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THE SYMPLECTIC PLACTIC MONOID,
CRYSTALS, AND MV CYCLES

JACINTA TORRES

We study cells in generalized Bott–Samelson varieties for type Cn. These
cells are parametrized by certain galleries in the affine building. We define
a set of readable galleries — we show that the closure in the affine Grassman-
nian of the image of the cell associated to a gallery in this set is an MV cycle.
This then defines a map from the set of readable galleries to the set of MV
cycles, which we show to be a morphism of crystals. We further compute
the fibers of this map in terms of the Littelmann path model.

1. Introduction

This paper is part of a project started by Gaussent and Littelmann [2005] the aim
of which is to establish an explicit relationship between the path model and the set
of MV cycles used by Mirković and Vilonen for the Geometric Satake equivalence
proven in [Mirković and Vilonen 2007].

1A. We consider a complex connected reductive algebraic group G and its affine
Grassmannian G = G(C((t)))/G(C[[t]]). We fix a maximal torus T ⊂ G. The
coweight lattice X∨ =Hom(C×,T) can be seen as a subset of G . For a coweight λ,
which we may assume dominant with respect to some choice of Borel subgroup
containing T, the closure Xλ of the G(C[[t]])-orbit of λ in G is an algebraic variety
which is usually singular. The Geometric Satake equivalence identifies the complex
irreducible highest weight module L(λ) for the Langlands dual group G∨ with
the intersection cohomology of Xλ, a basis of which is given by the classes of
certain subvarieties of Xλ called MV cycles. The set of these subvarieties is denoted
by Z (λ). The Geometric Satake equivalence implies that the elements of Z (λ)

are in one to one correspondence with the vertices of the crystal B(λ). Braverman
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and Gaitsgory [2001], endow the set Z (λ) with a crystal structure and show the
existence of a crystal isomorphism ϕ : B(λ)−→∼ Z (λ).

1B. Gaussent and Littelmann [2005] define a set 0(γλ)LS of LS galleries, which
are galleries in the affine building J aff associated to G, and they endow this set
with a crystal structure and an isomorphism of crystals B(λ) −→∼ 0(γλ)

LS. They
view the latter as a subset of the T-fixed points in a desingularization 6γλ

π
−→Xλ.

To each of these particular fixed points δ ∈0(γλ)LS corresponds a Białynicki-Birula
cell Cδ ⊂6γλ . Gaussent and Littelmann [2005] show that the closure π(Cδ) is an
MV cycle, and Baumann and Gaussent [2008] show that the map

0(γλ)
LS
→Z (λ), δ 7→ π(Cδ)

is a crystal isomorphism with respect to the crystal structure on Z (λ) described by
Braverman and Gaitsgory [2001]. It is natural to ask whether the closures π(Cδ)
are still MV cycles for a more general choice of fixed point δ.

1C. Gaussent and Littelmann [2012] consider one skeleton galleries, which are
piecewise linear paths in X∨⊗Z R. Such galleries can be interpreted in terms of
Young tableaux for types A, B and C. For G∨ = SL(n,C), Gaussent et al. [2013]
show that for any fixed point δ ∈ 6T

γλ
, the closure π(Cδ) is in fact an MV cycle.

They achieve this using combinatorics of Young tableaux such as word reading and
the well known Knuth relations, and by relating them to the Chevalley relations
for root subgroups which hold in the affine Grassmannian G . In [Torres 2016] it
is observed that word reading is a crystal morphism, and this allows one to prove
that in this case, the map from all galleries to MV cycles is in fact a morphism
of crystals. It was conjectured in [Gaussent et al. 2013] that generalizations of
their results hold for arbitrary complex semisimple algebraic groups, in terms of
the plactic algebra defined by Littelmann [1996]. It is with this in mind that we
formulate and state our results.

1D. Results. We work with G∨=Sp(2n,C). We define a set 0(γλ)R⊃0(γλ)LS of
readable galleries, which have an explicit formulation in terms of Young tableaux.
These galleries correspond to all galleries in type A. They are called keys in
[Gaussent et al. 2013]. Type C combinatorics related to LS galleries has been
developed by De Concini [1979], Kashiwara and Nakashima [1994], King [1976],
Lakshmibai [1987] (in the context of standard monomial theory), Proctor [1990],
Sheats [1999] and Lecouvey [2002], among others. We use the description of LS
galleries of fundamental type given by Lakshmibai in [1987; 1986]. We use the
formulation given by Lecouvey [2002]. There is a certain word reading described
in [Lecouvey 2002] which we show to be a crystal morphism when restricted to
readable galleries. We obtain results similar to those obtained in [Gaussent et al.
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2013] concerning the defining relations of the symplectic plactic monoid, described
explicitly by Lecouvey [2002], as well as words of readable galleries. These results
together with the work of Gaussent and Littelmann [2005; 2012], and Baumann
and Gaussent [2008] allow us to show in Theorem 6.2 that given a readable gallery
δ ∈ 0(γλ)

R there is an associated dominant coweight νδ ≤ λ such that:

(1) The closure π(Cδ) is an MV cycle in Xνδ .

(2) The map

0(γλ)
R ϕγλ
−→

⊕
δ∈0(γλ)R/∼

Z (µδ+), δ 7→ π(Cδ)

is a morphism of crystals.

Here 0(γλ)R/∼ is some set of representatives for a certain equivalence relation
on the set of readable galleries. We compute the fibers of this map in terms of
the Littelmann path model. Moreover, this map induces an isomorphism when
restricted to each connected component. We then provide some examples of galleries
δ ∈6T

γλ
−0(γλ)

R for which π(Cδ) is not an MV cycle in Z (νδ).

1E. This paper is organized as follows. In Section 2 we introduce our notation and
recall several general facts about affine Grassmannians, MV cycles, galleries in the
affine building, generalized Bott–Samelson varieties, and concrete descriptions of
the cells Cδ in them. In Section 3 we introduce the crystal structure on combinatorial
galleries, motivating our results with the Littelmann path model, and define readable
galleries as concatenations of LS galleries of fundamental type and “zero lumps.”
From Section 4 on we work with G∨ = Sp(2n,C), where we recall some type C
combinatorics and build up to our main result, which we state and prove in Section 6.
However, the main ingredients of the proof, stated in Section 5, are proven in
Section 7. In Section 8 we exhibit some examples in special cases where the image
of a certain cell cannot be an MV cycle. In the Appendix we show a technical result
that we need.

2. Preliminaries

2A. Notation. Throughout this section, we consider G to be a complex connected
reductive algebraic group associated to a root datum (X,X∨,8,8∨), and we denote
its Langlands dual by G∨. Let T⊂G be a maximal torus of G with character group
X=Hom(T,C×) and cocharacter group X∨ =Hom(C×,T). We will call elements
of X weights, and elements of X∨ coweights. We identify the Weyl group W with
the quotient NG(T)/T, where NG(T) denotes the normalizer of T in G. We will
abuse notation by denoting a representative in NG(T) of an element w ∈W in the
Weyl group by the same symbol, w, that we use to denote the element itself. We fix
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a choice of positive roots 8+ (this determines a set 8∨,+ of positive coroots), and
denote the dominance order on X and X∨ determined by this choice by ≤. We will
denote the corresponding set of dominant weights and coweights by X+ ⊂ X and
X∨,+ ⊂ X∨ respectively. Let 1= {α1, . . . , αn} ⊂8

+ be the basis or set of simple
roots of 8 that is determined by 8+. The number n is called the rank of the root
datum. Then the set 1∨ of all coroots α∨i of elements αi ∈1 forms a basis of the
root system 8∨. Let 〈−,−〉 be the nondegenerate pairing between X and X∨, and
denote the half sum of positive roots and coroots by ρ and ρ∨ respectively. Note
that if λ =

∑
α∈1nαα, respectively λ =

∑
α∨∈1∨nαα∨, is a sum of positive roots

then 〈λ, ρ∨〉 =
∑

α∈1nα, respectively 〈ρ, λ〉 =
∑

α∨∈1∨nα).
Let B⊂ G be the Borel subgroup of G containing T that is determined by the

choice of positive roots 8+, and let U⊂ B be its unipotent radical. The group U is
generated by the elements Uα(b) for b ∈ C, α ∈8+, where for each root α, Uα is
the one-parameter group it determines. For each coweight λ∈X∨ and each nonzero
complex number a ∈ C×, we denote its image λ(a) ∈ T by aλ.

The following identities hold in G (See [Steinberg 1968, §6]):

• For any λ ∈ X∨, a ∈ C×, b ∈ C, and α ∈8,

(1) aλUα(b)= Uα(a〈α,λ〉b)aλ.

• (Chevalley’s commutator formula) Given linearly independent roots α, β ∈8,
there exist numbers ci, j

α,β ∈ {±1,±2,±3} such that, for all a, b ∈ C,

(2) Uα(a)−1Uβ(b)−1Uα(a)Uβ(b)=
∏

i, j∈N>0

Uiα+ jβ
(
ci, j
α,β(−a)i b j).

The product is taken in some fixed order. The ci, j
α,β are integers which apart

from depending on i and j depend also on α, β and on the chosen order in the
product.

2B. Affine Grassmannians. Let O = C[[t]] denote the ring of complex formal
power series and let K = C((t)) denote its field of fractions; it is the field of
complex Laurent power series. For any C-algebra R, we denote the set of R-valued
points of G by G(R). The set

G = G(K )/G(O)

is called the affine Grassmannian associated to G. We will denote the class in G

of an element g ∈ G(K ) by [g]. A coweight λ : C× → T ⊂ G determines a
point tλ ∈ G(K ) and hence a class [tλ] ∈ G . This map is injective, and we may
therefore consider X∨ as a subset of G .
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G(O)-orbits in G are determined by the Cartan decomposition

G =
⊔

λ∈X∨,+
G(O)[tλ].

Each G(O)-orbit has the structure of an algebraic variety induced from the progroup
structure of G(O) and for a dominant coweight λ ∈ X∨,+,

G(O)[tλ] =
⊔

µ∈X∨,+
µ≤λ

G(O)[tµ].

We call the closure G(O)[tλ] a generalized Schubert variety and we denote it by Xλ.
This variety is usually singular. We will review certain resolutions of singularities
of it in Section 2E. The U(K )-orbits in G are given by the Iwasawa decomposition

G =
⊔
λ∈X∨

U(K )[tλ].

These orbits are indvarieties, and their closures can be described by

U(K )[tλ] =
⋃
µ≤λ

U(K )[tµ]

for any λ ∈ X∨ (see Proposition 3.1(a) of [Mirković and Vilonen 2007]).

2C. MV cycles and crystals. Let λ ∈ X∨,+ and µ ∈ X∨ be a dominant integral
coweight and any coweight, respectively. Let L(λ) be the irreducible representation
of G∨ of highest weight λ. Then by Theorem 3.2 in [Mirković and Vilonen 2007], the
intersection U(K )[tµ]∩G(O)[tλ] is nonempty if and only if µ is a weight of L(λ),
and in that case its closure is pure dimensional of dimension 〈ρ, λ+µ〉 and has the
same number of irreducible components as the dimension of the µ-weight space
L(λ)µ [Mirković and Vilonen 2007, Corollary 7.4]. Moreover, X∨∼=Hom(T∨,C×),
where T∨ is the Langlands dual of T, which is a maximal torus of G∨ (see [Mirković
and Vilonen 2007, §7] ).

We denote the set of all irreducible components of a given topological space Y
by Irr(Y). Consider the sets

Z (λ)µ = Irr(U(K )[tµ] ∩G(O)[tλ]) and Z (λ)=
⊔
µ∈X∨

Z (λ)µ.

Elements of these sets are called MV cycles. Braverman and Gaitsgory [2001, §3.3]
have endowed the set Z (λ) with a crystal structure and have shown the existence
of an isomorphism of crystals B(λ) −→∼ Z (λ). We do not use the definition of
this crystal structure, but we denote by f̃αi (respectively ẽαi ) the corresponding



444 JACINTA TORRES

root operators for i ∈ {1, . . . , n}, where n is the rank of the root system 8. See
Section 3A below for the definition of a crystal.

2D. Galleries in the affine building. Let J aff be the affine building associated
to G and K . It is a union of simplicial complexes called apartments, each of which
is isomorphic to the Coxeter complex of the same type as the extended Dynkin
diagram associated to G. We refer the reader to [Ronan 2009] for a thorough
account of building theory. The affine Grassmannian G can be G(K )-equivariantly
embedded into the building J aff, which also carries a G(K ) action. Denote by
8aff the set of real affine roots associated to 8; we identify it with the set 8×Z.

Let A = X∨⊗Z R. For each (α,m) ∈8aff, consider the associated hyperplane
and the positive and negative half spaces:

H(α,m) = {x ∈ A : 〈α, x〉 = m},

H+(α,m) = {x ∈ A : 〈α, x〉 ≥ m},

H−(α,m) = {x ∈ A : 〈α, x〉 ≤ m}.

The affine Weyl group Waff is generated by all the affine reflections s(α,m) with
respect to the affine hyperplanes H(α,m). We have an embedding W ↪→Waff given
by sα 7→ s(α,0), where sα ∈W is the simple reflection associated to α ∈8. (The Weyl
group W is minimally generated by the set {sαi : i ∈ {1, . . . , n}}.) The dominant
Weyl chamber is the set

C+ = {x ∈ A : 〈α, x〉 > 0 for all α ∈1},

and the fundamental alcove is in turn

1f
= {x ∈ C+ : 〈α, x〉 ≤ 1 for all α ∈8+}.

There is a unique apartment in the affine building J aff that contains the image
of the set of coweights X∨ ⊂ G under the embedding G ↪→J aff. This apartment
is isomorphic to the affine Coxeter complex associated to Waff; its faces are given
by all possible intersections of the hyperplanes H(α,m) and their associated (closed)
positive and negative half-spaces H±(α,m). It is called the standard ,apartment in
the affine building J aff. The action on the affine building J aff by Waff coincides,
when restricted to the standard apartment, with the one induced by the natural action
of Waff on A. The fundamental alcove is a fundamental domain for this action.

To each real affine root (α,m) ∈ 8aff is attached the one-parameter additive
root subgroup U(α,m) of G(K ) defined by b 7→ Uα(btm) for b ∈ C. Let λ ∈ X∨

and b ∈ C. Identity (1) implies that

(3) U(α,m)(b)[tλ] = [Uα(btm)tλ] = [tλUα(btm−〈α,λ〉)],
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and [tλUα(btm−〈α,λ〉)] = [tλ] if and only if Uα(btm−〈α,λ〉)⊂ G(O), or, equivalently,
〈α, λ〉 ≤m. Hence, the root subgroup U(α,m) stabilizes the point [tλ] ∈ G ↪→J aff if
and only if λ ∈H−(α,m). For each face F in the standard apartment, denote by PF, UF

and Waff
F its stabilizer in G(K ), U(K ) and Waff respectively. These subgroups

are generated by the torus T, and respectively by the root subgroups U(α,m) such
that F⊂ H−(α,m), the root subgroups U(α,m) ⊂ PF such that α ∈8+, and those affine
reflections s(α,m) ∈Waff such that F⊂ H(α,m) [Gaussent and Littelmann 2005, §3.3,
Example 3; Baumann and Gaussent 2008, Proposition 5.1].

Example 2.1. Let G∨ = Sp(4,C), then 8+ = {α1, α2, α1+ α2, α1+ 2α2}. In the
picture below the shaded region is the upper half-space H+(α2,0). Let F be the face in
the standard apartment that joins the vertices −(α1+α2) and −α1. This is depicted
here.

F

α1+α2
H(α2,0)

H(α2,1)

H(α2,−1)

α2 α1+ 2α2

α1

The subgroup PF is generated by the root subgroups associated to the following
real roots:

(α1,m) m ≥−1,

(α2,m) m ≥ 1,

(α1+α2,m) m ≥−1,

(α1+ 2α2,m) m ≥ 0,

(−α1,m) m ≥ 2,

(−α2,m) m ≥ 0,

(−(α1+α2),m) m ≥ 1,

(−(α1+ 2α2),m) m ≥ 1.

The stabilizer UF is generated by the root subgroups associated to those previously
stated roots (α,m) such that α ∈8+ is a positive root, and Waff

F = {s(α1+α2,−1), 1}.

A gallery is a sequence of faces in the affine building J aff,

(4) γ = (V0 = 0,E0,V1, . . . ,Ek,Vk+1),

satisfying these conditions:
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1. For each i ∈ {1, . . . , k}, Vi ⊂ Ei ⊃ Vi+1.

2. Each face labeled Vi has dimension zero (is a vertex) and each face labeled Ei

has dimension one (is an edge). In particular, each face in the sequence γ is
contained in the one-skeleton of the standard apartment.

3. The last vertex Vk+1 is a special vertex: its stabilizer in the affine Weyl
group Waff is isomorphic to the finite Weyl group W associated to G.

We denote the set of all galleries in the affine building by6. If, in addition, each face
in the sequence belongs to the standard apartment, then γ is called a combinatorial
gallery. We will denote the set of all combinatorial galleries in the affine building
by 0. In this case, the third condition is equivalent to requiring the last vertex Vk+1

to be a coweight. From now on, if γ is a combinatorial gallery we will denote the
coweight corresponding to its final vertex by µγ in order to distinguish it from the
vertex.

Remark 2.2. The galleries we defined are actually called one-skeleton galleries in
the literature. The word “gallery” was originally used to describe a more general
class of face sequences but since we only work with one-skeleton galleries in this
paper, we have left the word “one-skeleton” out.

2E. Bott–Samelson varieties. Let γ be a combinatorial gallery (as above). The
following lemma can be obtained from [Gaussent and Littelmann 2012, Lemma 4.8
and Definition 4.6].

Lemma 2.3. There exist a unique combinatorial gallery,

γ f
= (V f

0 ,E f
0 ,V f

1 , . . . ,V f
k+1),

with each one of its faces contained in the fundamental alcove, and elements
wj ∈ Waff

V f
j

for each j ∈ {1, . . . , k} such that w0 · · ·wr−1V f
r = Vr for each

r ∈ {0, . . . , k+ 1} and w0 · · ·wr E f
r = Er for each r ∈ {0, . . . , k}.

