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We use the theory of Auslander–Buchweitz approximations to classify certain
resolving subcategories containing a semidualizing or a dualizing module. In
particular, we show that if the ring has a dualizing module, then the resolving
subcategories containing maximal Cohen–Macaulay modules are in bijection
with grade consistent functions and thus are the precisely the dominant re-
solving subcategories.
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1. Introduction

Classifying various types of subcategories of mod(R) and D(R) for a commutative
ring R has been the subject of much recent research. These classifications are
intrinsically connected to spec R or some other topological space. For instance, the
Hopkins–Neeman theorem [Hopkins 1987; Neeman 1992] and Gabriel’s theorem
[1962] give a bijection between the Serre subcategories of mod(R), the thick
subcategories of perfect complexes, and the specialization closed subsets of spec R.
Another example is the work regarding the classification of thick subcategories of
mod(R) such as in [Takahashi 2010; Stevenson 2014b].

Recently, much attention has been given to classifying the resolving subcate-
gories of mod(R). The study of resolving subcategories began with Auslander and
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Bridger’s influential work [1969] where they define the category of Gorenstein
dimension zero modules, which we denote by GDZ. Also, they generalize the notion
of projective dimension by defining Gorenstein dimension through approximations
of Gorenstein dimension zero modules. In their paper, they also prove that GDZ
has certain homological closure properties which cause Gorenstein dimension
to behave similarly to projective dimension. They then take these homological
closure properties of GDZ as the definition of resolving subcategories. We can
take dimension with respect to a resolving subcategory, and, as in the case of GDZ,
these homological closure properties force this dimension function to also behave
similarly to projective dimension. See Section 2 for further exposition.

The classification of resolving subcategories was advanced by Dao and Takahashi
in [2015], where they give a bijection between the set of resolving subcategories of
the category of finite projective dimension modules and the set of grade consistent
functions. A function f :spec R→N is called grade consistent if it is increasing (as a
morphism of posets) and f (p)≤grade(p) for all p∈ spec(R). This result motivated
the author to find other situations where a similar bijection exists, furthering the use
of grade consistent functions in classifying resolving subcategories. Before the work
of Dao and Takahashi, Takahashi [2013] classified, over Cohen–Macaulay rings, re-
solving subcategories closed under tensor products and Auslander transposes, and in
[2011] he classified the contravariantly finite resolving subcategories of a Henselian
local Gorenstein ring. Takahashi [2009] also studied resolving subcategories which
are free on the punctured spectrum. Auslander and Reiten [1991] discovered a
connection between resolving subcategories and tilting theory, and they classified
all the contravariantly finite resolving subcategories using cotilting bundles. After
the work of Dao and Takahashi, the resolving subcategories of the category of finite
projective dimension modules were also classified in [Angeleri Hügel et al. 2014] in
terms of descending sequences of specialization closed subsets of spec R, and were
also classified in [Angeleri Hügel and Saorín 2014] in terms of certain t-structures.

In this paper, we assume that R is commutative and Noetherian, and we consider
only finitely generated modules. Let P denote the category of projective modules
and 0 the set of grade consistent functions. For categories M,X ⊆ mod(R)
and f ∈ 0, we define

3M( f )= {X ∈mod(R) | addMp-dim Xp ≤ f (p) for all p ∈ spec R}
and

8M(X ) : spec R→ N,

p 7→ sup {addMp-dim Xp | X ∈ X },

where addMp is the smallest subcategory of mod(Rp) closed under direct sums
and summands and containing Mp for every M ∈M, and where addMp-dim Xp is
the smallest resolution of Xp by objects in addMp. Let R denote the collection of
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resolving subcategories of mod(R). Set 1(M)= {X ∈mod(R) |M-dim X <∞}
for any M⊆mod(R), and let R(M) be the collection of resolving subcategories X
such that M ⊆ X ⊆ 1(M). Using our new notation, we can restate Dao and
Takahashi’s result [2015].

Theorem 1.1. When R is Noetherian,

R(P)
3P //

0
8P

oo

is a bijection, where 3P and 8P are inverses of each other.

Our first main result is Theorem 4.2, which is the following. Note that throughout
this paper, all thick subcategories contain R.

Theorem A. Let 9 be a set of increasing functions from spec R to N. Suppose
A⊆M such that A cogenerates M and addAp is thick in addMp for all p∈ spec R.
Define ηMA :R(A)→R(M) by ηMA (X )= res(X ∪M) and ρM

A :R(M)→R(A)
by setting ρM

A (X )=1(A)∩X . If 8A and 3A are inverses of each other giving a
bijection between R(A) and 9, then we have the commutative diagram

R(M)
8M

&&
9

R(A)
8A

88ηMA

OO

where 8M is bijective with 3M its inverse. Moreover, ρM
A is the inverse of ηMA .

This result allows us to extend the bijection from [Dao and Takahashi 2015] to a
plethora of categories. We use it to prove the following result which is essentially
Theorem 8.5. Note that GC is the category of totally C-reflexive modules where C
is a semidualizing module: see Definition 3.1 and Definition 3.4. Define, ρN

M and
ηNM similarly to ρM

A and ηMA .

Theorem B. For any thick subcategory M of GC containing C, 3M and 8M give
a bijection between R(M) and 0. Furthermore, let S denote the collection of thick
subcategories of GC containing C. The following is a bijection:

3 :S×0 −→
⋃

M∈S

R(M)⊆R.
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For any M,N ∈S with M⊆N, then the following diagram commutes:

R(N )
8N

&&
0

R(M)
8M

88ηNM

OO

In particular, ρN
M and ηNM are inverse functions.

These theorems show that the classification of resolving subcategories is in-
trinsically linked to the classification of thick subcategories of totally C-reflexive
modules and hence to the classification of thick subcategories of mod(R), a topic
of current research. See, for instance, [Takahashi 2010; Neeman 1992]. Applying
these results in the Gorenstein case yields Theorem 9.1 which, letting MCM denote
the category of maximal Cohen–Macaulay modules, states

Theorem C. If R is Gorenstein, then we have the following commutative diagram
of bijections:

{Thick subcategories of MCM}×0
3

++
3P

��

{Z ∈R | Z ∩MCM is thick in MCM}

{Thick subcategories of MCM}×R(P)
4

33

where 4(M,X )= res(M∪X ).

Of independent interest, using semidualizing modules, we generalize the famed
Auslander transpose. This generalization is similar to but different from the gener-
alizations in [Geng 2013; Huang 1999].

This paper is organized as follows: Section 2 gives general information about
resolving subcategories, and Section 3 gives pertinent background regarding semi-
dualizing modules. We prove Theorem A in Section 4. In Section 5, we generalize
the Auslander transpose, which we use in Section 6 to classify resolving subcate-
gories which are locally maximal Cohen–Macaulay. In Section 7 we prove a special
case of Theorem B. We prove Theorem B in full generality in Section 8 by examining
the thick subcategories of maximal Cohen–Macaulay modules containing C. In the
last section, these results are applied to the Gorenstein case. Here, Theorem C and
several other results are proven.
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2. Resolving preliminaries

We proceed with an overview of resolving subcategories. All subcategories con-
sidered are full and closed under isomorphisms. For any collection M⊆mod(R),
let add(M) be the smallest subcategory of mod(R) containing M which is closed
under direct sums and summands.

Definition 2.1. Given a ring R, a full subcategory M⊆mod(R) is resolving if the
following hold:

(1) R is in M.

(2) M ⊕ N is in M if any only if M and N are in M.

(3) If 0→M→N→L→0 is exact and L∈M, then N ∈M if and only if M∈M.

By [Yoshino 2005, Lemma 3.2], this is equivalent to saying these conditions hold:

(1) All projectives are in M.

(2) If M ∈M, then add(M)⊆M.

(3) M is closed under extensions.

(4) M is closed under syzygies.

For a subset M⊆mod(R), we denote by res(M) the smallest resolving subcategory
containing M. Also, addM will be the smallest subcategory containing M which is
closed under direct sums and summands. Let P be the category of finitely generated
projective R-modules.

Example 2.2. The following categories are easily seen to be resolving.

(1) P,

(2) mod(R),

(3) the set of Gorenstein dimension zero modules,

(4) for any B ⊆Mod(R) and any n ≥ 0, {M | Ext>n(M, B)= 0 for all B ∈ B},

(5) for any B ⊆Mod(R) and any n ≥ 0, {M | Tor>n(M, B)= 0 for all B ∈ B},

(6) when R is Cohen–Macaulay, the set of maximal Cohen–Macaulay modules.

A special class of resolving subcategories are thick subcategories.

Definition 2.3. Let N ⊆ mod(R). A resolving subcategory M ⊆ N is a thick
subcategory of N (or M is thick in N ) if for any exact sequence 0→ L→ M→
N → 0 with L ,M ∈M, if N is in N, then N is in M too. A thick subcategory
refers to a thick subcategory of mod(R).

For any M⊆mod(R), let Thick(M) be the smallest thick subcategory of mod(R)
containing M.
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Example 2.4. The following categories are easily seen to be thick subcategories
(moreover, each example is the thick closure of a resolving subcategory from
Example 2.2):

(1) the set of modules with finite projective dimension,

(2) mod(R),

(3) the set of modules with finite Gorenstein dimension,

(4) for any B ⊆Mod(R) and any n ≥ 0, {M | Ext�0(M, B)= 0 for all B ∈ B},

(5) for any B ⊆Mod(R) and any n ≥ 0, {M | Tor�0(M, B)= 0 for all B ∈ B}.

Resolving subcategories are studied in part because dimension with respect to a
resolving subcategory has nice properties. For a subset M⊆mod(R) and a module
X ∈mod(R), we say that M-dim X = n if n ∈ N is the smallest number such that
there is an exact sequence

0→ Mn→ · · · → M0→ X→ 0

with M0, . . . ,Mn ∈M. Projective dimension and Gorenstein dimension are dimen-
sions with respect to resolving subcategories of projective modules and Gorenstein
dimension zero modules respectively. The following proposition (see [Auslander
and Buchweitz 1989, Proposition 3.3]) causes nice properties to hold for dimension
with respect to a resolving subcategory.

Proposition 2.5. If M is resolving and M-dim(X)≤n, then for any exact sequence

0→ L→ Mn−1→ · · · → M0→ X→ 0

with each Mi ∈M, L is in M.

This proposition allows us to prove the following results.

Corollary 2.6. If M is resolving, then M-dim(X)= inf{n |�n X ∈M}.

Proof. If �n X ∈M, then we have

0→�n X→ Fn−1→ · · · → F0→ X→ 0

with each Fi projective. This shows that M-dim X ≤ n. If M-dim X ≤ n, the same
sequence and Corollary 2.6 show that �n X is in M. �

Lemma 2.7. If M is resolving, then M-dim X ⊕ Y =max{M-dim X,M-dim Y }.

