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OPERATOR IDEALS RELATED TO ABSOLUTELY SUMMING
AND COHEN STRONGLY SUMMING OPERATORS

GERALDO BOTELHO, JAMILSON R. CAMPOS AND JOEDSON SANTOS

We study the ideals of linear operators between Banach spaces determined
by the transformation of vector-valued sequences involving the new se-
quence space introduced by Karn and Sinha and the classical spaces of ab-
solutely, weakly and Cohen strongly summable sequences. As applications,
we prove a new factorization theorem for absolutely summing operators
and a contribution to the existence of infinite-dimensional spaces formed
by nonabsolutely summing operators is given.

Introduction and background

In the theory of ideals of linear operators between Banach spaces (operator ideals), a
central role is played by classes of operators that improve the convergence of series,
which are usually defined or characterized by the transformation of vector-valued
sequences. The most famous of such classes is the ideal of absolutely p-summing
linear operators, which are the ones that send weakly p-summable sequences to
absolutely p-summable sequences. The celebrated monograph [Diestel et al. 1995]
is devoted to the study of absolutely summing operators.

For a Banach space E , let `p(E), `wp (E) and `p〈E〉 denote the spaces of abso-
lutely, weakly and Cohen strongly p-summable E-valued sequences, respectively.
Karn and Sinha [2014] recently introduced a space `mid

p (E) of E-valued sequences
such that

(1) `p〈E〉 ⊆ `p(E)⊆ `mid
p (E)⊆ `wp (E).

In the realm of the theory of operator ideals, it is a natural step to study the classes
of operators T : E→ F that send: (i) sequences in `wp (E) to sequences in `mid

p (F),
(ii) sequences in `mid

p (E) to sequences in `p(F), (iii) sequences in `mid
p (E) to

sequences in `p〈F〉. This is the basic motivation of this paper.

Botelho was supported by CNPq Grant 305958/2014-3 and Fapemig Grant PPM-00490-15. Campos
was supported by a CAPES Postdoctoral scholarship. Santos was supported by CNPq (Edital Universal
14/2012).
MSC2010: primary 46B45; secondary 47B10, 47L20.
Keywords: Banach sequence spaces, operator ideals, summing operators.
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We start by taking a closer look at the space `mid
p (E) in Section 1. First we give

it a norm that makes it a Banach space. Next we consider the relationship with the
space `u

p(E) of unconditionally p-summable E-valued sequences. We show that,
although (1) and `p(E)⊆ `u

p(E)⊆ `
w
p (E) hold for every E , in general `mid

p (E) and
`u

p(E) are not comparable. It is also proved that the correspondence E 7→ `mid
p (E)

enjoys a couple of desired properties in the context of operator ideals.
In Section 2 we prove that the classes of operators described in (i), (ii) and

(iii) above are Banach operator ideals. Characterizations of each class and their
corresponding norms are given and properties of each ideal are proved. We establish
a factorization theorem for absolutely summing operators and a question left open
in [Karn and Sinha 2014] is settled. In both Sections 1 and 2 we study Banach
spaces E for which `p(E)= `mid

p (E) or `mid
p (E)= `wp (E).

In Section 3 we give an application to the existence of infinite-dimensional
Banach spaces formed, up to the null operator, by nonabsolutely summing linear
operators on nonsuperreflexive spaces.

Let us define the classical sequences spaces we shall work with:

• `p(E) = absolutely p-summable E-valued sequences with the usual norm ‖·‖p.

• `wp (E) = weakly p-summable E-valued sequences with the norm

‖(x j )
∞

j=1‖w,p = sup
x∗∈BE∗

‖(x∗(x j ))
∞

j=1‖p.

• `u
p(E) =

{
(x j )

∞

j=1 ∈ `
w
p (E) : limk

‖(x j )
∞

j=k‖w,p = 0
}

with the norm inherited
from `wp (E) (unconditionally p-summable sequences, see [Defant and Floret
1993, 8.2]).

• `p〈E〉=
{
(x j )

∞

j=1∈ EN
: ‖(x j )

∞

j=1‖C,p := sup
(x∗j )

∞

j=1∈B`wp∗ (E
∗)

‖(x∗j (x j ))
∞

j=1‖1<∞

}
,

where 1/p+ 1/p∗ = 1, (Cohen strongly p-summable sequences or strongly
p-summable sequences, see, e.g., [Cohen 1973]).

The letters E, F shall denote Banach spaces over K = R or C. The closed unit
ball of E is denoted by BE and its topological dual by E∗. The symbol E 1↪→ F
means that E is a linear subspace of F and ‖x‖F ≤ ‖x‖E for every x ∈ E . By
L(E ; F) we denote the Banach space of all continuous linear operators T : E→ F
endowed with the usual sup norm. By 5p;q we denote the ideal of absolutely
(p ; q)-summing linear operators [Defant and Floret 1993; Diestel et al. 1995].
If p = q we simply write 5p. The ideal of Cohen strongly p-summing linear
operators [Campos 2013; Cohen 1973] shall be denoted by Dp. We use the standard
notation of the theory of operator ideals [Defant and Floret 1993; Pietsch 1980].
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1. The space lmid
p (E)

In this section we give the space of sequences defined by Karn and Sinha [2014]
a norm that makes it a Banach space and establish some useful properties of this
space.

The vector-valued sequences introduced in [Karn and Sinha 2014] are called
operator p-summable sequences. This term is quite inconvenient for our purposes,
and considering the intermediate position of the space formed by such sequences
between `p(E) and `wp (E) (see (1)), we shall use the term mid-p-summable se-
quences. Instead of the original definition, we shall use a characterization proved
in [Karn and Sinha 2014, Lemma 2.3 and Proposition 2.4]:

Definition 1.1. A sequence (x j )
∞

j=1 in a Banach space E is said to be mid-p-
summable, 1≤ p <∞, if ((x∗n (x j ))

∞

j=1)
∞

n=1 ∈ `p(`p) whenever (x∗n )
∞

n=1 ∈ `
w
p (E

∗).
The space of all such sequences shall be denoted by `mid

p (E).

Observe that `p(E) ⊆ `mid
p (E) ⊆ `wp (E). The following extreme cases will be

important throughout the paper:

Theorem 1.2 [Karn and Sinha 2014, Proposition 3.1 and Theorem 4.5]. Let E be
a Banach space and 1≤ p <∞. Then:

(i) `mid
p (E)= `wp (E) if and only if 5p(E; `p)= L(E; `p).

(ii) `mid
p (E) = `p(E) if and only if E is a subspace of L p(µ) for some Borel

measure µ.

We say that a Banach space E is a weak mid-p-space if `mid
p (E)= `wp (E); and

it is a strong mid-p-space if `mid
p (E)= `p(E).

The space `mid
p (E) is not endowed with a norm in [Karn and Sinha 2014]. Our

first goal in this section is to give it a useful complete norm. Let us see first that the
norm inherited from `wp (E) is unhelpful. We believe the next lemma is folklore; we
give a short proof because we have found no reference to quote. As usual, c00(E)
means the space of finite (or possibly null) E-valued sequences.

Lemma 1.3. If E is infinite-dimensional, then the norms ‖ · ‖p and ‖ · ‖w,p are not
equivalent on c00(E). In particular, `p(E) is not closed in `wp (E).

Proof. It is clear that c00(E) is dense in (`p(E), ‖ · ‖p), and the definition of `u
p(E)

makes clear that c00(E) is dense in (`u
p(E), ‖·‖w,p) as well. Assume that the norms

‖ · ‖p and ‖ · ‖w,p are equivalent on c00(E). Then

`p(E)= c00(E)
‖·‖p
= c00(E)

‖·‖w,p
= `u

p(E).

It follows that the identity operator in E is absolutely p-summing [Defant and Floret
1993, Proposition 11.1(c)], hence E is finite-dimensional. Now the second assertion
follows from the open mapping theorem and the inclusion c00(E)⊆ `p(E). �
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From Theorem 1.2(ii) we know that `mid
p (`p)= `p(`p), so `mid

p (`p) is not closed
in `wp (`p) by Lemma 1.3, proving ‖·‖w,p does not make `mid

p (E) complete in general.

Proposition 1.4. The expression

(2) ‖(x j )
∞

j=1‖mid,p := sup
(x∗n )

∞

n=1∈B`wp (E∗)

( ∞∑
n=1

∞∑
j=1

|x∗n (x j )|
p
)1/p

,

is a norm that makes `mid
p (E) a Banach space and `p(E) 1↪→ `mid

p (E) 1↪→ `wp (E).

Proof. Let x = (x j )
∞

j=1 ∈ `
mid
p (E). By definition, the double series in (2) is

convergent (this is why we chose this condition to be the definition of `mid
p (E)).

The map

Tx : `
w
p (E

∗)→ `p(`p), Tx((x∗n )
∞

n=1)= ((x
∗

n (x j ))
∞

j=1)
∞

n=1,

is a well-defined linear operator. By the closed graph theorem, it is continuous.
Therefore,( ∞∑

n=1

∞∑
j=1

|x∗n (x j )|
p
)1/p

= ‖Tx((x∗n )
∞

n=1)‖ ≤ ‖Tx‖ · ‖(x∗n )
∞

n=1‖w,p

for every (x∗n )
∞

n=1 ∈ `
w
p (E

∗), showing that the supremum in (2) is finite. Straightfor-
ward computations prove that ‖ · ‖mid,p is a norm and a canonical argument shows
that (`mid

p (E), ‖ · ‖mid,p) is a Banach space.
For every ϕ ∈ BE∗ , it is clear that (ϕ, 0, 0, . . .) ∈ B`wp (E∗), so ‖ · ‖w,p ≤ ‖ · ‖mid,p

in `mid
p (E).

Let (x j )
∞

j=1 ∈ `p(E) and (x∗n )
∞

n=1 ∈ `
w
p (E

∗). Since BE , regarded as a subspace
of E∗∗, is a norming subset of E∗∗, we have ‖(x∗n )

∞

n=1‖
p
w,p= supx∈BE

∑
∞

n=1|x
∗
n (x)|

p.
Putting J = { j ∈ N : x j 6= 0}, we have

∞∑
j=1

∞∑
n=1

|x∗n (x j )|
p
=

∑
j∈J

(
‖x j‖

p
·

( ∞∑
n=1

∣∣∣x∗n( x j

‖x j‖

)∣∣∣p
))

≤ ‖(x∗n )
∞

n=1‖
p
w,p ·

∑
j∈J

‖x j‖
p
= ‖(x∗n )

∞

n=1‖
p
w,p ·

∞∑
j=1

‖x j‖
p,

from which the inequality ‖ · ‖mid,p ≤ ‖ · ‖p follows. �

Proposition 1.5. The following are equivalent for a weak mid-p-space E :

(a) `p(E) is closed in `mid
p (E).

(b) The norms ‖ · ‖p and ‖ · ‖mid,p are equivalent on `p(E).

(c) The norms ‖ · ‖p and ‖ · ‖mid,p are equivalent on c00(E).

(d) E is finite-dimensional.
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Proof. (a)⇒ (b) follows from the open mapping theorem, (b)⇒ (c) and (d)⇒ (a)
are obvious. Let us prove (c)⇒ (d): Since E is a weak mid-p-space, the norms
‖·‖mid,p and ‖·‖w,p are equivalent on `mid

p (E) by the open mapping theorem, hence
they are equivalent on c00(E). The assumption gives that the norms ‖·‖p and ‖·‖w,p
are equivalent on c00(E). By Lemma 1.3 it follows that E is finite-dimensional. �

Analogously, we have:

Proposition 1.6. The following are equivalent for a strong mid-p-space E :

(a) `mid(E) is closed in `wp (E).

(b) The norms ‖ · ‖mid,p and ‖ · ‖w,p are equivalent on `mid
p (E).

(c) The norms ‖ · ‖mid,p and ‖ · ‖w,p are equivalent on c00(E).

(d) E is finite-dimensional.

The next examples show that the spaces `u
p(E) and `mid

p (E) are incomparable in
general.

Example 1.7. On the one hand, combining Theorem 1.2(i) with [Diestel et al.
1995, Theorem 3.7] we have `mid

2 (c0)= `
w
2 (c0). Since `u

2(c0) is a proper subspace
of `w2 (c0) [Defant and Floret 1993, page 93], it follows that `mid

2 (c0)* `u
2(c0). On

the other hand,
`u

1(`1)= `
w
1 (`1)* `1(`1)= `

mid
1 (`1),

where the first equality follows from the fact that bounded linear operators from c0

to `1 are compact combined with [Defant and Floret 1993, Proposition 8.2(1)], and
the last equality is a consequence of Theorem 1.2(ii).

We saw that `mid
p (E) is not contained in `u

p(E) in general. But sometimes this
happens:

Proposition 1.8. If E is a strong mid-p-space, then `mid
p (E) 1↪→ `u

p(E).

Proof. The norms ‖ · ‖p and ‖ · ‖mid,p are equivalent on `mid
p (E) = `p(E) by

the open mapping theorem. Let x = (x j )
∞

j=1 ∈ `
mid
p (E). Since (x j )

k
j=1

k
−→ x in

`p(E), we have (x j )
k
j=1

k
−→ x in `mid

p (E), by the equivalence of the norms. As
`mid

p (E) 1↪→ `wp (E), we have

‖(x j )
∞

j=k‖w,p =
∥∥(x j )

∞

j=1− (x j )
k−1
j=1

∥∥
w,p ≤

∥∥(x j )
∞

j=1− (x j )
k−1
j=1

∥∥
mid,p

k→∞
−−−→ 0,

proving that x ∈ `u
p(E). �

The purpose of the next section is to study the operator ideals determined by
the transformation of vector-valued sequences belonging to the sequence spaces
in the chain (1). A usual approach, proving all the desired properties using the
definitions of the underlying sequence spaces, would lead to long and boring proofs.
Alternatively, we shall apply the abstract framework constructed in [Botelho and
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Campos 2016] to deal with operators of this kind. In this fashion we will end up
with short and concise proofs. Instead of its definition, we shall use that the class
of mid-p-summable sequences enjoys the two properties we prove below. For the
definitions of finitely determined and linearly stable sequence classes, see [Botelho
and Campos 2016].

Proposition 1.9. The correspondence E 7→ `mid
p (E) is a finitely determined se-

quence class.

Proof. It is plain that c00(E)⊆`mid
p (E) and ‖e j‖mid,p=1, where e j is the j -th canon-

ical unit scalar-valued sequence. Since `mid
p (E) 1↪→`

w
p (E) and `wp (E) 1↪→`∞(E), we

have `mid
p (E) 1↪→ `∞(E). Let (x j )

∞

j=1 be an E-valued sequence. The equality

sup
(x∗n )

∞

n=1∈B`wp (E∗)

( ∞∑
n=1

∞∑
j=1

|x∗n (x j )|
p
)1/p

= sup
k

sup
(x∗n )

∞

n=1∈B`wp (E∗)

( ∞∑
n=1

k∑
j=1

|x∗n (x j )|
p
)1/p

shows that (x j )
∞

j=1 ∈ `
mid
p (E) if and only if supk ‖(x j )

k
j=1‖mid,p < ∞ and that

‖(x j )
∞

j=1‖mid,p = supk ‖(x j )
k
j=1‖mid,p. �

Proposition 1.10. The correspondence E 7→ `mid
p (E) is linearly stable.

Proof. Let T ∈L(E ; F). By the linear stability of `wp ( · ) [Botelho and Campos 2016,
Theorem 3.3], (T ∗(y∗n ))

∞

n=1 = (y
∗
n ◦ T )∞n=1 ∈ `

w
p (E

∗) for every (y∗n )
∞

n=1 ∈ `
w
p (F

∗),
where T ∗ : F∗→ E∗ is the adjoint of T . Therefore,

((y∗n (T (x j )))
∞

j=1)
∞

n=1 = ((y
∗

n ◦ T (x j ))
∞

j=1)
∞

n=1 ∈ `p(`p),

hence (T (x j ))
∞

j=1 ∈ `
mid
p (F) for every (x j )

∞

j=1 ∈ `
mid
p (E). Defining T̂ : `mid

p (E)→
`mid

p (F) by T̂ ((x j )
∞

j=1)= (T (x j ))
∞

j=1, a standard calculation shows that ‖T ‖=‖T̂ ‖,
completing the proof. �

2. Mid-summing operators

Following the classical line of studying operators that improve the summability of
sequences, in this section we investigate the obvious classes of operators, involving
mid-p-summable sequences, determined by the chain

`p〈E〉 ⊆ `p(E)⊆ `mid
p (E)⊆ `wp (E).

From now on in this section, 1≤ q ≤ p<∞ are real numbers and T ∈L(E ; F)
is a continuous linear operator.

Definition 2.1. The operator T is said to be

(i) absolutely mid-(p ; q)-summing if

(3) (T (x j ))
∞

j=1 ∈ `p(F) whenever (x j )
∞

j=1 ∈ `
mid
q (E);
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(ii) weakly mid-(p ; q)-summing if

(4) (T (x j ))
∞

j=1 ∈ `
mid
p (F) whenever (x j )

∞

j=1 ∈ `
w
q (E);

(iii) Cohen mid-p-summing if

(5) (T (x j ))
∞

j=1 ∈ `p〈F〉 whenever (x j )
∞

j=1 ∈ `
mid
p (E).

The spaces formed by the operators above are denoted5mid
p;q(E ; F),W mid

p;q (E ; F)
and Dmid

p (E ; F), respectively. When p = q we simply write mid-p-summing
instead of mid-(p ; p)-summing and use symbols 5mid

p and W mid
p . A standard

calculation shows that if p < q then 5mid
p;q(E ; F)=W mid

p;q (E ; F)= {0}. From the
definitions it is clear that

5p;q ⊆W mid
p;q ∩5

mid
p;q and Dmid

p ⊆ Dp ∩5
mid
p .

Having in mind the properties of `mid
p (E) proved in the previous section, the

following three results are straightforward consequences of [Botelho and Campos
2016, Proposition 1.4] (with the exception of the equivalences in Theorem 2.3
involving `u

p(E), which follow from [Botelho and Campos 2016, Corollary 1.6]).
Recall that any map T : E→ F induces a map T̃ between E-valued sequences and
F-valued sequences given by T̃ ((x j )

∞

j=1)= (T (x j ))
∞

j=1.

Theorem 2.2. The following are equivalent:

(i) T ∈5mid
p;q(E ; F).

(ii) The induced map T̃ : `mid
q (E)→ `p(F) is a well-defined continuous linear

operator.

(iii) There is a constant A > 0 such that ‖(T (x j ))
k
j=1‖p ≤ A‖(x j )

k
j=1‖mid,q for

every k ∈ N and all x j ∈ E , j = 1, . . . , k.

(iv) There is a constant A > 0 such that ‖(T (x j ))
∞

j=1‖p ≤ A‖(x j )
∞

j=1‖mid,q for
every (x j )

∞

j=1 ∈ `
mid
q (E).

Moreover,

‖T ‖5mid
p;q
:= ‖T̃ ‖ = inf{A : (iii) holds} = inf{A : (iv) holds}.

Theorem 2.3. The following are equivalent:

(i) T ∈W mid
p;q (E ; F).

(ii) The induced map T̃ : `wq (E)→ `mid
p (F) is a well-defined continuous linear

operator.

(iii) (T (x j ))
∞

j=1 ∈ `
mid
p (F) whenever (x j )

∞

j=1 ∈ `
u
q(E).

(iv) The induced map T̂ : `u
q(E)→ `mid

p (F) is a well-defined continuous linear
operator.
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(v) There is a constant B > 0 such that ‖(T (x j ))
k
j=1‖mid,p ≤ B‖(x j )

k
j=1‖w,q for

every k ∈ N and all x j ∈ E , j = 1, . . . , k.

(vi) There is a constant B > 0 such that( ∞∑
n=1

k∑
j=1

|y∗n (T (x j ))|
p
)1/p

≤ B‖(x j )
k
j=1‖w,q · ‖(y

∗

n )
∞

n=1‖w,p

for every k ∈ N, all x j ∈ E , j = 1, . . . , k, and every (y∗n )
∞

n=1 ∈ `
w
p (F

∗).

(vii) There is a constant B > 0 such that( ∞∑
n=1

∞∑
j=1

|y∗n (T (x j ))|
p
)1/p

≤ B‖(x j )
∞

j=1‖w,q · ‖(y
∗

n )
∞

n=1‖w,p

for all (x j )
∞

j=1 ∈ `
w
q (E) and (y∗n )

∞

n=1 ∈ `
w
p (F

∗).

Moreover,

‖T ‖W mid
p;q
:=‖T̃ ‖=‖T̂ ‖= inf{B : (v) holds}= inf{B : (vi) holds}= inf{B :(vii) holds}.

Theorem 2.4. The following are equivalent:

(i) T ∈ Dmid
p (E ; F).

(ii) The induced map T̃ : `mid
p (E)→ `p〈F〉 is a well-defined continuous linear

operator.

(iii) There is a constant C > 0 such that ‖(T (x j ))
k
j=1‖C,p ≤ C‖(x j )

k
j=1‖mid,p for

every k ∈ N and all x j ∈ E , j = 1, . . . , k.

(iv) There is a constant C > 0 such that

k∑
j=1

|y∗j (T (x j ))| ≤ C‖(x j )
k
j=1‖mid,p · ‖(y∗j )

k
j=1‖w,p∗

for every k ∈ N, all x j ∈ E and y∗j ∈ F∗, j = 1, . . . , k.

(v) There is a constant C > 0 such that
∞∑
j=1

|y∗j (T (x j ))| ≤ C‖(x j )
∞

j=1‖mid,p · ‖(y∗j )
∞

j=1‖w,p∗

for all (x j )
∞

j=1 ∈ `
mid
p (E) and (y∗j )

∞

j=1 ∈ `
w
p∗(F

∗).

Moreover,

‖T ‖Dmid
p
:= ‖T̃ ‖ = inf{C : (iii) holds} = inf{C : (iv) holds} = inf{C : (v) holds}.

Theorem 2.5. The classes (5mid
p;q , ‖·‖5mid

p;q
), (W mid

p;q , ‖·‖W mid
p;q
) and (Dmid

p , ‖·‖Dmid
p
)

are Banach operator ideals.
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Proof. We use the notation and the language of [Botelho and Campos 2016]. All
involved sequence classes are linearly stable. Comparing Definition 2.1 and [Botelho
and Campos 2016, Definition 2.1], a linear operator T is mid-(p ; q)-summing if
and only if it is (`mid

q ( · ) ; `p( · ))-summing. Since `mid
q (K) 1↪→ `p = `p(K), from

[Botelho and Campos 2016, Theorem 2.6] it follows that 5mid
p;q is a Banach operator

ideal. The other cases are similar. �

The following characterizations of weak and strong mid-p-spaces complement
the ones proved in [Karn and Sinha 2014, Theorems 3.7 and 4.5].

Theorem 2.6. The following are equivalent for a Banach space E and 1≤ p <∞:

(a) E is a weak mid-p-space.

(b) 5mid
p (E ; F)=5p(E ; F) for every Banach space F.

(c) 5mid
p (E; `p)=5p(E; `p)= L(E; `p).

(d) W mid
p (F ; E)= L(F ; E) for every Banach space F.

(e) idE ∈W mid
p (E ; E).

Proof. The implications (a)⇒ (b), (d)⇒ (e)⇒ (a), and (b)⇒ the first equality
in (c) are obvious. Let us see that the first equality in (c) implies (a): Given
x∗ = (x∗k )

∞

k=1 ∈ `
w
p (E

∗), the identification `wp (E
∗) = L(E, `p) (see the proof of

Proposition 2.12) yields that the map

Sx∗ : E→ `p, Sx∗(x)= (x∗k (x))
∞

k=1,

is a bounded linear operator. By the definition of `mid
p (E),

(Sx∗(xn))
∞

n=1 = ((x
∗

k (xn))
∞

k=1)
∞

n=1 ∈ `p(`p),

for every (xn)
∞

n=1 ∈ `
mid
p (E). This means that Sx∗ ∈ 5

mid
p (E; `p), hence Sx∗ ∈

5p(E; `p) by assumption, for every x∗ = (x∗k )
∞

k=1 ∈ `
w
p (E

∗). Therefore, given
(xn)

∞

n=1 ∈ `
w
p (E), it follows that (Sx∗(xn))

∞

n=1 = ((x
∗

k (xn))
∞

k=1)
∞

n=1 ∈ `p(`p) for
every x∗ = (x∗k )

∞

k=1 ∈ `
w
p (E

∗); proving that (xn)
∞

n=1 ∈ `
mid
p (E).

That (a) is equivalent to the second equality in (c) is precisely Theorem 1.2(i).
To complete the proof, let us check that (a) ⇒ (d): Let T ∈ L(F ; E) and

(x j )
∞

j=1 ∈ `
w
p (F) be given. The linear stability of `wp ( · ) and the assumption give

(T (x j ))
∞

j=1 ∈ `
w
p (E)= `

mid
p (E). This proves that T ∈W mid

p (F ; E). �

The corresponding characterizations of strong mid-p-spaces are less interesting.
We state them just for the record:

Theorem 2.7. The following are equivalent for a Banach space F and 1≤ p <∞:

(a) F is a strong mid-p-space.

(b) 5mid
p (E ; F)= L(E ; F) for every Banach space E.
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(c) idF ∈5
mid
p (F ; F).

(d) F is a subspace of L p(µ) for some Borel measure µ.

Recall that an operator ideal I is

• injective if u ∈ I(E, F) whenever v ∈L(F,G) is a metric injection (‖v(y)‖=
‖y‖ for every y ∈ F) such that v ◦ u ∈ I(E,G);

• regular if u ∈ I(E, F) whenever JF ◦ u ∈ I(E, F∗∗), where JF : F→ F∗∗ is
the canonical embedding.

Proposition 2.8. The operator ideal5mid
p;q is injective and the operator ideals W mid

p;q
and Dmid

p are regular.

Proof. The injectivity of 5mid
p;q is clear. To prove the regularity of W mid

p;q , let
(y j )

∞

j=1 ⊆ F be such that (JF (y j ))
∞

j=1 ∈ `
mid
p (F∗∗). We have

(6) (y∗∗∗n (JF (y j )))
∞

j,n=1 ∈ `p(`p) for every (y∗∗∗n )∞n=1 ∈ B`wp (F∗∗∗).

In order to prove that (y j )
∞

j=1 ∈ `
mid
p (F), let (y∗n )

∞

n=1 ∈ B`wp (F∗) be given. Then

(7)
∞∑

n=1

|JF (y)(y∗n )|
p
=

∞∑
n=1

|y∗n (y)|
p
≤ 1 for every y ∈ BF .

Let us see that, defining y∗∗∗n := JF∗(y∗n ) ∈ F∗∗∗ for each n, we have (y∗∗∗n )∞n=1 ∈

B`wp (F∗∗∗). To accomplish this task, let y∗∗ ∈ BF∗∗ be given. By Goldstine’s theorem,
there is a net (yλ)λ in BF such that JF (yλ) w

∗

−→ y∗∗, that is,

(8) y∗(yλ)= JF (yλ)(y∗)→ y∗∗(y∗) for every y∗ ∈ F∗.

From (7) it follows that
∑
∞

n=1|y
∗
n (yλ)|

p
≤ 1 for every λ, in particular

(9)
k∑

n=1

|y∗n (yλ)|
p
≤ 1 for every k and every λ.

On the other hand, from (8) we have |y∗n (yλ)|
p λ
−→|y∗∗(y∗n )|

p for every n, hence

k∑
n=1

|y∗n (yλ)|
p λ
−→

k∑
n=1

|y∗∗(y∗n )|
p

for every k. So, for every y∗∗ ∈ BF∗∗ ,
∞∑

n=1

|y∗∗∗n (y∗∗)|p =
∞∑

n=1

|JF∗(y∗n )(y
∗∗)|p =

∞∑
n=1

|y∗∗(y∗n )|
p
= sup

k

k∑
n=1

|y∗∗(y∗n )|
p

= sup
k

lim
λ

k∑
n=1

|y∗n (yλ)|
p
≤ 1,
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the last inequality being a consequence of (9). This proves that (y∗∗∗n )∞n=1∈ B`wp (F∗∗∗).
From (6) we get

(y∗n (y j ))
∞

j,n=1 = (JF (y j )(y∗n ))
∞

j,n=1 =
(
[JF∗(y

∗

n )](JF (y j ))
)∞

j,n=1

= (y∗∗∗n (JF (y j )))
∞

j,n=1 ∈ `p(`p).

This holds for arbitrary (y∗n )
∞

n=1 ∈ B`wp (F∗), which allows us to conclude that
(y j )

∞

j=1 ∈ `
mid
p (F). Thus far we have proved that (y j )

∞

j=1 ∈ `
mid
p (F) whenever

(JF (y j ))
∞

j=1 ∈ `
mid
p (F∗∗). Now the regularity of W mid

p;q follows easily.
An adaptation of the argument above shows that (y j )

∞

j=1 ∈ `p〈F〉 whenever
(JF (y j ))

∞

j=1 ∈ `p〈F∗∗〉. The regularity of Dmid
p follows. �

Remark 2.9. The final part of the proof above also proves that the ideal Dp of
Cohen strongly p-summing operators is regular. We also know that it is surjective
because it is the dual of the injective ideal 5p∗ [Cohen 1973].

It is clear from the definitions that 5mid
p,r ◦W mid

r,q ⊆5p,q for q ≤ r ≤ p. Next we
show that the equality holds if p = q , which gives a new factorization theorem for
absolutely p-summing operators:

Theorem 2.10. Every absolutely p-summing linear operator factors through abso-
lutely and weakly mid-p-summing linear operators, that is, 5p =5

mid
p ◦W mid

p .

Proof. We already know that 5mid
p ◦W mid

p ⊆5p. Let u ∈5p(E ; F). By Pietsch’s
factorization theorem ([Defant and Floret 1993, Corollary 1, page 130] or [Diestel
et al. 1995, Theorem 2.13]), there are a Borel–Radon measure µ on (BE∗ , w

∗), a
closed subspace X of L p(µ) and an operator û : X → F such that the following
diagram commutes (iE and jp are the canonical operators and j E

p is the restriction
of jp to iE(E)):

E

iE
��

u
// F

iE (E)
j E
p

// X

û

UU

C(K )

⋂
jp

// L p(µ)

⋂

Let (x j )
∞

j=1 ∈ `
w
p (E). By the continuity of iE and the linear stability of `wp ( · ),

we have (iE(x j ))
∞

j=1 ∈ `
w
p (iE(E)). Since jp is absolutely p-summing, it follows

that ( j E
p (iE(x j )))

∞

j=1 ∈ `p(X) ⊆ `mid
p (X), proving j E

p ◦ iE ∈ W mid
p (E, X). Now,

let (y j )
∞

j=1 ∈ `
mid
p (X). As X is a closed subspace of L p(µ), from Theorem 1.2(ii)

we have (y j )
∞

j=1 ∈ `p(X). Thus, as û is bounded and `p( · ) is linearly stable,
(û(y j ))

∞

j=1 ∈ `p(F), proving that û ∈5mid
p (X, F). �
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Corollary 2.11. Let p > 1, u ∈ L(E, F) and v ∈ L(F,G). If u∗ is absolutely
mid-p∗-summing and v∗ is weakly mid-p∗-summing, then v ◦ u is Cohen strongly
p-summing.

Proof. Denoting, as usual, by I dual the ideal of all operators u such that u∗ ∈ I, we
have

(W mid
p∗ )

dual
◦ (5mid

p∗ )
dual
⊆ (5mid

p∗ ◦W mid
p∗ )

dual
=5dual

p∗ = Dp,

where the inclusion is clear, the first equality follows from Theorem 2.10 and the
second from [Cohen 1973]. �

We finish this section solving a question left open in the last section of [Karn
and Sinha 2014]. There, the authors prove the following characterization in their
Theorem 4.4: an operator T ∈ L(E, F) is weakly mid-p-summing if and only if
S ◦ T ∈5p(E, `p) for every S ∈ L(F, `p). They define

ltp(T )= sup
{
πp(S ◦ T ) : S ∈ L(F, `p) and ‖S‖ ≤ 1

}
,

and prove that (W mid
p , ltp( · )) is a normed operator ideal. The question whether

or not this ideal is a Banach ideal is left open there, and now we solve it in the
affirmative:

Proposition 2.12. Since ltp(T ) = ‖T ‖W mid
p;q

for every T ∈ W mid
p (E ; F), we have

(W mid
p , ltp( · )) is a Banach operator ideal.

Proof. Let T ∈ W mid
p (E ; F) and S ∈ L(F, `p) with ‖S‖ ≤ 1. Here we use that

the spaces `wp (F
∗) and L(F, `p) are canonically isometrically isomorphic via the

correspondence x∗ = (x∗k )
∞

k=1 ∈ `
w
p (F

∗) 7→ Sx∗ ∈ L(F, `p), Sx∗(x) = (x∗k (x))
∞

k=1
[Defant and Floret 1993, Proposition 8.2(2)]. So there exists (y∗k )

∞

k=1 ∈ B`wp (F∗)
such that S(y)= (y∗k (y))

∞

k=1 for every y ∈ F . Thus( ∞∑
j=1

‖S ◦ T (x j )‖
p
p

)1/p

=

( ∞∑
j=1

∞∑
k=1

|y∗k (T (x j ))|
p
)1/p

≤ ‖T ‖W mid
p;q
· ‖(x j )

∞

j=1‖w,p,

for every (x j )
∞

j=1 ∈ `
w
p (E). Therefore S ◦T ∈5p(E; `p) and πp(S ◦T )≤‖T ‖W mid

p;q
.

From( ∞∑
j=1

∞∑
n=1

|y∗n (T (x j ))|
p
)1/p

=

( ∞∑
j=1

‖S◦T (x j )‖
p
p

)1/p

≤πp(S◦T ) ·‖(x j )
∞

j=1‖w,p,

we obtain ‖T ‖W mid
p;q
≤ πp(S ◦ T ), proving that ltp(T ) = ‖T ‖W mid

p;q
. The second

assertion follows now from Theorem 2.5. �
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3. Infinite-dimensional Banach spaces formed by non-summing operators

We say that the subset A of an infinite-dimensional vector space X is lineable if
A ∪ {0} contains an infinite-dimensional subspace. If A ∪ {0} contains a closed
infinite-dimensional subspace than we say that A is spaceable (see [Bernal-González
et al. 2014] and references therein).

Let us give a contribution to this fashionable subject. Improving a result of
[Botelho et al. 2009], in [Kitson and Timoney 2011] it is proved, among other things,
that if E is an infinite-dimensional superreflexive Banach space, then, regardless
of the infinite-dimensional Banach space F , there exists an infinite-dimensional
Banach space formed, up to the null operator, by non-p-summing linear operators
from E to F . Very little is known for spaces of operators on nonsuperreflexive
spaces. We shall give a contribution in this direction.

The next lemma is left as Exercise 9.10(b) in [Defant and Floret 1993]. We give
a short proof for the sake of completeness.

Lemma 3.1. An operator ideal I is injective if and only if the following condition
holds: if u ∈ I(E ; F), v ∈ L(E ;G) and there exists a constant C > 0 (possibly
depending on E, F,G, u and v) such that ‖v(x)‖ ≤ C‖u(x)‖ for every x ∈ E , then
v ∈ I(E ;G).

Proof. Assume that I is injective and let u ∈ I(E ; F), v ∈ L(E ;G) be such that
‖v(x)‖ ≤ C‖u(x)‖ for every x ∈ E . This inequality guarantees that the map

w : u(E)⊆ F→ G, w(u(x))= v(x),

is a well-defined continuous linear operator. Considering the canonical metric
injection JG : G→ `∞(BG∗), by the extension property of `∞(BG∗) [Pietsch 1980,
Proposition C.3.2] there is an extension w̃ ∈L(F ; `∞(BG∗)) of JG ◦w to the whole
of F . From w̃ ◦u = JG ◦v we conclude that JG ◦v belongs to I, and the injectivity
of I gives v ∈ I(E ;G). The converse is obvious. �

Henceforth, all Banach spaces are supposed to be infinite-dimensional. Recall
that a sequence in a Banach space E is overcomplete if the linear span of each of
its subsequences is dense in E (see, e.g., [Chalendar and Partington 2007; Fonf and
Zanco 2014]). We need a weaker condition:

Definition 3.2. A sequence in a Banach space E is weakly overcomplete if the
closed linear span of each of its subsequences is isomorphic to E .

Example 3.3. The sequence (e j )
∞

j=1 formed by the canonical unit vectors is a
weakly overcomplete unconditional basis in the spaces c0 and `p, 1 ≤ p <∞
[Fabian et al. 2011, Proposition 4.45].

Proposition 3.4. Let (I, ‖ · ‖I) be a normed operator ideal, J be an injective
operator ideal and suppose that F contains an isomorphic copy of a space X with a
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weakly overcomplete unconditional basis. If I(E ; X)−J (E ; X) is nonvoid, then
I(E ; F)−J (E ; F) is spaceable (in (I(E ; F), ‖ · ‖I)).

Proof. Let (en)
∞

n=1 be a weakly overcomplete unconditional basis of X with uncon-
ditional basis constant %. Split N=

⋃
∞

j=1 A j into infinitely many infinite pairwise
disjoint subsets. For each j ∈N, define X j = span{en : n ∈ A j } and let Pj : X→ X j

be the canonical projection. It is known that ‖Pj‖ ≤ % [Megginson 1998, Corol-
lary 4.2.26]. For x j ∈ X j we have Pi (x j ) = δi j x j because the sets (A j )

∞

j=1 are
pairwise disjoint. Let I j : X→ X j be an isomorphism, T j : X j→ X denote the formal
inclusion and T : X → F be an isomorphism into. Let u ∈ I(E ; X)−J (E ; X).
Defining

u j : E→ F, u j = T ◦ T j ◦ I j ◦ u,

we have u j ∈ I(E, F). Using that J is injective, u /∈ J (E ; X) and

‖u j (x)‖ =
∥∥T (T j ◦ I j ◦ u(x))

∥∥≥ 1
‖T−1‖

∥∥T j ◦ I j ◦ u(x)
∥∥≥ 1
‖T−1‖·‖I−1

j ‖
‖u(x)‖

for every x ∈ E , we conclude by Lemma 3.1 that each u j /∈ J (E ; F). In particular,
we have u j 6= 0. Let Y := span{u j : j ∈ N}

‖·‖I
⊆ I(E ; F). Given 0 6= v ∈ Y , let

(vn)
∞

n=1⊆span{u j : j ∈N} be such that vn
‖·‖I
−−→v. For each n, write vn=

∑
∞

j=1 an
j u j ,

where an
j 6= 0 for only finitely many j . Let x0 ∈ E be such that v(x0) 6= 0. It is plain

that v(E) ⊆ T (X), so T−1(v(x0)) 6= 0, and in this case there is k ∈ N such that
Pk(T−1(v(x0))) 6= 0. Since ‖ · ‖ ≤ ‖ · ‖I , we have vn(x)→ v(x) for all x ∈ E . So,

an
k Tk(Ik(u(x0)))=

∞∑
j=1

Pk(an
j T j (I j (u(x0))))=

∞∑
j=1

Pk(T−1(an
j T (T j (I j (u(x0))))))

= Pk ◦ T−1(vn(x0))→ Pk ◦ T−1
◦ v(x0) 6= 0.

It follows that

0 6=T ◦Pk◦T−1
◦v(x0)= lim

n
T (an

k Tk(Ik(u(x0))))= lim
n

an
k uk(x0)= (lim

n
an

k )uk(x0).

Setting λ := limn an
k 6= 0, we have

‖uk(x)‖ =
1
|λ|
· lim

n
‖an

k uk(x)‖ ≤
‖T ‖
|λ|
· lim

n

∥∥∥∥Pk

( ∞∑
j=1

T j ◦ I j ◦ u(an
j x)
)∥∥∥∥

≤
%‖T ‖
|λ|
· lim

n

∥∥∥∥ ∞∑
j=1

T j ◦ I j ◦ u(an
j x)
∥∥∥∥

≤
%‖T ‖ · ‖T−1

‖

|λ|
· lim

n

∥∥∥∥T
( ∞∑

j=1

T j ◦ I j ◦ u(an
j x)
)∥∥∥∥
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=
%‖T ‖ · ‖T−1

‖

|λ|
· lim

n

∥∥∥∥ ∞∑
j=1

an
j u j (x)

∥∥∥∥= %‖T ‖ · ‖T−1
‖

|λ|
‖v(x)‖

for every x ∈ E . Since uk does not belong to the injective ideal J , it follows from
Lemma 3.1 that v /∈ J (E ; F). This proves that Y ⊆ (I(E ; F)−J (E ; F)∪ {0}).

Given n ∈N, scalars a1, . . . , an such that
∑n

j=1 a j u j = 0 and k ∈ {1, . . . , n}, let
xk ∈ E be such that uk(xk) 6= 0 (recall that uk 6= 0). From

0=
∥∥∥∥ n∑

j=1

a j u j (xk)

∥∥∥∥≥ 1
‖T−1‖

∥∥∥∥ n∑
j=1

a j (T j ◦ I j ◦ u)(xk)

∥∥∥∥
≥

1
%‖T−1‖

∥∥∥∥Pk

( n∑
j=1

a j (T j ◦ I j ◦ u)(xk)

)∥∥∥∥= 1
%‖T−1‖

‖ak(Tk ◦ Ik ◦ u)(xk)‖

≥
1

%‖T−1‖·‖T ‖
‖T (ak(Tk ◦ Ik ◦ u)(xk))‖ =

1
%‖T−1‖·‖T ‖

|ak | · ‖uk(xk)‖,

it follows that ak = 0, proving that the set {u j : j ∈ N} is linearly independent. �

Remark 3.5. (a) Proposition 3.4 is not a consequence of [Kitson and Timoney
2011, Proposition 2.4] because we are not assuming neither that (I ∩J )(E ; F) is
not closed in I(E ; F) nor that I(E ; F) is complete.

(b) A result related to Proposition 3.4, with different assumptions, has appeared
recently in [Hernández et al. 2015, Theorem 3.5].

Recall that Space(I) denotes the class of all Banach spaces E such that the
identity operator on E belongs to the operator ideal I (cf. [Pietsch 1980, 2.1.2]).

Theorem 3.6. Let E be isomorphic to a subspace of L1(µ) for some Borel mea-
sure µ, let F contain an isomorphic copy of `1 and let (I, ‖ · ‖I) be a Banach
operator ideal such that `1 ∈ Space(I). Then there exists an infinite-dimensional
Banach space formed, up to the null operator, by non-1-summing linear operators
from E to F belonging to I.

Proof. By Theorem 1.2(ii), idE ∈5
mid
1 (E ; E). Since idE fails to be 1-summing,

because E is infinite-dimensional, by Theorem 2.10 we have idE /∈W mid
1 (E ; E).

From Theorem 1.2(i), there is a non-1-summing linear operator u : E → `1. Of
course u ∈ I(E ; `1). Taking into account that the canonical unit vectors form a
weakly overcomplete unconditional basis of `1 (Example 3.3) and that the ideal of
absolutely p-summing linear operators is injective, from Proposition 3.4 we have
that I(E ; F)−51(E ; F) is spaceable. The completeness of (I(E ; F), ‖ · ‖I)
finishes the proof. �

Examples of Banach operator ideals I for which `1 ∈ Space(I) are the following:
separable operators, completely continuous operators, cotype 2 operators, absolutely
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(r , q)-summing operators with 1
r ≤

1
q −

1
2 [Defant and Floret 1993, Corollary 8.9]

(in particular, absolutely (r , 1)-summing operators for every r ≥ 2).
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HOMOLOGY FOR QUANDLES WITH
PARTIAL GROUP OPERATIONS

SCOTT CARTER, ATSUSHI ISHII, MASAHICO SAITO AND KOKORO TANAKA

A quandle is a set that has a binary operation satisfying three conditions
corresponding to the Reidemeister moves. Homology theories of quandles
have been developed in a way similar to group homology, and have been
applied to knots and knotted surfaces. In this paper, a homology theory is
defined that unifies group and quandle homology theories. A quandle that
is a union of groups with the operation restricting to conjugation on each
group component is called a multiple conjugation quandle (MCQ, defined
rigorously within). In this definition, compatibilities between the group and
quandle operations are imposed which are motivated by considerations on
colorings of handlebody-links. The homology theory defined here for MCQs
takes into consideration both group and quandle operations, as well as their
compatibility. The first homology group is characterized, and the notion
of extensions by 2-cocycles is provided. Degenerate subcomplexes are de-
fined in relation to simplicial decompositions of prismatic (products of sim-
plices) complexes and group inverses. Cocycle invariants are also defined
for handlebody-links.

1. Introduction

In this paper, a homology theory is proposed that contains aspects of both group
and quandle homology theories, for algebraic structures that have both operations
and certain compatibility conditions between them.

The notion of a quandle [Joyce 1982; Matveev 1982] was introduced in knot
theory as a generalization of the fundamental group. Briefly, a quandle is a set
with a binary operation that is idempotent and self-distributive, and a bijective
corresponding right action. The axioms correspond to the Reidemeister moves,
and quandles have been used extensively to construct knot invariants. They have
been considered in various other contexts, for example as symmetries of geometric
objects [Takasaki 1943], and with different names, such as distributive groupoids
[Matveev 1982] and automorphic sets [Brieskorn 1988]. A typical example is a

MSC2010: primary 57M15, 57M25, 57M27, 57Q45; secondary 55N99, 18G99.
Keywords: quandle, homology, handlebody-link.
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group conjugation a ∗ b = b−1ab which is an expression of the Wirtinger relation
for the fundamental group of the knot complement. The same structure but without
idempotency is called a rack, and is used in the study of framed links [Fenn and
Rourke 1992].

In [Fenn et al. 1995] a chain complex was introduced for racks. The resulting
homology theory was modified in [Carter et al. 2003] by defining a quotient complex
that reflected the quandle idempotence axiom. The motivation for this homology
was to construct the quandle cocycle invariants for links and surface-links. Since
then a variety of applications have been found. The quandle cocycle invariants
were generalized to handlebody-links in [Ishii and Iwakiri 2012]. When a set has
multiple quandle operations that are parametrized by a group, the structure is called
a G-family of quandles; this notion, with its associated homology theory, was intro-
duced in [Ishii et al. 2013] and it too was motivated from handlebody-knots. This
homology theory is called IIJO. In particular, cocycle invariants were introduced
that distinguished mirror images of some handlebody-knots. These G-families were
further generalized to an algebraic system called a multiple conjugation quandle
(MCQ) in [Ishii 2015b] for colorings of handlebody-knots. An MCQ has a quandle
operation and partial group operations, all linked by compatibility conditions.

This paper proposes to unify the group and quandle homology theories for MCQs.
The definition of an MCQ is recalled in Section 2 as a generalization of a G-family
of quandles. A homology theory is defined (in Section 3) that simultaneously
encompasses the group and quandle homologies of the interrelated structures. As
in the case of [Carter et al. 2003], some subcomplexes are defined in order to
compensate for the topological motivation of the theory. The first homology group
is characterized, and the notion of extensions by 2-cocycles is provided in Section 4.

The homology theory for MCQs is well suited for handlebody-links such that
each toroidal component has its core circle oriented, as defined in Section 5. When
considering colorings for unoriented handlebody-links, we also need to take into
consideration issues about the inverse elements in the group (Section 6). Prismatic
sets (products of simplices) are decomposed into subsimplices that are higher-
dimensional duals of graph moves; Section 7 defines a subcomplex that compensates
for these subdivisions. In Sections 8 and 9, we relate this homology theory with
group and quandle homology theories. Finally, in Section 10, we discuss approaches
to finding new 2-cocycles of our homology theory.

2. Multiple conjugation quandles

First, recall a quandle [Joyce 1982; Matveev 1982] is a nonempty set X with a
binary operation ∗ : X × X→ X satisfying the following axioms:

(1) For any a ∈ X , we have a ∗ a = a.
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(2) For any a ∈ X , the map Sa : X→ X defined by Sa(x)= x ∗ a is a bijection.

(3) For any a, b, c ∈ X , we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

Definition 1 [Ishii 2015b]. A multiple conjugation quandle (MCQ) X is the disjoint
union of groups Gλ, where λ is an element of an index set3, with a binary operation
∗ : X × X→ X satisfying the following axioms:

(1) For any a, b ∈ Gλ, we have a ∗ b = b−1ab.

(2) For any x ∈ X and a, b ∈ Gλ, we have x ∗ eλ = x and x ∗ (ab) = (x ∗ a) ∗ b,
where eλ is the identity element of Gλ.

(3) For any x, y, z ∈ X , we have (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

(4) For any x ∈ X and a, b ∈ Gλ, we have (ab) ∗ x = (a ∗ x)(b ∗ x) in some
group Gµ.

We call the group Gλ a component of the MCQ. An MCQ is a type of quandle
that can be decomposed as a union of groups, and the quandle operation in each
component is given by conjugation. Moreover, there are compatibilities, (2) and (4),
between the group and quandle operations.

Note that the quandle axiom a ∗ a = a follows immediately since the operation
in any component is given by conjugation. The second quandle axiom also follows,
since for the map Sa : X→ X defined by Sa(x)= x ∗ a, the inverse map is given
by Sa−1 . The second axiom of MCQs implies that the map φ : Gλ→ AutQnd X
defined by φ(a) = Sa is a group homomorphism, where AutQnd X is the set of
quandle automorphisms of X and is the group with the multiplication defined by
Sa Sb := Sb ◦ Sa . The last axiom (4) may be replaced by the following:

(4′) For any x ∈ X and λ ∈ 3, there is a unique element µ ∈ 3 such that
Sx(Gλ)= Gµ and that Sx : Gλ→ Gµ is a group isomorphism.

The axiom (4) immediately follows from (4′). Conversely, (4′) follows from (4):
the condition (4) contains the condition that for any a, b ∈ Gλ and x ∈ X , there
exists a unique µ ∈3 such that a ∗ x, b ∗ x ∈ Gµ. Hence we have Sx(Gλ)⊂ Gµ,
which implies that Sx : Gλ→ Gµ is a well-defined group homomorphism by the
condition (ab) ∗ x = (a ∗ x)(b ∗ x). The homomorphism Sx : Gλ→ Gµ is a group
isomorphism, since Sx−1 : Gµ→ Gλ gives its inverse.

A multiple conjugation quandle can be obtained from a G-family of quandles as
follows.

Example 2. Let G be a group with identity element e, let (M, {∗g
}g∈G) be a

G-family of quandles [Ishii et al. 2013]; i.e., a nonempty set M with a family of
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binary operations ∗g
: M ×M→ M (g ∈ G) satisfying

x ∗g x = x, x ∗gh y = (x ∗g y) ∗h y, x ∗e y = x,

(x ∗g y) ∗h z = (x ∗h z) ∗h−1gh (y ∗h z)

for x, y, z ∈M and g, h ∈G. Then
∐

x∈M{x}×G is a multiple conjugation quandle
with

(x, g) ∗ (y, h)= (x ∗h y, h−1gh), (x, g)(x, h)= (x, gh).

The following are specific examples of G-families of quandles.

(1) Let M be a group, and G be a subgroup of Aut M . Then for x, y∈M and g∈G,
x ∗ y= (xy−1)g y gives a G-family of quandles. Here xg denotes g acting on x .
The fact that this is a G-family was pointed out in [Przytycki 2011]; however,
that any specific automorphism g yields a quandle was earlier observed in
[Joyce 1982; Matveev 1982]. When M is abelian and an element g ∈ G is
fixed, the resulting quandle is called an Alexander quandle.

(2) Let (X, ∗) be a quandle. We denote Sn
b (a) by a ∗n b. Put Z := Z or Z/mZ,

where m :=min{i > 0 | x ∗i y = x for any x, y ∈ X}. Then (X, {∗n
}n∈Z ) is a

Z -family of quandles.

For a multiple conjugation quandle X =
∐
λ∈3 Gλ, an X-set is a nonempty set

Y with a map ∗ : Y × X → Y satisfying the following axioms, where we use the
same symbol ∗ as the binary operation of X .
• For any y ∈ Y and a, b ∈ Gλ, we have y ∗ eλ = y and y ∗ (ab) = (y ∗ a) ∗ b,

where eλ is the identity of Gλ.

• For any y ∈ Y and a, b ∈ X , we have (y ∗ a) ∗ b = (y ∗ b) ∗ (a ∗ b).

Any multiple conjugation quandle X itself is an X -set with its binary operation. Any
singleton set {y0} is also an X -set with the map ∗ defined by y0 ∗ x = y0 for x ∈ X ,
which is called a trivial X -set. The index set 3 is an X -set with the map ∗ defined
by λ ∗ x = µ when Sx(Gλ)= Gµ for λ,µ ∈3 and x ∈ X .

3. Homology theory

In this section, we define a chain complex for MCQs that contains aspects of
both group and quandle homology theories. A subcomplex is also defined that
corresponds to a Reidemeister move for handlebody-links.

Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y be an X -set.

In what follows, we denote a sequence of elements of X by a bold symbol such
as a, and denote by |a| the length of a sequence a. For example, (a), 〈a〉, (y; a; b)
respectively denote

(a1, . . . , a|a|), 〈a1, . . . , a|a|〉, (y; a1, . . . , a|a|; b1, . . . , b|b|).
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Let Pn(X)Y be the free abelian group generated by the elements

(y; a1,1, . . . , a1,n1; . . . ; ak,1, . . . , ak,nk ) ∈
⋃

n1+···+nk=n

Y ×
k∏

i=1

⋃
λ∈3

Gni
λ

if n ≥ 0, and let Pn(X)Y = 0 otherwise. The elements of Pn(X)Y are called
prismatic chains and Pn(X)Y is called the prismatic chain group. Note that for
each j , the elements a j,1, . . . , a j,n j belong to one of the Gλ. For example, P3(X)Y
is generated by the elements (y; a; b; c), (y; a; e, f ), (y; d, e; c) and (y; d, e, f )
(where a, b, c ∈ X , d, e, f ∈ Gλ, y ∈ Y ). Here a, b, c may or may not belong to
the same Gµ (µ ∈3), but d, e, f belong to the same Gλ. All may belong to the
same Gλ.

We represent (y; a1; . . . ; ak) using the noncommutative multiplication form

〈y〉〈a1〉 · · · 〈ak〉.

We define 〈y〉〈a1〉 · · · 〈ak〉 ∗ b := 〈y ∗ b〉〈a1 ∗ b〉 · · · 〈ak ∗ b〉, where 〈a ∗ b〉 denotes
〈a1 ∗ b, . . . , a|a| ∗ b〉. We set |〈y〉〈a1〉 · · · 〈ak〉| := |a1| + · · · + |ak |.

We define a boundary homomorphism ∂n : Pn(X)Y → Pn−1(X)Y by

∂
(
〈y〉〈a1〉 · · · 〈ak〉

)
=

k∑
i=1

(−1)|〈y〉〈a1〉···〈ai−1〉|〈y〉〈a1〉 · · · ∂〈ai 〉 · · · 〈ak〉,

where

∂〈a1, . . . , am〉 = ∗a1〈a2, . . . , am〉+

m−1∑
i=1

(−1)i 〈a1, . . . , ai ai+1, . . . , am〉

+(−1)m〈a1, . . . , am−1〉.

The resulting terms ∂(〈a〉)= ∗a〈 〉− 〈 〉 for m = 1 in the above expression mean
that the formal symbol 〈 〉 is deleted. For n = 0, we define ∂〈y〉 = 0.

Example 3. The boundary maps in two and three dimensions are computed as
follows.

∂2(〈y〉〈a〉〈b〉)= 〈y ∗ a〉〈b〉− 〈y〉〈b〉− 〈y ∗ b〉〈a ∗ b〉+ 〈y〉〈a〉,

∂2(〈y〉〈a, b〉)= 〈y ∗ a〉〈b〉− 〈y〉〈ab〉+ 〈y〉〈a〉,

∂3(〈y〉〈a〉〈b〉〈c〉)= 〈y ∗ a〉〈b〉〈c〉− 〈y〉〈b〉〈c〉− 〈y ∗ b〉〈a ∗ b〉〈c〉

+ 〈y〉〈a〉〈c〉+ 〈y ∗ c〉〈a ∗ c〉〈b ∗ c〉− 〈y〉〈a〉〈b〉,

∂3(〈y〉〈a〉〈b, c〉)= 〈y ∗ a〉〈b, c〉− 〈y〉〈b, c〉− 〈y ∗ b〉〈a ∗ b〉〈c〉

+ 〈y〉〈a〉〈bc〉− 〈y〉〈a〉〈b〉,

∂3(〈y〉〈a, b〉〈c〉)= 〈y ∗ a〉〈b〉〈c〉− 〈y〉〈ab〉〈c〉+ 〈y〉〈a〉〈c〉

+ 〈y ∗ c〉〈a ∗ c, b ∗ c〉− 〈y〉〈a, b〉,

∂3(〈y〉〈a, b, c〉)= 〈y ∗ a〉〈b, c〉− 〈y〉〈ab, c〉+ 〈y〉〈a, bc〉− 〈y〉〈a, b〉.
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Proposition 4. P∗(X)Y = (Pn(X)Y , ∂n) is a chain complex.

Proof. The Leibniz rule

∂(στ)= (∂σ )τ + (−1)|σ |σ(∂τ)

is a restatement of the definition when k = 2. In fact, the general definition follows
from this by induction. Also ∂(σ ∗ a)= (∂σ ) ∗ a, and ∂ ◦ ∂ = 0 follows from these
two facts. �

We will later define a degeneracy subcomplex that is analogous (albeit more
complicated) to the subcomplex of degeneracies for quandle homology. Before
its definition, we give a description of simplicial decompositions of products of
simplices for motivation. We identify an n-simplex 1n with the set

{(x1, x2, . . . , xn) ∈ [0, 1]n : 0≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1},

called the right n-simplex. Then the n-cube [0, 1]n can be decomposed into n! sets
each of which is congruent to this right n-simplex that has n edges of length 1, and
has (n−k+1) edges of length

√
k for k=1, . . . , n. More specifically, for Ex ∈[0, 1]n

consider the permutation σ ∈6n such that 0≤ xσ(1)≤ xσ(2)≤ · · · ≤ xσ(n)≤ 1. If the
coordinates of Ex are all distinct, then there is a unique such σ and an n-simplex 1n

σ

congruent to the right n-simplex such that Ex lies in the interior of 1n
σ . Otherwise Ex

lies in the boundary of more than one such simplex. Now consider the product of
right simplices

1s
×1t

=

{
(Ex, Ey) ∈ [0, 1]s+t

∣∣∣∣ 0≤ x1 ≤ x2 ≤ · · · ≤ xs ≤ 1
0≤ y1 ≤ y2 ≤ · · · ≤ yt ≤ 1

}
,

where the notation (Ex, Ey) represents (x1, . . . , xs, y1, . . . , yt). This can be decom-
posed as a union of simplices of the form given above. For

Ez = (Ex, Ey) ∈1s
×1t

⊂ [0, 1]n,

where n = s+ t , there is an associated simplex 1n
σ that contains the point (Ex, Ey).

Suppose all coordinates of Ez are distinct, and let σ ∈ 6n be a permutation such
that 0< zσ(1) < · · ·< zσ(n). Then the subset {i1, i2, . . . , is} ⊂ {1, 2, . . . , s+ t} with
i1 < i2 < · · · < is is determined from the positions of coordinates of Ex , so that
zik = xk for k = 1, . . . , s. Thus a given subset {i1, i2, . . . , is} ⊂ {1, 2, . . . , s + t}
where i1 < i2 < · · ·< is determines an n-simplex in the decomposition of 1s

×1t .
We proceed to the definition of the degeneracy subcomplex.

For an expression of the form 〈a〉〈b〉 in a chain in Pn(X)Y , where 〈a〉 =
〈a1, . . . , as〉 and 〈b〉 = 〈b1, . . . , bt 〉 satisfy ai , b j ∈ Gλ for all i = 1, . . . , s and
j = 1, . . . , t , let the notation 〈〈a〉〈b〉〉i1,...,is represent (−1)

∑s
k=1(ik−k)

〈c1, . . . , cs+t 〉,
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where 1≤ i1 < · · ·< ik < · · ·< is ≤ s+ t , and

ci =

{
ak ∗ (b1 · · · bi−k) if i = ik,

bi−k if ik < i < ik+1.

If i = k in the first case, then we regard (b1 · · · bi−k) to be empty. For example,
〈〈a〉〈b〉〉1 = 〈a, b〉, 〈〈a〉〈b〉〉2 =−〈b, a ∗b〉, and 〈〈a, b〉〈c〉〉1,3 =−〈a, c, b ∗ c〉. We
also define the notation 〈〈a〉〈b〉〉 by

〈〈a〉〈b〉〉 :=
∑

1≤i1<···<is≤s+t

〈〈a〉〈b〉〉i1,...,is .

Define Dn(X)Y to be the subgroup of Pn(X)Y generated by the elements of the
form

〈y〉〈a1〉 · · · 〈a〉〈b〉 · · · 〈ak〉− 〈y〉〈a1〉 · · · 〈〈a〉〈b〉〉 · · · 〈ak〉,

where we implicitly assume the linearity of the notations 〈〈a〉〈b〉〉i1,...,is and 〈〈a〉〈b〉〉,
that is,

〈y〉〈a1〉 · · · 〈〈a〉〈b〉〉 · · · 〈ak〉=
∑

1≤i1<···<i|a|≤|〈a〉〈b〉|

〈y〉〈a1〉 · · · 〈〈a〉〈b〉〉i1,...,i|a| · · · 〈ak〉.

The chain group Dn(X)Y is called the group of decomposition degeneracies. We
will see that D∗(X)Y = (Dn(X)Y , ∂n) is a subcomplex of P∗(X)Y in Section 7.

We remark that the elements of the form

〈y〉〈a1〉 · · · 〈a〉〈a〉 · · · 〈ak〉

belong to Dn(X)Y .
For example, D2(X)Y is generated by the elements of the form

〈y〉〈a〉〈b〉− 〈y〉〈a, b〉+ 〈y〉〈b, a ∗ b〉,

and D3(X)Y is generated by the elements of the form

〈y〉〈a〉〈b〉〈x〉− 〈y〉〈a, b〉〈x〉+ 〈y〉〈b, a ∗ b〉〈x〉,

〈y〉〈x〉〈b〉〈c〉− 〈y〉〈x〉〈b, c〉+ 〈y〉〈x〉〈c, b ∗ c〉,

〈y〉〈a, b〉〈c〉− 〈y〉〈a, b, c〉+ 〈y〉〈a, c, b ∗ c〉− 〈y〉〈c, a ∗ c, b ∗ c〉,

〈y〉〈a〉〈b, c〉− 〈y〉〈a, b, c〉+ 〈y〉〈b, a ∗ b, c〉− 〈y〉〈b, c, a ∗ (bc)〉

for a, b, c ∈ Gλ, x ∈ X .

Definition 5. The quotient complex of P∗(X)Y modulo decomposition degeneracies
D∗(X)Y is denoted by C∗(X)Y = (Cn(X)Y , ∂n), where Cn(X)Y = Pn(X)Y /Dn(X)Y .
For an abelian group A, define the cochain complex C∗(X; A)Y =Hom(C∗(X)Y , A).
Denote by Hn(X)Y the n-th homology group of C∗(X)Y .
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4. Algebraic aspects of the homology

In this section we study algebraic aspects of the homology theory we defined.
Specifically, we characterize the first homology group, and show that a 2-cocycle
defines an extension. For simplicity we consider the case Y = {y0} is a singleton,
and we suppress the symbols 〈y0〉 whenever possible.

Let X be a multiple conjugation quandle, and Y = {y0} be a singleton. Then
P0(X)Y is infinite cyclic, generated by 〈y0〉, and ∂1(〈y0〉〈a〉) = 〈y0 ∗ a〉 − 〈y0〉

for a ∈ X . Hence H0(X)Y = Z. If X is a multiple conjugation quandle consisting
of a single group, H1(X)Y ∼= X ab, since P1(X)Y is the free abelian group generated
by the elements 〈y0〉〈a〉 (a ∈ X ), and

∂2(〈y0〉〈a, b〉)= 〈y0〉〈b〉− 〈y0〉〈ab〉+ 〈y0〉〈a〉,

∂2(〈y0〉〈a〉〈b〉)=−〈y0〉〈a ∗ b〉+ 〈y0〉〈a〉 = ∂2(〈y0〉〈a, b〉)− ∂2(〈y0〉〈b, b−1ab〉).

Proposition 6. Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, let Y = {y0}

be a singleton, and A an abelian group. A map φ : P2(X)Y → A is a 2-cocycle of
C∗(X)Y if and only if X × A =

∐
λ∈3(Gλ× A) with

(a, s) ∗ (b, t) :=
(
a ∗ b, s+φ(〈a〉〈b〉)

)
for (a, s), (b, t) ∈ X × A,

(a, s)(b, t) :=
(
ab, s+ t +φ(〈a, b〉)

)
for (a, s), (b, t) ∈ Gλ× A

is a multiple conjugation quandle, where φ(〈y0〉〈a〉〈b〉) and φ(〈y0〉〈a, b〉) are re-
spectively denoted by φ(〈a〉〈b〉) and φ(〈a, b〉) for short. Further,

(
eλ,−φ(〈eλ, eλ〉)

)
is the identity of the group Gλ× A, and

(
a−1,−s − φ(〈a, a−1

〉)− φ(〈eλ, eλ〉)
)

is
the inverse of (a, s) ∈ Gλ× A.

Proof. We show correspondences between cocycle conditions and MCQ conditions
for the extension.

(1) The correspondence between the cocycle condition φ
(
∂3(〈a, b, c〉)

)
= 0 and the

associativity of a group.
For (a, s), (b, t), (c, u)∈Gλ×A, φ(〈a, b〉)+φ(〈ab, c〉)=φ(〈b, c〉)+φ(〈a, bc〉)

if and only if
(
(a, s)(b, t)

)
(c, u)= (a, s)

(
(b, t)(c, u)

)
, since(

(a, s)(b, t)
)
(c, u)=

(
abc, s+ t + u+φ(〈a, b〉)+φ(〈ab, c〉)

)
,

(a, s)
(
(b, t)(c, u)

)
=
(
abc, s+ t + u+φ(〈b, c〉)+φ(〈a, bc〉)

)
.

We note that φ(〈a, b〉) + φ(〈ab, c〉) = φ(〈b, c〉) + φ(〈a, bc〉), or equivalently(
(a, s)(b, t)

)
(c, u) = (a, s)

(
(b, t)(c, u)

)
implies that φ(〈a, eλ〉) = φ(〈eλ, c〉) and

that φ(〈b−1, b〉)= φ(〈b, b−1
〉). These equalities respectively imply

(a, s)= (a, s)
(
eλ,−φ(〈eλ, eλ〉)

)
= (eλ,−φ(〈eλ, eλ〉))(a, s)

and
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eλ,−φ(〈eλ, eλ〉)

)
= (a, s)

(
a−1,−s−φ(〈a, a−1

〉)−φ(〈eλ, eλ〉)
)

=
(
a−1,−s−φ(〈a, a−1

〉)−φ(〈eλ, eλ〉)
)
(a, s).

It follows that
(
eλ,−φ(〈eλ, eλ〉)

)
is the identity of the group Gλ × A, and that(

a−1,−s−φ(〈a, a−1
〉)−φ(〈eλ, eλ〉)

)
is the inverse of (a, s) ∈ Gλ× A.

(2) The correspondence between the degeneracy of φ on D2(X)Y and the first axiom
of MCQs.

For (a, s), (b, t) ∈ Gλ× A, φ(〈a〉〈b〉)+φ(〈b, a ∗b〉)= φ(〈a, b〉) if and only if
(b, t)

(
(a, s) ∗ (b, t)

)
= (a, s)(b, t), since

(b, t)
(
(a, s) ∗ (b, t)

)
=
(
b(a ∗ b), s+ t +φ(〈a〉〈b〉)+φ(〈b, a ∗ b〉)

)
,

(a, s)(b, t)=
(
ab, s+ t +φ(〈a, b〉)

)
.

(3) The correspondence between the cocycle condition φ
(
∂3(〈x〉〈a, b〉)

)
= 0 and

the second axiom of MCQs.
For (x, r) ∈ X × A and (a, s), (b, t) ∈ Gλ× A,

φ(〈x〉〈ab〉)= φ(〈x〉〈a〉)+φ(〈x ∗ a〉〈b〉)

if and only if (x, r) ∗
(
(a, s)(b, t)

)
=
(
(x, r) ∗ (a, s)

)
∗ (b, t), since

(x, r) ∗
(
(a, s)(b, t)

)
=
(
x ∗ (ab), r +φ(〈x〉〈ab〉)

)
,(

(x, r) ∗ (a, s)
)
∗ (b, t)=

(
(x ∗ a) ∗ b, r +φ(〈x〉〈a〉)+φ(〈x ∗ a〉〈b〉)

)
.

Note φ(〈x〉〈ab〉)=φ(〈x〉〈a〉)+φ(〈x∗a〉〈b〉), or equivalently (x, r)∗
(
(a, s)(b, t)

)
=(

(x, r) ∗ (a, s)
)
∗ (b, t), implies that φ(〈x〉〈eλ〉)= 0. Then we have

(a, s) ∗
(
eλ,−φ(〈eλ, eλ〉)

)
= (a, s).

(4) The correspondence between the cocycle condition φ
(
∂3(〈a〉〈b〉〈c〉)

)
= 0 and

the third axiom of MCQs.
For (a, s), (b, t), (c, u) ∈ X × A,

φ(〈a〉〈b〉)+φ(〈a ∗ b〉〈c〉)= φ(〈a〉〈c〉)+φ(〈a ∗ c〉〈b ∗ c〉)

if and only if
(
(a, s) ∗ (b, t)

)
∗ (c, u)=

(
(a, s) ∗ (c, u)

)
∗
(
(b, t) ∗ (c, u)

)
, since(

(a, s)∗(b, t)
)
∗(c, u)=

(
(a∗b)∗c, s+φ(〈a〉〈b〉)+φ(〈a∗b〉〈c〉)

)
,(

(a, s)∗(c, u)
)
∗
(
(b, t)∗(c, u)

)
=
(
(a∗c)∗(b∗c), s+φ(〈a〉〈c〉)+φ(〈a∗c〉〈b∗c〉)

)
.

(5) The correspondence between the cocycle condition φ
(
∂3(〈a, b〉〈x〉)

)
= 0 and

the last axiom of MCQs.
For (x, r) ∈ X × A and (a, s), (b, t) ∈ Gλ× A,

φ(〈a, b〉)+φ(〈ab〉〈x〉)= φ(〈a〉〈x〉)+φ(〈b〉〈x〉)+φ(〈a ∗ x, b ∗ x〉)
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R1
←→

R1
←→

R2
←→

R3
←→

R4
←→

R4
←→

R5
←→

R5
←→

R6
←→

Figure 1. Reidemeister moves for handlebody-links.

if and only if
(
(a, s)(b, t)

)
∗ (x, r)=

(
(a, s) ∗ (x, r)

)(
(b, t) ∗ (x, r)

)
, since(

(a,s)(b,t)
)
∗(x,r)=

(
(ab)∗x,s+t+φ(〈a,b〉)+φ(〈ab〉〈x〉)

)
,(

(a,s)∗(x,r)
)(
(b,t)∗(x,r)

)
=
(
(a∗x)(b∗x),

s+t+φ(〈a〉〈x〉)+φ(〈b〉〈x〉)+φ(〈a∗x,b∗x〉)
)
.

Therefore φ is a 2-cocycle if and only if X×A is a multiple conjugation quandle. �

5. Quandle cocycle invariants for handlebody-links

The definition of a multiple conjugation quandle is motivated from handlebody-
links and their colorings [Ishii 2015b]. A handlebody-link is a disjoint union of
handlebodies embedded in the 3-sphere S3. A handlebody-knot is a one component
handlebody-link. Two handlebody-links are equivalent if there is an orientation-
preserving self-homeomorphism of S3 which sends one to the other. A diagram of a
handlebody-link is a diagram of a spatial trivalent graph whose regular neighborhood
is the handlebody-link, where a spatial trivalent graph is a finite trivalent graph
embedded in S3. In this paper, a trivalent graph may contain circle components.
Two handlebody-links are equivalent if and only if their diagrams are related by a
finite sequence of R1–R6 moves depicted in Figure 1 [Ishii 2008].

An S1-orientation of a handlebody-link is an orientation of all genus 1 compo-
nents of the handlebody-link, where an orientation of a solid torus is an orientation
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Figure 2. Y-orientation.
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of its core S1. Two S1-oriented handlebody-links are equivalent if there is an
orientation-preserving self-homeomorphism of S3 which sends one to the other
preserving the S1-orientation. A Y-orientation of a spatial trivalent graph is an
orientation of the graph without sources and sinks with respect to the orientation (see
Figure 2). We note that the term Y-orientation is a symbolic convention, and has no
relation to an X -set Y . A diagram of an S1-oriented handlebody-link is a diagram of
a Y-oriented spatial trivalent graph whose regular neighborhood is the S1-oriented
handlebody-link where the S1-orientation is induced from the Y-orientation by
forgetting the orientations except on circle components of the Y-oriented spatial
trivalent graph. Y-oriented R1–R6 moves are R1–R6 moves between two diagrams
with Y-orientations which are identical except in the disk where the move applied.
Two S1-oriented handlebody-links are equivalent if and only if their diagrams are
related by a finite sequence of Y-oriented R1–R6 moves [Ishii 2015a]. Note that
in Figure 1 (R6), if all end points are oriented downward, then either choice of
the two possible orientations of the middle edge makes the diagram Y-oriented
locally. Thus reversing an orientation of this edge can be regarded as applying
Y-oriented R6 moves twice. This is the case whenever both orientations of an edge
give Y-orientations.

Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y be an X -set. Let

D be a diagram of an S1-oriented handlebody-link H . We denote by A(D) the
set of arcs of D, where an arc is a piece of a curve each of whose endpoints is an
undercrossing or a vertex. We denote by R(D) the set of complementary regions
of D. In this paper, an orientation of an arc is represented by the normal orientation
obtained by rotating the usual orientation counterclockwise by π/2 on the diagram.
An X-coloring C of a diagram D is an assignment of an element of X to each arc
α ∈A(D) satisfying the conditions depicted in the left three diagrams in Figure 3 at
each crossing and each vertex of D. An XY -coloring C of D is an extension of an
X -coloring of D which assigns an element of Y to each region R ∈R(D) satisfying
the condition depicted in the rightmost diagram in Figure 3 at each arc. We denote
by ColX (D) (resp. ColX (D)Y ) the set of X -colorings (resp. XY -colorings) of D.
Then we have the following proposition.

→

b

a a ∗ b

?

@
@

�
�

↗ ↘

→

a b

ab

a, b ∈ Gλ

�
�

@
@

↘ ↗

→

a b

ab

a, b ∈ Gλ

→

a

x x ∗ a

?

Figure 3. Rules of a coloring.
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↑

→
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b
y

〈y〉〈a〉〈b〉

↓

→

a

b
y

−〈y〉〈a〉〈b〉

@
@
�

�

↗ ↘

a b

y

〈y〉〈a, b〉

�
�
@
@

↘ ↗

a b

y

−〈y〉〈a, b〉

Figure 4. Local chains represented by crossings and vertices.

Proposition 7 [Ishii 2015a]. Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle,

and let Y be an X-set. Let D be a diagram of an S1-oriented handlebody-link H.
Let D′ be a diagram obtained by applying one of the Y-oriented R1–R6 moves to
the diagram D once. For an X-coloring (resp. XY -coloring) C of D, there is a
unique X-coloring (resp. XY -coloring) C ′ of D′ which coincides with C except near
a point where the move applied.

For an XY -coloring C of a diagram D of an S1-oriented handlebody-link, we
define the local chains w(ξ ;C) ∈ C2(X)Y at each crossing ξ and each vertex ξ of
D as depicted in Figure 4. We define a chain W (D;C) ∈ C2(X)Y by

W (D;C)=
∑
ξ

w(ξ ;C),

where ξ runs over all crossings and vertices of D. This is similar to the definitions
found in [Carter et al. 2001] for links and surface-links, and in [Ishii and Iwakiri
2012] for handlebody-links.

Lemma 8. The chain W (D;C) is a 2-cycle of C∗(X)Y . Further, for cohomologous
2-cocycles θ, θ ′ of C∗(X; A)Y , we have

θ
(
W (D;C)

)
= θ ′

(
W (D;C)

)
.

Proof. It is sufficient to show that W (D;C) is a 2-cycle of C∗(X)Y . We denote
by SA(D) the set of semiarcs of D, where a semiarc is a piece of a curve each
of whose endpoints is a crossing or a vertex. We denote by SA(D; ξ) the set of
semiarcs incident to ξ , where ξ is a crossing or a vertex of D.

For a semiarc α, there is a unique region Rα facing α such that the normal
orientation of α points from the region Rα to the opposite region with respect to α.
For a semiarc α incident to a crossing or a vertex ξ , we define

ε(α; ξ) :=

{
1 if the orientation of α points to ξ ,
−1 otherwise.

Let χ1, . . . , χ4 and ω1, ω2, ω3 be the semiarcs incident to a crossing χ and a vertex
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Figure 5. Semiarcs near crossings and vertices.

ω as depicted in Figure 5. From

∂2
(
w(χ;C)

)
=

∑
α∈SA(D;χ)

ε(α;χ)〈C(Rα)〉〈C(α)〉,

∂2
(
w(ω;C)

)
=

∑
α∈SA(D;ω)

ε(α;ω)〈C(Rα)〉〈C(α)〉,

it follows that

∂2
(
W (D;C)

)
=
∑
χ

∂2
(
w(χ;C)

)
+
∑
ω

∂2
(
w(ω;C)

)
= 0,

where χ and ω, respectively, run over all crossings and vertices of D. �

Lemma 9. Let D be a diagram of an S1-oriented handlebody-link H. Let D′ be a
diagram obtained by applying one of the Y-oriented R1–R6 moves to the diagram
D once. Let C be an XY -coloring of D, let C ′ be the unique XY -coloring of D′

such that C and C ′ coincide except near a point where the move applied. Then we
have [W (D;C)] = [W (D′;C ′)] in H2(X)Y .

Proof. We have the invariance under the Y-oriented R1 and R4 moves, since the
difference between [W (D;C)] and [W (D′;C ′)] is an element of D2(X)Y . The
invariance under the Y-oriented R2 move follows from the signs of the crossings
which appear in the move. We have the invariance under the Y-oriented R3, R5, and
R6 moves, since the difference between [W (D;C)] and [W (D′;C ′)] is an image
of ∂3. See Figure 6 for Y-oriented R6 moves, where all arcs are directed from top
to bottom. �

For a 2-cocycle θ of C∗(X; A)Y , we define

H(D) := {[W (D;C)] ∈ H2(X)Y | C ∈ ColX (D)Y },

8θ (D) := {θ(W (D;C)) ∈ A | C ∈ ColX (D)Y }

as multisets. By Lemmas 8 and 9, we have the following theorem.

Theorem 10. Let D be a diagram of an S1-oriented handlebody-link H. Then
H(D) and 8θ (D) are invariants of H.
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Figure 6. Chains for Y-oriented R6 moves.

→a = ←
a−1

Figure 7. (X,↑)-color.

For an S1-oriented handlebody-link H , let H∗ be the mirror image of H , and−H
be the S1-oriented handlebody-link obtained from H by reversing its S1-orientation.
Then we also have

H(−H∗)=−H(H), 8θ (−H∗)=−8θ (H),

where −S = {−a | a ∈ S} for a multiset S. It is desirable to further study these
invariants and applications to handlebody-links.

6. For unoriented handlebody-links

Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y be an X -set. Let

D be a diagram of an (unoriented) handlebody-link H . An (X,↑)-color Cα of an
arc α ∈A(D) is a map Cα from the set of orientations of the arc α to X such that
Cα(−o)= Cα(o)−1, where −o is the inverse of an orientation o. An (X,↑)-color
Cα is represented by a pair of an orientation o of α and an element Cα(o) ∈ X on
the diagram D. Two pairs (o, a) and (−o, a−1) represent the same (X,↑)-color
(see Figure 7).
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Figure 8. Rules of an unoriented coloring.

An (X,↑)-coloring C of a diagram D is an assignment of an (X,↑)-color Cα
to each arc α ∈ A(D) satisfying the conditions depicted in the left two diagrams
in Figure 8 at each crossing and each vertex of D. An (X,↑)Y -coloring C of
D is an extension of an (X,↑)-coloring of D which assigns an element of Y to
each region R ∈R(D) satisfying the condition depicted in the rightmost diagram
in Figure 8 at each arc. We denote by Col(X,↑)(D) (resp. Col(X,↑)(D)Y ) the set
of (X,↑)-colorings (resp. (X,↑)Y -colorings) of D. The well-definedness of an
(X,↑)-coloring (resp. (X,↑)Y -coloring) follows from

(a−1)−1
= a, a−1

∗ b = (a ∗ b)−1, (a ∗ b) ∗ b−1
= a,

b(ab)−1
= a−1, (ab)−1a = b−1.

The first three equalities are the defining conditions of a good involution considered
in [Kamada 2007; Kamada and Oshiro 2010]. They used the notion of a good
involution precisely to allow for appropriate changes of orientations. Following their
arguments, we can show the following proposition in the same way as Proposition 7.

Proposition 11. Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y

be an X-set. Let D be a diagram of a handlebody-link H. Let D′ be a diagram
obtained by applying one of the R1–R6 moves to the diagram D once. For an
(X,↑)-coloring (resp. (X,↑)Y -coloring) C of D, there is a unique (X,↑)-coloring
(resp. (X,↑)Y -coloring) C ′ of D′ which coincides with C except near a point where
the move applied.

Let D↑n (X)Y be the subgroup of Pn(X)Y generated by the elements of the form

〈y〉〈a1〉 · · · 〈a〉 · · · 〈ak〉+ 〈y〉〈a1〉 · · · 〈a〉−1
i · · · 〈ak〉,

where 〈a1, . . . , am〉
−1
i denotes

∗a1〈a−1
1 , a1a2, a3, . . . , am〉 if i = 1,

〈a1, . . . , ai−2, ai−1ai , a−1
i , ai ai+1, ai+2, . . . , am〉 if i 6= 1,m,

〈a1, . . . , am−2, am−1am, a−1
m 〉 if i = m.
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The chain group D↑n (X)Y will be called the group of orientation degeneracies. For
example, D↑1 (X)Y is generated by the elements of the form

〈y〉〈a〉+ 〈y ∗ a〉〈a−1
〉,

and D↑2 (X)Y is generated by the elements of the form

〈y〉〈a〉〈b〉+ 〈y ∗ a〉〈a−1
〉〈b〉, 〈y〉〈a〉〈b〉+ 〈y ∗ b〉〈a ∗ b〉〈b−1

〉,

〈y〉〈a, b〉+ 〈y ∗ a〉〈a−1, ab〉, 〈y〉〈a, b〉+ 〈y〉〈ab, b−1
〉.

We remark that the elements of the form

〈y〉〈a1〉···〈a1,...,am〉···〈ak〉−(−1)m(m+1)/2
〈y〉〈a1〉···∗(a1···am)〈a−1

m ,...,a−1
1 〉···〈ak〉

belong to D↑n (X)Y . Furthermore, we can prove that the elements of the form

〈y〉〈a1〉···〈a1,...,am〉···〈ak〉−(−1)i(i+1)/2
〈y〉〈a1〉···

∗(a1···ai )〈a−1
i ,...,a−1

1 ,a1···ai+1,ai+2,...,am〉···〈ak〉

belong to D↑n (X)Y by induction.

Lemma 12. D↑∗ (X)Y = (D
↑
n (X)Y , ∂n) is a subcomplex of P∗(X)Y .

Proof. We have ∂n(D
↑
n (X)Y )⊂ D↑n−1(X)Y , since

∂(〈a1, . . . , am〉+ ∗a1〈a−1
1 , a1a2, a3, . . . , am〉)

= 〈a1, a2a3, a4, . . . , am〉+ ∗a1〈a−1
1 , a1a2a3, a4, . . . , am〉

+

m−1∑
i=3

(−1)i
(
〈a1, . . . , ai ai+1, ai+2, . . . , am〉

+ ∗a1〈a−1
1 , a1a2, a2, . . . , ai ai+1, ai+2, . . . , am〉

)
+ (−1)m(〈a1, . . . , am−1〉+ ∗a1〈a−1

1 , a1a2, a3, . . . , am−1〉)

and
∂(〈a1, . . . , am〉+ 〈a1, . . . , ai−1ai , a−1

i , ai ai+1, ai+2, . . . , am〉)

=∗ a1〈a2, . . . , am〉+ ∗a1〈a2, . . . , ai−1ai , a−1
i , ai ai+1, ai+2, . . . , am〉

+

i−2∑
j=1

(−1) j(
〈a1, . . . , a j a j+1, a j+2, . . . , am〉

+ 〈a1, . . . , a j a j+1, a j+2, . . . , ai−1ai , a−1
i , ai ai+1, ai+2, . . . , am〉

)
+

m−1∑
j=i+1

(−1) j(
〈a1, . . . , a j a j+1, a j+2, . . . , am〉

+ 〈a1, . . . , ai−1ai , a−1
i , ai ai+1, ai+2, . . . , a j a j+1, . . . , am〉

)
+ (−1)m(〈a1, . . . , am−1〉+ 〈a1, . . . , ai−1ai , a−1

i , ai ai+1, ai+2, . . . , am−1〉).

Thus D↑∗ (X)Y is a subcomplex of P∗(X)Y . �
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Figure 9. Well-definedness of local chains for unoriented handle-
body-links.

Definition 13. We set C↑n (X)Y = Pn(X)Y /(Dn(X)Y + D↑n (X)Y ). The quotient
complex (C↑n (X)Y , ∂n) is denoted by C↑∗ (X)Y . For an abelian group A, we define
the cochain complex C∗

↑
(X; A)Y = Hom(C↑∗ (X)Y , A). We denote by H↑n (X)Y the

n-th homology group of C↑∗ (X)Y .

For an (X,↑)Y -coloring C of a diagram D for a handlebody-link, we define
the local chains w(ξ ;C) at each crossing ξ and each vertex ξ of D as depicted in
Figure 4. The local chain is well-defined, since

−〈y ∗ a〉〈a−1
〉〈b〉 = 〈y〉〈a〉〈b〉 = −〈y ∗ b〉〈a ∗ b〉〈b−1

〉,

−〈y ∗ a〉〈a−1, ab〉 = 〈y〉〈a, b〉 = −〈y〉〈ab, b−1
〉

in C↑2 (X)Y (see Figure 9). Then we can define the chain W (D;C) ∈ C↑2 (X)Y in
the same way as W (D;C) ∈ C2(X)Y , and obtain invariants H(H), 8θ (H) for an
(unoriented) handlebody-link H .

7. Simplicial decomposition

The goal of this section is to prove Lemma 15 stating that D∗(X)Y is a subcomplex.
The formula of D2(X)Y , when 〈y〉 is omitted, is written as

〈a〉〈b〉− 〈a, b〉+ 〈b, a ∗ b〉,

and its geometric interpretation is depicted in Figure 10. In (A), a colored triangle
representing 〈a, b〉 is depicted, as well as its dual graph with a trivalent vertex.
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〈a, b〉− 〈b, a ∗ b〉

Figure 10. Dividing a square into triangles.

The colorings of such a graph were discussed in Section 5. A colored square
representing 〈a〉〈b〉 is depicted in (B), with the dual graph that corresponds to a
crossing. In (C), a triangulation of the square is depicted, and after triangulation
it represents 〈a, b〉 − 〈b, a ∗ b〉. Thus the triangulation corresponds to the above
formula. This decomposition is found in [Carter et al. 2003].

At the same time, this equation corresponds to Y-oriented R4 moves in Figure 1
as follows. In Figure 11, colored diagrams of Y-oriented R4 moves are depicted. In
the left diagram, the left-hand side represents the chain 〈a〉〈b〉+ 〈b, a ∗ b〉 and the
right-hand side represents 〈a, b〉. In the right diagram, the left-hand side represents
the chain −〈a〉〈b〉 − 〈b, a ∗ b〉 and the right-hand side represents −〈a, b〉. Thus
the above equality is needed for colored diagrams to define equivalent chains in
the quotient complex. A geometric interpretation of the last expression of D3(X)Y
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a b
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Figure 11. Colors for Y-oriented R4 moves.
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a∗(bc)

(a∗b)c

abc
a∗b

a

ab bc b

c

Figure 12. Decomposition of a prism into tetrahedra.
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omitting 〈y〉,

〈a〉〈b, c〉− 〈a, b, c〉+ 〈b, a ∗ b, c〉− 〈b, c, a ∗ (bc)〉

is found in Figure 12. The symbol 〈a〉 is represented by the horizontal 1-simplex,
〈b, c〉 is represented by the right triangular face, and 〈a〉〈b, c〉 is represented by
a prism. The term 〈a, b, c〉 corresponds to the right top tetrahedron in the prism.
The expressions of the form 〈〈a〉〈b, c〉〉i provides a triangulation of a product of
simplices. Each term corresponds to

〈a, b, c〉 = 〈〈a〉〈b, c〉〉1,

〈b, a ∗ b, c〉 = −〈〈a〉〈b, c〉〉2,

〈b, c, a ∗ (bc)〉 = 〈〈a〉〈b, c〉〉3.

Below we use the notation

∂(0)〈x1, . . . , xm〉 = ∗x1〈x2, . . . , xm〉,

∂(i)〈x1, . . . , xm〉 = (−1)i 〈x1, . . . , xi xi+1, . . . , xm〉,

∂(m)〈x1, . . . , xm〉 = (−1)m〈x1, . . . , xm−1〉.

Then the boundaries of 〈〈a〉〈b, c〉〉i are computed as

〈〈a〉〈b, c〉〉i ∂
7−→∂(0)〈〈a〉〈b, c〉〉i+∂(1)〈〈a〉〈b, c〉〉i+∂(2)〈〈a〉〈b, c〉〉i+∂(3)〈〈a〉〈b, c〉〉i

and the right-hand sides for i = 1, 2, 3 are computed as follows:

〈〈a〉〈b, c〉〉1 ∂
7−→∗a〈b, c〉− 〈ab, c〉+ 〈a, bc〉− 〈a, b〉

= 〈(∂(0)〈a〉)〈b, c〉〉1+ ∂(1)〈〈a〉〈b, c〉〉1−〈〈a〉∂(1)〈b, c〉〉1−〈〈a〉∂(2)〈b, c〉〉1,

〈〈a〉〈b, c〉〉2 ∂
7−→−∗ b〈a ∗ b, c〉+ 〈b(a ∗ b), c〉− 〈b, (a ∗ b)c〉+ 〈b, a ∗ b〉

= −〈〈a〉∂(0)〈b, c〉〉1− ∂(1)〈〈a〉〈b, c〉〉1− ∂(2)〈〈a〉〈b, c〉〉3−〈〈a〉∂(2)〈b, c〉〉2,

〈〈a〉〈b, c〉〉3 ∂
7−→∗b〈c, a ∗ (bc)〉− 〈bc, a ∗ (bc)〉+ 〈b, c(a ∗ (bc))〉− 〈b, c〉

= −〈〈a〉∂(0)〈b, c〉〉2−〈〈a〉∂(1)〈b, c〉〉2+ ∂(2)〈〈a〉〈b, c〉〉3+〈(∂(1)〈a〉)〈b, c〉〉1,

where 〈(∂(i)〈a〉)〈b, c〉〉1 is regarded as (∂(i)〈a〉)〈b, c〉. The canceling terms of the
form ∂(i)〈〈a〉〈b, c〉〉 j in the above boundaries correspond to internal triangles in
Figure 12 that are shared by a pair of tetrahedra. Other terms are of the form
〈∂(i)〈a〉〈b, c〉〉 j or 〈〈a〉∂(i)〈b, c〉〉 j , and they are outer triangles that constitute the
boundary of the prism. The expression 〈∂(i)〈a〉〈b, c〉〉 j represents the two triangles
on the right and the left in Figure 12, since this represents

(boundary of the interval represented by 〈a〉)×(the triangle represented by 〈b, c〉).

Thus the outer boundary follows the pattern of Leibniz rule.
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In terms of the coloring invariant of graphs, as in the case of the preceding
relation for the Y-oriented R4 move, this relation corresponds to an equivalence of
colored 2-complexes called foams, which are higher-dimensional analogues of the
move depicted in Figure 11. See [Carter and Ishii 2012] for more on colored foams.

Lemma 14. For 〈a〉 = 〈a1, . . . , as〉 and 〈b〉 = 〈b1, . . . , bt 〉 where ai , b j ∈ Gλ, we
have

∂〈〈a〉〈b〉〉 = 〈(∂〈a〉)〈b〉〉+ (−1)|a|〈〈a〉(∂〈b〉)〉,

where 〈〈 · 〉〈 · 〉〉 is linearly extended.

Proof. By definition, we have

∂〈〈a〉〈b〉〉 =
s+t∑
i=0

∂(i)〈〈a〉〈b〉〉 =
s+t∑
i=0

∑
1≤i1<···<is≤s+t

∂(i)〈〈a〉〈b〉〉i1,...,is .

Direct computations show that

∂(0)〈〈a〉〈b〉〉i1,...,is

=

{
〈(∂(0)〈a〉)〈b〉〉i2−1,...,is−1 if (i1 = 1),
(−1)s〈〈a〉(∂(0)〈b〉)〉i1−1,...,is−1 if (i1 > 1),

∂(i)〈〈a〉〈b〉〉i1,...,is

=


〈(∂(k)〈a〉)〈b〉〉i1,...,ik ,ik+2−1,...,is−1 if (ik = i < i + 1= ik+1),

−∂(i)〈〈a〉〈b〉〉i1,...,ik−1,ik+1,ik+1,...,is if (ik = i < i + 1< ik+1),

−∂(i)〈〈a〉〈b〉〉i1,...,ik ,ik+1−1,ik+2,...,is if (ik < i < i + 1= ik+1),

(−1)s〈〈a〉(∂(i−k)〈b〉)〉i1,...,ik ,ik+1−1,...,is−1 if (ik < i < i + 1< ik+1),

∂(s+t)〈〈a〉〈b〉〉i1,...,is

=

{
〈(∂(s)〈a〉)〈b〉〉i1,...,is−1 if (is = s+ t),
(−1)s〈〈a〉(∂(t)〈b〉)〉i1,...,is if (is < s+ t).

The terms of the form −∂(i)〈〈a〉〈b〉〉i1,...,ik−1,ik+1,ik+1,...,is (ik = i < i + 1< ik+1)
and −∂(i)〈〈a〉〈b〉〉i1,...,ik ,ik+1−1,ik+2,...,is (ik < i < i + 1 = ik+1) cancel in pairs. The
other terms are organized as∑

1≤i1<···
<is−1≤s+t−1

s∑
i=0

〈(∂(i)〈a〉)〈b〉〉i1,...,is−1 +

∑
1≤i1<···

<is≤s+t−1

t∑
i=0

(−1)s〈〈a〉(∂(i)〈b〉)〉i1,...,is

=

∑
1≤i1<···

<is−1≤s+t−1

〈(∂〈a〉)〈b〉〉i1,...,is−1 +

∑
1≤i1<···

<is≤s+t−1

(−1)s〈〈a〉(∂〈b〉)〉i1,...,is

= 〈(∂〈a〉)〈b〉〉+ (−1)s〈〈a〉(∂〈b〉)〉,

where 〈 · 〉i1,...,is is linearly extended. �
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Since the Leibniz rule holds (by the preceding Lemma 14), we have the following.

Lemma 15. D∗(X)Y = (Dn(X)Y , ∂n) is a subcomplex of P∗(X)Y .

8. Chain map for simplicial decomposition

In this section we examine relations between group and MCQ homology theories.

8.1. Simplicial decomposition (general case). We observe an associativity of the
notation 〈〈a〉〈b〉〉 defined in Section 3, and extend the notation to multi-tuples. For
an expression of the form 〈a〉〈b〉〈c〉 in a chain in P∗(X)Y , where a, b, c∈

⋃
m∈N Gm

λ ,
it is easy to see that we have the following.

Lemma 16. 〈〈〈a〉〈b〉〉〈c〉〉 = 〈〈a〉〈〈b〉〈c〉〉〉.
By Lemma 16, we can define 〈〈a〉〈b〉〈c〉〉 by 〈〈〈a〉〈b〉〉〈c〉〉 = 〈〈a〉〈〈b〉〈c〉〉〉.

Moreover, for an expression of the form 〈a1〉 · · · 〈ak〉 in a chain in P∗(X)Y , where
a1, . . . , ak ∈

⋃
m∈N Gm

λ , we can define 〈〈a1〉 · · · 〈ak〉〉 inductively. By Lemma 14,
this notation is compatible with the boundary homomorphism ∂ in the following
sense.

Lemma 17. ∂〈〈a1〉 · · · 〈ak〉〉 = 〈∂(〈a1〉 · · · 〈ak〉)〉.

We give a direct formula (instead of induction) for the notation 〈〈a1〉 · · · 〈ak〉〉

later in Section 8.3.

8.2. Chain map (from MCQ to group). Let X =
∐
λ∈3 Gλ be a multiple conju-

gation quandle, and let Y be an X -set. Let PG
n (X)Y be the subgroup of Pn(X)Y

generated by the elements of the form 〈y〉〈a〉. Let DG
n (X)Y and DG,↑

n (X)Y be
respectively PG

n (X)Y ∩ Dn(X)Y and PG
n (X)Y ∩ D↑n (X)Y , which are the subgroups

of PG
n (X)Y . Note that DG

n (X)Y = PG
n (X)Y ∩ Dn(X)Y is the trivial group. We put

CG
n (X)Y := PG

n (X)Y /DG
n (X)Y = PG

n (X)Y ,

CG,↑
n (X)Y := PG

n (X)Y /(D
G
n (X)Y + DG,↑

n (X)Y )= PG
n (X)Y /DG,↑

n (X)Y .

Then CG
∗
(X)Y = (CG

n (X)Y , ∂n) and CG,↑
∗ (X)Y = (C

G,↑
n (X)Y , ∂n) are chain com-

plexes. If X is a group (regarded as X =
∐
λ∈3 Gλ with 3 a singleton) and Y is a

singleton, CG
∗
(X)Y is essentially the same as the chain complex of the usual group

homology. For an abelian group A, we define the cochain complexes

C∗G(X; A)Y = Hom(CG
∗
(X)Y , A) and C∗G,↑(X; A)Y = Hom(CG,↑

∗
(X)Y , A).

When X is a multiple conjugation quandle consisting of a single group, define
homomorphisms 1 : P∗(X)Y → PG

∗
(X)Y by

1(〈a1〉 · · · 〈am〉) := 〈〈a1〉 · · · 〈am〉〉.

Then by Lemma 17 and from these definitions, we have the following.
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Proposition 18. The homomorphisms 1 : P∗(X)Y → PG
∗
(X)Y give rise to a chain

homomorphism. Furthermore,1 induces the chain homomorphisms1 :C∗(X)Y →
CG
∗
(X)Y and 1 : C↑∗ (X)Y → CG,↑

∗ (X)Y .

When n = 0, 1, the induced homomorphisms 1 : Cn(X)Y → CG
n (X)Y and

1 : C↑n (X)Y → CG,↑
n (X)Y are identities. Furthermore Hn(X)Y ∼= H G

n (X)Y and
H↑n (X)Y ∼= H G,↑

n (X)Y for n = 0, 1. We note that the chain homomorphisms 1 are
defined only for an MCQ consisting of a single group. In this case, we also have the
cochain homomorphisms 1 : C∗G(X; A)Y → C∗(X; A)Y and 1 : C∗G,↑(X; A)Y →
C∗
↑
(X; A)Y for an abelian group A. Hence, for a given cocycle of group homology

theory, we can obtain that of our theory through 1. This approach will be discussed
in Section 10.

Remark 19. We point out here that for a group X = Z3 and a trivial X -set Y ,
there is a group 2-cocycle η that satisfies the conditions in C2

G,↑(X)Y (coming from
DG,↑

n (X)Y ),

η〈a, b〉+ η〈a−1, ab〉 = 0 and η〈a, b〉+ η〈ab, b−1
〉 = 0.

Specifically, let η : Z3×Z3→ Z3 denote the function that has values η(1, 1)= 1,
η(2, 2)= 2 and η(g, h)= 0 otherwise. It is a direct calculation that the condition
above is satisfied. Furthermore, to see that η is a cocycle, consider the generating
cocycle over G = Zp where p is a prime that is defined by

η0(x, y)= (1/p)(x + y− x + y ) (mod p),

where x is an integer 0 ≤ x < p such that x = x (mod p). It is known that η0

is a generating 2-cocycle for H 2
G(Zp;Zp) for prime p. For p = 3, let ζ be a

1-chain defined by ζ(0) = 0 and ζ(1)+ ζ(2) = 2. Then one can easily compute
that η = η0+ δζ . Hence there is a 2-cocycle η ∈ C2

G,↑(X)Y of our theory that is
cohomologous to the standard group 2-cocycle η0.

8.3. Simplicial decomposition (direct formula). We give a direct formula (instead
of induction) for the notation 〈〈a1〉 · · · 〈ak〉〉. To the term 〈〈a〉〈b〉〉i1,...,is , we associate
a vector v = (v1, . . . , vn) ∈ {1, 2}n by defining vi = 1 if i = i j for some j , and
otherwise vi = 2, where n = s+ t . In the term

ci =

{
ak ∗ (b1 · · · bi−k) if i = ik ,
bi−k if ik < i < ik+1,

the first entry with ak in it corresponds to vi = 1 and the second with bi−k to vi = 2.
We note that the term ak came from the first part 〈a〉 in 〈〈a〉〈b〉〉i1,...,is so that vi = 1
is assigned, and the term bi−k belongs to the second part 〈b〉 receiving vi = 2.

Example 20. For the term 〈a〉〈b, c〉 discussed for Figure 12, the terms 〈a, b, c〉,
−〈b, a ∗ b, c〉, and 〈b, c, a ∗ (bc)〉 correspond to the vectors (1, 2, 2), (2, 1, 2), and
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(2, 2, 1), respectively. Note that (2, 1, 2) is obtained from (1, 2, 2) by a transposition
of the first two entries, and this is reflected in Figure 12 by the fact that the tetrahedra
represented by these vectors share a triangular internal face. We indicate by an
edge between two vectors when one is obtained from the other by a transposition
of consecutive entries. In this case we draw the graph:

(1, 2, 2) −−(2, 1, 2) −−(2, 2, 1).

For 〈a, b〉〈c, d〉, the terms 〈〈a〉〈b〉〉i1,...,is are listed as 〈a, b, c, d〉,−〈a, c, b∗c, d〉,
〈c, a∗c, b∗c, d〉, 〈a, c, d, b∗(cd)〉,−〈c, a∗c, d, b∗(cd)〉, 〈c, d, a∗(cd), b∗(cd)〉,
and these correspond to vectors

(1, 1, 2, 2), (1, 2, 1, 2), (2, 1, 1, 2), (1, 2, 2, 1), (2, 1, 2, 1), (2, 2, 1, 1),

respectively. They are connected by edges as

(2, 1, 1, 2)
� �

(1, 1, 2, 2)− (1, 2, 1, 2) (2, 1, 2, 1)− (2, 2, 1, 1)
� �
(1, 2, 2, 1)

indicating which simplices share internal faces. Note that from a vector v =

(v1, . . . , vn) ∈ {1, 2}n the subscripts i1, . . . , is in 〈〈a〉〈b〉〉i1,...,is are recovered by
the condition vi j = 1.

For an expression of the form 〈a1〉 · · · 〈ak〉 in a chain in P∗(X)Y , where

a1, . . . , ak ∈
⋃
m∈N

Gm
λ ,

we put n = |a1| + · · · + |ak | and consider vectors v = (v1, . . . , vn) ∈ {1, . . . , k}n ,
and denote by #i

jv the number of j’s in v1, . . . , vi . Then for a given v define
i( j, 1) < · · ·< i( j, n j ) by the condition that vi( j,1) = · · · = vi( j,n j ) = j .

With these notations in hand, we temporarily define 〈〈a1〉 · · · 〈ak〉〉
′ by∑

v∈{1,...,k}n
#n

j v=n j ( j=1,...,k)

(−1)
∑k−1

j=1
∑n j

t=1(i( j,t)−t−
∑ j−1

s=1 ns)〈c1, . . . , cn〉

for 〈a1〉 · · · 〈ak〉 = 〈a1,1, . . . , a1,n1〉 · · · 〈ak,1, . . . , ak,nk 〉, where

ci = avi ,#i
vi

v ∗

k∏
s=vi+1

#i
s v∏

t=1

as,t .

Then we have 〈〈a1〉 · · · 〈ak〉〉
′
= 〈〈a1〉 · · · 〈ak〉〉, from the fact that simplices of both
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(1,2,2,3)
� �

(2,1,2,3) (1,2,3,2)
� � � �

(2,2,1,3) (2,1,3,2) (1,3,2,2)
| | |

(2,2,3,1) (2,3,1,2) (3,1,2,2)
� � � �

(2,3,2,1) (3,2,1,2)
� �
(3,2,2,1)

Figure 13. Boundaries of 〈a〉〈b, c〉〈d〉.

sides are in one-to-one correspondence with vectors v = (v1, . . . , vn) ∈ {1, . . . , k}n ,
and the signs correspond to the number of transpositions, modulo 2, of a given
vector v from the vector (1, . . . , 1, 2, . . . , 2, . . . , k, . . . , k).

