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critical exponent p
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1. Introduction

This paper contains the results proved in the author’s doctoral dissertation [Annoni
2010] and referenced by S. Lee and A. Seeger [2015], but yet unpublished in a
mathematical journal. For �;R > 0, let B�R denote the Bochner–Riesz operators
and m� the Fourier multipliers introduced in [Bochner 1936]:

B�R.f /.x/D

Z
Rn

yf .�/m�

�
j�j

R

�
e2�i

�x d�; m�.t/D .1� t
2/�C:

For p < 2, results related to almost everywhere convergence and maximal operators
have been proved by Tao [1998; 2002], Ashurov [1983], and Ahmedov, Ashurov,
and Mahmud [Ashurov et al. 2010]. For p� 2, partial results on almost everywhere
convergence of B�R.f / to f as R !1 have been achieved in [Carbery 1983;
Christ 1985]. Carbery, Rubio de Francia, and Vega [Carbery et al. 1988] obtained
a.e. convergence in the range 2� p < p� and � > 0.
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In this paper, the situation at the critical exponent p
�
D 2n=.n�2��1/ is studied

by considering the modified Bochner–Riesz multipliers m�;

m�; .t/D
.1� t2/�

C

.1� log.1� t2//
;

which were introduced by Seeger [1987]. Seeger [1996] showed that m�; is an
Lp�.R2/ multiplier for  > 1=p0

�
(where 1=p

�
C 1=p0

�
D 1). His results easily

extend to dimensions n � 3 when � � .n� 1/=.2.nC 1// and had already been
proven to be sharp in [Seeger 1987] when nD 2.

In order to investigate for which values of  the means B�;R defined via m�;
converge a.e. for functions in Lp� , we study the maximal operator B�;� . The
following theorem is my main result.

Theorem 1.1. Let 1 < 1C 2� < n and 0 � � < 2 � 2. Then there is a constant
C D C.n; �; ; �/ such that

(1)
Z

Rn
jB
�;
� .f /.x/j2 dx � C

Z
Rn
jf .x/j2 dx

for all f 2 L2.Rn; dx/ and

(2)
Z

Rn
jB
�;
� .f /.x/j2w�;�.x/ dx � C

Z
Rn
jf .x/j2w�;�.x/ dx

for all f 2 L2.Rn; w�;�.x/ dx/, where w�;� D !�;�.jxj/ and

(3) !�;�.t/D

8̂<̂
:

1

t2�C1
if 0 < t � 1;

1

t2�C1.log.et//�
if t > 1:

For .2�C 1/=n < �, we also have Lp� � L2CL2.w�;�/. Hence:

Corollary 1.2. If 1 < 1C 2� < n, f 2 Lp�.Rn/, and  > 1=p0
�
C 1=2, we have

(4) lim
R!1

B
�;
R .f /.x/D f .x/

for almost every x 2 Rn. If f 2 Lp.Rn/ for 2� p < p
�

, then the condition  � 0
suffices for (4) to hold.

When I first proved this result, it was natural to wonder whether the condition
 > 1=p0

�
C 1=2 was sharp. Lee, Rogers, and Seeger [Lee et al. 2014] have since

proved among other things that, if

2.nC1/

n�1
< p <1; n� 2;
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and m 2 B2˛;q , then the maximal operator

Mm.f / WD supt>0
ˇ̌�
yf m.t j � j/

�_ˇ̌
is bounded from Lp;q

0

to Lp. This can be applied to mDm�; to conclude that
the condition  > 1=p0

�
C 1=2 in Corollary 1.2 can be replaced by  > 1=p0

�
, if we

further assume .n� 1/=.2.nC 1// < �.
Lee and Seeger [2015] have gone much further, proving that a.e. convergence of

St .f / WD
�
yf m�; ı �.t. � //

�_
to f (where � is an arbitrary homogeneous “distance” function, that is a homo-
geneous function that satisfies �.�/ > 0 if � 2 Rn n f0g and �.0/ D 0) holds for
every f 2 Lp�;q when q � 1 if and only if  > 1=q0, for all 0 < � < .n� 1/=2.
For q D p

�
and �.�/D j�j, this implies Corollary 1.2. In particular, they proved

that the condition  > 1=q0 is sharp.
The sufficiency of the condition  > 1=q0 in [Lee and Seeger 2015] is presented

as a consequence of a boundedness estimate between appropriate homogeneous
Herz spaces — see [Baernstein and Sawyer 1985; Gilbert 1972] — of a maximal
operator defined via an arbitrary quasiradial multiplier h ı �, provided that h lies in
an appropriate Besov space. A particular case of the same theorem also implies
a characterization of boundedness for certain convolution operators on L2 spaces
that are weighted with power weights. In order to prove the sufficiency of the
condition on  , both of our papers use the approach of [Carbery et al. 1988], to
some extent. However, much of my work is necessary to deal with the weight w�;�,
that isn’t homogenous. The first choice of Lee and Seeger was to keep working
with a homogeneous weight, but to use the observation that, for p > 2, the space
Lp;2 is embedded in L2.jxj�n.1�2=p/ dx/. By sharpening the analysis in [loc. cit.],
this idea would only have yielded their result for q D 2. They solved the problem
for all q by using Herz spaces, embedding theorems, and innovations that were
needed to work with a more general “distance” function � and multiplier h.