Proof. We have �n(X ⊕Y )=�n X ⊕�nY for a suitable choice of syzygies. Since
�n(X ⊕Y ) is in M if and only if �n X and �nY are in M, the result follows from
Corollary 2.6. Parts (1) and (2) are essentially proved in [Masek 1999, Theorem 18].

�
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Lemma 2.8. If M is a resolving subcategory, and 0→ X→ Y → Z→ 0 is exact,
then the following inequalities hold.

(1) M-dim X ≤max{M-dim Y,M-dim Z − 1},

(2) M-dim Y ≤max{M-dim X,M-dim Z},

(3) M-dim Z ≤max{M-dim X,M-dim Y }+ 1.

Proof. For suitable choices of syzygies, we have the following.

0→�k X→�kY →�k Z→ 0

If k =max{M-dim X,M-dim Z}, then, by Corollary 2.6, �k X and �k Z are in M,
and thus, so is �kY, giving us (2). If k =max{M-dim X,M-dim Y }, then, again by
Corollary 2.6, �k X and �kY is in M. Therefore M-dim�k Z ≤ 1, and so �k+1 Z
is in M. Thus by Corollary 2.6, M-dim Z ≤ k+ 1, proving (3).

Now take k =max{M-dim Y,M-dim Z − 1}. Then �kY and �k+1 Z are in M.
We take the pushout diagram

0

��

0

��
�k+1 Z

��

�k+1 Z

��
0 // �k X // T //

��

F //

��

0

0 // �k X // �kY //

��

�k Z //

��

0

0 0

with F free and hence in M. Since, by Corollary 2.6, �k+1 Z and �kY are in M,
so is T . Since F ∈M, �k X has to also be in M. Hence M-dim X ≤ k, and we
have (1). �

For a subset M⊆mod(R), let 1(M) denote the category of modules X such
that M-dim X is finite. If M is resolving, then by Corollary 2.6, 1(M) = {X ∈
mod(R) |��0 X ∈M}. The next result easily follows from the previous lemma.

Corollary 2.9. Let M be resolving. For any n, the set {X ∈mod(R) |M-dim X≤n}
is resolving. Furthermore, 1(M) is thick, and Thick(M)=1(M).

Through these results, we may construct many resolving and thick subcategories.
It is easy to show that the intersection of a collection of resolving subcategories
and the intersection of a collection of thick subcategories are resolving and thick
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respectively. The following lemma allows us to construct even more resolving
subcategories. For M⊆mod(R), we say Mp = {Mp | M ∈M}.

Lemma 2.10. Let R and S be rings and F :mod(R)→mod(S) be an exact functor
with F(R) = S. Then for any resolving subcategory M ⊆ mod(S), F−1(M) is a
resolving subcategory of mod(R).

The proof is elementary and is left to the reader. Applying this lemma to the
localization functor, for any V ⊆ spec R, the category of all M ∈ mod(R) with
Mp free for all p ∈ V is also resolving. The following lemmas give insight into
the behavior of resolving categories under localization. The first lemma is from
[Takahashi 2010, Lemma 4.8; Dao and Takahashi 2014, Lemma 3.2(1)], and the
second is from [Dao and Takahashi 2015, Proposition 3.3].

Lemma 2.11. If M is a resolving subcategory, then so is addMp for all p∈ spec R.

Lemma 2.12. The following are equivalent for a resolving subcategory M and a
module M ∈mod(R):

(1) M ∈M,

(2) Mp ∈ addMp for all p ∈ spec R,

(3) Mm ∈ addMm for all maximal ideals m.

Recall the definition of 3 and 0 from the introduction. These lemmas show that
if M is resolving, then for all f ∈ 0, 3M( f ) is a resolving subcategory.

Corollary 2.13. Set

3M( f )= {M ∈mod(R) | addMp-dim Mp ≤ f (p) for all p ∈ spec R}.

If M is resolving, then for all f ∈ 0, 3M( f ) is a resolving subcategory.

Let MCM denote the category of maximal Cohen–Macaulay modules. As noted
earlier, when R is Cohen–Macaulay, MCM is resolving. Furthermore, letting
d = dim R, �d M is in MCM for every M ∈mod(R). Hence, 1(MCM)=mod(R).
The following shows that dimension with respect to MCM is very computable.

Lemma 2.14. Suppose M ⊆ N are resolving subcategories. Then M is thick in
N if and only if for every module X ∈ 1(M), we have M-dim X = N -dim X.
Furthermore, if R is Cohen–Macaulay, M is a thick subcategory of MCM if and
only if dimension with respect to M satisfies the Auslander–Buchsbaum formula,
i.e., for all X ∈1(M) we have

M-dim X + depth X = depth R.

Proof. Suppose M is thick in N and X ∈1(M). Then we may write 0→ Md →

· · ·→ M0→ X→ 0 with Mi ∈M and d =M-dim X. Since each Mi is also in N,
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we have N -dim X ≤ d . Setting e =N -dim X ≤ d , by Corollary 2.6, there exists a
N ∈N such that

0→ Md→· · ·→ Me→ N→ 0 and 0→ N→ Me−1→· · ·→ M0→ X→ 0

are exact. However, since M is thick in N, N is also in M, which implies that
e = d, proving the only if part of the statement.

Now suppose that M-dim X = N -dim X for all X ∈ 1(M). Now suppose
0→ L → M → N → 0 is exact with L ,M ∈M and N ∈ N. Then N ∈ 1(M)

and M-dim N =N -dim N = 0. Therefore N ∈M, and so M is thick in N.
Assume R is Cohen–Macaulay. Let M be a resolving subcategory whose

dimension satisfies the Auslander–Buchsbaum formula. Then for any module
M ∈1(M)∩MCM, we have

depth R =M-dim M + depth M =M-dim M + depth R.

Thus M-dim M = 0 forcing M to be in M. Hence M is contained in MCM.
By what we have proved so far, it suffices to show that dimension with re-

spect to MCM satisfies the Auslander–Buchsbaum formula. But this follows from
Corollary 2.6. �

Recall the definition of 8 and 0 from the introduction. If dimension with respect
to addMp satisfies the Auslander–Buchsbaum formula for all p ∈ spec R, then for
all X ⊆1(M), 8M(X ) is in 0. Before proceeding, we need one more definition
and a result.

Definition 2.15. Let A⊆M. We say A cogenerates M, if for every M ∈M, there
exists an exact sequence 0→ M→ A→ M ′→ 0 with M ′ ∈M and A ∈A.

The following is an important theorem from [Auslander and Buchweitz 1989,
Theorem 1.1].

Theorem 2.16. Suppose A and M are resolving with A ⊆M. If A cogenerates
M, then for every X ∈1(M) with M-dim X = n, there exists an A ∈1(A) and
M ∈M such that A-dim A = n and 0→ X→ A→ M→ 0 is exact.

3. Preliminaries: semidualizing modules

We fix a module C ∈mod(R) and write M†
= Hom(M,C).

Definition 3.1. A finitely generated module X is totally C-reflexive if it satisfies
the following:

(1) Ext>0(X,C)= 0,

(2) Ext>0(X†,C)= 0,
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(3) The natural homothety map ηX : X→ X†† defined by µ 7→ (ϕ 7→ ϕ(µ)) is an
isomorphism.

Let GC denote the category of totally C-reflexive modules.

The set GC is essentially the subcategory over which † is a dualizing functor. The
notion of totally C-reflexivity generalizes Gorenstein dimension zero. In fact, when
C = R, GR is simply the category of Gorenstein dimension zero modules, which are
also known as totally reflexive modules. See [Masek 1999] for further information
on the subject. The following proposition shows us that GC is almost resolving.

Lemma 3.2. The set GC is closed under direct sums, summands, and extensions.

Proof. It is easy to show that GC is closed under direct sums and direct summands.
Suppose we have

0→ X→ Y → Z→ 0

with X, Z ∈ GC. It is easy to check that Y satisfies condition (1) of Definition 3.1.
We have

0→ Z†
→ Y †

→ X†
→ 0 and 0→ X††

→ Y ††
→ Z††

→ 0.

From the first exact sequence, it is easy to see that Y satisfies condition (2) of
Definition 3.1. We can then use the five lemma to show that Y satisfies condition (3)
of Definition 3.1. �

In general, GC is not resolving. For example, if C = R/x R for a regular element
x ∈ R, Ext1(R/x R, R/x R)= R/x R 6= 0. So R cannot be in GR/x R , and thus GR/x R

cannot be resolving. It is clear from the definition that R ∈ GC is a necessary
condition for GC to be resolving. In fact, this condition is sufficient.

Proposition 3.3. The subcategory GC is resolving if and only if GC contains R.

Proof. If GC is resolving, by definition it contains R, so we prove the converse.
So suppose R is in GC. In light of the last lemma, we need only to prove that if
0→ X→ Y → Z→ 0 is exact with Y, Z ∈ GC, then X is in GC as well. Since Y
and Z satisfy condition (1) of Definition 3.1, it is easy to show that X does too.
Also, since Ext1(Z ,C)= 0, we have

0→ Z†
→ Y †

→ X†
→ 0.

Hence, we have the following commutative diagram with exact rows.

0 // X //

ηX

��

Y //

ηY

��

Z //

ηZ

��

0

0 // X†† // Y †† // Z†† // Ext1(X†,C) // 0
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Since ηY and ηZ are isomorphisms, the five lemma shows that ηX is too, and that
Ext1(X†,C) = 0. Thus X satisfies condition (3) of Definition 3.1. It is easy to
check using the first exact sequence that Ext>1(X†,C)= 0, showing that X satisfies
condition (2) of Definition 3.1. �

Motivated by this proposition, we say that a module, C, is semidualizing if R
is in GC. This is easily seen to be equivalent to the following definition which is
standard in the literature.

Definition 3.4. A module C is called semidualizing if both Ext>0(C,C)= 0 and
R ∼= Hom(C,C) via the map r 7→ (c 7→ rc).

For the remainder of the paper, we let C denote a semidualizing module. Semi-
dualizing modules were first discovered by Foxby [1972] and were later rediscovered
in different guises by various authors, including Vasconcoles [1974], who called
them spherical modules, and Golod, who called them suitable modules. For an
excellent treatment of the general theory of semidualizing modules, see [Sather-
Wagstaff 2009]. Examples of semidualizing modules include R and dualizing
modules. If R is Cohen–Macaulay and D is a dualizing module, then GD is simply
MCM. Dimension with respect to GC is often called Gorenstein C-dimension, or
GC -dimension for short, since it is a generalization of Gorenstein dimension. We
would expect GC and Gorenstein dimension to have similar properties. Thus we
have the following lemma, which is an easy exercise, and proposition, which is
from [Gerko 2001, Theorem 1.22].

Lemma 3.5. If X ∈1(GC), then GC -dim X =min{n | Ext>n(X,C)= 0}.

Proposition 3.6. For any semidualizing module C, GC -dimension satisfies the
Auslander–Buchsbaum formula, i.e., for any module X ∈1(GC), we have

GC -dim X + depth X = depth R.