If two galleries γ and η have the same associated gallery ν = γ f
= η f we say

that the two galleries have the same type. We will denote the set of combinatorial
galleries that have the same type as a given combinatorial gallery γ by 0(γ ). The
map

Waff
V0
× · · ·×Waff

Vk
→ 0(γ ),(5)

(w0, . . . , wk) 7→ (V0, w0E0, w0V1, w0w1E1, . . . , w0 · · ·wkVk+1),(6)

induces a bijection between the set
∏r

i=0 Waff
Vi
/Waff

Ei
and 0(γ ); it is in particular

finite. For a proof see [Gaussent and Littelmann 2012, Lemma 4.8].
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Definition 2.4. The Bott–Samelson variety of type γ f is the quotient of

G(O)×PV f
1
× · · ·×PV f

k

by the following right action of PE f
0
× · · ·×PE f

k
:

(q0, . . . , qk) · (p0, p1, . . . , pk)= (q0 p0, p−1
0 q1 p1, . . . , p−1

k−1qk pk).

We will denote this quotient by 6γ f . The progroup structure of the groups PV f
i

and PE f
i

assures that 6γ f is in fact a smooth variety. To each point (g0, . . . , gk) in
G(O)×PV f

1
× · · ·×PV f

k
one can associate a gallery

(7) (V f
0 , g0E f

0 , g0V f
1 , g0g1V f

2 , . . . , g0 · · · gkV f
k+1).

This induces a well defined injective map i : 6γ f ↪→ 6. With respect to this
identification, the T-fixed points in 6γ f are in natural bijection with the set 0(γ f )

of combinatorial galleries of type γ f .
Let ω ∈ A be a fundamental coweight. We define a particular combinatorial

gallery, which starts at 0 and ends at ω. Let Vω
1 , . . . ,Vω

k be the vertices in the
standard apartment that lie on the open line segment joining 0 and ω, numbered
such that Vω

i+1 lies on the open line segment joining Vω
i and ω. Let further Eωi

denote the face contained in A that contains the vertices Vω
i and Vω

i+1. The gallery

γω = (0= Vω
0 ,Eω0 ,Vω

1 ,Eω1 , . . . ,Eωk ,Vω
k+1 = ω)

is called a fundamental gallery. Galleries of the same type as a fundamental gallery
γω will be called galleries of fundamental type ω.

Now let λ ∈ X∨,+ be a dominant integral coweight and let γλ be a gallery with
endpoint λ and expressible as a concatenation of fundamental galleries, where
concatenation of two combinatorial galleries γ1 ∗ γ2 is defined by translating γ2 to
the endpoint of γ1. (Note that it follows from the definition of type that if γ, ν are
two galleries of the same type as δ and η respectively, then γ ∗ ν has the same type
as δ ∗η. Actually, if γ = γ1 ∗ · · · ∗γr then 0(γ )= {δ1 ∗ · · · ∗ δr : δi ∈ 0(γi )}.) Then
the map

6
γ

f
λ

π
−→Xλ, [g0, . . . , gr ] 7→ g0 · · · gr [t

µ
γ f
](8)

is a resolution of singularities of the generalized Schubert variety Xλ.

Remark 2.5. That the above map is in fact a resolution of singularities is due to
the fact that the gallery γλ is minimal (see [Gaussent and Littelmann 2012, §5
and §4.3, Proposition 5]). This resembles the condition for usual Bott–Samelson
varieties associated to a reduced expression. See [Gaussent and Littelmann 2005,
§9, Proposition 7].
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Remark 2.6. The map (8) makes sense for any combinatorial gallery γ . In this
generality one has a map 6γ f

π
−→G sending [g0, . . . , gr ] to g0, . . . , gr [tµγ ], which

is not necessarily a resolution of singularities. From now on we will write (6γ f , π)

to refer to the Bott–Samelson variety together with its map 6γ f
π
−→G to the affine

Grassmannian.

2F. Cells and positive crossings. Let r∞ :J aff
→ A be the retraction at infinity

(see [Gaussent and Littelmann 2005, Definition 8]). It extends to a map

rγ f :6γ f → 0(γ f ).

To a combinatorial gallery δ ∈ 0(γ f ) is associated the cell Cδ = r−1
γ f (δ) which

was explicitly described in [Gaussent and Littelmann 2005; 2012; Baumann and
Gaussent 2008]. In this subsection we recollect their results; we will need them
later. They are originally formulated in terms of galleries of the same type as γλ;
we formulate them for any combinatorial gallery. The proofs remain the same,
and therefore we do not provide them all, but refer the reader to [Gaussent and
Littelmann 2005; 2012].

First consider the subgroup U(K ) of G(K ). It is generated by the elements of
the root subgroups U(α,n) for α ∈ 8+ a positive root and n ∈ Z. Let V ⊂ E be a
vertex and an edge (respectively) in the standard apartment, the vertex contained in
the edge. Consider the subset of affine roots

8+(V,E) = {(α, n) ∈8aff
: α ∈8+,V ∈ H(α,n),E * H−(α,n)},

and let U(V,E) denote the subgroup of U(K ) generated by U(α,n) for all (α, n) ∈
8+(V,E). The following proposition will be very useful in Section 7. It is stated and
proven in [Baumann and Gaussent 2008, Proposition 5.1].

Proposition 2.7. Let V⊂ E be a vertex and an edge in the standard apartment as
above. Then U(V,E) is a set of representatives for the right cosets of UE in UV. For
any total order on the set 8+(V,E), the map

(aβ)β∈8+(V,E) 7→
∏

β∈8+(V,E)

Uβ(aβ)

is a bijection from C
|8+(V,E)| onto U(V,E). The order in the product is the same as the

one on the set 8+(V,E).

Now let γ be a combinatorial gallery with notation as in (4). For each i ∈ {1, . . . , k},
let U

γ

Vi
= U(Vi ,Ei ). For later use we fix the notation 8γi =8

+

(Vi ,Ei )
.

Example 2.8. Let G∨= Sp(4,C) as in Example 2.1, and γω1 be as in Definition 2.4.
Then U

γω1
V0

is generated by the root subgroups associated to the real roots (α1, 0),
(α1+α2, 0), and (α1+2α2, 0). Let δ be the gallery with one edge and endpoint α2.
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Then UδV0
is generated by the groups associated to (α2, 0), (α1+ 2α2, 0), as seen

here.

γω1

H(α2,0)

δ

H(α1+α2,0) H(α1+2α2,0)H(α1,0)

Now write δ= (V0,E0, . . . ,Ek,Vk+1)∈0(γ
f ) in terms of (7) as δ=[δ0, . . . , δk].

This means δi ∈Waff
V f

i
and δ0 · · · δ j E

f
j = E j . A beautiful exposition of the following

description (Theorem 2.9) of the cell Cδ can be found in [Gaussent and Littelmann
2012, Proposition 4.19]. We provide an outline of the proof for the benefit of the
reader and in order to state Corollary 2.10, which is actually a corollary to its proof.

Theorem 2.9. The map ϕ : Uδ = UδV0
×UδV1

× · · ·×UδVk
→6γ f given by

(v0, . . . , vk) 7→ [v0δ0, δ
−1
0 v1δ0δ1, . . . , (δ0 · · · δk−1)

−1vkδ0 · · · δk]

is injective and has image Cδ.

Proof. Let Ũ= UV0 × · · ·×UVk/UE0 × · · ·×UEk where

(e0, . . . , εk) · (v0, . . . , vk)= (v0e0, e−1
0 v1e1, . . . , e−1

k−1vkek).

The map (v0, . . . , vk) 7→ [v1, . . . , vk] defines a bijection φ : Uδ→ Ũ. Indeed, by
[Gaussent and Littelmann 2012, Proposition 4.17], UVi is a set of representatives
for right cosets of UE j in UVj , and hence for [a0, . . . , ak] ∈ Ũ there is a unique
(v0, . . . , vk) ∈ U such that (for some e j ∈ UE j ) v0e0 = a0, and v j e j = e j−1a j ,
i.e., φ((v0, . . . , vk)) = [a0, . . . , ak]. We use this bijection and consider instead
the map ϕ̃ := ϕ ◦ φ−1. Fix [v0, . . . , vk] ∈ Ũ. The map ϕ̃ is well defined because
(δ0 · · · δj−1)

−1vi j (δ0 · · · δ j )∈PV f
j
, and if ej ∈UEj then(δ0 · · · δj )

−1ej (δ0 · · · δj )∈UE f
j
.

Since by [Gaussent and Littelmann 2005, Proposition 1] the fibers of r∞ are U(K )-
orbits, an element p = [p0, . . . , pk] ∈6γ f belongs to Cδ if and only if there exist
elements u0, . . . , uk ∈ U(K ) such that

(1) p0 · · · pj E
f
j = u j E j and

(2) u j−1Vj = u j Vj .

Define u0 = v0 and u j = v0 · · · vj . Then conditions (1) and (2) above hold for

pj = (δ0 · · · δj−1)
−1vj (δ0 · · · δj ).

Hence the image of the map is contained in the cell Cδ. For the other inclusion,
define vj =u−1

j−1u j (see [Gaussent and Littelmann 2012, Proposition 4.19]). To show
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injectivity assume ϕ̃([v0, . . . , vk]) = ϕ̃([v
′

0, . . . , v
′

k]). Then there exist elements
ej ∈ UEj such that v0 · · · vj = v

′

0 · · · v
′

j ej , this implies injectivity. �

The following corollary can be found in [Gaussent et al. 2013, Corollary 3]
for G∨ = SL(n,C). Note that in particular it implies that uπ(Cδ)= π(Cδ) for all
u ∈ UV0 .

Corollary 2.10. π(Cδ)= UδV0
· · ·UδVk

[tµδ ] = UV0 · · ·UVk [t
µδ ].

Proof. By the arguments in the proof of Theorem 2.9 the image of the map

UV0 × · · ·×UVk →6γ f

(v0, . . . , vk) 7→ [v0δ0, δ
−1
0 v1δ0δ1, . . . , δ0 · · · δ

−1
r−1vkδ0 · · · δk]

is contained in and is surjective onto the cell Cδ . In particular conditions (1) and (2)
above are satisfied for pj = (δ0 · · · δj−1)

−1vj (δ0 · · · δj ). The corollary follows since
δ0 · · · δjµγ f = µδ. �

3. Crystal structure on combinatorial galleries, the Littelmann path model,
and Lakshmibai–Seshadri galleries

Let λ ∈ X+,∨ be a dominant integral coweight and let L(λ) be the corresponding
simple module of G∨. To L(λ) is associated a certain graph B(λ) that is its “combi-
natorial model”. It is a connected highest weight crystal, which means that there
exists bλ ∈ B(λ) such that eαi (bλ)= 0 for all i ∈ {1, . . . , n}, where n is the rank of
the corresponding root datum. The crystal B(λ) also has the characterizing property
that

dim(L(λ)µ)= #{b ∈ B(λ) : wt(b)= µ}.

See below for definitions. After recalling the notion of a crystal we review the
crystal structure on the set 0 of combinatorial galleries.

3A. Crystals. A crystal is a set B together with maps

eαi , fαi : B→ B∪ {0} (the root operators),

wt : B→ X∨ (the weight function),

for i ∈ {1, . . . , n}, such that for every b, b′ ∈B; b′= eαi (b) if and only if b= fαi (b
′),

and, in this case, setting

εi (b′′)=max{n : en
αi
(b′′) 6= 0} and φi (b′′)=max{n : f n

αi
(b′′) 6= 0}

for any b′′ ∈ B, we have

wt(b′)= wt(b)+α∨i and φi (b)= εi (b)+〈αi ,wt(b)〉.
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A crystal is in particular a graph, which we may decompose into the disjoint union of
its connected components. Each element b∈B lies in a unique connected component
which we will denote by Conn(b). A crystal morphism is a map F :B→B′ between
the underlying sets of crystals B and B′ such that wt(F(b)) = wt(b) and such
that it commutes with the action of the root operators. A crystal morphism is an
isomorphism if it is bijective.

3B. Crystal structure on combinatorial galleries.

Definition 3.1. For each i ∈ {1, . . . , n} and each simple root αi , we recall the
definition of the root operators fαi and eαi on the set of combinatorial galleries 0
and endow this set with a crystal structure. We follow [Gaussent and Littelmann
2005, §6; Braverman and Gaitsgory 2001, §1], and refer the reader to [Kashiwara
1995] for a detailed account of the theory of crystals.

Let γ = (V0,E0,V1,E1, . . . ,Ek,Vk+1) be a combinatorial gallery. Define a
weight function by wt(γ )=µγ . Let mαi =m ∈Z be minimal such that Vp ∈H(αi ,m)

for some p ∈ {0, . . . , k+ 1}. Note that m ≤ 0.

Definition of fαi . Suppose 〈αi , µγ 〉 ≥ m + 1. Let j be maximal such that V j ∈

H(αi ,m) and let j < r ≤ k+ 1 be minimal such that Vr ∈ H(αi ,m+1). Let

E′p =


Ep if p < j,
s(αi ,m)(Ep) if j ≤ p < r,
t−α∨i (Ep) if r ≤ p.

Define V′0 = 0, and for 1≤ p≤ k, set V′p = E′p−1∩E′p, and let V′k+1 be the extreme
point of the line segment E′k that is not V′k . Define

fαi (γ )= (V
′

0,E′0,V′1,E′1, . . . ,E′k,V′k+1),

and if 〈αi , µγ 〉< m+ 1, then fαi (γ )= 0.

Definition of eαi . Suppose m ≤−1. Let r be minimal such that the Vr ∈ H(αi ,m)

and let 0≤ j < r be maximal such that V j ∈ H(αi ,m+1). Let

E′p =


Ep if p < j,
s(αi ,m+1)(Ep) if j ≤ p < r,
tα∨i (Ep) if r ≤ p,

define V′p as above and define

eαi (γ )= (V
′

0,E′0,V′1,E′1, . . . ,E′k,V′k+1).

If m = 0 then eαi (γ )= 0.

Remark 3.2. It follows from the definitions that the maps eαi , fαi and wt define a
crystal structure on 0. Note as well that if γ is a combinatorial gallery then fαi (γ )
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and eαi (γ ) are combinatorial galleries of the same type as γ (as long as they are
not zero). We say that the root operators are type preserving. See also [Gaussent
and Littelmann 2005, Lemma 6].

3C. The Littelmann path model and Lakshmibai–Seshadri galleries; readable
galleries. Let γ be a combinatorial gallery that has each one of its faces contained
in the fundamental chamber. We call such galleries dominant and denote the set of
all dominant combinatorial galleries by 0dom. By [Littelmann 1995, Theorem 7.1]
the crystal of galleries P(γ ) generated by γ is isomorphic to the crystal B(µγ )
associated to the irreducible highest weight representation L(µγ ) of G∨. In its
original context [Littelmann 1995] it is known as a Littelmann path model for the
representation L(µγ ). We say that a combinatorial gallery γ is a Littelmann gallery
if there exist indices i1, . . . , ir such that eαi1

· · · eαir
(γ )= γ+ is a dominant gallery.

If µγ+ = µδ+ , eαi1
· · · eαir

(γ ) = γ+ and eαi1
· · · eαir

(δ) = δ+ for two Littelmann
galleries γ and δ, we say that they are equivalent. This defines an equivalence
relation on the set of Littelmann galleries.

Let λ ∈ X∨,+ be a dominant integral coweight and γλ a gallery that is a con-
catenation of fundamental galleries and that has endpoint λ (as above). We denote
by 0(γλ)LS the set of combinatorial LS galleries of the same type as γλ. (LS is
short for Lakshmibai–Seshadri. All LS galleries are Littelmann — see [Littelmann
1995, §4] — and Littelmann galleries generalize LS galleries enormously.) The
set 0(γλ)LS is stable under the root operators and has the structure of a crystal
isomorphic to B(λ). It was proven by Gaussent and Littelmann [2005] that the
resolution in (8) induces a bijection 0(γλ)LS ∼=Z (λ). This bijection was shown to
be a crystal isomorphism by Baumann and Gaussent [2008]. We use this heavily in
the proof of Theorem 6.2. In [Gaussent and Littelmann 2005] see Definition 18
for a geometric definition of LS galleries, and Definition 23 for an equivalent
combinatorial characterization that for one skeleton galleries agrees with the original
definition by Lakshmibai, Musili and Seshadri (see [Lakshmibai et al. 1998], for
example) in the context of standard monomial theory. We will give a combinatorial
characterization of LS galleries of fundamental type in the case G∨ = Sp(2n,C),
omitting therefore the most general definitions.

We finish this section with a question. Let γ be a dominant gallery (see
Section 3C). Consider the map 6γ f → G defined by [g0, . . . , gr ] 7→ g0 · · · gr [t

µ
γ f
]

(see Remark 2.6).

Question. Does this map induce a crystal isomorphism P(γ )∼=Z (µγ )?

This question was answered positively in [Gaussent et al. 2013; Torres 2016]
for G∨ = SL(n,C). In the rest of this paper we do so as well for G∨ = Sp(2n,C)

and γ a readable gallery. For G∨ = SL(n,C) all galleries are readable. This is due
to the well known fact that in this case fundamental coweights are all minuscule. In
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the next sections we will describe readable galleries explicitly for G∨ = Sp(2n,C)

and show that they are Littelmann galleries. Moreover, we will see there exist
readable galleries that are not of the same type as any concatenation of fundamental
galleries γλ (see Remark 4.9).

Definition 3.3. A readable gallery is a concatenation of its parts. Its parts are either
LS galleries of fundamental type or galleries of the form (V0,E0,V1,E1,V2) (we
call them zero lumps) such that both edges E0 and E1 are contained in the dominant
chamber and such that the endpoint V2 is equal to zero. We denote the set of all
readable galleries by 0R, and if a combinatorial gallery γ is fixed, by 0(γ )R, the
set of all readable galleries of same type as γ .

Remark 3.4. It follows from [Gaussent and Littelmann 2005, Lemma 8] that
readable galleries are stable under root operators.

4. “Type C” combinatorics

4A. Weights and coweights. Consider Rn with canonical basis {ε1, . . . , εn} and
standard inner product 〈−,−〉. In particular 〈εi , ε j 〉= δi j . From now on we consider
the root datum (X,8,X∨,8∨) defined by

8= {±εi , εi ± ε j }i, j∈{1,...,n},

8∨ =
{
α∨ = 2α

〈α,α〉
: α ∈8

}
,

X= {v ∈ Rn
: 〈v, α∨〉 ∈ Z},

X∨ = {v ∈ Rn
: 〈α, v〉 ∈ Z}.