The necessity of the condition  >1=q0 starts with the reminder that the operators
St (t > 0) are naturally defined on the Schwartz class S and extended on bigger
spaces by using density. So, they proved that each operator St is continuous
from S — equipped with the Lp�;q norm and topology — to S 0 only if  > 1=q0.

This paper. The proof of Theorem 1.1 follows closely the idea developed in [Carbery
et al. 1988], but accounts for the necessity to work with nonhomogeneous weights.

In Section 2, Theorem 1.1 is reduced to Lemma 2.1, which is in turn reduced to
Lemma 5.2 in Section 5. Lemma 5.2 is proved in Section 6.

In Section 3, an upper bound is given for the Fourier transform of w.1/�;�, which
is w�;� smoothened in a neighborhood of the spherical surface kxk D 1. An
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analytic continuation argument is needed to prove that the upper bound holds for
all 0 < � < .n� 1/=2. This upper bound will be used to prove Lemma 5.2.

In Section 4, a new weight zwN;�;� is exhibited that is comparable to 1=w�;�
and that has an algebraic form needed in the computations of Section 5.

In Section 5, Lemma 2.1 is reduced to Lemma 5.2. Lemma 5.2 contains weighted
Fourier inequalities for the special weight used in this paper. It is crucial that the
“constants” appearing in both such inequalities have a certain functional form with
respect to the parameter t. So, general results such as those in [Benedetto and
Heinig 2003] were not sufficient.

Section 6 contains the proofs of Lemma 5.2 and Corollary 1.2.
We shall refer to [Carbery et al. 1988] for every piece of the proof that doesn’t

differ significantly. Yet, the reader can find more details of the proof contained in
that reference in [Grafakos 2014, Subsection 10.5.2].

2. Reduction of Theorem 1.1 to Lemma 2.1

We will only need to show (2), as the proof of (1) is contained in [Grafakos 2014]
for the case  D 0 (which implies it for all  � 0). Let ',  be smooth functions,
supported in

�
�
1
2
; 1
2

�
and

�
1
8
; 5
8

�
respectively, with values in Œ0; 1�, that satisfy

'.t/C

1X
kD0

 

�
1� t

2�k

�
D 1

for all t 2 Œ0; 1/. Let e1D .1; 0; : : : ; 0/2Rn. We definem�;;00.t/Dm�; .te1/ '.t/
and

(5) m�;;k.t/D 2
k�m�; .te1/ 

�
1� t

2�k

�
; k D 0; 1; 2; : : :

We define zm�;;k , .S�;;k/t , .S�;;k/�, and G�;;k from m�;;k , analogous to how
zmı, Sıt , S

ı
� , and Gı were defined from mı in [Carbery et al. 1988]. Similarly, we

also define . zS�;;k/t , . zS�;;k/�, and zG�;;k by using zm�;;k instead ofm�;;k . For
m�;;k we have the estimate

(6) sup
0�t�1

ˇ̌̌̌
d `

dt`
m�;;k.t/

ˇ̌̌̌
� C�;;`

2k`

k

for all ` 2 ZC[f0g. As in [loc. cit.], these inequalities follow:

kB
�;
� k � k.S�;;00/�kC

1X
kD0

2�k�k.S�;;k/�k;(7)

.S�;;k/�.f /2L2.w�;�/ � 2kC1G�;;k.f /L2.w�;�/ zG�;;k.f /L2.w�;�/:(8)

By reasoning as in [loc. cit.], one then shows without difficulty that the right-hand
side in (8) can be controlled by the left-hand side of the inequality in the result we
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are about to state:

Lemma 2.1. For k > 4 we haveZ
Rn

Z 2

1

j.S�;;k/a t .f /.x/j
2 dt

t
w�;�.x/ dx � Cn;�;�;;k

Z
Rn
jf .x/j2w�;�.x/ dx

for all a > 0 and for all functions f in L2.w�;�/, with

Cn;�;�;;k D Cn;�;�;
2k.2��1/

k2��
:

We need not to worry about k � 4 because it is easily verified that w�;� is an A2
weight under the conditions of Theorem 1.1 and therefore

k.S�;;k/�.f /k
2
L2.w�;�/

<1

for every k. Inequality (8) and Lemma 2.1 then imply:

(9)
.S�;;k/�L2.w�;�/!L2.w�;�/ � C 0.n; �; /� 22k�

k2��

�1=2
:

So, the right-hand side of (7) is finite if � < 2 � 2. Theorem 1.1 is now proved
modulo Lemma 2.1.