Example 21. The terms of 〈〈a〉〈b, c〉〈d〉〉 consist of

〈a, b, c, d〉, 〈b, a ∗ b, c, d〉, 〈a, b, d, c ∗ d〉,
〈b, c, a ∗ (bc), d〉, 〈b, a ∗ b, d, c ∗ d〉, 〈a, d, b ∗ d, c ∗ d〉,
〈b, c, d, a ∗ (bcd)〉, 〈b, d, a ∗ (bd), c ∗ d〉, 〈d, a ∗ d, b ∗ d, c ∗ d〉,
〈b, d, c ∗ d, a ∗ (bcd)〉, 〈d, b ∗ d, a ∗ (bd), c ∗ d〉, 〈d, b ∗ d, c ∗ d, a ∗ (bcd)〉,

which, respectively, correspond to the vectors

(1, 2, 2, 3), (2, 1, 2, 3), (1, 2, 3, 2),

(2, 2, 1, 3), (2, 1, 3, 2), (1, 3, 2, 2),

(2, 2, 3, 1), (2, 3, 1, 2), (3, 1, 2, 2),

(2, 3, 2, 1), (3, 2, 1, 2), (3, 2, 2, 1).

The graph representing shared faces is depicted in Figure 13.

9. Relationship between MCQ and IIJO

Let X =
∐
λ∈3 Gλ be a multiple conjugation quandle, and let Y be an X -set. Let

P IIJO
n (X)Y be the subgroups of Pn(X)Y generated by the elements of the form
〈y〉〈a1〉 · · · 〈an〉. Then P IIJO

∗
(X)Y = (P IIJO

n (X)Y , ∂n) is a subcomplex of P∗(X)Y .
Let DIIJO

n (X)Y be the subgroup of P IIJO
n (X)Y generated by the elements of the

forms

〈y〉〈a1〉 · · · 〈b1〉〈b2〉 · · · 〈an〉, 〈y〉〈a1〉 · · · ∂〈b1, b2〉 · · · 〈an〉
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IIJO 2-boundary degenerate DIIJO
2 (X)Y cancelled by sign zero by definition

moves R3 R4( R1), R5( ori.) R2 R6

MCQ 2-boundary degenerate D2(X)Y degenerate D↑2 (X)Y cancelled by sign

moves R3, R5, R6 R4( R1) orientation R2

Table 1. Comparison between IIJO theory and MCQ theory

for a1, . . . , an ∈ X and b1, b2 ∈ Gλ. We note that the former elements relate to the
invariance under the R1 and R4 move, and that the latter elements relate to the
invariance under the R5 move and reversing orientation.

Lemma 22. DIIJO
∗

(X)Y = (DIIJO
n (X)Y , ∂n) is a subcomplex of P IIJO

∗
(X)Y .

Proof. This follows from

∂(〈b1〉〈b2〉)= ∂〈b1, b2〉− ∂〈b2, b1 ∗ b2〉, ∂(∂〈b1, b2〉)= 0

for b1, b2 ∈ Gλ. �

We put
C IIJO

n (X)Y = P IIJO
n (X)Y /DIIJO

n (X)Y .

Then C IIJO
∗
(X)Y = (C IIJO

n (X)Y , ∂n) is a chain complex. If X is obtained from a
G-family of quandles as in Example 2, C IIJO

∗
(X)Y is the chain complex defined in

[Ishii et al. 2013]. For an abelian group A, we define the cochain complexes

C∗IIJO(X; A)Y = Hom(C IIJO
∗
(X)Y , A).

We note that a natural projection pr∗ : P∗(X)Y → P IIJO
∗

(X)Y does not induce
a chain homomorphism pr∗ : C∗(X)Y → C IIJO

∗
(X)Y , since IIJO homology theory

is invariant under the invariance for reversing orientations. (See Table 1.) It is
seen, however, that this map induces the chain homomorphism pr∗ : C

↑

∗ (X)Y →
C IIJO
∗
(X)Y and the cochain homomorphism pr∗ : C∗IIJO(X; A)Y → C∗

↑
(X; A)Y for

an abelian group A. Hence, for a given cocycle of IIJO homology theory (with
some modification for a multiple conjugation quandle as above), we can obtain that
of our theory through pr∗. This implies that our invariant is a generalization of the
IIJO quandle cocycle invariant.

10. Towards finding 2-cocycles

We discuss approaches to finding 2-cocycles that are not induced from the IIJO
(co)homology theory. Let G be a group, M a right G-module, and A an abelian
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group. The module M and the set X =M×G (=
∐

x∈M{x}×G) can be considered
as a G-family of quandles and a multiple conjugation quandle as in Example 2,
respectively.

We take an X -set Y as a singleton {y0} and suppress the notation 〈y0〉. For a
2-cocycle ψ ∈ P2(X; A)Y , we denote ψ

(
〈(x, g)〉〈(y, h)〉

)
by φ

(
(x, g), (y, h)

)
, and

ψ
(
〈(x, g), (x, h)〉

)
by ηx(g, h). Then the 2-cocycle conditions are written as

(1) ηx(g, h)+ ηx(gh, k)= ηx(h, k)+ ηx(g, hk),

(2) φ((x, g), (y, k))+φ((x, h), (y, k))−φ((x, gh), (y, k))
= ηx(g, h)− ηx∗k y(g ∗ k, h ∗ k),

(3) φ((x, g), (y, h))+φ((x ∗h y, g ∗ h), (y, k))= φ((x, g), (y, hk)),

(4) φ((x, g), (y, h))+φ((x ∗h y, g ∗ h), (z, k))

= φ((x, g), (z, k))+φ((x ∗k z, g ∗ k), (y ∗k z, h ∗ k)),

where x, y, z ∈ M and g, h, k ∈ G. Furthermore, for a 2-cochain ψ ∈ P2(X; A)Y ,
the condition that ψ is a 2-cochain in C2(X; A)Y is written as

(5) φ((x, g), (x, h))= ηx(g, h)− ηx(h, g ∗ h),

where x ∈ M and g, h ∈ G.
Towards constructing MCQ 2-cocycles that are not from the IIJO homology, first

we note that if φ above is an IIJO 2-cocycle, then φ satisfies the conditions (3),(4),
and the condition that the LHS of (2) vanishes. By considering ψ ′ = ψ − φ, we
obtain an MCQ 2-cocycle ψ ′ that consists only of terms of ηx for x ∈ M . Thus
we first consider such a case in Example 23 below. In this case, we can take an
approach described in Section 8 for finding MCQ cocycles from group cocycles.

Example 23. For a 2-cochain ψ ∈ P2(X; A)Y with the assumption

(0) ψ(〈(x, g)〉〈(y, h)〉) (= φ((x, g), (y, h))) = 0,

we discuss what conditions are needed for the 2-cochain ψ being a 2-cocycle
in P2(X; A)Y . When we use the notation ηx(g, h) for ψ(〈(x, g), (x, h)〉), the
2-cocycle conditions are written as

(1) ηx(g, h)+ ηx(gh, k)= ηx(h, k)+ ηx(g, hk),

(2′) ηx(g, h)− ηx∗k y(g ∗ k, h ∗ k)= 0,

where x, y ∈ M and g, h, k ∈ G. We note that the condition (0) implies (3) and
(4). Furthermore, for a 2-cochain ψ ∈ P2(X; A)Y with the assumption (0), the
condition that ψ is a 2-cochain in C2(X; A)Y are written as

(5′) ηx(g, h)− ηx(h, g ∗ h)= 0,
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where x ∈ M and g, h ∈ G. Hence if ψ satisfies (0),(1), (2′) and (5′), then ψ is a
2-cocycle in C2(X; A)Y and defines an invariant for handlebody-knots.

If y = x , then (2′) implies ηx(g ∗k, h ∗k)= ηx(g, h), called the right invariance
of ηx . If x = 0, then (2′) with right invariance implies ηy·(1−k) ≡ η0, which is
another necessary condition for the condition (2′). Hence if any element in M
can be represented by the form y · (1− k) for some y ∈ M and k ∈ G, then we
have ηx ≡ η0 for any x ∈ M . In this case, we can check that the 2-cocycle ψ in
C2(X; A)Y comes from the dual of the composition of the chain homomorphisms

C∗(X)Y
pr2
−→C∗(G)Y

1
−→CG

∗
(G)Y ,

where a chain homomorphism pr2 is induced from a natural projection into the
second factor and the chain homomorphism 1 was defined in Section 8.2. In this
case, ψ assigned at a crossing is decomposed into a pair of weights η corresponding
to trivalent vertices as depicted in Figure 10 (B) and (C). Hence the resulting
invariant is equivalent to the invariant of the trivalent graph obtained by replacing
all crossings with vertices, that is, embedded in the 2-sphere without crossing. Such
an embedded graph is equivalent to a circle with small bubbles, and has trivial
invariant value (W (D;C)= 0 for any coloring C). Thus, in this case, ψ defines a
trivial invariant for handlebody-knots by the group 2-cocycle η0, whose cohomology
class may not be zero in H 2

G(G; A)Y .
If the condition that any element in M can be represented by the form y · (1− k)

for some y ∈ M and k ∈ G is not satisfied, then ψ satisfying (0), (1), (2′) and (5′)
may give rise to a nontrivial invariant for handlebody-links.

Example 24. In contrast to Example 23, next we consider the case when φ is not
an IIJO 2-cocycle, so that the LHS of (2) does not vanish for φ.

For any G-invariant A-bilinear map f :M2
→ A, Theorem 5.2 of [Nosaka 2013]

claimed that the map φ f : X2
→ A defined by

φ f ((x, g), (y, h)) := f (x − y, y · (1− h−1))

satisfies the conditions (3) and (4) above. For the G-invariant A-bilinear map f ,
if we can find maps ηx such that the conditions (1) and (2) are also satisfied, then
we obtain a 2-cocycle, which may be new. We remark here that φ f itself can be
modified as in [Nosaka 2013, Corollary 4.7] (by using an additive homomorphism
form G to some commutative ring) so that the conditions (1) and (2) are also
satisfied under the assumption ηx ≡ 0 for any x ∈ M .

The condition (1) merely says that ηx is a usual group 2-cocycle for any x ∈ M .
The condition (2) is equivalent to

(2′′) f (x − y, y · (1− k−1))= ηx(g, h)− ηx∗k y(g ∗ k, h ∗ k)
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from the definition of f . If y = x , then (2′′) implies that ηx is right invariant in the
sense that ηx(g ∗ k, h ∗ k) = ηx(g, h) as above. If y = 0, then (2′′) with the right
invariance implies ηx ·k ≡ ηx , called the orbit dependence of ηx . Thus we obtain
these two necessary conditions for the condition (2′′).

We examine the following specific examples. For a prime number p, let G denote
SL(2,Zp) that acts on M = (Zp)

2 from the right. For A=Zp, the map f :M2
→ A

defined by f (x, y) := det
( x

y
)

is a G-invariant A-bilinear map, where x, y ∈ M are
row vectors on which G acts on the right, and det denotes the determinant. This
setting is motivated from [Nosaka 2013, Proposition 4.5].

First, we consider the case where p = 2. Define m : M→ A by

m(x) :=
{

0 if x = 0,
1 if x 6= 0.

Then we can check that

φ f
(
(x, g), (y, h)

)
=−m(x)+m(x ∗h y)

for any x, y ∈M and g, h ∈G. Take ηx(g, h) to be m(x) for any x ∈M and g, h ∈G.
Then we can show that the 2-cochain ψ , defined by φ f and ηx , is a 2-coboundary
as follows. Define a 1-cochain m̃ ∈ P1(X; A) by m̃(〈(x, g)〉) := m(x). Then the
2-coboundary δm̃ ∈ P2(X; A) is written as

(δm̃)(〈(x, g)〉〈(y, h)〉)=−m(x)+m(x ∗h y),

(δm̃)(〈(x, g), (x, h)〉)= m(x),

where x, y ∈ M and g, h ∈ G. This implies that ψ = δm̃.

Second, we consider the case where p > 2. If x = (0, 0) and k =
(
−1 0

0 −1

)
, the

condition (2′′) implies η2y(g, h)= η0(g, h) for any y ∈ M and g, h ∈G. Since p is
odd, we have that ηx ≡ η0 for any x ∈M . If we substitute y= (1, 0) and k =

( 1 −1
0 1

)
for (2′′), then LHS is 1 and RHS is 0, which turns out to be a contradiction. Hence
there is no choice of ηx such that the conditions (1) and (2′′) are satisfied.

Although our attempts have not resulted in new nontrivial 2-cocycles, it appears
useful to record our approaches and facts we have found, for future endeavors
towards constructing new cocycles using these approaches. Further studies are
desirable on this homology theory, as it unifies group and quandle homology theories
for a structure of multiple conjugation quandles, which have ample interesting
examples and applications to handlebody-links.
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THREE-DIMENSIONAL DISCRETE CURVATURE FLOWS
AND DISCRETE EINSTEIN METRICS

HUABIN GE, XU XU AND SHIJIN ZHANG

A discrete version of the Einstein–Hilbert functional was introduced by
Regge. In this paper, we define the discrete Einstein metrics as critical
points of Regge’s Einstein–Hilbert functional with normalization on tri-
angulated 3-manifolds. We also introduce some discrete curvature flows,
which are closely related to the existence of discrete Einstein metrics.

1. Introduction

For triangulated manifolds, the most natural metrics seem to be the piecewise linear
metrics defined on all edges, satisfying some nondegenerate conditions so that
each simplex in the triangulation can be realized as a Euclidean or hyperbolic
simplex. In his work on constructing hyperbolic metrics on 3-manifolds, Thurston
[1980] introduced the circle packing metric on a triangulated surface with prescribed
intersection angles and further proved that this metric induces a piecewise linear
metric. Similarly, for triangulated 3-manifolds, Cooper and Rivin [1996] introduced
a ball (or sphere) packing metric. They endowed each vertex with a notion of
combinatorial scalar curvature which is defined to be the angle defect of solid
angles. Glickenstein [2005] introduced a type of discrete Yamabe flow, aiming
at finding sphere packing metrics with constant combinatorial scalar curvature.
In [Ge and Xu 2014], we also defined discrete quasi-Einstein metrics and gave
some analytical conditions for the existence of discrete quasi-Einstein metrics by
introducing two different discrete scalar curvature flows.

However, on one hand, similar to the 2-dimensional case, the ball packing metrics
are special piecewise linear metrics and then too restrictive. On the other hand, the
combinatorial curvatures studied above are all defined on vertices and may only
be considered as an analogue of scalar curvature. As was pointed out by Regge
[1961], the discrete curvatures are concentrated on codimension two simplexes. For
these reasons, we want to study the general piecewise linear metrics and discrete
curvatures defined on edges for 3-dimensional triangulated manifolds. In this paper,

MSC2010: 53C44.
Keywords: discrete Einstein–Hilbert functional, discrete Ricci curvature, discrete Ricci flow, discrete

Einstein metric.
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we shall study Regge’s Einstein–Hilbert functional carefully, and give a definition
of discrete Einstein metric. Moreover, we will introduce two types of discrete edge
curvature flows; one is of second order, the other is of fourth order. Discrete edge
curvature flow of second order may be considered as an analogue of smooth Ricci
flow. However, discrete edge curvature flow of fourth order seems to be more
powerful than the flow of second order.

2. Discrete Ricci curvature and discrete Einstein metric

Consider a compact 3-dimensional manifold M with a triangulation T. The tri-
angulation is written as T D fV;E; F; T g, where V;E; F; T represent the set of
vertices, edges, faces and tetrahedrons respectively. Denote v1; v2; : : : ; vN as the
vertices of T , where N is the number of vertices. We often write i instead of vi .
A piecewise linear metric (written as PL-metric for short) is a map l WE! .0;C1/

such that for any tetrahedron � Dfi; j; k; lg2T , the tetrahedron � with edge lengths
lij ; lik; lil ; ljk; ljl ; lkl can be realized as a Euclidean geometric tetrahedron. We
may take PL-metrics as points in Rm>0, m times the Cartesian product of .0;C1/,
where m is the number of edges in E. Not all points in Rm>0 represent PL-metrics
and we need some nondegenerate conditions. For a start, the triangle inequality
should be satisfied, but this alone is not enough. Consider a Euclidean tetrahedron
� D fi; j; k; lg 2 T with edge lengths lij ; lik; lil ; ljk; ljl ; lkl , then the volume of
the Euclidean tetrahedron fi; j; k; lg has the following formula due to Tartaglia in
the sixteenth century:

V2� D
1
288

detAijkl ;

where

Aijkl D

0BBBBBB@

0 1 1 1 1

1 0 l2ij l2
ik

l2
il

1 l2ij 0 l2
jk

l2
jl

1 l2
ik
l2
jk

0 l2
kl

1 l2
il
l2
jl

l2
kl

0

1CCCCCCA :

So, V� > 0 for all tetrahedrons � is another restriction for l to be a PL-metric.
For fixed 3-manifolds M with triangulation T , denote the space of all admissible

PL-metrics as

MT , fl WE! .0;C1/ is a PL-metric on .M 3; T /g;

M2
T , fl

2
WE! .0;C1/ is a PL-metric on .M 3; T /g:

Mei, Zhou and Ge proved M2
T is a nonempty connected open convex cone, see

Theorem 1.1 in [Ge et al. 2015] (see also Theorem 3.1 in [Schrader 2016]). On
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the other hand, it is easy to prove that MT is homeomorphic to M2
T . Hence we

know MT is a simply connected open set. However, this set is not convex, due to
an observation from [Rivin 2003].

Discrete Ricci curvature and the Einstein–Hilbert–Regge functional. Given a
Euclidean tetrahedron fi; j; k; lg 2 T , the dihedral angle at edge fi; j g is denoted
by ˇij;kl . If an edge is in the interior of the triangulation, the discrete Ricci curvature
at this edge is 2� minus the sum of dihedral angles at the edge. More specifically,
denote Rij as the discrete Ricci curvature at the edge fi; j g, then

(2-1) Rij D 2� �
X

fi;j;k;lg2T

ˇij;kl ;

where the sum is taken over all tetrahedrons with fi; j g as one of its edges. If
this edge is on the boundary of the triangulation, then the discrete Ricci curvature
should be Rij D � �

P
fi;j;k;lg2T ˇij;kl .

For simplicity we will write lij and Rij as l1; : : : ; lm and R1; : : : ; Rm, respec-
tively, in the following, where m is the number of edges in E, and they are ordered
sequentially. Set l D .l1; : : : ; lm/T ; R D .R1; : : : ; Rm/T , to be the transpose of
.l1; : : : ; lm/; .R1; : : : ; Rm/ respectively. We define the matrix L as

(2-2) LD
@.R1; : : : ; Rm/

@.l1; : : : ; lm/
D

0B@
@R1

@l1
� � �

@R1

@lm:::
:::

:::
@Rm

@l1
� � �

@Rm

@lm

1CA :
The Einstein–Hilbert–Regge functional was first introduced by Regge [1961] as

(2-3) S D

mX
iD1

Ri li ;

and the discrete quadratic energy functional is defined to be

(2-4) C.l/D kRk2 D
mX
iD1

R2i :

By the Schläfli formula
Pm
iD1 lidRi D 0, we have

dS D

mX
iD1

Ridli C

mX
iD1

lidRi D

mX
iD1

Ridli ;

so

rlS DR and Hessl S D L;
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which implies that the matrix L is symmetric. It is easy to get

@C
@lj
D 2

mX
iD1

@Ri
@lj

Ri ;

so

(2-5) rlC D 2LTR:

Since R.tl1; t l2; : : : ; t lm/DR.l1; l2; : : : ; lm/, we have the Euler formula

(2-6) Ll D 0:

Discrete Einstein metric. The curvature Rij is a combinatorial analogue of Ricci
curvature in smooth cases. Fixing i , the sum of all Rij with j connected to i
is the curvature defined by Cooper and Rivin [1996], which is interpreted as the
combinatorial scalar curvature. Inspired by the definition of discrete quasi-Einstein
metric in [Ge and Xu 2014], we define the discrete Einstein metric as follows.

Definition 2.1. A PL-metric l is called a discrete Einstein metric, if there exists a
constant � such that RD �l .

If l is a discrete Einstein metric, the corresponding PL-metric and curvature will
be denoted by lDE and RDE , respectively, in the following. When RD �l , or say
l is a discrete Einstein metric, �D S=klk2.

Definition 2.1 is a straightforward analogy of the smooth manifold case. Rij is
somewhat similar to smooth Ricci curvature Ric, and lij is somewhat similar to the
smooth metric g. Then the Einstein metric g with RicD �g on smooth manifolds
M can be transformed to a discrete Einstein metric l with RD �l on triangulated
manifolds .M 3; T /. In this sense, the analogy seems to be only formal. However,
for this type of metric, we can develop many more properties which suggest the
use of the term discrete Einstein is appropriate.

In [Champion et al. 2011], Champion, Glickenstein and Young studied various
normalized Einstein–Hilbert–Regge functionals and related discrete Yamabe invari-
ants on triangulated manifolds with PL-metrics. In this paper, we shall introduce a
new type of normalized Einstein–Hilbert–Regge functional, which is different from
theirs. Fixing .M 3; T /, consider a new type of normalized Einstein–Hilbert–Regge
functional

(2-7) Q.l/D
S

klk
:

It’s easy to calculate

rlQD
1

klk

�
rlS �

S

klk2
l

�
D

1

klk

�
R�

S

klk2
l

�
:
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Then we have:

Theorem 2.2. On .M 3; T / with PL-metric l , l is a discrete Einstein metric if and
only if l is a critical point of the normalized Einstein–Hilbert–Regge functional Q.

Theorem 2.2 is similar to the smooth case. On smooth manifolds, the metric g
is Einstein if and only if it is a critical point of the functional

Q.g/D
1

V 1=3

Z
M

Rd�g :

Fixing the triangulation, discrete curvatures Rij are uniformly bounded, that is
.2�d/� <Rij <2� , where d is the maximum edge degree of the triangulation. So

jQ.l/j D

ˇ̌̌̌
S

klk

ˇ̌̌̌
D

ˇ̌̌̌
RT l

klk

ˇ̌̌̌
� kRk:

The Cauchy inequality indicates that l is a discrete Einstein metric if and only if
jQ.l/j D kRk.

Using this type of normalized Einstein–Hilbert–Regge functional, we can intro-
duce some new invariants associated to the triangulation .M 3; T /. The combinato-
rial Yamabe invariant with respect to T is defined as

YM;T D inf
l2MT

Q.l/:

The admissible PL-metric space MT for a given triangulated manifold .M 3; T /
may be considered as an analogue of the conformal class Œg0� of a Riemannian
manifold .M; g0/. Hence we may call MT the combinatorial conformal class
for .M 3; T /. It is uniquely determined by the triangulation T . Moreover, we can
introduce a topology invariant associated to M , i.e., YM D supT YM;T , where the
supremum is taken on all triangulations of M .

Similar to [Ge and Xu 2014; Ge and Xu 2016b], we can consider the following
combinatorial Yamabe problem.

Question. Given a 3-dimensional manifold M with triangulation T , how many
discrete Einstein metrics are there in the combinatorial conformal class MT , and
how to find them?

Inspired by work on the existence of combinatorial Gauss curvature in [Thurston
1980; Chow and Luo 2003; Luo 2004], we ask the following similar question:

Question. For a manifold M 3, find a suitable triangulation, or find topological and
combinatorial obstructions, so that M admits discrete Einstein metrics.

The following is an example of a manifold with a triangulation admitting a
discrete Einstein metric.
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Example (the 16-cell). Consider the standard 3-dimensional sphere S3 embedded
in R4. Taking the vertices of T to be A1 D .1; 0; 0; 0/; A2 D .�1; 0; 0; 0/; B1 D
.0; 1; 0; 0/; B2D .0;�1; 0; 0/; C1D .0; 0; 1; 0/; C2D .0; 0;�1; 0/;D1D .0; 0; 0; 1/,
D2 D .0; 0; 0;�1/; the edges of T are PiQj (where P ¤Q 2 fA;B;C;Dg and
i; j 2 f1; 2g), the faces of T are PiQjRk (where exactly two of .P;Q;R/ 2
fA;B;C;Dg are different, with i; j; k 2 f1; 2g), and the tetrahedrons of T are the
regular tetrahedrons AiBjCkDl (with i; j; k; l 2 f1; 2g). We know all edges have
the same length �

2
. It is easy to calculate that Rij D 2� � 4 arccos 1

3
for all edges.

So RD .l=�/
�
4� � 8 arccos 1

3

�
and l D �

2
f1; : : : ; 1gT is a discrete Einstein metric

associated to .S3; T /.

It is easy to see that the argument in this example works for any generalization
of the platonic solids (uniform polychora) with tetrahedral cells, including the
5-cell (or pentachoron), the 600-cell, etc. In these cases, the PL-metric arises
from symmetry and taking the lengths equal. It would be interesting to know
whether these are the only triangulations that admit discrete Einstein metrics for
the triangulation structure.

3. Combinatorial second order flow

Inspired by combinatorial curvature flow methods, we study discrete Einstein
metrics by combinatorial curvature flows in the following sections. The two flows
we introduce are negative gradient flows of some discrete functionals. One is the
normalized Einstein–Hilbert–Regge functional Q.l/, which determines a normal-
ized discrete curvature flow of second order. The other is the discrete quadratic
energy C D kRk2, which determines a discrete curvature flow of fourth order.

Definition and evolution equations. We define the combinatorial second order
flow as

(3-1) Pl.t/ij D�Rij ; or Pl.t/D�R:

It is useful to consider the normalized combinatorial second order flow

(3-2) Pl.t/ij D �lij �Rij ; or Pl.t/D �l �R;

where �D S=klk2 and klk2 D
Pn
iD1 l

2
i .

Flows (3-1) and (3-2) differ from each other only by a change of scale in space
and a change of parametrization in time. Let t; l; R; � denote the variables for the
flow (3-1), and Qt ; Ql ; zR; Q� for the flow (3-2). Suppose l.t/; t 2 Œ0; T /, is a solution
of (3-1). Set Ql. Qt /D '.t/l.t/, where

'.t/D exp
�Z t

0

�.�/ d�

�
; Qt D

Z t

0

'.�/ d�:
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Then we have
Q�D '�1�; zRDR:

This gives
d Ql
d Qt
D
d Ql
dt
dt
d Qt
D .�'l �'R/'�1 D Q� Ql � zR:

Conversely, if Ql. Qt /; Qt 2 Œ0; zT /, is a solution of (3-2), set l.t/D '. Qt / Ql. Qt /, where

'. Qt /D exp
�
�

Z Qt
0

Q�.�/ d�

�
; t D

Z Qt
0

'.�/ d�;

then it is easy to check that dl=dt D�R.
Notice that rlQD�.�l �R/=klk and dklk2=dt D 2lT Pl D 2lT .�l �R/D 0,

hence we have:

Theorem 3.1. Along the flow (3-2), klk2 is a constant. Moreover, the flow (3-2) is
a negative gradient flow.

We can take klk2 as a certain discrete “content” (here we use the word “content”
instead of “volume”, because the triangulated 3-manifolds have classical volume,
that is, the sum of the volume of all tetrahedrons). It plays a similar role to “volume”
in smooth cases. We also refer to the second order normalized discrete curvature flow
(3-2) as the combinatorial Ricci flow. Moreover, we have the following evolution
equations along this flow,

(3-3) PRD @R
@l
Pl D L.�RC�l/D�LR;

where we have used the Euler formula Ll D 0. So

(3-4) PC D�2RTLR;
and

PS D

mX
iD1

PRi li CRi Pli D�kRk
2
C�S

D
S2�klk

2kRk2

klk2
D
<R; l >2�klk

2kRk2

klk2

D�kR��lk2 D�





R� S

klk2
l





2
� 0:

Hence

(3-5) P�D
PS

klk2
D�

�
kRk

klk

�2
C�2 D�

kR��lk2

klk2
� 0:
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Since klk2 is invariant along the flow (3-2), we can always assume l.0/ 2 Sm�1

and then l.t/2Sm�1 for all t 2 Œ0; T / in the following. Moreover, �DS=klk2�S
along (3-2). It is easy to derive the following result.

Proposition 3.2. The quadratic energy functional C is uniformly bounded on MT ,
where the bound depends only on the triangulation. The Einstein–Hilbert–Regge
functional S is uniformly bounded on MT \Sm�1. Moreover, along the discrete
flow (3-2), S is nonincreasing and bounded.

Remark. By the Schläfli formula, the differential 1-form ! D
Pm
iD1Ridli D dS

is exact. Combining this with the fact that MT is simply connected, we have

S.l/D

Z l

a

mX
iD1

Ridli CS.a/;

where a is an arbitrary point of MT .

Nonsingular solution and singularity of solution. To study the convergence of
the discrete Ricci flow (3-2), we need to classify the solutions of the flow.

Definition 3.3. A solution l.t/ of (3-2) is nonsingular if the solution exists for
t 2 Œ0;C1/ and fl.t/gbMT \Sm�1.

In fact, by fl.t/gbMT \Sm�1, we know that the solution of (3-2) exists for
t 2 Œ0;C1/. Furthermore, we have the following result for nonsingular solutions
of (3-2).

Theorem 3.4. If there exists a nonsingular solution for the discrete flow (3-2), there
exists at least one discrete Einstein metric on .M 3; T /.

Proof. Let l.t/, t 2 Œ0;C1/, be a nonsingular solution of the flow (3-2). As S is
descending and bounded from below along (3-2), S.C1/ exists. We can choose
tn " C1, such that

(3-6) S 0.tn/D�k�.tn/l.tn/�R.tn/k
2
! 0:

Using fl.t/g b MT , we can further choose a subsequence tnk
of tn, such that

l.tnk
/! l�. Combining this with (3-6), we get R� D ��l� and l� is a discrete

Einstein metric. �

If the solution of flow (3-2) converges to a nondegenerate PL-metric, the unit
solution �.t/=k�k must be nonsingular. First, assume the maximal time T <C1.
Since �.T / is a nondegenerate PL-metric, the flow can be extended beyond T , so
we obtain T DC1. Second, since limt!1 l.t/D l

� 2MT , there exists t0 > 0
such that l.t/ is close to l� when t > t0, so l.t/ 2MT . On the other hand, for
t 2 Œ0; t0�, l.t/ 2MT . Hence we know .�.t/=k�k/bMT \Sm�1.

Then we have the following corollary:
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Corollary 3.5. If the solution l.t/ of the discrete Ricci flow (3-2) exists for all time
and converges to a nondegenerate PL-metric l.C1/, then there exists at least one
discrete Einstein metric on .M; T /. Moreover, l.C1/ is a discrete Einstein metric.

Definition 3.6. A maximal solution l.t/, t 2 Œ0; T /, of (3-2) is said to be singular if

fl.t/g\ @.MT \Sm�1/¤∅:

We say the solution develops a type-I singularity at time T if there is an edge
li and a sequence tn ! T such that li .tn/! 0. We say the solution develops a
type-II singularity at time T if there is a sequence tn approaching T such that li .tn/
remains in a compact set of R>0 for all i and there is a tetrahedron � D fi; j; k; lg
in T such that V� ! 0 as tn! T.

Remark. In [Bobenko et al. 2015; Ge and Jiang 2016a; Ge and Jiang 2016b; Luo
2011], the authors studied the degeneration of a triangle. In fact, they considered the
generalized triangle, that is a topological triangle with three positive edge lengths.
While the triangle inequality is not valid, they found that the definition of discrete
Gaussian curvatures can be generalized to this case. However, we don’t know how
to do this degeneration for tetrahedrons, and hence we know very little about the
degeneration behavior of a tetrahedron.

The following conjectures are likely to hold for the discrete flow (3-2).

Conjecture. The normalized discrete Ricci flow (3-2) will not develop type-I singu-
larity in finite time.

Conjecture. If no singularity develops along the normalized flow (3-2), the solution
converges to a discrete Einstein metric as time approaches infinity.

Just like Hamilton and Perelman’s methods approaching smooth Ricci flow,
whenever discrete curvature flow develops type-II singularity, we hope to continue
the discrete flow by surgery which changes the combinatorial structure of the
triangulation. We hope that discrete curvature flow converges to a discrete Einstein
metric after a finite number of surgeries.

Convergence of the combinatorial second order flow. Finding good metrics is
always a central topic in Riemannian geometry. In the last section, we proved that
if the solution of the flow (3-2) exists for all time and converges to a nondegenerate
PL-metric l1, the discrete Einstein metric exists. Moreover, l1 is such a metric.
Conversely, we have:

Theorem 3.7. Given a nondegenerate metric l , assume there exists a discrete
Einstein metric lDE such that RDE D �lDE with

�DE

�
Im�

lDE l
T
DE

klDEk2

�
�LDE � 0;
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where Im denotes them�m identity matrix. Then there exists a constant " > 0 such
that, if

kl.0/� lDEk< ";

then the solution of normalized combinatorial second order flow (3-2) with initial
metric l.0/D l exists for all time and converges exponentially fast to the discrete
Einstein metric lDE .

Proof. We want to prove lDE is a local attractor of the flow. For the evolution
equation of the combinatorial two-order flow

Pl D ‡.l/D�RC�l;

we have
‡.lDE /D�RDE C�DE lDE D 0:

The differential of ‡.l/D�RC�l at l is

(3-7)

Dl‡.l/D�DlRC�Dl l C lDl‡

D�LT C�ImC l

�
LTlCR

klk2
�
2Sl

klk4

�T
D �Im�LC

lRT

klk2
� 2S

l lT

klk4

D �

�
Im�

l lT

klk2

�
�LC

l.R��l/T

klk2
;

where we have used the symmetry ofL and the Euler formula in the third equality. So

Dl‡.l/jlDlDE
D �DE

�
I �

lDE l
T
DE

klDEk2

�
�LDE � 0;

and lDE is a local attractor of the flow. The system is asymptotically stable at lDE .
If the initial metric l.0/ is close enough to lDE , then the solution l.t/ exists for all
time and converges to lDE exponentially fast. �

4. Fourth order flow

In this section, we consider the combinatorial fourth order flow

(4-1) Pl D�LTR;

where LT denotes the transpose of L. Combining this with (2-5), we know that the
combinatorial fourth order flow (4-1) is in fact a gradient flow of energy C (which
is called discrete Calabi energy in [Ge 2013; Ge and Xu 2016a]), that is:

(4-2) Pl D�1
2
rlC D�LTR:
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It is easy to obtain the following evolution equations:

PRD�LLTR;(4-3)

PC D�2RTLLTRD�2.LTR/T .LTR/D�1
2
krlCk2 � 0;(4-4)

PS D . PR/T lCRT Pl D�.LLTR/T lCRT .�LTR/D�RTLLT l�RTLTR

D�RTLTR:

If there is only a single tetrahedron in the triangulation, then mD 6 and it is easy to
calculate rank.L/D 5. Thus we guess rank.L/Dm� 1 for general triangulations.

Conjecture. rank.L/Dm� 1 for each l 2MT :

The above conjecture is hopefully true. If so, then l is the only solution (up to
scaling) of matrix equation Lx D 0. Moreover, each nonsingular solution to the
fourth order flow (4-1) contains a subsequence converging to a discrete Einstein
metric.

Theorem 4.1. If there exists a discrete Einstein metric lDE with rank.LDE /Dm�1
on .M 3; T /, then there exists a constant " > 0 such that, for any initial metric
l.0/ with

kl.0/� lDEk< ";

the solution to combinatorial fourth order flow Pl D LT .RDE �R/ exists for all
time t � 0 and converges exponentially fast to the metric lDE .

Proof. Along the normalized fourth order flow (4-1),

PRD
@R

@l
Pl D LLT .RDE �R/;

PC D�2.RDE �R/TLLT .RDE �R/� 0;

where C D
Pm
iD1..RDE /i �Ri /

2. Now we consider the ODE system

Pl D ‡.l/D LT .RDE �R/:

Then ‡.lDE /D 0 and Dl‡.l/jlDlDE
D�LDEL

T
DE � 0. As rank.LDE /Dm�1,

Dl‡.l/jlDlDE
is negative definite up to scaling. Hence lDE is a local attractor and

the system is asymptotically stable at lDE . �

5. Discrete curvature flow in non-Euclidean geometry

K -space form triangulation and discrete curvature flow. Assume K 2 R is a
constant and, moreover, K ¤ 0. In this section, we will consider a 3-dimensional
compact manifold M 3 with a K-space form triangulation T on M 3. Let MK be
the space form with constant sectional curvature K. The basic blocks of K-space
form triangulation T are tetrahedrons embedded in MK .
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A tetrahedron embedded in MK is determined by its six edge lengths. Not
every group of six positive numbers can be realized as the six edge lengths of
some tetrahedrons embedded in MK . Similar to the Euclidean case, there are
nondegenerate conditions too. All admissible groups of six positive numbers which
can be realized as the six edge lengths of some tetrahedrons embedded in MK

form an open connected set in R6>0. The set is open due to Theorems 3.1 and 4.1
in [Yakut et al. 2009]; the set is connected due to the fact any tetrahedron can be
deformed continuously to regular tetrahedrons.

The combinatorial Ricci curvature Rij is defined in the same way as that of the
Euclidean PL-manifold. We need to define a new functional SK corresponding to
the total curvature functional S .

Definition 5.1. Set V D
P
fi;j;k;lg2T Vijkl and define

SK , 2KV C
mX
iD1

Ri li :

Now we recall the famous Schläfli formula for a K-space form tetrahedrons.
For any K-space form tetrahedrons fi; j; k; lg 2 T , one has (see [Milnor 1994;
Schlenker 2000])

@Vijkl
@ p̌q

D
lpq

2K
; p; q 2 fi; j; k; lg;

where p̌q is the dihedral angle at the edge fp; qg in the tetrahedrons fi; j; k; lg.
Using the formula, one can get

2KdV C

mX
iD1

lidRi D 0:

Hence

dSK D 2KdV C

mX
iD1

.lidRi CRidli /D

mX
iD1

Ridli ;

which implies @SK=@li DRi . Then we have rlSK DR and Hessl SK D L.

Conjecture. The symmetric matrix L is nonsingular and indefinite.

We affirm the conjecture for the case of a single tetrahedron, and include the
proof in the Appendix, see Theorem A.6.

With K-space form triangulation, we consider discrete curvature flow Pl D�R
of second order and flow Pl D�LTR of fourth order. Most properties are laid out
in the following table:
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Discrete curvature flow of second order Discrete curvature flow of fourth order
Pl D�RD�rlSK Pl D�LTRDrlC
PRD�LR PRD�LLTR
PSK D�R

TRD�C � 0 PSK D�R
TLTR

PC D�2RTLR PC D�2kRTLk2 � 0

Theorem 5.2. If the solution to second order flow Pl D�R exists for all time and
converges to a nondegenerate metric l1, then l1 is a discrete Ricci-flat metric.

Theorem 5.3. If the solution to fourth order flow Pl D�LTR exists for all time and
converges to a nondegenerate metric l1 with L1 nonsingular, then l1 is a discrete
Ricci-flat metric.

Proof. The limit limt!C1 C.t/ exists because of the convergence of the flow
Pl D �LTR, and C.t/ is nonincreasing along the fourth order discrete curvature
flow. So we have

lim
t!C1

PC.t/D 0;

which implies that limt!C1.L
TR/T .LTR/D 0. Hence LTRD 0. Since L1 is

nonsingular, R1 D 0. �

Theorem 5.4. If there exists a discrete Ricci-flat metric lDE withLDE nonsingular,
then the solution of fourth order discrete curvature flow Pl D LTR exists for all time
and converges to the discrete Einstein metric lDE when the initial discrete Calabi
energy C.0/ is small enough.

Proof. At the point lDE , Dl.�LTR/D�LLT < 0. Hence lDE is a local attractor
of the flow. �

A fourth order flow for hyperbolic 3-manifolds. In the above subsection, we have
seen that the matrix L is not so good for evolving a useful curvature flow. This
is mainly because of the nondefiniteness of L. For a special type of manifolds
and a special kind of triangulations, Feng Luo [2005] introduced a second order
combinatorial curvature flow. In this short subsection, we introduce a fourth order
flow which is very similar to Luo’s flow.

Suppose M is a compact 3-manifold whose boundary is nonempty and is a
union of surfaces with negative Euler characteristic. M can be ideally triangulated.
The basic building blocks are strictly hyperideal tetrahedrons. For a single strictly
hyperideal tetrahedron, let l1; : : : ; l6 be the edge lengths of a strictly hyperideal
tetrahedron, and ˇ1; : : : ; ˇ6 be the dihedral angles at respective edges. Then
the volume V is a strictly concave function of its dihedral angles, that is to say,
Hessˇ V D�12@.l1; : : : ; l6/=@.ˇ1; : : : ; ˇ6/ is negative definite.
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ForM with ideal triangulation, denote lD .l1; : : : ; lm/T as the edge lengths,RD
.R1; : : : ; Rm/

T as the combinatorial curvatures at all edges. Here the combinatorial
curvatureRi at an edge i is 2� minus the sum of dihedral angles at the edge. Denote
C.l/D kRk2 D

Pm
iD1R

2
i . Consider the combinatorial curvature flow

(5-1) Pl D�1
2
rlC D�LR;

where

LD @.R1; : : : ; Rm/=@.l1; : : : ; lm/

is positive definite from [Luo 2005]. The equilibrium points of the combinatorial
curvature flow (5-1) are the only flat metric with R � 0, that is, the complete
hyperbolic metric with totally geodesic boundary. Moreover, by

Dl.�LR/D�L
2 < 0;

we know that each equilibrium point is a local attractor of this flow. Hence, when
the initial discrete energy C.0/ is small enough, the solution of flow (5-1) exists for
all time and converges to the flat metric, i.e., the complete hyperbolic metric with
totally geodesic boundary.

Appendix

In this appendix we study the matrix L in space forms MK , where subindex K
represents the constant sectional curvature. We conclude that the matrix L is
nonsingular and indefinite whenever K ¤ 0.

Consider a single tetrahedron � D fA;B;C;Dg embedded in MK . Since �
varies with its six edge lengths, all tetrahedrons can be considered as points of
some connected open set in R6>0. Denote ˇAB as the dihedral angle at edge fA;Bg.
The dihedral angles and the edge lengths are mutually determined. On one hand,
six dihedral angles are determined by six edge lengths. On the other hand, each
tetrahedron in the space form MK is determined, up to a motion, by its Gram
matrix, which, in turn, is determined by the dihedral angles of the tetrahedron
(see Chapter 6 §1 and Chapter 7 §2 in [Alekseevskij et al. 1993]). Therefore the
Jacobian of dihedral angles over edges, which is denoted by

�LABCD ,
@. ˇAB ; ˇAC ; ˇAD; ˇBC ; ˇBD; ˇCD/

@.lAB ; lAC ; lAD; lBC ; lBD; lCD/
;

is nonsingular.
Next we prove that LABCD is indefinite. A tetrahedron is called regular, if all

lengths are equal.
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B
β D
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E
B β D

A
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E

F

Figure 1

Proposition A.1. For the regular tetrahedron, we have

�LABCD D

0BBBBBBB@

x y y y y z

y x y y z y

y y x z y y

y y z x y y

y z y y x y

z y y y y x

1CCCCCCCA
;

where

x D
@ˇAB

@lAB
; y D

@ˇAB

@lAC
D
@ˇAB

@lAD
D
@ˇAB

@lBC
D
@ˇAB

@lBD
; z D

@ˇAB

@lCD
:

Moreover, the eigenvalues of the above �LABCD are x�z, xCz�2y, xCzC4y
with degree 3, 2, 1 respectively.

In the following, we claim that, when K ¤ 0, the matrix L is nonsingular but
not definite. It’s enough to determine the sign of x� z, xC z�2y and xC zC4y.

First, we recall the formula of the cosine law in the 2-dimensional space forms
M 2.K/ with constant sectional curvature K. Denote

SK.t/D

8̂<̂
:

sin
�p
Kt
�
=
p
K; K > 0;

t; K D 0;

sinh
�p
�Kt

�
=
p
�K; K < 0;

CK.t/D

8̂<̂
:

cos
�p
Kt
�
; K > 0;

1; K D 0;

cosh
�p
�Kt

�
; K < 0;

fK.r/D

Z r

0

SK.t/ dt D

8<:.1�CK.r//=K, K ¤ 0;

r2=2; K D 0:
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Then we have the following identities:

(1) f
0

K.r/D SK.r/; S
0

K.r/D CK.r/.

(2) KS2K.a/CC
2
K.a/D 1.

(3) SK.aC b/D SK.a/SK.b/CCK.a/CK.b/.

(4) CK.aC b/D CK.a/CK.b/�KSK.a/SK.b/.

(5) CK.2a/D 2C 2K.a/� 1D 1� 2KS
2
K.a/.

So
fK.r/D 2S

2
K.r=2/:

Proposition A.2 (the cosine law). For a geodesic triangle 4ABC in the space
form M 2.K/, with side lengths a; b; c opposite to the angles A;B;C , respectively,
the cosine law is

fK.c/D fK.a� b/CSK.a/SK.b/.1� cosC/:

For K ¤ 0, the above formula is equivalent to

CK.c/D CK.a/CK.b/CKSK.a/SK.b/ cosC:

Now, calculating the exact value of a; b; c, we have the following results.

Lemma A.3. z D

p
2C 2K.l0=2/

SK.l0=2/
p
1C 3CK.l0/

:

Proof. By the definition of L16, we just need to calculate @ˇ=@l6. To calculate it,
we assume the length of AB is l6 and other edges have length l0 in the hyperbolic
tetrahedron in Figure 1(left). As shown there, E is the midpoint of the edge CD,
and the dihedral angle at the edge CD is the angle †AEB, i.e., ˇ.

Using the cosine law in the triangle 4AEB, we have

fK.l6/D fK.0/CS
2
K.h0/.1� cosˇ1/D S2K.h0/.1� cosˇ1/;

where h0 is the length of the altitude in the regular triangle with side length l0. We
can get

@ˇ1

@l6
D

f
0

K.l6/

S2K.h0/ sinˇ
D

SK.l6/

S2K.h0/ sinˇ
:

So at the regular point

z D
SK.l0/

S2K.h0/ sinˇ
;

and
fK.l0/D fK

�
h0�

l0
2

�
CSK.h0/SK

�
l0
2

�
:
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Then we have

CK.h0/D
CK.l0/

CK.l0=2/
;

which implies

S2K.h0/D

8<:
1�C 2K.h0/

K
; K ¤ 0;

h20; K D 0:

For K ¤ 0,

S2K.h0/D
C 2K.l0=2/�C

2
K.l0/

KC 2K.l0=2/
D
S2K.l0=2/.1C 2CK.l0//

C 2K.l0=2/
:

The equation also holds for the case of K D 0. By the cosine law,

cosˇ D
S2K.h0/�fK.l0/

S2K.h0/
:

If K D 0, it is easy to get cosˇ D 1� l20=.2h
2
0/D 1=3. For the case of K ¤ 0,

cosˇ D
.1�C 2K.h0//=K � .1�CK.l0//=K

.1�C 2K.h0//=K
D
CK.l0/�C

2
K.h0/

1�C 2K.h0/

D
CK.l0/�C

2
K.l0/=C

2
K.l0=2/

1�C 2K.l0/=C
2
K.l0=2/

D
CK.l0/.C

2
K.l0=2/�CK.l0//

C 2K.l0=2/�C
2
K.l0/

D
KCK.l0/S

2
K.l0=2/

C 2K.l0=2/�C
2
K.l0/

D
KCK.l0/S

2
K.l0=2/

.1CCK.l0/� 2C
2
K.l0//=2

D
KCK.l0/S

2
K.l0=2/

.1C 2CK.l0//.1�CK.l0//=2
D

KCK.l0/S
2
K.l0=2/

.1C 2CK.l0//KS
2
K.l0=2/

D
CK.l0/

1C 2CK.l0/
:

This formula also holds for K D 0. Then we have

sinˇ D

p
.1CCK.l0//.1C 3CK.l0//

1C 2CK.l0/
D

p
2CK.l0=2/

p
1C 3CK.l0/

1C 2CK.l0/
:

Hence

z D
SK.l0/CK.l0=2/p

2S2K.l0=2/
p
1C 3CK.l0/

D

p
2C 2K.l0=2/

SK.l0=2/
p
1C 3CK.l0/

: �
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Lemma A.4. x D

p
2C 2K.l0/

SK.l0=2/
p
1C 3CK.l0/.1C 2CK.l0//

:

Proof. To calculate it, we assume the length of CD is l1 and other edges have length
l0 in the tetrahedron shown in Figure 1(left). As illustrated there, E is the midpoint
of the edge CD, the dihedral angle at the edge CD is the angle †AEB, i.e., ˇ. We
assume the length of AE is h. By the cosine law,

fK.l0/D fK.0/CS
2
K.h/.1� cosˇ/D S2K.h/.1� cosˇ/;

and we have

�
@ˇ

@l1
D

1� cosˇ
S2K.h/ sinˇ

@S2K.h/

@l1
:

By the cosine law again,

fK.l0/D fK.l1=2� h/CSK.h/SK.l1=2/;

and we have
CK.h/D CK.l0/=CK.l1=2/:

Hence
@CK.h/

@l1
D�

CK.l0/C
0
K.l1=2/

2C 2K.l1=2/
D
KSK.l1=2/CK.l0/

2C 2K.l1=2/
;

and

S2K.h/D

8<:
1�C 2K.h/

K
; K ¤ 0;

h2; K D 0;

which implies that

@S2K.h/

@l1
D

8̂<̂
:
�2CK.h/

K

KSK.l1=2/CK.l0/

2C 2K.l1=2/
D�

C 2K.l0/SK.l1=2/

C 3K.l1=2/
; K ¤ 0;

�
l1
2
; K D 0:

So we obtain
@S2K.h/

@l1
D�

C 2K.l0/SK.l1=2/

C 3K.l1=2/
:

At the regular point, we have

x D
@ˇ

@l1
D
C 2K.l0/SK.l1=2/

C 3K.l1=2/

CK.l0=2/.1CCK.l0//p
2S2K.l0=2/

p
1C3CK.l0/.1C2CK.l0//

D

p
2C 2K.l0/

SK.l0=2/
p
1C 3CK.l0/.1C 2CK.l0//

:
�
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Lemma A.5. y D�

p
2CK.l0/C

2
K.l0=2/

SK.l0=2/.1C 2CK.l0//
p
1C 3CK.l0/

:

Proof. To calculate it, we assume the length of AD is l2 and other edges have
length l0 in the tetrahedron in Figure 1(right). As shown there, E is the midpoint
of the edge CD, the dihedral angle at the edge CD is the angle †FEB, i.e., ˇ. For
simplicity, we assume l2 � l0. Assume the length of AF is s, and the length of
FE is Qh. So the length of FC and FD are equal to l0� s. By the cosine law in the
triangle 4CEF,

fK.l0� s/D fK. Qh� l0=2/CSK. Qh/SK.l0=2/:

By the cosine law in the triangle 4AFD,

fK.l0� s/D fK.l2� s/C
SK.s/

SK.l0/
.fK.l0/�fK.l2� l0//:

By the cosine law in the triangles 4ABF and 4BEF,

fK.l0� s/C
fK.l0/SK.s/

SK.l0/
D fK.h0� Qh/CSK.h0/SK. Qh/.1� cosˇ/:

Differentiating the above three equations at the regular point, i.e., s D 0, l2 D l0,
and QhD h0, we have

�SK.l0/ds D .SK.h0� l0=2/CCK.h0/SK.l0=2//d Qh

D SK.h0/CK.l0=2/d Qh;

�SK.l0/ds D�SK.l0/dsCSK.l0/d l2C
CK.0/

SK.l0/
fK.l0/ds;

�SK.l0/dsC
fK.l0/CK.0/

SK.l0/
ds D�SK.0/d QhCSK.h0/CK.h0/.1� cosˇ/d Qh

CS2K.h0/ sinˇdˇ:

Using the fact SK.0/D 0; CK.0/D 1, we obtain

(1) ds D�
S2K.l0/

fK.l0/
d l2,

(2) d QhD� SK.l0/

SK.h0/CK.l0=2/
ds D

S3K.l0/

fK.l0/SK.h0/CK.l0=2/
dl2,

(3)
fK.l0/�S

2
K.l0/

SK.l0/
ds D SK.h0/CK.h0/.1� cosˇ/d QhCS2K.h0/ sinˇdˇ.