Indeed the sets X and X∨ are free abelian groups which form a root datum together
with the pairing 〈−,−〉 between them and the subsets 8 ⊂ X and 8∨ ⊂ X∨. We
choose a basis 1⊂8 given by

1= {αi = εi − εi+1 : i ∈ {1, . . . , n−1}} ∪ {αn = εn},

hence the set

1∨ = {α∨i = εi − εi+1 : i ∈ {1, . . . , n− 1}} ∪ {α∨n = 2εn}

is a basis for the root system 8∨. Then X∨ has a Z-basis given by the set of
corresponding fundamental coweights {ωi }i∈{1,...,n}, where

ωi = ε1+ · · ·+ εi 1≤ i ≤ n.

Then G = SO(2n + 1,C) and G∨ = Sp(2n,C). For later use we introduce the
notation εī =−εi .
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4B. Symplectic keys and words. Let p ∈ Z≥1 be an integer, greater than or equal
to 1. To it we associate a sequence of positive integers p as follows:

p =
{
(1) if p = 1,
(p, p) if p ≥ 2.

Given two sequences of integers a= (a1, . . . , ar ) and b= (b1, . . . , bs) we denote
the associated merged list by a∗b= (a1, . . . , ar , b1, . . . , bs). A symplectic shape d
is a sequence of natural numbers of the form d = p1 ∗ · · · ∗ pl , where pi ∈ Z≥1. An
arrangement of boxes of symplectic shape d is an arrangement of as many columns
of boxes as elements in the sequence d such that column j (read from right to left)
has p j boxes.

Example 4.1. An arrangement of boxes of symplectic shape 1 ∗ 1 ∗ 2 ∗ 1.

Consider the ordered alphabet Cn = {1< 2< · · ·< n−1< n < n̄ < n−1< · · ·< 1̄}.
A symplectic key of (symplectic) shape d= p1∗· · ·∗ pl is a filling of an arrangement
of boxes of symplectic shape d with letters of the alphabet Cn in such a way that
the entries are strictly increasing along each column and such that p j ≤ n for
j ∈ {1, . . . , l}.

Example 4.2. A symplectic key, for n ≥ 5, of symplectic shape 1 ∗ 2 ∗ 1.

1̄ 1 2 3

5 2̄

We denote the word monoid on Cn by WCn . To a word w = w1 · · ·wk in WCn we
associate a symplectic key Kw that consists of only one row of length k, and with
the boxes filled in from right to left with the letters of w read in turn from left to
right. For example, the word 12 corresponds to the key 2 1 .

4C. Readable keys: symplectic keys associated to readable galleries. The aim of
this section is to assign a symplectic key to every readable gallery. For a subset
Y⊆ Cn , we denote the corresponding subset of barred elements by Y= {ȳ : y ∈Y},
where, for i unbarred, ¯̄i = i .

Definition 4.3. Let B be a symplectic key. We call B an LS block if it is of shape p
for p ∈ Z≥1 and such that if p ≥ 2 (which means that B consists of two columns
of size p) there exist positive integers k, r , s with 2k+ r + s ≤ n and disjoint sets
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of positive integers

A= {ai : 1≤ i ≤ r, a1 < · · ·< ar },

B= {bi : 1≤ i ≤ s, b1 < · · ·< bs},

Z= {zi : 1≤ i ≤ k, z1 < · · ·< zk},

T= {ti : 1≤ i ≤ k, t1 < · · ·< tk},

such that the right column of B (respectively the left one) is the column with
entries the ordered elements of the set T∪Z∪A∪B (respectively Z∪T∪A∪B),
Z=∅ if and only if T=∅, and such that if Z 6=∅ the elements of T are uniquely
characterized by the properties

tk =max{t ∈ Cn : t < zk, t /∈ Z∪A∪B},(9)

t j−1 =max{t ∈ Cn : t <min(z j−1, t j ), t /∈ Z∪A∪B} for j ≤ k.(10)

We say that B is a zero block if it is of shape k for k ∈ Z≥1 and such that its
right column is filled in with the ordered letters 1< · · ·< k and its left one, with
k̄< · · ·< 1̄. A symplectic key is called a readable block if it is either an LS block or
a zero block. Note that a readable block has symplectic shape p, where p ∈ Z≥1. A
readable key is a concatenation of readable blocks. Now assume that d= p1∗· · ·∗ pl

is such that p1 ≤ · · · ≤ pl . A symplectic key of shape d is called an LS symplectic
key if its entries are weakly increasing in rows and if it is a concatenation of LS
blocks. We denote the set of LS symplectic keys of shape d by 0(d)LS.

Example 4.4. The symplectic key

1 2

3 3

5 5

4̄ 4̄

2̄ 1̄

is an LS block of shape 5= (5, 5), with A= {3, 4}, B= {4}, Z= {2} and T= {1}.
The first symplectic key immediately below is not an LS block; the second is a zero
block.

1 2̄

2 1̄

2̄ 1

1̄ 2

Remark 4.5. A pair of columns that form an LS block is sometimes called a pair
of admissible columns. The original definition of admissible columns was given
by De Concini [1979], using a slightly different convention than Kashiwara and
Nakashima’s, which is the one we use here. The map that translates the two can be
found in [Lecouvey 2002, §2.2].
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To a readable block B we assign a gallery γB as follows. If B consists of
only one box filled in with the letter l ∈ Cn , then we define VB

0 = 0, VB
1 = εl ,

EB
0 = {tV

B
1 : t ∈ [0, 1]}, and

γB = (V
B
0 ,EB

0 ,VB
1 ).

If the readable block B has at least two boxes, then its columns are filled in with
the letters l1

1 < · · ·< l1
d (right column) and l2

1 < · · ·< l2
d (left column) respectively.

We then define

VB
0 = 0,

VB
1 =

1
2(εl1

1
+ · · ·+ εl1

d
),

EB
0 = {tV

T
1 : t ∈ [0, 1]},

VB
2 = εl1

1
+ · · ·+ εl1

d
+ εl2

1
+ · · ·+ εl2

d
,

EB
1 = {V

T
1 +

1
2 t (εl2

1
+ · · ·+ εl2

d
) : t ∈ [0, 1]},

γB = (V
B
0 ,EB

0 ,VB
1 ,EB

1 ,VB
2 ).

Note that (9) implies that VB
1 +

1
2(εl2

1
+ · · · + εl2

d
) = VB

2 and therefore that EB
1 is

the line segment joining VB
1 and VB

2 .

Example 4.6. Let n=2 and γ = (V0,E0,V1,E1,V2)where V0=0, V1=
1
2(ε1+ε2),

V2 = ε1+ ε2 and the edges are the line segments joining the vertices in order. See
below for a picture of the gallery γB associated to the symplectic key B.

VK
0

VK
2

VK
1

ε1

ε2

1 1

2 2

γK = (V
K
0 ,EK

0 ,VK
1 ,EK

1 ,VK
2 )

K

To a readable key K =B1 · · ·Bk we associate the concatenation

γK = γBk
∗ · · · ∗ γB1

of the galleries of each of the readable blocks B j , for j ∈ {1, . . . , k}, that it is a
concatenation of (from right to left). To a symplectic shape d = p1 ∗ · · · ∗ pl such
that pj ≤ n for j ∈ {1, . . . , l} (once n is fixed, we will only consider such shapes)
we associate the dominant coweight λd = ωp1 + · · · + ωpl . For example, to the
shape (2, 2) is associated the coweight ω2. We will denote the set of all readable
keys of shape d by 0(d)R.
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Remark 4.7. The set 0(d)R is nonempty: since pj ≤ n, there is a natural readable
key of symplectic shape d whose columns are filled in with consecutive integers,
starting with 1 at the top. For example, if d = 3= (3, 3) and n ≥ 3, this is the key

1 1

2 2

3 3

.

It is an LS block, with A= {1, 2, 3} and B= Z= T=∅.

The following proposition follows directly from [Gaussent and Littelmann 2012,
Lemma 2].

Proposition 4.8. The map⋃
d=p1···pl

p j≤n

0(d)R→ 0R, K 7→ γK

is well defined and is a bijection. Moreover, if p1 ≤ · · · ≤ pl then this map induces
a bijection

0(d)LS
←→ 0(γωp1

∗ · · · ∗ γωpm
)LS.

Remark 4.9. Zero lumps are not necessarily of fundamental type: this follows
from [Gaussent and Littelmann 2012, Lemma 2] for a zero lump with odd k in the
above description. This is why readable galleries are not necessarily of the same
type as a concatenation of fundamental galleries. This also means that there can be
two readable keys of the same shape but such that their associated galleries are not
of the same type! For example, take n > 3, and consider the keys

T =

1̄ 1̄

2 2

3 3

and K =

1 1̄

2̄ 2

3̄ 3

.

The first is LS and γT is of fundamental type ω3. The second key is a zero block.
Its associated gallery, γK , is not of fundamental type.

5. The word of a readable gallery

To a readable key K we assign a word w(K ). The first aim of this section is to
state Proposition 5.5, which says that the closure in the affine Grassmannian of the
image π(CγK )⊂ G considered in Section 2F depends only on the word w(K ).

Definition 5.1. The word of a readable block, B = CLCR (CL is the left column,
CR the right), is obtained by reading first the unbarred entries in CR and then the
barred entries in CL. We denote it by w(B) ∈WCn .
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Remark 5.2. For an LS block this is the word of the associated single admissible
column defined by Kashiwara and Nakashima [Lecouvey 2002, Example 2.2.6].

Definition 5.3. Let γK be the readable gallery associated to the key K . As before,
we may write K as a concatenation of blocks K =B1 · · ·Bk . The word of γK
(or of K ) is w(Bk) · · ·w(B1). We denote it by w(γK ) (or w(K )).

Example 5.4. Let

B1 =
1 2

2̄ 1̄
, B2 = 1 , and K =B1B2 =

1 2 1

2̄ 1̄
.

Then w(B1)= 22̄, w(B2)= 1, and w(K )= 122̄.

We have the following result about words of readable galleries, which we prove
in Section 7. We will use it in Theorem 6.2. It is in this sense that such galleries
are called readable.

Proposition 5.5. Let γ and ν be combinatorial galleries and K be a readable
key. Consider the combinatorial galleries γ ∗ γw(K ) ∗ ν and γ ∗ γK ∗ ν. Let
(6(γ ∗γw(K )∗ν) f , π) and (6(γ ∗γK ∗ν) f , π ′) be the Bott–Samelson varieties together
with their maps to the affine Grassmannian G (as in Remark 2.6). Then

π(Cγ ∗γw(K )∗ν)= π
′(Cγ ∗γK ∗ν).

5A. Word galleries. We associate a (readable!) gallery γw of the same type as the
m-fold product γω1 ∗ · · ·∗γω1 to a word w ∈WCn of length m — it is the gallery γKw

associated to the readable key Kw. We denote the set of word galleries in this
case by 0WCn

. Below we recall the crystal structure on the set WCn as described
by Kashiwara and Nakashima [1994, Proposition 2.1.1]. The set of words WCn ,
just like the set Wn , is in one-to-one correspondence with the set of vertices of the
crystal of the representation

⊕
l∈Z≥0

V⊗l
n , where Vn is the natural representation

L(ω1) and hence inherits its crystal structure. Proposition 5.7 says that this structure
is compatible with the crystal structure defined on galleries in Section 3.

Definition 5.6. Let w = w1 · · ·wl ∈ Cn be a word and i ∈ {1, . . . , n}. Define
wt(w)=

∑l
i=1 εi . To apply the root operators eαi and fαi to w one first obtains a

word consisting of letters in the alphabet {+,−,∅}. The word will be obtained
from w by replacing every occurrence of i or i+1 by “+”, every occurrence of i+1
or ī by “−” and all other letters by “∅”. This word, which we denote by si (w) is
sometimes called the i-signature of w. To proceed, erase all symbols ∅ and then all
subwords of the form “+−”. Repeat this process until the i-signature si (w) of w
has been reduced to a word of the form

si (w)
′
= (−)r (+)s .
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To apply fαi (respectively eαi ) to w, change the letter whose tag corresponds to the
leftmost “+” (respectively to the rightmost “−”) from i to i+1 and from i+1 to ī
(respectively from i+1 to i and from ī to i+1). If s = 0, respectively r = 0, then
fαi (w)= 0, respectively eαi (w)= 0.

Proposition 5.7. The crystal structure on words from Definition 5.6 coincides with
the one induced from Definition 3.1.

For a proof, see [Littelmann 1996, §13]. It also follows directly from the
definitions.

Example 5.8. Let n = 2 and w = 11212̄. We first consider i = 1, for which
s1(w) = ++−++, and therefore s ′1(w) = +++. Hence fα1(w) = 21212̄ and
eα1(w)= 0. For i = 2 we have s2(w)=∅∅+∅−. Therefore s ′2 is the empty word
and fα2(w)= eα2(w)= 0. Now consider the readable gallery γKw

associated to w.
Explicitly we write it as

γw = (V0,E0,V1,E1,V2,E2,V3,E3,V4,E4,V5),

where V0 = 0, V1 = ε1, V2 = 2ε1, V3 = 2ε1+ ε2, V4 = 3ε1+ ε2, V5 = 3ε1 and E j

is the line segment joining V j to V j+1 for j ∈ {0, . . . , 4}. We have mα1 = 0, so
by Definition 3.1, eα1(γw)= 0. We have s(α1,0)(E0)= {tε2 : t ∈ [0, 1]}, see below.
Then j = 1 (Definition 3.1) and hence

fα1(γw)= (V
′

0,E′0,V′1,E′1,V′2,E′2,V′3,E′3,V′4,E′4,V′5),

where V′0= 0, V′1= ε2, V′2= ε2+ε1, V′3= 2ε2+ε1, V′4= 2ε2+2ε1, V′5= ε2+2ε1

and E′j is the line segment joining V′j and V′j+1 for j ∈ {0, . . . , 4}. For i = 2 we
have mα2=0, which implies that eα2(γw)=0. We also haveµγw =3ε1, and therefore
〈α2, µγw〉 = 0<mα2 + 1= 1, so that fα2(γw)= 0 as well. Then fα1(γw)= γ fα1 (w)

,
eα1(γw)= γeα1 (w)

, fα2(γw)= γ fα2 (w)
and eα2(γw)= γeα2 (w)

.

H(α1,0)

ε1

ε2

0

γw

fα1(γw)

5B. Word reading is a crystal morphism. This subsection is the “symplectic” ver-
sion of [Torres 2016, Proposition 2.5]. Since the root operators are type preserving
(see Definition 3.1), the set of words WCn is naturally endowed with a crystal
structure. The following proposition will be useful in Theorem 6.2. This result was
shown for LS blocks by Kashiwara and Nakashima [1994, Proposition 4.3.2]. They
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show that word reading induces an isomorphism of crystals from B(ωk) onto the
subcrystal of

⊔
l∈Z≥0

B(ω1)
⊗l generated by the tensor product k ⊗ · · ·⊗ 1 . We

show that for readable galleries the proof is reduced to this case.

Proposition 5.9. The map

0R w
−→0WCn

, γK 7→ γw(K )

is a crystal morphism.

Proof. First note that the map is weight preserving. This follows from the definitions
and from the fact that in the definition of a readable block, the sets Z and T do not
contribute to the endpoint of the associated gallery. Let γ be a readable gallery and
let

γB = (V
B
0 ,EB

0 ,VB
1 ,EB

1 ,VB
2 )

be one of its parts, associated to some readable block B. We write

γw(B) = (V
Kw(B)

0 ,EKw(B)

0 , . . . ,VKw(B)

r+s ).

If

w(B)= g1 · · · gs h̄k · · · h̄1,

for gi and hi unbarred, then VKw(B)

0 = 0 and VKw(B)

j =
∑ j

i=1 εxi for 1≤ j ≤ s+ r ,
where xi = gi for 1≤ i ≤ s and xs+i = h̄i for 1≤ i ≤ k. Let

h( j)= 〈α,VB
j 〉 and h′( j)= 〈α,VKw(B)

j 〉,

for 1≤ j ≤ k+s+1. Then there exist d1, d2 with d1 ≤ s < d2 ≤ s+k and such that

h′( j)=


h(0) for 0≤ j < d1,

h(1) for d1 ≤ j < d2,

h(2) for d2 ≤ j ≤ k+ s+ 1.

From this we conclude that it is enough to consider readable blocks. As mentioned
previously, this was shown in [Kashiwara and Nakashima 1994] for LS blocks.
Hence let L be a zero lump — it has word w(L )= 1 · · · kk̄ · · · 1̄ — and let αi be a
simple root. Then, since the galleries associated to L and w(L ) are both dominant,
fαi (L )= eαi (L )= fαi (w(L ))= eαi (w(L ))= 0. �

Example 5.10. Let n = 2 and B be the readable block
1 2

2̄ 1̄
. Then w(B)= 22̄.

To calculate fα1(γB), first consider the gallery,

γB = (V0,E0,V1,E1,V2),
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where V0 = 0, V1 =
1
2(ε2 − ε1), V2 = 0 and Ei is the line segment joining Vi

and Vi+1 for i ∈ {0, 1}. Note that mα1 =−1, j = 1, and r = 2 (see Definition 3.1).
Therefore

fα1(γB)= (V
′

0,E′0,V′1,E′1,V′2),

where V′0= 0, E′0=E0, V′1=V1, E′1= s(α1,−1)(E1) and V′2= s(α1,−1)(V2)= ε2−ε1.
Then fα1(γB)= γB′ , where

B′ =
2 2

1̄ 1̄
.

Similarly, fα1(w(B))= 21̄= w( fα1(γB)).

5C. Readable galleries are Littelmann galleries. We begin with a lemma.

Lemma 5.11. Let γK be the readable gallery associated to a readable key K .
Then γK is dominant if and only if γw(K ) is dominant.