In light of Lemma 2.14, when R is Cohen–Macaulay this means that GC is a thick
subcategory of MCM. Interest in understanding GC -dimension and the structure
of GC is not new. The following conjecture by Gerko [2001, Conjecture 1.23] is
equivalent to saying that GR is a thick subcategory of GC.

Conjecture 3.7. If C is semidualizing, then for any module X, GC -dim X ≤
GR-dim X, and equality holds when both are finite.

We give one more construction in this section. Take any X ∈ GC. Then we have
0→ �X†

→ Rn
→ X†

→ 0 is exact. Since R† ∼= C, applying † yields the exact
sequence

0→ X→ Cn
→ (�X†)†→ 0.
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Hence GC is cogenerated by add C. Furthermore, if F• is a projective resolution
of X† with X ∈ GC, then F†

•
is an add C coresolution of X. Splicing this together

with a free resolution G• of X, we get what is called a complete P PC or a complete
PC -resolution of X. See [White 2010; Sather-Wagstaff 2009] for more on the
matter.

Before proceeding, we summarize the notations of this paper.

(1) R is a commutative noetherian ring.

(2) P is the subcategory of projective R-modules.

(3) 0 is the set of grade consistent functions.

(4) M-dim X is the dimension of X with respect to the category M⊆mod(R).

(5) addM is the smallest category closed under direct sums and summands con-
taining M⊆mod(R).

(6) 3M( f ) = {X ∈ mod(R) | addMp-dim Xp ≤ f (p) for all p ∈ spec R} with
f ∈ 0.

(7) 8M(X )(p) = sup{addMp-dim Xp | X ∈ X } with M,X ⊆ mod(R) subcate-
gories.

(8) 1(M)= {X ∈mod(R) |M-dim X <∞} with M⊆mod(R) a category.

(9) R(M)= {X ⊆mod(R) |M⊆ X ⊆1(M)X is resolving}.

(10) R the collection of resolving subcategories.

(11) ThickN (M) the smallest thick subcategory of N containing M with M ⊆
N ⊆mod(R) subcategories.

(12) C is a semidualizing module .

(13) GC the collection of totally C-reflexive modules.

(14) X†
= Hom(X,C).

(15) For a resolving subcategory A and a module M ∈ mod(R), set resA M =
res(A∪ {M}).

4. Comparing resolving subcategories

For the entirety of this section, let A, M, and N be resolving subcategories. Recall
that R(A) is the collection of resolving subcategories X such that A⊆ X ⊆1(A).
In this section, we compare R(A) and R(M) when A is contained in M. If A⊆M,
we may define ηMA :R(A)→R(M) by X 7→ res(X∪M) and ρM

A :R(M)→R(A)
by X 7→X ∩1(A). Note that if A⊆M⊆N, then ηNA = η

N
Mη

M
A and ρN

A = ρ
M
A ρN

M.

Proposition 4.1. If A cogenerates M, then the map ρM
A is injective.
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Proof. Suppose that ρM
A (X )=ρM

A (Y) for X,Y ∈R(M), i.e., X∩1(A)=Y∩1(A).
Take any X ∈ X . Since X ∈ 1(M) and A cogenerates M, by Theorem 2.16,
there exists A ∈ 1(A) and M ∈M such that 0→ X → A→ M → 0 is exact.
Since M ∈M ⊆ X and X ∈ X , we know that A is also in X . But then A is in
X ∩1(A) = Y ∩1(A) and thus also in Y. Since M ∈M ⊆ Y, we know that X
must also be in Y. Hence X ⊆ Y, and, by symmetry, we have equality. Therefore,
ρM
A is injective. �

In certain circumstances, this map is a bijection. The following is Theorem A
from the introduction.

Theorem 4.2. Let 9 be a set of increasing functions from spec R to N. Suppose,
A⊆M such that A cogenerates M and addAp is thick in addMp for all p∈ spec R.
If 8A and 3A are inverse functions giving a bijection between R(A) and 9, then
the following diagram commutes:

R(M)
8M

&&
9

R(A)
8A

88ηMA

OO

Furthermore, 3M and ρM
A are the respective inverses of 8M and ηMA .

The proof of this result will be given after this brief lemma.

Lemma 4.3. If X and Y are subcategories and M is resolving, then

8M(res(X ∪Y))=8M(X )∨8M(Y).

Proof. Since every element in res(X ∪Y) is obtained by taking extensions, syzygies,
and direct summands a finite number of times, and since these operations never
increase the M dimension, we have8M(res(X∪Y))≤8M(X )∨8M(Y). However,
since X ,Y ⊆ res(X ∪Y), we actually have equality. �

Proof of Theorem 4.2. First, we show that ρM
A and ηMA are inverse functions and are

thus both bijections. Proposition 4.1 shows that ρM
A is injective. Fix X ∈R(A) and

let Z = ρM
A ηMA (X )= res(X ∪M)∩1(A). It suffices to show that Z = X . Setting

f =8A(X ), this is equivalent to showing that 8A(Z)= f , since 8A and 3A are
inverse functions. Since X ⊆ Z , we know that 8A(Z)≥ f . From Lemma 4.3,

8M(res(X ∪M))=8M(X )∨8M(M)=8M(X ).

Furthermore, since addAp is thick in addMp for all p ∈ spec R, Lemma 2.14
implies that addAp-dim A and addMp-dim A are the same for all p ∈ spec R and
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A ∈1(A). Hence 8A(X )=8M(X ) and 8A(Z)=8M(Z). Therefore,

f ≤8A(Z)=8M(Z)≤8M(res(X ∪M))=8M(X )=8A(X )= f

and so, 8A(Z)= f . Hence, ρM
A and ηMA are inverse functions. Also, this argument

shows that 8A(X )=8M(res(X ∪M))=8M(η
M
A (X )), showing that the diagram

commutes and that 8M is also a bijection.
It remains to show that 3M =8M

−1. For any f ∈9, ηMA (3A( f )) is contained
in 3M( f ). Because 8M is an increasing function and both 8A and 3A are inverse
functions, we have

f =8A3A( f )=8M(η
M
A (3A( f ))≤8M3M( f )≤ f .

Thus we have 8M3M( f )= f , and we are done. �

For a resolving subcategory A, let S(A) be the collection of resolving sub-
categories M such that M and A satisfy the hypotheses of Theorem 4.2, i.e., A
cogenerates M and addAp is thick in addMp for all p ∈ spec R. The following
theorem shows that we can patch together the bijections in Theorem 4.2.

Theorem 4.4. Let A be a resolving subcategory and 9 be a set of increasing
functions from spec R to N. If 8A and 3A are inverse functions giving a bijection
between R(A) and 9, then

3 :S(A)×9 −→
⋃

M∈S(A)

R(M)⊆R.

is a bijection. Furthermore, for any M,N ∈S(A) with M ⊆ N, the map ρN
M is

the inverse of ηNM, and the following diagram commutes:

(1)

R(N )
8N

""
R(M)

8M //

ηNM

OO

9

R(A)
8A

<<

ηMA

OO

Before we proceed with the proof of Theorem 4.4, we need a lemma.

Lemma 4.5. The set S(A) is closed under intersections.

Proof. Let M,N ∈S(A). Take any p ∈ spec R. Suppose 0→ A1→ A2→ A3→ 0
is an exact sequence of Rp-modules with A1, A2 ∈ addAp and A3 ∈ add(M∩N )p.
Then A3 is in addMp. Therefore, since addAp is thick in addMp by assumption,
A3 is in addAp. Since addAp is resolving and contained in add(M∩N )p, addAp

is thick in add(M∩N )p.
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It remains to show that A cogenerates M∩N. Take X ∈M∩N. We have

0→ X→ A→ M→ 0 and 0→ X→ A′→ N → 0,

with M ∈M, N ∈N, and A, A′ ∈A. Consider the following pushout diagram.

0

��

0

��
0 // X //

��

A //

��

M // 0

0 // A′ //

��

T //

��

M // 0

N

��

N

��
0 0

It is easy to see T ∈M∩N. We also have the exact sequence

0→ X→ A⊕ A′→ T → 0.

Since A⊕ A′ ∈A, this completes the proof. �

Proof of Theorem 4.4. Suppose M,N ∈S with M⊆N. From Theorem 4.2, the
following diagrams commute:

R(M)
8M // 9

R(A)
8A

<<

ηMA

OO
and

R(N )
8N // 9

R(A)
8A

<<

ηNA

OO

From here, it is easy to show that diagram (1) commutes and 8N and ηNM are
bijections with (ηNM)

−1
= ρN

M.
Also, Theorem 4.2 shows that Im(3)=

⋃
M∈SR(M). It remains to show that3

is injective. Suppose X =3M( f )=3N (g). Then M,N ⊆X ; hence, M∩N ⊆X .
For any X ∈ X and any n greater than M-dim X and N-dim X, �n X is in M∩N
by Corollary 2.6. Therefore, X is contained in1(M∩N ) and thus X ∈R(M∩N ).
By the previous lemma, M ∩N is in S(A), so 3M∩N : 9 → R(M ∩N ) is a
bijection, by Theorem 4.2. So there exists an h ∈ 9 such that 3M∩N (h) = Z =
3M( f )=3N (g). Therefore, we may assume that M is contained in N.
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Since X ∈ R(M) and X ∈ R(N ), we have N ⊆ X ⊆ 1(M). Thus, because
A⊆M⊆N,

N =N ∩1(M)= ρN
M(N )= η

M
A ρM

A ρN
M(N )= η

M
A ρN

A (N )= ηMA (A)=M.

Since 3M is injective, we then also have f = g. �

As mentioned earlier, it is shown in [Dao and Takahashi 2015] that we have 3P
is a bijection from 0 to R(P). In Sections 8 and 9 we apply Theorem 4.4 when
A= P, and show that S(P) contains the collection of thick subcategories of GR .
The following results gives an alternative way of viewing Theorem 4.4.

Proposition 4.6. In the situation of Theorem 4.4, if 9 = 0 and P is thick in M,
then the following diagram commutes:

S(A)×0

idS(A)×3P

��

3

''
R

S(A)×R(P)

4
77

where 4(M,X ) = res(M∪X ). Furthermore, idS(A)×3P is bijective and 4 is
injective.

Proof. Since 3P is bijective, idS(A)×3P is too. It suffices to show that for any
(M, f ) ∈S(A)×0 we have 4(M,3P( f ))=3M( f ). Set Z =4(M,3P( f )).
First note that Z is in R(M). Since P is thick in M and hence in M, by Lemma 4.3,

8M(Z)=8M(res(M∪3P( f )))=8M(M)∨8M(3P( f ))=8P(3(P)( f ))= f

and thus 3M( f )= Z , proving the claim. �

5. A generalization of the Auslander transpose

Let C be a semidualizing module, and set −†
= Hom(−,C). For the entirety of

this section, A denotes a thick subcategory of GC that is closed under †. Recall-
ing Proposition 3.6, A-dim satisfies the Auslander–Buchsbaum formula. We set
resA M = res({M} ∪A).