Using

cosˇ D CK.l0/

1C2CK.l0/
; CK.h0/D

CK.l0/

CK.l0=2/
;

we have
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�
.fK.l0/.1C 2CK.l0//�S

2
K.l0//SK.l0/

fK.l0/.1C 2CK.l0//
d l2 D S

2
K.h0/ sinˇdˇ:

Since fK.l0/D 2S2K.l0=2/, we have

�
CK.l0/SK.l0/

1C2CK.l0/
d l2 D S

2
K sinˇdˇ:

Hence

y D
@ˇ

@l2
D�

CK.l0/SK.l0/

1C2CK.l0/

1

S2K.h0/ sinˇ

D�
CK.l0/SK.l0/

1C2CK.l0/

CK.l0=2/p
2S2K.l0=2/

p
1C3CK.l0/

D�

p
2CK.l0/C

2
K.l0=2/

SK.l0=2/.1C 2CK.l0//
p
1C 3CK.l0/

: �

So we have

(1) x� z D�

p
2
p
1C 3CK.l0/

2SK.l0=2/.1C 2CK.l0//
< 0,

(2) xC z� 2y D

p
2
p
1C 3CK.l0/

2SK.l0=2/
> 0,

(3) xC zC 4y D

p
2KSK.l0=2/

.1C 2CK.l0//
p
1C 3CK.l0/

.

Hence xCzC4y >0 whenK>0, xCzC4yD 0 whenKD 0, and xCzC4y <0
when K < 0.

Theorem A.6. When K ¤ 0, the matrix L of one single tetrahedron �LABCD
embedded in MK is nonsingular and indefinite. Hence the conjecture on page 60 is
true for this case.

Proof. By the calculations above, we know that the matrix L at regular points is
indefinite. Any tetrahedron can be deformed continuously to the regular tetrahedron,
so all tetrahedrons have the same properties. �
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INCLUSION OF CONFIGURATION SPACES
IN CARTESIAN PRODUCTS,

AND THE VIRTUAL COHOMOLOGICAL DIMENSION
OF THE BRAID GROUPS OF S2 AND RP2

DACIBERG LIMA GONÇALVES AND JOHN GUASCHI

Let S be a surface, perhaps with boundary, and either compact or with
a finite number of points removed from the interior of the surface. We
consider the inclusion ι : Fn(S) →

∏n
1 S of the n-th configuration space

Fn(S) of S into the n-fold Cartesian product of S, as well as the induced
homomorphism ι# : Pn(S) →

∏n
1 π1(S), where Pn(S) is the n-string pure

braid group of S. Both ι and ι# were studied initially by J. Birman, who
conjectured that Ker(ι#) is equal to the normal closure of the Artin pure
braid group Pn in Pn(S). The conjecture was later proved by C. Goldberg
for compact surfaces without boundary different from the 2-sphere S2 and
the projective plane RP2. In this paper, we prove the conjecture for S2 and
RP2. In the case of RP2, we prove that Ker(ι#) is equal to the commutator
subgroup of Pn(RP2), we show that it may be decomposed in a manner
similar to that of Pn(S

2) as a direct sum of a torsion-free subgroup Ln and
the finite cyclic group generated by the full twist braid, and we prove that
Ln may be written as an iterated semidirect product of free groups. Finally,
we show that the groups Bn(S

2) and Pn(S
2) (resp. Bn(RP2) and Pn(RP2))

have finite virtual cohomological dimension equal to n − 3 (resp. n − 2),
where Bn(S) denotes the full n-string braid group of S. This allows us to
determine the virtual cohomological dimension of the mapping class groups
of S2 and RP2 with marked points, which in the case of S2 reproves a result
due to J. Harer.

1. Introduction

Let S be a connected surface, perhaps with boundary, and either compact or with
a finite number of points removed from the interior of the surface. The n-th
configuration space of S is defined by

Fn(S)= {(x1, . . . , xn) ∈ Sn
| xi 6= x j if i 6= j }.

MSC2010: primary 20F36; secondary 20J06.
Keywords: configuration spaces, surface braid groups, group presentations, virtual cohomological
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It is well known that π1(Fn(S))∼= Pn(S), the pure braid group of S on n strings,
and that π1(Fn(S)/Sn)∼= Bn(S), the braid group of S on n strings, where Fn(S)/Sn

is the quotient space of Fn(S) by the free action of the symmetric group Sn given
by permuting coordinates [Fadell and Neuwirth 1962; Fox and Neuwirth 1962]. We
compose elements of Bn(S) from left to right. If S is the 2-disc D2 then Bn(D

2)

(resp. Pn(D
2)) is the Artin braid group Bn (resp. the Artin pure braid group Pn).

The canonical projection Fn(S)→ Fn(S)/Sn is a regular n!-fold covering map, and
thus gives rise to the short exact sequence

(1) 1→ Pn(S)→ Bn(S)→ Sn→ 1.

If D2 is a topological disc lying in the interior of S and containing the basepoints
of the braids then the inclusion j : D2

→ S induces a group homomorphism
j# : Bn → Bn(S). This homomorphism is injective if S is different from the
2-sphere S2 and the real projective plane RP2 [Birman 1969; Goldberg 1973]. Let
j#|Pn : Pn → Pn(S) denote the restriction of j# to the corresponding pure braid
groups. If β ∈ Bn then we shall denote its image j#(β) in Bn(S) simply by β. It
is well known that the centre of Bn and of Pn is infinite cyclic, generated by the
full twist braid that we denote by 12

n , and that 12
n , considered as an element of

Bn(S
2) or of Bn(RP2), is of order 2 and generates the centre. If G is a group then

we denote its commutator subgroup by 02(G) and its Abelianisation by GAb, and
if H is a subgroup of G then we denote its normal closure in G by 〈〈H〉〉G .

Let
∏n

1 S = S× · · ·× S denote the n-fold Cartesian product of S with itself, let
ιn : Fn(S)→

∏n
1 S be the inclusion map, and let

ιn# : π1(Fn(S))→ π1

( n∏
1

S
)

denote the induced homomorphism on the level of fundamental groups. To simplify
the notation, we shall often just write ι and ι# if n is given. The study of ι# was
initiated by Birman [1969]. She had conjectured that 〈〈Im( j#|Pn )〉〉Pn(S) = Ker(ι#)
if S is a compact orientable surface, but states without proof that her conjecture is
false if S is of genus greater than or equal to 1 [Birman 1969, page 45]. However,
Goldberg [1973, Theorem 1] proved the conjecture several years later in both the
orientable and nonorientable cases for compact surfaces without boundary different
from S2 and RP2. In connection with the study of Vassiliev invariants of surface
braid groups, González-Meneses and Paris [2004] showed that Ker(ι#) is also
normal in Bn(S), and that the resulting quotient is isomorphic to the semidirect
product π1

(∏n
1 S
)
o Sn , where the action is given by permuting coordinates (their

work was within the framework of compact orientable surfaces without boundary,
but their construction is valid for any surface S). In the case of RP2, this result was
reproved using geometric methods [Tochimani 2011].
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If S = S2, then Ker(ι#) is clearly equal to Pn(S
2), and so by [Gonçalves and

Guaschi 2004b, Theorem 4], it may be decomposed as

(2) Ker(ι#)= Pn(S
2)∼= Pn−3(S

2
\ {x1, x2, x3})×Z2,

where the first factor of the direct product is torsion-free, and the Z2-factor is
generated by 12

n .
The aim of this paper is to resolve Birman’s conjecture for surfaces without

boundary in the remaining cases, namely S =S2 or RP2, to determine the cohomo-
logical dimension of Bn(S) and Pn(S), where S is one of these two surfaces, and
to elucidate the structure of Ker(ι#) in the case of RP2. In Section 2, we start by
considering the case S = RP2, we study Ker(ι#), which we denote by Kn , and we
show that it admits a decomposition similar to that of (2).

Proposition 1. Let n ∈ N.

(a) (i) Up to isomorphism, the homomorphism

ι# : π1(Fn(RP2))→ π1

( n∏
1

RP2
)

coincides with Abelianisation. In particular, Kn = 02(Pn(RP2)).
(ii) If n ≥ 2 then there exists a torsion-free subgroup Ln of Kn such that Kn is

isomorphic to the direct sum of Ln and the subgroup 〈12
n〉 generated by

the full twist that is isomorphic to Z2.

(b) If n ≥ 2 then any subgroup of Pn(RP2) that is normal in Bn(RP2) and that
properly contains Kn possesses an element of order 4.

Note that if n = 1 then B1(RP2)= P1(RP2)∼= Z2 and 12
1 is the trivial element,

so parts (a)(ii) and (b) do not hold. Part (a)(i) will be proved in Proposition 8.
We shall see later on in Remark 14 that there are precisely 2n(n−2) subgroups that
satisfy the conclusions of part (a)(ii), and to prove the statement, we shall exhibit
an explicit torsion-free subgroup Ln . We then prove Birman’s conjecture for S2

and RP2, using Proposition 1(a)(i) in the case of RP2.

Theorem 2. Let S be S2 or RP2, and let n ≥ 1. Then 〈〈Im( j#|Pn )〉〉Pn(S) = Ker(ι#).

In Section 3, we analyse Ln in more detail, and we show that it may be decom-
posed as an iterated semidirect product of free groups.

Theorem 3. Let n ≥ 3. Consider the Fadell–Neuwirth short exact sequence

(3) 1→ Pn−2(RP2
\{x1, x2})→ Pn(RP2)

q2#
−−→ P2(RP2)→ 1,
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where q2# is given geometrically by forgetting the last n− 2 strings. Then Ln may
be identified with the kernel of the composition

Pn−2(RP2
\{x1, x2})→ Pn(RP2)

ι#
−→Z2× · · ·×Z2︸ ︷︷ ︸

n copies

,

where the first homomorphism is that appearing in (3). The image of this compo-
sition is the product of the last n − 2 copies of Z2. In particular, Ln is of index
2n−2 in Pn−2(RP2

\{x1, x2}). Further, Ln is isomorphic to an iterated semidirect
product of free groups of the form F2n−3 o (F2n−5 o (· · ·o (F5 o F3) · · ·)), where
for all m ∈ N, Fm denotes the free group of rank m.

In the semidirect product decomposition of Ln , note that every factor acts on each
of the preceding factors. This is also the case for Pn−2(RP2

\{x1, x2}) (see (13)),
and as we shall see in Remark 13(a), this implies an Artin combing-type result
for this group. Analysing these semidirect products in more detail, we obtain the
following results.

Proposition 4. If n ≥ 3 then

(a)
(
Pn−2(RP2

\{x1, x2})
)Ab ∼= Z2(n−2),

(b) (Ln)
Ab ∼= Zn(n−2).

In two papers in preparation, we shall analyse the homotopy fibre of ι, as well
as the induced homomorphism ι# when S = S2 or RP2 [Gonçalves and Guaschi
≥ 2017], and when S is a space form manifold of dimension different from two [Go-
lasiński et al. 2016]. In the first of these papers, we shall also see that Ln is closely
related to the fundamental group of an orbit configuration space of the open cylinder.

In Section 4, we study the virtual cohomological dimension of the braid groups
of S2 and RP2. Recall from [Brown 1982, page 226] that if a group 0 is virtually
torsion-free then all finite index torsion-free subgroups of 0 have the same coho-
mological dimension by Serre’s theorem, and this dimension is defined to be the
virtual cohomological dimension of 0. Using (2) and (3), we prove the following
result, namely that if S=S2 or RP2, the groups Bn(S) and Pn(S) have finite virtual
cohomological dimension, and we compute these dimensions.

Theorem 5. (a) Let n ≥ 4. Then the virtual cohomological dimension of both
Bn(S

2) and Pn(S
2) is equal to the cohomological dimension of the group

Pn−3(S
2
\ {x1, x2, x3}). Furthermore, for all m ≥ 1, the cohomological dimen-

sion of the group Pm(S
2
\ {x1, x2, x3}) is equal to m.

(b) Let n ≥ 3. Then the virtual cohomological dimension of both Bn(RP2) and
Pn(RP2) is equal to the cohomological dimension of the group Pn−2(RP2

\

{x1, x2}). Furthermore, for all m ≥ 1, the cohomological dimension of the
group Pm(RP2

\ {x1, x2}) is equal to m.
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The methods of the proof of Theorem 5 have recently been applied to compute
the cohomological dimension of the braid groups of all other compact surfaces
(orientable and nonorientable) without boundary [Gonçalves et al. 2016]. Theorem 5
also allows us to deduce the virtual cohomological dimension of the punctured map-
ping class groups of S2 and RP2. If n ≥ 0, let MCG(S, n) denote the mapping class
group of a connected, compact surface S relative to an n-point set. If S is orientable
then Harer [1986, Theorem 4.1] determined the virtual cohomological dimension
of MCG(S, n). In the case of S2 and D2, he obtained the following results:

(a) If n ≥ 3, the virtual cohomological dimension of MCG(S2, n) is equal to n−3.

(b) If n ≥ 2, the cohomological dimension of MCG(D2, n) is equal to n−1 (recall
that MCG(D2, n) is isomorphic to Bn [Birman 1974]).

As a consequence of Theorem 5, we are able to compute the virtual cohomological
dimension of MCG(S, n) for S = S2 and RP2.

Corollary 6. Let n ≥ 4 (resp. n ≥ 3). Then the virtual cohomological dimension of
MCG(S2, n) (resp. MCG(RP2, n)) is finite and is equal to n− 3 (resp. n− 2).

If S = S2 or RP2 then for the values of n given by Theorem 5 and Corollary 6,
the virtual cohomological dimension of MCG(S, n) is equal to that of Bn(S). If
S = S2, we thus recover the corresponding result of Harer.

2. The structure of Kn, and Birman’s conjecture for S2 and RP2

Let n ∈ N. As we mentioned in the Introduction, if S is a surface different from
S2 and RP2, the kernel of the homomorphism ι# : Pn(S)→ π1

(∏n
1 S
)

was studied
in [Birman 1969; Goldberg 1973], and if S = S2 then Ker(ι#) = Pn(S

2). In
the first part of this section, we recall a presentation of Pn(RP2), and we prove
Proposition 1(a)(i). The second part of this section is devoted to proving the rest of
Proposition 1 and Theorem 2, the latter being Birman’s conjecture for S2 and RP2.

Consider the model of RP2 given by identifying antipodal boundary points
of D2. We equip Fn(RP2) with a basepoint (x1, . . . , xn). For 1 ≤ i < j ≤ n
(resp. 1 ≤ k ≤ n), we define the element Ai, j (resp. τk , ρk) of Pn(RP2) by the
geometric braids depicted on the left side of Figure 1. Note that the arcs represent
the projections of the strings onto RP2, so that all of the strings of the given braid
are vertical, with the exception of the j-th (resp. k-th) string that is based at the
point x j (resp. xk). As may be seen on the right side of Figure 1, the generator Ai, j

may also be represented by a loop based at the point xi .

Theorem 7 [Gonçalves and Guaschi 2007, Theorem 4]. Let n ∈ N. The following
constitutes a presentation of the pure braid group Pn(RP2):

Generators: Ai, j , 1≤ i < j ≤ n, and τk , 1≤ k ≤ n.
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xkx j

xi

Ai, j

τk
ρk

x j

xi

Ai, j

x1 xn

Figure 1. The elements Ai, j , τk and ρk of Pn(RP2).

Relations:

(a) The Artin relations between the Ai, j emanating from those of Pn:

(4) Ar,s Ai, j A−1
r,s =

Ai, j if i < r < s < j or r < s < i < j ,

A−1
i, j A−1

r, j Ai, j Ar, j Ai, j if r < i = s < j ,

A−1
s, j Ai, j As, j if i = r < s < j ,

A−1
s, j A−1

r, j As, j Ar, j Ai, j A−1
r, j A−1

s, j Ar, j As, j if r < i < s < j .

(b) For all 1≤ i < j ≤ n, τiτ jτ
−1
i = τ

−1
j A−1

i, j τ
2
j .

(c) For all 1≤ i ≤ n, τ 2
i = A1,i · · · Ai−1,i Ai,i+1 · · · Ai,n .

(d) For all 1≤ i < j ≤ n and 1≤ k ≤ n with k 6= j ,

τk Ai, jτ
−1
k =


Ai, j if j < k or k < i ,

τ−1
j A−1

i, j τ j if k = i ,

τ−1
j A−1

k, jτ j A−1
k, j Ai, j Ak, jτ

−1
j Ak, jτ j if i < k < j .

This enables us to prove that ι# is in fact Abelianisation, which is part (a)(i) of
Proposition 1.

Proposition 8. Let n ∈ N. The homomorphism ι# : Pn(RP2)→ π1
(∏n

1 RP2
)

is
defined on the generators of Theorem 7 by ι#(Ai, j )= (0, . . . , 0) for all 1≤ i < j ≤ n,
and ι#(τk)= (0, . . . , 0, 1, 0, . . . , 0), where 1 is in the k-th position, for all 1≤ k ≤ n.
Further, ι# is Abelianisation, and Ker(ι#)= Kn = 02(Pn(RP2)).

Proof. For 1 ≤ k ≤ n, let pk : Fn(RP2)→ RP2 denote projection onto the k-th
coordinate. Observe that ι# = p1#× · · · × pn#, where pk# : Pn(RP2)→ π1(RP2)

is the induced homomorphism on the level of fundamental groups. Identifying



INCLUSION OF CONFIGURATION SPACES IN CARTESIAN PRODUCTS 77

π1(RP2) with Z2 and using the geometric realisation of Figure 1 of the generators
of the presentation of Pn(RP2) given by Theorem 7, it is straightforward to check
that for all 1≤ k, l ≤ n and 1≤ i < j ≤ n, we have pk#(Ai, j )= 0, pk#(τl)= 0 if
l 6= k and pk#(τk)= 1, and this yields the first part of the proposition. The second
part follows easily from the presentation of the Abelianisation (Pn(RP2))Ab of
Pn(RP2) obtained from Theorem 7. More precisely, if we denote the Abelianisation
of an element x ∈ Pn(RP2) by x̄ , relations (b) and (c) imply respectively that for all
1≤ i< j≤n and 1≤k≤n, Ai, j and τk

2 represent the trivial element of (Pn(RP2))Ab.
Since the remaining relations give no other information under Abelianisation, it
follows that (Pn(RP2))Ab ∼= Z2 ⊕ · · · ⊕ Z2, where τk = (0, . . . , 0, 1, 0, . . . , 0)
with 1 in the k-th position and Ai, j = (0, . . . , 0) via this isomorphism, and the
Abelianisation homomorphism indeed coincides with ι# on Pn(RP2). �

Remark 9. (a) Since Kn=02(Pn(RP2)), it follows immediately that Kn is normal
in Bn(RP2), since 02(Pn(RP2)) is characteristic in Pn(RP2), and Pn(RP2) is
normal in Bn(RP2).

(b) A presentation of Kn may be obtained by a long but routine computation using
the Reidemeister–Schreier method, although it is not clear how to simplify the
presentation. In Theorem 3, we will provide an alternative description of Kn using
algebraic methods.

(c) In what follows, we shall use Van Buskirk’s presentation of Bn(RP2) [1966,
page 83], whose generating set consists of the standard braid generators σ1, . . . , σn−1

emanating from the 2-disc, as well as the surface generators ρ1, . . . , ρn depicted in
Figure 1. We have the following relation between the elements τk and ρk :

τk = ρ
−1
k Ak,k+1 · · · Ak,n for all 1≤ k ≤ n,

where for 1≤ i < j ≤n, Ai, j =σj−1 · · · σi+1σ
2
i σ
−1
i+1 · · · σ

−1
j−1. In particular, it follows

from Proposition 8 that

(5) ι#(ρk)= ι#(τk)= (0, . . . , 0, 1, 0, . . . , 0) for all 1≤ k ≤ n,

where 1 is in the k-th position.

If n ≥ 2, the full twist braid 12
n , which may be defined by 12

n = (σ1 · · · σn−1)
n,

is of order 2 [Van Buskirk 1966, page 95], it generates the centre of Bn(RP2)

[Murasugi 1982, Proposition 6.1], and it is the unique element of Bn(RP2) of
order 2 [Gonçalves and Guaschi 2004a, Proposition 23]. Since 12

n ∈ Pn(RP2), it
thus belongs to the centre of Pn(RP2), and just as for the Artin braid groups and
the braid groups of S2, it generates the centre of Pn(RP2):

Proposition 10. Let n ≥ 2. Then the centre Z(Pn(RP2)) of Pn(RP2) is generated
by 12

n .
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Proof. We prove the result by induction on n. If n = 2 then P2(RP2) ∼= Q8

[Van Buskirk 1966, page 87], the quaternion group of order 8, and the result follows
since 12

2 is the element of P2(RP2) of order 2. So suppose that n ≥ 3. From the
preceding remarks, 〈12

n〉 ⊂ Z(Pn(RP2)). Conversely, let x ∈ Z(Pn(RP2)), and
consider the Fadell–Neuwirth short exact sequence

1→ π1(RP2
\ {x1, . . . , xn−1})→ Pn(RP2)

q(n−1)#
−−−→ Pn−1(RP2)→ 1,

where q(n−1)# is the surjective homomorphism induced on the level of fundamental
groups by the projection qn−1 : Fn(RP2)→ Fn−1(RP2) onto the first n− 1 coordi-
nates. Now q(n−1)#(x)∈ Z(Pn−1(RP2)) by surjectivity, and thus q(n−1)#(x)=12ε

n−1
for some ε∈ {0, 1} by the induction hypothesis. Further, q(n−1)#(1

2
n)=1

2
n−1, hence

1−2ε
n x ∈ Ker(q(n−1)#)∩ Z(Pn(RP2)),

and therefore 1−2ε
n x ∈ Z(Ker(q(n−1)#)). But Z(Ker(q(n−1)#)) is trivial because

Ker(q(n−1)#) is a free group of rank n−1. This implies that x ∈ 〈12
n〉 as required. �

Proof of Proposition 1. Let n ≥ 3.

(a) Recall that part (a)(i) of Proposition 1 was proved in Proposition 8, so let
us prove part (ii). The projection q2 : Fn(RP2)→ F2(RP2) onto the first two
coordinates gives rise to the Fadell–Neuwirth short exact sequence (3). Since
Kn = 02(Pn(RP2)) by Proposition 8, the image of the restriction q2#|Kn of q2#

to Kn is the subgroup 02(P2(RP2)) = 〈12
2〉, and so we obtain the commutative

diagram

(6)

1 Kn ∩ Pn−2(RP2
\{x1, x2}) Kn 〈12

2〉 1

1 Pn−2(RP2
\{x1, x2}) Pn(RP2) P2(RP2) 1,

q2#|Kn

q2#

where the vertical arrows are inclusions. Now 〈12
2〉
∼= Z2, so Kn is an exten-

sion of the group Ker(q2#|Kn ) = Kn ∩ Pn−2(RP2
\ {x1, x2}) by Z2. The fact that

q2#(1
2
n)=1

2
2 implies that the upper short exact sequence splits, a section being

defined by the correspondence 12
2 7→12

n , and since 12
n ∈ Z(Pn(RP2)), the action

by conjugation on Ker(q2#|Kn ) is trivial. Part (a) of the proposition follows by
taking Ln = Ker(q2#|Kn ) and by noting that Pn−2(RP2

\{x1, x2}) is torsion-free.

(b) Recall first that any torsion element in Pn(RP2)\〈12
n〉 is of order 4 [Gonçalves

and Guaschi 2004a, Corollary 19 and Proposition 23], and is conjugate in Bn(RP2)

to one of an or bn−1, where a = ρnσn−1 · · · σ1 and b = ρn−1σn−2 · · · σ1 satisfy

(7) an
= ρn · · · ρ1 and bn−1

= ρn−1 · · · ρ1
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by [Gonçalves and Guaschi 2010b, Proposition 10]. Let N be a normal subgroup of
Bn(RP2) that satisfies Kn $ N ⊂ Pn(RP2). We claim that for all u ∈ π1

(∏n
1 RP2

)
(which we identify henceforth with Z2⊕ · · · ⊕Z2), exactly one of the following
two conditions holds:

(i) N ∩ ι−1
# ({u}) is empty.

(ii) ι−1
# ({u}) is contained in N.

To prove the claim, suppose that x ∈ N ∩ ι−1
# ({u}) 6=∅, and let y ∈ ι−1

# ({u}). Now
ι#(x) = ι#(y) = u, so there exists k ∈ Kn such that x−1 y = k. Since Kn ⊂ N , it
follows that y = xk ∈ N , which proves the claim. Further, ι#(an)= (1, . . . , 1) and
ι#(bn−1)= (1, . . . , 1, 0) by Proposition 8 and equations (5) and (7), so by the claim
it suffices to prove that there exists z∈N such that ι#(z)∈{(1, . . . , 1), (1, . . . , 1, 0)},
for then we are in case (ii) above, and it follows that one of an or bn−1 belongs to N.

It thus remains to prove the existence of such a z. Let x ∈ N \ Kn . Then ι#(x)
contains an entry equal to 1 because Kn = Ker(ι#). If ι#(x)= (1, . . . , 1) then we
are done. So assume that ι#(x) also contains an entry that is equal to 0. By (5), there
exist 1≤ r < n and 1≤ i1 < · · ·< ir ≤ n such that ι#(ρi1 · · · ρir )= ι#(x). It follows
from the claim and the fact that x ∈ N that ρi1 · · · ρir ∈ N also, and so without loss
of generality, we may suppose that x = ρi1 · · · ρir . Further, since ι#(x) contains both
a 0 and a 1, there exists 1 ≤ j ≤ r such that pi j #(x) = 1 and p(i j+1)#(x) = 0, the
homomorphisms pk# being those defined in the proof of Proposition 8. Note that
we consider the indices modulo n, so if i j = n (so j = r ) then we set i j +1= 1. By
[Gonçalves and Guaschi 2004a, page 777], conjugation by a−1 permutes cyclically
the elements ρ1, . . . , ρn, ρ

−1
1 , . . . , ρ−1

n of Pn(RP2), so the (n−1)-st (resp. n-th)
entry of x ′ = a−(n−1−i j )xa(n−1−i j ) is equal to 1 (resp. 0), and x ′ ∈ N because N is
normal in Bn(RP2). Using the relation b = σn−1a, we determine the conjugates
of the ρi by b−1:

b−1ρi b = a−1σ−1
n−1ρiσn−1a = a−1ρi a = ρi+1 for all 1≤ i ≤ n− 2,

b−1ρn−1b = a−1σ−1
n−1ρn−1σn−1a = a−1σ−1

n−1ρn−1σ
−1
n−1. σ

2
n−1a

= a−1ρna. a−1σ 2
n−1a = ρ−1

1 . a−1σ 2
n−1a,

where we used the relations ρiσn−1=σn−1ρi if 1≤ i ≤n−2 and σ−1
n−1ρn−1σ

−1
n−1=ρn

of Van Buskirk’s presentation of Bn(RP2), as well as the effect of conjugation
by a−1 on the ρ j . Now σ 2

n−1 = An−1,n ∈ Kn by Proposition 8, so a−1σ 2
n−1a ∈ Kn

by Remark 9(a), and hence ι#(b−1ρn−1b) = (1, 0, . . . , 0). It then follows that
ι#(a−1x ′a) and ι#(b−1x ′b) have the same entries except in the first and last positions,
so if x ′′= a−1x ′a. b−1x ′b, we have ι#(x ′′)= (1, 0, . . . , 0, 1). Further, x ′′ ∈ N since
N is normal in Bn(RP2). Let n= 2m+ε, where m ∈N and ε ∈ {0, 1}. Then setting

z = a−εx ′′aε· a−(2+ε)x ′′a2+ε
· · · a−(2(m−1)+ε)x ′′a2(m−1)+ε,
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we see once more that z ∈ N , and ι#(z) = (1, . . . , 1) if n is even and ι#(z) =
(1, . . . , 1, 0) if n is odd, which completes the proof of the existence of z, and thus
that of Proposition 1(b). �

Proof of Theorem 2. Let S = S2 or RP2. If n = 1 then ι# is an isomorphism
and Im( j#|Pn ) is trivial so the result holds. If n = 2 and S = S2 then Pn(S

2) is
trivial, and there is nothing to prove. Now suppose that S = S2 and n ≥ 3. As
we mentioned in the Introduction, Ker(ι#) = Pn(S

2). Let (Ai, j )1≤i< j≤n be the
generating set of Pn , where Ai, j has a geometric representative similar to that given
in Figure 1. It is well known that the image of this set by j# yields a generating set
for Pn(S

2) (see [Scott 1970, page 616]), so j#|Pn is surjective, and the statement
of the theorem follows. Finally, assume that S = RP2 and n ≥ 2. Once more,
Im( j#|Pn ) = 〈Ai, j | 1 ≤ i < j ≤ n 〉, and since Ai, j ∈ Ker(ι#) by Proposition 8,
we conclude that 〈〈Im( j#|Pn )〉〉Pn(S) ⊂ Ker(ι#). To prove the converse, first recall
from Proposition 8 that Ker(ι#)= 02(Pn(RP2)). Using the standard commutator
identities

[x, yz] = [x, y]
[
y, [x, z]

]
[x, z]

and
[xy, z] =

[
x, [y, z]

]
[y, z][x, z],

02(Pn(RP2)) is equal to the normal closure in Pn(RP2) of the set{
[x, y]

∣∣ x, y ∈ {Ai, j , ρk | 1≤ i < j ≤ n and 1≤ k ≤ n }
}
.

It then follows using the relations of Theorem 7 that the commutators [x, y] belong-
ing to this set also belong to 〈〈Ai, j |1≤ i< j≤n 〉〉Pn(RP2), which is nothing other than
〈〈Im( j#|Pn )〉〉Pn(S). We conclude by normality that Ker(ι#)⊂ 〈〈Im( j#|Pn )〉〉Pn(S). �

3. Some properties of the subgroup Ln

Let S = S2 or S = RP2, and for all m, n ≥ 1, let 0m,n(S)= Pm(S \ {x1, . . . , xn})

denote the m-string pure braid group of S with n points removed. In this section,
we study Pn−2(RP2

\{x1, x2}), which is 0n−2,2(RP2), in more detail, and we prove
Theorem 3 and Proposition 4, which enable us to understand better the structure of
the subgroup Ln defined in the proof of Proposition 1(a)(ii).

We start by exhibiting a presentation of the group 0m,n(RP2) in terms of the
generators of Pm+n(RP2) described at the beginning of Section 2. A presentation
for 0m,n(S

2) is given in [Gonçalves and Guaschi 2005, Proposition 7] and will
be recalled later in Proposition 15, when we come to proving Theorem 5. For
1≤ i < j ≤ m+ n, let

(8) Ci, j = A−1
j−1, j · · · A

−1
i+1, j Ai, j Ai+1, j · · · Aj−1, j
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x j

xi

Ci, j

Figure 2. The element Ci, j in Pm+n(RP2).

in Pm+n(RP2) (see Figure 2). In what follows, any element of the form Ai, j or Ci, j ,
where i ≥ j , should be interpreted as the trivial element. The proof of the following
proposition is similar in nature to that for S2, but is a little more involved due to
the presence of extra generators that emanate from the fundamental group of RP2.

Proposition 11. Let n,m ≥ 1. The following constitutes a presentation of the group
0m,n(RP2):

Generators: Ai, j , ρ j , where 1≤ i < j and n+ 1≤ j ≤ m+ n.

Relations:

(I) The Artin relations described by (4) among the generators Ai, j of 0m,n(RP2).

(II) For all 1≤ i < j and n+ 1≤ j < k ≤ m+ n, Ai, jρk A−1
i, j = ρk .

(III) For all 1≤ i < j and n+ 1≤ k < j ≤ m+ n,

ρk Ai, jρ
−1
k =


Ai, j if k < i ,

ρ−1
j C−1

i, j ρ j if k = i ,

ρ−1
j C−1

k, jρ j Ai, jρ
−1
j Ck, jρ j if k > i .

(IV) For all n+ 1≤ k < j ≤ m+ n, ρkρ jρ
−1
k = Ck, jρ j .

(V) For all n+ 1≤ j ≤ m+ n,

ρ j

( j−1∏
i=1

Ai, j

)
ρ j =

( m+n∏
l= j+1

Aj,l

)
.

The elements Ci, j and Ck, j appearing in relations (III) and (IV) should be rewritten
using (8).
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x1 x j

xn+m

−−−−→ x1 x j xn+m+1

Figure 3. The relation
(∏m+n

l= j+1 Aj,l
)−1
ρ j
(∏ j−1

i=1 Ai, j
)
ρ j = Aj,n+m+1

in 0m+1,n(RP2) for n+ 1≤ j ≤ n+m+ 1.

Proof. If m, n ≥ 1, we have the following Fadell–Neuwirth short exact sequence of
pure braid groups of RP2

\ {x1, . . . , xn}:

(9) 1→ P1(RP2
\ {x1, . . . , xn, xn+1, . . . , xn+m})

→ 0m+1,n(RP2)
q
−→0m,n(RP2)→ 1,

where the homomorphism q is given geometrically by forgetting the last string.
The generators Ai, j and ρ j of 0m,n(RP2) given in the statement of the proposition
are represented geometrically as in Figure 1, and the basepoints of the m strings
of 0m,n(RP2) are the points xn+1, . . . , xn+m . Using induction on m, we apply
standard methods to obtain a group presentation of an extension from presentations
of the kernel and the quotient [Johnson 1997, Proposition 1, Chapter 10], using the
geometric representations of Figure 1 to derive some of the relations.

Let n ≥ 1. If m = 1 then 01,n(RP2)= π1(RP2
\{x1, . . . , xn}, xn+1) is generated

by {Ai,n+1, ρn+1 | 1 ≤ i ≤ n } subject to the surface relation
∏n

i=1 Ai,n+1 = ρ
−2
n+1,

which is equivalent to the single relation given by (V). Since the remaining rela-
tions (I)–(IV) are empty, the given presentation of 01,n(RP2) is correct.

Now suppose that the given presentation of 0m,n(RP2) is correct for some m ≥ 1.
We shall show that we obtain the presentation of 0m+1,n(RP2) by applying the
above-mentioned methods to the short exact sequence (9). Although Ker(q) is a
free group, it shall be convenient to consider it as the group with generating set

Yn+m+1 = {Ai,n+m+1, ρn+m+1 | 1≤ i ≤ n+m },

subject to the single relation ρn+m+1
(∏n+m

i=1 Ai,n+m+1
)
ρn+m+1=1 (this may be seen

by taking j = n+m+ 1 in Figure 3). According to [Johnson 1997, Proposition 1,
Chapter 10], 0m+1,n(RP2) is generated by the union of Yn+m+1 with the set of
coset representatives

Xm,n = {Ai, j , ρ j | 1≤ i < j and n+ 1≤ j ≤ m+ n }
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x1 xi
x j

xn+m+1
−−−−→

x1

xi

x j

xn+m+1

Figure 4. The relation ρi Ai, jρ
−1
i = ρ

−1
j C−1

i, j ρ j in 0m+1,n(RP2)

for 1≤ i < j and n+ 1≤ j ≤ n+m+ 1.

in 0m+1,n(RP2) of the given set of generators of 0m,n(RP2). This yields the
required set of generators of 0m+1,n(RP2). Once more by [Johnson 1997, Proposi-
tion 1, Chapter 10], there are three types of relation in 0m+1,n(RP2):

(1) the (single) given relation of Ker(q), which yields the surface relation (V) with
j = n+m+ 1;

(2) the relators of 0m,n(RP2), rewritten in terms of the elements of Yn+m+1;

(3) the conjugates of the elements of Yn+m+1 by the elements of Xm,n , also rewrit-
ten in terms of the elements of Yn+m+1.

Let us study the relations of type (2) using the geometric representatives given
in Figure 1. The Artin relations (I) of 0m,n(RP2) lift directly to relations in
0m+1,n(RP2), and yield the relations (I) of 0m+1,n(RP2) for all n+1≤ j ≤ n+m.
The relations (II) (resp. relations (III) with k < i) of 0m,n(RP2) involve elements
that are represented geometrically by disjoint loops. They also lift directly to
relations in 0m+1,n(RP2), and yield the relations (II) (resp. relations (III) with
k < i) of 0m+1,n(RP2) for all k ≤ n +m (resp. for all n + 1 ≤ j ≤ n +m). The
relations (III) with k= i or k> i (resp. relations (IV)) of 0m,n(RP2) are represented
in Figures 4, 5 and 6 respectively (in 0m,n(RP2), the point xn+m+1 is unmarked),
and from these figures, we see that each of the relations also lifts directly to
0m+1,n(RP2). We thus obtain all of the relations (I)–(IV) of 0m+1,n(RP2) for all
n+1≤ j ≤ n+m in relations (I), (III) and (IV), and for all k ≤ n+m in relation (II).
From Figure 3, we observe that

(∏m+n
l= j+1 Aj,l

)−1
ρ j
(∏ j−1

i=1 Ai, j
)
ρ j = Aj,n+m+1 for

all n+ 1≤ j ≤ n+m. Together with the relation of type (1), this yields all of the
relations (V) in 0m+1,n(RP2). It remains to determine the relations of type (3).
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x1 xi xk
x j

xn+m+1
−−−−→

x1 xi

xk

x j

xn+m+1

Figure 5. The relation ρk Ai, jρ
−1
k = ρ

−1
j C−1

k, jρ j Ai, jρ
−1
j Ck, jρ j in

0m+1,n(RP2) for 1≤ i < k < j and n+ 1≤ k < j ≤ n+m+ 1.

x1 xk
x j

xn+m+1
−−−−→

x1 xk x j

xn+m+1

Figure 6. The relation ρkρ jρ
−1
k = Ck, jρ j in 0m+1,n(RP2) for

n+ 1≤ k < j ≤ n+m+ 1.

• If Ai, j ∈ Xm,n and Ak,n+m+1 ∈ Yn+m+1 then Ai, j Ak,n+m+1 A−1
i, j is given by the

Artin relations (4), and together with the Artin relations of type (2), we obtain all
of the relations (I) in 0m+1,n(RP2).

• If Ai, j ∈ Xm,n and ρn+m+1 ∈ Yn+m+1, then since j ≤ n +m, Ai, j and ρn+m+1

commute since they are represented geometrically by disjoint loops. This yields
relations (II) in 0m+1,n(RP2) with k = n+m+1. Together with the corresponding
relations of type (2), we obtain all of the relations (II) in 0m+1,n(RP2).

• If ρk ∈ Xm,n and Ai,n+m+1 ∈ Yn+m+1, we consider three cases:

(a) If k < i , then ρk and Ai,n+m+1 commute since they are represented geometri-
cally by disjoint loops.
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(b) If k = i , we obtain ρi Ai,n+m+1ρ
−1
i = ρ

−1
n+m+1C−1

i,n+m+1ρn+m+1 by taking j =
n+m+ 1 in Figure 4.

(c) If k > i , by taking j = n+m+ 1 in Figure 5, we see that ρk Ai,n+m+1ρ
−1
k =

ρ−1
n+m+1C−1

k,n+m+1ρn+m+1 Ai,n+m+1ρ
−1
n+m+1Ck,n+m+1ρn+m+1.

Together with the corresponding relations of type (2), we obtain all of the rela-
tions (III) in 0m+1,n(RP2).

• If ρk ∈ Xm,n and ρn+m+1 ∈ Yn+m+1 then by taking j = n +m + 1 in Figure 6,
we see that ρkρn+m+1ρ

−1
k = Ck,n+m+1ρn+m+1, which yields relations (IV) with

j = n+m+ 1. Together with the corresponding relations of type (2), we obtain all
of the relations (IV) in 0m+1,n(RP2). �

In the rest of this section, we shall assume that n = 2, and we shall focus our
attention on the groups 0m,2(RP2), where m ≥ 1, which we interpret as subgroups
of Pm+2(RP2) via the short exact sequence (3). Before proving Theorem 3 and
Proposition 4, we introduce some notation that will be used to study the subgroups
Kn and Ln . Let m ≥ 2, and consider the Fadell–Neuwirth short exact sequence

(10) 1→�m+1→ Pm(RP2
\{x1, x2})

rm+1
−−→ Pm−1(RP2

\{x1, x2})→ 1,

where rm+1 is given geometrically by forgetting the last string, and where �m+1 =

π1(RP2
\ {x1, . . . , xm+1}, xm+2). From the Fadell–Neuwirth short exact sequences

of the form of (3), rm+1 is the restriction of q(m+1)# : Pm+2(RP2)→ Pm+1(RP2)

to Ker(q2#). The kernel �m+1 of rm+1 is a free group of rank m+ 1 with a basis
Bm+1 being given by

(11) Bm+1 = {Ak,m+2, ρm+2 | 1≤ k ≤ m }.

The group �m+1 may also be described as the subgroup of Pm(RP2
\ {x1, x2})

generated by {A1,m+2, . . . , Am+1,m+2, ρm+2} subject to the relation

(12) Am+1,m+2 = A−1
m,m+2 · · · A

−1
1,m+2ρ

−2
m+2,

obtained from relation (V) of Proposition 11. Equations (8) and (12) imply notably
that Al,m+2 and Cl,m+2 belong to �m+1 for all 1 ≤ l ≤ m + 1. Using geometric
methods, for m ≥ 2, we proved the existence of a section

sm+1 : Pm−1(RP2
\{x1, x2})→ Pm(RP2

\{x1, x2})

for rm+1 in [Gonçalves and Guaschi 2010a, Theorem 2(a)]. Applying induction
to (10), it follows that for all m ≥ 1,

(13) Pm(RP2
\{x1, x2})∼=�m+1 o (�m o (· · ·o (�3 o�2) · · · )).
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So Pm(RP2
\ {x1, x2}) ∼= Fm+1 o (Fm o (· · · o (F3 o F2) · · · )), which may be

interpreted as the Artin combing operation for Pm(RP2
\{x1, x2}). It follows from

this and (11) that Pm(RP2
\{x1, x2}) admits Xm+2 as a generating set, where

(14) Xm+2 = {Ai, j , ρ j | 3≤ j ≤ m+ 2, 1≤ i ≤ j − 2}.

Remark 12. For what follows, we will need to know an explicit section sm+1

for rm+1. Such a section may be obtained as follows: for m ≥ 2, consider the
homomorphism Pm(RP2

\{x1, x2})→ Pm−1(RP2
\{x1, x2}) given by forgetting

the string based at x3. By [Gonçalves and Guaschi 2010a, Theorem 2(a)]), a
geometric section is obtained by doubling the second (vertical) string, so that there
is a new third string, and renumbering the following strings, which gives rise to an
algebraic section for the given homomorphism of the form

Ai, j 7→


A1, j+1 if i = 1,
A2, j+1 A3, j+1 if i = 2,
Ai+1, j+1 if 3≤ i < j ,

ρ j 7→ ρ j+1

for all 3≤ j ≤ m+ 1. However, in view of the nature of rm+1, we would like this
new string to be in the (m+2)-nd position. We achieve this by composing the above
algebraic section with conjugation by σm+1 · · · σ3, which gives rise to a section

sm+1 : Pm−1(RP2
\{x1, x2})→ Pm(RP2

\{x1, x2})

for rm+1 that is defined by

(15)


sm+1(Ai, j )=


Aj,m+2 A1, j A−1

j,m+2 if i = 1,
Aj,m+2 A2, j if i = 2,
Ai, j if 3≤ i < j ,

sm+1(ρ j )= ρ j A−1
j,m+2

for all 1≤ i < j and 3≤ j ≤ m+ 1. A long but straightforward calculation using
the presentation of Pm(RP2

\ {x1, x2}) given by Proposition 11 shows that sm+1

does indeed define a section for rm+1.

We now prove Theorem 3, which lets us give a more explicit description of Ln .

Proof of Theorem 3. Let n ≥ 3. By the commutative diagram (6) of short exact
sequences, the restriction of the homomorphism q2# : Pn(RP2)→ P2(RP2) to
Kn factors through the inclusion 〈12

2〉 → P2(RP2), and the kernel Ln of q2#|Kn is
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contained in Pn−2(RP2
\{x1, x2}). We may then add a third row to this diagram:

(16)

1 1 1

1 Ln Kn 〈12
2〉 1

1 Pn−2(RP2
\{x1, x2}) Pn(RP2) P2(RP2) 1

1 Zn−2
2 Zn

2 Z2
2 1,

1 1 1

q2#|Kn

ι̂n−2

q2#

ιn# ι2#

` q̂2

where q̂2 : Z
n
2→ Z2

2 is projection onto the first two factors, and ` : Zn−2
2 → Zn

2 is
the monomorphism defined by

`(ε1, . . . , εn−2)= (0, 0, ε1, . . . , εn−2).

The commutativity of diagram (16) thus induces a homomorphism

ι̂n−2 : Pn−2(RP2
\{x1, x2})→ Zn−2

2

that is the restriction of ιn# to Pn−2(RP2
\ {x1, x2}) that makes the bottom left-

hand square commute. To see that ι̂n−2 is surjective, notice that if x ∈ Zn−2
2

then the first two entries of `(x) are equal to 0, and using (5), it follows that
there exist 3 ≤ i1 < · · · < ir ≤ n such that ιn#(ρi1 · · · ρir ) = `(x). Furthermore,
ρi1 · · · ρir ∈ Ker(q2#), and by the commutativity of the diagram, we also have
ιn#(ρi1 · · · ρir )= ` ◦ ι̂n−2(ρi1 · · · ρir ), whence x = ι̂n−2(ρi1 · · · ρir ) by the injectivity
of `. It remains to prove the exactness of the first column. The fact that Ln ⊂

Ker(ι̂n−2) follows easily. Conversely, if x ∈Ker(ι̂n−2) then x ∈ Pn−2(RP2
\{x1, x2}),

and x ∈ Kn by the commutativity of the diagram, so x ∈ Ln . This proves the first
two assertions of the theorem.

To prove the last part of the theorem, let m ≥ 1, and consider (10). Since ι̂m is the
restriction of ι(m+2)# to Pm(RP2

\{x1, x2}), we have ι̂m(ρ j )= (0, . . . , 0, 1, 0, . . . , 0),
where 1 is the in the ( j−2)-nd position, and ι̂m(Ai, j )= (0, . . . , 0) for all 1≤ i < j
and 3 ≤ j ≤ m + 2. So for each 2 ≤ l ≤ m + 1, ι̂m restricts to a surjective
homomorphism ι̂m |�l :�l→ Z2 of each of the factors of (13), with Z2 being the
(l−1)-st factor of Zm

2 , and using (11), we see that Ker( ι̂m |�l ) is a free group of rank
2l − 1 with basis B̂l given by

(17) B̂l = {Ak,l+1, ρl+1 Ak,l+1ρ
−1
l+1, ρ

2
l+1 | 1≤ k ≤ l − 1}.
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As we shall now explain, for all m ≥ 2, the short exact sequence (10) may be
extended to a commutative diagram of short exact sequences as follows:

(18)

1 1 1

1 Ker( ι̂m |�m+1) Lm+2 Lm+1 1

1 �m+1 Pm(RP2
\{x1, x2}) Pm−1(RP2

\{x1, x2}) 1

1 Z2 Zm
2 Zm−1

2 1.

1 1 1

rm+1|Lm+2

ι̂m |�m+1

rm+1

ι̂m ι̂m−1

sm+1

To obtain this diagram, we start with the commutative diagram that consists of the
second and third rows and the three columns (so a priori, the arrows of the first row
are missing). The commutativity implies that rm+1 restricts to the homomorphism
rm+1|Lm+2 : Lm+2 → Lm+1, which is surjective, since if w ∈ Lm+1 is written in
terms of the elements of Xm+1 then the same word w, considered as an element of
Pm(RP2

\{x1, x2}), belongs to Lm+2, and satisfies rm+1(w)= w. Then the kernel
of rm+1|Lm+2 , which is also the kernel of ι̂m |�m+1 , is equal to Lm+2 ∩�m+1. This
establishes the existence of the complete commutative diagram (18) of short exact
sequences. By induction, it follows from (17) and (18) that for all m ≥ 1, Lm+2 is
generated by

(19) X̂m+2 =

m+2⋃
j=3

B̂j−1 = {Ai, j , ρ j Ai, jρ
−1
j , ρ

2
j | 3≤ j ≤m+2, 1≤ i ≤ j −2}.

By (15), for each x ∈ X̂m+1, ι̂m ◦ sm+1(x) is the trivial element of Zm
2 , and thus

sm+1(x) ∈ Lm+2. Hence sm+1 restricts to a section sm+1|Lm+1 : Lm+1→ Lm+2 for
rm+1|Lm+2 . We conclude by induction on the first row of (18) that

Lm+2 ∼= Ker( ι̂m |�m+1)oLm+1(20)
∼= Ker( ι̂m |�m+1)o

(
Ker( ι̂m |�m )o

(
· · ·o

(
Ker( ι̂m |�3)oKer( ι̂m |�2)

)
· · ·
))
,(21)

the actions being induced by those of (13), so by (17), Lm+2 is isomorphic to a
repeated semidirect product of the form F2m+1 o (F2m−1 o (· · ·o (F5 o F3) · · · )).
The last part of the statement of Theorem 3 follows by taking m = n− 2. �

A finer analysis of the actions that appear in (13) and (21) now allows us to
determine the Abelianisations of Pn−2(RP2

\{x1, x2}) and Ln .

Proof of Proposition 4. If n = 3 then the two assertions are clear. So assume by
induction that they hold for some n ≥ 3. From the split short exact sequence (10)
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and (20) with m = n− 1, we have

(22)
{

Pn−1(RP2
\{x1, x2})∼=�n oψ Pn−2(RP2

\{x1, x2}),

Ln+1 ∼= Ker( ι̂n−1|�n )oψ Ln,

where ψ denotes the action given by the section sn , as well as the action induced
by the restriction of the section sn to Ln .

Before going any further, we recall some general considerations from [Gonçalves
and Guaschi 2009, pages 3387–88] concerning the Abelianisation of semidirect
products. If H and K are groups, and if ϕ : H → Aut(K ) is an action of H on K ,
then one may deduce easily from Proposition 3.3 of that paper that

(23) (K oϕ H)Ab ∼=1(K )⊕ H Ab,

where

1(K )= K/K1, K1= 〈02(K )∪ K̂ 〉 and K̂ = 〈ϕ(h)(k) ·k−1
| h ∈ H and k ∈ K 〉.

Recall that K̂ is normal in K (see [Gonçalves and Guaschi 2009, lines 1–4,
page 3388]), so K1 is normal in K , K1 = 02(K ). K̂ = K̂ .02(K ), and 1(K ) ∼=
K Ab/p(K̂ ), where p : K→ K Ab is the canonical projection. If k ∈ K , let k̄ = p(k).
For all k, k ′ ∈ K and h, h′ ∈ H , we have

ϕ(h−1)(k) · k−1
=
(
ϕ(h)(ϕ(h−1)(k)) · (ϕ(h−1)(k))−1)−1

,(24)

ϕ(h)(k−1) · k =
(
k−1(ϕ(h)(k) · k−1)k

)−1
,(25)

ϕ(hh′)(k) · k−1
= ϕ(h)(ϕ(h′)(k)) ·ϕ(h′)(k−1) ·ϕ(h′)(k) · k−1(26)

= ϕ(h)(k ′′) · k ′′−1
·ϕ(h′)(k) · k−1,

ϕ(h)(kk ′) · (kk ′)−1
=
(
ϕ(h)(k) · k−1)

· k
(
ϕ(h)(k ′) · k ′−1)k−1,(27)

where k ′′ = ϕ(h′)(k) belongs to K . Let H and K be generating sets for H and K ,
respectively. By induction on word length relative to the elements of H, (24)
and (26) imply that K̂ is generated by elements of the form ϕ(h)(k) · k−1, where
h ∈H and k ∈ K . A second induction on word length relative to the elements of K
and (25) and (27) imply that K̂ is normally generated by the elements of the form
ϕ(h)(k) · k−1, where h ∈H and k ∈K. It follows that the subgroup p(K̂ ) of K Ab

is generated by the elements of the form ϕ(h)(k) · k−1, where h ∈H and k ∈ K,
and that a presentation of 1(K ) may be obtained from a presentation of K Ab by
adjoining these elements as relators.

We now take K =�n (resp. K =Ker( ι̂n−1|�n )), H = Pn−2(RP2
\{x1, x2}) (resp.

H = Ln) and ϕ = ψ . Applying the induction hypothesis and (23) to (22), to prove
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parts (a) and (b), it thus suffices to show that

1(�n)∼= Z2,(28)

1
(
Ker( ι̂n−1|�n )

)
∼= Z2n−1,(29)

respectively. We first establish the isomorphism (28). As we saw above, to obtain a
presentation of 1(�n), we add the relators of the form ψ(τ)(ω) ·ω−1 to a presenta-
tion of (�n)

Ab, where τ ∈Xn and ω∈Bn , with Xn and Bn as defined in (14) and (11),
respectively. In (�n)

Ab, these relators may be written as sn(τ )ω(sn(τ ))−1ω−1, or
equivalently in the form

(30) sn(τ )ω(sn(τ ))−1 ω−1.

