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A NOTE ON TORUS ACTIONS AND THE WITTEN GENUS

MICHAEL WIEMELER

We show that the Witten genus of a string manifold M vanishes if there is an
effective action of a torus T on M such that dim T > b2(M). We apply this
result to study group actions on M×G/T , where G is a compact connected
Lie group and T a maximal torus of G.

Moreover, we use the methods which are needed to prove these results to
the study of torus manifolds. We show that up to diffeomorphism there are
only finitely many quasitoric manifolds M with the same cohomology ring
as #k

i=1±CPn with k < n.

1. Introduction

In this note we prove a vanishing result for the Witten genus of a string manifold
on which a high dimensional torus acts effectively. Concerning the Witten genus
of string manifolds on which a compact connected Lie group acts the following is
known:

• It has been shown by Liu [1995, discussion after Theorem 4, page 370] that
the Witten genus of a string manifold M with b2(M)= 0 vanishes if there is a
nontrivial action of S1 on M .

• Dessai [1999] showed that the Witten genus of a string manifold M vanishes
if there is an almost effective action of SU(2) on M .

Moreover we showed in [Wiemeler 2013] the following stabilizing result: if
there is an effective action of a semisimple compact connected Lie group G with
rank G > rank H on M× H/T , where H is a semisimple compact connected Lie
group with maximal torus T , then the Witten genus of M vanishes.

In this note we generalize the first statement in the following way:

Theorem 3.2. Let M be a spin manifold such that p1(M) is torsion. If there is an
almost effective action of a torus T with rank T > b2(M) on M then the Witten
genus of M vanishes.
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The main new ingredient to prove this theorem is a spectral sequence argument
for actions of tori T on manifolds M with b2(M) < rank T (see Lemma 3.1).

If b1(M)= 0, this theorem allows the following generalization, which is also a
generalization of the third statement from above.

Theorem 3.3. Let M be a spin manifold such that p1(M) is torsion and b1(M)= 0.
Moreover, let M ′ be a 2n-dimensional spinc manifold, n > 0, with b1(M ′)= 0 such
that there are x1, . . . , xn ∈ H 2(M ′;Z) with

(1)
∑n

i=1 xi = cc
1(M

′) modulo torsion,

(2)
∑n

i=1 x2
i = p1(M ′) modulo torsion,

(3)
〈∏n

i=1 xi , [M ′]
〉
6= 0.

If there is an almost effective action of a torus T on M × M ′ such that rank T
is greater than b2(M × M ′), then the Witten genus of M vanishes. Here cc

1(M
′)

denotes the first Chern class of the line bundle associated to the spinc structure
on M ′.

To deduce Theorem 3.2 from Theorem 3.3 in the case that b1(M) = 0, let M ′

be S2 and x1 be the Euler class of M ′. Then M ′ satisfies all the assumptions from
Theorem 3.3. Moreover there is an almost effective action of T × S1 on M×M ′

which is induced from the T-action on M and the S1-action on M ′ given by rotation.
Hence, the Witten genus of M vanishes, because

rank(T × S1)= rank T + 1> b2(M)+ 1= b2(M×M ′).

If H is a semisimple compact connected Lie group with maximal torus T ′, then
the tangent bundle of H/T ′ splits as a sum of complex line bundles and H/T ′ has
positive Euler characteristic. Therefore H/T ′ satisfies the assumptions on M ′ in
the above theorem. Hence, we get:

Corollary 4.1. Let M be a spin manifold with p1(M)= 0 and b1(M)= 0 and H a
semisimple compact connected Lie group with maximal torus T ′ and dim H > 0. If
there is an almost effective action of a torus T on M× H/T ′ such that rank T is
greater than rank H + b2(M), then the Witten genus of M vanishes.