The Auslander transpose has been an invaluable tool in both representation theory
and commutative algebra. In this section, we generalize the notion of the Auslander
transpose using semidualizing modules and list some properties which we will use.
The Auslander transpose has previously been generalized in [Geng 2013; Huang
1999], but the construction here is different.

Definition 5.1. An A-presentation of X is an exact sequence A1
ϕ
−→ A0→ X→ 0

with A1, A0 ∈A. Set TrA X = cokerϕ†.
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When C= R, we get the usual Auslander transpose of X which we denote by Tr X.
The “functor” TrA is not well defined up to isomorphism or even stable isomorphism,
motivating a new equivalence relation. Finding the correct equivalence relation is
actually a subtle affair. The equivalence relation must make TrA X be well defined,
but it must also detect resolving subcategories. For modules X and Y, we write
X ∼′ Y and Y ∼′ X if there exists an A ∈ A such that 0→ X → Y → A→ 0 is
exact. Let A-equivalence, denoted by ∼, be the transitive closure of the relation ∼′.
Since∼′ is symmetric and reflexive,∼ is an equivalence relation. Stable equivalence
implies A-equivalence, and when A=P, they are the same. We will see in a moment
that TrA X has the desired properties.

Remark 5.2. We would like to think of TrA as a functor. However, mod(R)
modulo A-equivalence does not form a sensible category. However, a very similar
construction is functorial. Let P

ϕ
−→ Q→ X→ 0 be a projective presentation. Set

TrC X = cokerϕ†. A similar construction is given in [Geng 2013; Huang 1999].
We will briefly show that TrC : mod(R)/A→ mod(R)/A is a functor. We thank
the referee for bringing the following construction to our attention.

We give some definitions first.

(1) X/Y is the category whose objects are X , and whose morphisms are

HomX/Y(X1, X2) := HomX (X1, X2)/FY(X1, X2),

where X1, X2 ∈ X and FY(X1, X2) is the subgroup of morphisms in X which
factor through an object in Y.

(2) MorphX is the category whose objects are morphisms f : X1 → X2. A
morphism (g1, g2) between objects f : X1→ X2 and f ′ : X ′1→ X ′2 in MorphX
is a pair of morphisms g1 : X→ X ′ and g2 : Y → Y ′ such that the following
diagram commutes:

X1
g1 //

f
��

X ′1

f ′

��
X2

g2 // X ′2

(3) For f, f ′ ∈MorphX , a morphism (g1, g2) : f → f ′ is homotopically trivial
if there exists an h : X2→ X ′1 such that f ′h f = g2 f = f ′g1. Let HX ( f, f ′)
denote the subgroup of homotopically trivial maps.

(4) H-MorphX is the category whose objects are the same as MorphX but whose
morphisms are

HomH-MorphX ( f, f ′)= HomMorphX ( f, f ′)/HX ( f, f ′).
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We now mimic the construction of the Auslander transpose [1971, Chapter 3,
Section 1]. Set C = add C. The functor † restricts to a functor †

: P → C which
induces a contravariant functor

†
:MorphP→Morph C,

f 7→ f †.

It is easy to check that the group homomorphism

†
: HomMorphP( f, f ′)→ HomMorph C( f ′†, f †),

(g1, g2) 7→ (g†
2, g†

1),

maps the subgroup HP( f, f ′) to HC( f ′†, f †). Therefore, † induces a functor
H-MorphP→ H-Morph C. Furthermore, it is easy to check that the map

coker : H-Morph C→mod(R)/C,

f 7→ coker f,

is a well defined functor. The discussion in [loc. cit.] indicates that there is a functor
ρ :mod(R)/P→ H-MorphP which sends a module to a projective presentation.
We summarize these discussions with the following commutative diagram:

MorphP

��

† // Morph C

��
mod(R)/P

ρ // H-MorphP
† // H-Morph C coker // mod(R)/C

The composition of the bottom row is TrC . Since A is closed under † and is thick
in MCM, TrC fixes A. Thus, since P, C ⊆A, it follows that TrC induces a functor
mod(R)/A→mod(R)/A, as desired.

This approach has two deficiencies. First of all, we cannot compute TrC using
A-resolutions. We will use A-resolutions, for example in Lemma 5.4(4), to show
that TrA TrA X ∼ X. Second of all, if X and Y are isomorphic in mod(R)/A, it is
not clear if resA X = resAY. Because of these issues, TrC cannot take the place of
TrA in this work.

We proceed to show that A-equivalence is sufficient for our purposes.

Proposition 5.3. For a module X, the module TrAX is unique up to A-equivalence.

Proof. Let π be the projective presentation P1→ P0→ X → 0, and let ρ be the
A-presentation A1 → A0 → X → 0. Suppose there is an epimorphism π → ρ.
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Then there exists the commutative diagram

(2)

0

��

0

��
0 // B2 // B1 //

��

B0 //

��

0

P1 //

��

P0 //

��

X // 0

A1 //

��

A0 //

��

X // 0

0 0

whose columns are exact, with B0, B1, B2 in A. Applying † to the diagram yields

0

��

0

��

0

��
0 // X† // A†

0
//

��

A†
1

//

��

TrρAX //

��

0

0 // X† // P†
0

//

��

P†
1

//

��

TrπA X //

��

0

0 // B†
0

//

��

B†
1

//

��

B†
2

//

��

0

0 0 0

where TrρA X and TrπA X denote TrAX computed using ρ and π , respectively. Since
the rows are exact, and the middle two columns are exact, the snake lemma shows
the last column is exact. Since B†

2 ∈A, we see that TrρA X ∼ TrπA X.
Consider any two A-presentations, ρ and ρ ′. It is easy to construct projective

presentations ψ and ψ ′ with epimorphisms ψ→ ρ and ψ ′→ ρ ′. In the proof of
[Masek 1999, Proposition 4], it is shown that there is a projective presentation of
π and epimorphisms π → ψ and π → ψ ′. Using our work so far, we know that
TrρA X ∼ TrπA X ∼ Trρ

′

A . �

Lemma 5.4. For any X, Y ∈mod(R) such that X ∼ Y, the following are true:

(1) resA X = resAY,

(2) �X ∼�Y,

(3) TrA X ∼ TrAY,
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(4) TrA TrA X ∼ X.

Proof. It suffices to assume that 0→ X→ Y → A→ 0 with A ∈A. Proving (1) is
trivial. For suitable choices of syzygies, we have 0→�X→�Y→�A→0. Since
�A is in A, and since syzygies are unique up to stable, and hence A-equivalence,
this proves (2).

Now we show (3). Consider the diagram with exact rows

P1

��

// P0

��

// Y

��

// 0

0 // �A // Q // A // 0

with Q, P0, P1 projective and surjective vertical arrows. Using the snake lemma,
we can extend this to the diagram

0

��

0

��

0

��
B1

��

// B0

��

// X

��

// 0

P1

��

// P0

��

// Y

��

// 0

0 // �A

��

// Q

��

// A

��

// 0

0 0 0

such that B1, B0 are in A. Applying † to this diagram gives the following:

0

��

0

��
0 // A† // Q†

��

// (�A)†

��

// Ext1(A,C) //

��

0

0 // Y † // P†
0

��

// P†
1

��

// TrAY //

��

0

0 // X† // B†
0

��

// B†
1

��

// TrAX //

��

0

0 0 0
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Since Ext1(A,C)= 0, applying the snake lemma to the middle two columns yields
TrA X ∼= TrAY. This proves (3).

To see (4), consider the projective presentation

P1→ P0→ X→ 0.

Then
P†

0 → P†
1 → TrA X→ 0

is an A-presentation, which we use to compute TrA TrA X , giving the result. �

We close this section with an example of a property shared by TrA and Tr.

Lemma 5.5. Let 0→ X → Y → Z → 0 be an exact sequence in mod(R). For
suitable choices of TrA, we have the exact sequence

0→ Z†
→ Y †

→ X†
→ TrA Z→ TrAY → TrA X→ 0.

Furthermore, if Exti (X,C)= 0, then

0→ TrA�i Z→ TrA�i Y → TrA�i X→ 0.

Proof. Let θ denote the map from Y to Z . We have the short exact sequence

0→�i X→�i Y
�i θ
−−→�i Z→ 0

for all i ≥ 0. We can construct the following short exact sequence of A presentations.

0

��

0

��

0

��
A0

1

��

// A0
0

��

// �i X

��

// 0

A1
1

��

// A1
0

��

// �i Y

�i θ
��

// 0

A2
1

��

// A2
0

��

// �i Z

��

// 0

0 0 0

Applying † and also the snake lemma yields

0→ (�i Z)†
(�i θ)†

−−−→�i Y
λ
−→�i X† ε

−→ TrA�i Z
η
−→ TrA�i Y → TrA�i X→ 0.

Setting i = 0 at this stage gives us the first claim. The short exact sequence
0→ �i X → �i Y → �i Z → 0 gives the following long exact sequence of Ext
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modules:

0→(�i Z)†
(�i θ)†

−−−→�i Y
λ
−→�i X† δ

−→Ext1(�i Z ,C)
Ext1(�i θ,C)
−−−−−−→Ext1(�i Y,C)→· · · .

We also have

· · · → Exti (X,C)→ Exti+1(Z ,C)
Exti+1(θ,C)
−−−−−−→ Exti+1(Y,C)→ · · · .

Since Exti (X,C)= 0 by assumption, Exti+1(θ,C) and Ext1(�iθ,C) are injective,
forcing δ to be zero. Thus λ is surjective. Then the first long exact sequence shows
that ε is zero, and so η is injective, giving the desired result. �

6. Resolving subcategories which are maximal Cohen–Macaulay on the
punctured spectrum

We keep the same conventions used in the previous section, except we also assume
that (R,m, k) is a Noetherian local ring. Recall that since A is a thick subcategory
of GC, according to Proposition 3.6, dimension with respect to A satisfies the
Auslander–Buchsbaum formula. Set

resA M = res({M} ∪A),

1(A)0 = {M ∈1(A) | Mp ∈ addAp for all p ∈ spec R\m},

1(A)i0 = {M ∈1(A)0 |A-dim M ≤ i}.

This section is devoted to proving the following:

Theorem 6.1. If (R,m, k) is a local ring with dim R = d , the filtration

A=1(A)00 (1(A)
1
0 ( · · ·(1(A)

d
0 =1(A)0

is a complete list of the resolving subcategories of 1(A)0 containing A.

This theorem and its proof is a generalization of [Dao and Takahashi 2015,
Theorem 2.1]. We now use results from the previous section to make the building
blocks of the proof of Theorem 6.1.

Lemma 6.2. For any module X ∈mod(R) and for suitable choices of TrA X and
�TrA�X,

0→ Ext1(X,C)→ TrA X→�TrA�X→ 0.

