

Uq‘mTiqu_m...mTiz...Tiqu_ = Uq_mﬂz"'ﬂqu_-
Then we have

U, N1, U, NnT;, T;,U; N---NT; Tip--- T;, U,

=U, NnT;, (U, NT;,---T;,U;)=U, NnT;, U, NT; T;,---T;, U, .
By Lemma 3.6, we obtain the claim

U, n1;,Uu, nT;, Th,---T;,U; =U,; NT;,Ti,--- T;, U, . O
3B2. Let w be a Weyl group element and i = (iy,...,iy) € I(w) be a reduced
word. Following Saito [1994, Lemma 4.1.3] and Baumann, Kamnitzer and Tingley
[Baumann et al. 2014, Proposition 5.24], we define the Lusztig datum of b € %(c0)
in direction i € I(w) and € € {£1} ((, €)-Lusztig datum for short).

Definition 3.7 ((i, €)-Lusztig datum). For w € W, i € I(w) and € € {11}, define

(60, (b), €0, (87: D), ... 61, (6] ---67b)) €7, ife=+1,
(e} (b). &}, (61, b). ... &} (Bip_, 63, b)) €28 if e =—1.

Le(b,i)={
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By construction in Theorem 2.20, we have
¢ =Le(be(e,i),i)

forc e Zéo; that is, the map be (—,7): Zezo — %(00) is a section of the (7, €)-Lusztig
datum L (—. i) : #(c0) —> Z&,.
3B3. The following gives a characterization of B"P(>w, €) in terms of the (i, €)-
Lusztig datum.
Theorem 3.8. For w e W andi = (i1, ...,iy) € I(w), we set

B(>w,e) ={b e B(x) | Le(b,i)=0}.

Then we have

Uy Gwe= @ QqG=®).

bez(>w,e)
Proof. By Proposition 3.4, it suffices for us to prove the compatibility for the

; ; - €rr— € - € €rr—
intersection Uq ﬂTiqu ﬂTilTiqu ﬂ---ﬂTilmTiéUq.

Since € = —1 can be obtained by applying the *x-involution, we prove only the
€ = +1 case. We prove the claim by induction on the length £(w). For £(w) =1,
it is the claim in Corollary 2.13. We consider the intersection

— —1 — — —

u,nt; v, nT;,U; Nn---NTi,---T;,U, .
By the induction hypothesis, U,” N T;, U, N --- N T;, -+~ T;, U, is compatible
with the dual canonical basis, and U,” N Tll_1 U, is also compatible with the dual
canonical basis, so the intersection U™ N Tll_1 U, n1,U;, Nn---NThy---T;, Uy
is compatible with the dual canonical basis. Applying Theorem 2.15, we obtain the

claim for U, N7;, U, NnT;, T;,U; N---N T, --- T3, U, . Since

u,nt;u, n1;, T;,U, n---NTy---T;, U,

=U, NT;,(U; NT,U; 0---NTy,---T;,U),
we obtain the description of B"P(>w, +1). O

3C. Multiplication formula between B"P(<w, €¢) and B"?(>w, ¢).

3C1. We generalize the (special cases of the) formula in Theorem 2.10 using the
dual canonical basis B"P(>w, €).

Theorem 3.9. For b € Z(>w,¢€) and ¢ € Z>¢, we have
FP(e )G (B) € GP(VE D)+ Y. qZIglGP (D) if e = +1,
Le(bii)<c

G (b) [P (e, i) eGP (Vi BN+ D qZ[qIG™ (D) ife=—1,
Le(bii)<c
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where
FCl FCe—1 . Fce % * o
Vi (b) = iy 0’1”'fie—1 U’E—lfie Uléaie”'ail(b) ife=+1,
ie ~x ~xCp % )
filclglﬁ: .. .‘fiéiel lal?‘;_lflzceo*ole Uil(b) ife=—

Proof. We proceed by induction on the length £(w) of a Weyl group element. Since
€ = —1 can be obtained by applying the x-involution, it suffices for us to prove
the € = +1 case. Let w>, = sj,++-5;, € W and i>p = (i2,...,iy) € I(wx2). Let
b € B(c0) with L4 1(b,i) = 0; that is, we have

(81, (D). €1, (0] D), ... . &4, (0,07, b)) =(0,...,0).