A torus manifold is a 2n-dimensional orientable manifold M with an effective
action of an n-dimensional torus T such that MT

6= ∅. A torus manifold M is
called locally standard, if each orbit in M has an invariant neighborhood which is
weakly equivariantly diffeomorphic to an open invariant subset of Cn . Here Cn is
equipped with the action of T = (S1)n given by componentwise multiplication. If
this condition is satisfied, the orbit space of M is naturally a manifold with corners.

A quasitoric manifold is a locally standard torus manifold whose orbit space
M/T is face-preserving homeomorphic to a simple convex polytope P . Quasitoric
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manifolds were introduced by Davis and Januszkiewicz [1991]. Torus manifolds
were introduced by Masuda [1999] and Masuda and Hattori [2003].

By combining our results with results of Dessai [1999, 2000] and a recent result
of the author [Wiemeler 2015a] on the rigidity of certain torus manifolds, we also
get the following finiteness result for simply connected torus manifolds:

Theorem 5.1. Up to homeomorphism (diffeomorphism, respectively) there are
only finitely many simply connected torus manifolds M (quasitoric manifolds,
respectively) such that H∗(M;Z)∼= H∗

(
#k

i=1±CPn
;Z
)

with k < n.

For an application of our methods to the study of torus actions on complete inter-
sections and homotopy complex projective spaces, see [Dessai and Wiemeler 2016].

This article is structured as follows. In Section 2 we describe background
material on vanishing results for indices of certain twisted Dirac operators on Spinc

manifolds. In Section 3 we prove Theorems 3.2 and 3.3. Then in Section 4 we
deduce Corollary 4.1 and give some applications to computations of the degree of
symmetry of certain manifolds. In Section 5 we prove Theorem 5.1.

2. Preliminaries

In this section we recall some properties of 2n-dimensional spinc manifolds and
certain twisted Dirac operators defined on them. For more details on this subject
see [Atiyah et al. 1964; Petrie 1972; Hattori 1978; Dessai 1999; 2000].

A spinc manifold M is an orientable manifold such that the second Stiefel–
Whitney classw2(M) is the reduction of an integral class c∈H 2(M;Z). If this is the
case then the tangent bundle of M admits a reduction of structure group to the group
Spinc(2n). We call such a reduction a spinc structure on M . Associated to a spinc

structure there is a complex line bundle. We denote by cc
1(M) the first Chern class

of this line bundle. Its reduction modulo 2 is w2(M). For each class c ∈ H 2(M;Z)
with c ≡ w2(M) mod 2, there is a spinc structure on M with cc

1(M)= c.
Now let M be a 2n-dimensional Spinc manifold. We assume that S1 acts on M

and that the S1-action lifts into the spinc structure. This is the case if and only if
the S1-action lifts into the line bundle associated to the spinc structure [Wiemeler
2013, Lemma 2.1].

Then we have an S1-equivariant spinc Dirac operator ∂c. Its S1-equivariant index
is an element of the representation ring of S1 and is defined as

indS1(∂c)= ker ∂c− coker ∂c ∈ R(S1).

We will discuss certain indices of twisted Dirac operators which are related to
generalized elliptic genera. Generalized elliptic genera of the type which we discuss
here were first studied by Witten [1988].
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Let V be an S1-equivariant complex vector bundle over M and W an even-
dimensional S1-equivariant spin vector bundle over M . From these bundles we
construct a power series R ∈ KS1(M)[[q]] defined by
∞⊗

k=1

Sqk (T̃M⊗R C)⊗3−1(V ∗)⊗
∞⊗

k=1

3−qk (Ṽ ⊗R C)⊗1(W )⊗

∞⊗
k=1

3qk (W̃⊗R C).

Here q is a formal variable, Ẽ denotes the reduced vector bundle E−dim E , 1(W )

is the full complex spinor bundle associated to the spin vector bundle W , and
3t (resp. St ) denotes the exterior (resp. symmetric) power operation. The tensor
products are, if not indicated otherwise, taken over the complex numbers.