3. An upper bound for j yw�;�j

The main result of this section will be used in Section 6. Let � 2 C1.R/ satisfy
0� � � 1, supp.�/�

�
9
10
; 11
10

�
, � � 1 on

�
19
20
; 21
20

�
. Now define

(10) !
.1/
�;�.t/D !�;�.t/

�
1� �.t/

�
C �.t/:

and w.1/�;�.x/D!
.1/
�;�.jxj/ for all x 2Rnnf0g. Then w.1/�;� is smooth on Rnnf0g and

w
.1/
�;���;� w�;�; that is, w.1/�;�.x/ and w�;�.x/ are comparable with comparability

constant depending on � and � only. The goal of this section is to prove this result:

Theorem 3.1. Let w�;� and w.1/�;� be defined as above. Then for every � satisfying
n�1
4
< � < n�1

2
and every �� 0 there exists a constant Cn;�;� such that

(11) j yw�;�.�/j ���;�.�/ WD

8̂̂<̂
:̂
Cn;�;�

1

j�jn�2��1
�
log e
j�j

�� if j�j � 1;

Cn;�;�
1

j�jn�2��1
if j�j � 1;

and, for all � satisfying 0< �< n�1
2

and � as above, there exists a constant C 0
n;�;�

such that

(12) j yw
.1/
�;�.�/j � C

0
n;�;���;�.�/

for all � 2 Rn n f0g.
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Proof. We begin with the proof of (11) As w�;� is radial, its Fourier transform is
given by

yw�;�.�/D
2�

j�j
n�2
2

Z 1
0

!�;�.r/ Jn�2
2
.2�j�jr/ r

n
2 dr;

where Jk denotes the k-th Bessel function. It is well known — see [Watson 1944] —
that jJk.r/j �Ck rk when r � 2� and jJk.r/j �Ck r�

1
2 when r � 2� . We control

j yw�;�.�/j in two cases:

Case 1: 1
j�j
� 1. Then

j yw�;�.�/j � Cn

�Z 1
j�j

0

r�2��1C
n�2
2
Cn
2 dr

�
C

Cn

j�j
n�1
2

�Z 1

1
j�j

r�2��1�
1
2
Cn
2 dr

�

C
Cn

j�j
n�1
2

�Z 1
1

r�2��1�
1
2
Cn
2

.log.er//�
dr

�
:

Case 2: 1
j�j
� 1. Then

j yw�;�.�/j � Cn

�Z 1

0

r
n�2
2
Cn
2
�2��1 dr

�
CCn

�Z 1
j�j

1

1

.log.er//�
r
n�2
2
Cn
2
�2��1 dr

�
C

Cn

j�j
n�1
2

�Z 1
1
j�j

1

.log.er//�
r�

1
2
Cn
2
�2��1 dr

�
:

If � > n�1
4

and � < n�1
2

, all integrals converge and (11) easily follows by using
calculus.

The same holds with w�;� replaced by w.1/�;� and the proof is almost identical.
Then, an analytic continuation argument and the smoothness of w.1/�;� can be used
to prove that (12) holds in the bigger range 0 < � < n�1

2
. The argument involves

many details that we omit but that may be split in two pieces.
In the first one, given any �0 2

�
0; n�1

4

�
, we use more asymptotic estimates of

the Bessel functions — see [Watson 1944] — and iterated integration by parts to
rewrite the right-hand side of

(13) yw
.1/
�;�.�/D

2�

j�j
n�2
2

Z 1
0

!
.1/
�;�.r/Jn�2

2
.2�j�jr/r

n
2 dr

in a way that also is well defined when � ranges in a complex neighborhood O�0 of
the real interval

�
�0; n�1

2

�
. We can call such extension Qu�;�.�/, and show that

j Qu�;�.�/j � C
0
n;�;���;�.�/;

as in (12).
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In the second one, for the same value of �0 and the same neighborhood O�0 , we
use the dominated convergence theorem to prove that, for a given test function '
defined on Rn, the right-hand side of

(14)
Z

Rn
y'.�/w

.1/
�;�.�/ d� D

Z
Rn
'.�/ Qu�;�.�/ d�;

rewritten after the first piece of the argument, is holomorphic, hence analytic, on
O�0 . It can be proved easily that the left-hand side of (14) is also analytic on O�0 .
Since (14) holds when � 2

�
n�1
4
; n�1
2

�
, we conclude from the analytic continuation

theorem that (14) also holds when � 2
�
�0; n�1

2

�
. Then yw.1/�;� D Qu�;�, since ' is

arbitrary. The arbitrariness of �0 concludes the proof. �

4. A useful weight comparable to 1=w�;�

In this section we show that 1=w�;� is comparable to another weight which can be
written in a more useful way for our purposes, a fact that will be used in the next
section. More precisely, let u�;� and zwN;�;� be defined by:

u�;�.y/D

�
jyj�n�2��1

�
log e
jyj

�� if jyj< 1;
jyj�n�2��1 if jyj � 1:

(15)

zwN;�;�.x/D

Z
Rn
jeihx;yi� 1jNu�;�.y/ dy;(16)

where N is a large enough integer independent of x.
The goal of this section is to prove that there exist constants C1;n;�;�;N and

C2;n;�;�;N such that

(17)
C1;n;�;�;N

w�;�.x/
� zwN;�;�.x/�

C2;n;�;�;N

w�;�.x/

for all x 2 Rn n f0g. Let us write zwN;�;� D zwN;�;�;1C zwN;�;�;2, where

zwN;�;�;1.x/D

Z
jyj� 1

jxj

jeihx;yi� 1jNu�;�.y/ dy;(18)

zwN;�;�;2.x/D

Z
jyj> 1

jxj

jeihx;yi� 1jNu�;�.y/ dy:(19)