So let bs; 1= al.’i b; then we have

L+1(b22,l'22) = (8i2(b22), - ,81'[(0";’; --'O'-* b>2))
= (i, (07D). ... &i (0}, - 0} 0 b)) = (0,....0) € 25!

by definition of the Lusztig datum.
By the induction hypothesis for w>, € W and i>, € I(wx;), we have

SR (e22,i22)G P (b22) — G (Vi (bz2)) € Y qZIqlG™(bL,)

Le(bL,iiz2)<e>2

with ¢, = (¢a,...,¢¢0) € Ze_l Since U, N T;; U is spanned by the dual
canonical basis {G“p(b) | &F (b) = 0} and since f“p(0>2, i>)eU, NT;; IU_
and G (b>) e U, N T;; 1U we obtain £} ( c>2 (b>2)) =0and ¢} (b ) = 0
We have

S (e, )G (b)

—(1— ql_ZI)(hfl ,E(c'zz,izz)+wt(bzz))fi‘icl}Til (feuP(C'zz, izz)GuP(bzz))

e(l _ql?l)(hil ,E(sz,izz)+wt(bzz))fi{lcl}

T, (GUP(V,'CZZ;,H(bzz)) + > qZ[q)G™ (L 2>)

Ly (bL,siz2)<ex2
f{“}(G“P(cnl ViE2, (b22) + 3 qZ[qu“f’(ailb;z)).
L1 (bL,,iz2)<e>2
We note that
J‘,flallvf>z+l(b>z) S5 o S5 o Fi i T 0i 0 (b2)
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and

S (04,9522 | (h22)) € GP(VE L, )+ Y qZIqlGP ("),

g, (0")<cy

S G0, bL,) € GP(fonbl) + Y qZIglGP@®).

&y (b")<cy
By Theorem 2.10,
f{"”(G“P(o,l ) FU qZ[q]Gup(ohbgz))
Ly (bl 5si=2)<c=2

can be written in the form

GV N+ Y qZglGP (o b+ Y qZIgIGR B,

Ly1(bL,.i=2)<c=2 &i (b7)<cy
Since we have (c3, ..., c;) = L41(bL,,i>2) < ¢>2, we obtain
rCl / AN / /
LJrl(fl.1 O'ilbzz,l) =(c1.¢5,...,¢cp) <e¢

and we have

Liy("i)= (i, (0"),...) < Li1(b,i)=(c1,¢a,...,¢Cq)
because ¢;, (b”) < ¢;. We obtain the claim. O

Using the transition in Theorem 2.23(2) from the Poincaré-Birkhoff—Witt basis
to the dual canonical basis, we obtain the following multiplicity-free result.

Theorem 3.10. Letw € W, i = (iy,....ig) € I(w) and € € {*1}. Forc € 7
and b € B(>w, €), we have

G™(be(c.i)G(b) € GP(VE (D) + Y. qZ[q)G™(D) if e =+1,
Le(bi)<c
G (b)G*(be(c.i)) € GP(VE D)+ Y qZ[g)G™ (D) ife=—
Le(bi)<c
3C2.

Definition 3.11. Let w € W, i = (iy,...,i¢) € [(w) and € € {*1}. We define
maps T<y,e : B(00) = B(Zw, €) and 1>y ¢ : B(00) = B(>w, €) by
TSw,e(b) = bG(LG(b9 i)? i)?
. A* .o A* 1 _—
T>w,e(b) = {Gll 10104, 7" 0y (b) ife=+1,

*A' -.-A' 1 —_— —
011 +07,0i, 0i,(b) ife=—1.
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Proposition 3.12. We have a bijection as sets:
Q= (T<w,e, T>w.e) : B(00) > B(Zw, €) x B(>w, €).

We prove the multiplication property of the dual canonical basis elements between
U, (=w,e) and U, (>w,€).