We extend indS1 to power series. Then we can define:

Definition 2.1. Let ϕc(M; V,W )S1 be the S1-equivariant index of the spinc Dirac
operator twisted with R:

ϕc(M; V,W )S1 = indS1(∂c⊗ R) ∈ R(S1)[[q]].

We denote by ϕc(M; V,W ) the nonequivariant version of this index:

ϕc(M; V,W )= ind(∂c⊗ R) ∈ Z[[q]].

With the Atiyah–Singer index theorem [1968], we can calculate ϕc(M; V,W )

from cohomological data:

ϕc(M; V,W )= 〈ecc
1(M)/2 ch(R) Â(M), [M]〉.

Here the Chern character of R is a product,

ch(R)= Q1(TM)Q2(V )Q3(W ),

with

Q1(TM)= ch
( ∞⊗

k=1

Sqk (T̃M ⊗R C)

)
=

∏
i

∞∏
k=1

(1− qk)2

(1− exi qk)(1− e−xi qk)
,

Q2(V )= ch
(
3−1(V ∗)⊗

∞⊗
k=1

3−qk (Ṽ ⊗R C)

)

=

∏
i

(1− e−vi )

∞∏
k=1

(1− evi qk)(1− e−vi qk)

(1− qk)2
,

Q3(W )= ch
(
1(W )⊗

∞⊗
k=1

3qk (W̃ ⊗R C)

)

=

∏
i

(ewi/2+ e−wi/2)

∞∏
k=1

(1+ ewi qk)(1+ e−wi qk)

(1+ qk)2
,
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where ±xi (resp. vi and ±wi ) denote the formal roots of TM (resp. V and W ). If
cc

1(M) coincides with c1(V ), then we have

ecc
1(M)/2 Q2(V )= e(V )

1

Â(V )

∏
i

∞∏
k=1

(1− evi qk)(1− e−vi qk)

(1− qk)2
= e(V )Q′2(V ).

Note that if M is a spin manifold, then there is a canonical spinc structure on M .
With respect to this spinc structure the twisted index ϕc(M; 0, TM) is equal to the
elliptic genus of M . Moreover, our definition of ϕc(M; 0, 0) coincides with the
index-theoretic definition of the Witten genus of M .

To prove our results we need the following theorem. It was proven first by Liu
[1995] for certain twisted elliptic genera of spin manifolds and almost complex
manifolds. Later the more general version for spinc manifolds has been proven
by Dessai.

Theorem 2.2 [Dessai 2000, Theorem 3.2, p. 243]. Assume that the equivariant
Pontrjagin class pS1

1 (V +W − TM) restricted to M S1
is equal to π∗S1(I x2) modulo

torsion, where πS1 : BS1
× M S1

→ BS1 is the projection on the first factor, x ∈
H 2(BS1

;Z) is a generator and I is an integer. Assume, moreover, that cc
1(M) and

c1(V ) are equal modulo torsion. If I < 0, then ϕc(M; V,W )S1 vanishes identically.

3. Torus actions and the Witten genus

In this section we prove Theorems 3.2 and 3.3. Our methods here are similar to
those which were used in Section 4 of [Wiemeler 2013]. We start with a lemma.

Lemma 3.1. Let M be a T-manifold with rank T > b2(M) and a ∈ H 4
T (M;Q) such

that ι∗a = 0 ∈ H 4(M;Q). Then there is a nontrivial homomorphism ρ : S1
→ T

such that ρ∗a ∈ π∗S1 H 4(BS1
;Q).

Proof. From the Serre spectral sequence for the fibration M→ MT → BT we have
the following direct sum decomposition of the Q-vector space H 4

T (M;Q),

H 4
T (M;Q)∼= E0,4

∞
⊕ E2,2

∞
⊕ E4,0

∞
.

Moreover, we have

E0,4
∞
⊂ H 4(M;Q), E2,2

∞
⊂ E2,2

2 /d2(E
0,3
2 ), E4,0

∞
= π∗S1 H 4(BT ;Q).