We claim that it is not necessary to know explicitly the section sn in order to
determine these relators. Indeed, for all τ ∈ Xn , we have rn(τ )= τ ; note that we
abuse notation here by letting τ also denote the corresponding element of Xn+1 in
Pn−1(RP2

\ {x1, x2}). Thus sn(τ )τ
−1
∈ Ker(rn), and hence there exists ωτ ∈ �n

such that sn(τ )= ωτ τ . Therefore

sn(τ )ω(sn(τ ))−1 = ωτ τωτ−1ω−1
τ = ωτ τωτ−1 ω−1

τ = τωτ−1

in (�n)
Ab, and thus the relators of (30) become

(31) sn(τ )ω(sn(τ ))−1ω−1 = τωτ−1 ω−1.

This proves the claim. Hence the subgroup p(�̂n) of (�n)
Ab is generated by the

elements of the form given by (31), where τ ∈Xn and ω ∈Bn . In what follows, the
relations (I)–(V) refer to those of the presentation of Pn−1(RP2

\{x1, x2}) described
by Proposition 11. Using this presentation, we see immediately that τωτ−1 = ω in
(�n)

Ab for all τ ∈ Xn and ω ∈Bn , with the following exceptions:

(i) τ = ρ j and ω = Aj,n+1 for all 3≤ j ≤ n− 1. Then

ρ j Aj,n+1ρ
−1
j = C−1

j,n+1 = A−1
j,n+1,

using relation (III) and (8), which yields the element (Aj,n+1)
2 of p(�̂n).

(ii) τ = ρ j and ω = ρn+1 for all 3≤ j ≤ n. Then

ρ jρn+1ρ
−1
j = C j,n+1ρn+1 = Aj,n+1 ρn+1

by relation (IV) and (8), which yields the element Aj,n+1 of p(�̂n).

The relators of (ii) above clearly give rise to those of (i), and so p(�̂n) is the
subgroup of (�n)

Ab generated by the elements Aj,n+1, where 3 ≤ j ≤ n. Since
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by (11), (�n)
Ab is the free Abelian group with basis

{Aj,n+1, ρn+1 | 1≤ j ≤ n− 1},

1(�n) is the Abelian group generated by this set, subject to the condition that
Aj,n+1 is trivial for all 3≤ j ≤ n. So in 1(�n), the elements Aj,n+1 are trivial for
all j = 3, . . . , n− 1. Further, An,n+1 is also trivial, hence by relation (12), one of
the remaining generators Aj,n+1 may be deleted, where j ∈ {1, 2}, say A2,n+1, from
which we see that 1(�n) is a free Abelian group of rank 2 with {A1,n+1, ρn+1} as
a basis. This establishes the isomorphism (28), and so proves part (a).

We now prove part (b) by establishing the isomorphism (29). We equip K =
Ker( ι̂n−1|�n ) (resp. H = Ln) with the basis B̂n (resp. the generating set X̂n) of (17)
(resp. of (19)). Since K is a free group of rank 2n−1, it suffices to show that p(K̂ )
is the trivial subgroup of K Ab. The fact that K is normal in �n implies that Al,n+1,
ρn+1 Al,n+1ρ

−1
n+1, Cl,n+1 and ρn+1Cl,n+1ρ

−1
n+1 belong to K for all 1 ≤ l ≤ n by (8)

and (12). Repeating the argument given between (30) and (31), we see that (31)
holds for all τ ∈ X̂n and ω ∈ B̂n , where k̄ denotes the element p(k) of K Ab for all
k ∈ K . For α ∈ Pn−2(RP2

\{x1, x2}), let cα denote conjugation in K by α (which
we consider to be an element of Pn−1(RP2

\{x1, x2})). Since K =�n ∩ Ln+1 by
the commutative diagram (18), K is normal in Pn−1(RP2

\{x1, x2}), and hence the
automorphism cα is well defined. The fact that 02(K ) is a characteristic subgroup
of K implies that cα induces an automorphism ĉα of K Ab (the inverse of ĉα is ĉα−1).
In particular, if α, α′ ∈ Pn−2(RP2

\{x1, x2}) and ω ∈ K then

ĉαα′(ω)= αα′ωα′−1α−1 = cαα′(ω)= ĉα(ĉα′(ω)).

From the first part of the proof, p(K̂ ) is generated by the elements ĉτ (ω)ω−1,
where τ ∈ X̂n and ω ∈ B̂n . To complete the proof of part (b), it suffices to prove
that these elements are trivial in K Ab, or equivalently, that ĉτ (ω)= ω for all τ ∈ X̂n

and ω ∈ B̂n .

(1) First suppose that τ = Ai, j , where 3≤ j ≤ n and 1≤ i ≤ j − 2.

(i) Let ω = Al,n+1, for 1≤ l ≤ n− 1. Then

τωτ−1

=


Al,n+1 if j<l or if l<i ,

A−1
l,n+1 A−1

i,n+1 Al,n+1 Ai,n+1 Al,n+1 if j=l,

A−1
j,n+1 Al,n+1 Aj,n+1 if i=l,

A−1
j,n+1 A−1

i,n+1 Aj,n+1 Ai,n+1 Al,n+1 A−1
i,n+1 A−1

j,n+1 Ai,n+1 Aj,n+1 if i<l< j

by the Artin relations (4), from which we conclude that τωτ−1 = ω.
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(ii) If ω = ρn+1 Al,n+1ρ
−1
n+1, where 1≤ l ≤ n− 1, then

τωτ−1
= ρn+1(Ai, j Al,n+1 A−1

i, j )ρ
−1
n+1,

and from case (i), we deduce also that τωτ−1 = ω.

(iii) Let ω = ρ2
n+1. Then τωτ−1

= ω, hence τωτ−1 = ω.

We conclude that ĉAi, j = IdK Ab .

(2) Let τ = ρ j Ai, jρ
−1
j , where 3 ≤ j ≤ n and 1 ≤ i ≤ j − 2. Then for all ω ∈ B̂n ,

we have

τωτ−1 = cτ (ω)= ĉρ j ◦ ĉAi, j ◦ ĉρ−1
j
(ω)= ω,

since ĉAi, j = IdK Ab , so ĉρ j Ai, jρ
−1
j
= IdK Ab .

(3) By (19), it remains to study the elements of the form τωτ−1, where τ = ρ2
j ,

3≤ j ≤ n, and ω ∈ B̂n . Since ĉρ2
j
(ω)= ρ2

jωρ
−2
j = ĉ2

ρ j
(ω), we first analyse ĉρ j .

(i) If ω = Al,n+1, where 1≤ l ≤ n− 1, then by relation (III) and (8) and (12), we
have

(32)
ĉρ j (ω)

= ĉρ j (Al,n+1)= ρ j Al,n+1ρ
−1
j

=


Al,n+1 if j < l,

ρ−2
n+1 ·ρn+1C−1

l,n+1ρ
−1
n+1 ·ρ

2
n+1 if j = l,

ρ−2
n+1 ·ρn+1C−1

j,n+1ρ
−1
n+1 ·ρ

2
n+1 ·Al,n+1 ·ρ

−2
n+1 ·ρn+1C j,n+1ρ

−1
n+1 ·ρ

2
n+1 if j > l

=

Al,n+1 if j 6= l,

ρn+1C−1
j,n+1ρ

−1
n+1=

(
ρn+1 Aj,n+1ρ

−1
n+1

)−1 if j = l.

(ii) Let ω = ρn+1 Al,n+1ρ
−1
n+1, where 1 ≤ l ≤ n − 1. Relation (IV) implies that

ρ jρn+1ρ
−1
j = C j,n+1ρn+1, and so by case (i) above, we have

(33) ĉρ j (ω)= ĉρ j

(
ρn+1 Al,n+1ρ

−1
n+1

)
=

ρn+1 Al,n+1ρ
−1
n+1 if j 6= l,

C−1
j,n+1 =

(
Aj,n+1

)−1 if j = l.

Combining (32) and (33), we see that

(34) ĉρ2
j
(ω)= ω for all ω ∈ B̂n \ {ρ

2
n+1}.
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(iii) Let ω = ρ2
n+1. By relation (IV) and (8), (12), (32) and (33), we have

ĉρ j (ω)= ĉρ j (ρ
2
n+1)= (ρ jρn+1ρ

−1
j )2 = C j,n+1 · ρn+1C j,n+1ρ

−1
n+1 · ρ

2
n+1

= ĉρ j

(
ρn+1 A−1

j,n+1ρ
−1
n+1

)
· ĉρ j (A

−1
j,n+1) · ρ

2
n+1,

from which we obtain

ĉρ2
j

(
ρ2

n+1

)
= ρn+1 A−1

j,n+1ρ
−1
n+1 · A

−1
j,n+1 ·C j,n+1 · ρn+1C j,n+1ρ

−1
n+1 · ρ

2
n+1 = ρ

2
n+1

using (34). So by (17), we also have ĉρ2
j
= IdK Ab .

Hence for all τ ∈ X̂n and ω ∈ B̂n , it follows that ĉτ (ω) = ω, and thus p(K̂ ) is
the trivial subgroup of K Ab. We conclude that 1(K ) ∼= K Ab ∼= Z2n−1, and this
completes the proof of part (b). �

Remark 13. (a) An alternative description of Pn−2(RP2
\{x1, x2}), similar to that

of (13), but with the parentheses in the opposite order, may be obtained as follows.
Let m ≥ 2 and q ≥ 1, and consider the Fadell–Neuwirth short exact sequence

(35) 1→ Pm−1(RP2
\ {x1, . . . , xq+1})→ Pm(RP2

\ {x1, . . . , xq})

→ P1(RP2
\ {x1, . . . , xq})→ 1,

given geometrically by forgetting the last m− 1 strings. Since the quotient is a free
group Fq of rank q , the above short exact sequence splits, and so

Pm(RP2
\ {x1, . . . , xq})∼= Pm−1(RP2

\ {x1, . . . , xq+1})o Fq ,

and thus

(36) Pn−2(RP2
\ {x1, x2}))∼= (· · · ((Fn−1 o Fn−2)o Fn−3)o · · ·o F3)o F2

by induction. The ordering of the parentheses thus occurs from the left, in contrast
with that of (13). The decomposition given by (13) is in some sense stronger than
that of (36), since in the first case, every factor acts on each of the preceding factors,
which is not necessarily the case in (36), so (13) gives rise to a decomposition of the
form (36). This is a manifestation of the fact that the splitting of the corresponding
Fadell–Neuwirth sequence (10) is nontrivial, while that of (35) is obvious.

(b) Note that L4, the kernel of the homomorphism ι̂2 : P2(RP2
\{x1, x2})→ Z2

2, is
also the subgroup of index 4 of the group (B4(RP2))(3) that appears in [Gonçalves
and Guaschi 2011, Theorem 3(d)]. Indeed, by equation (127) of that paper, this
subgroup of index 4 is isomorphic to the semidirect product

F5(A1,4, A2,4, ρ
2
4 , ρ4 A1,4ρ

−1
4 , ρ4 A2,4ρ

−1
4 )o F3(A2,3, ρ

2
3 , ρ3 A2,3ρ

−1
3 ),

the action being given by equations (129)–(131) of the same paper (the element
Bi, j of [Gonçalves and Guaschi 2011] is the element Ai, j of this paper).
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(c) It follows from the proof of Proposition 4(b) that the induced action of Ln on
the Abelianisation of Ker( ι̂n−1|�n ) is trivial. Since Ker( ι̂n−1|�n ) is a free group, its
higher homology groups are trivial, and so Ln acts trivially on the homology of
Ker( ι̂n−1|�n ).

Remark 14. Using the ideas of the last paragraph of the proof of Proposition 1(b),
one may show that Ln is not normal in Bn(RP2). Although the subgroup Ln is
not unique with respect to the properties of the statement of Proposition 1(a)(ii),
there are only a finite number of subgroups, 2n(n−2) to be precise, that satisfy these
properties. To prove this, we claim that the set of torsion-free subgroups L ′n of Kn

such that Kn = L ′n⊕〈1
2
n〉 is in bijection with the set {Ker( f ) | f ∈Hom(Ln,Z2)}.

To prove the claim, let K = Kn , L = Ln , and q : K → K/L be the canonical
surjection, and set

1= {L ′ | L ′ < K , L ′ is torsion-free, and K = L ′⊕〈12
n〉}.

Clearly L ∈1, so 1 6=∅. Consider the map ϕ :1→{Ker( f ) | f ∈Hom(L ,Z2)}

defined by ϕ(L ′)= L∩L ′. This map is well defined, since if L ′= L then ϕ(L ′)= L
is the kernel of the trivial homomorphism of Hom(L ,Z2), and if L ′ 6= L then
L ′ 6⊂ L since [K : L ′] = [K : L] = 2, and so q|L ′ is surjective as K/L ∼= Z2. Thus
Ker(q|L ′)= ϕ(L ′) is of index 2 in L , and in particular, ϕ(L ′) is the kernel of some
nontrivial element of Hom(L ,Z2).

We now prove that ϕ is surjective. Let f ∈ Hom(L ,Z2), and set L ′′ = Ker( f ).
If f = 0 then L ′′ = L , and ϕ(L)= L ′′. So suppose that f 6= 0. Then f is surjective,
and L ′′ = Ker( f ) is of index 2 in L . Let x ∈ L \ L ′′. Then

(37) L = L ′′q x L ′′,

where q denotes the disjoint union. Since K = L q12
n L , it follows that

(38) K = L ′′q x L ′′q12
n L ′′q x12

n L ′′.

Set L ′ = L ′′q x12
n L ′′. By (37), x212

n L ′′ =12
nx2L ′′ =12

n L ′′ because 12
n is central

and of order 2, and hence K = L ′q x L ′. Using once more (37), we see that L ′ is a
group, and so the equality K = L ′q x L ′ implies that [K : L ′] = 2. Further, since
the only nontrivial torsion element of K is 12

n , L ′ is torsion-free by (38), and so the
short exact sequence 1→ L ′→ K → Z2→ 1 splits. Thus L ′ ∈1, and ϕ(L ′)= L ′′

using (37) and (38).
It remains to prove that ϕ is injective. Let L ′1, L ′2 ∈ 1 be such that L ′1 ∩ L =

ϕ(L ′1)= ϕ(L
′

2)= L ′2∩ L . If one of the L ′i , say L ′1, is equal to L then we must also
have L ′2 = L because L ⊂ L ′2 and L and L ′2 have the same index in K . So suppose
that L ′i 6= L for all i ∈ {1, 2}. If i ∈ {1, 2} then L ′′ = ϕ(L ′i )= L ∩ L ′i =Ker( fi ) for
some nontrivial fi ∈Hom(L ,Z2), and thus [L : L ′′] = 2. Let us show that L ′1 ⊂ L ′2.
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Let x ∈ L ′1. If x ∈ L then x ∈ L ′′, so x ∈ L ′2, and we are done. So assume that x /∈ L ,
and suppose that x /∈ L ′2. Then q(x) is equal to the nontrivial element of K/L ,
and since K/L ∼= Z2 and 12

n /∈ L , we see that x12
n ∈ L . Further, K = L ′2q x L ′2

since [K : L ′2] = 2, and so x12
n ∈ L ′2 (for otherwise x12

n ∈ x L ′2, which implies that
12

n ∈ L ′2, which is impossible because L ′2 is torsion-free). Then x12
n ∈ L∩L ′2= L ′′,

and hence x12
n ∈ L ′1. But this would imply that 12

n ∈ L ′1, which contradicts the fact
that L ′1 is torsion-free. We conclude that L ′1 ⊂ L ′2, and exchanging the rôles of L ′1
and L ′2, we see that L ′1 = L ′2, which proves that ϕ is injective, so is bijective, which
proves the claim. Therefore the cardinality of 1 is equal to the order of the group
H 1(L ,Z2), which is equal in turn to that of H1(L ,Z2). By Proposition 4(b), we
have LAb

= H1(L ,Z)∼=Zn(n−2), so H1(L ,Z2)∼= H1(L ,Z)⊗Z2∼=Z
n(n−2)
2 , and the

number of subgroups of K that satisfy the properties of Proposition 1(a) is equal to
2n(n−2) as asserted.

4. The virtual cohomological dimension of Bn(S) and Pn(S) for S= S2,RP2

Let S=S2 (resp. S=RP2), and for all m, n≥ 1, let 0n,m(S)= Pn(S\{x1, . . . , xm})

denote the n-string pure braid group of S with m points removed. In order to study
various cohomological properties of the braid groups of S and prove Theorem 5,
we shall study 0n,m(S). To prove Theorem 5 in the case S = S2, by (2), it will
suffice to compute the cohomological dimension of Pn−3(S

2
\ {x1, x2, x3}). We

recall the following presentation of 0n,m(S
2) from [Gonçalves and Guaschi 2005].

The result was stated for m ≥ 3, but it also holds for m ≤ 2.

Proposition 15 [Gonçalves and Guaschi 2005, Proposition 7]. Let n,m ≥ 1. The
following constitutes a presentation of the group 0n,m(S

2):

Generators: Ai, j , where 1≤ i < j and m+ 1≤ j ≤ m+ n.

Relations:

(i) The Artin relations described by (4) among the generators Ai, j of 0n,m(S
2).

(ii) For all m+ 1≤ j ≤ m+ n,
(∏ j−1

i=1 Ai, j
)(∏m+n

k= j+1 Aj,k
)
= 1.

Let N denote the kernel of the homomorphism 0n,m(S)→ 0n−1,m(S) obtained
geometrically by forgetting the last string. If S = S2 then N is a free group of rank
m+n−2 and equals 〈A1,m+n, A2,m+n, . . . , Am+n−1,m+n〉. If S =RP2 then N is a
free group of rank m+n−1 and equals 〈A1,m+n, A2,m+n, . . . , Am+n−1,m+n, ρm+n〉.
Clearly N is normal in 0n,m(S). Further, if S=S2 (resp. S=RP2), it follows from
relations (i) of Proposition 15 (resp. relations (III) and (IV) of Proposition 11) that
the action by conjugation of 0n,m(S) on N induces (resp. does not induce) the trivial
action on the Abelianisation of N. In order to determine the virtual cohomological
dimension of the braid groups of S and prove Theorem 5, we shall compute the
cohomological dimension of a torsion-free finite-index subgroup. In the case of S2
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(resp. RP2), we choose the subgroup 0n−3,3(S
2) that appears in the decomposition

given in (2) (resp. the subgroup 0n−2,2(RP2) that appears in (3)).

Proof of Theorem 5. Let S=S2 (resp. S=RP2), let n>3 and k=3 (resp. n>2 and
k = 2), and let k ≤m < n. Then by (2) (resp. (3)) and (1), 0n−m,m(S) is a subgroup
of finite index of both Pn(S) and Bn(S). Further, since Fn−m(S \ {x1, . . . , xm}) is a
finite-dimensional CW-complex and an Eilenberg–Mac Lane space of type K (π, 1)
[Fadell and Neuwirth 1962], the cohomological dimension of 0n−m,m(S) is finite,
and the first part follows by taking m = k.

We now prove the second part, namely that the cohomological dimension of
0n−k,k(S) is equal to n− k for all n > k. We first claim that cd(0m,l(S))≤ m for
all m ≥ 1 and l ≥ k−1. The result holds if m = 1 since F1(S \{x1, . . . , xl}) has the
homotopy type of a bouquet of circles; therefore H i(F1(S\{x1, . . . , xl}), A) is trivial
for all i ≥ 2 and for any local coefficients A, and H 1(F1(S \ {x1, . . . , xl}),Z) 6= 0.
Suppose by induction that the result holds for some m ≥ 1, and consider the
Fadell–Neuwirth short exact sequence

1→ 01,l+m(S)→ 0m+1,l(S)→ 0m,l(S)→ 1

that emanates from the fibration

(39) F1(S \ {x1, . . . , xl, z1, . . . , zm})→ Fm+1(S \ {x1, . . . , xl})

→ Fm(S \ {x1, . . . , xl})

obtained by forgetting the last coordinate. By [Brown 1982, Chapter VIII], it
follows that

cd(0m+1,l(S))≤ cd(0m,l(S))+ cd(01,l+m(S))≤ m+ 1,

which proves the claim. In particular, taking l = k, we have cd(0m,k(S))≤ m.
To conclude the proof of the theorem, it suffices to show that for each m≥ 1 there

are local coefficients A such that H m(0m,l(S), A) 6= 0 for all l≥ k−1. We will show
that this is the case for A=Z. Again by induction suppose that H m(0m,l(S),Z) 6= 0
for all l ≥ k − 1 and for some m ≥ 1 (we saw above that this is true for m = 1).
Consider the Serre spectral sequence with integral coefficients associated to the
fibration (39). Then we have that

E p,q
2 = H p(0m,l(S), Hq(F1(S \ {x1, . . . , xl, z1, . . . , zm}),Z)

)
.

Since cd(0m,l(S)) ≤ m and cd(F1(S \ {x1, . . . , xl, z1, . . . , zm})) ≤ 1 from above,
it follows that this spectral sequence has two horizontal lines whose possible
nonvanishing terms occur for 0≤ p ≤ m and 0≤ q ≤ 1. We claim that the group
Em,1

2 is nontrivial. To see this, first note that H 1(F1(S\{x1, . . . , xl, z1, . . . , zm}),Z)

is isomorphic to the free Abelian group of rank r =m+ l−k+2, so r ≥m+1, and
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hence Em,1
2 = H m(0m,l(S),Zr ), where we identify Zr with (the dual of) N Ab. The

action of 0m,l(S) on N by conjugation induces an action of 0m,l(S) on N Ab. Let
H be the subgroup of N Ab generated by the elements of the form α(x)x−1, where
α ∈ 0m,l(S), x ∈ N Ab, and α(x) represents the action of α on x . Then we obtain a
short exact sequence 0→ H → N Ab

→ N Ab/H → 0 of Abelian groups, and the
long exact sequence in cohomology applied to 0m,l(S) yields
(40)
· · ·→ H m(0m,l(S), N Ab)→ H m(0m,l(S), N Ab/H)→ H m+1(0m,l(S), H)→· · · .

The last term is zero since cd(0m,l(S)) ≤ m, and so the map between the two
remaining terms is surjective. Let us determine N Ab/H . If S = S2 then from the
comments following Proposition 15, the action of 0m,l(S) on N Ab is trivial, so H
is trivial, and N Ab/H ∼= Zr. So suppose that S = RP2. Choosing the basis

{A1,m+l+1, A2,m+l+1, . . . , Am+l−1,m+l+1, ρm+l+1}

of N and using Proposition 11, one sees that the action by conjugation of the
generators of 0m,l(S) on the corresponding basis elements of N Ab is trivial, with
the exception of that of ρi on Ai,m+l+1 for l + 1 ≤ i ≤ m + l − 1, which yields
elements A2

i,m+l+1 ∈ H (by abuse of notation, we denote the elements of N Ab in
the same way as those of N ), and that of ρi on ρm+l+1, where l + 1 ≤ i ≤ m + l,
which yields elements Ai,m+l+1 ∈ H . In the quotient N Ab/H the basis elements
Al+1,m+l+1, . . . , Am+l−1,m+l+1 thus become zero, and additionally, we have also
that Am+l,m+l+1 (which is not in the given basis) becomes zero. Hence the relation∏m+l

i=1 Ai,m+l+1 = ρ
−2
m+l+1 is sent to the relation

∏l
i=1 Ai,m+l+1 = ρ

−2
m+l+1, and

so N Ab/H is generated by (the images of) the elements A1,m+l+1, . . . , Al,m+l+1,
ρm+l+1, subject to this relation (as well as the fact that the elements commute
pairwise). It thus follows that N Ab/H ∼= Zl . Since the induced action of 0m,l(S)
on N Ab/H is trivial, we conclude that

H m(0m,l(S), N Ab/H
)
=
(
H m(0m,l(S),Z)

)s
,

where s = m + l if S = S2 and s = l if S = RP2. It then follows from (40) that
Em,1

2 = H m(0m,l(S), N Ab) 6= 0. Since E p,q
2 = 0 for all p > m and q > 1, we have

Em,1
2 = Em,1

∞
, thus Em,1

∞
is nontrivial, and hence H m+1(0m+1,l(S),Z) 6= 0. �

Proof of Corollary 6. Let S = S2 (resp. S = RP2). If n ≥ 3 (resp. n ≥ 2) then
Bn(S) and MCG(S, n) are closely related by the following short exact sequence
[Scott 1970]:

1→ 〈12
n〉 → Bn(S)

β
−→MCG(S, n)→ 1,

where the kernel is isomorphic to Z2. Now assume that n ≥ 4 (resp. n ≥ 3), so that
Bn(S) is infinite. If 0 is a torsion-free subgroup of Bn(S) of finite index then β(0),
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which is isomorphic to 0, is a torsion-free subgroup of MCG(S, n) of finite index,
and hence the virtual cohomological dimension of MCG(S, n) is equal to that of
Bn(S). The result then follows by Theorem 5. �
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We show that several classes of groups G of PL-homeomorphisms of the
real line admit nontrivial homomorphisms χ : G → R that are fixed by
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1. Introduction

This paper stems from two articles [Bleak et al. 2008; Gonçalves and Kochloukova
2010] about twisted conjugacy classes of Thompson’s group F. In order to describe
the aim of the cited papers, we recall some terminology. Let G be a group and α
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an automorphism of G. Then α gives rise to an action µα : G×|G|→ |G| of G on
its underlying set |G|, defined by

(1-1) µα(g, x)= g · x ·α(g)−1.

The orbits of this action are called twisted conjugacy classes, or Reidemeister
classes, of α. The twisted conjugacy classes of the identity automorphism, for
instance, are nothing but the conjugacy classes.

Two questions now arise, firstly, whether a given automorphism α has infinitely
many orbits and, secondly, whether every automorphism of G has infinitely many
orbits. As the latter property will be central to this paper, we recall the definition of
property R∞:

Definition 1.1. A group G is said to have property R∞ if the actionµα has infinitely
many orbits for every automorphism α : G −→∼ G.

The problem of determining whether a given group, or a class of groups, satisfies
property R∞ has attracted the attention of several researchers. The problem is
rendered particularly interesting by the fact there does not exist a uniform method of
solution. Indeed, a variety of techniques and ad hoc arguments from several branches
of mathematics have been used to tackle the problem, notably combinatorial group
theory in [Gonçalves and Wong 2009], geometric group theory in [Levitt and Lustig
2000], C∗-algebras in [Fel’shtin and Troitsky 2012], and algebraic geometry in
[Mubeena and Sankaran 2014b].

Bleak, Fel’shtyn, and Gonçalves [Bleak et al. 2008] show that Thompson’s
group F enjoys property R∞, while Gonçalves and Kochloukova [2010] establish
the same property for Thompson’s group F, but also for many other groups G having
the peculiarity that the complement of their BNS-invariant 61(G) is made up of
finitely many rank 1 points. In this paper, we generalize both approaches and prove
in this way that many classes of groups of PL-homeomorphisms have property R∞.

1A. A useful fact. The papers by Bleak et al. and by Gonçalves and Kochloukova
both exploit the following observation: let α be an automorphism of a group G, let
ψ :G→ B be a homomorphism into an abelian group, and assume ψ is fixed by α.
Then ψ is constant on twisted conjugacy classes of α; indeed, if the elements x
and y lie in the same twisted conjugacy class there exists z ∈ G so that

y = z · x ·α(z)−1
;

the computation

ψ(y)= ψ(z · x ·α(z)−1)= ψ(x) ·ψ(z) · ((ψ ◦α)(z))−1
= ψ(x)



GROUPS OF PL-HOMEOMORPHISMS ADMITTING INVARIANT CHARACTERS 103

proves the claim. A group G therefore has property R∞ if it admits a homomorphism
onto an infinite, abelian group that is fixed by every automorphism of G.1 For
B ⊂ R×>0, the classes of groups G admitting such a nontrivial homomorphism
include various generalizations of Thompson’s group F [Brown 1987a; Stein 1992;
Cleary 1995; 2000; Bieri and Strebel 2016].

1B. Approach used by Bleak, Fel’shtyn, and Gonçalves. The authors [2008] es-
tablish that Thompson’s group F has property R∞ by using the mentioned fact.
To find the homomorphism ψ, they use a representation of F by piecewise linear
homeomorphisms of the real line: F is isomorphic to the group of all piecewise
linear homeomorphisms f with supports in the unit interval I = [0, 1], slopes a
power of 2, and break points, i.e., points where the left and right derivatives differ,
in the group Z[1/2] of dyadic rationals; see, e.g., [Cannon et al. 1996, p. 216, §1].
This representation affords them with two homomorphisms σ` and σr , given by the
right derivative in the left end point 0 and the left derivative in right end point 1
of I, respectively. In formulae,

(1-2) σ`( f )= lim t↘0 f ′(t) and σr ( f )= lim t↗1 f ′(t).

The images of σ` and σr are both equal to gp(2), the (multiplicative) cyclic group
generated by the natural number 2. Theorem 3.3, the main result of [Bleak et al.
2008], can be rephrased by saying that the homomorphism

ψ : F→ gp(2), f 7→ σ`( f ) · σr ( f )

is fixed by every automorphism α of F. Its proof uses the very detailed information
about Aut F established by M. Brin [1996].

1C. A generalization. The stated description of Thompson’s group F invites one
to introduce generalized groups of type F in the following manner.

Definition 1.2. Let PLo(R) denote the group of all increasing PL-homeomorphisms
of the real line with only finitely many break points. Fix a closed interval I ⊆ R, a
subgroup P of the multiplicative group of positive reals R×>0 and a subgroup A of
the additive group Radd of the field R that is stable under multiplication by P. Define
G(I ; A, P) to be the subset of PLo(R) made up of all PL-homeomorphisms g that
satisfy the following conditions:

(a) the support supp g = {t ∈ R | g(t) 6= t} of g is contained in I,

(b) the slopes of the finitely many line segments forming the graph of g lie in P,

(c) the break points of g lie in A, and

(d) g maps A onto A.

1One can find generalizations of, and also many variations on, the stated observation; see, e.g.,
[Gonçalves and Wong 2003, Formula (2.2)] or [Fel’shtyn and Troitsky 2015, Claim 2 in Theorem 4.4].
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Remarks 1.3. (a) The subset G(I ; A, P) is closed under composition2 and inver-
sion. The set G(I ; A, P) equipped with these operations is a group; by abuse of
notation, it will also be denoted by G(I ; A, P).

(b) We shall always require that neither P nor A be reduced to the neutral element.
These requirements imply that A contains arbitrary small positive elements and thus
A is a dense subgroup of R. As concerns the interval I we shall restrict attention to
three types: compact intervals with endpoints 0 and b ∈ A>0, the half-line [0,∞[
and the line R; we refer the reader to [Bieri and Strebel 2016, Sections 2.4 and 16.4]
for a discussion of the groups associated to other intervals.

(c) The idea of introducing and studying the groups G(I ; A, P) goes back to the
papers [Brin and Squier 1985; Bieri and Strebel 1985].

1C1. The homomorphisms σ`, σr , and ψ . The definitions of σ` and σr , given
in (1-2), admit straightforward extensions to the groups G(I ; A, P); note, however,
that in case of the half-line [0,∞[, the number σr ( f ) will denote the slope of f
near +∞, and similarly for I =R and σ`, σr . The homomorphisms σ` and σr allow
one then to introduce an analogue of ψ : F→ gp(2), namely,

(1-3) ψ : G = G(I ; A, P)→ P, g 7→ σ`(g) · σr (g).

There remains the question whether this homomorphism ψ is fixed by every
automorphism of G. In the case of Thompson’s group F the question has been
answered in the affirmative by exploiting the detailed information about Aut F
obtained by Brin [1996]. Such a detailed description is not to be expected for every
group of the form G(I ; A, P); indeed, the results in [Brin and Guzmán 1998] show
that the structure of the automorphism group gets considerably more involved if
one passes from the group G([0, 1];Z[1/2], gp(2)), the group isomorphic to F, to
the groups G([0, 1];Z[1/n], gp(n)) with n an integer greater than 2.

1C2. The first main results. It turns out that one does not need very detailed
information about Aut G(I ; A, P) in order to construct a nontrivial homomorphism
ψ :G(I ; A, P)→R×>0 that is fixed by every automorphism of the group G(I ; A, P);
it suffices to go back to the findings in the memoir [Bieri and Strebel 1985] and to
supplement them by some auxiliary results based upon them.3 One outcome is the
following theorem.

Theorem 1.4. Assume the interval I, the group of slopes P and the Z[P]-module A
are as in Definition 1.2 and in Remark 1.3(b). Then there exists an epimorphism

2In this article we use left actions and the composition of functions familiar to analysts; thus g2◦g1
denotes the function t 7→ g2(g1(t)) and g1 g2 the homeomorphism g1 ◦ g2 ◦ g−1

1 .
3The memoir [Bieri and Strebel 1985] has recently been published as [Bieri and Strebel 2016].
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ψ : G(I ; A, P)� P that is fixed by every automorphism of G. Furthermore, the
group G(I ; A, P) therefore has property R∞.

Remark 1.5. Let I, A, and P be as before and let B = B(I ; A, P) be the subgroup
of G(I ; A, P) made up of all elements g that are the identity near the endpoints.
Then B is a characteristic subgroup of G(I ; A, P) and variations of Theorem 1.4
hold for many subgroups G of G(I ; A, P) with B ⊂ G. For further details, see
Theorems 3.8, 4.4, and 5.5.

1D. Route taken by Gonçalves and Kochloukova. For details, see [Gonçalves and
Kochloukova 2010]. The proof of Theorem 1.4 does not exploit information about
Aut G(I ; A, P) that is as precise as that going into the proof of the main result
of [Bleak et al. 2008]. It uses, however, nontrivial features of the automorphisms
of G(I ; A, P). Gonçalves and Kochloukova [loc. cit.] put forward the novel idea
of replacing detailed information about Aut G by information about the form of
the BNS-invariant of the group G; they carry out this program for the generalized
Thompson group Fn,0 with n ≥ 2, a group isomorphic to G([0, 1];Z[1/n], gp(n)),
and for many other groups, as well.

In a nutshell, their idea is this. Suppose G is a finitely generated group for which
the complement of 61(G) is finite.4 Then every automorphism of G permutes the
finitely many rays in 61(G)c. This suggests that it might be possible to construct a
new ray R>0 ·χ0 that is fixed by Aut G. If one succeeds in doing so, then R ·χ0 will
be a 1-dimensional subrepresentation of the finite dimensional real vector space
Hom(G,R), acted on by Aut G via

(α, χ) 7→ χ ◦α−1.

A priori, this invariant line need not be fixed pointwise.
Gonçalves and Kochloukova detected that the line R ·χ0 is fixed pointwise by

Aut G if the homomorphism χ0 : G→ R has rank 1, i.e., if its image is infinite
cyclic. Using this fact they were then able to prove that Thompson’s group F, but
also many other groups G, admit a rank 1 homomorphism that is fixed by Aut G
and thus satisfy property R∞.

1E. A generalization. In the second part of this paper we consider a collection
of PL-homeomorphism groups G whose invariant 61(G)c is finite but contains a
point of rank greater than 1. One is then confronted with the following problem:
Suppose R>0 ·χ0 is a ray that is fixed by Aut G as a set. There may then exist an
automorphism α which acts on the ray by multiplication by a positive real number

4Recall that 61(G) is a certain subset of the space of all half-lines R>0 ·χ emanating from the
origin of the real vector space Hom(G,R), and that Aut G acts canonically on this subset, as well as
on its complement.
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s 6= 1; if so, the 1-dimensional subspace R ·χ0 in the real vector space Hom(G,R)

is an eigenline with eigenvalue s 6= 1 of the linear transformation α∗ induced by α
on Hom(G,R). The existence of an eigenvalue s 6= 1 wrecks our attempt to extend
the approach adopted in [Bleak et al. 2008] to more general classes of groups of
PL-homomorphisms, but — as we shall see — it can be ruled out if the image B of
the character χ0 has only 1 and −1 as units, the definition of units being as follows:

Definition 1.6. Given a subgroup B of the additive group Radd we set

(1-4) U(B)= {s ∈ R× | s · B = B}

and call U(B) the group of units of B (inside the multiplicative group of R).

We next explain how the subgroups B will enter into the picture. The groups
we shall be interested in will be subgroups of PLo(R) with supports in a compact
interval [0, b]; they are thus subgroups G of G([0, b];Radd,R×>0). By restricting the
homomorphisms σ` and σr , defined in Section 1C1, one obtains homomorphisms of
G into the multiplicative group R×>0; by composing these with the natural logarithm
function one arrives at the homomorphisms χ` : G→ Radd and χr : G→ Radd.

The next result lists conditions that allow one to infer that G admits a nontrivial
homomorphism into R×>0 fixed by every automorphism of G.

Theorem 1.7. Suppose G is a subgroup of G([0, b];Radd,R×>0) that satisfies the
following conditions:

(i) no interior point of the interval I = [0, b] is fixed by G;

(ii) the homomorphisms χ` and χr are both nonzero;

(iii) the quotient group G/(kerχ` · kerχr ) is a torsion group; and

(iv) at least one of the groups U(imχ
`) or U(imχr ) is reduced to {1,−1}.

Then there exists a nonzero homomorphism ψ : G → R×>0 that is fixed by every
automorphism of G. The group G has therefore property R∞.

There remains the problem of finding subgroups B ⊂ Radd that have only the
units 1 and −1. This problem is addressed in Section 6E. We shall show that
a subgroup B = ln P has this property if the multiplicative group P ⊂ R×>0 is
free abelian and generated by algebraic numbers. In addition, we shall construct
in Section 8A a collection G of pairwise nonisomorphic 3-generator groups Gs

enjoying the properties that each group Gs satisfies the assumptions of Theorem 1.7
and that the cardinality of G is that of the continuum.

2. Preliminaries on automorphisms of the groups G(I; A, P)

The groups G(I ; A, P) form a class of subgroups of the group PLo(R), the group
of all orientation preserving, piecewise linear homeomorphisms of the real line.
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They enjoy some special properties, in particular the following two: each group acts
approximately5 highly transitively on the interior of I , and all its automorphisms are
induced by conjugation by homeomorphisms. It is, above all, this second property
that will be exploited in the sequel.

In this section, we recall the basic representation theorem for automorphisms of
the groups G(I ; A, P) and deduce then some consequences.

2A. Representation of isomorphisms. We begin by fixing the set-up of this section:
P is a nontrivial subgroup of R×>0 and A a nonzero subgroup of Radd that is stable
under multiplication by P. Next, I is a closed interval of positive length; we assume
the left end point of I is in A if I is bounded from below and similarly for the right
end point.

Remark 2.1. Distinct intervals I1 and I2 may give rise to isomorphic groups
G(I1; A, P) and G(I2; A, P). In particular, it is true that every group G(I1; A, P)
is isomorphic to one whose interval I2 has one of the three forms

(2-1) [0, b] with b ∈ A, [0,∞[, and R.

See [Bieri and Strebel 2016, Sections 2.4 and 16.4] for proofs.

We come now to the announced result about isomorphisms of groups G(I ; A, P)
and G(I ; A, P). It asserts that each isomorphism of the first group onto the second
one is induced by conjugation by a homeomorphism of the interior int(I ) of I
onto the interior of I . This claim holds even for suitably restricted subgroups of
G(I ; A, P) and of G(I ; A, P). In order to state the generalized assertion we need
the subgroup of “bounded elements”.

Definition 2.2. Let B(I ; A, P) be the subgroup of G(I ; A, P) consisting of all
PL-homeomorphisms f that are the identity near the end points or, more formally,
that satisfy the inequalities inf I < inf supp f and sup supp f < sup I.

We are now in a position to state the representation theorem.

Theorem 2.3. Assume G is a subgroup of G(I ; A, P) that contains the derived
subgroup of B(I ; A, P), and G is a subgroup of G(I ; A, P) containing the derived
group of B(I ; A, P). Then every isomorphism α :G−→∼ G is induced by conjugation
by a unique homeomorphism ϕα of the interior int(I ) of I onto the interior of I ;
more precisely, the equation

(2-2) α(g) � int(I )= ϕα ◦ (g � int(I )) ◦ϕ−1
α

holds for every g ∈ G. Moreover, ϕα maps A∩ int(I ) onto A∩ int(I ).

Proof. The result is a restatement of [Bieri and Strebel 2016, Theorem E16.4]. �

5See [Bieri and Strebel 2016, Chapter A] for details.
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Remarks 2.4. (a) Theorem 2.3 has two simple, but important consequences. First
of all, every homeomorphism of intervals is either increasing or decreasing; since the
homeomorphism ϕα inducing an isomorphism α : G −→∼ G is uniquely determined
by α, there exist therefore two types of isomorphisms: the increasing isomorphisms,
induced by conjugation by an increasing homeomorphism, and the decreasing ones.

Assume now that I = I. If the homeomorphism ϕα : int(I )−→∼ int(I ) is increasing,
it extends uniquely to a homeomorphism of I, but this may not be so if it is decreasing.
Indeed, ϕα extends if I is a compact interval or the real line, but not if I is a half-line.
If the extension exists, it will be denoted by ϕ̃α.

(b) The increasing automorphisms of a group G form a subgroup Aut+G of Aut G of
index at most 2. It will turn out that is often easier to find a nonzero homomorphism
ψ : G→ B that is fixed by the subgroup Aut+G than a nonzero homomorphism
fixed by Aut G rAut+G (in case this set is nonempty). For this reason, it is useful
to dispose of criteria guaranteeing that Aut G = Aut+G.

(c) The derived group of B(I ; A, P) is a simple, infinite group (see [Bieri and
Strebel 2016, Proposition C10.2]), but B(I ; A, P) itself may not be perfect. To date,
no characterization of the parameters (I, A, P) corresponding to perfect groups
B(I ; A, P) is known. The quotient group G(I ; A, P)/B(I ; A, P), on the other
hand, is a metabelian group that can be described explicitly in terms of the triple
(I, A, P); see [Bieri and Strebel 2016, Section 5.2]. In the sequel, we shall therefore
restrict attention to subgroups G containing B(I ; A, P).

(d) The second important consequence of Theorem 2.3 is the fact that B(I ; A, P) is
a characteristic subgroup of every subgroup G with B(I ; A, P)⊆G ⊆G(I ; A, P).
(The proof is easy; see [Bieri and Strebel 2016, Corollary E16.5] or Corollary 2.7
below.)

In part (a) of the previous remarks the term increasing isomorphism has been
introduced. In the sequel, this parlance will be used often, and so we declare:

Definition 2.5. Let α : G −→∼ G be an isomorphism induced by the (uniquely
determined) homeomorphism ϕα : int(I )−→∼ int(I ). If ϕ is increasing then α will
be called increasing, and similarly for decreasing.

2B. The homomorphisms λ and ρ. By Remark 2.4(d) the group B = B(I ; A, P)
is a characteristic subgroup of every group G containing it. Now G has, in addition,
subgroups containing B that are invariant under the subgroup Aut+G, namely
the kernels of the homomorphisms λ and ρ. To set these homomorphisms into
perspective, we go back to the homomorphisms

σ` : G(I ; A, P)→ P and σr : G(I ; A, P)→ P,
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introduced in Section 1C1. Their images are abelian and coincide with the group of
slopes P. If I is not bounded from below, there exist a homomorphism λ, related
to σ`, whose image is contained in Aff(A, P), the group of all affine maps of R

with slopes in P and displacements f (0) ∈ A. The definition of λ is this:

(2-3) λ : G(I ; A, P)→ Aff(A, P),

g 7→ (affine map coinciding with g near −∞).

If the interval I is not bounded from above, then there exists a similarly defined
homomorphism

(2-4) ρ : G(I ; A, P)→ Aff(A, P),

g 7→ (affine map coinciding with g near +∞).

The images of λ and ρ are, in general, smaller than Aff(A, P). They are equal to
the entire group Aff(A, P) if I = R; if I is not bounded from below, but bounded
from above, the image of λ is Aff(I P · A, P) and the analogous statement holds
for ρ. In the above, I P · A denotes the submodule of A generated by the products
(p − 1) · a with p ∈ P and a ∈ A; see [Bieri and Strebel 2016, Section 4 and
Corollary A5.3].

For uniformity of notation, we extend the definition of λ and ρ to compact
intervals: if I = [0, b] and f ∈G(I ; A, P) then λ(g) is the linear map t 7→ σ`(g) · t
and ρ(g) is the affine map t 7→ σr ( f ) · (t − b)+ b. Similarly one defines λ(g) if I
is the half-line [0,∞[.

The homomorphisms λ and ρ allow one to restate the definition of B(I ; A, P):

(2-5) B(I ; A, P)= ker λ∩ ker ρ.

Remark 2.6. In the sequel, we shall often deal with subgroups, denoted G, of a
group G(I ; A, P) that contain B(I ; A, P). For ease of notation, we shall then
denote the restrictions of λ and ρ to G again by λ and ρ.

2C. First consequences of the representation theorem. Let G be a subgroup of
G(I ; A, P) that contains the derived subgroup of B(I ; A, P) and let G be a sub-
group of G(I ; A, P) containing the derived subgroup of B(I ; A, P). Suppose ϕα
is a homeomorphism of int(I ) onto int(I ) that induces an isomorphism α :G −→∼ G.
The map ϕα need not be piecewise linear. Theorem 2.3, however, has useful
consequences even in such a case. One implication is recorded in this result:

Corollary 2.7. Assume G and G are subgroups of G(I ; A, P) both of which con-
tain B(I ; A, P), and let

λ, ρ : G→ Aff(A, P) and λ, ρ : G→ Aff(A, P)
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be the obvious restrictions of the homomorphisms λ, ρ introduced in Section 2B.
Consider now an isomorphism α : G −→∼ G that is induced by the homeomorphism
ϕα : int(I )−→∼ int(I ). If ϕα is increasing then

(i) α maps ker λ onto ker λ and induces an isomorphism α` of G/ ker λ onto
G/ ker λ;

(ii) α maps ker ρ onto ker ρ and induces an isomorphism αr of G/ ker ρ onto
G/ ker ρ.

Proof. (i) If g ∈ ker λ then g is the identity near inf I. As ϕα is increasing, the
image α(g)= ϕα ◦ g ◦ϕ−1

α of g is therefore also the identity near inf I. It follows
that α(ker λ)⊆ ker λ. This inclusion is actually an equality, for α−1

: G→ G is an
isomorphism and so α−1(ker λ)⊆ ker λ. Claim (ii) can be proved similarly. �

2D. Automorphisms induced by finitary PL-homeomorphisms. Suppose that the
group G ⊆G(I ; A, P) is as before, and let α be an automorphism of G. According
to Theorem 2.3, α is induced by conjugation by a unique autohomeomorphism ϕα .
This autohomeomorphism may not be piecewise linear, but the situation improves
if P, the group of slopes, is not cyclic (and hence dense in R×>0).

Theorem 2.8. Suppose P is not cyclic. For every automorphism α of G there exists
then a nonzero real number s such that A = s · A and that the autohomeomorphism
ϕα : int(I )−→∼ int(I ) is piecewise linear with slopes in the coset s ·P of P. Moreover,
ϕα maps the subset A∩ int(I ) onto itself and has only finitely many breakpoints in
every compact subinterval of int(I ).

Proof. The result is a special case of [Bieri and Strebel 2016, Theorem E17.1]. �

Theorem 2.8 indicates that automorphisms of groups with a noncyclic group
of slopes P are easier to analyze than those of the groups with cyclic P. Note,
however, that the conclusion of Theorem 2.8 does not rule out that ϕα has infinitely
many breakpoints which accumulate in one or both end points6 and so ϕα may not
be differentiable at the end points. In Section 3A we shall therefore be interested in
differentiability criteria.

3. Characters fixed by Aut G([0, b]; A, P)

In this section, we prove Theorem 1.4 for the case of a compact interval and
various extensions of it. An important ingredient in the proofs of these results is
a criterion that allows one to deduce that an autohomeomorphism ϕα inducing an
automorphism α of the group is differentiable near one or both of its end points.

6The notion of end point is to be interpreted suitably if I is not bounded.
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3A. A differentiability criterion. The proof of the criterion is rather involved. Prior
to stating the criterion and giving its proof, we discuss therefore a result that explains
the interest in the criterion.

Proposition 3.1. Let G be a subgroup of G([a, b]; A, P) that contains the derived
subgroup of B(I ; A, P). Suppose ϕ̃ : [0, b] −→∼ [0, b] is an autohomeomorphism
that induces, by conjugation, an automorphism α of G. Then the following are true:

(i) if ϕ̃ is increasing, differentiable at 0, and ϕ̃′(0) > 0, then α fixes σ`;

(ii) if ϕ̃ is increasing, differentiable at b, with ϕ̃′(b) > 0, then α fixes σr ;

(iii) if ϕ̃ is differentiable both at 0 and at b, with nonzero derivatives, then α fixes
the homomorphism ψ : g 7→ σ`(g) · σr (g).

Proof. (i) and (ii) Suppose the extended autohomeomorphism ϕ̃ = ϕ̃α is increasing
and fix g ∈ G. If ϕ̃ is differentiable at 0 and ϕ̃′(0) > 0, the chain rule justifies the
computation

(3-1) σ`(α(g))= (ϕ̃ ◦ g ◦ ϕ̃−1)′(0)= ϕ̃′(0) · g′(0) · (ϕ̃−1)′(0)= σ`(g).

It follows that σ` is fixed by α. If ϕ̃ admits a left derivative at b and if ϕ̃′(b) > 0,
one sees similarly, that σr is fixed by α.

(iii) Assume now that ϕ̃ = ϕ̃α is differentiable, both at 0 and at b, and that both
derivatives are different from 0. If ϕ̃ is increasing, parts (i) and (ii) guarantee that
σ` and σr are fixed by α, whence so is their product ψ . If, on the other hand, ϕ̃ is
decreasing, the calculation

(3-2) σr (α(g))= (ϕ̃ ◦ g ◦ ϕ̃−1)′(b)= ϕ̃′(0) · g′(0) · (ϕ̃−1)′(b)= σ`(g)

holds for every g ∈ G and establishes the relation σr ◦α = σ`.
A similar calculation shows that the relation σ`◦α= σr is valid. The claim for ψ

is then a consequence of the computation

(ψ ◦α) (g)= σ`(α(g)) · σr (α(g))= σr (g) · σ`(g)= ψ(g). �

3A1. Statement and proof of the criterion. We now come to the criterion; we
choose a formulation that is slightly more general than what is needed for the case
at hand; the extended version will be used in Section 4.

Proposition 3.2. Suppose I is an interval of one of the forms [0, b] or [0,∞[, and
G as well as G are subgroups of G(I ; A, P) that contain B(I ; A, P). Assume
ϕ̃ : I −→∼ I is an increasing autohomeomorphism that induces, by conjugation, an
isomorphism α of the group G onto the group G.

If the image of σ` : G→ P is not cyclic, then ϕ̃ is linear on a small interval of
the form [0, δ] and so ϕ̃ is differentiable at 0 with positive derivative.
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Proof. The following argument uses ideas from the proofs of Proposition E16.8
and Supplement E17.3 in [Bieri and Strebel 2016]. The proof will be divided into
three parts. In the first one, we show that α : G −→∼ G induces an isomorphism
α` : im σ` −→

∼ im σ `, that takes p ∈ im σ` to pr
= er ·log p for some positive real

number r that does not depend on p. In the second part, we establish that ϕ̃ satisfies
the relation

(3-3) ϕ̃(p · t)= pr
· ϕ̃(t)

for every p ∈ (im σ`∩]0, 1[) and t varying in some small interval [0, δ]. In the last
part, we deduce from this relation that ϕ̃ is linear near 0.

We now embark on the first part. Since ϕ is increasing, Corollary 2.7 applies and
shows that α maps the kernel of σ` : G→ P onto the kernel of the homomorphism
σ ` : G→ P, and thus induces an isomorphism α` : im σ` −→

∼ im σ ` that renders the
square

G α
//

σ`
����

G

σ `
����

im σ`
α`
// im σ `

commutative. We claim α` maps the set (im σ`)∩]0, 1[ onto (im σ `)∩]0, 1[. Indeed,
let p ∈ im σ` be a slope with p < 1 and let fp ∈ G be a preimage of p. Then α( fp)

is linear on some interval [0, εp] and has slope σ `(α( fp)) = α`(p) there. Since
ϕ̃ is continuous at 0, there exists δp > 0 so that fp is linear on [0, δp] and that
ϕ̃([0, δp])⊆ [0, εp]. Fix t ∈ [0, δp]. The hypothesis that α is induced by conjugation
by ϕ̃ then leads to the chain of equalities

ϕ̃(p · t)= (ϕ̃ ◦ fp)(t)= (α( fp) ◦ ϕ̃)(t)= α( fp)(ϕ̃(t))= α`(p) · ϕ̃(t).(3-4)

Since ϕ̃ is increasing and as p < 1, the chain of equalities implies that α`(p) < 1.
It follows that α` maps (im σ`)∩]0, 1[ into im σ `∩]0, 1[ and then, by applying the
preceding argument to ϕ−1, that

α`(im σ` ∩ ]0, 1[)= im σ ` ∩ ]0, 1[.