Proof. With F0, F1, F2 projective, consider the sequence

F2
f
−→ F1

g
−→ F0→ X→ 0.



CLASSIFYING RESOLVING SUBCATEGORIES 423

We have coker g†
= TrA X. By the universal property of kernel and cokernel, we

have the following commutative diagram.

0 // Im g† //

ι

��

F†
1

// TrA X //

ε

��

0

0 // ker f † // F†
1

// Im f † // 0

The snake lemma yields the exact sequence

0→ ker ι→ 0→ ker ε→ Ext1(X,C)→ 0→ coker ε→ 0.

Thus ε is surjective and ker ε ∼= Ext1(X,C), giving the exact sequence

0→ Ext1(X,C)→ TrA X→ Im f †
→ 0.

It remains to show that Im f †
∼�TrA�X.

We have the short exact sequence 0→ Im f †
→ F†

2 → TrA�X→ 0. Consider
the pushout diagram

0

��

0

��
�TrA�X

��

�TrA�X

��
0 // Im f † // T //

��

G //

��

0

0 // Im f † // F†
2

//

��

TrA�X //

��

0

0 0

with G projective. We have Im f †
∼ T ∼�TrA�X , as desired. �

Lemma 6.3. If X ∈ 1(A)0, for all 0 ≤ i < depth C, for suitable choices of TrA,
the following is exact:

0→ TrA�i+1 TrA�i+1 X→ TrA�i TrA�i X→ TrA�i Exti+1(X,C)→ 0.

Proof. Using Lemma 6.2, we have

0→ Exti+1(X,C)→ TrA�i X→�TrA�i+1 X→ 0.

Since X ∈ 1(A)0, we have Exti+1(X,C)p = 0 for every nonmaximal prime p.
Thus Exti+1(X,C) has finite length, and so

Exti (Exti+1(X,C),C)= 0
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for all 0≤ i < depth C. Thus, we can apply Lemma 5.5. �

Lemma 6.4. Let X ∈1(A)0 and 0< n ≤ depth C. Then

resA
(
X,TrA Ext1(X,C), TrA�Ext2(X,C), · · · ,TrA�n−1 Extn(X,C)

)
= resA

(
TrA�n TrA�n X, TrA Ext1(X,C),

TrA�Ext2(X,C), · · · , TrA�n−1 Extn(X,C)
)

Proof. The previous lemma tells us that

resA
(
TrA TrA X, TrA Ext1(X,C)

)
= resA

(
TrA�TrA�X, TrA Ext1(X,C)

)
,

resA
(
TrA�TrA�X, TrA�Ext2(X,C)

)
= resA

(
TrA�2 TrA�2 X, TrA�Ext2(X,C)

)
,

...

resA
(
TrA�n−1 TrA�n−1 X, TrA�n−1 Extn(X,C)

)
= resA

(
TrA�n TrA�n X, TrA�n−1 Extn(X,C)

)
.

Since TrA TrA X ∼ X, the result is now clear. �

Lemma 6.5. Let 0≤n<depth R and L a nonzero finite length module. There exists
an A-resolution (G•, ∂L ,n) of TrA�n L such that Gi = 0 for all i > n+ 1 and

ker ∂L ,n
i = TrA�n−i L

for all 1 ≤ i ≤ n. In particular, TrA�i L ∈ resA(TrA�n L) for all 0 ≤ i ≤ n,
A-dim(TrA�n L)= n+ 1, and TrA�n L ∈1(A)n+1

0 .

Proof. Let (F•, ∂) be a free resolution of L . Then we have

Fn+1→ Fn→�n L→ 0

and

0→�n L→ Fn−1
∂n−1
−−→ · · ·

∂2
−→ F1

∂1
−→ F0→ L→ 0.

Because L has finite length, and since depth C = depth R by Proposition 3.6, we
have Exti (L ,C)= 0 for all 0≤ i ≤ n, and so we have the exact sequence

0→ L†
→ F†

0
∂

†
1
−→ F†

1
∂

†
2
−→ · · ·

∂
†
n−1
−−→ F†

n−1→ (�n L)†→ 0.

Note that L†
= 0 since L has finite length. Thus, splicing this exact sequence with

0→ (�n L)†→ F†
n
∂

†
n+1
−−→ F†

n+1→ TrA�n L→ 0,



CLASSIFYING RESOLVING SUBCATEGORIES 425

we create an A-resolution of TrA�n L . So we set Gi = F†
n+1−i for 0 ≤ i ≤ n+ 1

and Gi = 0 for i > n + 1. Set ∂L ,n
i = ∂

†
n+2−i for 1 ≤ i ≤ n + 1 and ∂L ,n

i = 0 for
all i > n + 1. Using our previous arguments for values less that n, we see that
ker ∂L ,n

i = TrA�n−i L for 0≤ i ≤ n. Showing the first two claims.
It is now apparent that A-dim TrA�n L ≤ n+1. If ker ∂L ,n

n = TrA L is in A, then
so is L since TrA TrA L ∼ L . However, this is impossible since L†

=Ext0(L ,C)= 0.
Therefore we have A-dim TrA�n L = n+ 1. �

Lemma 6.6. For all 0 ≤ n < depth R and all nonzero finite length modules L ,
resA TrA�n L = resA TrA�nk.

Proof. Let λ denote the length function for modules. If L 6= 0, then we can
write 0 → L ′ → L → k → 0 with λ(L ′) < λ(L). Since by Proposition 3.6
n < depth R = depth C, we have Extn(L ′,C)= 0, and so from Lemma 5.5,

0→ TrA�nk→ TrA�n L→ TrA�n L ′→ 0.

Thus, by induction, resA TrA�n L ⊆ resA TrA�nk.
Now we wish to show that TrA�nk ∈ resA TrA�n L . We proceed by double

induction, first on λ(L) and then on n. The case L = k is trivial, so suppose
λ(L) > 1. Write 0→ L ′→ L→ k→ 0 again. Since L ′ has depth zero, we can
use Lemma 6.5 to get the resolution (G•, ∂L ′). Thus we have the exact sequence

0→ ker ∂L ′,n
1 → G0→ TrA�n L→ 0.

Taking the pullback diagram with our last exact sequence yields the following:

0

��

0

��
ker ∂ L ′,n

1

��

ker ∂ L ′,n
1

��
0 // TrA�nk // T //

��

G0 //

��

0

0 // TrA�nk // TrA�n L //

��

TrA�n L ′ //

��

0

0 0

It is now easy to see that it suffices to show that ker ∂L ′,n
1 is in resA TrA�n L .

When n = 0, (G•, ∂L ′,n) is the resolution

0→ G1
∂

L′,0
1
−−→ G0→ TrA L ′→ 0,
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and we are done since ker ∂L ′,0
1 = G1 ∈ A ⊆ resA TrA L . So suppose n > 0. We

have ker ∂L ′,n
1 = TrA�n−1L ′, by Lemma 6.5. By induction, resA TrA�n−1L and

resA TrA�n−1L ′ are the same as resA TrA�n−1k. So we have

ker ∂L ′,n
1 ∈ resA TrA�n−1L ⊆ resA TrA�n L ,

where the inclusion follows from Lemma 6.5, and we are done. �

These next proofs are similar to those in [Dao and Takahashi 2015] with the
appropriate changes. They are included here for the sake of completeness.

Proposition 6.7. For every 0 < n ≤ depth R, we have 1(A)n0 = resA TrA�n−1L
for every nonzero finite length module L.

Proof. By Lemma 6.6, we may assume that L = k. By Lemma 6.5, we know
that A-dim(Tr�n−1k) = n. Since localization commutes with cokernels, duals
and syzygies, we have Tr�nk is in 1(A)0 and hence in 1(A)n0 . Suppose now
that X ∈ 1(A)n0 . Then �n X ∈ A, and so TrA�n TrA�n X ∈ A. Furthermore, for
each i ≥ 0, the module Exti+1(X,C) has finite length. Hence, Lemma 6.6 implies
that TrA�i Exti+1(X,C) is in resA TrA�i k ⊆ resA TrA�n−1k, where the inclusion
follows from Lemma 6.5. By Lemma 6.4, we therefore have

X ∈ resA
(
TrA�n TrA�n X, TrA Ext1(X,C),

TrA�Ext2(X,C), · · · , TrA�n−1 Extn(X,C)
)
⊆ resA TrA�n−1k

which concludes the proof. �

We now prove the main result of this section.

Proof of Theorem 6.1. We clearly have the chain

A=1(A)00 (1(A)
1
0 ( · · ·(1(A)

d
0 =1(A)0.

Take X ∈1(A)n0 \1(A)
n−1
0 for d ≥ n ≥ 1. We need to show that resA X =1(A)n0 ,

and we have resA X ⊆1(A)n0 . We proceed by induction. When n= 0, the statement
is trivial. So assume that n > 0 and resA�X = 1(A)n−1

0 . Since Extn(X,C) has
finite length, it suffices to show TrA�n−1 Extn(X,C) ∈ resA X, by Proposition 6.7.

Since �n X ∈ A, the short exact sequence 0→ �n X → P → �n−1 X → 0,
with P projective, is an A presentation of �n−1 X. Using this presentation to
compute TrA, we see that TrA�n−1 X ∼ Ext1(�n−1 X,C)∼= Extn(X,C). Therefore,
TrA�n−1 TrA�n−1 X ∼ TrA�n−1 Extn(X,C) by Lemma 5.4. Thus, it suffices to
show that TrA�n−1 TrA�n−1 X ∈ resA X, again by Lemma 5.4.

Let 0< i ≤ n− 1. Since Exti (X,C) has finite length, Lemma 6.5 implies

TrA�i−1 Exti (X,C) ∈1(A)i0 ⊆1(A)
n−1
0 = resA�X ⊆ resA X.
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Therefore, Lemma 6.4 implies that

TrA�n−1 TrA�n−1 X ∈ resA
(
X, TrA Ext1(X,C), TrA�Ext2(X,C),

· · · , TrA�n−2 Extn−1(X,C)
)
= resA(X)

as claimed. �

The following corollary is immediate from Theorem 6.1

Corollary 6.8. If X ∈1(A)n0 \1(A)
n−1
0 , then resA X =1(A)n0 .

7. Resolving subcategories and semidualizing modules

In this section, we keep the same notations and conventions as the previous sections,
except we do not assume that R is local. In this section, we classify the resolving
subcategories of 1(A) which contain A. Note that it is easy to check that Cp is a
semidualizing Rp-module for all p ∈ spec R. In Corollary 8.2, we will see that for
all p ∈ spec R, addAp is a thick subcategory of GCp closed under HomRp(−,Cp).
The following is a modified version of [Dao and Takahashi 2014, Lemma 4.6],
which is a generalization of [Takahashi 2009, Proposition 4.2]. For a module X, let
NA(X)= {p ∈ spec R | Xp /∈ addAp}.