Let a0,4, a2,2, a4,0 be the components of a according to this decomposition. Then
a0,4 = 0 by assumption. Moreover, there is an ã2,2 ∈ E2,2

2 such that a2,2 = [ã2,2].
Now it is sufficient to find a nontrivial homomorphism ρ : S1

→ T such that
ρ∗ã2,2 = 0. We have isomorphisms

E2,2
2
∼= H 2(BT ;Q)⊗ H 2(M;Q)∼= (H 2(BT ;Q))b2(M).
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Since rank T > b2(M), we can find a nontrivial homomorphism φ : H 2(BT ;Q)→
H 2(BS1

;Q) = Q such that all components of ã2,2 according to the above de-
composition of E2,2

2 are mapped to zero by φ. After scaling, we may assume
that φ is induced by a surjective homomorphism H 2(BT ;Z)→ H 2(BS1

;Z). By
dualizing we get a homomorphism φ̂ : H2(BS1

;Z)→ H2(BT ;Z). Since for any
torus, H2(BT ;Z) is naturally isomorphic to the integer lattice in the Lie algebra
LT of T , φ̂ defines the desired homomorphism. �

By combining this lemma with the above result of Liu and Dessai (Theorem 2.2),
we get the following theorem.

Theorem 3.2. Let M be a spin manifold such that p1(M) is torsion. If there is an
almost effective action of a torus T with rank T > b2(M) on M then the Witten
genus ϕc(M; 0, 0) of M vanishes.

Proof. First note that, by replacing the T-action by the action of a double covering
group of T , we may assume that the T-action lifts into the spin structure of M .

Therefore, by Theorem 2.2, it is sufficient to show that there is a homomorphism
ρ : S1 ↪→ T such that ρ∗ pT

1 (−TM)= ax2, where x ∈ H 2(BS1
;Z) is a generator

and a ∈ Z, a < 0. By Lemma 3.1, there is a homomorphism ρ : S1
→ T such that

pS1

1 (−TM)= ρ∗ pT
1 (−TM)= ax2 with a ∈ Z.

Moreover, we have

ax2
= pS1

1 (−TM)|y =−
∑

v2
i ,

where y ∈ MT is a T fixed point and the vi ∈ H 2(BS1
;Z) are the weights of the

S1-representation Ty M . We may assume that such a fixed point y exists because
otherwise the Witten genus of M vanishes by an application of the Lefschetz fixed
point formula.

Not all of the vi vanish because the T-action on M is almost effective, which
implies that the S1-action on M is nontrivial. Therefore the theorem is proved. �

We can also deduce the following partial generalization of the above result. Its
proof is similar to the proof of Theorems 4.1 and 4.4 in [Wiemeler 2013]. These
theorems are concerned with actions of semisimple and simple compact connected
Lie groups, whereas the theorem which we present here deals with torus actions.

Theorem 3.3. Let M be a spin manifold such that p1(M) is torsion and b1(M)= 0.
Moreover, let M ′ be a 2n-dimensional spinc manifold, n > 0, with b1(M ′)= 0 such
that there are x1, . . . , xn ∈ H 2(M ′;Z) with

(1)
∑n

i=1 xi = cc
1(M

′) modulo torsion,

(2)
∑n

i=1 x2
i = p1(M ′) modulo torsion,

(3)
〈∏n

i=1 xi , [M ′]
〉
6= 0.
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If there is an almost effective action of a torus T on M× M ′ such that rank T is
greater than b2(M×M ′), then the Witten genus ϕc(M; 0, 0) of M vanishes.

Proof. Let L i , i = 1, . . . , n, be the line bundle over M ′ with c1(L i )= xi . Because
b1(M × M ′) = 0, the natural map ι∗ : H 2

T (M × M ′;Z) → H 2(M × M ′;Z) is
surjective.