Proof. Since the entries in the columns of symplectic keys are strictly increasing, it
follows from the definition of word reading (Definition 5.1 and Definition 5.3) that
if γ is a dominant readable gallery then γw(γ ) is also dominant. Now let γ be a
nondominant readable gallery. Then there is a readable block B = CLCR such that
γ = η1 ∗ γB ∗ η2 with η1 dominant and η1 ∗ γB not dominant. This block can’t be a
zero lump (they are dominant) — so it must be LS. Let A, B, Z and T be the sets
from Definition 4.3 that define the LS block B: The entries of its right column CR

are the letters in A∪Z∪B∪T and the entries its left column CL are the letters in
A∪T∪B∪Z. Now, µη1∗γB

may or may not be dominant. If it is not, then, since
µγw(η1∗γB)

= µη1∗γB
, the word gallery γw(η1∗γB) is not dominant, and this implies

that γw(K ) is not dominant either. Now assume that the coweight

µη1∗γB
= µη1 +

∑
a∈A

εa −
∑
b∈B

εb

is dominant, but that the gallery η1 ∗γB is not. The last three vertices of this gallery
are

Vl−1 = µη1 ∈ C+,(11)

Vl = µη1 +
1
2

(∑
a∈A

εa +
∑
z∈Z

εz −
∑
b∈B

εb−
∑
t∈T

εt

)
/∈ C+,(12)

Vl+1 = µη1 +

∑
a∈A

εa −
∑
b∈B

εb ∈ C+,(13)

for some d ≥ 1. Let d1 < · · · < dr+k be the ordered elements of A ∪ Z and let
f1 < · · ·< fs+k be the ordered elements of B∪Z. We have

w(B)= d1 · · · dr+k f̄s+k · · · f̄1.
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We claim that the weight

µη1 +

r+k∑
i=1

εdi = µη1 +

∑
a∈A

εa +
∑
z∈Z

εz,

which is the endpoint of η1 ∗ γd1···dr+k and therefore a vertex of η ∗ γw(B), is not
dominant. To see this, assume otherwise:

µη1 +

∑
a∈A

εa +
∑
z∈Z

εz ∈ C+.

Since the dominant Weyl chamber C+ is convex, this means that the line segment
that joins µη1 and µη1 +

∑
a∈A εa +

∑
z∈Z εz is contained in C+, in particular the

point

(14) µη1 +
1
2

(∑
a∈A

εa +
∑
z∈Z

εz

)
∈ C+

belongs to the dominant Weyl chamber. We will now show

Vl = µη1 +
1
2

(∑
a∈A

εa +
∑
z∈Z

εz −
∑
b∈B

εb−
∑
t∈T

εt

)
∈ C+.

This would contradict (12) and therefore complete the proof.
Set µη1 =

∑n
i=1 qiεi . Recall that a1 < · · · < ar , b1 < · · · < bs , z1 < · · · < zk ,

and t1 < · · ·< tk are the ordered elements of the sets A, B, Z and T, respectively.
The dominant Weyl chamber has, in this case, the following description in the
coordinates ε1, . . . , εn:

(15) C+ =
{ n∑

i=1

piεi : pi ∈ R≥0 and p1 ≥ · · · ≥ pn

}
.

This description allows us to make the following conclusions. For every i∈{1,· · ·, r},
we have ti < zi < j for every j ∈ {1, . . . , n} such that ti < j . It follows from (15)
and (14) that

(16) q j ≤ qzi +
1
2 ≤ qti ,

which implies, since q j , qti , qzi ∈ Z, that

q j ≤ q j +
1
2 ≤ qzi +

1
2 ≤ qti −

1
2 .

Now let b ∈ B, and let j ∈ {1, . . . , n} such that b < j . By (13),

Vl+1 = µη1 +

∑
a∈A

εa −
∑
b∈B

εb ∈ C+.
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Together with (15) this implies

q j ≤ q j +
1
2 ≤ qb−

1
2 ,

particularly so if j ∈ (Z∪T)c. If j ∈ Z∪T then, as before, by (16) we may assume
that j = t ∈ T. But this means qt ≤ qb, therefore qt −

1
2 ≤ qb −

1
2 . All of these

arguments, together with (15), imply

µη1 +
1
2

(∑
a∈A

εa +
∑
z∈Z

εz −
∑
b∈B

εb−
∑
t∈T

εt

)
∈ C+,

which contradicts (12). �

Lemma 5.12. A readable gallery ν is dominant if and only if eαi (ν) = 0 for all
i ∈ {1, . . . , n}.

Proof. First notice that it follows directly from Definition 5.6 that for a wordw∈WCn

and αi a simple root, eαi (w)= 0 if and only if γw is dominant. Lemma 5.12 then
follows from Lemma 5.11 and Proposition 5.9. �

Proposition 5.13. Every readable gallery is a Littelmann gallery.

Proof. Let Vn be the vector representation of Sp(2n,C). Then the crystal of
words WCn is isomorphic to the crystal associated to T(Vn) =

⊕
l∈Z≥0

V⊗l
n , see

for example [Lecouvey 2002, §2.1]. Now let γ be any readable gallery. Then
there exist indices i1, . . . , ir such that eαir

· · · eαi1
(γw(γ )) is a highest weight vertex,

hence dominant by Lemma 5.12. Since word reading is a morphism of crystals by
Proposition 5.9, γw(eαir

···eαi1
(γ )) = eαir

· · · eαi1
(γw(γ )). It follows from Lemma 5.11

that eαir
· · · eαi1

(γ ) is dominant. �

Definition 5.14. The symplectic plactic monoid PCn is the quotient of the word
monoid WCn by the ideal generated by the following relations:

R1. For z 6= x̄ :
y x z ≡ y z x for x ≤ y < z,

x z y ≡ z x y for x < y ≤ z.

R2. For 1< x ≤ n and x ≤ y ≤ x̄ :

y x−1 x−1≡ y x x̄,

x−1 x−1 y ≡ x x̄ y.

R3. For ai , bi ∈ {1, . . . , n}, i ∈ {1, . . . ,max{s, r}} such that a1 < · · · < ar and
b1 < · · ·< bs , and such that the left-hand side of the next expression is not the
word of an LS block:

a1 · · · ar z z̄ b̄s · · · b̄1 ≡ a1 · · · ar b̄s · · · b̄1.
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If two words w1, w2 ∈ WCn are representatives of the same class in WCn we say
they are symplectic plactic equivalent.

Example 5.15. We have the following equivalences of words:

122̄1̄≡ 11̄≡∅,
112≡ 121.

Remark 5.16. Relations R1 are the Knuth relations in type A, while relation
R3 may be understood as the general relation that specializes to 11̄ ≡ ∅. Note
that the gallery γw associated to w = 11̄ is a zero lump. This definition of the
symplectic plactic monoid is the same as [Lecouvey 2002, Definition 3.1.1] except
for relation R3. The equivalence between the relation R3 above and the one in
[Lecouvey 2002] is given in the Appendix.

The following Theorem is proven in [Lecouvey 2002].

Theorem 5.17. Two words w1, w2 ∈ WCn are symplectic plactic equivalent if and
only if their associated galleries γw1 and γw2 are equivalent.

Together with the results we have recollected in this section, Theorem 5.17
implies the following proposition.

Proposition 5.18. Two readable galleries γ and ν are equivalent if and only if the
words w(γ ) and w(ν) are symplectic plactic equivalent.

Proof. Two readable galleries γ and ν are equivalent if and only if, by definition,
there exist indices i1, . . . , ir such that the galleries eαi1

· · · eαir
(γ ) and eαi1

· · · eαir
(ν)

are both dominant and have the same endpoint, i.e., µeαi1
···eαir

(γ ) = µeαi1
···eαir

(ν).
By Lemma 5.11 and Proposition 5.9 this is true if and only if γw(eαi1

···eαir
(γ )) and

γw(eαi1
···eαir

(ν)) are also both dominant with the same endpoint. By Proposition 5.9,
we have w(eαi1

· · · eαir
(δ)) ≡ eαi1

· · · eαir
(w(γδ)) for any readable gallery δ. This

means that the previous sequence of equivalences is also equivalent to γw(γ )∼ γw(ν)
which by Theorem 5.17 is equivalent to w(γ )≡ w(ν). �

The following theorem is originally due to Kashiwara and Nakashima (see
[Kashiwara and Nakashima 1994]). For this particular formulation, see [Lecouvey
2002, Proposition 3.1.2].

Theorem 5.19. For each word w in WCn there exists a unique symplectic LS key T

such that w ≡ w(T ).

The following proposition will be proven in Section 7. Along with Proposition 5.5
it will play a fundamental role in the proof of Theorem 6.2.

Proposition 5.20. Let γ and ν be combinatorial galleries and let w1, w2 ∈ WCn be
two plactic equivalent words. Consider the combinatorial galleries γ ∗ γw1 ∗ ν and
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γ ∗γw2 ∗ν as well as their associated Bott–Samelson varieties (6(γ ∗γw1∗ν)
f , π) and

(6(γ ∗γw2∗ν)
f , π ′) together with their maps to the affine Grassmannian G . Then

π(Cγ ∗γw1∗ν
)= π ′(Cγ ∗γw2∗ν

).

6. Readable galleries and MV cycles

The following result holds in greater generality than is stated here: part (a) is an
instance of [Gaussent and Littelmann 2005, Theorem C], and part (b) is an instance
of [Baumann and Gaussent 2008, Theorem 5.8].

Theorem 6.1. Let d = p1 ∗ · · · ∗ pl be a symplectic shape such that p1 ≤ · · · ≤ pl

and consider the desingularization π :6d → Xλd .

(a) If δ ∈ 0(d)LS is a symplectic LS key, the closure π(Cδ) is an MV cycle in
Z (λd). This induces a bijection 0(d)LS ϕd

−→Z (λd).

(b) The bijection ϕd is an isomorphism of crystals.

To formulate our main result we need the following additional notation. Given a
readable gallery γ and a dominant coweight λ ∈ X∨,+, let

nλ
γ f = #{ν ∈ 0dom

∩0(γ f ) : µν = λ},

and let
X∨,+
γ f = {λ ∈ X∨,+ : nλ

γ f 6= 0}.

Further, let 0(γ f )R/∼ be a set of representatives of the classes for the equivalence
relation on Littelmann galleries (and hence on readable galleries by Remark 3.4
and Proposition 5.13) defined in Section 3C.

Theorem 6.2. Let δ ∈ 0(γ f )R be a readable gallery. Consider the corresponding
Bott–Samelson variety (6γ f , π) together with its map π to the affine Grassmannian
as in Remark 2.6. Let δ+ be the gallery that is the highest weight vertex in Conn(δ).
(This gallery is dominant and readable by Lemma 5.12 and Remark 3.4, respectively.)
Then:

(a) The closed set π(Cδ) is an MV cycle in Z (µδ+)µδ .

(b) The map
0(γ f )R

ϕ
γ f
−→

⊕
ν∈0(γ f )R/∼

Z (µν+), δ 7→ π(Cδ)

is a surjective morphism of crystals. The direct sum on the right-hand side is a
direct sum of abstract crystals.

(c) If C is a connected component of 0(γ f )R, then ϕ|C is an isomorphism onto its
image.
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(d) The number of connected components C of 0R(γ f ) such that ϕγ f (C)=Z (λ)

is equal to nλ
γ f .

(e) Given an MV cycle Z ∈Z (λ)µ, the fiber ϕ−1
γ f (Z) is given by

ϕ−1
γ f (Z)= {δ ∈ 0R(γ f ) : ϕγ f (δ)= Z} = {δ ∈ 0R(γ f ) : γ ∼ γ λµ,Z},

where γ λµ,Z is the unique LS key which exists by Theorem 6.1.

Proof. Let δ be a readable gallery. Then by Theorem 5.19 there exists a (unique) LS
key ν such that δ ∼ ν. By Proposition 5.18, the words w(δ) and w(ν) are plactic
equivalent. Propositions 5.20 and 5.5 together with Theorem 5.17 then imply that

π(Cδ)= π(Cν),

which, by Theorem 6.1 implies that π(Cδ) is an MV cycle in Z (µδ+)µδ . The
map ϕγ f in (b) is surjective by Theorems 5.19 and 6.1 above. Now let r be a root
operator, and let r̃ be the corresponding root operator that acts on the set of MV
cycles. Then by Propositions 5.5, 5.9, 5.20, and Theorem 6.1 we have

π(Cr(γ ))= π(Cγw(r(γ )))= π(Cγw(r(ν)))= π(Cr(ν))= r̃(π(Cν))= r̃(π(Cγ )).

This completes the proof of (b). Part (c) follows immediately, since every connected
component C is crystal isomorphic to the corresponding component consisting of
the LS galleries equivalent to those in C. Parts (d) and (e) follow from [Littelmann
1995, Theorem 7.1] (see Section 3C). �

7. Counting positive crossings

We provide proofs of Propositions 5.5 and 5.20. We begin by analyzing the tail of
a gallery in Section 7A. In Example 7.3 we calculate an example in which it can be
seen how to use this proposition. Then in Section 7B we prove Proposition 5.5 and
in Section 7C we prove Proposition 5.20. We also wish to establish some notation
that we will use throughout. Recall our convention εl̄ =−εl for l ∈ Cn unbarred.
For l, s, d,m ∈ Cn we will write ci, j

ls,dm for the constant ci, j
εl+εs ,εd+εm

in Chevalley’s
commutator formula (2). Additionally we will write ci, j

l,dm , and respectively ci, j
ls,d ,

for ci, j
εl ,εd+εm

, and ci, j
εl+εs ,εd

. (Each time we use such notation a total order will be
fixed on the set of positive roots.) If Y ⊆ Cn and y ∈ Cn then we will write Y≤y

(respectively Y<y , Y≥y , Y>y) for the subset of elements x ∈ Y such that x ≤ y
(respectively x < y, x ≥ y, x > y).

7A. Truncated images and tails. Let γ be a combinatorial gallery with notation
as in (4) with endpoint the coweight µγ and let 1 ≤ r ≤ k + 1 such that Vr is a
special vertex; we denote it by µr ∈X∨. By Corollary 2.10 we know that the image
π(Cγ ) is stable under U0.
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Proposition 7.1. The r-truncated image of γ ,

T≥r
γ = U

γ

Vr
U
γ

Vr+1
· · ·U

γ

Vk
[tµγ ],

is Uµr-stable, i.e., for any u ∈ Uµr , it follows that uT≥r
γ = T≥r

γ .

Proof. By (3) we know that tµr U0t−µr = Uµr . We consider the r-truncated gallery

γ≥r
= (V′0,E′0, . . . ,V′k−r+1),

which is the combinatorial gallery obtained from the sequence

(Vr ,Er ,Vr+1, . . . ,Ek,Vk+1),

by translating it to the origin. Since Vr is a special vertex, tµr U
γ≥r

Vi
t−µr = U

γ

Vi+r
.

This gallery has endpoint µγ −µr and is in turn a T-fixed point of a Bott–Samelson
variety (6, π ′). Let u ∈ Uµr and u′ = t−µr utµr ∈ U0. Then

uT≥r
γ = uU

γ

Vr
U
γ

Vr+1
· · ·U

γ

Vk
[tµγ ]

= tµr u′Uγ
≥r

V0
· · ·U

γ≥r

Vk−r
[tµγ−µr ]

= tµr U
γ≥r

V0
· · ·U

γ≥r

Vk−r
[tµγ−µr ] = T≥r

γ .

Where the final equality follows from Corollary 2.10. �

For later use let us fix the notation

T<r
γ = U

γ

V0
· · ·U

γ

Vr−1
,

so that
π(Cγ )= T<r

γ T≥r
γ .

Remark 7.2. This Proposition is proven for SL(n,C) in [Gaussent et al. 2013,
Proposition 3]. The proof we have provided is exactly the same, except for the
restriction of only being able to truncate at special vertices.

Example 7.3. Let n = 2. Consider the symplectic keys

K1 =
1 1 1̄

2 2
and K2 =

2 1 2

2̄ 1̄
,

and their words
w(K1)= 1̄12 and w(K2)= 22̄2.

Note that γω1 ∗ γω2 ∼ γω2 ∗ γω1 , since both γω1 ∗ γω2 and γω2 ∗ γω1 are contained in
the fundamental chamber and have the same endpoint ω1+ω2. One checks that

fα1 fα2 fα1(γω1 ∗ γω2)= γK1
and fα1 fα2 fα1(γω2 ∗ γω1)= γK2

.
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Therefore γK1
∼ γK2

. Lemma 5.11 and Proposition 5.9 imply that γw(K1) ∼ γw(K2)

(it can also be checked directly using Relation R2 in Theorem 5.17 with y = x = 2).
Now consider combinatorial galleries γ and ν. The galleries γ ∗γK1

∗ν and γ ∗γK2
∗ν

are T-fixed points in the Bott–Samelson varieties (6(γ ∗γK1
∗ν) f , π), respectively

(6(γ ∗γK2
∗ν) f , π ′). The galleries γw(K1) and γw(K2) that correspond to their words

are T-fixed points in (6(γ ∗γω1∗γω1∗γω1∗ν)
f , π ′′). We show that

π(Cγ ∗γK1
∗ν)= π ′′(Cγ ∗γw(K1)∗ν

)= π ′(Cγ ∗γw(K2 )∗ν
).

We use the same notation as in (4) for γ . Since for any combinatorial gallery η,
(α, n) ∈ 8γ ∗ηk+1 if and only if (α, n − 〈α,µγ 〉) ∈ 8

γ

0 , we may assume that γ = ∅.
Since γK1

, γK2
, γw(K1) and γw(K2) have the same endpoint ε2, this also implies that

T≥2
γK1
∗ν = T≥2

γK2
∗ν = T≥3

γw(K2)∗ν
= T≥3

γw(K1)∗ν
. By Proposition 2.7, for a′, b′, c′, d ′ ∈ C,

π(CγK1∗ν
)= U(ε1,−1)(a′)U(ε1+ε2,−1)(b′)U(ε2,0)(c

′)U(ε1+ε2,0)(d
′)T≥2

γK1
∗ν .