Observe that in (18),

(20) C1jhx; yij � je
ihx;yi

� 1j � jxj jyj

for an absolute constant 0 < C1 < 1. Now, we estimate zwN;�;�;1.
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Case 1: 1
jxj
� 1. Given a positive constant C > 0, in view of (20),

zwN;�;�;1.x/D

Z
jyj� 1

jxj

jeihx;yi� 1jN jyj�n�2��1
�

log e

jyj

��
dy

� CC;N

Z
�.x/

jxjN jyjN jyj�n�2��1
�

log e

jyj

��
dy

D Cn;C;N jxj
N jS

n�1j

e2�C1�N

Z 1
ejxj

s2��N .log s/� ds;

where �.x/ D
˚
y W jyj � 1

jxj
and C �

ˇ̌˝ x
jxj
; y
jyj

˛ˇ̌	
. In order for this integral to

converge, we need N > 2�C 1. Later we will also need N to be even. So, we set
N DN� WD2d2�C1e. It easily follows that there exist constantsCn;�;N andC�;�;N
such that zwN;�;�;1.x/� Cn;�;N =w�;�.x/ for all x 2 Rn satisfying jxj � C�;�;N .
An easier computation and (20) yield zwN;�;�;1.x/ � C 0n;�;N =w�;�.x/ in Case 1
for all x 2 Rn satisfying jxj � C�;�;N . So, on fx 2 Rn W jxj � maxf1; C�;�;N gg
we have

(21) zwN;�;�;1 �n;�;N 1=w�;�

Case 2: 1
jxj
> 1. Let us use the decomposition zwN;�;�;1.x/D I C II, where

I D

Z
jyj�1

jeihx;yi� 1jN jyj�n�2��1
�

log e

jyj

��
dy �n;�;�;N jxj

N;

II D

Z
1<jyj� 1

jxj

jeihx;yi� 1jN jyj�n�2��1 dy �n;�;N jxj
2�C1;

This proves that

(22) zwN;�;�;1.x/�n;�;�;N jxj
N
Cjxj2�C1 �n;�;N jxj

2�C1
D

1

w�;�.x/

on fx 2 Rn W jxj � 1g. If C�;�;N � 1, then relations (21) and (22) immediately
imply that zwN;�;�;1 �n;�;�;N 1=w�;� on Rn. Otherwise, just observe that both
functions zwN;�;�;1 and 1=w�;� are positive and continuous on the compact annulus
1 � jxj � C�;�;N . We still have to show that zwN;�;�;2 �n;�;�;N 1=w�;�. Let us
define

(23) zzw�;�;2.x/D

Z
jyj> 1

jxj

u�;�.y/ dy:

Then

(24) zwN;�;�;2.x/� 2
N zzw�;�;2.x/:
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We will prove that the inverse inequality also holds (with a constant different from
2N ), so that we have zzw�;�;2 �N;�;�;n zwN;�;�;2. Now, let us prove that

zzw�;�;2 �N;�;�;n 1=w�;�:

Case 1: 1
jxj
> 1. Then:

zzw�;�;2.x/D
jSn�1j

2�C 1
jxj2�C1 ��;n jxj

2�C1
D

1

w�;�.x/
:

Case 2: 1
jxj
� 1. Then:

zzw�;�;2.x/D Cn;�C
jSn�1j

e2�C1

Z ejxj

e

t2�.log t /� dt

��;�;n jxj
2�C1 .log.ejxj//� D 1

w�;�.x/
:

This concludes the proof that zzw�;�;2 ��;�;n 1=w�;� on Rn n f0g. Now we need
to prove that there exists a constant CN;�;�;n such that the inequality

zzw�;�;2 � CN;�;�;n zwN;�;�;2

holds on Rn n f0g. Since both zzw�;�;2 and zwN;�;�;2 are radial, it will be enough to
prove that the functions t 7! zwN;�;�;2.te1/ and t 7! zzw�;�;2.te1/ are comparable on
RC, where e1D .1; 0; : : : ; 0/. Observe that jeihte1;yi�1j>

p
2 onGt WD

S
k2ZG

t
k

,
where

Gtk WD

�
y 2 Rn W he1; yi 2

�
.4kC 1/�

2t
;
.4kC 3/�

2t

��
for all t > 0 and k 2 Z. Therefore u�;�.y/�N jeihte1;yi� 1jNu�;�.y/ on Gt. In
particular, there exists a constant CN such thatZ

Gt
u�;�.y/ dy � CN

Z
Gt
jeihte1;yi� 1jNu�;�.y/ dy:

If t > 0 and k 2 Z n f0g we define

Rtk WD

�
y 2 Rn W he1; yi 2

�
.4k� 1/�

2t
;
.4kC 1/�

2t

��
and

Rt0 WD

�
y 2 Rn W he1; yi 2

�
��

2t
;
�

2t

�
and jyj> 1

t

�
:

As Z
Rt
k

u�;�.y/ dy �

Z
Gt
k�1

u�;�.y/ dy

for all k 2 ZC, and Z
Rt
k

u�;�.y/ dy �

Z
Gt
k

u�;�.y/ dy
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for all k 2 Z�, we also haveZ
S
k2Znf0gR

t
k

u�;�.y/ dy �

Z
Gt
u�;�.y/ dy � CN

Z
Gt
jeihte1;yi� 1jNu�;�.y/ dy:

Since �
y W jhe1; yij>

�

2t

�
DGt [

[
k2Znf0g

Rtk;

we have Z
jhe1;yij>

�
2t

u�;�.y/ dy � 2CN

Z
jyj> 1

t

jeihte1;yi� 1jNu�;�.y/ dy:

Since u�;� is radial, we can replace e1 by ej in the inequality above for j D2; : : : ; n.
Let jyj1 WD sup1�j�njhej ; yij. Then

(25)
Z
fy2RnW jyj1>

�
2t
g

u�;�.y/ dy � 2nCN

Z
jyj> 1

t

jeihte1;yi� 1jNu�;�.y/ dy:

Inequality (25) and the Lemma 4.1 easily imply — see (19) and (23) for details —
that zzw�;�;2.te1/� Cn;�;�;N � zwN;�;�;2.te1/.

Lemma 4.1. Let u�;� be as in (15). Then, for all n 2 ZC, � 2 R, and C > 1

there exists a constantDDD.n; �; C / 2R such that u�;�
� y
C

�
�Du�;�.y/ for all

y 2 Rn n f0g. We can choose D D C nC2�C1 .log.eC //�.

The proof of Lemma 4.1 is left to the reader. This completes the proof that
zwN;�;�;2 �n;�;�;N

1
w�;�

on Rn n f0g and therefore the proof of (17), that is the
claim of this section.

5. Reduction of Lemma 2.1 to Lemma 5.2

By duality, the inequality in Lemma 2.1 can be expressed as

(26)
Z 2

1

.S�;;k/at .h.t; � //.x/
dt

t


L2. dx

w�;�.x/
/

� Ckh.t; x/kL2.dt
t

dx
w�;�.x/

/

for all functions h.t; x/ in the appropriate space, where

C D Cn;�;�;;k D

r
Cn;�;�;

2k.2��1/

k2��
:

In view of the result of Section 4, for every f 2 L2
�
Rn; 1

w�;�

�
,

(27) kf k2
L2. dx

!�;�.jxj/
/
�

Z
Rn

Z
Rn
u�;�.y/

ˇ̌̌̌
ˇ
 
N�=2X
jD0

yf .gj;y.�//bj

!ˇ̌̌̌
ˇ
2

dy d�;
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where

gj;y.�/D

�
� �

�
N�=2� j

2�

�
y

�
; bj D .�1/

j

 
N�=2

j

!
;

Plancherel’s identity was used, and the implicit comparability constants depend
on �;�; n only. We can substitute the left-hand side of (26) by using (27) on the
function

f .x/D

Z 2

1

.S�;;k/at .h.t; � //.x/
dt

t
:

For such a function we have

(28)

ˇ̌̌̌
ˇ
 
N�=2X
jD0

yf .gj;y.�//bj

!ˇ̌̌̌
ˇ
2

D

ˇ̌̌̌
ˇ
Z 2

1

 
N�=2X
jD0

yh.t; gj;y.�//m�;;k.at jgj;y.�/j/bj

!
dt

t

ˇ̌̌̌
ˇ
2

:

Since m�;;k is supported in
�
1� 5

8�2k
; 1� 1

8�2k

�
, the Cauchy–Schwarz inequality

in the t variable allows us to control the right-hand side of (28) by

C�

2k

Z 2

1

ˇ̌̌̌
ˇ
N�=2X
jD0

yh.t; gj;y.�// �m�;;k.a t jgj;y.�/j/bj

ˇ̌̌̌
ˇ
2

dt

t
DWHk;�; .y; �/:(29)

So, if we can show

(30)
Z

Rn

Z
Rn
u�;�.y/Hk;�; .y; �/ dyd� � C

2k.2��1/

k2��
kh.t; x/k2

L2.dt
t

dx
!�;�.jxj/

/

for a constant C WD Cn;�;�; , then (26) is proved. But (30) follows from the
following pointwise (with respect to t ) estimate:

(31) k.S�;;k/t .h/.x/k
2

L2. dx
!�;�.jxj/

/
� Cn;�;�;

22k�

k2��
khk2

L2. dx
!�;�.jxj/

/

if (31) holds for all t > 0 rather than just t 2 Œ1; 2� (which allowed us to drop
the parameter a), and for all h 2 L2

�
Rn; dx=w�;�.x/

�
. In order to see that (31)

implies (30), just use (27) with f .x/D
�
yh. � /m�;;k.t j � j/

�_
.x/D .S�;;k/t .h/.x/,

to rewrite the left-hand side of (31).
By duality, (31) is equivalent to

(32) k.S�;;k/t .h/k
2
L2.w�;�/

� Cn;�;�;
22k�

k2��
khk2

L2.w�;�/

for all h 2 L2.w�;�.x/ dx/, t > 0. So, the latter also yields the inequality in
Lemma 2.1 for every f in the appropriate space and every a > 0. We now need to
prove (32).
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We denote by .K�;;k/t .x/ the kernel of the operator .S�;;k/t , i.e., the inverse
Fourier transform of the multiplier m�;;k.t j � j/. .K�;;k/t is radial on Rn, and it
is convenient to decompose it radially as

.K�;;k/t D .K�;;k/
.0/
1 C

1X
jD1

.K�;;k/
.j /
t ;

where

.K�;;k/
.0/
1 .x/D .K�;;k/t .x/ �.2

�.kC3/x=t/;

.K�;;k/
.j /
t .x/D .K�;;k/t .x/

�
�.2�.jCkC3/ x=t/� �.2�.kC2Cj / x=t/

�
;

for some radial smooth function � supported in the ball B.0; 2/ and equal to one
on B.0; 1/.