Therefore by Corollary 1.2 of [Hattori and Yoshida 1976, page 13] the T-action
on M×M ′ lifts into p′∗(L i ), i = 1, . . . , n. Here p′ :M×M ′→M ′ is the projection.
We can choose these lifts in such a way that the torus action on the fibers of p′∗(L i ),
i = 1, . . . , n, over a fixed point y ∈ (M×M ′)T are trivial. Moreover, by the above
cited corollary and Lemma 2.1 of [Wiemeler 2013], the action of every S1

⊂ T
lifts into the spinc structure on M×M ′ induced by the spin structure on M and the
spinc structure on M ′.

By Lemma 3.1 of [Wiemeler 2013], we have

ϕc
(

M×M ′;
n⊕

i=1

p′∗L i , 0
)
= ϕc(M; 0, 0)ϕc

(
M ′;

n⊕
i=1

L i , 0
)
.

By condition (3), we have

ϕc
(

M ′;
n⊕

i=1

L i , 0
)
=

〈
Q1(TM ′)

n∏
i=1

xi Q′2

( n⊕
i=1

L i

)
Â(M ′), [M ′]

〉

=

〈 n∏
i=1

xi , [M ′]
〉
6= 0.

Hence, ϕc(M; 0, 0) vanishes if and only if ϕc
(
M×M ′;

⊕n
i=1 p′∗L i , 0

)
vanishes.

By Theorem 2.2, it is sufficient to show that there is a homomorphism ρ : S1 ↪→ T
such that ρ∗ pT

1

(⊕n
i=1 p′∗L i − T (M × M ′)

)
= ax2, where x ∈ H 2(BS1

;Z) is a
generator and a ∈ Z, a < 0. By Lemma 3.1, there is a homomorphism ρ : S1

→ T
such that

pS1

1

( n⊕
i=1

p′∗L i − T (M×M ′)
)
= ρ∗ pT

1

( n⊕
i=1

p′∗L i − T (M×M ′)
)
= ax2,

with a ∈ Z.
Moreover, we have

ax2
= pS1

1

( n⊕
i=1

p′∗L i − T (M×M ′)
)∣∣∣∣

y
=

n∑
i=1

a2
i −

∑
v2

i ,

where the ai ∈ H 2(BS1
;Z), i = 1, . . . , n, are the weights of the S1-representations

p′∗L i |y and the vi ∈H 2(BS1
;Z) are the weights of the S1-representation Ty(M×M ′).

By our choice of the lifted actions the ai vanish. Not all of the vi vanish because
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the T-action on M is effective, which implies that the S1-action on M is nontrivial.
Therefore the theorem is proved. �

Examples of manifolds M ′ to which the above theorem applies are manifolds
whose tangent bundles split as Whitney sums of complex line bundles and which
have nonzero Euler characteristic. In particular, if H is a semisimple compact
connected Lie group with maximal torus T ′ and dim H > 0, then M ′ = H/T ′

satisfies these assumptions. We deal with this case in the following section.

4. Torus actions and stabilizing with G/T

In this section we deal with applications of Theorem 3.3 to the particular case where
M ′ is a homogeneous space H/T ′ with H a semisimple compact connected Lie
group and T ′ a maximal torus of H and dim H > 0.

It has already been noted that the tangent bundle of H/T ′ splits as a sum of
complex line bundles. Therefore H/T ′ satisfies all the assumptions on M ′ from
Theorem 3.3. Hence we immediately get the following corollary.

Corollary 4.1. Let M be a spin manifold with p1(M)= 0 and b1(M)= 0 and H a
semisimple compact connected Lie group with maximal torus T ′ and dim H > 0. If
there is an almost effective action of a torus T on M× H/T ′ such that rank T is
greater than rank H + b2(M), then the Witten genus of M vanishes.

The degree of symmetry N (M) of a manifold M is the maximum of the dimen-
sions of compact connected Lie groups G which act smoothly and almost effectively
on M . By combining the above corollary with Corollary 4.2 of [Wiemeler 2013] we
get the following bounds for the degree of symmetry of the manifolds M× H/T ′.
To state our result we have to introduce some notation. For l ≥ 1 let

αl =max
{ dim G

rank G |G a simple compact Lie group with rank G ≤ l
}
.