By Chevalley’s commutator formula (2) and an application of Proposition 7.1 to
U(ε1−ε2,−1)(e) ∈ Uε2 , we obtain

π ′′(Cγw(K1)∗ν
)

= U(ε1,−1)(a) ·U(ε1+ε2,−1)(b) ·U(ε1−ε2,−1)(e) ·U(ε2,0)(c) ·U(ε1+ε2,0)(d)T
≥3
γw(K1)∗ν

= U(ε1,−1)
(
a+ c1,1

12̄,2
(−e)c

)
·U(ε1+ε2,−1)

(
b+ c1,1

12̄,2
(−e)c2)

·U(ε2,0)(c) ·U(ε1+ε2,0)(d) ·U(ε1−ε2,−1)(e)T≥2
γK1
∗ν

= U(ε1,−1)
(
a+ c1,1

12̄,2
(−e)c

)
·U(ε1+ε2,−1)

(
b+ c1,1

12̄,2
(−e)c2)
·U(ε2,0)(c) ·U(ε1+ε2,0)(d)T

≥2
γK1
∗ν

⊂ π(CγK1
∗ν),

for a, b, c, d, e ∈ C. Choosing a = a′, b = b′, c = c′, d = d ′, and e = 0, we have
π(CγK1

)⊂ π ′′(Cγw(K1)
). Hence, in this case π(CγK1

)= π ′′(Cγw(K1)
). Similarly, for

a′′, b′′, c′′, d ′′, e′′ ∈ C,

π ′′(Cγw(K2)∗ν
)

= U(ε2,0)(a
′′) ·U(ε1+ε2,0)(b

′′) ·U(ε1−ε2,−1)(e′′) ·U(ε2,0)(c
′′) ·U(ε1+ε2,0)(d

′′)T≥3
γw(K2)∗ν

= U(ε1,−1)
(
c12̄,2

1,1 (−e′′)c′′
)
·U(ε1+ε2,−1)

(
c12̄,2

1,2 (−e′′)c′′2
)

·U(ε2,0)(a
′′
+c′′) ·U(ε1+ε2,0)(b

′′
+d ′′)T≥3

γw(K2)∗ν

⊂ π(CγK1∗ν
).

Hence the open subset of π(CγK1∗ν
) given by a 6= 0, b 6= 0, c 6= 0, d 6= 0 is contained

in π ′′(Cγw(K2)∗ν
).
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7B. Proof of Proposition 5.5. It is enough to show that if γ and ν are combinatorial
galleries and K is a readable block, then

(17) π(Cγ ∗γK ∗ν)= π
′(Cγ ∗γw(K )∗ν),

where (6(γ ∗γK ∗ν) f , π) and (6(γ ∗γw(K )∗ν) f , π ′) are the Bott–Samelson varieties
associated to the galleries γ ∗ γK ∗ ν and γ ∗ γw(K ) ∗ ν respectively.

Proof. We assume γ =∅; we may do so by the argument given at the beginning of
Example 7.3. Let K be an LS block and let A = {a1, . . . , ar }, B = {b1, . . . , bs},
Z={z1, . . . , zk} and T={t1, . . . , tk} be the subsets of {1, . . . , n} from Definition 4.3
that determine K . We will use the notation d1 < · · ·< dr+k to denote the ordered
elements of Z∪A and f1 < · · · < fs+k the ordered elements of B∪ Z. We also
write

γK = (V0,E0,V1,E1,V2).

The proof is divided into Lemmas 7.4 and 7.5 below.

Lemma 7.4. Let ν be a combinatorial gallery and K be a readable block. Then

π ′(Cγw(K )∗ν)⊆ π(CγK ∗ν).

Proof. We first show that

(18) π ′(Cγw(K )∗ν)⊂ U0P′′′f̄k+s
· · ·P′′′f̄1

T≥2k+r+s
γw(K )∗ν

,

where

P′′′b̄ =
∏

l /∈Z∪A∪B∪T
l<b

U(εl−εb,0)(klb̄)
∏

t∈T<b

U(εt−εb,0)(kt b̄)
∏

a∈A<b

U(εa−εb,1)(kab̄),(19)

P′′′z̄ =
∏

l /∈Z∪A∪B∪T;
l<z

U(εl−εz,−1)(kl z̄)
∏

t∈T<z

U(εt−εz,−1)(kt z̄)
∏

b∈B<z

U(εb−εz,−1)(kbz̄),(20)

for b ∈ B, z ∈ Z and ki j ∈ C. Indeed, the points of π ′(Cγw(K )∗ν) are of the form

(21) Pd1 · · ·Pdr+k P f̄k+s
· · ·P f̄1

T≥2k+r+s
γw(K )∗ν

,

where

Pd = U(εd ,0)(gd)
∏

d<l≤n

U(εd−εl ,0)(gdl̄)
∏

l /∈(Z∪A)<d

U(εd+εl ,0)(gdl)
∏

l∈(Z∪A)<d

U(εd+εl ,1)(g
1
dl),

Pb̄ = Sb̄Piv
b̄ with Sb̄ =

∏
b′∈B<b

U(εb′−εb,0)(gb′b̄)
∏

z∈Z<b

U(εz−εb,1)(g
1
zb̄) ∈ U0 and

Piv
b̄ =

∏
l /∈Z∪A∪B∪T

l<b

U(εl−εb,0)(glb̄)
∏

t∈T<b

U(εt−εb,0)(gt b̄)
∏

a∈A<b

U(εa−εb,1)(gab̄),
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and finally

Pz̄ = Jz̄Piv
z̄ with Jz̄ =

∏
a∈A<z

U(εa−εz,0)(gaz̄)
∏

z′∈Z<z

U(εz′−εz,0)(gz′ z̄) ∈ U0 and

Piv
z̄ = Jz̄

∏
l /∈Z∪A∪B∪T

l<z

U(εl−εz,−1)(gl z̄)
∏

t∈T<z

U(εt−εz,−1)(gt z̄)
∏

b∈B<z

U(εb−εz,−1)(gbz̄),

for d ∈A∪Z, z∈Z, b∈B, and gi j ∈C. All terms in Jz̄ commute with Piv
z′ for z′∈Z>z

and with Piv
b̄

for b ∈ B>z . All terms in Sb̄ commute with Piv
b̄′

for b′ ∈ B>b. For
z′ > b it commutes with all terms of Piv

z̄′ except for the term U(εb−εz′ ,−1)(gbz̄′). But
commuting Sb̄ with this term (using Chevalley’s commutator formula (2)) produces
terms U(εz−εz′ ,0)(∗) and U(εb′−εz′ ,−1)(∗), of these terms, U(εz−εz′ ,0)(∗) commutes
with Piv

z′ for z′ ∈ Z>z and with Piv
b̄

for b ∈ B>z , and U(εb′−εz′ ,−1)(∗) is a term of the
form of those appearing in Piv

z̄ .
Since the terms that appear in Piv

b̄
and Piv

z̄ are the same as those in P
′′

b̄
and P

′′

z̄
respectively, this justifies (18), concluding the first step in the proof of Lemma 7.4.
The second step is this:

Claim. There is a dense subset of P′′′
f̄k+s
· · ·P′′′

f̄1
T≥2k+r+s
γw(K )∗ν

contained in the subset

(22) PT,BPK , f̄s
· · ·PK , f̄s

T≥2k+r+s
γw(K )∗ν

⊂ π(CγK ∗ν),

where

PT,B =
∏

l /∈Z∪A∪B∪T
t∈T,l<t

U(εl−εt ,0)(vl t̄)
∏

l /∈Z∪A∪B∪T
b∈B,l<b

U(εl−εb,0)(vlb̄) ∈ UV0,

PK ,b̄ =
∏
b∈B

t∈T<b

U(εt−εb,0)(vt b̄)
∏

a∈A<b

U(εa−εb,1)(vab̄) ∈ UV1,

PK ,z̄ =
∏

t∈T<z

U(εt−εz,−1)(vt z̄)
∏

b∈B<z

U(εb−εz,−1)(vbz̄) ∈ UV1,

for vi j ∈ C, b ∈ B and z ∈ Z. (The inclusion in (22) holds by Corollary 2.10.)

To prove this we start by noting that T≥2k+r+s
γw(K )∗ν

= T≥2
γK ∗ν

and that

(23) u =
∏

l /∈Z∪A∪B∪T
t∈T,l<t

U(εl−εt ,0)(vl t̄) ∈ UµγK
.

We have the equalities

(24) PT,BPK , f̄s
· · ·PK , f̄s

T≥2k+r+s
γw(K )∗ν

= P′′f̄s
· · ·P′′f̄s

uT≥2
γK ∗ν
= P′′f̄s

· · ·P′′f̄s
T≥2
γK ∗ν

,

where we have introduced symbols analogous to those of (19) and (20); namely,
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for z ∈ Z and b ∈ B,

P′′b̄ =
∏

l /∈Z∪A∪B∪T
l<b

U(εl−εb,0)(ξlb̄)
∏

t∈T<b

U(εt−εb,0)(ξt b̄)
∏

a∈A<b

U(εa−εb,1)(ξab̄),

P′′z̄ =
∏

l /∈Z∪A∪B∪T
l<b

U(εl−εz,−1)(ξl z̄)
∏

t∈T<z

U(εt−εz,−1)(ξt z̄)
∏

b∈B<z

U(εb−εz,−1)(ξbz̄)

with ξt z̄ = vt z̄ , ξbz̄ = vbz̄ , ξt b̄ = vt b̄,

ξlb̄ = vlb̄+
∑

l<b<b
t∈T

c1,1
st̄,t b̄

(−vl t̄)vt b̄,

ξl z̄ = ρl z̄ +
∑
z′∈Z

c1,1
l z̄′,z′ z̄(−ρl z̄′)vz′ z̄ +

∑
l<b<z

b∈B

c1,1
lb̄,bz̄

(−ξlb̄)vbz̄ for

ρl z̄ =
∑

l<t<z
t∈T

c1,1
l t̄,t z̄(−vl t̄)vt z̄ (for z ∈ Z).

To complete the proof of the Claim we must set open conditions on the parameters
ki j such that the system of equations defined by vi j = ξi j has a solution in the
variables vi j . Setting vt z̄ := kt z̄ and vbz̄ := kbz̄ this is reduced to setting conditions
on the ki j so that the following system can be solved:

klb̄ = vlb̄+
∑

l<t<b
t∈T

c1,1
l t̄,t b̄

(−vl t̄)kt b̄,(25)

kl z̄ = ρl z̄ −
∑

l<b<z
b∈B

c1,1
lb̄,bz̄

(
vlb̄+

∑
l<t<b

t∈T

c1,1
l t̄,t b̄

(−vl t̄)kt b̄

)
kbz̄,(26)

ρl z̄ =
∑

l<t<z
t∈T

c1,1
l t̄,t z̄(−vl t̄)kt z̄.(27)

Lines (25) and (26) define a linear system of as many equations as variables. The
variables are {vlb̄}l /∈A∪B∪T,b∈B>l∪{vl t̄ }l /∈A∪B∪Z∪T,t∈T>l ; there is one equation for each
lb̄ such that l /∈A∪B∪T and b∈B>l , and one for each l z̄ such that l /∈A∪B∪T and
z ∈ Z>l . Note that by definition of an LS block the sets {l z̄, l /∈ A∪B∪T; z ∈ Z>l

}

and {l t̄, s /∈A∪B∪T; b ∈B>l
} have the same cardinality (ti is the maximal element

of the set {l /∈ A∪B∪T, s < ti+1, s < zi }). Therefore the system has a solution as
long as the matrix of coefficients has nonzero determinant, which imposes open
conditions on the k ′i j s. Hence the Claim is proven.
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To finish the proof of Lemma 7.4, note that if the k ′i j s satisfy the open conditions
established by the Claim, then

P′′′f̄k+s
· · ·P′′′f̄1

T≥2k+r+s
γw(K)∗ν

⊆ π(CγK ∗ν),

and therefore Proposition 7.1 implies that

U0P′′′f̄k+s
· · ·P′′′f̄1

T≥2k+r+s
γw(K)∗ν

⊆ π(CγK ∗ν),

which implies Lemma 7.4. �

Lemma 7.5. Let ν be a combinatorial gallery and K be an LS block. Then

(28) π(CγK ∗ν)⊆ π
′(Cγw(K )∗ν).

Proof. Recall that
π(CγK ∗ν)= U

γK ∗ν

V0
U
γK ∗ν

V1
T≥2
γK ∗ν

.

Notice that U
γK ∗ν

V0
⊂ U0 and that all generators of U

γK ∗ν

V1
also belong to U0 except

for those of the form U(εt−εz,−1)(vt z̄) or U(εt+εt ′ ,−1)(vt t ′) for t, t ′ ∈ T, z ∈ Z>t , and
vt z̄, vt t ′ ∈ C. Hence, since T≥2

γK ∗ν
= T≥2k+r+s

γw(K )∗ν
, all elements of π(CγK ∗ν) belong to

(29) U0
∏
t∈T

z∈Z>t

U(εt−εz,−1)(vt z̄)
∏

t,t ′∈T

U(εt+εt ′ ,−1)(vt t ′)T≥2k+r+s
γw(K )∗ν

.

Now consider ∏
t∈T
z∈Z

U(εz+εt ′ ,0)(kzt ′)
∏

t∈Tz∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

,

which is a subset of π ′(Cγw(K )∗ν) by virtue of Proposition 7.1 and because∏
z∈Z
t∈T

U(εz+εt ,0)(kzt) ∈ U0 and
∏
t∈T
z∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

⊂ π ′(Cγw(K )∗ν).

We have∏
t ′∈T
z∈Z

U(εz+εt ′ ,0)(kzt ′)
∏
t∈T

z∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

(30)

=

∏
t,t ′∈T
t 6=t ′

U(εt+εt ′ ,−1)(ξt t ′)
∏
t∈T

z∈Z>t

U(εt−εz,−1)(kt z̄)
∏
t ′∈T
z∈Z

U(εz+εt ′ ,0)(kzt ′)T≥2k+r+s
γw(K )∗ν

(31)

=

∏
t,t ′∈T
t 6=t ′

U(εt+εt ′ ,−1)(ξt t ′)
∏
t∈T

z∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

,(32)
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where

(33) ξt t ′ =
∑

z∈Z>t ′

c1,1
zt,t ′ z̄(−kzt)kt ′ z̄ +

∑
z∈Z>t

c1,1
zt ′,t z̄(−kzt ′)kt z̄.

The equality between (30) and (31) is due to Chevalley’s commutator formula (2)
and the equality between (31) and (32) is obtained by using Proposition 7.1 and
U(εz+εt ′ ,0)(kzt ′) ∈ UµγK

. Now fix an element in (29). Setting kt z̄ = vt z̄ defines the
linear equations

vt t ′ =
∑

z∈Z>t ′

c1,1
zt,t ′ z̄(−kzt)vt ′ z̄ +

∑
z∈Z>t

c1,1
zt ′,t z̄(−kzt ′)vt z̄,

in the variables kzt , for z ∈ Z and t ∈ T. There are more variables than equations.
For each equation indexed by a nonordered pair (ti , t j ) there are the variables vzti
and vz′t j for z > t ′ and z′ > t (which always exist by definition of an LS block),
hence the system has solutions as long as the matrix of coefficients has nonzero
determinants. This imposes an open condition on the parameters vt z̄ . Hence for
such vt z̄ , vt t ′ , kt z̄ = vt z̄ , and solutions ki j , for the latter equations we have∏

t∈T
z∈Z>t

U(εt−εz,−1)(vt z̄)
∏

t,t ′∈T

U(εt+εt ′ ,−1)(vt t ′)T≥2k+r+s
γw(K )∗ν

=

∏
t ′∈T
z∈Z

U(εz+εt ′ ,0)(kzt ′)
∏
t∈T

z∈Z>t

U(εt−εz,−1)(kt z̄)T≥2k+r+s
γw(K )∗ν

⊂ π ′(Cγw(K )∗ν).

Proposition 7.1 then implies,

U0
∏
t∈T

z∈Z>t

U(εt−εz,−1)(vt z̄)
∏

t,t ′∈T

U(εt+εt ′ ,−1)(vt t ′)T≥2
γK ∗ν
⊂ π ′(Cγw(K )∗ν).

This completes the proof of Lemma 7.5 and hence of (17) for K an LS block. �

Now let K be a zero lump. This means there exists k > 1 such that the right
(respectively left) column of K has as entries the integers 1< · · ·< k (respectively
k̄ < · · ·< 1̄), its word is therefore w(K )= 1 · · · kk̄ · · · 1̄. This means, in particular,
that the truncated images T≥2k

γw(K )∗ν
=T≥2

γK ∗ν
are stabilized by U0, by Proposition 7.1.

We have
π ′(Cγw(K )∗ν)= U

γw(K )∗ν

V0
· · ·U

γw(K )∗ν

V2k−1
T≥2k
γw(K )∗ν

,

by Theorem 2.9. Clearly all of the subgroups U
γw(K )∗ν

Vl
⊂ U0, for 1 ≤ l ≤ k.

For 0 ≤ j ≤ k − 1, the generators of U
γw(K )∗ν

Vk+ j
are all of the form U(εs−εk− j ,nk− j )

for l < k − j . In particular the gallery γ1···kk̄···k− j−1 has crossed the hyperplanes



474 JACINTA TORRES

H(εs−εk− j ,m) once positively at m = 0 and once negatively at m = 1, which means
that nk− j = 0, and U(εs−εk− j ,nk− j )(a)= U(εs−εk− j ,0)(a) ∈ U0, for all a ∈ C. Hence

π ′(Cγw(K )∗ν)= U
γw(K )∗ν

V0
· · ·U

γw(K )∗ν

V2k−1
T≥2k
γw(K )∗ν

= T≥2k
γw(K )∗ν

= T≥2
γK ∗ν

.

In
π(CγK ∗ν)= U

γK ∗ν

V0
U
γK ∗ν

V1
T≥2
γK ∗ν

we have U
γK ∗ν

V1
= {Id} and U

γK ∗ν

V0
⊂ U0, therefore

π(CγK ∗ν)= T≥2
γK ∗ν
= T≥2k

γw(K )∗ν
,

since µγK = µγw(K )
. This finishes the proof of (17) and that of Proposition 5.5. �

7C. Proof of Proposition 5.20. The remainder of this section, through page 494,
is devoted to the proof of Proposition 5.20. Let ν be a combinatorial gallery.

Relation R1. For z 6= x̄ :

y x z ≡ y z x for x ≤ y < z,

x z y ≡ z x y for x < y ≤ z.