To prove estimate (32) we make use of the subsequent lemmas.

Lemma 5.1. For all M � 2n there is a constant C�;;k;M D C�;;k;M .n; �/ such
that for all j D 0; 1; 2; : : : ,

(33) sup
�2Rn
j
3.K�;;k/.j /t .�/j � C�;;M

2�jM

k

and also

(34) j
3.K�;;k/.j /t .�/j � C�;;M

2�.jCl/M

k

whenever
ˇ̌
t j�j � 1

ˇ̌
� 2l�k�3 and l � 4. Also,

(35) j
3.K�;;k/.j /t .�/j � C�;;M

2�.jCkC3/M

k
.1C t j�j/�M

whenever jt �j � 1
8

or jt �j � 15
8

.

Proof. The proof for t D 1 follows the lines of the proof of Lemma 10.5.5 in
[Grafakos 2014, p. 413]. Just observe that estimate (10.5.9) in p. 409 of that
reference is now replaced by (6), which explains why the factor 1=k appears. The
general case (any t > 0) is straightforward in view of the fact that

3.K�;;k/.j /t .�/D
3
.K�;;k/

.j /
1 .t �/: �

Lemma 5.2. The inequalities

(36)
Z
jjt �j�1j< "

j yf .�/j2 d� � Cn;�;�!�;�.t/"

Z
Rn
jf .x/j2

dx

w�;�.x/

and

(37)
Z

Rn
j yf .�/j2

d�

.1Cjt�j/M
� Cn;�;�;M !�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/
;

hold for all Schwartz functions f, t > 0, M � 2n, all 0 < " < 2, �, and � as in
Theorem 1.1.
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The proof of Lemma 5.2 is postponed to Section 6.
By reasoning as in [Grafakos 2014, p. 414] and using the estimates in Lemmas 5.1

and 5.2 instead of those in Lemma 10.5.5 in [op. cit., p. 413] and Lemma 10.5.6 in
[op. cit., p. 414], we can prove

(38)
Z

Rn
j..K�;;k/

.j /
t �f /.x/j

2 dx � C
2�2jM

2k k2
!�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/

for another constant C D Cn;�;�;;M . By duality, this is equivalent to

(39)
Z

Rn
j..K�;;k/

.j /
t �f /.x/j

2w�;�.x/ dx � C
2�2jM

2k k2
!�;�.t/

Z
Rn
jf .x/j2 dx:

Given a Schwartz function f, we write

f0 D f�Q.n;k;j;t/0

;

whereQ.n;k;j;t/0 is a cube centered at the origin of side lengthCn2jCkC4 t (note that
supp .K�;;k/

.j /
t �B.0; 2

jCkC4 t /). Then for x 2Q.n;k;j;t/0 we have the inequality

jxj �
p
nCn2

jCkC4 t I

hence, (39) implies

(40)
Z

Rn
j..K�;;k/

.j /
t �f0/.x/j

2w�;�.x/ dx

� Cn;�;�;;M
2�2jM

2k k2

!�;�.t/

!�;�.
p
nCn2

jCkC4 t /

Z
Q
.n;k;j;t/
0

jf0.x/j
2w�;�.x/ dx

because the function 1=!�;� is increasing. A simple computation shows that

(41) sup
t>0

!�;�.at/

!�;�.t/
D

1

a2�C1
and sup

t>0

!�;�.at/

!�;�.t/
D
.log.e=a//�

a2�C1

if a > 1 and if a � 1, respectively. Therefore, for all j and k such that j Ck � C 0n
for a suitable purely dimensional constant C 0n,

sup
t>0

!�;�.t/

!�;�.
p
nCn2jCkC4 t /

� C 00n;�;�2
.jCk/.2�C1/.j�C k�/;(42)

where we used the hypothesis on j and k and the fact that

.j C k/� � C�.j
�
C k�/:

It follows from (42) and (40) that
R

Rn
j..K�;;k/

.j /
t �f0/.x/j

2w�;�.x/ dx is bounded
by

C 2j.2�C1�2M/ 2
2k�

k2
.j�C k�/

Z
Q
.n;k;j;t/
0

jf0.x/j
2w�;�.x/ dx;
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for C D Cn;�;�;;M , provided that

(43) j C k � C 0n:

Now write Rn nQ
.n;k;j;t/
0 as a mesh of cubes Q.n;k;j;t/i , indexed by i 2 Z n f0g, of

side lengths Cn2jCkC4 t (the same side length of Q.n;k;j;t/0 ) and centers cQi . By
using (33), reasoning as in [Grafakos 2014, p. 415] as well as simply noting that
22k�.j�C k�/� 1, we can find that the piecesZ