The values of the αl are listed in Table 1.

Corollary 4.2. Let M be a spin manifold with p1(M) = 0 and b1(M) = 0, such
that the Witten-genus of M does not vanish and let H1, . . . , Hk be simple compact
connected Lie groups with maximal tori T1, . . . , Tk . Then we have

k∑
i=1

dim Hi ≤ N
(

M×
k∏

i=1

Hi/Ti

)
≤ αl

k∑
i=1

rank Hi + b2(M),

where l =max{rank Hi | i = 1, . . . , k} and αl is defined as above.

Proof. Let G be a compact connected Lie group which acts almost effectively on
M×

∏k
i=1 Hi/Ti . We may assume that G = Gss× Z with a semisimple Lie group

Gss and a torus Z .
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l αl Gl

1 3 Spin(3)
2 7 G2

3 7 Spin(7),Sp(3)
4 13 F4

5 13 none
6 13 E6,Spin(13),Sp(6)
7 19 E7

8 31 E8

9≤ l ≤ 14 31 none
l ≥ 15 2l + 1 Spin(2l + 1),Sp(l)

Table 1. The values of αl and the simply connected compact simple
Lie groups Gl of rank l with dim Gl = αl · l.

By Corollary 4.1, rank G is bounded from above by
∑k

i=1 rank Hi + b2(M). By
Corollary 4.2 of [Wiemeler 2013], rank Gss is bounded from above by

∑k
i=1 rank Hi .

Moreover, by the proof of Corollary 4.6 of [Wiemeler 2013] the dimension of Gss

is bounded from above by αl rank Gss. Since αl > 1, it follows that

dim G = dim Gss+ dim Z = dim Gss+ rank G− rank Gss

≤ (αl − 1) rank Gss+

k∑
i=1

rank Hi + b2(M)

≤ αl

k∑
i=1

rank Hi + b2(M).

This proves the second inequality. The first inequality is trivial. �

Note that if in the situation of Corollary 4.2 the groups Hi are all equal to one of
the groups listed in Table 1 and are all isomorphic and b2(M)= 0, then the left and
right hand sides of the inequality in Corollary 4.2 are equal. Therefore in this case
the degree of symmetry of M×

∏k
i=1 Hi/T is equal to dim

∏k
i=1 Hi . This leads to

the following corollary.

Corollary 4.3. Let G be Spin(2l + 1), Sp(l) with l ≥ 15, or an exceptional simple
compact connected Lie group with maximal torus T . Moreover, let M be a two-
connected manifold with p1(M)= 0 and nonzero Witten genus. Then we have

N
(

M×
k∏

i=1

G/T
)
= k dim G.
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5. An application to torus manifolds

In this section we prove the following theorem.

Theorem 5.1. Up to homeomorphism (diffeomorphism, respectively) there are
only finitely many simply connected torus manifolds M (quasitoric manifolds,
respectively) such that H∗(M;Z)∼= H∗

(
#k

i=1±CPn
;Z
)

with k < n.

Note that if dim M < 6 then this theorem follows directly from the classification
of simply connected torus manifolds of dimension four given by Orlik and Raymond
[1970] and the fact that the sphere is the only two-dimensional torus manifold.

In higher dimensions the proof of the theorem is subdivided into two lemmas.

Lemma 5.2. Let M be a simply connected torus manifold (a quasitoric manifold,
respectively) with H∗(M;Z) ∼= H∗

(
#k

i=1±CPn
;Z
)
, k ∈ N, n ≥ 3. Then up to

finite ambiguity the homeomorphism type (diffeomorphism type, respectively) is
determined by the first Pontrjagin class of M.