We show next that α`(p)= pr for all p ∈ im σ` and some positive real number r .
We begin by passing from the multiplicative subgroup im σ` ⊂ R×>0 to a subgroup
of Radd; to that end, we introduce the homomorphism

L0 = ln ◦α` ◦ exp : ln(im σ`)−→
∼ ln(im σ `).

The previous verification implies that L0 is an order preserving isomorphism; by
the assumption on im σ` the domain of L0 is a dense subgroup of Radd. It follows
that L0 extends uniquely to an order preserving automorphism L : Radd→ Radd.
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The homomorphism L is continuous, hence linear, and so given by multiplication
by some positive real number r . The isomorphism α` has therefore the form

p 7→ pr
= exp(r · ln p) with r > 0.

We come now to the second part of the proof. Fix a slope p1 < 1 in im σ`.
Formula (3-4) and the previously found formula for α` then imply that there exists
a small positive number δp1 such that the equation

(3-5) ϕ̃(p1 · t)= pr
1 · ϕ̃(t)

holds for every t ∈ [0, δp1]. Consider next another slope p < 1. There exists then,
as before, a real number δp > 0 so that ϕ̃(p · t)= pr

· ϕ̃(t) for t ∈ [0, δp]. Choose
now m ∈N so large that pm

1 · δp1 ≤ δp. The following chain of equalities then holds
for each t ∈ [0, δp1]:

pm·r
1 · ϕ̃(p · t)= ϕ̃(p

m
1 · p · t)= ϕ̃(p · p

m
1 · t)= pr

· ϕ̃(pm
1 · t)= pr

· pm·r
1 · ϕ̃(t).

The calculation shows that ϕ̃(p · t)= pr
· ϕ̃(t) for every t ∈ [0, δ1]. Upon setting

δ = δp1 one arrives at (3-3).
The proof is now quickly completed. By assumption, im σ` is not cyclic and so

(3-3) holds for a dense set of slopes p and a fixed argument t , say t = δ. Since ϕ is
continuous and increasing, (3-3) continues to hold for every real x ∈ ]0, 1[. The
formula

ϕ(x · δ)= exp(r · ln x) ·ϕ(δ)= xr
·ϕ(δ)

is therefore valid for every x ∈ ]0, δ]. By Theorem 2.8, on the other hand, ϕ is
piecewise linear on ]0, δ]. So the exponent r must be equal to 1, whence ϕ is linear
on [0, δ] with slope ϕ(δ)/δ > 0 and so, in particular, differentiable at 0. �

Remark 3.3. Assume I is a compact interval of the form [0, b] with b ∈ A>0 and
the images of σ` and σr are both not cyclic. It follows then from Proposition 3.2 that
every increasing automorphism α : G −→∼ G is induced by an autohomeomorphism
ϕ̃ that is affine near both end points. By [Bieri and Strebel 2016, Proposition E16.9]
the homeomorphism ϕ̃ is thus finitary piecewise linear.

3A2. First application. As a further step towards the main results we give a corol-
lary that combines Propositions 3.1 and 3.2.

Corollary 3.4. Let G be a subgroup of G(I ; A, P) that contains B(I ; A, P).
Assume I = [0, b] and let α be an automorphism of G that is induced by the
autohomeomorphism ϕ̃ : I −→∼ I. Then the following statements hold:

(i) if α is increasing7 and im σ` not cyclic, then σ` is fixed by α;

7See Definition 2.5.
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(ii) if α is increasing and im σr not cyclic, then σr is fixed by α;

(iii) if ϕ̃ is decreasing and im σ` is not cyclic, then ϕ̃ is affine near both end points
and the homomorphism ψ : g 7→ σ`(g) · σr (g) is fixed by α.

Proof. (i) The statement is a direct consequence of Proposition 3.2 and part (i) of
Proposition 3.1.

(ii) We invoke Proposition 3.2 for an auxiliary group G1. Let ϑ : I −→∼ I be the
reflection in the midpoint of I ; set G1 = ϑ ◦G ◦ϑ−1 and ϕ1 = ϑ ◦ ϕ̃α ◦ϑ

−1. Since
G(I ; A, P) and B(I ; A, P) are both invariant under conjugation by ϑ, and as the
image of σr is not cyclic, Proposition 3.2 applies to the couple (G1, ϕ1) and shows
that ϕ1 is linear in a small interval [0, δ1] of positive length. But if so, ϕα is affine
in the interval [b− δ1, b]. Now use part (ii) in Proposition 3.1.

(iii) Since ϕ̃ is decreasing, the subgroups im σ` and im σr are isomorphic by
Lemma 3.6 below; the hypothesis on im σ` therefore implies the image of σr is
not cyclic either. Let ϑ : int(I )−→∼ int(I ) be the reflection in the midpoint of the
interval I and set ϕ̃1 = ϑ ◦ ϕ̃ and G = ϑ ◦G ◦ϑ−1. Conjugation by ϕ̃1 induces then
an increasing isomorphism α1 : G −→∼ G. Since G(I ; A, P) and B(I ; A, P) are
both invariant under conjugation by ϑ, Proposition 3.2 applies to ϕ̃1 in the rôle of ϕ̃
and shows that ϕ̃1 is linear near 0. But if so, ϕ̃ is linear near 0. Consider now the
autohomeomorphism ϕ̃2 = ϕ̃ ◦ϑ of I. It induces an isomorphism α2 : G −→∼ G by
conjugation; an argument similar to the preceding one then reveals that ϕ̃ is affine
near b. The remainder of the claim follows from part (iii) in Proposition 3.1. �

3B. Construction of homomorphisms fixed by Aut+ G. The first main result holds
for all groups G with B(I ; A, P) ( G ⊆ G(I ; A, P), but the exhibited homo-
morphisms may only be fixed by Aut+G.

Theorem 3.5. Suppose I = [0, b] with b ∈ A>0 and G is a subgroup of G(I ; A, P)
that contains B(I ; A, P) properly. Then the homomorphisms σ` and σr are fixed by
Aut+G, and at least one of them is nontrivial.

Proof. Let α be an increasing automorphism of G and let ϕ̃ be the autohomeomor-
phism of I that induces α. (The map ϕ̃ exists by Theorem 2.3 and Remark 2.4(a).)
Since the quotient group G(I ; A, P)/B(I ; A, P) is isomorphic to the image of
σ`×σr : G(I ; A, P)→P× P and as G contains B(I ; A, P) properly, at least one
of the homomorphisms σ` and σr is nonzero.

Assume first that ψ = σ` is nonzero. Two cases then arise, depending on whether
the image of ψ is cyclic or not. If the image of ψ is not cyclic then part (i) in
Corollary 3.4 shows that α fixes ψ . If, on the other hand, ψ is cyclic, consider the
generator p ∈ imψ with p < 1 and pick a preimage gp ∈ G of p. Then gp attracts
points in every sufficiently small interval of the form [0, δ] towards 0; hence so does
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α(gp)= ϕ̃ ◦ gp ◦ ϕ̃
−1 and thus p′ = (α(gp))

′(0) < 1. Now p′ generates also im σ`;
being smaller than 1, it therefore coincides with p = ψ(gp) and so ψ = ψ ◦α.

Assume next that ψ = σr is not zero. If its image is not cyclic, part (ii) of
Corollary 3.4 allows us to conclude that α fixes ψ . If imψ is cyclic, consider the
generator p ∈ imψ with p< 1 and pick a preimage gp ∈G. Then gp attracts points
in every sufficiently small interval [b− δ, b] towards b. It then follows, as before,
that ψ(α(gp))= p = ψ(gp), whence ψ ◦α = α. �

3C. Existence of decreasing automorphisms. Theorem 3.5 is very satisfactory
in that it produces a nonzero homomorphism ψ onto an infinite abelian group
whenever such a homomorphism is likely to exist, i.e., if G contains B(I ; A, P)
properly. This homomorphism is, however, only guaranteed to be fixed by the
subgroup Aut+G of Aut G which has index 1 or 2 in Aut G. If the index is 1, the
conclusion of Theorem 3.5 is as good as we can hope for. So the question arises
whether there are useful criteria that force the index to be 1. Here is a very simple
observation that leads to such a criterion:

Lemma 3.6. Assume I =[0, b] with b∈ A>0 and let G be a subgroup of G(I ; A, P)
that contains B(I ; A, P). Then every decreasing automorphism α induces an
isomorphism α∗ : im σ` −→

∼ im σr .

Proof. The kernel of σ` consists of all elements in G that are the identity near 0.
Since α is induced by conjugation by a homeomorphism of I that maps 0 onto b, the
image of ker σ` consists of elements that are the identity near b, so α(ker σ`)⊆ker σr .
Since α−1 is also a decreasing automorphism, the preceding inclusion is actually an
equality. So α induces an isomorphism α∗ : im σ` −→

∼ im σr that renders the square

(3-6)

G α
//

σ`
����

G

σr
����

im σ`
α∗
// im σr

commutative. �

Example 3.7. Suppose the slope group P is finitely generated and hence free
abelian of finite rank r , say. Choose subgroups Q` and Qr of P and set

(3-7) G(Q`, Qr )= {g ∈ G(I ; A, P) | (σ`(g), σr (g) ∈ Q`× Qr }.

Then im σ`= Q` and im σr = Qr , and the image of (σ`, σr ) :G→P× P coincides
with Q`×Qr . (These claims follow from [Bieri and Strebel 2016, Corollary A5.5]).

Now assume that G(Q`, Qr ) admits a decreasing automorphism, say α. By
Lemma 3.6 the groups Q` and Qr are then isomorphic, and thus have the same
rank. But more is true: if Q` = im σ` is not cyclic, then Proposition 3.2 and the
last line of Proposition 3.1 show that σr = σ` ◦ α, whence Qr , the image of σr ,
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coincides with Q`, the image of σ`. The same conclusion holds if Qr is not cyclic.
Conversely, if Q` = Qr then G(Q`, Qr ) admits decreasing automorphisms, for
instance the automorphism induced by conjugation by the reflection about the mid
point of I.

So the only case where the existence of a decreasing automorphism is neither
obvious nor easy to rule out by the preceding arguments is that where Q` and
Qr are both cyclic, but distinct. We shall come back to this exceptional case in
Example 3.13.

3D. Construction of a homomorphism fixed by Aut G. We move on to the con-
struction of a homomorphism fixed by all of Aut G. The following result is our
main result.

Theorem 3.8. Suppose I is a compact interval of the form [0, b] with b ∈ A>0. Let
G be a subgroup of G(I ; A, P) containing B(I ; A, P) and let ψ : G→ P be the
homomorphism g 7→ σ`(g) · σr (g). Then ψ is fixed by Aut G, except possibly when
G satisfies the following three conditions:

(a) im(σ` : G→ P) is cyclic,

(b) G admits a decreasing automorphism,

(c) G does not admit a decreasing automorphism induced by an autohomeo-
morphism ϑ : I−→∼ I that is differentiable at both end points with nonzero values.

Proof. Let α be an automorphism of G and let ϕ be the autohomeomorphism of
int(I ) that induces α by conjugation. If ϕ is increasing both σ` and σr are fixed
by α (see Theorem 3.5) and hence so is ψ . If, on the other hand, α is decreasing
and the image of σ` is not cyclic then part (iii) of Corollary 3.4 yields the desired
conclusion.

Now suppose that G admits an automorphism β that is induced by a decreasing
autohomeomorphism ϕ̃β of I that is differentiable at 0, as well as at b, and has
there nonzero derivatives. Then part (iii) of Proposition 3.1 allows us to conclude
that ψ is fixed by β. Since β represents the coset Aut GrAut+G and as ψ is fixed
by Aut+G, it follows that ψ is fixed by every decreasing automorphism.

All taken together we have proved that the automorphism α fixes ψ except,
possibly, if im σ` is cyclic, α is decreasing and if there does not exists a decreasing
automorphism β that is differentiable at the end points and has there nonzero
derivatives. �

We state next some consequences of Theorems 3.5 and 3.8. We begin with the
special case where G is all of G(I ; A, P). Then G is normalized by the reflection
in the midpoint of I and so Theorem 3.8 leads to

Corollary 3.9. If G coincides with G([0, b]; A, P) the homomorphism ψ : G→P
taking g ∈ G to σ`(g) · σr (g) is surjective, hence nonzero, and fixed by Aut G.
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The second result is a consequence of the proof of Theorem 3.5.

Corollary 3.10. Suppose that I is the half-line [0,∞[ and G is a subgroup of
G(I ; A, P) containing B(I ; A, P). If G does not admit a decreasing automorphism
then ψ = σ` is fixed by Aut G.

Proof. The claim follows from Proposition 3.2 and from the proof of part (i) in
Proposition 3.1 upon noting that the cited proof does not presuppose that the interval
I be bounded from above. �

3E. Some examples. We exhibit some specimens of groups G that possess a homo-
morphism ψ : G→ P fixed by Aut G. The existence of ψ will be established by
recourse to Theorems 3.5 and 3.8 and to Corollary 3.9.

Example 3.11. We begin with variations on Thompson’s group F. Assume P is in-
finite cyclic and A is a (nontrivial) Z[P]-submodule of R. Set G0=G([0, b]; A, P)
with b ∈ A>0 and consider the following subgroups of G0:

G1 = {g ∈ G0 | σ`(g)= 1},(3-8)

G2 = {g ∈ G0 | σ`(g)= σr (g)},(3-9)

G3 = {g ∈ G0 | σ`(g)= σr (g)−1
}.(3-10)

The group G0 is the entire group G(I ; A, P) and so Corollary 3.9 tells us that
the homomorphism ψ : g 7→ σ`(g) · σr (g) is nonzero and fixed by Aut G0.

The group G1 is an ascending union of subgroups Hn = G([an, b]; A, P) given
by a strictly decreasing sequence n 7→ an of elements in A that converges to 0, and
so the group G1 is infinitely generated. It does not admit a decreasing automorphism
(for instance because of Lemma 3.6) and so Theorem 3.5 allows us to infer that the
epimorphism σr : G1 � P is fixed by all of Aut G1.

The group G2 is an ascending HNN-extension with a base group that is isomor-
phic to G0 (see [Bieri and Strebel 2016, Lemma E18.8]). If G0 is finitely generated
or finitely presented, so is therefore G2. The group is normalized by the reflection
in the midpoint of I and so Theorem 3.8 implies that ψ : g 7→ σ`(g) ·σr (g) is fixed
by Aut G2. This homomorphism ψ is nonzero, for it coincides with σ 2

` . (Actually,
σ` and σr are also fixed by Aut G2.)

Now to the group G3. It differs from G2 in several respects: it cannot be written
as an ascending HNN-extension with a finitely generated base group contained in
B(I ; A, P); it is finitely generated if G0 is so, but, if finitely generated, it does
not admit a finite presentation (see part (ii) of Lemma E18.8 and Remark E18.10
in [Bieri and Strebel 2016]). The group G3 is normalized by the reflection in the
mid point of I and so ψ : G3→ P is fixed by Aut G3; this conclusion, however, is
of no interest as ψ is the zero map. Actually, more is true: every homomorphism
ψ ′ : G3→ P fixed by ρ and vanishing on the bounded subgroup B3 of G3 is the
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zero-map: by definition (3-10) the group G3/B3 is infinite cyclic and so ψ ′ must
be a multiple of σ`.

Remark 3.12. The previous discussion shows that G0, G1 and G2 admit nontrivial
homomorphisms into P that are fixed by the corresponding automorphism groups.
This fact and the observation made in Section 1A imply that every automorphism
of one of these groups has infinitely many corresponding twisted conjugacy classes.
This reasoning does not hold for G3, for ψ : G3→ P is the zero homomorphism.

So the question whether or not an automorphism α of G3 has infinitely many
twisted conjugacy classes has to be tackled by another approach. Note first that the
homomorphisms σ` and σr are both nonzero; as G3 satisfies the assumptions of
Theorem 3.5 these homomorphisms are therefore fixed by Aut+ G3. It follows that
every increasing automorphism α of G3 has infinitely many α-twisted conjugacy
classes. We are thus left with the coset of decreasing automorphisms of G3.

Consider, for example, the automorphism β induced by conjugation by the
reflection ϑ in the midpoint of the interval I. Our aim is to construct an infinite
collection of elements gn ∈ G3 and to verify then that they represent pairwise
distinct β-twisted conjugacy classes. This verification will be based on the fact that
β has order 2 and a connection between twisted and ordinary conjugacy classes,
available for automorphisms of finite order.8

Let f and g be elements of G3 that lie in the same β-twisted conjugacy class.
By definition, there exists then h ∈G3 that satisfies the equation g= h ◦ f ◦β(h−1).
The calculation

g ◦β(g)=
(
h ◦ f ◦β(h−1)

)
◦β
(
h ◦ f ◦β(h−1)

)
= h ◦ ( f ◦β( f )) ◦β2(h−1)= h( f ◦β( f ))

shows then that the elements f ◦β( f ) and g◦β(g) are conjugate. It suffices therefore
to find a sequence of elements n 7→ fn with the property that the compositions
fn1 ◦β( fn1) and fn2 ◦β( fn2) represent distinct conjugacy classes whenever n1 6= n2.

To obtain such a sequence, we use the fact that G contains B(I ; A, P) and that
B(I ; A, P) consists of all PL-homeomorphisms with slopes in P, breakpoints in
the dense subgroup A, and which are the identity near the end points. For every
positive integer n there exists therefore a nontrivial element fn ∈ B(I ; A, P) whose
support has n connected components, all contained in the interval ]0, b/2[. Then

hn = fn ◦β( fn)= fn ◦ (ϑ ◦ fn ◦ϑ
−1)

has 2n connected components, so hn1 is not conjugate to hn2 for n1 6= n2. It follows
that G3 has infinitely many β-twisted conjugacy classes.

8Compare with [Gonçalves and Sankaran 2016, Lemma 2.3].
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The previous reasoning allows of some improvements, but it does not seem
powerful enough to establish that G3 has infinitely many α-twisted conjugacy
classes for every decreasing automorphism α of G3.

Example 3.13. Example 3.11 admits a generalization that is worth being brought
to the attention of the reader. Assume P is a nontrivial subgroup of the positive
reals, A is a (nontrivial) P-submodule of R, and ν is an endomorphism of P. Now
fix b ∈ A>0, set I = [0, b], and define

(3-11) Gν = {g ∈ G([0, b]; A, P) | σr (g)= ν(σ`(g))}.

We are interested in finding a nonzero homomorphism ψ : Gν → P that is fixed
by Aut Gν . Theorem 3.8 implies that the homomorphism ψ : g 7→ σ`(g) · σr (g) is
fixed by Aut Gν whenever P is not cyclic; this homomorphism is nonzero unless ν
is the map that sends p ∈ P to its inverse p−1.

Assume now that P is cyclic. Then Gν is isomorphic to one of the groups G1, G2,
or G3 discussed in Example 3.11. This claim is clear if ν is the zero map, for Gν

coincides then with ker σr and is therefore isomorphic to G1. Assume now that ν is
not zero. The quotient group Gν/B(I ; A, P) is then an infinite cyclic subgroup of
the quotient group G(I ; A, P)/B(I ; A, P) which is free abelian group of rank 2.
By the classification in Section 18.4b of [Bieri and Strebel 2016], the group Gν

is therefore isomorphic, either to G2 or to G3. Since the isomorphism Gν −→
∼ G2,

respectively Gν −→
∼ G3, is induced by conjugation by an autohomeomorphism of

]0, b[ and as conjugation by the reflection in b/2 induces decreasing automorphisms
in G2 and in G3, the group Gν admits a decreasing automorphism, say β; it induces
an isomorphism β∗ : im σ` −→

∼ im σr (see Lemma 3.6). Our next aim is to obtain a
formula for β∗.

The definition of Gν shows, first of all, that im σ` = P and that im σr = ν(P).
Let p be the generator of P with p<1. Then ν(p)= pm for some nonzero integer m
(recall that ν is not the zero map). Pick an element gp ∈Gν with σ`(gp)= p. Then 0
is an attracting fixed point of gp restricted to a sufficiently small interval of the
form [0, δ], and hence b is an attracting fixed point for the restriction of β(gp) to
a sufficiently small interval of the form [b− ε, b]. Thus β(gp) < 1. Since β(gp)

generates im σr = ν(P)= gp(pm) it follows that β∗ is given by the formula

(3-12) β∗ : P→ P, p 7→ p|m|.

Consider now the commutative square (3-6), with α replaced byβ. It shows that

(3-13) (σr ◦β)(gp)= β∗(σ`(gp))= β∗(p)= p|m| = (σ`(gp))
|m|
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and so σr ◦β = σ
|m|
` . The preceding reasoning is also valid with β−1 in place of β,

for β−1 is also a decreasing automorphism of Gν , and so the relation σr ◦β
−1
=σ
|m|
`

holds, hence also the relation σ |m|` ◦β = σr .
Consider next the homomorphism ψ : Gν→ P that takes g to σ`(g)|m| · σr (g).

The calculation

(ψ ◦β)(g)= σ |m|` (β(g)) · σr (β(g))= σr (g) · σ
|m|
` (g)= ψ(g)

shows then that ψ is fixed by β. Note, however, that ψ is the zero homomorphism
whenever m is negative, for in this case the definition of Gν implies that

ψ(g)= (σ`(g))|m| · σr (g)= (σ`(g))|m| · (σ`(g))m = 1

for every g ∈ Gν , just as it happens with G3 in Example 3.11.

Remark 3.14. Suppose P is cyclic and ν : P→ P is neither the identity nor the
passage to the inverse. Then Gν admits decreasing automorphisms β, but none of
them can be induced by an autohomeomorphism ϕ̃ : I −→∼ I that is differentiable at
the end points; indeed, (3-13) shows that σr ◦β 6= σ`, in contrast to what happens if
the chain rule can be applied (see Proposition 3.1). It follows, in particular, that the
three conditions (a), (b), and (c) stated in Theorem 3.8 can occur simultaneously.

4. Characters fixed by Aut G([0,∞[; A, P)

The results in this section differ from those of Section 3 in two important respects:
in many situations several candidates for ψ : G→ P are available and one of the
candidates may not be fixed by Aut+ G.

4A. Existence of decreasing automorphisms. Every compact interval of the form
[0, b], and also the line, is invariant under a reflection. It follows that the groups
G(I ; A, P) with I one of these intervals, but also many of their subgroups, admit
decreasing automorphisms. The case where I is a half-line, say [0,∞[, is different:
then G([0,∞[; A, P) does not admit a decreasing automorphism.

In this section, we first justify this claim and discuss then the extent to which it
continues to be valid for subgroups of G([0,∞[; A, P). We begin with an analogue
of Lemma 3.6 in which the homomorphism σr is replaced by the homomorphism ρ

defined in (2-4).

Lemma 4.1. Assume I is the half-line [0,∞[ and G is a subgroup of G(I ; A, P)
that contains B(I ; A, P). Then every decreasing automorphism α induces an
isomorphism α∗ : im σ` −→

∼ im ρ.

Proof. The proof is very similar to that of Lemma 3.6. The kernel of σ` consists of
all elements in G that are the identity near 0, while the kernel of ρ is made up of the
elements in G that are the identity near∞. Since α is induced by conjugation by a
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decreasing homeomorphism of ]0,∞[, the image of ker σ` consists of elements α(g)
that are the identity on a half-line of the form [t (g),∞[, and so α(ker σ`)⊆ ker ρ.
Since α−1 is also a decreasing automorphism, the preceding inclusion is actually an
equality. It follows that α induces an isomorphism α∗ : im σ` −→

∼ im ρ that renders
the square

(4-1)

G α
//

σ`
����

G

ρ

����

im σ`
α∗
// im ρ

commutative. �

The preceding lemma leads directly to a criterion for the nonexistence of de-
creasing automorphisms. Indeed, the image of σ` is abelian, while that of ρ is often
a nonabelian, metabelian group, and so we obtain

Criterion 4.2. Assume I is the half-line [0,∞[ and G is a subgroup of G(I ; A, P)
that contains B(I ; A, P). If im ρ is not abelian then Aut G = Aut+G.

4B. Construction of homomorphisms: part I. We turn now to the construction of
homomorphisms fixed by Aut+G, or even by Aut G. Several homomorphisms are
at our disposal. The first of them is σ`. Corollary 3.10 tells us then:

Proposition 4.3. Assume that G is a subgroup of G([0,∞[; A, P) containing
B(I ; A, P). Then the homomorphisms σ` is fixed by Aut+G.

We move on to the homomorphism ρ. Here two cases arise, depending on
whether its image is abelian or nonabelian. In the second case, a very satisfying
conclusion holds. It is enunciated in

Theorem 4.4. Assume I = [0,∞[ and G is a subgroup of G(I ; A, P) containing
B(I ; A, P). If im ρ is not abelian, σr is a nonzero homomorphism fixed by Aut G.

Proof. Suppose im ρ is nonabelian. Then Lemma 4.1 forces α to be increasing. Let
ϕ : ]0,∞[ −→∼ ]0,∞[ be the autohomeomorphism that induces α by conjugation.
As it is increasing, it is affine near∞ by Proposition 4.5 below, and so the following
calculation

σr (α(g))= limt→∞
(
ϕ ◦ g ◦ϕ−1)′(t)

= limt→∞
(
ϕ′(g ◦ϕ−1(t)) · g′(ϕ−1(t)) · (ϕ−1)′(t)

)
= limt→∞

(
ϕ′(t) · g′(t) · (ϕ−1)′(t)

)
= limt→∞ g′(t)= σr (g)

is valid for every g ∈ G, which shows that α fixes the homomorphism σr . This
homomorphism is nonzero. Indeed, G/ ker ρ −→∼ im ρ is not abelian by hypothesis,
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while ker σr/ ker ρ is abelian and thus the third term of the extension

ker σr/ ker ρ� G/ ker ρ� G/ ker σr

is not zero, whence ker σr 6= G. �

We are left with proving an analogue of Proposition 3.2. For later use, we state
it in greater generality than needed at this point, namely as

Proposition 4.5. Assume G and G are subgroups of G(I ; A, P), both containing
the subgroup B(I ; A, P), and that I is either the half-line [0,∞[ or the line R. Let
α : G −→∼ G be an isomorphism and let ϕα be an autohomeomorphism of int(I )
that induces α by conjugation.

If im ρ is not abelian and ϕα is increasing then ϕα is affine near∞.

Proof. We adapt the argument of Part 2 in the proof of [Bieri and Strebel 2016,
Supplement E17.3] to the case at hand. By assumption, the image of

ρ∗ : G→ Aff(A, P)−→∼ Ao P

is not abelian; its derived group is therefore (isomorphic to) a nontrivial submodule
A1 of A which, being nontrivial, contains arbitrary small positive elements and so
is dense in R. Let ρ∗ : G→ A o P be the similarly defined homomorphism; the
derived group of its image is then isomorphic to a nontrivial submodule A1 of A.

By part (ii) of Corollary 2.7, the isomorphism α induces an isomorphism α∗ of
G/ ker ρ onto G/ ker ρ; hence an isomorphism of im ρ onto im ρ, and, finally, an
isomorphism α1 of A1 onto A1. They render commutative the following diagram

(4-2)

G
ρ
// //

α

��

im ρ oo oo

α∗

��

A1

α1

��

G
ρ
// // im ρ oo oo A1

We claim the automorphism α1 : A1 −→
∼ A1 is strictly increasing.

Let b ∈ A1 be an arbitrary positive element and let fb ∈ G be a PL-homeo-
morphisms that is a translation with amplitude b near∞, say on [tb,1,∞[. Then
α( fb) is a PL-homeomorphism which is a translation with amplitude α1(b) near∞,
say for t ≥ ϕ(tb,2). Since α is induced by conjugation by ϕ, one has α( fb)=

ϕ fb;
so ϕ ◦ fb = α( fb) ◦ϕ. By evaluating this equality at t ≥max{tb,1, tb,2} one obtains
the chain of equations

ϕ(t + b)= (ϕ ◦ fb)(t)= (α( fb) ◦ϕ)(t)= α1(b)+ϕ(t).

It implies that α1(b) is positive, for b is so by assumption and ϕ is increasing.
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We show next that α1 is given by multiplication by a positive real number s1. As
stated in the first paragraph of the proof, A1 is a dense subgroup of Radd. Since
α1 is strictly increasing it extends to a (unique) strictly increasing automorphism
α̃1 : R−→

∼ R. This automorphism is continuous and hence an R-linear map, given
by multiplication by some positive real number s1.

We come now to the final stage of the analysis of ϕ. In it we show that the
restriction of ϕ to a suitable interval of the form [t∗,∞[ is affine. Choose a positive
element b∗ ∈ A1 and let fb∗ ∈G be an element whose image under ρ is a translation
with amplitude b∗. It then follows, as before, that there is a positive number t∗ so
that the equation

(4-3) ϕ(t + b∗)= α1(b∗)+ϕ(t)= ϕ(t)+ s1 · b∗

holds for every t ≥ t∗. Consider now an arbitrary positive element b ∈ A1. There
exists then a positive number tb such that the calculation

ϕ(t + b)= α1(b)+ϕ(t)= ϕ(t)+ s1 · b

is valid for t ≥ tb. Choose a positive integer m which is so large that tb ≤ t∗+m ·b∗.
For every t ≥ t∗ the following calculation is then valid:

ϕ(t + b)+ s1 ·mb∗ = ϕ(t + b+m · b∗)

= ϕ(t +m · b∗)+ s1 · b

= ϕ(t)+ s1 ·mb∗+ s1 · b.

It follows, in particular, that the equation

(4-4) ϕ(t∗+ b)= ϕ(t∗)+ s1 · b

holds for every positive element b ∈ A1 and t ≥ t∗. Since ϕ is continuous and
increasing and as A1 is dense in R, this equation allows us to deduce that ϕ is affine
with slope s1 on the half-line [t∗,∞[, and so the proof is complete. �

The hypotheses of the Theorem 4.4 are satisfied if G = G([0,∞[; A, P); the
theorem, Lemma 4.1 and Corollary 3.10 thus yield the pleasant

Corollary 4.6. If G coincides with G([0,∞[; A, P) then both σ` : G → P and
σr : G→ P are surjective homomorphisms fixed by Aut G.

Corollary 4.6 is the analogue of Corollary 3.9, but with the compact interval I
replaced by a half-line. Groups G(I ; A, P) with I a half-line have, so far, been
investigated less often than groups with I a compact interval; they have, however,
their own merits, in particular the following one: to date, finitely generated groups
of the form G(I ; A, P) with I compact are only known for very special choices of
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the parameters (A, P).9 By contrast, finitely generated groups with I a half-line
are far more common, as is shown by the following characterization:

Proposition 4.7 [Bieri and Strebel 2016, Theorem B8.2]. The homeomorphism
group G([0,∞[; A, P) is finitely generated if and only if the following conditions
are satisfied:

(i) P is finitely generated,

(ii) A is a finitely generated Z[P]-module, and

(iii) A/(I P · A) is finite.

4C. Construction of homomorphisms: part II. Theorem 4.4 is very pleasing: it
shows that the homomorphism σr is fixed by all automorphisms provided merely
the image of ρ : G→ Aff(I P · A, P) is not abelian. In this section, we discuss the
remaining case.

The image of G([0,∞[; A, P) under ρ is the affine group

Aff(I P · A, P)−→∼ (I P · A)o P

(see Section 2B). This group is metabelian and contains two obvious kinds of abelian
subgroups: those made up of translations, corresponding to the subgroups of I P · A,
and the subgroups consisting of homotheties t 7→ q · t with ratio q varying in a
subgroup Q of P. We begin by discussing the second type of abelian subgroups.

4C1. Image of ρ is made up of homotheties. Given a subgroup Q of P let GQ

be the subgroup of G = G([0,∞[; A, P) consisting of the products f ◦ g with
g ∈ B = B([0,∞[; A, P) and f a homothety t 7→ q · t with q ∈ Q; since B is
normal in G the set so defined is actually a subgroup of G. We do not know which
of these subgroups GQ admit decreasing automorphisms, but those with Q cyclic
have this peculiarity, as can be seen from

Lemma 4.8. Assume I is the half-line [0,∞[ and Q is a cyclic subgroup of P.
Then the subgroup

(4-5) GQ = { f ◦ g | f = (t 7→ q · t) with q ∈ Q and g ∈ B}

of the group G([0,∞[; A, P) does admit a decreasing automorphism.

Proof. Let q0 be the generator of Q with q0 > 1 and choose a positive element
a0 ∈ I P · A. For each k ∈ Z set tk = qk

· a0 and define ϕ : ]0,∞[ −→∼ ]0,∞[ to be
the affine interpolation of the assignment (tk 7→ t−k)k∈Z. Then ϕ is an infinitary PL-
autohomeomorphism of ]0,∞[ whose interpolation points lie in (I P · A)×(I P · A).

9See [Bieri and Strebel 2016, p. vii] for the list of the groups known at the end of 2014.
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The slopes of the segments forming the graph of ϕ are the negatives of powers
of q0; indeed,

tk+1− tk = qk+1
0 · a0− qk

0 · a0 = (q0− 1) · qk
0 · a0

and

ϕ(tk+1)−ϕ(tk)= (1/q0)
k+1
· a0− (1/q0)

k
· a0 = (1− q0) · q−k−1

0 · a0

and so ϕ has slope (−1) · q−2k−1
0 on the interval [tk, tk+1].

It follows that ϕ maps I P ·A onto itself. Consider now a conjugate ϕh=ϕ◦h◦ϕ−1

of an element h ∈ GQ . If h ∈ B(I ; A, P), then h has support contained in some
interval of the form Ik(h) = [t−k(h), tk(h)] for some k(h) > 0 and so ϕh has support
in ϕ(Ik(h)) = Ik(h), slopes in P, break points in I P · A and is thus an element of
B⊂GQ . If, on the other hand, h is the homothety with ratio q0, then h(tk)= tk+1 for
each index k ∈ Z and its conjugate ϕh is the PL-function with interpolation points
(tk, tk−1), hence the homothety with center 0 and ratio q−1

0 and thus ϕh = h−1 lies
in GQ . As GQ is generated by B ∪{(t 7→ q0 · t)}, the previous reasoning shows that
the decreasing autohomeomorphism ϕ induces by conjugation an automorphism of
GQ and so the lemma is established. �

Remark 4.9. Assume A, P and Q are as in the statement of the lemma. Then the
bounded group B = B([0,∞[; A, P) may be perfect and hence simple; cf. [Bieri
and Strebel 2016, Section 12.4]. In such a case, B is the only normal subgroup N
of GQ with G/N infinite abelian and so the lemma implies that no homomorphism
of GQ onto an infinite abelian group is fixed by all of Aut GQ . Note, however, that
ρ is fixed by every increasing automorphism of GQ .

4C2. Image of ρ consists of translations. We turn now to the other type of abelian
subgroups of Aff(I P · A, P), but concentrate on a special case. Given a subgroup
Q of P and a subgroup A0 ⊆ I P · A, we set

(4-6) GQ,A0 =
{
g ∈ G([0,∞[; A, P)

∣∣ σ`(g) ∈ Q and ρ(g) ∈ A0 o {1}
}
.

The group GQ,A0 is an extension of B([0,∞[; A, P) by the abelian group Q× A0.
The class of groups having the form GQ,A0 is of interest for several reasons.

Firstly, if Q and A0 are not isomorphic, every automorphism of GQ,A0 is increasing
by Lemma 4.1. This case occurs frequently, as is brought home by the following
kind of examples. Suppose Q is finitely generated and contains an integer p > 1,
while A0 is a nonzero submodule of I P · A. Then A0 is divisible by p and, in
particular, not free abelian.

Some groups of the form GQ,A0 admit decreasing automorphisms, in particular
the following ones: Let P be a cyclic group generated by the real number p > 1,
let A be a Z[P]-submodule of Radd and choose a positive element b ∈ A. The
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group G =G([0, b]; A, P) admits decreasing automorphisms, for instance the auto-
morphism induced by conjugation by the reflection ϕ at the midpoint of I = [0, b].

Consider now the group G = GP,Z·(p−1)b ⊂ G([0,∞[; P, A). It is isomorphic
to G; there exists actually an isomorphism induced by an increasing, infinitary
PL-homeomorphism ϕb : [0,∞[ −→∼ [0, b[; see [op. cit., Lemma E18.2]. Then the
composition ϕ−1

b ◦ϕ ◦ϕb induces by conjugation a decreasing automorphism of G.
Thirdly, let τr : GQ,A0 → Radd be the homomorphism that maps the PL-homeo-

morphism g ∈ GQ,A0 to the amplitude of the translation ρ(g). This homomorphism
seems to have a good chance of being fixed by Aut+GQ,A0 , but this impression is
mistaken. Indeed, let AutP A0 be the set of elements p ∈ P with p · A0 = A0; this
set is a subgroup of P and the semidirect product A0 oAutP A0 is a subgroup of
(I P · A)o P; let G̃ denote the preimage of A0 oAutP A0 under the epimorphism

ρ : G([0,∞[; A, P)
ρ
� Aff(I P · A, P)−→∼ (I P · A)o P.

Then GQ,A0 is a normal subgroup of G̃. The group G̃ contains the homothety
ϑp : t 7→ p · t for every p ∈ AutP A0, and so conjugation by such a homothety
induces an automorphism αp of GQ,A0 . The calculation

(τr ◦αp)(g)= τr (ϑp ◦ g ◦ϑ−1
p )= (ϑp ◦ g ◦ϑ−1

p )(t)− t

= ϑp(g(p−1t))− t = p · (p−1t + τr (g))− t = (p · τr )(g),

valid for every sufficiently large real number t , then shows that the formula

(4-7) τr ◦αp = p · τr

holds for each p ∈ AutP A0. We conclude that τr can only be fixed by all of
Aut+GQ,A0 if AutP A0 is reduced to 1 ∈ R×>0. This condition is fulfilled, for
instance, if A0 is infinite cyclic.

Example 4.10. Given a real number p > 1, set P = gp(p) and A = Z[P] =
Z[p, p−1

]. Choose A0 = A and set G = G P,A0 . Then AutP A0 = P. Concrete
examples are rational integers p ∈ N r {0, 1}, with A0 = Z[1/p], or quadratic
integers like

√
2+ 1 with A0 = A = Z[

√
2 ]. We shall come back to the second of

these examples in Section 6E1.

5. Characters fixed by Aut G(R; A, P)

Let I denote one of the intervals [0, b], [0,∞[ or R, and let G be a subgroup of
G(I ; A, P) containing B(I ; A, P). In Sections 3 and 4 groups with I a compact
interval or a half-line have been studied. In this section we now turn to the line
I = R. Finding nonzero homomorphisms ψ : G → R×>0 fixed by Aut G, is then
harder than in the previously investigated cases, and this for two reasons. Firstly,
subgroups of G(R; A, P) often admit decreasing automorphisms α, in contrast to
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what happens if I is a half-line; in the case of a decreasing automorphism, λ (or ρ)
is only fixed by α if λ coincides with ρ. Secondly, if the image of λ or that of ρ
consists of translations, neither λ nor ρ need be fixed by Aut+G.

The plan of our investigation will be similar to that adopted in Section 4. We
begin by discussing the existence of decreasing automorphisms (in Section 5A),
move on to the main results about the existence of homomorphisms fixed by Aut+G
or Aut G (in Section 5B) and complement these results with more special findings in
Section 5C. The layout of the middle Section 5B will resemble that of Section 3A.

5A. Existence of decreasing automorphisms. As in the cases of a compact inter-
val or a half-line, the existence of a decreasing automorphism has an easily stated
consequence, namely

Lemma 5.1. Assume G is a subgroup of G(R; A, P) that contains B(R; A, P).
Then every decreasing automorphism α induces an isomorphism α∗ : im λ−→∼ im ρ

that renders commutative the following square.

(5-1)

G α
//

λ
����

G

ρ

����

im λ
α∗
// im ρ

Proof. The claim can be established as in the proofs of Lemmata 3.6 and 4.1. �

The images of λ and ρ are both subgroups of the affine group Q=Affo(I P ·A, P).
It is easy to describe some pairs of subgroups (Q1, Q2) that are not isomorphic for
obvious reasons, for instance if one is abelian, and the other is nonabelian. We are,
however, not aware of a classification of the isomorphism types of subgroups of
Affo(I P · A, P) for parameters A 6= {0} and P 6= {1}.

5B. Construction of homomorphisms: part I. We turn now to the construction
of homomorphisms that are fixed by Aut+G or by Aut G. The next result is an
analogue of Corollary 3.4. The main ingredient in its proof is Proposition 4.5.

Proposition 5.2. Let G be a subgroup of G(R; A, P) containing B(R; A, P) and
let α be an automorphism of G that is induced by conjugation by the autohomeo-
morphism ϕα : R−→

∼ R. Then the following statements hold:

(i) if α is increasing10 and im ρ is not abelian, then ϕα is affine near∞;

(ii) if α is increasing and im λ is not abelian, then ϕα is affine near −∞;

(iii) if α is decreasing and im ρ is not abelian, then ϕ̃α is affine, both near −∞ and
near∞.

10See Definition 2.5.
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Proof. Statement (i) is a restatement of the claim of Proposition 4.5. To establish (ii),
we show that (ii) can be reduced to (i). Let ϑ : R −→∼ R be the reflection in the
origin 0, set G1= ϑ ◦G ◦ϑ−1 and ϕ1= ϑ ◦ ϕ̃α ◦ϑ

−1. We claim that Proposition 4.5
applies to the couple (G1, ϕ1). Indeed, the groups G(R; A, P) and B(R; A, P) are
invariant under conjugation by ϑ and so G1 is a subgroup of G(R; A, P) containing
B(R; A, P). Next, Lemma 5.3 below shows that

ρ(G1)= ρ
(
ϑ ◦G ◦ϑ−1)

= ϑ ◦ λ(G) ◦ϑ−1.

The group ϑ ◦λ(G)◦ϑ−1 is isomorphic to im λ, which is nonabelian by hypothesis,
and so ρ(G1) is nonabelian. Proposition 4.5 thus applies to G1 and to ϕ1 and implies
that ϕ1 = ϑ ◦ϕα ◦ϑ

−1 is affine near +∞, whence ϕα itself is affine near −∞.
To establish (iii), note that since α is decreasing, the groups im λ and im ρ are

isomorphic (see Lemma 5.1); the hypothesis on im ρ implies therefore that the
image of λ is not abelian. The idea now is to reduce (iii) to the previously treated
cases (i) and (ii). As before, let ϑ : R −→∼ R denote the reflection in the origin 0,
and set ϕ2 = ϑ ◦ ϕα. Then ϕ2 is increasing and conjugation by ϕ2 maps G onto
G=ϑ◦G◦ϑ−1. Proposition 4.5 thus applies and guarantees that ϕ2 is affine near∞.
But ϕ2 = ϑ ◦ϕα and so ϕα itself is affine near∞. Consider, secondly, ϕ3 = ϕα ◦ϑ.
This map is again increasing, and conjugation by it maps G = ϑ ◦G ◦ϑ−1 onto G.
Invoking Proposition 4.5 once more, we learn that ϕ3 is affine near +∞, and so ϕα
itself is affine near −∞. All taken together, we have shown that ϕα is affine, both
near −∞ and +∞, as asserted by claim (iii). �

We are left with proving

Lemma 5.3. Let ϑ : R−→∼ R denote the reflection in 0. Then the formula

(5-2) ρ
(
ϑ ◦ g ◦ϑ−1)

= ϑ ◦ λ(g) ◦ϑ−1

holds for every g ∈ PLo(R).

Proof. Let µ and ν denote the functions of PLo(R) into itself given by the left
hand and the right hand side of (5-2); thus µ(g)= ρ(ϑ ◦ g ◦ϑ−1) for g ∈ PLo(R),
and similarly for ν. Both functions are homomorphisms of PLo(R) into Affo(R)

that vanish on ker λ. It suffices therefore to check (5-2) on a complement of
ker(λ : PLo(R)→ Affo(R)). Such a complement is Affo(R) and for affine maps h
the following calculation holds:

ρ(ϑ ◦ h ◦ϑ−1)= ϑ ◦ h ◦ϑ−1
= ϑ ◦ λ(h) ◦ϑ−1. �

5B1. Some corollaries. The first corollary of Proposition 5.2 deals with homo-
morphisms fixed by Aut+ G; the corollary is an analogue of Theorem 3.5.
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Theorem 5.4. Assume G is a subgroup of G(R; A, P) that contains B(R; A, P).
If im ρ is not abelian, σr is a nonzero homomorphism fixed by Aut+G. Similarly,
σ` is a nonzero homomorphism fixed by Aut+G in case im λ is not abelian.

Proof. Let α be an increasing automorphism of G and let ϕα be the increasing
autohomeomorphism of R inducing α by conjugation. (The map exists thanks to
Theorem 2.3.) Assume first that im ρ is not abelian. By part (i) of Proposition 5.2 the
map ϕα is then affine near∞. On the other hand, the image of ρ, being nonabelian,
cannot consist merely of translations; so the homomorphism σr :G→P is nonzero.
The following calculation then reveals that σr is fixed by α:

(σr ◦α)(g)= σr (ϕα ◦ g ◦ϕ−1
α )

= limt→∞(ϕα ◦ g ◦ϕ−1
α )′(t)

= limt→∞
(
ϕ′α(g(ϕ

−1
α (t))) · g′(ϕ−1

α (t)) · (ϕ−1
α )′(t)

)
= limt→∞ g′(ϕ−1

α (t))= σr (g).

In this calculation the facts that the derivatives of ϕα and of g are constant on a
half-line of the form [t∗,∞[ and that ϕα is an increasing homeomorphism, have
been used.

Assume next that im λ is not abelian. By part (ii) of Proposition 5.2 the map ϕα
is then affine near −∞. and the homomorphism σ` : G→ P is nonzero. Since the
derivatives of every element g ∈ G and of ϕα are constant near −∞, a calculation
similar to the preceding one will show that λ is fixed by α. �

As a second application of Proposition 5.2, we present a result that furnishes a
homomorphism ψ that is fixed by every automorphism. Note, however, that the
hypotheses of the result do not imply that ψ is nontrivial.

Theorem 5.5. Assume G is a subgroup of G(R; A, P) containing B(R; A, P) and
let ψ : G→ P be the homomorphism g 7→ σ`(g) · σr (g). If the images of λ and
of ρ are both nonabelian, then the homomorphism ψ : G→ P is fixed by Aut G.

Proof. Let α be an automorphism of G and let ϕα be the autohomeomorphism of R

that induces α by conjugation. If ϕα is increasing both σ` and σr are fixed by α
(see Theorem 5.4) and hence so is ψ .

Assume now that α is decreasing. Part (iii) of Corollary 3.4 then guarantees that
ϕα is affine near −∞ and also near∞. These facts imply the relations

(5-3) σ` ◦α = σr and σr ◦α = σ`

(see below) and so ψ = σ` · σr is fixed by α.
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We are left with verifying relations (5-3). The following calculation uses the fact
that both ϕα and g have constant derivatives near −∞ and +∞:

(σ` ◦α)(g)= σ`(ϕα ◦ g ◦ϕ−1
α )

= limt→−∞(ϕα ◦ g ◦ϕ−1
α )′(t)

= limt→−∞
(
ϕ′α(g(ϕ

−1
α (t))) · g′(ϕ−1

α (t)) · (ϕ−1
α )′(t)

)
= limt→−∞ g′(ϕ−1

α (t))= σr (g).

A similar calculation establishes the second relation in (5-3). �

We continue with an easy consequence of Theorem 5.5. If the group G is all
of G(I ; A, P) the homomorphism ψ : g 7→ σ`(g) · σr (g) is surjective; in addition,
im λ and im ρ both coincide with Affo(A, P) and thus are nonabelian. Therefore,
Theorem 5.5 implies the following:

Corollary 5.6. If G = G(R; A, P), the homomorphism ψ : G → P, mapping
g 7→ σ`(g) · σr (g), is nonzero and fixed by Aut G.

Corollary 5.6 is an analogue of Corollaries 3.9 and 4.6. Groups of the form
G(R; A, P) have been investigated, so far, less often than groups with I a compact
interval; they have, however, their own merits if it comes to finite generation. There
exists, first of all, a characterization of the finitely generated groups of the form
G(R; A, P), namely the following result:

Proposition 5.7 [Bieri and Strebel 2016, Theorem B7.1]. The group G(R; A, P) is
finitely generated if and only if P is finitely generated and A is a finitely generated
Z[P]-module.

Remark 5.8. Proposition 5.7 implies that there are continuously many, pairwise
nonisomorphic, finitely generated groups of the form G(R; A, P).

To prove this assertion, we recall the following result: if two groups of the form
G(R; A, P) and G(R; A, P) are isomorphic and if P is not cyclic, then P = P.11

It suffices therefore to find a collection of finitely generated, pairwise distinct
subgroups {Pj | j ∈ J } of R×>0 with J an index set having the cardinality of R, and
to set Aj = Z[Pj ] for each j ∈ J . Such a collection of subgroups can be obtained
as follows: first one constructs a family of irrational real numbers {xj | j ∈ J } such
that the extended family {1}∪{xj | j ∈ J } is linearly independent (over Q) and then
sets Pj = exp(gp({1, xj }). Then each group Pj is free abelian of rank two, hence
not cyclic, and for indices j1 6= j2 the groups Pj1 and Pj2 are distinct.

11see [Bieri and Strebel 2016, Theorem E17.1].
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5C. Construction of homomorphisms: part II. In this final part of Section 5, we
consider subgroups G of G(R; A, P), containing B(R; A, P), with im λ and im ρ

both abelian.12 The most interesting subcase seems to be that where the images of
λ and ρ consists only of translations. Then two homomorphisms τ` and τr of G
into Radd can be defined: they associate to g ∈ G the amplitudes of the translations
λ(g) and ρ(g), respectively. One sees, as in Section 4C2, that neither of these
homomorphisms need be fixed by Aut+G.

An exception occurs if the image of ρ or of λ is infinite cyclic. Suppose, for
instance, that im ρ is infinite cyclic, and let f ∈ G be an element that maps onto
the positive generator, say x f , of im τr . Consider an increasing automorphism α

of G and let ϕα be the homeomorphism of R that induces α by conjugation. Then
τr (α( f )) generates im τr , too, and so τr (α( f )) = ±x f . Near +∞, the map f is
a translation with positive amplitude, hence so is α( f ) = ϕα ◦ f ◦ ϕ−1

α , and so
τr (α( f )) > 0. Thus τr ( f ) = (α ◦ τr )( f ). We conclude that τr is fixed by α. An
analogous argument shows that τ` is fixed by every increasing automorphism of G.

All taken together we have thus established the following result:

Proposition 5.9. Let G be a subgroup of G(R; A, P) containing B(R; A, P). Now
assume that the images of λ and ρ contain only translations and that these images
are infinite cyclic. Then τ` and τr are both nonzero homomorphisms that are fixed
by Aut+G.

Example 5.10. Suppose P is an infinite cyclic group, A a (nonzero) Z[P]-module
and b a positive element of A. Set G = G([0, b]; A, P). Then there exists a
homeomorphism ϑ : ]0, b[ −→∼ R that induces, by conjugation, an embedding

µ : G([0, b]; A, P)� G(R; A, P)

whose image contains B(R; A, P).13 Let G denote the image of µ. The images of
λ � G and ρ � G are both infinite cyclic and consist of translations. The images of
τ` and τr are therefore infinite cyclic, too, and so the previous lemma applies.

Let’s now consider the special case where P is generated by an integer n ≥ 2,
where A = Z[P] = Z[1/n] and b = 1. For a suitably chosen homeomorphism ϑ

the image G of µ consists then of all elements g ∈ G(R;Z[1/n], gp(n)) fulfilling
the conditions

(5-4) σ`(g)= σr (g)= 1 and τ`(g), τr (g) ∈ Z(n− 1);

12If exactly one of im λ and im ρ is abelian, the group does not admit a decreasing automorphism
(by Lemma 5.1) and so Theorem 5.4 yields a nonzero homomorphism fixed by Aut G.

13In special cases, for instance if G is Thompson’s group F, this fact is well known (see, e.g.,
[Belk and Brown 2005, Proposition 3.1.1]); the general claim is established in [Bieri and Strebel
2016] (see Lemma E18.4).
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see [Bieri and Strebel 2016, Lemma E18.4]. This group G is called Fn,∞ in [Brin
and Guzmán 1998, p. 298].

By relaxing conditions (5-4) one obtains supergroups of Fn,∞, in particular the
group called Fn in [op. cit., p. 298] and defined by the requirements

(5-5) σ`(g)= σr (g)= 1 and τ`(g), τr (g) ∈ Z, τr (g)− τ`(g) ∈ Z(n− 1);

see [op. cit., Proposition 2.2.6]. Proposition 5.9 applies to the groups Fn,∞, but
also to the larger groups Fn . Now, the groups Fn and Fn,∞ both admit decreasing
automorphisms, in particular the automorphism induced by the reflection in the
origin. The homomorphisms τ` and τr are therefore not fixed by the full auto-
morphism group of the groups Fn,∞ and Fn , but the difference τr − τ` is a nonzero
homomorphism, with infinite cyclic image, that enjoys this property.