Proposition 7.1. Suppose X ∈1(A). For every p ∈ NA(X), there is a Y ∈ resA X
such that NA(Y )= V(p) and addAπ -dim Yπ = addAπ -dim Xπ for all π ∈ V (p).

Proof. If NA(X)= V(p) we are done. So fix a q ∈ NA(X)\V(p). As in the proof
of [Dao and Takahashi 2014, Lemma 4.6], choose an x ∈ p\q and consider the
following pushout diagram.

0 // �X

x

��

// F

��

// X // 0

0 // �X // Y // X // // 0

with F projective. Immediately, we have Y ∈ resA X. Furthermore, Yq ′ ∈ res Xq ′

for all q ′ ∈ spec R. Therefore, we have NA(Y )⊆ NA(X). The proof of [Dao and
Takahashi 2014, Lemma 4.6] tells us that

depth(Yπ )=min{depth(Xπ ), depth(Rπ )}

for all π ∈ V (p). Thus, by Proposition 3.6, addAπ -dim Yπ = addAπ -dim Xπ , for
all π ∈ V (p). In particular, this shows that V (p) is contained in NA(Y ).

Localizing at q yields the following:

0 // �Xq

x

��

// Fq

��

// Xq // 0

0 // �Xq // Yq // Xq //// 0
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Note x is a unit in Rq . Thus, by the five lemma, Yq is isomorphic to Fp and therefore
is projective. So we have q /∈ NA(Y ) and hence NA(Y )( NA(X).

If NA(Y ) 6=V(p), then we may repeat this process and construct a Y ′ that, like Y,
satisfies all the desired properties except V(p)⊆NA(Y ′)(NA(Y )(NA(X). Since
spec R is Noetherian, this process must stabilize after some iteration, producing the
desired module. �

Lemma 7.2. Let V be a nonempty finite subset of spec R. Let M be a module and
X a resolving subcategory such that Mp ∈ addXp for some p ∈ spec R. Then there
exist exact sequences

0→ K → X→ M→ 0 and 0→ L→ M ⊕ K ⊕ Rt
→ X→ 0

with X ∈ X , NA(L)⊆ NA(M), and NA(L)∩ V =∅.

Proof. The result is essentially contained in the proof of [Takahashi 2010, Propo-
sition 4.7]. It shows the existence of the exact sequences and shows that V is
contained in the free locus of L and thus NA(L)∩ V =∅. Furthermore, the last
exact sequence in the proof shows that for any p ∈ spec R, Lp is in res Mp. Hence,
if Lp is not in a resolving subcategory, then Mp cannot be in that category either,
giving us NA(L)⊆ NA(M). �

These lemmas help to prove the following proposition which is a key component
of the proof of Theorem 7.4. This next result is also where we use Corollary 6.8 of
the last section.

Proposition 7.3. Consider a module M ∈ mod(R) and a resolving subcategory
X ∈R(A). If for every p ∈ spec R, there exists an X ∈ X such that

addAp-dim Mp ≤ addAp-dim Xp,

then M is in X .

Proof. Because of Lemma 2.12, we may assume (R,m, k) is local. We proceed
by induction on dim NA(M). If dim NA(M) = −∞, then M is in A and we are
done. Suppose dim NA(M) = 0. Then M is in 1(A)t0 where t = A-dim X. By
Proposition 7.1, there exists a Y ∈ resA X ⊆ X with A-dim Y = t and Y ∈1(A)0,
and thus Y ∈ 1(A)t0\1(A)

t−1
0 . By Corollary 6.8, resA Y = 1(A)t0, and thus

M ∈ resA(Y )⊆ X .
The rest of the proof uses Lemma 7.2 and is identical to [Dao and Takahashi

2015, Theorem 3.5], except one replaces the nonfree locus of M by NA(M) and
replaces projective dimension by A-dim. �

We come to the main theorem of this section. Recall that 0 is the set of grade
consistent functions.
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Theorem 7.4. Assume R is Noetherian. If A is a thick subcategory of GC which is
closed under †, then 3A and 8A are inverse functions giving a bijection between 0
and R(A).
Proof. The previous proposition shows that 3A8A is the identity on R(A). Let
f ∈ 0 and p ∈ spec R. Since addAp-dim Xp ≤ f (p) for every X ∈ 3A( f ), we
have 8A(3A( f ))(p)≤ f (p). However, by [Dao and Takahashi 2015, Lemma 5.1]
there is an M ∈1(P)⊆1(A) such that pdRp

Mp = f (p) and pdRq
Mq ≤ f (q) for

all q ∈ spec R. Since for all q ∈ spec R pdq Mq = addAq -dim Mq , M is in 3A( f ),
and we have 8A(3A( f ))(p)= f (p). Thus 8A3A is the identity on 0. �

8. Resolving subcategories that are closed under †

We wish to expand upon Theorem 7.4 using the results in Section 4. However, to use
Theorem 7.4, we need to understand which thick subcategories of GC containing C
are closed under duals. In this section, C is a semidualizing module. Since GC is
cogenerated by add C, as seen at the end of Section 3, it stands to reason that the
results of Section 4 are applicable.

Lemma 8.1. Suppose M⊆ GC is resolving with C ∈M. Then M is thick in GC if
and only if for every M ∈M, (�M†)† is in M. In particular, M is thick in GC if
any only if it is cogenerated by add C.

Since syzygies are unique up to projective summands, (�M†)† is unique up to
add C summands. Thus, for our purposes, our choice of syzygy is inconsequential.
When R = C, (�M†)† is the classical cosyzygy of a Gorenstein dimension zero
module M. Thus in this case, the lemma is equivalent to saying that a resolving
subcategory M of GR is thick if and only if it is closed under cosyzygies.

Proof. Assume M is thick, and let M ∈M. We have the following exact sequence.

0→�M†
→ Rn

→ M†
→ 0

Applying † yields
0→ M→ Cn

→ (�M†)†→ 0.

Since C ∈M, if M is thick in GC, (�M†)† is in M.
Conversely, suppose for every M ∈M, (�M†)† is in M. We wish to show that

M is thick in GC. Since M is resolving, it suffices to check that M† is also resolving,
since † is a duality on GC. It is also clear that M† is extension closed. Since C ∈M,
we have R ∈M†. Therefore it suffices to check that M† is closed under syzygies.
Take Z = M†

∈M†. Then since (�M†)† is in M, (�M†)†† ∼= �M†
= �Z is

in M†, as desired. �

The following corollary, although intuitive, is not obvious, and it is not clear if it
holds for other subcategories besides GC.
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Corollary 8.2. If M is thick in GC, then addMp is thick in GCp for all p ∈ spec R.

Proof. Take p ∈ spec R. From Lemma 2.11, we know that addMp is resolving.
By the previous lemma, it suffices to show that for all M ∈ addMp, (�Rp M†)† =

Hom(�Rp Hom(M,Cp),Cp) is in addMp. For every M ∈ addMp, there exists
an N such that M ⊕ N = Lp for some L ∈M. Consider the following:

(�L†)†p = Hom(�R Hom(L ,C), C)p

= Hom(�Rp Hom(Lp,Cp), Cp)

= Hom(�Rp Hom(M ⊕ N,Cp), Cp)

= Hom(�Rp Hom(M,Cp), Cp)⊕Hom(�Rp Hom(N,Cp), Cp)

By the previous lemma, (�L†)† is in M, and so (�Rp M†)† is in addMp. �

Proposition 8.3. Let A be the smallest thick subcategory of GC containing C. Then
A is closed under †.

Since the intersection of thick subcategories of GC is thick, it is clear that A exists.

Proof. First, let W be the set of modules obtained by applying † and � to R
successive times. Suppose for a moment that resW =A. Let A ∈A. We will show
that A†

∈ A by inducting on the number of steps needed to construct A from W.
See [Takahashi 2009] for a precise definition of the notion of steps with regards to a
resolving subcategory. If A takes 0 steps to construct, then A is either R or in W, and
the claim is clear. Suppose A is constructed in n> 0 steps. Then there exists B1 and
B0 which can be constructed in n−1 steps and satisfy one of the following situations.

(1) 0→ A→ B0→ B1→ 0

(2) 0→ B0→ A→ B1→ 0

(3) B0 = A⊕ B1

Therefore one of the following is true:

(a) 0→ B†
1 → B†

0 → A†
→ 0

(b) 0→ B†
1 → A†

→ B†
0 → 0

(c) B†
0 = A†

⊕ B†
1

By induction, B†
0 and B†

1 are in A. Since A is thick, each of these situations implies
that A† is in A.

Therefore, it suffices to show that resW =A. First, we show that resW is a thick
subcategory containing C. In light of Lemma 8.1, it suffices to show that for every
A ∈ resW, we have (�A†)† ∈ resW. We work as we did in the previous paragraph,
and we proceed by induction on the number of steps needed to construct A from W.
When it takes 0 steps, then A is either R or in W, in which case the claim is clear.
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Suppose A needs n > 0 steps to be constructed. Working as we did in the previous
paragraph, there exists modules B1 and B0 which can be constructed in n− 1 steps
and satisfy one of (1), (2), or (3) above. Therefore, one of the following is true:

(a) 0→ (�A†)†→ (�B†
0 )

†
→ (�B†

1 )
†
→ 0

(b) 0→ (�B†
0 )

†
→ (�A†)†→ (�B†

1 )
†
→ 0

(c) (�B†
1 )

†
= (�A†)†⊕ (�B†

0 )
†

By induction (�B†
0 )

† and (�B†
1 )

† are in resW. Since W is resolving, then so
is (�A†)† as desired.

It suffices now to show that resW ⊆A. To do this, we show that each W ∈W
is in A. We induct on c(W ), the smallest number of times it takes to apply � and †

to R to obtain W. If c(W )= 0, then W = R, and we are done. If c(W )= 1, then
W is either 0 or C which are both in A. Therefore, we may assume that c(W ) > 1.
Then one of the following situations must occur.

(1) A =�2 B

(2) A = B††

(3) A =�(B†)

(4) A = (�B)†

where c(B)= c(A)−2. By induction, B is in A. In cases (1) and (2), it is clear that
A is in A too. We have c(B†)≤ c(B)+ 1< c(A), and so B† is in A by induction.
Now in case (3), the result is clear. So we assume that we are in case (4). By
Lemma 8.1, (�(B††))† ∼= (�B)† = A must be in A. �

For the rest of this section, A will continue to be the smallest thick subcategory
of GC containing C. It is immediate that A satisfies the assumptions of Theorem 7.4.
We wish to apply the results from the beginning of the paper. Using the notation of
Section 4, set S(C)=S(A), i.e., let S(C) be the collection resolving subcategories
M ⊆ mod(R) such that A cogenerates M and addAp is thick in addMp for
every p ∈ spec R.

Lemma 8.4. Every thick subcategory of GC which contains C is in S(C). Further-
more, when R is Cohen–Macaulay, every element in S(C) is contained in MCM.
In particular, when C = D is a dualizing module, S(D) is the collection of thick
subcategories of MCM containing D.