Proof. By Theorem 1.1 of [Wiemeler 2015a], Theorem 2.2 of [Wiemeler 2012]
and Theorem 3.6 of [Wiemeler 2015b], it is sufficient to prove that the Poincaré
duals of the characteristic submanifolds of M are determined up to finite ambiguity
by p1(M). The characteristic submanifolds of M are codimension two submanifolds
which are fixed by circle subgroups of the torus which acts on M . Let

u1, . . . , um ∈ H 2
( k

#
i=1
±CPn

;Z

)
be their Poincaré duals. Moreover, we have

H∗ := H∗
( k

#
i=1
±CPn

;Z

)
= Z[v1, . . . , vk]/(viv j , v

n
i ± v

n
j | 1≤ i < j ≤ k)

with deg vi = 2 for i = 1, . . . , k.
Therefore there are αi j ∈ Z such that ui =

∑k
j=1 αi jv j .

Since M is equivariantly formal, it follows from localization in equivariant
cohomology that

p1(M)=
m∑

i=1

u2
i =

k∑
j=1

( m∑
i=1

α2
i j

)
v2

j .

Because the v2
j form a basis of H 4 it follows that for fixed p1(M) there are only

finitely many possibilities for the αi j . Therefore the ui are contained in a finite set
which only depends on p1(M). This proves the lemma. �

Lemma 5.3. Let M be a torus manifold such that H∗(M;Z)∼=H∗
(
#k

i=1±CPn
;Z
)
,

with k < n and n ≥ 3. Then with the notation from the proof of the previous lemma
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we have

p1(M)=
k∑

i=1

βiv
2
i , with 0< βi ≤ n+ 1.

Proof. The inequality 0<βi follows from the formula for p1(M) given in the proof
of the previous lemma. Therefore we only have to show that for all i , βi ≤ n+ 1.

Assume the contrary, i.e., βi0 > n+1 for some i0 ∈ {1, . . . , k}. Since the natural
map H 2(M;Z)→ H 2(M;Z2) is surjective, M is a Spinc manifold. Let αi ∈ {0, 1},
i = 1, . . . , k such that w2(M)≡

∑k
i=1 αivi mod 2.

Then there are two cases, αi0 ≡ n+ 1 mod 2 and αi0 ≡ n mod 2.
We first deal with the first case. Choose a Spinc structure on M such that

cc
1(M)= (n+ 1)vi0 +

∑
i 6=i0

αivi . Because b1(M)= 0 every S1-action on M lifts
into this spinc structure and into all line bundles over M . We can choose these
lifts in such a way that the actions on the fiber of a line bundle over a given fixed
point y ∈ M S1

is trivial. By the relation w2(M)2 ≡ p1(M) mod 2, we know that
βi ≡ α

2
i mod 2. Therefore we have βi0 ≥ n+ 3. Now for x ∈ H 2(M;Z) let L(x)

be the line bundle over M with first Chern class x .
Moreover, let

V = L(2vi0)⊕ L
(
vi0 +

∑
i 6=i0

αivi

)
⊕ (n− 2)L(vi0),

W =
⊕
i 6=i0

(βi −αi )L(vi )⊕ (βi0 − n− 3)L(vi0).

Then we have c1(V )= cc
1(M), p1(V ⊕W 	 TM)= 0 and W is a spin bundle.

Therefore, as in the proof of Theorem 3.3, it follows from Theorem 2.2 and
Lemma 3.1, that ϕc(M; V,W ) = 0 if k < n. This gives a contradiction since a
direct computation shows that

ϕc(M; V,W )= 〈e(V ), [M]〉 = ±2 6= 0.

The case where αi0 ≡ n mod 2 is similar. In this case one has to choose a spinc

structure on M such that cc
1(M)= nvi0+

∑
i 6=i0

αivi . Moreover one has to consider
the bundles

V = L
(
vi0 +

∑
i 6=i0

αivi

)
⊕ (n− 1)L(vi0),

W =
⊕
i 6=i0

(βi −αi )L(vi )⊕ (βi0 − n)L(vi0).

The details are left to the reader. �

Now Theorem 5.1 follows directly from Lemmas 5.2 and 5.3.
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