6. Characters fixed by Aut G with G a subgroup of PLo([0, b])

In this section we prove Theorem 1.7. For the convenience of the reader we restate
this result here.

Theorem 6.1. Suppose I = [0, b] is a compact interval of positive length and G is
subgroup of PLo(I ) that satisfies the following conditions:

(i) no interior point of the interval I = [0, b] is fixed by G;

(ii) the characters χ` and χr are both nonzero;

(iii) the quotient group G/(kerχ` · kerχr ) is a torsion group; and

(iv) at least one of the group of units U(imχ
`) or U(imχr ) is reduced to {1,−1}.

Then there exists a nonzero homomorphism ψ : G → R×>0 that is fixed by every
automorphism of G. The group G therefore has property R∞.

Next we explain the layout of Section 6. We begin by recalling the definition of
the invariant 61 and stating some basic results concerning it. In Section 6C, we
prove Theorem 6.1. The hypotheses of the theorem allow of variations that deserve
some comments. This topic is taken care of in sections 6D through 6F.

6A. Review of 61. Given an infinite group G, consider the real vector space
Hom(G,R) made up of all homomorphisms χ : G→ Radd into the additive group
of R. These homomorphisms will be referred to as characters. Two nonzero
characters χ1 and χ2 are called equivalent, if one is a positive real multiple of the
other. Geometrically speaking, the associated equivalence classes are (open) rays
emanating from the origin. The space of all rays is denoted by S(G) and called
the character sphere of G. In case the abelianization Gab = G/[G,G] of G is
finitely generated, the vector space Hom(G,R) is finite dimensional and carries a
unique topology, induced by its norms; the sphere S(G) equipped with the quotient
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topology is then homeomorphic to the spheres in a Euclidean vector space of
dimension dimQ H1(G,Q)= dimQ(Gab⊗Q).

The invariant 61(G) is a subset of S(G). It admits several equivalent definitions;
in the sequel, we use the definition in terms of Cayley graphs.14 Fix a generating
set X of G and define 0 = 0(G,X ) to be the associated Cayley graph of G. This
graph can be equipped with G-actions; as we want to work with left G-actions we
define the set of positive edges of the Cayley graph like this:

E+(0)= {(g, g · x) ∈ G×G | (g, x) ∈ G×X }.

We move on to the definition of 61(G). Given a nonzero character χ, consider
the submonoid Gχ = {g ∈ G | χ(g) ≥ 0} of G and define 0χ = 0(G,X )χ to be
the full subgraph of 0(G;X ) with vertex set Gχ . Both the submonoid Gχ and
the subgraph 0χ remain the same if χ is replaced by a positive multiple; so these
objects depend only on the ray [χ] = R>0 ·χ represented by χ. The Cayley graph
0 is connected, but its subgraph 0χ may not be so; the invariant 61(G) records the
rays for which the subgraph 0χ = 0(G,X )χ is connected. In symbols,

(6-1) 61(G,X )= {[χ] ∈ S(G) | 0(G,X )χ is connected}.

One now faces the problem, familiar from homological algebra, that the definition
of 61(G,X ) involves an arbitrary choice and that one wants to construct an object
that does not depend on this choice.

Suppose, first, that G is finitely generated and let X f be a finite generating
set. Then the subgraph 0(G,X f )χ is connected if and only if all the subgraphs
0(G,X )χ , are connected (see, e.g., [Strebel 2013, Lemma C2.1]) and so the
following definition is licit:

Definition 6.2. Let G be a finitely generated group and X f a finite generating set
of G. Then 61(G) is defined to be the subset

(6-2) {[χ] ∈ S(G) | 0(G,X f )χ is connected}.

The fact that the set (6-2) does not depend on the choice of the finite set X f ,
allows one to select X f in accordance with the problem at hand; see [Strebel 2013,
Sections A2.3a and A2.3b] for some consequences of this fact.

Now suppose that G is an arbitrary group. A useful subset of S(G) can then be
obtained by defining

(6-3) 61(G)= {[χ] ∈ S(G) | 0(G,X )χ is connected for every generating set X };

see [Strebel 2013, Definition C2.2]. If G happens to be finitely generated, the sets
(6-2) and (6-3) are equal; for an arbitrary group, the set 61(G) coincides with the

14See, e.g., [Strebel 2013, Chapter C] for alternate definitions.
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invariant 6(G) defined by Ken Brown in [Brown 1987b, p. 489] up to a sign; in
other words,

(6-4) 6(G)=−61(G).

The sign in this formula is caused by the fact that Brown uses right actions on
R-trees, whereas left actions are employed in our definition of 61.

The subset 61(G) of S(G) is traditionally called the 61-invariant. The epithet
“invariant” is justified by a fact that we explain next. Suppose α : G −→∼ G is an
isomorphism of groups. Then α induces, first of all, a linear isomorphism of vector
spaces Hom(α,R) :Hom(G,R)−→∼ Hom(G,R), and so an isomorphism of spheres

(6-5) α∗ : S(G)−→∼ S(G), [χ] 7→ [χ ◦α].

This second isomorphism maps the subset 61(G) ⊆ S(G) onto 61(G) ⊆ S(G).
[Strebel 2013, Section B1.2a] has more details.

Later, the case where α is automorphism will be crucial. The assignment

(6-6) 61(G)−→∼ 61(G), α 7→ (α−1)∗,

defines a homomorphism from the automorphism group of G into the group of
bijections of 61(G), and hence also one into that of its complement 61(G)c.

Remarks 6.3. (a) Historically speaking, the invariant 61 is a descendent of the
invariant 6A(G), introduced by R. Bieri and R. Strebel [1980]. Here the group G is
abelian, A is a finitely generated ZG-module, and 6A(G) is a subset of the sphere
S(G) depending both on A and on G. The motivation for introducing this invariant
stems from a question posed by G. Baumslag [1974], namely: Is there any way of
discerning finitely presented metabelian groups from the other finitely generated
metabelian groups?

(b) The invariant 61 is a member of a sequence of invariants 6m introduced
by B. Renz in his thesis [1988]. The definition of these higher 6-invariants is
considerably more involved than that of 61 and so we shall not give it here; we
refer the interested reader to Section 8 of K.-U. Bux’s paper [2004] for a survey of
various equivalent definitions given in the literature. Suffice it to say here that these
invariants form a descending chain

61(G)⊇62(G)⊇ · · · ⊇6m(G)⊇ · · ·

of open subsets in S(G), and that, so far, there are very few groups whose higher
6-invariants are completely known. In the case of PL-homeomorphism groups, the
most general result known today is due to M. Zaremsky [2016]; it deals with the
sequence of groups G([0, 1];Z[1/n], gp(n)), with n ≥ 2 an integer.
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6B. 61 of subgroups of PLo([0, b]). Given a subgroup G of PLo([0, b]), let σ` be
the homomorphism that assigns to a function g ∈G the value of its (right) derivative
in the left end point 0; similarly, define σr :G→R×>0 to be the homomorphism given
by the formula σr (g) = limt→b g′(t). The homomorphisms σ` and σr generalize
the maps with the same names studied in Section 3. By composing them with the
natural logarithm function, one obtains characters of G, namely

(6-7) χ
` = ln ◦ σ` and χr = ln ◦ σr .

The invariant 61(G)c turns out to consist of precisely two points, represented by
the characters χ` and χr , provided G satisfies certain restrictions. The first of them
rules out that G is a direct product of subgroups G1, G2 with supports in two disjoint
open subintervals I1, I2, and more general decompositions; the second requires that
χ
`, χr be nonzero and hence represent points of S(G); the third condition is natural

in the sense that it holds for all groups of the form G([0; b]; A, P) investigated in
Section 3.

Theorem 6.4. Let I be a compact interval of positive length and G a subgroup of
PLo(I ). Assume the following requirements are satisfied:

(i) no interior point of I is fixed by G;

(ii) the characters χ` and χr are both nonzero; and

(iii) the quotient group G/(kerχ` · kerχ) is a torsion group.

Then 61(G)c = {[χ`], [χr ]}.

Remarks 6.5. (a) Theorem 6.4 generalizes [Bieri et al. 1987, Theorem 8.1]; in
that work, G is assumed to be finitely generated and condition (iii) is sharpened to
G = kerχ` · kerχr . The theorem improves also on a result stated in [Brown 1987b,
Remark on p. 502]. A proof of Theorem 6.4, based on the Cayley graph definition
of 61(G), can be found in [Strebel 2015, Theorem 1.1].

(b) We continue with a comment that seems overdue. In [Bieri et al. 1987] an
invariant 6G ′(G) is introduced for finitely generated groups G; in the sequel, this
invariant will be called 6B N S(G). It is defined in terms of a generation property
that uses right conjugation, while left action is employed in the definition of 61(G).
There is, however, a close connection between the two invariants: if G is finitely
generated, then

(6-8) 6B N S(G)=−61(G),

similar to the what happens for Brown’s invariant 6(G); see (6-4).
Now, PL-homeomorphism groups are examples of groups made up of permuta-

tions, and for such a group G the underlying set can be equipped with two familiar
compositions. Suppose the composition in the group G is the one familiar to
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analysts (and used in this paper); to emphasize this fact call the group temporarily
Gana. The assignment g 7→ g−1 defines then an antiautomorphism of Gana and
hence an isomorphism ι : Gana −→

∼ Ggt onto the group obtained by equipping the
set underlying Gana with the composition defined by f ◦ g : t 7→ f (t) 7→ g( f (t))
and preferred by many group theorists (hence, the subscript “gt”). The invariants of
the groups Gana and Ggt are then related by the formulae

61(Gana)=−6
1(Ggt) and 6B N S(Gana)=−6

B N S(Ggt).

The analogous formula holds for the invariant 6 studied in [Brown 1987b].
The two parts of the comment, taken together, lead to the following formulae for

groups made up of bijections:

Ggt arbitrary H⇒ 6(Ggt)=6
1(Gana),(6-9)

Ggt is finitely generated H⇒ 6B N S(Ggt)=6
1(Gana).(6-10)

6C. Proof of Theorem 6.1. Let I = [0, b] be an interval of positive length and G a
subgroup of PLo(I ) that satisfies hypotheses (i) through (iv) stated in Theorem 6.1.
Hypotheses (i), (ii), and (iii) allow one to invoke Theorem 6.4 and so

61(G)c = {[χ`], [χr ]}.

In view of the remarks made at the end of Section 6A, every automorphism α of
G will therefore permute the set {[χ`], [χr ]}. Two cases now arise, depending on
whether or not the automorphism group of G acts by the identity on 61(G)c.

Suppose first that Aut G acts trivially on 61(G)c. By hypothesis (iv), one of the
characters χ` and χr , say χ`, has an image B with U(B)= {1,−1}. We assert that
χ
` is fixed by Aut G. Consider an automorphism α of G. It fixes the ray R>0 ·χ`

and so χ` ◦α = s ·χ` for some positive real s. The relation χ` ◦α = s ·χ` implies
next that

imχ
` = im(χ` ◦α)= s · imχ

`.

So s is a positive element of U(imχ
`)= {1,−1} and thus s = 1.

So far we have assumed that U(χ`) equals {1,−1}; if U(imχr ) is so, one proves
in the same way that χr is fixed by Aut G. The homomorphism ψ : G→ R×>0 can
thus be chosen to be σ` if U(imχ

`)= {1,−1} and to be σr if U(imχr )= {1,−1}.
Assume now that Aut G interchanges the points [χ`] and [χr ]. Pick an auto-

morphism, say α−, that interchanges these points (and hence is decreasing) and
denote, as in Remark 2.4(b), by Aut+ G the subgroup of Aut G made up of the
increasing automorphisms. Then χr ◦ α− = s ·χ` for some positive real s and so
imχr = s · imχ

`. This relation implies that U(imχ
`)=U(imχr )= {1,−1}.

We claim that the homomorphism

ψ = σ` · (σ` ◦α−)= σ` · (s · σr )
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is fixed by Aut G. Two cases arise. If α ∈ Aut+G then σ` is fixed by α in view of
the first part of the proof. Moreover, α′ = α− ◦ α ◦ (α−)−1

∈ Aut+G and so the
calculation

ψ ◦α = (σ` ◦α) · (σ` ◦α−) ◦α = σ` · (σ` ◦α
′) ◦α− = σ` · (σ` ◦α−)= ψ

holds. If α = α− then α2
−
∈ Aut+G and so ψ ◦α− = (σ` ◦α−) · (σ` ◦ σ 2

−
)= ψ . It

follows that ψ is fixed by Aut+G ∪ {α−} and hence by Aut G.

6D. Discussion of the hypotheses of Theorem 6.1. This section and the next two
contain various remarks on the hypotheses of Theorem 6.1.

6D1. Irreducibility. Let G be a subgroup of PLo([0, b]). The union of the supports
of the elements of G is then an open subset of I = [0, b], and hence a union of
disjoint intervals Jk for k running over some index set K. For each k ∈ K the
assignment g 7→ g � Jk defines an epimorphism πk onto a quotient group Gk

so G itself is isomorphic to a subgroup of the cartesian product
∏
{Gk | k ∈ K };

more precisely, G is a subdirect product of the quotient groups Gk . Hypothesis (i)
requires that K be a singleton, and so the group G does not admit such obvious
decompositions. This fact prompted the authors of [Bieri et al. 1987] to call a
group G irreducible if card(K )= 1.

If the group G is not irreducible it may be a direct product G1 × G2 with
each factor Gk an irreducible subgroup of PLo(Ik) where Ik is the closure of Jk .
Then 61(G)c can contain more than 2 points (for more details, see [Strebel 2015,
Section 4.1]).

6D2. Nontriviality of the characters χ` and χr . In Theorem 6.1 the characters χ`
and χr are assumed to be nonzero. They represent therefore points of S(G); the
remaining hypotheses and Theorem 6.4 then guarantee that 61(G)c = {[χ`], [χr ]}

and so every automorphism of G must permute the points [χ`] and [χr ].
There exists a variant of Theorem 6.1 in which only one of the characters, say χ`,

is nonzero, the remaining hypotheses being as before. Then 61(G)c = {[χ`]} (see
[Strebel 2015, Theorem 1.1]) and so the argument in the first part of the proof of
Theorem 6.1 applies and shows that ψ = χ` is fixed by every automorphism of G.

Note that hypothesis (iii) holds automatically if χ` or χr vanishes.

6D3. Almost independence of χ` and χr . Among the assumptions of [Bieri et al.
1987, Theorem 8.1], a sharper form of hypothesis (iii) is assumed, namely that G =
kerχ` ·kerχr ; in addition, G is assumed to be finitely generated. The authors of that
reference refer to this stronger condition by saying that “χ` and χr are independent”.
In what follows, we exhibit various versions of this stronger requirement and explain
then the reason that led the authors to adopt the mentioned language.

We start out with a general result.
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Lemma 6.6. Let ψ1 : G � H1 and ψ2 : G � H2 be epimorphisms of groups. Then
the following statements are equivalent:

(i) H1 = ψ1(kerψ2),

(ii) H2 = ψ2(kerψ1),

(iii) G = kerψ1 · kerψ2,

(iv) (ψ1, ψ2) : G→ H1× H2 is surjective.

Proof. Note first that the product kerψ1 · kerψ2 is a normal subgroup of G. Next,
note that ψ1 maps G onto H1 and kerψ1 · kerψ2 onto ψ1(kerψ2) and induces thus
an isomorphism

(6-11) (ψ1)∗ : G/(kerψ1 · kerψ2)−→
∼ H1/ψ1(kerψ2).

It follows, in particular, that statements (i) and (iii) are equivalent. By exchanging
the rôles of the indices 1 and 2, one sees that statements (ii) and (iii) are equivalent.

Assume now that statements (i) and (ii) hold and consider (h1, h2) ∈ H1× H2.
Sinceψ1 is surjective, h1 has a preimage g1∈G; as statement (i) holds, this preimage
can actually be chosen in kerψ2. If this is done, one sees that (ψ1, ψ2)(g1)= (h1, 1).
One finds similarly that there exists g2 ∈ kerψ1 with (ψ1, ψ2)(g2)= (1, h2). The
product g1 · g2 is therefore a preimage of (h1, h2) under (ψ1, ψ2).

The preceding argument proves that the conjunction of (i) and (ii) implies
statement (iv). Assume, finally, that (iv) holds. Given h1 ∈ H1, there exists then
g1 ∈ G with (ψ1, ψ2)(g1)= (h1, 1); so g1 is a preimage of h1 lying in kerψ2. The
implication (iv)⇒ (i) is thus valid, and so the proof is complete. �

Remark 6.7. Lemma 6.6 allows one to understand why the phrase “χ` and χr

are independent” is used in [Bieri et al. 1987] to express the requirement that
G = kerχ` · kerχr , the group G being a finitely generated, irreducible subgroup of
PLo([0, b]). Let ψ1 denote the epimorphism G � imχ

` obtained by restricting the
domain of χ` :G→R to imχ

`, and let ψ2 be defined analogously. If statement (iii)
holds, then the implication (iii) ⇒ (iv) of Lemma 6.6 shows that the image of
(χ`, χr ) : G → Radd × Radd is imχ

` × imχr . This fact amounts to saying that
the values of the characters χ` and χr can be prescribed independently (within
imχ

`× imχr ), in contrast to what happens, for instance, if the characters satisfy a
relation like χ2 =−χ1.15

By analyzing the proof of Theorem 8.1 in [op. cit.] one finds that it suffices
to require that the normal subgroup kerχ` · kerχr has finite index in the finitely
generated group G; a condition that we shall paraphrase by saying that χ` and χr are
almost independent. Theorem 6.4 extends this result to possibly infinitely generated
groups G; the new form of hypothesis (iii) will likewise be referred to by saying

15Example 3.13 considers more general relations.
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that χ` and χr are almost independent. This form of almost independence is used
in the proof Theorem 6.4 to find commuting elements of a certain type; see, e.g.,
[Strebel 2015, Section 3.3]. It remains unclear what 61(G)c looks like if χ` and χr

are not almost independent.16

6E. Group of units. In Section 1E, the group of units U(B) of a subgroup B of
Radd is introduced. This notion allows one to state a very simple condition that
implies, in conjunction with the hypotheses of Theorem 6.4, that Aut G fixes the
character χ` if it fixes the ray [χ`] = R ·χ`.

In this section, we discuss the group of units of some concrete examples of
subgroups B of Radd, then study two types of subgroups B of Radd where methods
taken from the theory of transcendental numbers allow one to establish that B has
only trivial units.

6E1. Elementary examples. We begin with an observation: a subgroup B and a
nonzero real multiple s · B of B have the same group of units. If B is not reduced
to 0, we may therefore assume that 1 ∈ B.

(a) If B is infinite cyclic, it is a positive multiple of Z. Clearly U(Z)= {1,−1}.

(b) If B is free abelian of rank 2, we may assume that it is generated by 1 and an
irrational number ϑ ; so B = Z · 1⊕ Z · ϑ. If u is a unit of B then u = u · 1 ∈ B,
say u = a + b · ϑ with (a, b) ∈ Z2. The condition u · B ⊆ B implies next that
u · ϑ = a · ϑ + b · ϑ2 lies in B. If b 6= 0, the real ϑ is thus a quadratic algebraic
number; if b = 0, the condition that u · B = B forces a to 1 or −1. It follows that
U(B)= {1,−1} if ϑ is an irrational, but not a quadratic algebraic number.

(c) Let B be the additive group of a subring R of R, for instance the additive group
of the ring Z[P] generated by a subgroup P of R×>0 or of a ring of algebraic integers.
Then U(B) is nothing but the group of units U(R) of R; if R is a ring of the form
Z[P] its group of units contains, of course, P ∪−P, but it may be considerably
larger; moreover, rings of algebraic integers have also often units of infinite order.
Note, however, that not every subring R 6= Z of R has nontrivial units, an example
being the polynomial ring Z[s] generated by a transcendental number s.

6E2. Transcendental subgroups. Many of the familiar examples of subgroups of
PLo([0, b]) consist of PL-homeomorphisms with rational slopes; this is true for
Thompson’s group F, but also for its generalizations Gm=G([0,1];Z[1/m],gp(m))
with m ≥ 3 an integer and for many of the groups studied by Stein [1992].

The values of the characters χ` are then natural logarithms of rational numbers,
so either transcendental numbers or 0 (see, e.g., [Niven 1956, Theorem 9.11c]).
We are thus led to study the unit groups U(B) of subgroups B ⊂ R that contain

16Sections 4.2 and 4.3 in [Strebel 2015] have some preliminary results.
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transcendental numbers; in view of the fact that U(B)=U(s · B) for every s 6= 0,
it is not so much the nature of the elements of B that is important, but the nature of
the quotients b1/b2 of nonzero elements in B. The following definition singles out
a class of subgroups B that turn out to be significant.

Definition 6.8. (a) Let B 6= {0} be a subgroup of the additive group Radd of the
reals. We say B is transcendental if, for each ordered pair (b1, b2) of nonzero
elements in B, the quotient b1/b2 is either rational or transcendental.

(b) We call a nonzero character χ : G→ R transcendental if its image in Radd is
transcendental.

The next result explains why transcendental subgroups are welcome in our study.

Proposition 6.9. If B is a nontrivial, finitely generated, transcendental subgroup
of Radd, then U(B)= {1,−1}.

Proof. Suppose u is a unit of B. Then u · B = B. Pick b ∈ B r 0; this is possible
since B is not reduced to 0. The assignment 1 7→ b extends to a homomorphism
Z[u]→ B of Z[u]-modules; it is injective since R has no zero-divisors. The fact that
B is finitely generated implies next that the additive group of the integral domain
Z[u] is finitely generated and so u is an algebraic integer; as B is transcendental by
assumption, u must therefore be an algebraic integer and also a rational number,
hence an integer. Finally, u−1 satisfies also the relation u−1

· B = B, and so u−1 is
an integer, too. �

We continue with a combination of Theorem 6.1 and Proposition 6.9.

Corollary 6.10. Suppose I = [0, b] is a compact interval of positive length and G
is subgroup of PLo(I ) that satisfies the following conditions:

(i) no interior point of the interval I = [0, b] is fixed by G;

(ii) the characters χ` and χr are both nonzero;

(iii) the quotient group G/(kerχ` · kerχr ) is a torsion group G; and

(iv) the image of σ` or that of σr is finitely generated and transcendental.

Then there exists a nonzero homomorphism ψ : G → R×>0 that is fixed by every
automorphism of G.

6E3. Examples of transcendental subgroups of Radd. In order to make use of
Proposition 6.9, one needs a supply of transcendental subgroups of R. The simplest
ones are the cyclic subgroups; noncyclic subgroups are harder to come by.

Example 6.12 below describes a first collection of transcendental subgroups. It
is based on the following theorem, established independently by A. O. Gelfond
in 1934 and by T. Schneider in 1935:
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Theorem 6.11 (Gelfond–Schneider theorem). If p1 and p2 are nonzero (real or
complex) algebraic numbers and if p2 6= 1, then ln p1/ ln p2 is either a rational or
a transcendental number.

Proof. See, e.g., [Niven 1956, Theorem 10.2]. �

Example 6.12. Let P denote a subgroup of R×>0 generated by a set P of algebraic
numbers and define B = ln P to be its image in Radd under the natural logarithm.
Then every element in P is a positive algebraic number, so the Gelfond–Schneider
theorem implies that every quotient ln p1/ ln p2 of elements in P r {1} is either
rational or transcendental.

In Example 6.12 the set P is allowed to be infinite; for such a choice, the group
B = ln(gp(P)) is not finitely generated and so neither Proposition 6.9 nor its
Corollary 6.10 applies. Now, in Proposition 6.9 the finite generation of B is only
used to infer that a unit u of B — which, by the transcendence of B, is either rational
or transcendental — is also an algebraic integer, and hence a rational integer.

Proposition 6.14 below furnishes examples of infinitely generated, transcendental
groups that have only 1 and −1 as units. Its proof makes use of the following result,
due to C. L. Siegel and rediscovered by S. Lang; see [Lang 1966, Theorem II.1] or
[Lang 1971, Theorem (1.6)]:

Theorem 6.13 (Siegel–Lang theorem). Suppose β1, β2 and z1, z2, z3 are nonzero
complex numbers. If the subsets {β1, β2} and {z1, z2, z3} are both Q-linearly inde-
pendent then at least one of the six numbers

exp(βi · zj ), with (i, j) ∈ {1, 2}× {1, 2, 3},

is transcendental.

Here then is the announced result:

Proposition 6.14. Suppose that P is a set of positive algebraic numbers and set
B = ln gp(P). If B is free abelian of positive rank, then U(B)= {1,−1}.

Proof. Note first that every element of P = gp(P) is a positive algebraic number.
Consider now a unit u of B. Since B has positive rank, it contains a nonzero
element b1 = ln q1. Then u · b ∈ B r {0}; so b2 = u · b1 has the form ln q2 and thus
u is either rational or transcendental (by the Gelfond–Schneider theorem).

Assume first that u is rational, say u =m/n, where m and n are relatively prime
integers. The hypothesis (m/n) · B = B implies then that m B = nB. As B is free
abelian of positive rank this equality can only hold if |m| = |n| = 1. So u ∈ {1,−1}.

Assume now that u is transcendental. Fix p ∈ P r {1}. Then u · ln p ∈ B = ln P ;
so there exists q ∈ P with ln q = u · ln p; put differently, exp(u · ln p) lies in P and
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is thus an algebraic number. As the powers of u are again units of B it follows that
exp(u` · ln p) ∈ P for every ` ∈ N. Set

β1 = ln p, β2 = u · ln p, and zj = u j for j = 1, 2, 3.

Then the sets {β1, β2} and {z1, z2, z3} fulfill the hypotheses of Theorem 6.13; its
conclusion, however, is contradicted by the previous calculation. This state of
affairs shows that the unit u cannot be transcendental. �

Example 6.15. Let P be a nonempty set of (rational) prime numbers and let P
denote the subgroup of Q×>0 generated by P. Then P is free abelian with basis P
(by the unique factorization in N×>0) and so U(ln P)= {1,−1}.

More generally, every nontrivial subgroup P of Q×>0 is a free abelian group and
hence B = ln P has only the units 1 and −1.

6E4. Some properties of transcendental subgroups and transcendental characters.
The transcendence of a character is a property that has not yet been discussed in the
literature on the invariant 61. In this section, we therefore assemble a few useful
properties of this notion.

Assume B ⊂ Radd is a transcendental subgroup. Then:

(a) every nontrivial subgroup B ′ ⊆ B is transcendental (immediate from the
definition);

(b) if χ :G→R is a character whose image is a nontrivial subgroup of B then χ is
transcendental (by (a)), and so are all the compositions χ ◦π with π : G̃ � G
an epimorphism of groups (immediate from the first part);

(c) if χ, χ′ are characters of G with images equal to B, the image of χ + χ′ is
contained in B, and so the character χ+χ′ is transcendental, unless it is 0;

(d) if χ is transcendental and α1, . . . , αm are automorphisms of G the character

η = χ ◦α1+ · · ·+χ ◦αm

is transcendental, unless it is zero.

A further property is discussed in part (iv) of Proposition 6.16 below.

6F. Passage to subgroups of finite index. The next proposition shows that the
hypotheses stated in Corollary 6.10 are inherited by subgroups of finite index.

Proposition 6.16. Let G be a subgroup of PLo([0, b]) and H ⊆ G a subgroup of
finite index. Denote the restrictions of χ` and χr to H by χ′` and χ′r . Then the
following statements are valid:

(i) G is irreducible if and only if H is irreducible;

(ii) χ` is nonzero precisely if χ′` is nonzero, and similarly for χr and χ′r ;
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(iii) the characters χ` and χr are almost independent if and only if χ′` and χ′r are
almost independent;

(iv) χ` is transcendental exactly if χ′` is transcendental, and similarly for χr and χ′r .

Proof. Claim (i) holds since the support of a PL-homeomorphism f coincides with
that of its positive powers f m. Assertion (ii) is valid since the image of a character
is a subgroup of Radd and hence torsion-free. The fact that the quotient b1/b2 of
nonzero real numbers coincides, for every positive integer m, with the quotient
(mb1)/(mb2) allows one to see that a nonzero character χ of G is transcendental if
its restriction to H is so; the converse is covered by property (a) stated in Section 6E4.
We are left with establishing statement (iii).

To achieve this goal, we compare the quotient groups G/(kerχ` · kerχr ) and
H/(kerχ′` ·kerχ′r ). By (6-11), the first of them is isomorphic to the quotient group
A1 = imχ

`/χ`(kerχr ); the second one is isomorphic to A2 = imχ′
`/χ
′

`(kerχ′r ).
Clearly, A2 = imχ′

`/χ`(kerχ′r ). The groups A1 and A2 fit into the short exact
sequences

A2 = imχ′
`/χ`(kerχ′r ) ↪→ A = imχ

`/χ`(kerχ′r )� imχ
`/ imχ′

`,(6-12)

χ
`(kerχr )/χ`(kerχ′r )

↪→ A = imχ
`/χ`(kerχ′r )� A1 = imχ

`/χ`(kerχr ).

(6-13)

The claim now follows from the fact that imχ
`/ imχ′

` and χ`(kerχr )/χ`(kerχ′r )
are finite groups with orders that divide the index of H in G. �

A first application of Proposition 6.16 is the following corollary:

Corollary 6.17. Let G be a finitely generated, irreducible subgroup of PLo(I ). If
the characters χ` and χr are almost independent and one of them is transcendental,
then any group 0 commensurable17 with G has property R∞.

Proof. Let H0 ⊂ G be a finite index subgroup of G that is isomorphic to a finite
index subgroup 00 of 0. There exists then a finite index subgroup 01 of 00 that is
characteristic in 0; see, e.g., [Lyndon and Schupp 1977, Theorem IV.4.7]. Let H1 be
the subgroup of H0 that corresponds to01 under an isomorphism H0−→

∼ 00. Then H1

has finite index in G and thus Proposition 6.16 allows us to infer that H1 inherits the
properties enunciated for G in the statement of Corollary 6.10. This corollary applies
therefore to H1 and shows that H1 admits a nonzero homomorphism ψ1 : H1→R×>0
that is fixed by Aut H1. So H1, and hence 01, satisfy property R∞. Use now the
fact that 01 is a characteristic subgroup of 0 and apply [Mubeena and Sankaran
2014a, Lemma 2.2(ii)] to infer that 0 satisfies property R∞. �

17Two groups G1 and G2 are called commensurable if they contain subgroups H1 and H2 that are
isomorphic and of finite indices in G1 and in G2, respectively.
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Remark 6.18. If the group G1 has property R∞, then a group G2 commensurable
to G1 need not have this property, as is shown by the fundamental group G1 of the
Klein bottle and the fundamental group G2 of a torus: the group G1 has property
R∞ by [Gonçalves and Wong 2009, Theorem 2.2]), while the automorphism −1 of
G2 = Z2 has Reidemeister number 4.

7. Miscellaneous examples

In this section we illustrate by various examples the notions of irreducible subgroup,
almost independence of χ` and χr , and the group of units.

7A. Irreducible subgroups. Let b be a positive real number and G a subgroup of
PLo([0, b]). Recall that G is called irreducible if no interior point of I = [0, b] is
fixed by all of G (see Section 6D1 for the motivation that led to this name).

The group is irreducible if and only if the supports of the elements of G cover the
interior int(I ) of I or, equivalently, if the supports of the elements in a generating
set X of G cover int(I ); these claims are easily verified. If G is cyclic, generated
by f , say, it is therefore irreducible if f fixes no point in int(I ) or, equivalently, if
f ε(t) < t for t ∈ int(I ) and some sign ε. Such a function is often called a bump.

Example 7.1. Here is a very simple kind of PL-homeomorphism bump. Given a
positive slope s 6= 1, set

(7-1) fs(t)=


1
s
· t, if 0≤ t ≤ s

s+1
· b,

s
(
t − s ·b

s+1

)
+

b
s+1

, if s
s+1
· b < t ≤ b.

Then fs is continuous at s/(s+ 1) · b; since fs(0)= 0 and fs(b)= b, the function
fs lies in PLo([0, b]). Let Gs denote the group generated by fs and let α be the
automorphism that sends fs to its inverse f −1

s . Then

(χ` ◦α)( fs)= χ`( f −1
s )=−χ`( fs);

similarly (χr ◦α)( fs)=−χr ( fs), whence

(7-2) χ
` ◦α =−χ` and χr ◦α =−χr .

So neither χ` nor χr is fixed by Aut(Gs). However, Theorem 6.4 cannot be applied,
as requirement (iii) is violated; indeed, kerχ`= kerχr ={1}, so Gs/(kerχ` ·kerχr )

is infinite cyclic. The conclusion of Theorem 6.4 is likewise false, for 61(G)c =∅
(this follows, e.g., from [Strebel 2013, Example A2.5a]). Property R∞, finally, does
not hold, either; for the Reidemeister number of the automorphism α is 2, as a
simple calculation shows.

The groups in the previous example are cyclic; more challenging groups are
considered in the following example:
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Example 7.2. Let d > 1 be an integer and s1, . . . , sd pairwise distinct, positive real
numbers not equal to 1. For each index i ∈ {1, . . . , d}, define fi by (7-1) with s= si ,
and set

G = G{s1,...,sd} = gp( f1, . . . , fd).

The group G inherits two properties from the group Gs in the previous example: it is
irreducible (obvious), and the assignment fi 7→ f −1

i extends to an automorphism α;
indeed, the special form of the elements fi implies that conjugation by the reflection
in the midpoint of I = [0, b] sends fi to its inverse. It follows, as before, that the
relations (7-2) are valid; so neither χ` nor χr is fixed by Aut G.

Now to another property of the automorphism α. The calculation

(7-3) (χ` ◦α)( fi )= χ`( f −1
i )=−χ`( fi )= χr ( fi )

is valid for every index i . It shows that α exchanges χ` and χr . It follows, in
particular, that kerχ` = kerχr and so the quotient

G/(kerχ` · kerχr )= G/ kerχ` −→∼ imχ
` = gp(ln s1, . . . , ln sd)

is a nontrivial free abelian group of rank at most d . Requirement (iii) in Theorem 6.4
is thus violated and so we cannot use that result to determine 61(G)c. Actually,
only the following meager facts are known about 61(G)c: both χ` and χr =−χ`
represent points of 61(G)c [Strebel 2015, Proposition 2.5]; moreover, the existence
and form of the automorphism α and formula (6-6) imply that 61(G)c is invariant
under the antipodal map [χ] 7→ [−χ].

Computation (7-3) shows that χ` ◦α =−χ`. This conclusion holds, actually, for
every character χ : G→ R and proves that no nonzero character of G is fixed by α.

7B. Independence of χ` and χr . As before, let G be a subgroup of PLo([0, b])
with b a positive real number. Recall that the characters χ` and χr are called
independent if G = kerχ` · kerχr ; see Section 6D1. It follows that χ` and χr are
independent if and only if G admits a generating set X = X` ∪Xr in which the
elements of X` have slope 1 near b and those of Xr have slope 1 near 0.

It is thus very easy to manufacture groups for which χ` and χr are independent.
In the next example, some very particular specimens are constructed.

Example 7.3. Choose a real number b1 ∈ ]b/2, b[. Given a tuple of positive real
numbers s1, . . . , sd` that are pairwise distinct and not equal to 1, let fi be the bump
defined by (7-1) but with s = si and b= b1. Next let s ′1, . . . , s ′dr

be another sequence
of positive reals that are pairwise distinct and different from 1. Use them to define
bump functions gj with supports in ]b−b1, b[ like this: let hj be the function given
by (7-1) but with s = s ′j and b = b1, and define then gj to be hj conjugated by the
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translation with amplitude b− b1. Finally set

(7-4) G = G{s1,...,sd`,s
′

1,...s
′

dr
;b1} = gp( f1, . . . , fd`, g1, . . . , gdr ).

From now on, we assume that d` and dr are both positive. Then G is irreducible
(since b1 > b− b1), the characters χ`, χr are nonzero and independent, and thus
Theorem 6.4 allows us to conclude that 61(G)c = {[χ`], [χr ]}.

The character χ` is transcendental if all the positive reals s1, . . . , sd` are algebraic
(see Example 6.12). Then G admits a nonzero homomorphism ψ : G→ R×>0 that
is fixed by Aut G (see Theorem 6.1). If G does not admit an automorphism α

with χ` ◦ α ∈ [χr ] the homomorphism ψ can be chosen to be σ` (see the second
paragraph of Section 6C). The stated condition holds, in particular, if there does
not exists a number s with imχr = s · imχ

`. Similar remarks apply to χr .

7B1. Independence versus almost independence. The characters χ` and χr are
called almost independent if G/(kerχ` ·kerχr ) is a torsion group (see Remark 6.7).
Statement (iii) of Proposition 6.16 shows that almost independence of χ` and χr

is inherited by the restricted characters χ′` = χ` � H and χ′r = χr � H whenever
H ⊆ G is a subgroup of finite index. The next result characterizes those ordered
pairs (G, H), with χ`, χr independent whose restrictions χ′` and χ′r are again
independent.

Lemma 7.4. Let G be a subgroup of PLo([0, b]) for which χ` and χr are indepen-
dent and let H ⊂ G be a subgroup of finite index. Then the restrictions χ′` and χ′r
of these characters are independent if and only if the homomorphism

(7-5) ζ : χ`(kerχr )/χ`(kerχ′r )−→ imχ
`/ imχ′

`,

induced by the inclusions, is injective.

Proof. The justification will be an assemblage of facts extracted from the proof of
Lemma 6.6 and from that of Proposition 6.16. Firstly, χ` and χr are independent
if and only if the abelian group A1 = imχ

`/χ`(kerχr ) is 0. Similarly, χ′` and χ′r
are independent precisely if A2 = imχ′

`/χ`(kerχ′r ) is the zero group. The groups
A1 and A2 occur among the groups in the short exact sequences (6-12) and (6-13).
Since A1 = 0, these exact sequences lead to the short exact sequence

imχ′
`/χ`(kerχ′r ) ↪→ χ

`(kerχr )/χ`(kerχ′r )= imχ
`/χ`(kerχ′r )� imχ

`/ imχ′
`,

It shows that A2 = imχ′
`/χ`(kerχ′r ) is the kernel of the homomorphism ζ . �

It is now easy to construct independent characters χ` and χr of G whose restric-
tions to a subgroup of finite index are no longer independent.

Example 7.5. Let G be a subgroup of PLo([0, b]) and H a subgroup of finite index.
Assume the characters χ` and χr are independent. According to Lemma 7.4 the
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restricted characters χ′` and χ′r of H are independent if and only if the obvious
homomorphism

ζ : χ`(kerχr )/χ`(kerχ′r )−→ imχ
`/ imχ′

`

is injective. The characters χ′` and χ′r of H will therefore not be independent
whenever

(7-6) imχ′
` = imχ

` but χ
`(kerχr ∩ H)( χ`(kerχr ).

Now to some explicit examples. We begin with quotients of the groups we shall
ultimately be interested in. Set G = Z2, let p ≥ 2 be an integer and set

H = Z(p, 0)+Z(1, 1).

Then H has index p in G.
Next, let χ1, χ2 denote the canonical projections of Z2 onto its factors. Then

χ1(G)=Z=χ1(H), kerχ2=Z(1, 0), and kerχ2∩H =Z(1, 0)∩H =Z(p, 0),

and thus
χ1(kerχ2 ∩ H)= Z · p ( χ1(kerχ2)= Z.

The auxiliary groups G and H therefore satisfy the relations (7-6).
We are now ready to define the group G; it will be of the kind considered in

Example 7.3 with d` = dr = 1. Fix b > 0 and b1 ∈ ]b/2, b[ and choose positive
numbers s1, s ′1, both different from 1. Define f1 and g1 as in Example 7.3 and set

G = gp( f1, g1).

Then G is an irreducible subgroup of PL0([0, b]) and the characters χ` and χr of
G are independent. Moreover, Gab is free abelian of rank 2, freely generated by
the canonical images of f1 and g1. Set H = gp( f p

1 , f1 ◦ g1, [G,G]). The above
calculations then imply that

χ
`(G)=Z·ln s1=χ`(H) and χ

`(kerχr∩H)=Z·p·ln s1(χ`(kerχr )=Z ln s1.

7C. Eigenlines. Let G be an irreducible subgroup of PLo([0, b]). If the characters
χ
` and χr are nonzero and almost independent, then 61(G)c consist of the two

points [χ`] and [χr ] (by Theorem 6.4). Every automorphism α of G either fixes or
exchanges them. Suppose we are in the first case. Then χr ◦ α = s ·χr for some
positive real s, and so R ·χr is an eigenline, with eigenvalue s, in the vector space
Hom(G,R) acted on by α∗. No example with s 6= 1 has been found so far.

If the compact interval [0, b] is replaced by the half-line [0,∞[, such examples
exist, provided χr is replaced by a suitable analogue τr . In order to construct
examples, we return to the set-up of Section 4. So P is a nontrivial subgroup of
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R×>0 and A is a nontrivial Z[P] submodule of Radd. Define G to be the kernel of the
homomorphism σr :G([0,∞[; A, P)→R×>0; thus G consists of all the elements of
G([0,∞[; A, P) that are translations near +∞. The analysis in Section 4C2 shows
that conjugation by the PL-homeomorphism fp :R−→

∼ R, given by fp(t)= p · t for
t ≥ 0, induces, for every p ∈ P, an automorphism αp of G that satisfies the relation

(7-7) τr ◦αp = p · τr ;

here τr : G → Radd is the character that sends g ∈ G to the amplitude of the
translation that coincides with g near +∞. This character τr shares an important
property with the character χr : the invariant 61(G)c consists of two points, one
represented by χ`, the other by τr ; see [Strebel 2015, Theorem 1.2].

The image of τr in Radd is a subgroup B of A, namely

B = I P · A =
{∑

(p− 1) · a
∣∣ p ∈ P and a ∈ A

}
(see assertion (iii) of [Bieri and Strebel 2016, CorollaryeA5.3]). The group of units
U(B) of B contains the group P and so it is not reduced to {1,−1}.

The subgroup B is typically infinitely generated; if so, G is likewise infinitely
generated. Examples of finitely generated groups G = ker σr are harder to find,
and they are so far rare. Suppose the group G([0, b]; A, P) is finitely generated
for some b ∈ A>0. Then G([b, 2b]; A, P) is a finitely generated subgroup of the
group of bounded elements B([0,∞[; A, P). Pick now an element g0 ∈ G that
moves every point of the open interval ]0,∞[ to the right and satisfies the inequality
g0(b) < 2b. Then translates of the interval ]b, 2b[ under the powers of g0 will then
cover ]0,∞[. It follows that the subgroup

N = gp
(
{g j

0 ◦G([b, 2b]; A, P) ◦ g− j
0 | j ∈ Z}

)
coincides with the bounded group B([0,∞[; A, P) (use [Bieri and Strebel 2016,
Lemma E18.9]). So the group B([0,∞[; A, P)o gp(g0) is finitely generated. The
group G, finally, is finitely generated if G/N −→∼ im τr = I P ·A is finitely generated.

To show that finitely generated groups of the form G = ker σr exist we need thus
an example of a group G([0, b]; A, P) where both G([0, b]; A, P) and the abelian
group underlying B = I P · A are finitely generated. The parameters

P = gp
(√

2 + 1
)
, A = Z

[√
2
]
= Z[P], b = 1

lead to such a group; see [Cleary 1995].

7D. Variation on Theorem 6.1. Among the hypotheses of Theorems 6.1 and 6.4
figures the requirement that G acts irreducibly on the interval [0, b]. This require-
ment rules out, in particular, that G is a product G1×G2 with G1 acting irreducibly
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on some interval I1 = [0, b1] and G2 acting irreducibly on an interval I2 = [b2, b]
that is disjoint from I1.

Now suppose we are in this excluded case and that the groups G1, G2 satisfy
the assumptions of Theorem 6.4, suitably interpreted; more explicitly, suppose the
characters χ1,` and χ1,r of G1 are nonzero and almost independent, and similarly for
the characters χ2,` and χ2,r of G2. The question then arises whether G = G1×G2

admits a nonzero homomorphism ψ :G→R×>0 that is fixed by Aut G. We shall see
that this is the case if at least one of the four groups imχ1,`, imχ1,r and imχ2,`,
imχ2,r has a unit group that is reduced to {1,−1}.

The following proposition is a variation on Theorem 3.2 in [Gonçalves and
Kochloukova 2010].

Proposition 7.6. Let G be a group for which61(G)c is a nonempty finite set with m
elements. Assume the rays [χ] ∈ 61(G)c span a subspace of Hom(G,R) having
dimension m over R and that U(imχ1) = {1,−1} for some point [χ1] ∈ 6

1(G)c.
Then G admits a nontrivial homomorphism ψ : G→ R×>0 that is fixed by Aut G.

Proof. The automorphism group Aut G acts on 61(G)c via the assignment

(α, [χ]) 7→ [χ ◦α−1
];

let {[χ1], . . . , [χn]} be the orbit in 61(G)c containing [χ1]. If n = 1, the point [χ1]

is fixed by Aut G; hence χ1 itself is fixed by Aut G in view of the assumption that
U(imχ1)= {1,−1}, and so we can take ψ = exp ◦χ1.

Now suppose that n> 1 and choose, for every i ∈ {1, . . . , n}, an automorphism αi

with [χi ]= [χ1◦αi ]. Let α be an automorphism of G. For every index i ∈{1, . . . , n}
there exists then an index j so that [χi ◦ α

−1
] = [(χ1 ◦ αi ) ◦ α

−1
] is equal to

[χ j ] = |χ1 ◦αj ]. It follows that there exists a positive real number si, j so that

χ1 ◦αi ◦α
−1
= si, j ·χ1 ◦αj .

But if so, β = αi ◦ α
−1
◦ α−1

j is an automorphism with χ1 ◦ β = si, j ·χ1. The
assumption that U(imχ1)= {1,−1} permits one then to deduce that si, j = 1. So
Aut G permutes the set of characters

(7-8) χ1 ◦α1, χ1 ◦α2, . . . , χ1 ◦αn.

Their sum η is therefore fixed by Aut G. It is nonzero since the characters displayed
in (7-8) are linearly independent over R. Set ψ = exp ◦η. �

Corollary 7.7. Let G1 be a subgroup of PL0([0, b1]) and let G2 be a subgroup
of PL0([b2, b]) with 0 < b1 < b2 < b. Assume G1 and G2 are irreducible, the
characters χ1,` and χ1,r of G1 are nonzero and almost independent, and that the
characters χ2,` and χ2,r of G2 have the same properties. If the image of at least
one of the four characters χ1,`, χ1,r and χ2,`, χ2,r has a unit group that is reduced
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to {1,−1} then G = G1 ×G2 admits a nontrivial homomorphism ψ : G→ R×>0
that is fixed by Aut G.

Proof. The hypothesis on G1 and G2 allow us to apply Theorem 6.4 and so

61(G1)
c
= {[χ1,`], [χ1,r ]} and 61(G2)

c
= {[χ2,`], [χ2,r ]}.

The product formula for 61 then implies that 61(G)c consists of the four points
represented by

(7-9) χ1,` ◦π1, χ1,r ◦π1, χ2,` ◦π2, χ1,` ◦π2;

here πi : G � Gi denotes the canonical projection onto the i-th factor Gi (see, e.g.,
[Strebel 2013, Proposition C2.55]). These four characters are R-linearly independent
since all are nonzero, as kerχ1,` 6= kerχ1,r by the almost independence of χ1,`

and χ1,r , as kerχ2,` 6= kerχ2,r by the almost independence of χ2,` and χ2,r , and
since π∗1 (Hom(G1,R)) and π∗2 (Hom(G2,R)) are complementary subspaces of
Hom(G,R). Finally, at least one of the images of the four characters displayed in
(7-9) has an image B with U(B)= {1,−1}. All the assumptions of Proposition 7.6
are thus satisfied, so the contention of the corollary follows from that proposition. �

Remark 7.8. It is not known whether the direct product of groups G1, G2 each of
which has property R∞ has again property R∞. The previous corollary implies that
this will be so if the groups G1 and G2 satisfy the assumptions of the corollary.

8. Complements

By Remark 5.8 there exist continuously many pairwise nonisomorphic, finitely
generated groups of the form G(R; A, P), and by Corollary 5.6 each of these
groups admits a nonzero homomorphism ψ into P. These facts prompt the question
whether there exist similarly large collections of finitely generated subgroups of
PLo(I ) with I a compact interval, say I =[0, 1]. Since only countably many finitely
generated groups of the form G([0, 1]; A, P) have been found so far, we look for
finitely generated groups that satisfy the assumptions of Theorem 6.1.

In Section 8A we exhibit a collection G of 3-generator groups with the desired
properties. Checking that each group in G satisfies the assumptions of Theorem 6.1
is fairly easy; the verification that distinct groups in G are not isomorphic, however,
is more demanding. We shall succeed by exploiting properties of the 61-invariant
of the groups in G in a roundabout manner. In Section 8B we describe then a
collection of 2-generator groups which, despite appearances, turn out to be pairwise
isomorphic. This indicates once more that criteria which allow one to prove that
two given, similarly looking, groups are not isomorphic, are very useful. In the
final section, we give such a criterion.
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8A. A large collection of groups G with characters fixed by Aut G. In this sec-
tion we construct a collection G of pairwise nonisomorphic groups Gs with the
following properties:

(i) each Gs ∈ G is an irreducible subgroup of PLo([0, 1]) generated by 3 elements;

(ii) the characters χ`, χr of Gs are independent and have ranks 1, respectively 2;

(iii) for each Gs ∈ G the character χ` is fixed by Aut Gs ; and

(iv) the cardinality of G is that of the continuum.

8A1. Construction of the groups Gs . The groups Gs are obtained by the recipe
described in Example 7.3. Fix a triple s = (s1, s2 = s ′1, s3 = s ′2) of real numbers
in ]1,∞[. Let fs be the PL-homeomorphism defined by (7-1) with s= s1 and b= 3

4 .
Next, let g be the function obtained by putting s= s2, b= 3

4 and by then conjugating
the function so obtained by translation with amplitude 1

4 . Similarly, let hs be the
function obtained by setting s = s3, b = 3

4 and by conjugating the function so
obtained by the translation t 7→ t + 1

4 . Finally, set

(8-1) Gs = G{s1,s2,s3} = gp( fs, gs, hs)

The definition of Gs shows that it is an irreducible subgroup of PLo([0, 1]) with
nonzero and independent characters χ` and χr . By Theorem 6.4, the complement
of 61(Gs) consists therefore of the two rays [χ`] and [χr ].

Consider now an automorphism α of Gs . It induces an autohomeomorphism α∗

of the sphere S(Gs) that maps the subset 61(Gs)
c onto itself. Suppose α∗ is the

identity on 61(Gs)
c. Since χ` has rank 1 and is thus transcendental, the first two

paragraphs of Section 6C apply and show that α fixes the character χ` and hence
also the homomorphism σ` : G→ R×>0. This homomorphism σ` will therefore be
fixed by all of Aut Gs whenever the images of χ` and χr are not isomorphic.

8A2. Additional assumptions. Assume therefore that s2 and s3 are multiplicatively
independent. Then the free abelian group

imχr = ln gp({s2, s3})= Z ln s2+Z ln s3.

has rank 2.
Consider now two triples s and s ′ where s ′2 = s2 and where both pairs {s2, s3}

and {s2, s ′3} are multiplicatively independent. Suppose there exists an isomorphism
β : Gs −→

∼ Gs′ . Then β induces a homeomorphism

β∗ : S(Gs′)−→
∼ S(Gs)

β∗
(
{[χ′`], [χ

′

r ]}
)
= {[χ`], [χr ]}.

The ranks of the involved characters imply that β∗[χ′r ] = [χr ]; so there exists a
positive real number u with χ′r ◦ β = u ·χr . It follows that imχ′r = u · imχr or,
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equivalently, that

Z(ln s ′3)+Z(ln s2)= u ·
(
Z(ln s3)+Z(ln s2)

)
.

This equality amounts to saying that there exists a matrix T =
(

a b
c d

)
∈ GL(2,Z)

such that (
ln s ′3
ln s2

)
= u · T ·

(
ln s3

ln s2

)
= u ·

(
a · ln s3+ b · ln s2

c · ln s3+ d · ln s2

)
.

It follows that
ln s ′3
ln s2
=

a(ln s3/ ln s2)+ b
c(ln s3/ ln s2)+ d

;

alternatively put, the numbers ln s3, ln s ′3 lie in the same orbit of the group

(8-2) Hs2 =

(
ln s2 0

0 1

)
·GL(2,Z) ·

(
ln s2 0

0 1

)−1

acting on the extended real line R∪ {∞} by fractional linear transformations.