Rn
j..K�;;k/

.j /
t �fi /.x

0/j2w�;�.x
0/ dx0

are bounded by

C�;�;;M 2
�2jM 22k�

k2
.j�C k�/

Z
Q
.n;k;j;t/

i

jfi .x/j
2w�;�.x/ dx

whenever fi is supported in Q.n;k;j;t/i and, in turn, that

(44) k.K�;;k/
.j /
t �f kL2.w�;�/

� C 00n;�;�;;M 2
j.�C 1

2
�M/ 2

k�

k
.j

�
2 C k

�
2 /kf kL2.w�;�/

(in view of the argument in [Grafakos 2014]). Observe that condition (43) is satisfied
if we assume k � C 0n, which we can as the convergence of (7) only depends on the
estimates we have for k big enough. So, for k � C 0n, by using (44) and summing
over j D 0; 1; 2; : : : , we deduce (32) if we just choose M > n=2 (remember that
n > 2�C 1). In turn, (32) is equivalent to (31), which is equivalent to (26), which
is equivalent to the inequality in Lemma 2.1. Therefore, this completes the proof of
the lemma, modulo Lemma 5.2

6. Proof of Lemma 5.2

6.1. Proof of inequality (36). We reduce estimate (36) by duality to

(45)
Z

Rn
jyg.�/j2w�;�.�/ d� � Cn;�;�!�;�.t/"

Z
jjt xj�1j�"

jg.x/j2 dx

for functions g supported in the annulus
ˇ̌
jt xj � 1

ˇ̌
� ". In Section 3 we observed

that

w�;� ��;� w
.1/
�;�

and proved in Theorem 3.1 that the function j yw.1/�;�j is bounded by a scalar multiple
of ��;� (see (12)) in the whole range � 2 .0; .n� 1/=2/. Therefore, we can start
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to prove (45) as follows:

(46)
Z

Rn
jyg.�/j2w�;�.�/ d� ��;�

Z
Rn

�
yg yg
�_
.x/ yw

.1/
�;�.x/ dx

� Cn;�;�

Z
Rn
.jgj � j Qgj/.x/��;�.x/ dx

D Cn;�;�

“
jjt yj�1j�"

jjt xj�1j�"

jg.x/jj Qg.y/j��;�.x�y/ dxdy

� Cn;�;�B.n; �; �; "; t/kgk
2
L2

where zg.x/D g.�x/ and

(47) B.n; �; �; "; t/D
1

tn
sup

fxWjjxj�1j�"g

Z
jjyj � 1j�"

�t�;�.y � x/ dy;

where�t
�;�
.x/ WD��;�.x=t/. The last inequality of (46) is proved by interpolation

between the L1.S/ ! L1.S/ and L1.S/ ! L1.S/ estimates for the linear
operator

L�;�;t;".g/.x/D

Z
S

g.y/��;�.y � x/ dy;

where

S D
˚
y 2 Rn W

ˇ̌
jt yj � 1

ˇ̌
� "

	
;

using the Cauchy–Schwarz inequality. It remains to establish that

(48) B.n; �; �; "; t/� Cn;�;�!�;�.t/":

Then we reason as in [Grafakos 2014, pp. 417, 418]: we apply a rotation and
a change of variable to the integrals in (47) to push the dependence on x to the
domain of integration, then control the supremum in (47) by integrating ��;� over
the bigger set ˚

y W
ˇ̌
jy � e1j � 1

ˇ̌
� 2"

	
;

finally we split this latter integral over the sets S0; S`; S� defined in [op. cit.] to be

S0 D
˚
y 2 Rn W

ˇ̌
jy � e1j � 1

ˇ̌
� 2"; jyj � "

	
;

S` D
˚
y 2 Rn W

ˇ̌
jy � e1j � 1

ˇ̌
� 2"; `"� jyj � .`C 1/"

	
;

S� D
˚
y 2 Rn W

ˇ̌
jy � e1j � 1

ˇ̌
� 2"; jyj � 1

	
:
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In the end, matters reduce to proving the estimatesZ
S0

�t�;�.y/ dy � C
0
n;�;� t

n!�;�.t/"
2�C1;(49)

Œ 1
"
�C1X
`D1

Z
S`

�t�;�.y/ dy � C�;� t
n"!�;�.t/;(50) Z

S�

�t�;�.y/ dy � Cn"!�;�.t/t
n:(51)

In proving the inequalities above, we can assume without loss of generality
that t � 2, because when t < 2 the proof of Lemma 5.2 is an immediate consequence
of Lemma 10.5.6 in [op. cit., p. 414]. We can also assume that t � Cn;�;�, due to
the compactness of Œ2; Cn;�;�� and the continuity and positivity of the functions
involved. For a suitable constant Cn;�;� and t �maxf2; Cn;�;�g, (49) is proved by
using calculus (note that the integrand in (49) is radial and the domain of integration
is a sphere); (50) is proved by using the maximum of the integrand over each set S`,
then by comparing the sum with an integral, finally by using calculus to estimate
the integral; (51) is proved by using the maximum of the integrand over S�. The
condition that t � 2 > " was used in both (49) and (50) and (41) was used in (51).