Theorem 3.13. Letw € W, i = (iy,...,ig) € I(w) and € € {x1}. For b € B(c0),

G (tzw,e(0) G (T2, e D) €GP BY+ Y qZ[gIG™ () if e=+1,
Le(b,i)<Le(bii)

G (tou,e(0)GP(t<w (D) €GPD)+ > qZ[glG*™ (D) if e=—1.
Lc(bi)<Le(b,i)

Proof. Since € = —1 can be obtained by applying the *x-involution, it suffices for us
to prove the ¢ = +1 case. We proceed by induction on the length £(w).

First we have
{ei (D)}

11

_e1, (b)

G (b) — G (e ")

{ei, ()}
i

u hi wt(G} b up A u
=GP (b)—(1-g}) MO O Gegrpye Y qZig)GR D).

&iy (b')<si; (B)
By Theorem 3.10, we only have to compute the product
(1—g7)him @B (i OV, GO0 (62 x G (22,11 (B).
We note that
G (T2 11(b)) = (1 = g}) M1 0= OV v (e, 57 0),

where w>, = 54, 54,.
By the induction hypothesis for w>5 =s;, -+ 5;, andi>y = (ip, ... ,ig) € [(w>2),
Gup(a-;; b) —G" (wazz (5’: b))Gup (T>w22 (6':; b))
e > qZlg)G™(b").

Ly (b"iz2)<L4; (&i*l b,i=2)

Applying (1 — ql.z1 )(h"1 w6, b)) T;,, we obtain

G™(01,67b) — G (01, T<ws, (67 5)) G (01, T>w=, (67 b))

€ > q97[q)G* (01,b").
Li1(b"iz2)<Ly (5,-*l b,i>»)
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i (b N L
We note that éfll( )b = 0j 1(7;'; b. Multiplying the second term on the left by

fl.‘iei 1)} we have

{ei, (D)} A o
o Gup(ail T<wx> (Oi#; b))Gup(Uil T>w>> (Oi*; b))

/i
u ~i(b) A u A u
e (7 P01ty (61 0) G (01 ws GID)+ Y aZIIGP ).
iy (b")<eiy (b)

31

Then we obtain

{er, (b)) _ei, (b) . .
S 176 @ B) = G (01, T (67 )) G (01, T (67,)))
zei, (b)
€ ). qZqG™ () + > qZ[q)G™ (f;," i, b").
eiy (b)<ei (b) L1 (0"iz2)<L+41(67 bii=2)

e . .
By the construction, fifll( )Uilfswzz (6/0) = t<w(b) and 0}, T>w., (67 b) =

7>y (b); hence we obtain the claim.

3D. Application. We give a slight refinement of Lusztig’s result [1996, Proposition
8.3] in the dual canonical basis. The following can be shown in a similar manner
using the multiplicity-free property of the multiplications of a triple of the dual
canonical basis elements, so we only state the claims.

Theorem 3.14. Let w be a Weyl group element, i = (iy,...,iy) € I(w) and
p €10, 2] be an integer. We consider the intersection

Uy NTy, s, Uy N5 g, Uy = Uy N Ty e U DU DT U

(1) The subalgebra
— - _1 —
u, n Tsip+1"'si£ u,n Tsz-1~~'sz',, U,
is compatible with the dual canonical basis; that is, there exists a subset
2WU,; NT;

— —1 -
v T Up NTg L, Up') € %(00)

such that
— — _1 —

Uq mTsip+1"'sizg Uq stil"'SipUq - @ Q)G (B).
bez(Uy Ny si,Ua 0 Tﬁll"'Sip uy)
(2) Multiplication in U, (g)uAp defines an isomorphism of free A-modules:

— up — — -1 —\Up
(Ug ippyeeSige D), ®a (U N Ty sy, Uy 0T, Up )y

®4 (Uy (i =i, =1) 5 = Uy
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where

— - -1 —1lryr—
(Uq mTl'zerl"'Tlﬂleq ﬂTip Tzl Uq )UA})

= Uq—(g)”AP NTippy - T3, U7 N Ti;1 ces Til_qu_'
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