Lemma 7.6. Let w1 = y x z, w2 = y z x , w3 = x z y, and w4 = z x y for z 6= x̄ .

(a) π(Cγw1∗ν
)= π(Cγw2∗ν

).

(b) π(Cγw3∗ν
)= π(Cγw4∗ν

).

Proof. Recall the notation εā =−εa and ¯̄i = i for any i ∈ {1, . . . , n}. Note that the
T≥3
γwi ∗ν

all coincide for i ∈ {1, 2, 3, 4}; we will denote them by Tw. We divide the
proof of Lemma 7.6 into three cases.

Case 1: x < y < z. We claim that if z 6= ȳ and y 6= x̄ , the following equalities hold:

i. π(Cγw1∗ν
)= U0U(εx−εy ,−1)(vx ȳ)Tw.

ii. π(Cγw2∗ν
)= U0U(εx−εy ,−1)(vx ȳ)U(εx−εz,−1)(vx z̄)Tw.

iii. π(Cγw3∗ν
)= U0U(εy−εz,−1)(vyz̄)Tw.

iv. π(Cγw4∗ν
)= U0U(εx−εz,−1)(vx z̄)U(εy−εz,−1)(vyz̄)Tw.

Before proving this we remark that, regardless of whether x , y, and z are barred
or unbarred, the roots εx − εz , εy − εz , and εx − εy are positive. Now we recall the
notation from Theorem 2.9:

π(Cγw1∗ν
)= U

γwi ∗ν

V0
U
γwi ∗ν

V1
U
γwi ∗ν

V2
Tw.

Assume that z 6= ȳ and y 6= x̄ .
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i. We have U(εx−εy ,−1)(vx ȳ) ∈ U
γw1∗ν

1 for any vx ȳ ∈ C, hence

U0U(εx−εy ,−1)(vl ȳ)Tw ⊆ π(Cγw1∗ν
).

Out of all generators of U
γw1∗ν

Vi
for i ∈ {0, 1, 2}, the only one that does not belong

to U0 is of the form U(εx−εy ,−1)(vx ȳ) ∈ U
γw1∗ν

V1
, and the ones from U

γw1∗ν

V2
that do

not commute with it are those of the form U(εy+εz,1)(a), but in that case Chevalley’s
commutator formula produces a term U(εx+εz,0)(c

1,1
x ȳ,yz(−vx ȳ)a) ∈ U0. This implies

the other inclusion, together with Proposition 2.7, which allows us to write down
the generators of each U

γw1∗ν

Vi
in any order.

ii. The only generators of U
γw2∗ν

Vi
, for i ∈ {0, 1, 2}, that do not belong to U0 are

those of the form U(εx−εy ,−1)(vx ȳ) ∈ U
γw2∗ν

V2
or the form U(εx−εz,−1)(vx z̄) ∈ U

γw2∗ν

V2
.

The equality follows by Proposition 2.7, Theorem 2.9, and Proposition 7.1.

iii. All the generators of U
γw3∗ν

V0
and U

γw3∗ν

V1
belong to U0, and the only generators

of U
γw3∗ν

V2
that do not are U(εy−εz,−1). Thus iii follows by Proposition 7.1 and

Theorem 2.9.

iv. As in the previous cases, we have

π(Cγw4∗ν
)= U

γw4∗ν

V0
U
γw4∗ν

V1
U
γw4∗ν

V2
Tw,

and U
γw4∗ν

V0
⊂ U0. All generators of U

γw4∗ν

V1
and U

γw4∗ν

V2
, respectively, belong to U0

except for U(εx−εz,−1)(a) ∈ U
γw4∗ν

V1
and U(εy−εz,−1)(b) ∈ U

γw4∗ν

V2
, respectively, for

{a, b}⊂C. To prove iv we observe that U(εx−εz,−1)(a) commutes with all generators
of U

γw4∗ν

V2
except for U(εz+εy ,1)(d), with d ∈ C. However, commuting the latter two

terms produces elements U(εx+εy ,0)(c
1,1
x z̄,zy(−a)d) ∈ U0. Therefore

π(Cγw4∗ν
)⊆ U0U(εx−εz,−1)(vx z̄)U(εy−εz,−1)(vyz̄)Tw,

and the other inclusion is clear by Proposition 7.1 and the above discussion. This
finishes the proof of our claim.

Now we use this to prove Lemma 7.6, assuming z 6= ȳ and y 6= x̄ . For both
conclusions (a) and (b) of the lemma, our equalities i–iv immediately imply

π(Cγw1∗ν
)⊆ π(Cγw2∗ν

) and π(Cγw3∗ν
)⊆ π(Cγw4∗ν

).

Next we will show that

π(Cγw2∗ν
)⊆ π(Cγw1∗ν

).
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For this, let vyz̄ ∈C and vx ȳ ∈C with vx ȳ 6= 0. Then since U(εy−εz,0)(vyz̄)∈Uµw∩U0

for any vyz̄ ∈ C Chevalley’s commutator formula, and Proposition 7.1 imply

π(Cγw1∗ν
)⊃ U(εy−εz,0)(vyz̄)U(εx−εy ,−1)(vx ȳ)Tw

= U(εx−εz,−1)(c
1,1
yz̄,v ȳ(−vyz̄)vx ȳ)U(εx−εy ,−1)(vx ȳ)U(εy−εz,0)(vyz̄)Tw

= U(εx−εz,−1)(c
1,1
yz̄,v ȳ(−vyz̄)vx ȳ)U(εx−εy ,−1)(vx ȳ)Tw.

Therefore

U(εx−εy ,−1)(vx ȳ)U(εx−εz,−1)(vx z̄)Tw ⊂ π(Cγw1∗ν
),

as long as vx ȳ 6= 0, since in that case c1,1
yz̄,v ȳ(−vyz̄)vx ȳ = vx z̄ has a solution in vyz̄ .

Hence Proposition 7.1 implies

U0U(εx−εy ,−1)(vx ȳ)U(εx−εz,−1)(vx z̄)Tw ⊂ π(Cγw1∗ν
).

Equalities i and ii then imply that a dense subset of π(Cγw2∗ν
) is contained in

π(Cγw1∗ν
), which implies Lemma 7.6(a). To finish the proof of Lemma 7.6(b), let

vx ȳ ∈ C and vyz̄ ∈ C with vyz̄ 6= 0. Then, just as for (a),

π(Cγw3∗ν
)⊃ U(εx−εy ,0)(vx ȳ)U(εy−εz,−1)(vyz̄)Tw(34)

= U(εx−εz,−1)
(
c1,1

x ȳ,yz̄(−vx ȳ)vyz̄
)
U(εy−εz,−1)(vyz̄)U(εx−εy ,0)(vyz̄)Tw(35)

= U(εx−εz,−1)(c
1,1
x ȳ,yz̄(−vx ȳ)vyz̄)U(εy−εz,−1)(vyz̄)Tw.(36)

Therefore the elements of the set

U(εx−εz,−1)(vx z̄)U(εy−εz,−1)(vyz̄)Tw

such that vyz̄ 6= 0 are contained in (36). By items iii and iv and Proposition 7.1
there is a dense subset of

π(Cγw4∗ν
)= U0U(εx−εz,−1)(vx z̄)U(εy−εz,−1)(vyz̄)Tw

that is contained in π(Cγw3∗ν
).

The cases z = ȳ and y = x̄ are missing so far. (Note that z 6= x̄ is not allowed.
Also note that if y = x̄ then x must be unbarred and if z = ȳ then y must be
unbarred.)

Now assume z = ȳ. To prove Lemma 7.6(a) in this case, we first show that

(37) π(Cγw1∗ν
)⊆ π(Cγw2∗ν

).

All of the generators of U
γw1∗ν

V1
belong to U0 except for U(εx−εy ,−1)(vx ȳ), for

vx ȳ ∈ C. The generators of U
γw1∗ν

V1
are U(εl−εy ,−1)(vl ȳ) for l 6= x and vl ȳ ∈ C, and
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U(εx−εy ,0)(vx ȳ) for vx ȳ ∈ C. This last term commutes with U(εx−εy ,−1)(vx ȳ). There-
fore, by parallel arguments to those given in the proof of equalities i–iv on page 474,

π(Cγw1∗ν
)= U0U(εx−εy ,−1)(vx ȳ)

∏
l<y
l 6=x

U(εl−εy ,−1)(vl ȳ)Tw.

All terms in the product

U(εx−εy ,−1)(vx ȳ)
∏
l<y
l 6=x

U(εl−εy ,−1)(vl ȳ)

are at the same time generators of U
γw2
V1

as well. Therefore, by Proposition 7.1,

π(Cγw1∗ν
)⊆ π(Cγw2∗ν

),

as wanted. Next we would like to show

(38) π(Cγw2∗ν
)⊆ π(Cγw1∗ν

).

To do so we will make use of Proposition 5.5. Let

K1 =
x x y

ȳ ȳ
and K2 =

x y−1 y

ȳ y−1
.

Then we have w1 = y x ȳ =w(K1) and w2 = y ȳ x =w(K2). By Proposition 5.5
it then suffices to show

π ′′(CγK2
)⊆ π ′(CγK1

).

First assume y− 1 6= x . In this case U
γK2
∗ν

V1
is generated by terms U(εy−1−εy ,−1)(a)

with a ∈C, and all generators of U
γK2
∗ν

V0
and U

γK2
∗ν

V2
belong to U0. Out of these, the

only ones in U
γK2
∗ν

V2
that do not commute with U(εy−1−εy ,−1)(a) are U(εx+εy ,0)(b)

and U(εx−εy−1,0)(d). Then for every element in π(CγK2
∗ν) there is a u ∈ U0 such

that it belongs to

uU(εy−1−εy ,−1)(a)u′Tw = uu′U(εy−1+εx ,−1)
(
c1,1

y−1ȳ,xy(−a)b
)

·U(εx−εy ,−1)
(
c1,1

y−1ȳ,x y−1
(−a)d

)
U(εy−1−εy ,−1)(a)Tw,

where u′ = U(εx+εy ,0)(b)U(εx−εy−1,0)(d).
Fix u, a, b, and d such that abd 6= 0. Such elements form a dense subset

of π ′′(CγK2
∗ν). We will show that

U(εy−1+εx ,−1)
(
c1,1

y−1ȳ,xy(−a)b
)
U(εx−εy ,−1)

(
c1,1

y−1ȳ,x y−1
(−a)d

)
U(εy−1−εy ,−1)(a)Tw

is contained in π ′(CγK1
∗ν). If this is true, then (38) is implied by Proposition 7.1

applied to uU(εx+εy ,0)(b)U(εx−εy−1,0)(d) ∈ U0.
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First note that for any {ax ȳ, ay−1ȳ, ayy−1} ⊂ C, both U(εy−1−εy ,−1)(ay−1y) and

U(εx−εy ,−1)(ax ȳ) belong to U
γK1
∗ν

V1
, and v=U(εy+εy−1,0)(ayy−1)∈Uεx ∩U0 stabilizes

the truncated image Tw as well as the whole image π ′(CγK1
∗ν). Therefore all

elements of

v−1U(εx−εy ,−1)(ax ȳ)U(εy−1−εy ,−1)(ay−1ȳ)vTw =

U(εx+εy−1,−1)(c
1,1
x ȳ,yy−1(−ax ȳ)ayy−1)U(εx−εy ,−1)(ax ȳ)U(εy−1−εy ,−1)(ay−1ȳ)Tw

belong to π ′(CγK1
∗ν) and, since abd 6= 0, we may find ax ȳ , ay−1ȳ , and ayy−1 such

that

ax ȳ = c1,1
y−1ȳ,x y−1

(−a)d, c1,1
x ȳ,yy−1(−ax ȳ)ayy−1 = c1,1

y−1ȳ,xy(−a)b, ay−1ȳ = a.

This concludes the proof if y 6= x − 1. Now assume that y = x − 1. In this case all
generators of U

γK2∗ν

V2
commute with U(εy−1−εy ,−1)(ay−1ȳ), and therefore all elements

in π ′′(CγK2
∗ν) belong to

uU(εy−1−εy ,−1)(a)Tw,

for some u ∈U0 and a ∈ C — but U(εy−1−εy ,−1)(a) ∈ U
γK1
∗ν

V1
, which implies (38) by

applying Proposition 7.1 to u ∈ U0.

Next we prove Lemma 7.6(b), still assuming z = ȳ. We now have

w3 = x ȳ y = w(K3) and w4 = ȳ x y = w(K4),

where

K3 =
y x x

ȳ ȳ
and K4 =

x x ȳ
y y

.

We want to show
π ′′′(CγK3

∗ν)= π ′′′′(CγK4
∗ν).

First U
γK3
∗ν

V0
and U

γK3
∗ν

V1
are both contained in U0. The generators of U

γK3
∗ν

V2
that

do not belong to U0 are U(εy ,−1)(αy), U(εy+εl ,−1)(βyl), and U(εy−εs ,−1)(γys̄) for
{αy, βyl, γys̄} ⊂ C and l ≤ n, l 6= x , y < s ≤ n. All of these are also generators

of U
γK4
∗ν

V1
, hence by Proposition 7.1 and Theorem 2.9 we have

π ′′′(CγK3
∗ν)⊂ π

′′′′(CγK4
∗ν).

The discussion above also implies the equality

(39) π ′′′(CγK3
∗ν)= U0U(εy ,−1)(αy)

∏
l≤n
l 6=x

U(εy+εl ,−1)(βyl)
∏

y<s≤n

U(εy−εs ,−1)(γys̄)Tw.

There is one more generator of U
γK4
∗ν

V1
not mentioned above, U(εx+εy ,−1)(dxy).
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Since all generators of U
γK4
∗ν

V2
(which are U(εx+εy ,0)(d

′) ∈ U0 for d ′ ∈ C) commute
with those of U

γK3
∗ν

V1
, we have by Proposition 7.1,

π ′′′′(CγK4
∗ν)=

U0U(εx+εy ,−1)(dxy)U(εy ,−1)(ay)
∏
l≤n
l 6=x

U(εy+εl ,−1)(byl)
∏
s≤n
s>y

U(εy−εs ,−1)(cys̄)Tw.

We now would like to show

π ′′′′(CγK4
∗ν)⊂ π ′′′(CγK3

∗ν).

To do this we will see that for complex numbers ay , byl , cys̄ , and dxy , with ay 6= 0,

(40) U(εx+εy ,−1)(dxy)U(εy ,−1)(ay)
∏
l≤n
l 6=x

U(εy+εl ,−1)(byl)
∏
s≤n
s>y

U(εy−εs ,−1)(cys̄)Tw

⊂ π ′′′(CγK3
∗ν).

By (39) we conclude that for any complex numbers αy, βyl, γys̄ , and δ the following
set is contained in π ′′′(CγK3

∗ν):

(41) v−1U(εx−εy ,1)(δ)U(εy ,−1)(αy)
∏
l≤n
l 6=x

U(εy+εl ,−1)(βyl)
∏
s≤n
s>y

U(εy−εs ,−1)(γys̄)Tw

= v−1vU(εx+εy ,−1)(ρxy)U(εy ,−1)(αy)
∏
l≤n
l 6=x

U(εy+εl ,−1)(βyl)
∏
s≤n
s>y

U(εy−εs ,−1)(γys̄)Tw,

where

v=U(εx ,0)
(
c1,1

x ȳ,y(−δ)αy
)∏

l≤n
l 6=x

U(εx+εl ,0)
(
c1,1

x ȳ,yl(−δ)βyl
)∏

s≤n
s>y

U(εx−εs ,0)
(
c1,1

x ȳ,ys̄(−δ)γys̄
)

and ρxy = c1,2
x ȳ,y(−δ)α

2
y, and where the equality in (41) is obtained by applying

Chevalley’s commutator formula (2) and Proposition 7.1 to U(εx−εy ,1)(δ), which
stabilizes the truncated image Tw. We will have shown our claim in (40) if we find
complex numbers αy , βyl , γys̄ , and δ such that

c1,2
x ȳ,y(−δ)α

2
y = dxy, αy = ay, βyl = byl,

which we may obtain since ay 6= 0. This concludes the proof in case z = ȳ.

Lastly assume y = x̄ . This means that x is necessarily unbarred and therefore
z = b̄ for some b < x .

To prove Lemma 7.6(a) in this case, as before, we use Proposition 5.5. We have

w1 = x̄ x b̄ = w(K1) and w2 = x̄ b̄ x = w(K2),
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where

K1 =
x x x̄
b̄ b̄

and K2 =
x x̄ x̄

b̄ b̄
.

First we show

(42) π ′(CγK1
∗ν)⊆ π ′′(CγK2

∗ν).

To do this, we claim that

(43) π ′(CγK1
∗ν)= U0U(εx ,−1)(ax)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(axs)Tw.

Indeed, U(εx ,−1)(ax) and U(εx+εs ,−1)(axs) for s∈Cn such that s 6=b are the generators
of U

γK1
∗ν

V1
that do not belong to U0, and U

γK1
∗ν

V2
is the identity, because εx−εb is not a

positive root. Therefore (43) follows by Proposition 7.1. The aforementioned terms
are also generators (but not all!) of U

γK2
∗ν

V2
; therefore (42) follows. Now we show

(44) π ′′(CγK2
∗ν)⊆ π ′(CγK1

∗ν).

To do this, let us first analyze the image

π ′′(CγK2
∗ν)= U

γK2
∗ν

V0
U
γK2
∗ν

V1
U
γK2
∗ν

V2
Tw.

In this case U
γK2
∗ν

V0
⊂ U0 and U

γK2
∗ν

V1
is the identity, because −(εx + εb) is not

a positive root. The generators of U
γK2
∗ν

V2
are U(εx ,−1)(αx), U(εx+εs ,−1)(αxs) and

U(εx+εb,−2)(αxb) for s ∈ Cn such that s 6= b and complex numbers αx , αxs , and αxb.
Therefore

(45) π(CγK2
∗ν)= U0U(εx ,−1)(αx)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(αxs)U(εx+εb,−2)(αxb)Tw.

Let us fix complex numbers αx , αxs , and αxb, such that αx 6= 0. We will show, as
for (43), that

(46) U(εx ,−1)(αx)
∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(αxs)U(εx+εb,−2)(αxb)Tw ⊂ π ′(CγK1
∗ν).