Proof. Let M be a thick subcategory GC containing C. It is clear from the definition
of A that M contains A. By Lemma 8.1, M is cogenerated by add C , thus also by A.
By Corollary 8.2, addMp and addAp are thick in GCp for all primes p ∈ spec R.
Therefore, dimension with respect to each of these subcategories satisfies the
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Auslander–Buchsbaum formula. It follows from Lemma 2.14 that addAp is thick
in addMp

Now suppose that R is Cohen–Macaulay and X ∈S(C). Since A cogenerates X ,
for any X ∈X there exists 0→ X→ A0→· · ·→ Ad→ X ′→ 0 with each Ai ∈A
and d = depth R. Since A⊆MCM, X is in MCM. The last statement is now clear,
since in that case GD =MCM. �

We now come to the main results of the paper.

Theorem 8.5. Let A denote the smallest thick subcategory of GC containing C. For
any M ∈S(C) (e.g., M is a thick subcategory of GC containing C), 3M and 8M
give a bijection between R(M) and 0.

Furthermore, the following is a bijection:

3 :S(C)×0 −→
⋃

M∈S(C)

R(M)⊆R

For any M,N ∈S(C) with M⊆N, the following diagram commutes:

R(N )
8N

""
R(M)

8M //

ηNM

OO

0

R(A)
8A

<<

ηMA

OO

In particular, ρN
M and ηNM are inverse functions.

Proof. Proposition 8.3 states that A is a thick subcategory of GC which contains C
and is closed under †. Therefore, by Theorem 7.4, 3A and 8A give a bijection
between R(A) and 0. The first statement is an application of Theorem 4.2 and
Lemma 8.4. The rest follows from Theorem 4.4. �

A resolving subcategory X is dominant if for every p ∈ spec R, there is an n ∈N

such that �n
Rp

Rp/pRp ∈ addXp.

Corollary 8.6. Suppose R is Cohen–Macaulay and has a dualizing module. Then
there is a bijection between resolving subcategories containing MCM and grade
consistent functions. Furthermore, the following are equivalent for a resolving
subcategory X .

(1) X is dominant

(2) MCM⊆ X

(3) 1(X )=mod(R)
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Proof. Letting D be the dualizing module of R, MCM is the same as GD . Hence,
by the previous theorem, 3MCM : 0→R(MCM) is a bijection, showing the first
statement. From [Dao and Takahashi 2015, Theorem 1.3], the following is a
bijection:

ξ : 0→ {Dominant resolving subcategories of mod(R)}

f 7→ {X ∈mod(R) | depth Xp≥ ht p− f (p)}

It is clear that ξ(0)=MCM; hence, every dominant subcategory contains MCM.
Furthermore, we have mod(R)=1(MCM), and hence every dominant resolving
subcategory is an element of R(MCM). Then for any f ∈ 0,

ξ( f )= {X ∈mod(R) | depth Xp ≥ ht p− f (p)}

= {X ∈mod(R) | add MCMp -dim Xp ≤ f (p)} =3MCM( f ).

Thus ξ equals 3MCM, showing the equivalence of (1) and (2).
It is clear that (2) implies (3). Now assume (3) and take a p ∈ spec R. Then

X-dim R/p < ∞, and this implies that �n R/p ∈ X for some n. Therefore,
�n

Rp
Rp/pRp ∈ addXp, so X is dominant. �

9. Gorenstein rings and vanishing of Ext

In this section, (R,m, k) is a local Gorenstein ring. In this case, MCM is the
same as GR , and Lemma 8.4 implies that S(R) is merely the collection of thick
subcategories of MCM. This gives us the following which recovers [Dao and
Takahashi 2015, Theorem 7.4].

Theorem 9.1. If R is Gorenstein, then we have the following commutative diagram
of bijections:

{Thick subcategories of MCM}×0
3

,,
3P

��

{Z ∈R | Z ∩MCM is thick in MCM}

{Thick subcategories of MCM}×R(P)
4

33

where 4(M,X )= res(M∪X ).

Proof. Let Z be the collection of resolving subcategories whose intersection with
MCM is thick in MCM. As observed before the Theorem, S(R) is simply the thick
subcategories of MCM. Since for any M ∈S(R), 1(M)∩MCM is M, the image
of 3 lies in Z. Furthermore, for any Z ∈ Z, Z is in R(Z ∩MCM), thus the result
follows from Proposition 4.6 and Theorem 8.5. �
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It is natural to ask when the image 3 is all of R. This happens precisely
when every resolving subcategory of MCM is thick. This occurs, by [op. cit.,
Theorem 6.4], when R is a complete intersection. We will give a necessary condition
for Im3=R by examining the resolving subcategories of the form

MB = {M ∈mod(R) | Ext>0(M, B)= 0 for all B ∈ B}

where B ⊆mod(R). Dimension with respect to this category can be calculated in
the following manner.

Lemma 9.2. For all B ⊆mod(R),

MB -dim M = inf{n | Ext>n(M, B)= 0 for all B ∈ B}

Proof. Let M ∈ mod(R). For all i > 0 and j ≥ 0 and each B ∈ B, we have
Exti+ j (M, B) = Exti (� j M, B). So Exti+n(M, B) = 0 for all i ≥ 0 if and only if
�n M is in MB. �

Lemma 9.3. For any B ⊆mod(R), we have MB ∩1(P)= P.

Proof. To prove this, it suffices to show that if pd(X)= n > 0, then Extn(X, B) 6= 0.
Take a minimal free resolution

0→ Fn
d
−→ Fn−1→ · · · → F0→ X→ 0.

Note that Im(d)⊆mFn−1. We then get the complex

0→ Hom(X, B)→ Hom(F0, B)→ · · · → Hom(Fn−1, B)
d∗
−→ Hom(Fn, B)→ 0.

Now Im(d∗) still lies in mHom(Fn, B), and thus by Nakayama, d∗ cannot be
surjective. Hence we have Extn(X, B)= coker d∗ 6= 0. �

Araya [2012] defined AB dimension by AB-dim M = max{bM ,GR-dim M},
where

bM =min{n | Ext�0(M, B)= 0 ⇒ Ext>n(M, B)= 0}.

Note that AB dimension satisfies the Auslander–Buchsbaum formula. Also, a ring
is AB if and only if every module has finite AB dimension.

Lemma 9.4. Taking B ⊆ mod(R), if AB-dim M <∞ for all M ∈ 1(MB), then
MB is a thick subcategory of MCM.

Proof. Suppose AB-dim1(MB) <∞. First, we show that MB is contained in
MCM. Take any M ∈MB. There is an exact sequence 0→M→ Y → X → 0
with pd(Y ) < ∞ and X ∈ MCM. We claim that X has AB dimension zero.
Suppose Ext�0(X, Z) = 0. Then Ext�0(Y, Z) = 0 and since pd Y = AB-dim Y,
Ext>pd Y (Y, Z) is zero. Then we have Ext�0(M, Z)=0 and thus Ext>bM (M, Z)=0.
Therefore Exti (X, Z)= 0 for all i >max{pd(Y ), bM}+ 1. Since R is Gorenstein,
that means that X has finite GR dimension, and thus X has finite AB dimension.
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But since AB dimension satisfies the Auslander Buchsbaum formula, AB-dim X
must be zero.

Since Y ∈ 1(MB), we have X ∈ 1(MB). So Ext�0(X, B) = 0 for all B ∈ B,
and we have Ext>0(X, B)= 0 for all B ∈ B. Hence X is in MB. Therefore, Y is
also in MB, which, by Lemma 9.3, means that Y is projective and hence in MCM,
forcing M to be in MCM as well.

Now to show that MB is thick in MCM, it suffices to show that MB is closed
under cokernels of surjections in MCM. So take 0→ L → M → N → 0 with
L ,M, N ∈MCM and L ,M ∈MB. Then N ∈ 1(MB) and so Ext�0(N , B) = 0
for all B ∈ B. But then N has finite AB dimension by assumption. Since AB
dimension satisfies the Auslander–Buchsbaum formula, AB-dim N is zero. So we
have Ext>0(N , B)= 0 for all B ∈ B, and hence, N is in MB. �

Now let d = dim R.

Theorem 9.5. If R is Gorenstein, then the following are equivalent.

(1) R is AB.

(2) MB is a thick subcategory of MCM for all B ⊆mod(R).

(3) MCM∩MB is thick in MCM for every B ⊆mod(R).

(4) 3MB gives a bijection between R(MB) and 0 for every B ⊆mod(R).

(5) For all B ⊆ mod(R) and M ∈MB, 0 contains the function f : spec R→ N

defined by

f (p)=min{n | Ext>n(Mp, Bp)= 0 for all B ∈ B}.

Proof. The previous lemma shows that (1) implies (2), and (2) implies (3) is trivial.
Assuming (3), we will show (1). Suppose Ext�0(M, B)= 0. Then M is in1(MB).
Letting dim R = d, we have �d M ∈ 1(MB)∩MCM. For some n ≥ d we have
�n M ∈MB ∩MCM. But then we have

0→�n M→ Fn−1→ · · · → Fd →�d M→ 0,

where each Fi is projective. By (3), �d M is in MB. So we have MB-dim M ≤ d ,
and so Ext>d(M, B)= 0.

Theorem 4.2 shows that (2) implies (4). Lemma 9.2 shows that (4) implies (5).
Since R is local, evaluating f at the maximal ideal shows that (5) implies (1). �

Corollary 9.6. Set r = d − depth M. If R is AB and Ext�0(M, B) = 0, then
Extr (M, B) 6= 0. Furthermore, if Extr (M, B) = 0 or Exti (M, B) 6= 0 for i > r ,
then Ext j (M, B) 6= 0 for arbitrarily large j .
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Proof. Suppose R is AB. Then (2) holds and so MB -dim satisfies the Auslander–
Buchsbaum formula. If Ext�0(M, B)= 0 then

r =MB-dim M =max{n | Extn(M, B) 6= 0}.

The second statement is just the contrapositive of the first statement. �

Corollary 9.7. If R is Gorenstein and every resolving subcategory of MCM is thick,
then R is AB.

Proof. The assumption implies (2) in Theorem 9.5. �

Thus if 3 in Theorem 8.5 is a bijection from S(R)× 0 to R, then R is AB.
Stevenson [2014a] shows that when R is a complete intersection, every resolving
subcategory of MCM is closed under duals. The following gives a necessary
condition for this property.

Corollary 9.8. If R is Gorenstein and every resolving subcategory of MCM is
closed under duals, then R is AB.

Proof. Suppose every resolving subcategory of MCM is closed under duals. Let
M⊆MCM be resolving. Let −∗ = Hom(−, R). Then for every M ∈ X , (�M∗)∗

is in M. By Lemma 8.1, M is thick. The result follows from the previous corollary.
�
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cotilting, and spectra of commutative Noetherian rings”, Trans. Amer. Math. Soc. 366:7 (2014),
3487–3517. MR Zbl

[Araya 2012] T. Araya, “A Homological dimension related to AB rings”, preprint, 2012. arXiv

[Auslander 1971] M. Auslander, “Representation theory of artin algebras”, lecture notes, Queen Mary
College, London, 1971.