By combining estimates (49), (50), and (51), we obtain (48). This concludes the
proof of (45) and, therefore, of (36). �

6.2. Proof of inequality (37). Inequality (37) is already known for t � 1; see
equation (10.5.22) in [Grafakos 2014, p. 414]. Indeed, if 0 < t � 1 then !�;�.t/D
1=t2�C1, and (37) follows by dilation from the case tD1, the one shown in [op. cit.].
For t > 1 define:

At1 D
n
� 2 Rn W j�j �

1

t

o
; At2 D

n
� 2 Rn W

1

t
< j�j �

2C
p
t

t

o
;

At3 D
n
� 2 Rn W

2C
p
t

t
< j�j �

2Ct

t

o
; At4 D

n
� 2 Rn W

2Ct

t
< j�j

o
:

We will prove (37) by proving that

(52) Ij WD

Z
At
j

j yf .�/j2
1

.1Cjt �j/M
d� � Cn;�;�;M !�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/

for each j D 1; 2; 3; 4. For j D 1, first observe that 1=.1Cjt �j/M �M 1 on At1
and then argue as in the proof of (36), at the beginning of this section. By duality,
we reduce (52) with j D 1 to

(53)
Z

Rn
j yf .�/j2w�;�.�/ d� � Cn;�;�!�;�.t/

Z
At1

jf .x/j2 dx
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for all functions f supported in the ball At1. By proceeding as in (46), we can prove
that Z

Rn
j yf .�/j2w�;�.�/ d� � B

0.n; �; �; t/kf k2
L2

for every f supported in At1, where B 0.n; �; �; t/, now, is defined by

(54) B 0.n; �; �; t/D sup
fxWjxj� 1

t
g

Z
jyj� 1

t

��;�.y � x/ dy

D
1

tn
sup

fxWjxj�1g

Z
jyCxj�1

��;�

�
y

t

�
dy

and all we still need to show is that

(55) B 0.n; �; �; t/� Cn;�;�!�;�.t/:

Since jxj � 1 and jxCyj � 1 we have jyj � 2. So, (55) is a consequence of

(56)
1

tn

Z
jyj�2

��;�

�
y

t

�
dy � Cn;�;�!�;�.t/;

which can be proved similarly to (49).
When j D 2, we use

(57) I2 �

d
p
teX

`D0

1

.2C `/M

Z
1C`
t
<j�j� 2C`

t

j yf .�/j2 d�:

Next, we apply estimate (36) on each of the latter integrals. We are already assuming
that t > 1. Since !�;�.t/��;�;J 1 on any compact subinterval J of .0;1/, we
can in fact assume t � 3. Now we control the right-hand side of (57) with

(58) Cn;�;�

d
p
t eX

`D0

1

.2C `/M
!�;�

�
2t

3C 2`

�
1

3C 2`

Z
Rn
jf .x/j2

dx

w�;�.x/

� Cn;�;�;M !�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/
;

provided M > 2�C 1. This proves that (52) holds for j D 2.
If j D 3 then .2C

p
t /=t < j�j, which implies that

1

.1Cjt �j/M
�

1

.3C
p
t /M

:

Then apply (36). Observe that, as long as t > 1, we have that the quantity Qt that
now plays the role of t in (36) is bounded above and below by absolute constants,
so !�;�.Qt /��;� 1. In addition, for t in the same range, we have Q"� 1 (Q" being the
quantity that now plays the role of " in (36)). These considerations imply that
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(59) I3 �
1

.3C
p
t /M

Z
2C
p
t

t
<j�j� 2Ct

t

j yf .�/j2 d�

� C 0n;�;�
1

.3C
p
t /M

Z
Rn
jf .x/j2

dx

w�;�.x/

� C 00n;�;�;M !�;�.t/

Z
Rn
jf .x/j2

dx

w�;�.x/
;

last inequality holding for a suitable constant C 00
n;�;�;M

, provided that M > 4�C2.
It only remains to prove (52) with j D 4. We have

(60) I4 �

1X
`DbtcC1

Z
1C`
t
<j�j� 2C`

t

j yf .�/j2
1

.1Cjt �j/M
d�:

Again, we apply (36) to the integral in the last term of (60), which is therefore
controlled by

Cn;�;�

1X
`DbtcC1

1

.2C `/M
1�

2t
3C2`

�2�C1 1

.3C 2`/

Z
Rn
jf .x/j2

dx

w�;�.x/

� Cn;�;�;M
1

t2�C1

Z
Rn
jf .x/j2

dx

w�;�.x/

1

.1C t /M�2��1
;

which yields the desired inequality, provided that M > 2�C 1. By choosing any
M > 4�C 2 (as required after (59)), we conclude the proof of (37) and of the
claimed statement.

Proof of Corollary 1.2. The proof in [Carbery et al. 1988] can be used with m�;
instead of m�1 to account for the case where  � 0 and 2� p < p

�
. When p D p

�

and  > 1=p0
�
C1=2, values of � satisfying .2�C1/=n<�<2�2 exist. For such

�, since 1 < 1C 2� < n, we can use Theorem 1.1. Since (4) trivially holds for all
f 2 S, the boundedness of B�;� implies that it also holds for every f 2L2.Rn; dx/
and every f 2L2.Rn; w�;�/. But then it must hold for every f 2L2CL2.w�;�/.
Since .2�C 1/=n < � we have Lp� � L2CL2.w�;�/, concluding the proof. �
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