To do this we will use Corollary 2.10, which says, in particular, that if we write

γK1
= (V0,E0,V1,E1,V2,E2,V3),

then
π ′(CγK1

)⊃ UV0UV1UV2Tw.
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Therefore, since u = U(εb−εx ,0)(a) ∈ UV2 ∩U0 for all a ∈ C, and since U(εx ,−1)(ax)

and U(εx+εs ,−1)(axs), for s ∈ Cn and s 6= b, are the generators of U
γK1
∗ν

1 ⊂ UV1 , by
using Proposition 7.1 applied to u ∈ U0 and v ∈ UV3 (V3 stabilizes the truncated
image Tw, see below for a definition of v), we have the following. For any complex
numbers axs and ax ,

π ′(CγK1
∗ν)⊃ u−1U(εx ,−1)(ax)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(axs)uTw

= u−1uU(εx+εb,−2)
(
c2,1

x,bx̄(a
2
x)b
)
U(εx ,−1)(ax)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(axs)vTw

= U(εx+εb,−2)
(
c2,1

x,bx̄(a
2
x)b
)
U(εx ,−1)(ax)

∏
s 6=b

εx+εs∈8
+

U(εx+εs ,−1)(axs)Tw,

where

v = U(εb,−1)
(
c1,1

x,bx̄(−ax)b
) ∏

s 6=b
εx+εs∈8

+

U(εb+εs ,−1)
(
c1,1

x,bs(−axs)b
)
∈ UV3 .

In order to show (46) it suffices to find complex numbers ax , axs , and b such that

c2,1
x,bx̄(a

2
x)b = αxb, ax = αx , axs = αxs,

and we may do this, since αx 6= 0.

For (b), we again use Proposition 5.5. We have

w3 = x b̄ x̄ = w(K3) and w4 = b̄ x x̄ = w(K4),

where

K3 =
x̄ x x

b̄ b̄
and K4 =

x−1 x b̄

x̄ x−1
.

By Proposition 5.5 it is enough to show

(47) π ′′′(CγK3
∗ν)= π ′′′′(CγK4

∗ν) .

We analyze both images π ′′′(CγK3
∗ν) and π ′′′′(CγK4

∗ν) separately and then show (47).
First we observe that U

γK3
∗ν

V0
⊂U0 and U

γK3
∗ν

V1
is the identity (this is because εx−εb

is not a positive root). Hence

(48) π ′′′(CγK3
∗ν)= U0

∏
l<x
l 6=b

U(εl−εx ,−1)(al x̄)U(εb−εx ,−2)(abx̄)Tw.

Now, U
γK4
∗ν

V2
is generated by elements U(εx−1−εx ,−1)(αx−1x) for αx−1x ∈C, and U

γK4
∗ν

V1

is generated by U(εb−εx−1,−1)(αbx−1) for αbx−1 ∈ C, by U(εl−εx−1,0)(αlx−1) for
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l < x − 1 and αlx−1 ∈ C (this last element stabilizes the truncated image Tw),
and by other elements of U0. Therefore

π ′′′′(CγK4
∗ν)(49)

= U0
∏
l<x
l 6=b

U(εl−εx−1,0)(αlx−1)U(εb−εx−1,−1)(αbx−1)U(εx−1−εx ,−1)(αx−1x̄)Tw(50)

= U0
∏

l<x,l 6=b
l 6=x−1

U(εl−εx ,−1)(ξl x̄)U(εx−1−εx ,−1)(αx−1x̄)U(εb−εx ,−2)(ξbx̄)Tw,(51)

where

ξbx̄ = c1,1
bx−1,x−1x̄

(−αbx−1αx−1x̄
), ξl x̄ = c1,1

lx−1,x−1x̄
(−αlx−1αx−1x̄

),

and where the equality between (50) and (51) arises by using (2) and Proposition 7.1
applied to

U(εl−εx−1,0)(αlx−1)U(εb−εx−1,−1)(αbx−1) ∈ UµγK4
.

The sets displayed in (48) and (51) are equal as long as all the parameters are nonzero.

Case 2: x = y < z and z 6= x̄ . In this case we have w1= y y z and w2= y z y. We
want to look at

π(Cγw1∗ν
)= U

γw1∗ν

V0
U
γw1∗ν

V1
U
γw1∗ν

V2
Tw,

π(Cγw2∗ν
)= U

γw2∗ν

V0
U
γw2∗ν

V1
U
γw2∗ν

V2
Tw.

In this case all generators of U
γw1∗ν

Vi
and of U

γw2∗ν

Vi
belong to U0 for i ∈ {1, 2, 3}.

Therefore Proposition 7.1 implies in this case that

π(Cγw1∗ν
)= U0Tw = π(Cγw2∗ν

).

Case 3: x < y = z and z 6= x̄ . Here it will be convenient to use Proposition 5.5. Let

K1 =
y x

y
and K2 =

x y
y

.

It is then enough to show (by Proposition 5.5) that

π ′(CγK1
∗ν)= π ′′(CγK2

∗ν),

since

w1 = x y y = w(K1) and w2 = y x y = w(K2).
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However, this case is now the same as the previous one: all generators of U
γK1
∗ν

Vi

and U
γK2
∗ν

Vi
belong to U0, therefore, as before,

π ′(CγK1
∗ν)= U0Tw = π ′′(CγK2

∗ν).

With this case we conclude the proof of Lemma 7.6. �

Relation R2. For 1< x ≤ n and x ≤ y ≤ x̄ :

y x−1 x−1≡ y x x̄,

x−1 x−1 y ≡ x x̄ y.

Lemma 7.7. Let

w1 = y x−1 x−1, w2 = y x x̄, w3 = x−1 x−1 y, w4 = x x̄ y,

then

(a) π(Cγw1∗ν
)= π(Cγw2∗ν

),

(b) π(Cγw3∗ν
)= π(Cγw4∗ν

).

Proof. As usual, the proof is divided in some cases. We first consider the case
where y /∈ {x, x̄} and then we analyze y = x and y = x̄ separately.

Case 1: y /∈ {x, x̄}.

Note that

w1 = y x − 1 x − 1= w

(
x−1 y y

x−1 x−1

)
, w2 = y x x̄ = w

(
x−1 x y

x̄ x−1

)
.

Hence by Proposition 5.5, to show (a) it is enough to show that

π ′(CγK1
∗ν)= π ′′(CγK2

∗ν),

where

K2 =
x−1 x y

x̄ x−1
and K1 =

x−1 y y

x−1 x−1
.

First we check that
π ′′(CγK2

∗ν)⊆ π ′(CγK1
∗ν).

Clearly U
γK2
∗ν

V0
⊂ U0. The only generators of U

γK2
∗ν

V1
that do not belong to U0 are

those of the form U(εx−εy ,−1)(a), for a ∈C, and those in U
γK2
∗ν

V2
are U(εx−1−εx ,−1)(b),

for b ∈ C. This means that every element in π ′′(CγK2
∗ν) belongs to

uU(εx−εy ,−1)(a)U(εx−1−εx ,−1)(b)Tw,
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for some u ∈ U0. Both U(εx−εy ,−1)(a) and U(εx−1−εx ,−1)(b) belong to Uεy−εx−1 , and
this implies the contention by Proposition 7.1 and Corollary 2.10. Now we want to
show

π ′(CγK1
∗ν)⊆ π ′′(CγK2

∗ν).

By Theorem 2.9, all elements of π ′(CγK1
∗ν) belong to the set

(52) uU(εx−1−εy ,−2)(vx−1ȳ)U(εx−1,−1)(vx−1)

·

∏
l≥x
l 6=y

U(εx−1−εl ,−1)(vx−1l̄)
∏
s 6=y

U(εx−1+εs ,−1)(vx−1s)Tw,

for u ∈ U0 and vx−1 j ∈ C. This is because both U
γK1
∗ν

V0
and U

γK1
∗ν

V1
are contained

in U0. Fix such an element such that vx−1x̄ 6= 0. We know that

U(εx−1−εx ,−1)(vx−1x̄) ∈ U
γK2
∗ν

V2
,

and that for any ax ȳ ∈ C, U(εx−εy ,−1)(ax ȳ) ∈ Uεy . This means that these elements
stabilize both the truncated images T≥3

γK2
∗ν and T≥1

γK2
∗ν . Hence the elements in

(53) U(εx−1−εx ,−1)(vx−1x̄)U(εx−εy ,−1)(vx ȳ)Tw

= U(εx−εy ,−1)(vx ȳ)U(εx−1−εy ,−2)
(
c1,1

x−1x̄,x ȳ(−vx−1x̄)ax ȳ
)

·U(εx−1−εx ,−1)(vx−1x̄)Tw

all belong to π ′′(CγK2
∗ν). More they belong to precisely to U

γK1
∗ν

V2
Tw ⊂ T≥1

γK1
∗ν ,

hence by Proposition 7.1, we may multiply the right side of equation (53) by
U(εx−εy ,−1)(−vx ȳ) on the left and the product still belongs to π ′′(CγK2

∗ν), hence

U(εx−1−εy ,−2)
(
c1,1

x−1x̄,x ȳ(−vx−1x̄)ax ȳ
)
U(εx−1−εx ,−1)(vx−1x̄)Tw ⊂ π ′′(CγK2

∗ν).

Now consider the product

u = U(εy+εx ,1)(ayx)U(εx ,0)(ax)
∏
l>x
l 6=y

U(εx−εl ,0)(axl̄)
∏
s 6=y

U(εx+εs ,0)(axs) ∈ Uεy ∩U0.

Proposition 7.1 then implies that

π(CγK2
∗ν)⊃ u−1U(εx−1−εy ,−2)(c

1,1
x−1x̄,x ȳ(−vx−1x̄)ax ȳ)U(εx−1−εx ,−1)(vx−1x̄)uTw

= U(εx−1+εx ,−1)(ρx−1x)U(εx−1,−1)(ρx−1)U(εx−1−εy ,−2)(ρx−1y)

·

∏
l>x
l 6=y

U(εx−1−εl ,−1)(ρx−1l)

·

∏
s 6=y

U(εx−1+εs ,−1)(ρx−1s)U(εx−1−εx ,−1)(vx−1x̄)Tw,
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with

ρx−1x = c1,2
x−1x̄,x(−vx−1x̄)a2

x − c1,1
x−1y,yx c1,1

x−1x̄,x ȳ(vx−1x̄)ax ȳayx ,

ρx−1 j = c1,1
x−1x̄,x j (−vx−1x̄)ax j j 6= y, j ∈ {l̄ : l > x} ∪ {s : εx−1+ εs ∈8

+
},

ρx−1 = c1,1
x−1x̄,x(−vx−1x̄)ax .

The system of equations defined by vx−1 = ρx−1 and vx−1 j = ρx−1 j does have
solutions (the variables are ax , ayx , axl̄ , and axs) since vx−1,x 6= 0. This means that
for such solutions we have (see (52))

U(εx−1−εy ,−2)(vx−1ȳ)U(εx−1,−1)(vx−1)

·

∏
l≥x
l 6=y

U(εx−1−εl ,−1)(vx−1l̄)
∏
s 6=y

U(εx−1+εs ,−1)(vx−1s)Tw

= U(εx−1+εx ,−1)(ρx−1x)U(εx−1,−1)(ρx−1)U(εx−1−εy ,−2)(ρx−1y)

·

∏
l>x
l 6=y

U(εx−1−εl ,−1)(ρx−1l)
∏
s 6=y

U(εx−1+εs ,−1)(ρx−1s) ·U(εx−1−εx ,−1)(vx−1x̄)Tw

⊂ π(CγK2
∗ν),

and so by Proposition 7.1 we get that all elements in (52) belong to π ′′(CγK2
∗ν).

All such elements of π ′(CγK1
∗ν) form a dense open subset. This finishes the proof

in this case.

We turn to (b). Let

K3 =
x−1 x−1 x−1

y y
and K4 =

y x−1 x

x̄ x−1
.

Then w3 = x − 1 x − 1 y = w(K3) and w4 = x x̄ y = w(K4). As in (a), by
Proposition 5.5, it is enough to show that

π ′′′(CγK3
∗ν)= π ′′′′(CγK4

∗ν).

To show
π ′′′′(CγK4

∗ν)⊂ π ′′′(CγK3
∗ν),

note first that the only generator of U
γK4
∗ν

Vi
that does not belong to U0 is

U(εx−1−εx,−1)(a) ∈ U
γK4
∗ν

V1
, for a ∈ C.

Of U
γK4
∗ν

V2
, the only generators that do not commute with U(εx−1−εx ,−1)(a) are

U(εy+εx ,0)(b), with b ∈ C. Then Chevalley’s commutator formula (2) implies that
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all elements of π ′′′′(CγK4
∗ν) belong to the set

(54) U0U(εx−1+εy ,−1)
(
c1,1

x−1x̄,xy(−a)b
)
U(εx−1−εx ,−1)(a)Tw.

Since both U(εx−1+εy ,−1)
(
c1,1

x−1x̄,xy(−a)b
)

and U(εx−1−εx ,−1)(a) belong to U
γK3
∗ν

V1
,

the desired contention follows by Proposition 7.1. Now we show

(55) π ′′′(CγK3
)⊂ π ′′′′(CγK4

).

The proof is similar to that of (a), but there are some subtle differences. First we
look at the image π ′′′(CγK3

∗ν). Out of all the generators of U
γK3
∗ν

Vi
, the only ones

that do not belong to U0 belong to U
γK3
∗ν

V1
: U(εx−1,−1)(vx), U(εx−1−εs ,−1)(vx−1s), and

U(εx−1+εl ,−1)(vx−1l) for l 6= x − 1, s > x, s 6= y, and complex numbers vx−1, vx−1s ,
and vx−1l . The group U

γK3
∗ν

V2
has as generators the terms U(εx−1+εy ,0)(a) (only),

and these commute with all the latter terms. Therefore all elements of π ′′′(CγK3
∗ν)

belong to

(56) uU(εx−1,−1)(vx)
∏

s>x−1
s 6=y

U(εx−1−εs ,−1)(vx−1s)
∏

l 6=x−1

U(εx−1+εl ,−1)(vx−1l)Tw,

for some u ∈U0. Fix such a u, and assume vx−1x̄ 6= 0 and vx−1y 6= 0. Such elements
as (56) form a dense open subset of π ′′′(CγK3

∗ν). Now, for all complex numbers
a, axy , and ax ȳ we have U(εx−1−εx ,−1)(a) ∈ UγK4

∗ν
1 , U(εx+εy ,0)(axy) ∈ UγK4

∗ν
1 , and

U(εx−εy ,0)(ax ȳ)∈U0, which stabilizes the truncated image T≥2
γK4
∗ν . Therefore, setting

c = U(εx+εy ,0)(axy)U(εx−εy ,0)(ax ȳ) ∈ U0, all elements in

c−1U(εx−1−εx ,−1)(a)cTw = U(εx−1+εx ,−1)(ρx−1x)U(εx−1+εy ,−1)(ρx−1y)

·U(εx−1−εy ,−1)
(
c1,1

x−1x,x ȳ(−a)ax ȳ
)
U(εx−1−εx ,−1)(a)Tw

= U(εx−1+εx ,−1)(ρx−1x)U(εx−1+εy ,−1)(ρx−1y)U(εx−1−εx ,−1)(a)

·U(εx−1−εy ,−1)
(
c1,1

x−1x,x ȳ(−a)ax ȳ
)
Tw

= U(εx−1+εx ,−1)(ρx−1x)U(εx−1+εy ,−1)(ρx−1y)

·U(εx−1−εx ,−1)(a)Tw

belong to π ′′′′(CγK4
∗ν), where

ρx−1x = c1,1
x−1y,x ȳc1,1

x−1x̄,xyaaxyax ȳ,

ρx−1y = c1,1
x−1x̄,xy(−a)axy,

and where the last equality holds because U(εx−1−εy ,−1)
(
c1,1

x−1x,x ȳ(−a)ax ȳ
)
∈ Uεy ,

and all elements of the latter stabilize the truncated image Tw by Proposition 7.1.
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Now let

c′ = U(εx ,0)(ax)
∏
s>x
s 6=y

U(εx−εs ,0)(axs̄)
∏

l 6=x−1
l 6=y

U(εx+εl ,0)(axl) ∈ Uεy ∩U0,

for ax , axs̄ , and axl complex numbers; by Proposition 7.1 this element stabilizes
the truncated image Tw and the image π ′′′′(CγK4

∗ν). Therefore the following are
contained in π ′′′′(CγK4

),

c′−1U(εx−1+εx ,−1)(ρx−1x)U(εx−1+εy ,−1)(ρx−1y)U(εx−1−εx ,−1)(a)c′Tw

= U(εx−1,−1)(ρx)(57)

·

∏
s>x−1

s 6=y
s 6=x

U(εx−1−εs ,−1)(ρx−1s)U(εx−1−εx ,−1)(a)U(εx−1+εx ,−1)(ρ
′

x−1x)

·

∏
l /∈{x−1,x}

U(εx−1+εl ,−1)(ρx−1l)Tw,(58)

where

ρx−1 = c1,1
x−1x,x(−a)ax ,

ρ ′x−1x = ρx−1x + c1,2
x−1x,x(−a)a2

x ,

ρx−1l = c1,1
x−1x̄,xl(−a)axl,

ρx−1s̄ = c1,1
x−1x̄,xs̄(−a)axs̄ .

We want to show that

U(εx−1,−1)(vx−1)
∏

s>x−1
s 6=y

U(εx−1−εs ,−1)(vx−1s)
∏

l 6=x−1

U(εx−1+εl ,−1)(vx−1l)Tw

is equal to the product in the last lines (57) and (58) above (see (56)), for some
ax , axl , and axs̄ . This determines a system of equations:

vx−1x̄ = a,

vx−1x = c1,1
x−1y,x ȳc1,1

x−1x̄,xyaaxyax ȳ + c1,2
x−1x,x(−a)a2

x ,

vx−1 = c1,1
x−1x,x(−a)ax ,

vx−1s̄ = c1,1
x−1x̄,xs̄(−a)axs̄,

vx−1l = c1,1
x−1x̄,xl(−a)axl,

vx−1y = c1,1
x−1x̄,xy(−a)axy .
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which can always be solved since vx−1y 6= 0 and vxx−1 6= 0. This completes the
proof of (b) in this case. �

Case 1. y = x .