[Auslander and Bridger 1969] M. Auslander and M. Bridger, “Stable module theory”, pp. 146
Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence,
1969. MR Zbl

[Auslander and Buchweitz 1989] M. Auslander and R.-O. Buchweitz, “The homological theory of
maximal Cohen–Macaulay approximations”, pp. 5–37 in Colloque en l’honneur de Pierre Samuel
(Orsay, 1987), Mém. Soc. Math. France (N.S.) 38, Marseille, 1989. MR Zbl

http://dx.doi.org/10.1007/s00209-014-1281-y
http://dx.doi.org/10.1007/s00209-014-1281-y
http://msp.org/idx/mr/3229968
http://msp.org/idx/zbl/1303.13015
http://dx.doi.org/10.1090/S0002-9947-2014-05904-7
http://dx.doi.org/10.1090/S0002-9947-2014-05904-7
http://msp.org/idx/mr/3192604
http://msp.org/idx/zbl/1291.13018
http://msp.org/idx/arx/1204.4513v1
http://dx.doi.org/10.1090/memo/0094
http://msp.org/idx/mr/0269685
http://msp.org/idx/zbl/0204.36402
http://www.numdam.org/item?id=MSMF_1989_2_38__5_0
http://www.numdam.org/item?id=MSMF_1989_2_38__5_0
http://msp.org/idx/mr/1044344
http://msp.org/idx/zbl/0697.13005


CLASSIFYING RESOLVING SUBCATEGORIES 437

[Auslander and Reiten 1991] M. Auslander and I. Reiten, “Applications of contravariantly finite
subcategories”, Adv. Math. 86:1 (1991), 111–152. MR Zbl

[Dao and Takahashi 2014] H. Dao and R. Takahashi, “The radius of a subcategory of modules”,
Algebra Number Theory 8:1 (2014), 141–172. MR Zbl

[Dao and Takahashi 2015] H. Dao and R. Takahashi, “Classification of resolving subcategories and
grade consistent functions”, Int. Math. Res. Not. 2015:1 (2015), 119–149. MR Zbl

[Foxby 1972] H.-B. Foxby, “Gorenstein modules and related modules”, Math. Scand. 31 (1972),
267–284. MR

[Gabriel 1962] P. Gabriel, “Des catégories abéliennes”, Bull. Soc. Math. France 90 (1962), 323–448.
MR Zbl

[Geng 2013] Y. Geng, “A generalization of the Auslander transpose and the generalized Gorenstein
dimension”, Czechoslovak Math. J. 63(138):1 (2013), 143–156. MR Zbl

[Gerko 2001] A. A. Gerko, “On homological dimensions”, Mat. Sb. 192:8 (2001), 79–94. In Russian;
translated at Sb. Mat. 192:8 (2001), 1165–1179. MR Zbl

[Hopkins 1987] M. J. Hopkins, “Global methods in homotopy theory”, pp. 73–96 in Homotopy theory
(Durham, 1985), edited by E. Rees and J. D. S. Jones, London Math. Soc. Lecture Note Ser. 117,
Cambridge Univ. Press, 1987. MR Zbl

[Huang 1999] Z. Huang, “On a generalization of the Auslander–Bridger transpose”, Comm. Algebra
27:12 (1999), 5791–5812. MR Zbl

[Masek 1999] V. Masek, “Gorenstein dimension of modules”, expository notes, 1999. arXiv

[Neeman 1992] A. Neeman, “The chromatic tower for D(R)”, Topology 31:3 (1992), 519–532. MR
Zbl

[Sather-Wagstaff 2009] S. Sather-Wagstaff, “Semidualizing modules”, course notes, North Dakota
State University, Fargo, ND, 2009, available at http://ssather.people.clemson.edu/DOCS/sdm.pdf.

[Stevenson 2014a] G. Stevenson, “Duality for bounded derived categories of complete intersections”,
Bull. Lond. Math. Soc. 46:2 (2014), 245–257. MR Zbl

[Stevenson 2014b] G. Stevenson, “Subcategories of singularity categories via tensor actions”, Compos.
Math. 150:2 (2014), 229–272. MR Zbl

[Takahashi 2009] R. Takahashi, “Modules in resolving subcategories which are free on the punctured
spectrum”, Pacific J. Math. 241:2 (2009), 347–367. MR Zbl

[Takahashi 2010] R. Takahashi, “Classifying thick subcategories of the stable category of Cohen–
Macaulay modules”, Adv. Math. 225:4 (2010), 2076–2116. MR Zbl

[Takahashi 2011] R. Takahashi, “Contravariantly finite resolving subcategories over commutative
rings”, Amer. J. Math. 133:2 (2011), 417–436. MR Zbl

[Takahashi 2013] R. Takahashi, “Classifying resolving subcategories over a Cohen–Macaulay local
ring”, Math. Z. 273:1-2 (2013), 569–587. MR Zbl

[Vasconcelos 1974] W. V. Vasconcelos, Divisor theory in module categories, North-Holland Mathe-
matics Studies 14, North-Holland, Amsterdam, 1974. MR Zbl

[White 2010] D. White, “Gorenstein projective dimension with respect to a semidualizing module”, J.
Commut. Algebra 2:1 (2010), 111–137. MR Zbl

[Yoshino 2005] Y. Yoshino, “A functorial approach to modules of G-dimension zero”, Illinois J. Math.
49:2 (2005), 345–367. MR Zbl

Received February 25, 2015. Revised June 9, 2016.

http://dx.doi.org/10.1016/0001-8708(91)90037-8
http://dx.doi.org/10.1016/0001-8708(91)90037-8
http://msp.org/idx/mr/1097029
http://msp.org/idx/zbl/0774.16006
http://dx.doi.org/10.2140/ant.2014.8.141
http://msp.org/idx/mr/3207581
http://msp.org/idx/zbl/1308.13015
http://dx.doi.org/10.1093/imrn/rnt141
http://dx.doi.org/10.1093/imrn/rnt141
http://msp.org/idx/mr/3340297
http://msp.org/idx/zbl/1314.13024
http://www.mscand.dk/index.php/math/article/view/11434/9451
http://msp.org/idx/mr/0327752
http://www.numdam.org/item?id=BSMF_1962__90__323_0
http://msp.org/idx/mr/0232821
http://msp.org/idx/zbl/0201.35602
http://dx.doi.org/10.1007/s10587-013-0009-1
http://dx.doi.org/10.1007/s10587-013-0009-1
http://msp.org/idx/mr/3035502
http://msp.org/idx/zbl/1274.13022
http://dx.doi.org/10.4213/sm587
http://dx.doi.org/10.1070/SM2001v192n08ABEH000587
http://msp.org/idx/mr/1862245
http://msp.org/idx/zbl/1029.13010
http://msp.org/idx/mr/932260
http://msp.org/idx/zbl/0657.55008
http://dx.doi.org/10.1080/00927879908826791
http://msp.org/idx/mr/1726277
http://msp.org/idx/zbl/0948.16007
http://msp.org/idx/arx/math/9809121v2
http://dx.doi.org/10.1016/0040-9383(92)90047-L
http://msp.org/idx/mr/1174255
http://msp.org/idx/zbl/0793.18008
http://ssather.people.clemson.edu/DOCS/sdm.pdf
http://dx.doi.org/10.1112/blms/bdt089
http://msp.org/idx/mr/3194744
http://msp.org/idx/zbl/1321.13008
http://dx.doi.org/10.1112/S0010437X1300746X
http://msp.org/idx/mr/3177268
http://msp.org/idx/zbl/1322.18004
http://dx.doi.org/10.2140/pjm.2009.241.347
http://dx.doi.org/10.2140/pjm.2009.241.347
http://msp.org/idx/mr/2507582
http://msp.org/idx/zbl/1172.13005
http://dx.doi.org/10.1016/j.aim.2010.04.009
http://dx.doi.org/10.1016/j.aim.2010.04.009
http://msp.org/idx/mr/2680200
http://msp.org/idx/zbl/1202.13009
http://dx.doi.org/10.1353/ajm.2011.0011
http://dx.doi.org/10.1353/ajm.2011.0011
http://msp.org/idx/mr/2797352
http://msp.org/idx/zbl/1216.13009
http://dx.doi.org/10.1007/s00209-012-1020-1
http://dx.doi.org/10.1007/s00209-012-1020-1
http://msp.org/idx/mr/3010176
http://msp.org/idx/zbl/1267.13024
http://dx.doi.org/10.1016/S0304-0208(08)70346-3
http://msp.org/idx/mr/0498530
http://msp.org/idx/zbl/0296.13005
http://dx.doi.org/10.1216/JCA-2010-2-1-111
http://msp.org/idx/mr/2607104
http://msp.org/idx/zbl/1237.13029
http://projecteuclid.org/euclid.ijm/1258138022
http://msp.org/idx/mr/2163939
http://msp.org/idx/zbl/1097.13019


438 WILLIAM SANDERS

WILLIAM SANDERS

DEPARTMENT OF MATHEMATICAL SCIENCES

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

7491 TRONDHEIM

NORWAY

william.sanders@math.ntnu.no

mailto:william.sanders@math.ntnu.no


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Igor Pak
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pak.pjm@gmail.com

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2017 is US $450/year for the electronic version, and $625/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:pak.pjm@gmail.com
mailto:yang@math.princeton.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 286 No. 2 February 2017

257Almost everywhere convergence for modified Bochner–Riesz means
at the critical index for p ≥ 2

MARCO ANNONI

277Uniqueness of conformal Ricci flow using energy methods
THOMAS BELL

291A functional calculus and restriction theorem on H-type groups
HEPING LIU and MANLI SONG

307Identities involving cyclic and symmetric sums of regularized multiple
zeta values

TOMOYA MACHIDE

361Conformally Kähler Ricci solitons and base metrics for warped
product Ricci solitons

GIDEON MASCHLER

385Calculating Greene’s function via root polytopes and subdivision
algebras

KAROLA MÉSZÁROS

401Classifying resolving subcategories
WILLIAM SANDERS

439The symplectic plactic monoid, crystals, and MV cycles
JACINTA TORRES

499A note on torus actions and the Witten genus
MICHAEL WIEMELER

0030-8730(201702)286:2;1-X

Pacific
JournalofM

athem
atics

2017
Vol.286,N

o.2


	1. Introduction
	2. Resolving preliminaries
	3. Preliminaries: semidualizing modules
	4. Comparing resolving subcategories
	5. A generalization of the Auslander transpose
	6. Resolving subcategories which are maximal Cohen–Macaulay on the punctured spectrum
	7. Resolving subcategories and semidualizing modules
	8. Resolving subcategories that are closed under 
	9. Gorenstein rings and vanishing of Ext
	Acknowledgements
	References
	
	