Proof. As in Case 1, we will make use of Proposition 5.5. Let

K1 =
x−1 x x

x−1x−1
and K2 =

x−1 x x

x̄ x−1
.

Then
w1 = x x − 1 x − 1= w(K1) and w2 = x x x̄ = w(K2).

By Proposition 5.5 it is enough to show

π ′(CγK1
∗ν)= π ′′(CγK2

∗ν).

First we show

(59) π ′′(CγK2
∗ν)⊆ π ′(CγK1

∗ν).

Since U
γK2
∗ν

V2
is generated by elements of the form U(εx−1−εx ,−2)(a), for a ∈ C, and

the generators of U
γK2
∗ν

Vi
belong to U0, for i ∈ {1, 2}, all elements of π ′′(CγK2

∗ν)

are of the form
uU(εx−1−εx ,−2)(a)Tw

for some u ∈ U0. Since U(εx−1−εx ,−2)(a) ∈ U
γK1
∗ν

V2
, (59) follows by applying

Proposition 7.1 to u. To finish the proof in this case it remains to show

(60) π ′(CγK1
∗ν)⊆ π ′′(CγK2

∗ν).

The generators of U
γK1
∗ν

Vi
belong to U0, for i ∈ {0, 1}, and the generators that do not

are U(εx−1,−1)(vx), U(εx−1−εl ,−1)(vx−1l̄), U(εx−1+εs ,−1)(vx−1s), and U(εx−1−εx ,−2)(vx−1x̄),
for n ≥ l > x , s /∈ {x, x − 1}, and complex numbers vx , vx−1l̄ , vx−1s , and vx−1x̄ .
Therefore all elements of π ′(CγK1

∗ν) belong to

uU(εx−1,−1)(vx)U(εx−1−εl ,−1)(vx−1l̄)U(εx−1+εs ,−1)(vx−1s)U(εx−1−εx ,−2)(vx−1x̄)Tw.

Fix such u ∈ U0 and vx , vx−1l̄ , vx−1s , and vx−1x̄ complex numbers such that
vx−1x̄ 6= 0. We know for any a ∈ C, that U(εx−1−εx ,−2)(a) ∈ U

γK2
∗ν

V2
. Let

q = U(εx ,1)(ax)
∏
s>x

U(εx−εs ,1)(axs̄)
∏
l 6=x

U(εx+εl ,1)(axl) ∈ U(εx ,1) ∩U0

for any complex numbers ax , axs̄ , and axl . Then by Proposition 7.1,

(61) q−1U(εx−1−εx ,−2)(a)qTw ⊂ π ′′(CγK2
∗ν).
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As in the previous cases, we want to find a, ax , axs̄ , and axl such that

tU(εx−1,−1)(vx)U(εx−1−εl ,−1)(vx−1l̄)U(εx−1+εs ,−1)(vx−1s)U(εx−1−εx ,−2)(vx−1x̄)Tw

equals (61), for some t ∈ U0. But

q−1U(εx−1−εx ,−2)(a)qTw

= t−1U(εx−1,−1)(ρx)U(εx−1−εl ,−1)(ρx−1l̄)U(εx−1+εs ,−1)(ρx−1s)U(εx−1−εx ,−2)(a)Tw,

where

t−1
= U(εx+εx−1,0)(c

1,2
x−1x̄,x)(−a)a2

x ∈ U0,

ρx = c1,1
x−1x̄,x(−a)ax ,

ρx−1l̄ = c1,1
x−1x̄,xl̄

(−a)axl̄,

ρx−1s = c1,1
x−1x̄,xs(−a)axs .

The system

vx−1x̄ = a,

vx−1l̄ = ρx−1l̄,

vx−1s = ρx−1s

always has a solution since vx−1x̄ 6= 0. This concludes the proof of Case 2. �

Let

K3 =
x−1x−1x−1

x x
and K4 =

x x−1 x

x x−1
.

Then

w3 = x − 1 x − 1 x = w(K3) and w4 = x x̄ x = w(K4).

By Proposition 5.5 it is enough to show

π ′′′(CγK3
∗ν)= π ′′′′(CγK4

∗ν).

To do this we will describe a common dense subset of π ′′′(CγK3
∗ν) and π ′′′′(CγK4

∗ν).

Consider first π ′′′(CγK3
∗ν) = U

γK3
∗ν

V0
U
γK3
∗ν

V1
U
γK3
∗ν

V2
Tw. We have U

γK3
∗ν

V0
⊂ U0

and also U
γK3
∗ν

V2
⊂ U0, since it is generated by the terms U(εx−1+εx ,0)(d), for d ∈

C. These commute with all generators of U
γK3
∗ν

V1
, out of which U(εx−1,−1)(vx−1),

U(εx−1+εs ,−1)(vx−1s), and U(εx−1−εl ,−1)(vx−1l̄), (for s≤ n, s 6= x−1, l > x , and vx−1,
vx−1s and vx−1l̄ complex numbers) do not belong to U0. Therefore π ′′′(CγK3

∗ν)
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coincides with

(62) U0U(εx−1,−1)(vx−1)
∏
s≤n

s 6=x−1

U(εx−1+εs ,−1)(vx−1s)
∏

x<l≤n

U(εx−1−εl ,−1)(vx−1l̄)T
w,

for complex numbers vx−1, vx−1s and vx−1l̄ . Now we look at elements of

π ′′′′(CγK4
∗ν)= U

γK4
∗ν

V0
U
γK4
∗ν

V1
U
γK4
∗ν

V2
Tw.

Both U
γK4
∗ν

V0
and U

γK4
∗ν

V2
are contained in U0, and U

γK4
∗ν

V1
is generated by the

elements U(εx−1−εx ,−1)(d), which belong to Uεx and therefore stabilize the truncated
image Tw by Proposition 7.1. Now, by Proposition 2.7, we may write any element
k of U

γK4
∗ν

V2
as

k = U(εx ,0)(kx)
∏

x<l≤n

U(εx−εl ,0)(kxl̄)
∏
s≤n
s 6=x

U(εx+εs ,0)(kxs) ∈ U0

for some complex numbers kx , kxl̄ , and kxs . Theorem 2.9 and Proposition 7.1 imply
that

(63) π ′′′′(CγK4
∗ν)= U0U(εx−1−εx ,−1)(d)kTw

= U0kU(εx−1,−1)(σx−1)U(εx−1+εx ,−1)(σx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(σx−1l̄)

·

∏
s≤n
s 6=x

U(εx−1+εs ,0)(σx−1s)U(εx−1−εx ,−1)(d)Tw,

for k ∈ U
γK4
∗ν

V2
and d ∈ C, where

σx−1 = c1,1
x−1x̄,x(−d)kx ,

σx−1x = c1,2
x−1x̄,x(−d)k2

x ,

σx−1l̄ = c1,1
x−1x̄,xl̄

(−d)kxl̄,

σx−1s = c1,1
x−1x̄,xs(−d)kxs .

The set (63) is clearly contained in (62). Moreover, the system

vx−1 = σx−1,

vx−1x = σx−1x ,

vx−1l̄ = σx−1l̄,

vx−1s = σx−1s,
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has solutions for d, kx , kxl̄ , and kxs as long as {vx−1, vx−1x , vx−1l̄, vx−1s} ⊂ C×.
Proposition 7.1 then implies that a dense subset of π ′′′(CγK3

∗ν) is contained in
π ′′′′(CγK4

∗ν), which finishes the proof of Case 1.

Case 2. y = x̄ .

Proof. Let

K1 =
x−1 x̄ x̄

x−1x−1
and K2 =

x−1 x x̄

x̄ x−1
.

Then
w1 = x̄ x − 1 x − 1= w(K1) and w2 = x̄ x x̄ = w(K2).

By Proposition 5.5 it is enough to show

π ′(CγK1
∗ν)= π ′′(CγK2

∗ν).

In this case we have U
γK1
∗ν

0 = 1= U
γK1
∗ν

V0
. Proposition 2.7 and Theorem 2.9 then

say,

(64) π ′(CγK1
∗ν)= U(εx−1−εx ,0)(vx−1x)U(εx−1,−1)(vx−1)U(εx−1+εx ,−2)(vx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(vx−1l)
∏
s≤n

s 6=x−1
x 6=x

U(εx−1+εs)(vx−1s)Tw,

for complex numbers vx−1x , vx−1, vx−1x , vx−1l , and vx−1s . Fix such complex
numbers. Now we look at π ′′(CγK2

). We have that U
γK2
∗ν

V0
and U

γK2
∗ν

V2
are both

contained in U0, and the latter is generated by elements U(εx−1−εx ,0)(a), for a ∈ C.
Out of the generators of U

γK2∗ν

V1
, the ones that do not belong to U0 are U(εx ,−1)(ax),

U(εx+εs ,−1)(axs), and U(εx−εl ,−1)(axl̄). Therefore, if

A= U(εx ,−1)(ax)U(εx+εs ,−1)(axs)U(εx−εl ,−1)(axl̄) ∈ Uεx̄ ,

we conclude that

(65)

π ′′(CγK2
∗ν)= U0AU(εx−1−εx ,0)(a)T

w

= U0U(εx−1−εx ,0)(a)U(εx−1,−1)(ξx−1)U(εx−1+εx ,−2)(ξx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(ξx−1l)
∏
s≤n

s 6=x−1
s 6=x

U(εx−1+εs)(ξx−1s)ATw

= U0U(εx−1,−1)(ξx−1)U(εx−1+εx ,−2)(ξx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(ξx−1l)
∏
s≤n

s 6=x−1
s 6=x

U(εx−1+εs)(ξx−1s)Tw,
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where

ξx−1 = c1,1
x,x−1x̄(−ax)a,

ξx−1x = c2,1
x,x−1x̄(a

2
x)a,

ξx−1l̄ = c1,1
xl̄,x−1x̄

(−axl̄)a,

ξx−1s = c1,1
xs,x−1x̄(−axs)a.

Therefore it follows directly that in fact

π ′′(CγK2
∗ν)⊆ π

′(CγK1
∗ν).

Now, the system of equations

vx−1 = ξx−1,

vx−1x = ξx−1x ,

vx−1l̄ = ξx−1l̄,

vx−1s = ξx−1s,

has solutions as long as {vx−1, vx−1x , vx−1l̄, vx−1s}⊂C×. For such a set of solutions
we conclude

U(εx−1,−1)(vx−1)U(εx−1+εx ,−2)(vx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(vx−1l)
∏
s≤n

s 6=x−1
s 6=x

U(εx−1+εs)(vx−1s)

= U(εx−1,−1)(ξx−1)U(εx−1+εx ,−2)(ξx−1x)

·

∏
x<l≤n

U(εx−1−εl ,−1)(ξx−1l)
∏
s≤n

s 6=x−q
s 6=x

U(εx−1+εs)(ξx−1s),

and therefore we conclude by Proposition 7.1 (applied to U(εx−1−εx ,0)(vx−1x) in (64))
that a dense subset of π ′(CγK1

∗ν) is contained in π ′′(CγK2
∗ν) (see (64), (65)). �

Proof. To prove (b) let

K3 =
x−1x−1x−1

x̄ x̄
and K4 =

x̄ x−1 x

x̄ x−1
,

then
w3 = x − 1 x − 1 x̄ = w(K3) and w4 = x x̄ x̄ = w(K4).

By Proposition 5.5 it is enough to show

π ′′′(CγK3
)= π ′′′′(CγK4

).
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First we claim

π ′′′′(CγK4
∗ν)⊆ π

′′′(CγK3
∗ν).

Note that the terms U(εx−1−εx ,−1)(b), for b ∈ C, generate both U
γK4
∗ν

V1
and are

contained in U
γK3
∗ν

V1
. Also, the terms U(εl−εx ,0), which generate U

γK4
∗ν

V2
, commute

with U(εx−1−εx ,−1)(b). Therefore

π ′′′′(CγK4
)= U0U(εx−1−εx ,−1)(b)Tw ⊆ π ′′′(CγK3

),

where the last contention follows by Proposition 7.1. Now we will show

π ′′′(CγK3
∗ν)⊆ π ′′′′(CγK4

∗ν).

We claim that

(66) π ′′′(CγK3
∗ν)

= U0U(εx−1,−1)(vx−1)U(εx−1−εx ,−1)(vx−1x̄)
∏
s 6=x

εs+εx−1∈8
+

U(εx−1+εs ,−1)(vx−1s)Tw,

for complex numbers vx−1, vx−1x̄ , and vx−1s . Let us fix such complex numbers.
Let

D = U(εx ,0)(ax)
∏
s 6=x

εs+εx−1∈8
+

U(εx+εs ,−1)(ax−1s) ∈ U0,

then by the usual arguments (note that U0 stabilizes both the image π ′′′′(CγK4
) and

the truncated image T≥2
γK4
∗ν),

D−1U(εx−1−εx ,−1)(b)DTw ⊂ π ′′′′(CγK4
),

and

D−1U(εx−1−εx ,−1)(b)DTw = U(εx−1,−1)(ρx−1)U(εx−1−εx ,−1)(b)

·

∏
s 6=x

εs+εx+1∈8
+

U(εx−1+εs ,−1)(ρx−1s)U(εx+εx−1,−1)(ρxx−1),

where

ρx−1 = c1,1
x−1x̄,x(−b)ax ,

ρx−1x = c2,1
x−1x̄,x(−b)a2

x ,

ρx−1s = c1,1
x−1x̄,xs(−b)axs .
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As usual by requiring that vx−1, vx−1x̄ , vx−1x , and ρx−1s be nonzero we may find
suitable complex numbers b, ax , axs such that

U(εx−1,−1)(vx−1)U(εx−1−εx ,−1)(vx−1x̄)
∏
s 6=x

εs+εx−1∈8
+

U(εx−1+εs ,−1)(vx−1s)

= D−1U(εx−1−εx ,−1)(b)DTw.

Therefore Proposition 7.1 (see (66)) implies that a dense open subset of π ′′′(CγK3
∗ν)

is contained in π ′′′′(CγK4
∗ν). This completes the proof of Lemma 7.7. �

Relation R3.

Lemma 7.8. Let w ∈WCn be a word and let w1 be a word that is not of an LS block,
and such that it has the formw1=a1 · · · ar zz̄b̄s · · · b̄1, and letw2=a1 · · · ar b̄s · · · b̄1

with a1 < · · · ar < z > bs > · · ·> b1. Then π(Cγw1w
)= π ′(Cγw2w

).

Proof. Let A= {a1, . . . , ar }. We have

π(Cγw1w
)= Pa1 · · ·Par PzPz̄Pb̄s

· · ·Pb̄1
T≥r+s+2
γw1w

,

where

Pz = U(εz,0)(vz)
∏
l>z

U(εz−εl ,0)(vzl̄)
∏
l /∈A

U(εz+εl ,0)(vzl)
∏
ai∈A

U(εz+εai ,1)(vzai ),

Pz̄ =
∏
ai∈A

U(εai−εz,0)(vai z̄),

and note that µγw1
= µγw2

=
∑

i∈Ir
εai −

∑
j∈Is

εb j . The terms that appear in Pz all
stabilize µγw1

and commute with Pb̄ j
, while the terms in Pz̄ all appear in Pai and

commute with Pal , for l > i . This concludes the proof of Lemma 7.8 with the usual
arguments, and therefore of Proposition 5.20. �

8. Nonexamples for nonreadable galleries

Let n = 2 and λ= ε1+ ε2, and (6γλ, π) the corresponding Bott–Samelson variety,
as in (8). Let γ be the gallery corresponding to the block

1 2̄

2 1̄
.

Then points in π(Cγ ) are of the form

U(ε1+ε2,−1)(b)[t0
],

for b ∈C, hence form an affine set of dimension 1. We claim that the set Z= π(Cγ )
cannot be an MV cycle in Z (µ) for any dominant coweight µ. First note that for
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any u ∈U(K ) a necessary condition for ut0 to lie in the closure U(K )tν ∩G(O)tµ

is that 0≤ ν, since it would in particular imply that ut0
∈ U(K )tν . Also note that

it is necessary for ν ≤µ in order for the set Z (µ)ν not to be empty. Any MV cycle
in Z (µ)ν has dimension 〈ρ,µ+ ν〉, and the only possibility for the latter to be
equal to 1 (since µ+ ν is a sum of positive coroots) is for either µ= 0 and ν = α∨i ,
or ν = 0 and µ = α∨i , for some i ∈ I, and both options are impossible: the first
contradicts ν ≤ µ, and the second contradicts the dominance of µ. Note that γ is
not a Littelmann gallery.

Appendix

Here we show that relation R3 in Theorem 5.17 is equivalent to relation R3 in
[Lecouvey 2002, Definition 3.1]. For a word w ∈WCn and m ≤ n define N(w,m)=
|{x ∈w : x ≤m or m̄ ≤ x}|. Lecouvey’s relation R3 is: “Let w be a word that is not
the word of an LS block and such that each strict subword is. Let z be the lowest
unbarred letter such that the pair (z, z̄) occurs in w and N(w, z) = z + 1. Then
w ∼= w′, where w′ is the subword obtained by erasing the pair (z, z̄) in w.” The
following Lemma is a translation between R3 and R3.

Lemma 8.1. Let w be a word that is not the word of an LS block and such that each
strict subword is. Thenw=a1 · · · ar zz̄b̄s · · · b̄1 for ai , bi unbarred and a1< · · ·<ar ,
b1 < · · ·< bs .

Proof. By [Lecouvey 2002, Remark 2.2.2], w is the word of an LS block if and only
if N(w,m)≤ m for all m ≤ n. Let w be as in the statement of Lemma 8.1. Then
there exists in w a pair (z, z̄) such that N(w, z) > z. Let z be minimal with this
property. In particular N(w, z)= z+ 1 since if w′′ is the word obtained from w by
erasing z, then z ≥N(w′′, z)=N(w, z)−1. We claim that z is the largest unbarred
letter to appear in w. If there was a larger letter y then N(w′′′, z)=N(w, z)= z+1
where w′′′ denotes the word obtained from w by deleting y. This is impossible
since by assumption w′′′ is the word of an LS block. Likewise z̄ is the smallest
unbarred letter to appear in w. The a′i s and b′i s are then those from Definition 4.3
for the word obtained from w by deleting z, z̄ from it. �
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