8A3. Consequences. It is now easy to exhibit a collection of groups G that enjoy
the properties stated at the beginning of Section 8A. Choose first a number s1 > 1;
for instance s1 = 2, and select s2 so that ln s2 is rational, for instance s2 = exp 1.
The group Hs2 is then a subgroup of GL(2,Q); it acts on R∪ {∞} by fractional
linear transformations. The set Q∪ {∞} is an orbit; all other orbits are made up of
irrational numbers. Use the axiom of choice to find a set of representative T of the
orbits of Hs2 contained in RrQ. For every t ∈ T the numbers ln s2 and t are then
Q-linearly independent, and hence s2 and exp t are multiplicatively independent.
Since RrQ has the cardinality of the continuum and Hs2 is countable, the set T
likewise has the cardinality of the continuum. The collection

(8-3) G = {G(s1,s2,exp t) | t ∈ T }

therefore enjoys properties (i) through (iv) stated at the beginning of Section 8A.

8B. Some unexpected isomorphisms. Let t1, t2 be distinct irrational numbers and
consider the groups G1 = G(2,exp 1,exp t1) and G2 = G(2,exp 1,exp t2). We don’t know
under which conditions on t1 and t2 the groups G1 and G2 are isomorphic. In the
construction of the collection G, carried out in Section 8A, we proceeded therefore
in a very cautious manner and required that distinct elements in the parameter
space T fail to satisfy a certain condition. The question now arises whether this
approach is overly pessimistic. The next example indicates that caution may have
been appropriate. We begin with a simple, but surprising, lemma.18

18Strebel got word of this result in discussions with Matt Brin and Matt Zaremsky.
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Lemma 8.1. Suppose that G is a subgroup of PLo([a, d]) generated by two PL-
homeomorphisms f and g with the following properties:

(i) supp f = ]a, c[ and f (t) < t for t ∈ supp f ,

(ii) supp g = ]b, d[ and g(t) < t for t ∈ supp g,

(iii) a < b < c < d and f (g(c))≤ b.

Then G is isomorphic to Thompson’s group F.

Proof. Set h = f ◦ g and note that h(t) < t for every t ∈ ]a, d[ . Property (iii)
then implies that h(c) ≤ b and so the supports of g and that of h f = h ◦ f ◦ h−1

are disjoint, as are the supports of g and that of h2
f . The first fact implies that g

commutes with hf and leads to the chain of equations

(8-4) h◦h f = f(g◦hf
)
=

f(hf
)
=

f ◦hf.

The second fact leads to the equations

(8-5) h◦h2
f = f(g◦h2

f
)
=

f(h2
f
)
=

f ◦h2
f.

Thompson’s group F, on the other hand, has the presentation〈
x, x1

∣∣ x2
x1 =

x1xx1,
x3

x1 =
x1x2

x1
〉
;

see, e.g., [Bieri and Strebel 2016, Examples D15.11]. The assignments x 7→ h,
x1 7→ f extend therefore to an epimorphism ρ : F � G. As the derived group of F
is simple (see, e.g., [Cannon et al. 1996, Theorem 4.5]) and as G is nonabelian, ρ
must be injective, hence an isomorphism, and so the proof is complete. �

Our next result shows that the assumptions of the previous lemma can be satisfied
by PL-homeomorphisms with preassigned values for the slopes in the end points.

Lemma 8.2. Let s f , sg be positive reals with s f < 1< sg and let a, b, c, d be real
numbers with a < b < c < d. Then there exist PL-homeomorphisms f and g that
satisfy properties (i) through (iii) listed in Lemma 8.1 and, in addition,

(iv) f ′(a)= s f and g′(d)= sg.

Proof. The generators f and g will both be affine interpolations of 5 interpolation
points. To define them fix numbers t1, t2, t3, t4 so that

a < t1 < b < t2 ≤ t3 < c < t4 < d.

Next choose t0 ∈ ]a, t1[ so that (t0− a)/(t1− a) = s f . Then a < t1 < t3 < c < d
and a < t0 < b < c < d and so the affine interpolation, given by the 5 points

(a, a), (t1, t0), (t3, b), (c, c), (d, d),
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exists and is an increasing PL-homeomorphism, say f, with f ′(a)= s f . Next, there
exists a number t5 ∈ ]t4, d[ so that (d− t4)/(d− t5)= sg. Then a < b< c< t5 < d
and a < b < t2 < t4 < d and so the affine interpolation, given by the 5 points

(a, a), (b, b), (c, t2), (t5, t4), (d, d),

exists and is an increasing PL-homeomorphism, say g; the definition of t5 implies,
in addition, that g′(d)= sg. Finally, f (g(c))= f (t2)≤ f (t3)= b. �

Remarks 8.3. (a) In the statement of Lemma 8.2 the slopes s f and sg have been
chosen so that s f < 1< sg. This requirement can be weakened to s f 6= 1 and sg 6= 1;
indeed the four pairs { f, g}, { f, g−1

} and { f −1, g}, { f −1, g−1
} generate the same

group.

(b) The generators fs , gs and hs of the groups Gs , constructed in Section 8A, are
simpler then those used in Lemma 8.2 in that they are defined by affine interpolations
of 3 rather than of 5 points. But a variant of the Lemma 8.2 holds even in this more
restricted setup.

Suppose s1 = s2 = 2 and s3 ≥ 2. The function fs is then given by the formula

(8-6) fs(t)=

{
1
2 t, if 0≤ t ≤ 1

2 ,

2
(
t − 1

2

)
+

1
4 , if 1

2 ≤ t ≤ 3
4 ,

and it is the identity outside of ]0, 3
4 [, while gs is defined by

(8-7) gs(t)=

{
1
2

(
t − 1

4

)
+

1
4 , if 1

4 ≤ t ≤ 3
4 ,

2
(
t − 3

4

)
+

1
2 , if 3

4 ≤ t ≤ 1,

and it is the identity outside of ]14 , 1[. The function hs , finally, is defined by

(8-8) hs(t)=

{
1
s3

(
t − 1

4

)
+

1
4 , if 1

4 ≤ t ≤ 3s3
4(s3+1) +

1
4 ,

s3
(
t − 3s3

4(s3+1) −
1
4

)
+

3
4(s3+1) +

1
4 , if 3s3

4(s3+1) +
1
4 ≤ t ≤ 1,

and is the identity outside of ]14 , 1[. The function gs is not differentiable at 1
4 , 3

4 ,
and 1, while the function hs has singularities at 1

4 , t∗ = 3s3
4(s3+1) +

1
4 , and 1. Since

s3 ≥ s2 = 2, the inequality t∗ ≥ 3
4 holds, as one verifies easily. The calculation

fs
(
hs
( 3

4

))
= fs

( 1
s3

( 3
4 −

1
4

)
+

1
4

)
= fs

( 1
2s3
+

1
4

)
≤ fs

( 1
4 +

1
4

)
≤

1
4 .

then shows that the functions fs and hs fulfill the assumptions imposed on the
functions f and g in Lemma 8.1. It follows that the groups gp( fs, hs) are isomorphic
to each other for every s3 ≥ s2 = 2.



GROUPS OF PL-HOMEOMORPHISMS ADMITTING INVARIANT CHARACTERS 155

8C. A criterion. The groups Gs studied in Section 8A are generated by 3 elements;
in addition the image of χ` is infinite cyclic and that of χr is free abelian of rank 2.
Any isomorphism β : Gs −→

∼ Gs′ between two such groups must therefore induce
an homeomorphism β∗ : S(Gs′)−→

∼ S(Gs) with β∗([χ′r ])= [χr ]. This consequence
amounts to say that there exists a positive real number u so that χ′r ◦β = u ·χr and
this new condition implies the equality

(8-9) imχ′r = u · imχr .

In Section 8A we did not study this condition in general; we dealt only with the
special case where

imχr = Z(ln s3)+Z(ln s2) and imχ′r = Z(ln s ′3)+Z(ln s2)

and exploited then the fact that, in this particular case, condition (8-9) involves basi-
cally only the two numbers ln s3 and ln s ′3. In this final section we shall investigate
another special case. It is reminiscent of a situation considered in Section 6E.

Let B1 and B2 be finitely generated subgroups of Radd and suppose there exists
a positive real number u with B2 = u · B1. If B2 coincides with B1, then u is a
unit of B1 and the results of Section 6E apply. They show, in particular, that u = 1
whenever B is the image under ln of a subgroup P of R×>0 that is generated by finitely
many algebraic numbers. The proof of this consequence relies on Theorem 6.11,
the Gelfond–Schneider theorem. Below we give an analogue of this criterion, but
dealing with the equation B2 = u · B1. In the proof, both the Gelfond–Schneider
theorem and the Siegel–Lang theorem will be used.

Lemma 8.4. Let P1 and P2 be subgroups Q×>0 and set B1 = ln P1 and B2 = ln P2.
Suppose there exists a prime number π that occurs with nonzero power in the
factorization of an element in P1, but not in that of an element of P2. If the rank of
B1 is at least 3, then B2 is distinct from u · B1 for every positive real number u.

Proof. Let p1∈ P1 be an element with a prime factorization that involves the prime π ,
and let u be a positive real number. Assume first that u ∈Q. Then π occurs in the
prime factorization of pu

1 , so qu
1 /∈ P2, and thus u · B1 = u ln P1 6= ln P2 = B2. Now

suppose that u is irrational and that u ·ln p1∈ B2. There exists then a rational number
p2 ∈ P2 with u = ln p2/ ln p1 and so u is transcendental by the Gelfond–Schneider
theorem. Choose, finally, three Q-linearly independent elements z1, z2 and z3 in
B1 (this is possible as the rank of B1 is at least 3) and consider the six numbers

exp(1 · zj ) with j = 1, 2, 3, and exp(u · zj ) with j = 1, 2, 3.

The first three of them are in P1, and hence rational. As the subsets {1, u} and
{z1, z2, z3} are both linearly independent over Q, Theorem 6.13 implies therefore
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that at least one the remaining three numbers, say exp(u · z j∗), is transcendental.
This number is therefore outside of P2 and so u · z j∗ ∈ u B1 r B2. �

We end with an application of the preceding lemma.

Example 8.5. Given a nonempty set of prime numbers P, let GP be a subgroup of
PLo([0, 1]) generated by a set { fp, gp | p∈P} of elements that satisfy the conditions

(i) σ`( fp)= p, σ`(gp)= 1 and σr ( fp)= 1, σ`(gp)= 1 for every p ∈ P;

(ii) the union of the supports of the generators fp and gp is ]0, 1[.

The group GP admits then an epimorphism ψ : GP � gp(P) that is fixed by
every automorphism of GP (use Corollary 6.10). Moreover, if P1 and P2 are distinct
sets of primes of cardinality at least 3, the groups GP1 and GP2 are not isomorphic
in view of Lemma 8.4 and the considerations at the beginning of Section 8C.
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BERNSTEIN-TYPE THEOREMS FOR SPACELIKE
STATIONARY GRAPHS IN MINKOWSKI SPACES

XIANG MA, PENG WANG AND LING YANG

For entire spacelike stationary 2-dimensional graphs in Minkowski spaces,
we establish Bernstein-type theorems under specific boundedness assump-
tions either on the W -function or on the total (Gaussian) curvature. These
conclusions imply the classical Bernstein theorem for minimal surfaces in
R3 and Calabi’s theorem for spacelike maximal surfaces in R3

1.

1. Introduction

The classical Bernstein theorem [1915] says that any entire minimal graph in R3

has to be an affine plane. In other words, suppose f : R2
→ R is an entire solution

to the minimal surface equation

(1-1) div
∇ f√

1+ |∇ f |2
= 0.

Then f has to be affine linear. This conclusion is generally not true in the
higher-codimensional case. The simplest counterexample is the minimal graph
M = graph f := {(x, f (x)) : x ∈ C} ⊂ R4 of an arbitrary nonlinear holomorphic
function f : C→ C.

To find a suitable generalization, usually we have to add some boundedness
assumptions on the growth rate of the function f . Chern and Osserman [1967] ob-
tained one such Bernstein-type theorem as follows. Suppose that f = ( f1, . . . , fm)

is a smooth vector-valued function from R2 to Rm . If M = graph f is a minimal
graph, and

(1-2) W :=
[

det
(
δi j +

∑
1≤α≤m

∂ fα
∂xi

∂ fα
∂x j

)]1/2

is uniformly bounded, then M has to be an affine plane.
This W -function is a significant quantity for various reasons.

Ma is supported by NSFC Project 11471021; Wang is supported by NSFC Projects 11571255 and
11471078; Yang is supported by NSFC Project 11471078.
MSC2010: 30F15, 53C24, 58J05.
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For any f :R2
→Rm , denote the metric on graph( f ) as g= gi j dxi dx j under the

global coordinate chart x = (x1, x2) 7→ (x, f (x)) ∈ graph f . Then the area element
is given by W dx1∧ dx2. Thus W is a geometric measure of the area growth of the
graph of f .

Secondly, Chern and Osserman’s theorem can be stated in the language of PDEs
as below. Namely, the entire solution to the PDE system

(1-3)

∑
1≤i≤2

∂

∂xi
(Wgi j )= 0, j = 1, 2,

∑
1≤i, j≤2

∂

∂xi

(
Wgi j ∂ fα

∂x j

)
= 0, α = 1, . . . ,m

has to be affine linear provided that W ≤ C for a positive constant C , where

(1-4) (gi j ) := I2+ J T
f E Jf

(I2 and E denote the identity matrices of size 2 and m separately and Jf is the
Jacobian matrix of f ), (gi j ) := (gi j )

−1 and W = det(gi j )
1/2. A key point from the

analytic viewpoint is that the boundedness of W ensures that (1-3) is a uniformly
elliptic PDE system.

For more work on the generalization of Chern and Osserman’s theorem in
relation to the W -function, see [Barbosa 1979], [Fischer-Colbrie 1980], [Jost et al.
2014; 2015].

Now we consider entire spacelike stationary graphs in Minkowski spaces. They
too correspond to solutions to (1-3), the differences being that f = ( f1, . . . , fm) is
now from R2 to m-dimensional Minkowski space Rm

1 , and the E appearing in (1-4)
should be replaced by the Minkowski inner product matrix diag(1, 1, . . . , 1,−1).
Here we need to assume that (gi j ) is positive definite everywhere.

When m = 1, M becomes a spacelike maximal graph in R3
1, which has to be an

affine plane. This is a well-known Bernstein-type result by E. Calabi [1970]. But
for higher-codimensional cases, the Bernstein-type result fails to be true even if the
W -function is uniformly bounded. Such a counterexample, which can be found in
[Ma et al. 2013], is given by the function

f (x1, x2)=
(
2 sinh(x1) cos

(
−

√
2

2 x2
)
, 2 cosh(x1) cos

(
−

√
2

2 x2
))
.

So it is a more subtle problem about the value distribution of the W -function for
entire spacelike stationary graphs in Minkowski spaces. This is the main topic of
the present paper.

As the first step, we generalize Osserman’s result [1969, §5] to entire spacelike
stationary graphs in the Minkowski space. They are still conformally equivalent to
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the complex plane (see Theorem 3.1), and have an explicit simple representation
formula. Based on these formulas, we establish the following results:

• Let M be an entire spacelike stationary graph in R4
1. Then the W -function is

either constant, or takes each value in [r−1, r ] infinitely often, where r can be
any positive number strictly bigger than 1. Moreover, W is a constant if and
only if M is a flat surface (see Theorem 4.1).

• For any entire spacelike stationary graph M in R4
1, if W ≤ 1 (or W ≥ 1)

always holds true on M , then M has to be flat (see Corollary 4.2). Note that
Calabi’s theorem [1970] and the classical Bernstein theorem [1915] can easily
be deduced from the above two conclusions, respectively.

• For any entire spacelike stationary graph M in Rn
1 (n ≥ 4), if W ≤ 1, then M

must be flat (see Theorem 5.1). (On the contrary, the same conclusion does
not necessarily hold true in the case W ≥ 1; see Proposition 5.2.)

Another measure of the complexity of a complete stationary surface is its total
Gaussian curvature

∫
M |K | dM . This is closely related with its end behavior at

infinity; see the generalized Jorge–Meeks formula in [Ma et al. 2013]. Using the
Weierstrass representation formula given in the same work, one can compute the
integral of the Gauss curvature and the normal curvature of an arbitrary spacelike sta-
tionary surface in R4

1. A Bernstein-type theorem (Theorem 6.1) follows immediately,
which states that an entire spacelike stationary graph in R4

1 has to be flat, provided
that

∫
M |K | dM <∞. (This result cannot be generalized to higher-codimensional

cases.)

2. Entire graphs in Minkowski spaces and the W -function

Let Rm
1 denote the m-dimensional Minkowski space. The Minkowski inner product

of any u = (u1, . . . , um−1, um) and v = (v1, . . . , vm−1, vm) ∈ Rm
1 is given by

(2-1) 〈u, v〉 = u1v1+ · · ·+ um−1vm−1− umvm .

Let f : R2
→ Rm

1

(2-2) (x1, x2) 7→ f (x1, x2)= ( f1(x1, x2), . . . , fm(x1, x2))

be a smooth vector-valued function. As in §3 of [Osserman 1969], we introduce
the vector notation

(2-3) p :=
∂ f
∂x1

, q :=
∂ f
∂x2

.



162 XIANG MA, PENG WANG AND LING YANG

Let M = graph f := {(x, f (x)) : x ∈ R2
} be the entire graph in R2+m

1 generated
by f . Then the metric on M is

(2-4) g = gi j dxi dx j ,

with

(2-5) g11 = 1+〈p, p〉, g22 = 1+〈q, q〉, g12 = g21 = 〈p, q〉.

According to the properties of positive definite matrices, M is a spacelike surface
if and only if 1+〈p, p〉> 0 and det(gi j ) > 0. Hence

(2-6) W = det(gi j )
1/2 > 0

for any spacelike graph.
Denote by P0 the orthogonal projection of R2+m

1 onto R2. Then w := W−1 is
equivalent to the Jacobian determinant of P0|M . Thus W ≤ 1 (resp., ≡ 1, ≥ 1)
is equivalent to saying that P0|M is an area-increasing (resp., area-preserving,
area-decreasing) map.

For entire graphs in Euclidean space, it is well known that the orthogonal pro-
jection onto the coordinate plane is a length-decreasing map, which becomes an
isometry if and only if the graph is parallel to the coordinate plane. Therefore every
entire graph in Euclidean space must be complete. But the following examples
show these properties cannot be generalized to entire graphs in Minkowski spaces.

Examples. • Let y0 be a nonzero lightlike vector in Rm
1 , h be a smooth real-

valued function on R2 and f := h y0. Then

p =
∂h
∂x1

y0 and q =
∂h
∂x2

y0,

and hence gi j = δi j , which implies the projection of M = graph f onto R2 is
an isometry, but M cannot be an affine plane of R2+m

1 whenever h is nonlinear.

• Let t ∈ R 7→ θ(t) ∈ (−π/2, π/2) be a smooth odd function which satisfies
limt→+∞ θ(t)= π/2 and π/2− θ(t)= O(t−2). Denote

h(t) :=
∫ t

0
sin θ(t) dt.

Then h is a smooth even function on R. Define

f (x1, x2)= (0, . . . , 0, h(r))
(
r =

√
x2

1 + x2
2
)
.
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Then p=∂ f/∂x1= (0, . . . , 0, h′(r)x1/r), q=∂ f/∂x2= (0, . . . , 0, h′(r)x2/r)
and hence

g11 = 1+〈p, p〉 = 1−
h′(r)2x2

1

r2 ≥ 1− h′(r)2 = cos2 θ(t) > 0,

det(gi j )= det

1−
h′(r)2x2

1
r2

−
h′(r)2x1x2

r2

−
h′(r)2x1x2

r2
1−

h′(r)2x2
2

r2

= 1− h′(r)2 > 0.

Therefore M = graph f is an entire spacelike graph. Define γ : R→ R3 by
γ (t)= (t, 0, f (t, 0)). Then γ is a smooth curve in M tending to infinity. Since
f (t, 0)= (0, . . . , 0, h(t)),

L(γ )=
∫
∞

−∞

√
1− h′(t)2 dt =

∫
∞

−∞

cos θ(t) dt.

But cos θ(t)∼ π/2− |θ(t)| ∼ |t |−2 when t→∞. Therefore L(γ ) <∞ and
hence M cannot be complete.

3. Isothermal parameters of spacelike stationary graphs

Let x :M→R2+m
1 be a spacelike surface in Minkowski space. If the mean curvature

vector field H vanishes everywhere, then M is said to be stationary. M is stationary
if and only if the restriction of any coordinate function on M is harmonic. Namely,
1xl ≡ 0 for each 1≤ l ≤ 2+m, with 1 the Laplace–Beltrami operator with respect
to the induced metric on M ; see [Ma et al. 2013]. Now we additionally assume M
to be an entire graph over R2. More precisely, there exists f : R2

→ Rm
1 , such that

M = graph f := {(x, f (x)) : x ∈ R2
}. The denotation of p, q, gi j ,W is the same

as in Section 2. For an arbitrary smooth function F on M ,

(3-1) 1F =W−1∂i (Wgi j∂ j F),

where

(3-2) (gi j )= (gi j )
−1
=W−2

(
1+〈q, q〉 −〈p, q〉
−〈p, q〉 1+〈p, p〉

)
.

The stationarity of M implies x1 and x2 are both harmonic functions on M , hence

(3-3) 0=W1x1 = ∂i (Wgi j∂ j x1)= ∂i (Wgi jδ1 j )= ∂i (Wgi1)

=
∂

∂x1

(1+〈q, q〉
W

)
−

∂

∂x2

(
〈p, q〉

W

)
,
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and similarly,

(3-4) 0=W1x2 = ∂i (Wgi2)=−
∂

∂x1

(
〈p, q〉

W

)
+

∂

∂x2

(1+〈p, p〉
W

)
.

The above two equations imply the existence of smooth functions ξ1 and ξ2 such
that

(3-5)
∂ξ1

∂x1
=

1+〈p, p〉
W

,
∂ξ1

∂x2
=
〈p, q〉

W
,

∂ξ2

∂x1
=
〈p, q〉

W
,

∂ξ2

∂x2
=

1+〈q, q〉
W

.

As in §5 of [Osserman 1969], one can define the Lewy’s transformation L :R2
→R2,

L : (x1, x2) 7→ (η1, η2) by

(3-6) ηi = xi + ξi (x1, x2), i = 1, 2.

Since the Jacobi matrix of L ,

(3-7) JL = I2+

(
∂ξi

∂x j

)
= I2+W−1(gi j ),

is positive definite, L is a local diffeomorphism. Again based on the fact that(
∂ξi/∂x j

)
is positive definite, one can proceed as in [Lewy 1937] or §5 of [Osserman

1969] to show that L is length-increasing, thus L is injective. Let � be the image of
L . Then� is open. If� 6=R2, take η in the complement of� that is nearest to L(0),
and find a sequence of points {η(k) : k ∈ Z+} such that |η(k)− L(0)|< |η− L(0)|
and limk→∞ η

(k)
= η. Then there exists x (k) ∈ R2 such that η(k) = L(x (k)). Since

L is length-increasing, {x (k) : k ∈ Z+} lies in a bounded domain of R2, so there
exists an subsequence converging to x ∈ R2, which implies L(x)= η and causes a
contradiction. Therefore �= R2 and then L is a diffeomorphism of R2 onto itself.

Denote by λ2
1, λ

2
2 (where λ1, λ2 > 0) the eigenvalues of (gi j ). Then W =

det(gi j )
1/2
= λ1λ2, and there exists an orthogonal matrix O , such that

(gi j )= OT
(
λ2

1
λ2

2

)
O.

Hence,

JL = I2+W−1(gi j )= OT

1+ λ1
λ2

1+ λ2
λ1

 O = (λ−1
1 + λ

−1
2 )OT

(
λ1

λ2

)
O,

and furthermore,

dη2
1+ dη2

2 =
(
dη1 dη2

) (dη1

dη2

)
=
(
dx1 dx2

)
J T

L JL

(
dx1

dx2

)
= (λ−1

1 + λ
−1
2 )2

(
dx1 dx2

)
OT
(
λ2

1
λ2

2

)
O
(

dx1

dx2

)
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= (λ−1
1 + λ

−1
2 )2

(
dx1 dx2

)
(gi j )

(
dx1

dx2

)
= (λ−1

1 + λ
−1
2 )2(gi j dxi dx j ),

i.e.,

(3-8) g = gi j dxi dx j = (λ
−1
1 + λ

−1
2 )−2(dη2

1+ dη2
2).

This means that (η1, η2) are global isothermal parameters on M . Define

(3-9) ζ := η1+
√
−1η2

and

(3-10) βl :=
∂xl

∂ζ
=

1
2

(
∂xl

∂η1
−
√
−1

∂xl

∂η2

)
for l = 1, . . . , 2+m.

Then the harmonicity of coordinate functions implies

0=
∂2xl

∂ζ∂ζ
=
∂βl

∂ζ
,

i.e., β1, . . . , β2+m are all holomorphic functions on M . A straightforward calcula-
tion shows −4 Im(β1β2) equals the Jacobian of the inverse of Lewy’s transforma-
tion, which is positive everywhere, thus β2/β1 = β1β2/|β1|

2 is an entire function
whose imaginary part is always negative. The classical Liouville’s theorem implies
β2/β1≡c :=a−b

√
−1, where a, b∈R and b>0. In conjunction with (3-10) we get

(3-11) ∂x2
∂η1
= a ∂x1

∂η1
− b ∂x1

∂η2
and ∂x2

∂η2
= b ∂x1

∂η1
+ a ∂x1

∂η2
.

Let (u1, u2) be global parameters of M , satisfying x1 = u1 and x2 = au1 + bu2.
Then (3-11) tells us

(3-12) ∂u2
∂η1
=−

∂u1
∂η2

and ∂u2
∂η2
=
∂u1
∂η1

.

This means the one-to-one map (η1, η2) ∈ R2
7→ (u1, u2) ∈ R2 is biholomorphic.

Thereby we arrive at the following conclusion:

Theorem 3.1. Let f : R2
→ Rm

1 be a smooth vector-valued function such that
M = graph f := {(x, f (x)) : x ∈ R2

} is a spacelike stationary surface. Then there
exists a nonsingular linear transformation

(3-13)
x1 = u1,

x2 = au1+ bu2 (b > 0),

such that (u1, u2) are global isothermal parameters for M.
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Now we introduce the complex coordinate z := u1+
√
−1u2 and define

(3-14) α = (α1, . . . , α2+m) :=
∂x
∂z
=

1
2

(
∂x
∂u1
−
√
−1 ∂x
∂u2

)
.

Then α is a holomorphic vector-valued function. The induced metric on M can be
written as

g =
〈
∂x
∂z
,
∂x
∂z

〉
dz2
+

〈
∂x
∂z
,
∂x
∂z

〉
dz2
+ 2

〈
∂x
∂z
,
∂x
∂z

〉
|dz|2

= 2 Re
(
〈α, α〉 dz2)

+ 2〈α, α〉|dz|2.

Here |dz|2 := 1
2(dz⊗ dz + dz⊗ dz) = du2

1+ du2
2. Since (u1, u2) are isothermal

parameters for M ,

(3-15) 〈α, α〉 = 0,

and hence

(3-16) g = 2〈α, α〉|dz|2.

Noting that α1 = ∂x1/∂z = 1
2 , α2 = ∂x2/∂z = 1

2(a − b
√
−1) = 1

2 c, (3-15) is
equivalent to

(3-17) α2
2+m = α

2
1 + · · ·+α

2
1+m =

1+c2

4
+α2

3 + · · ·+α
2
1+m .

Thus

〈α, α〉 = |α1|
2
+ · · ·+ |α1+m |

2
− |α2+m |

2

=
1+|c|2

4
+ |α3|

2
+ · · ·+ |α1+m |

2
−

∣∣∣1+c2

4
+α2

3 + · · ·+α
2
1+m

∣∣∣
≥

1+|c|2−|1+c2
|

4
,

and moreover,

(3-18) g ≥ 1+|c|2−|1+c2
|

2
|dz|2.

Observing that 1+ |c|2 − |1+ c2
| > 0 is a direct corollary of b > 0, we get a

conclusion as follows.

Corollary 3.2. Let M = graph f := {(x, f (x)) : x ∈ R2
} be a spacelike stationary

graph generated by f : R2
→ Rm

1 . Then the induced metric on M is complete.

Remark. As shown in [Cheng and Yau 1976], if M is a spacelike hypersurface
in Rn+1

1 with constant mean curvature, so that M is a closed subset of Rn+1
1 with

respect to the Euclidean topology, then M is complete with respect to the induced
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Lorentz metric. It is natural to raise the following problem. Let M be an n-
dimensional spacelike submanifold in Rn+m

1 with parallel mean curvature, so that
M is a closed subset of Rn+m

1 . Is M a complete Riemannian manifold? Corollary 3.2
gives a partial positive answer to the above problem.

Equation (3-13) implies dx1 ∧ dx2 = b du1 ∧ du2, and hence

dM = 2〈α, α〉 du1 ∧ du2

= 2b−1
〈α, α〉 dx1 ∧ dx2

=
1+|c|2+4(|α3|

2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b
dx1 ∧ dx2,

with dM the area element of M . In other words,

(3-19) W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b
.

4. On W -functions for entire stationary graphs in R4
1

Theorem 4.1. Let f : R2
→ R2

1 be a smooth function, such that M = graph f is
a spacelike stationary graph. Then one and only one of the following three cases
occurs:

(i) f is affine linear and W ≡ r , where r is an arbitrary positive constant.

(ii) f = h y0 + y1 with h a nonlinear harmonic function on R2, y0 a nonzero
lightlike vector in R2

1 and y1 a constant vector, and W ≡ 1.

(iii) W takes each value in [r−1, r ] infinitely often, where r is an arbitrary number
in (1,∞).

Proof. Equation (3-15) is equivalent to

(4-1) α2
3 −α

2
4 =−(α

2
1 +α

2
2)=−

1+c2

4
,

and (3-19) gives

(4-2) W = 1+|c|2+4(|α3|
2
−|α4|

2)

2b
.

If α3 is a constant function, then (4-1) shows α4 is also constant, and

xa(z)= Re
∫ z

0
αa dz+ xa(0) for all a = 3, 4

is affine linear. Hence f is affine linear and W ≡ r , where r can be taken to be any
value in (0,∞). This is case (i).

Now we assume α3 is nonconstant. Then (4-1) implies α4 is also nonconstant.
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If c =−
√
−1, then (4-1) gives

0= α2
3 −α

2
4 = (α3+α4)(α3−α4).

Noting that the zeros of a nonconstant holomorphic function have to be isolated,
we get α3+α4 = 0 or α3−α4 = 0. Thus |α3| = |α4| and then (4-2) shows W ≡ 1.
Let β be the unique holomorphic function such that β ′ = α3 and β(0)= 0. Then
α3±α4 = 0 implies

f (x1, x2)= (x3(u1, u2), x4(u1, u2))= (x3(z), x4(z))

= Re
∫ z

0
(α3, α4) dz+ (x3(0), x4(0))

= Reβ(z)(1,∓1)+ f (0, 0).

Now we put h := Reβ(z), y0 := (1,∓1) and y1 := f (0, 0). Then h is a nonlinear
harmonic function, y0 is a lightlike vector and f = h y0+ y1. This is case (ii).

Otherwise c 6= −
√
−1 and hence −(1 + c2)/4 6= 0. Let µ 6= 0 such that

µ2
= −(1 + c2)/4, and h1, h2 be holomorphic functions such that α3 = µh1,

α4 = µh2. Then µ2(h2
1− h2

2)= α
2
3 −α

2
4 = µ

2 gives

1= h2
1− h2

2 = (h1+ h2)(h1− h2),

which implies h1+ h2 is an entire function containing no zero. Hence there exists
an entire function β, such that h1+ h2 = eβ , then h1− h2 = e−β and hence

(4-3) h1 = coshβ, h2 = sinhβ.

By computing,

|h1|
2
− |h2|

2
= | coshβ|2− | sinhβ|2

=
1
2(e

β−β
+ e−β+β)= 1

2

(
e2 Imβ

√
−1
+ e−2 Imβ

√
−1)

= cos(2 Imβ),

and hence

(4-4) W = 1+|c|2+4(|α3|
2
−|α4|

2)

2b
=

1+ |c|2+ 4|µ|2(|h1|
2
− |h2|

2)

2b

=
1+ |c|2+ |1+ c2

| cos(2 Imβ)

2b
.

Set

r1 := inf W = 1+|c|2−|1+c2
|

2b
and r2 := sup W = 1+|c|2+|1+c2

|

2b
.

Due to Picard’s theorem, W takes each value in [r1, r2] infinitely often. Noting that
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c = a− b
√
−1, one computes

r1r2 =
(1+|c|2)2−|1+c2

|
2

4b2 =
1+2|c|2+|c|4−(1+c2

+c 2
+|c|4)

4b2 =
4b2

4b2 = 1.

Hence r1 ∈ (0, 1) and r2 ∈ (1,∞).
Now we take b := 1. Then c = a −

√
−1 and r2 =

1
2(2+ a2

+ |a|
√

a2+ 4).
Denote µ : t ∈R+ 7→µ(t)= 1

2(2+ t2
+|t |
√

t2+ 4). Then µ is a strictly increasing
function and limt→0 µ(t)=1, limt→+∞ µ(t)=+∞. Hence for an arbitrary number
r ∈ (1,∞), one can find a ∈ R+, such that r2 = r and then W takes each value in
[r−1, r ] infinitely often. This is case (iii). �

Corollary 4.2. Let M be an entire spacelike stationary graph in R4
1 generated by

a smooth function f = ( f1, f2) : R
2
→ R2

1. If W ≤ 1 (or W ≥ 1), then f is affine
linear or f = h y0+ y1, with h a nonlinear harmonic function, y0 a nonzero lightlike
vector and y1 a constant vector. Moreover, W > 1 (or W < 1) forces f to be affine
linear, representing an affine plane in R4

1.

Remark. If f2 ≡ 0, then M = graph f is a minimal entire graph in R3 and W ≥ 1.
By Corollary 4.2, f is affine linear or f = h y0+ y1, where h is a nonlinear harmonic
function and y0 is a nonzero lightlike vector. But f2 ≡ 0 precludes the latter case.
Hence f is an affine linear function and so the classical Bernstein theorem [1915]
can be derived from Corollary 4.2. Similarly, Corollary 4.2 implies any spacelike
maximal entire graph in R3

1 has to be affine linear. This is Calabi’s theorem [1970].

5. Bernstein-type theorems for entire stationary graphs in R2+m
1

It is natural to ask whether one can generalize the conclusion of Corollary 4.2 to
higher-codimensional cases.

For the first statement, i.e., W ≤ 1, the answer is “yes”:

Theorem 5.1. Let f : R2
→ Rm

1 be a smooth function, such that M = graph f :=
{(x, f (x)) : x ∈ R2

} is a spacelike stationary graph in R2+m
1 . If the orthogonal

projection P0 of M onto the coordinate plane R2 is area-increasing (i.e., W ≤ 1),
then f is affine linear or f = h y0 + y1, with h a nonlinear harmonic function,
y0 a nonzero lightlike vector and y1 a constant vector. Moreover, if P0 is strictly
area-increasing (i.e., W < 1), then f has to be affine linear and M is an affine plane.

Proof. We shall consider the problem in the following four cases.

Case I. α3, . . . , α2+m are all constant functions. As in the proof of Theorem 4.1,
one can show f is an affine linear function.

Case II. α2+m is a constant function, but αl is nonconstant for some 3≤ l ≤ 1+m.
By the classical Liouville Theorem, there exists a point in C, such that

|αl |
2
≥ |α2+m |

2
+ b− 1

4(1+ |c|
2)
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at this point. Combing with (3-19) gives

W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b

≥
1+|c|2+4(|αl |

2
−|α2+m |

2)

2b
≥ 2.

This gives a contradiction to the assumption that W ≤ 1 everywhere. Hence this
case cannot occur.

Case III. α2+m is nonconstant and c 6= −
√
−1. Then c 6=

√
−1 implies

1+|c|2

2b
=

1+b2
+a2

2b
> 1.

Denote δ := (1+ |c|2)/(2b)− 1. Again the classical Liouville theorem implies the
existence of a point such that |α2+m |

2 < 1
2 bδ at this point. Hence

W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b

≥
1+|c|2−4|α2+m |

2

2b
> 1+ δ−

4 · 1
2 bδ

2b
= 1,

which causes a contradiction and therefore this case cannot happen.

Case IV. α2+m is nonconstant and c =−
√
−1. Let h3, . . . , h1+m be meromorphic

functions such that

α2
3 = h3α

2
2+m, . . . , α

2
1+m = h1+mα

2
2+m .

Then (3-17) tells us

α2
2+m =

1+c2

4
+α2

3 + · · ·+α
2
1+m = α

2
3 + · · ·+α

2
1+m

= (h3+ · · ·+ h1+m)α
2
2+m .

Since α2+m is a nonconstant function, we have

h3+ · · ·+ h1+m ≡ 1.

Due to the triangle inequality,

W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b
= 1+ 2(|α2

3| + · · · + |α
2
1+m | − |α

2
2+m |)

= 1+ 2(|h3| + · · · + |h1+m | − 1)|α2+m |
2
≥ 1,

and the equality holds if and only if the functions h3, . . . , h1+m all take values
in R+ ∪ {0,∞}. Again using the Liouville Theorem, we know that h3, . . . , h1+m
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are all constant real functions. Therefore, there exist v3, . . . , v1+m ∈ R, such that
v2

3 + · · ·+ v
2
1+m = 1 and

(α3, . . . , α1+m, α2+m)= (v3, . . . , v1+m, 1)α2+m .

Let β be the unique holomorphic function such that β ′ = α2+m and β(0) = 0.
Denote h :=Reβ, y0 := (v3, · · · , v1+m, 1) and y1 := f (0, 0). Then h is a nonlinear
harmonic function and y0 is a lightlike vector. We can proceed as in the proof of
Theorem 4.1 to show f = h y0+ y1. Note that in this case W ≡ 1. �

But our answer is “no” for the second statement, i.e., W ≥ 1. In fact, we have
the following result:

Proposition 5.2. For any real number C ≥ 1 and ε > 0, there exists an entire
spacelike stationary graph in R2+m

1 (m ≥ 3) generated by f : R2
→ Rm

1 such that
inf W · sup W = C and 0< sup W − inf W < ε.

Proof. Now we put c := −b
√
−1 and let d be a real number to be chosen. Let µ

be a complex number such that

µ2
=−

1+c2
+d2

4
=−

1−b2
+d2

4
.

Denote
α1 =

1
2
, α2 =

c
2
=−

b
2
√
−1, α3 = · · · = αm−1 = 0,

αm =
d
2
, α1+m = µ cosh z, α2+m = µ sinh z.

Since
〈α, α〉 = α2

1 +α
2
2 +α

2
m +α

2
1+m −α

2
2+m = 0

and 〈α, α〉 is positive, z 7→ x(z)=
∫ z

0 α(z) gives an entire spacelike stationary graph
in R2+m

1 .
As in the proof of Theorem 4.1, a similar calculation shows

W = 1+|c|2+4(|α3|
2
+· · ·+|α1+m |

2
−|α2+m |

2)

2b

=
1+b2

+d2
+|1−b2

+d2
| cos(2 Im z)

2b
.

Denote r1 := inf W , r2 := sup W . Then r1 = (1+ b2
+ d2
− |1− b2

+ d2
|)/(2b),

r2 = (1+ b2
+ d2
+ |1− b2

+ d2
|)/(2b) and

r1r2 =
(1+b2

+d2)2−(1−b2
+d2)2

4b2 = 1+ d2, r2− r1 =
|1−b2

+d2
|

b
.

Now we put d :=
√

C − 1. Then r1r2 = C , and one can choose b sufficiently close
to
√

C , such that r2− r1 = |1− b2
+ d2
|/b = |C − b2

|/b ∈ (0, ε). �
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Remark. Calabi’s theorem has been generalized to higher-dimensional cases.
Namely, if f is a smooth real function on Rn , so that M = graph f := {(x, f (x)) :
x ∈ Rn

} is an entire maximal hypersurface in Rn+1
1 , then f has to be affine linear.

This is a well-known Bernstein-type result by Cheng and Yau [1976]. Observing
that any maximal n-dimensional graph in Rn+1

1 can be regarded as a stationary
graph in Rn+m

1 which satisfies W ≤ 1, we raise a conjecture:

Conjecture 5.3. Let f :Rn
→Rm

1 be a smooth function, such that M = graph f :=
{(x, f (x)) : x ∈ Rn

} is a spacelike stationary graph in Rn+m
1 . If W ≤ 1, then M has

to be a flat manifold. Moreover, W < 1 forces f to be affine linear and hence M
has to be an affine n-plane.

6. Stationary graphs with finite total curvature

As demonstrated in [Ma et al. 2013], the Bernstein theorem can not be generalized
directly to stationary graphs in R4

1, because one can easily construct complete
stationary graphs in R4

1 which are not flat. Interestingly, these examples have
infinite total curvature.

On the other hand, examples of complete stationary surfaces with finite total
curvature are abundant, and there holds a generalized Jorge–Meeks formula about
their total Gaussian curvature (and the total normal curvature) provided that they
are algebraic [Ma et al. 2013]. Thus one is naturally interested to know whether
there could be a stationary graph with finite total curvature. The answer to this
question is the following Bernstein type theorem. (Note that here we do not need
the algebraic assumption.)

Theorem 6.1. Let f = ( f1, f2) : R2
→ R2

1 be a smooth function, such that
M = graph f := {(x, f (x)) : x ∈ R2

} is a spacelike stationary graph in R4
1 whose

curvature integral
∫

M |K | dM converges absolutely. Then f is affine linear or
f = h y0+ y1, with h a nonlinear harmonic function, y0 a nonzero lightlike vector
and y1 a constant vector. In both cases, M is flat, i.e., K ≡ 0.

Proof. Denote z = u1+
√
−1u2 as before. As in the proof of Theorem 4.1, if M is

not a flat surface as we claimed, then the holomorphic differential ∂x/∂z can be
expressed as

(6-1) (α1, α2, α3, α4)=
( 1

2 ,
1
2 c, µ coshβ,µ sinhβ

)
,

where c = a − b
√
−1 is a complex constant with b > 0, µ2

= −
1
4(1+ c2), and

β = β(z) is a nonconstant holomorphic function defined on C. We will derive a
contradiction from this assumption.

By the Weierstrass representation formula given in [Ma et al. 2013], ∂x/∂z can
be expressed in terms of a pair of meromorphic functions φ, ψ (the Gauss maps)
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and a holomorphic differential dh = h′(z) dz (the height differential) as below:

(6-2) (α1, α2, α3, α4)= (φ+ψ,−
√
−1(φ−ψ), 1−φψ, 1+φψ)h′.

Comparing these two formulas, we obtain

h′ = µ
2

eβ, φ =
1+c
√
−1

2µ
e−β, ψ =

1−c
√
−1

2µ
e−β .

Note that 1+c
√
−1

2µ
·

1−c
√
−1

2µ
=−1, and b > 0 implies∣∣∣∣1+c
√
−1

2µ

∣∣∣∣> ∣∣∣∣1+c
√
−1

2µ

∣∣∣∣.
Denote (1+ c

√
−1)/(2µ) := re

√
−1θ with r > 1 and θ ∈ R. Then

1− c
√
−1

2µ
=−r−1e−

√
−1θ .

In [Ma et al. 2013] the Gaussian curvature and the normal curvature of a stationary
surface were unified in a single formula in terms of φ, ψ and the Laplacian with
respect to the induced metric g := e2ω

|dz|2 as follows:

(6-3) −K +
√
−1K⊥ =1 ln(φ−ψ)= 4e−2ω φzψ z

(φ−ψ)2
.

Set β := v1+
√
−1v2, where v1, v2 are both real functions on C. Then

(6-4) |K |e2ω
= 4

∣∣∣∣Re
φzψ z

(φ−ψ)2

∣∣∣∣= 4
∣∣∣∣Re e2

√
−1θe−β−β

(re
√
−1θe−β+r−1e

√
−1θe−β)2

∣∣∣∣|β ′(z)|2
= 4

∣∣∣∣Re
(

1
(re(β−β)/2+r−1e(β−β)/2)2

)∣∣∣∣|β ′(z)|2
=

4
(
2+(r2

+r−2)cos 2v2
)

|re−
√
−1v2+r−1e

√
−1v2 |4

|β ′(z)|2≥
4
(
2+(r2

+r−2)cos 2v2
)

|r+r−1|4
|β ′(z)|2.

Thus the assumption of finite total curvature is equivalent to saying that

(6-5) ∞>

∫
M
|K | dM =

∫
C

|K |e2ω du1 ∧ du2

≥

∫
C

4[2+(r2
+r−2) cos(2v2)]

|r+r−1|4
|β ′(z)|2 du1 ∧ du2

≥

∫
C

4[2+(r2
+r−2) cos(2v2)]

|r+r−1|4
dv1 ∧ dv2,

where the final inequality follows from the assumption that β is a nonconstant entire
function over C, which takes almost every value of C at least one time. It is easily



174 XIANG MA, PENG WANG AND LING YANG

seen that the right-hand side of (6-5) is divergent, contradicting the finiteness of the
total curvature. �

Remarks. • Taking the imaginary part of (6-3), one can proceed as in (6-4)–
(6-5) to get a contradiction when the condition “

∫
M |K | dM <∞” is replaced

by “
∫

M |K
⊥
| dM <∞”. Therefore, if M ⊂ R4

1 is an entire spacelike stationary
graph over R2, whose normal curvature integral converges absolutely, then M
has to be a flat surface.

• Let M be a noncompact surface with a complete metric. If
∫

M |K | dM <∞,
then there is a compact Riemann surface M , such that M is conformally
equivalent to M \ {p1, p2, . . . , pr }, with p1, . . . , pr ∈ M . This is a purely
intrinsic result, discovered by A. Huber [1957]. Moreover, if we additionally
assume M to be a minimal surface in R2+m (m is arbitrary), then the Gauss map
of M is algebraic, and vice versa; see Theorem 1 of [Chern and Osserman 1967].
But this conclusion is no longer true for spacelike stationary surfaces in R4

1,
due to the examples with finite total curvature and essential singularities; see
[Ma et al. 2013]. Hence, unlike the R4 case [Osserman 1969], the conclusion
of Theorem 6.1 cannot be deduced directly from (6-1).

• Combining Theorem 1 of [Chern and Osserman 1967] and §5 of [Osserman
1969], it is easy to conclude that M = graph f := {(x, f (x)) : x ∈ R2

} is
a minimal surface in R4 with finite total curvature if and only if f = p(z)
or p(z), with p an arbitrary polynomial. Noting that any minimal graph in
R4 over R2 can be regarded as a spacelike stationary graph in Rn

1 (n ≥ 5),
the conclusion of Theorem 6.1 can not be generalized to spacelike stationary
graphs in higher-dimensional Minkowski spaces.
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COMPARISON RESULTS FOR DERIVED
DELIGNE–MUMFORD STACKS

MAURO PORTA

We establish a comparison between the notion of derived Deligne–Mumford
stack in the sense of Toën and Vezzosi and the one introduced by Lurie. It
is folklore that the two theories yield essentially the same objects, but it is
difficult to locate in the literature a precise result, despite it sometimes being
useful to be able to switch between the two frameworks.

Introduction

This short paper is devoted to establishing in a precise way the folklore equivalence
between the theory of derived Deligne–Mumford stacks introduced by B. Toën and
G. Vezzosi [2008] and the one defined by J. Lurie [2011b]. The main comparison
result will be stated in the next section. See Theorem 1.7. Even though many of the
results used to achieve the proof of the main theorem can be found scattered through
the DAG series of J. Lurie, the precise form of Theorem 1.7 has not appeared
anywhere in the literature, to the best of my knowledge.

As certain problems are easier to approach from the point of view of the functor of
points, and others from the point of view of structured spaces, a precise comparison
result can be useful. Moreover, this note can be helpful for someone who is trying
to approach the subject of derived algebraic geometry for the first time. For this
last reason, I preferred to be lengthy and to give thorough explanations even where
perhaps they would not have been necessary.

Conventions. Throughout this paper we will work freely with the language of
(∞, 1)-categories. We will call them simply∞-categories and our basic reference
on the subject is [Lurie 2009]. Occasionally, it will be necessary to consider
(n, 1)-categories. We will refer to such objects as n-categories, and we redirect the
reader to [Lurie 2009, §2.3.4] for the definitions and the basic properties. There
is no chance of confusion with the theory of (∞, n)-categories, since it plays no
role in this note. The notation S will be reserved for the∞-categories of spaces.

The paper was written when the author was a PhD student at the University of Paris Diderot and at the
University of Florence.
MSC2010: 14A20.
Keywords: derived stack, Deligne–Mumford stack, spectral stack, HAG II, DAG V.
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Whenever categorical constructions are used (such as limits, colimits, etc.), we mean
the corresponding∞-categorical notion. For the reader with a model categorical
background, this means that we are always considering homotopy limits, homotopy
colimits, etc. See [Lurie 2009, 4.2.4.1].

In [Lurie 2009] and more generally in the DAG series, whenever C is a 1-category
the notation N(C) denotes C viewed (trivially) as an ∞-category. This notation
stands for the nerve of the category C (and this is because an∞-category in [Lurie
2009] is defined to be a quasicategory, that is a simplicial set with special lifting
properties). In this note, we will systematically suppress this notation, and we
encourage the reader to think of∞-categories as model-independently as possible.
For this reason, if k is a (discrete) commutative ring we chose to denote by CAlgk
the∞-category underlying the category of simplicial commutative k-algebras and
by CAlg♥k the 1-category of discrete k-algebras.

1. Statement of the comparison result

Let us begin by quickly reviewing the two theories.

HAG II framework. In [Toën and Vezzosi 2008], the authors work within the
setting previously introduced in [Toën and Vezzosi 2005], where the theory of
model topoi is introduced and extensively explored. In particular, model categories
are used continuously throughout the whole paper. In order to compare their
constructions with the ones of [Lurie 2011b], it will be convenient to rethink the
paper in purely∞-categorical language. This is essentially no more than an easy
exercise, and we use this opportunity in this review to explain how it can be done.

Let k be a commutative ring (with unit). We will denote by sModk the category
of simplicial k-modules. There is an adjunction

U : sModk � sSet : F (F aU )

which satisfies the hypothesis of the lifting principle (see [Schwede and Shipley
2000]) and therefore it allows us to lift the (Kan) model structure on sSet to a
simplicial model structure on sModk . Moreover, with respect to this model structure,
sModk becomes a monoidal model category (whose tensor product is computed
objectwise). We set sAlgk := Com(sModk). Using the fact that every object in
sModk is fibrant, it is possible to establish that the adjunction

V : sAlgk � sModk : Symk (Symk a V ),

satisfies again the lifting principle (see [Schwede and Shipley 2000, §5]), and
therefore the (simplicial) model structure on sModk induces a simplicial model
structure on sAlgk . We will simply denote by CAlgk the∞-category underlying
sAlgk , which can be explicitly thought as the coherent nerve [Lurie 2009, §1.1.5]
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of the category of fibrant cofibrant objects in sAlgk . It is customary to denote the
opposite of this∞-category by dAffk (the∞-category of “affine derived schemes”).

This∞-category admits another description which is more useful for our pur-
poses. Let Tdisc(k) the full subcategory of ordinary schemes over Spec(k) spanned
by the relative finite-dimensional affine spaces An

k . We can think of Tdisc(k) as a (one-
sorted) Lawvere theory; equally, in the language of [Lurie 2011b], we can say that
Tdisc(k) is a discrete pregeometry. The∞-category of product-preserving functors
with values in the∞-category of spaces can be identified with the sifted completion
of Tdisc(k) and we will denote it by P6(Tdisc(k)) (see [Lurie 2009, Definition
5.5.8.8]). This is a presentable∞-category and therefore it admits a presentation by
a model category [ibid., A.3.7.6], which can be easily obtained as follows: consider
the category of simplicial presheaves on Tdisc(k) endowed with the global projective
model structure. Then the underlying∞-category of the Bousfield localization of
this model category at the collection of maps y(An

k )
∐

y(Am
k )→ y(An+m

k ) (where
y denotes the Yoneda embedding) precisely coincides with P6(Tdisc(k)). It is some-
how remarkable that P6(Tdisc(k)) admits a much stricter presentation. Consider
in fact the category of functors Tdisc(k)→ sSet which strictly preserve products.
It follows from a theorem of Quillen [ibid., 5.5.9.1] that this simplicial category
admits a global projective model structure. Moreover, a theorem of J. Bergner [ibid.,
5.5.9.2] shows that the underlying∞-category coincides precisely withP6(Tdisc(k)).
However, the category of product-preserving functors Tdisc(k)→ sSet is precisely
equivalent to sAlgk , and the two model structures agree. Therefore, we have a
categorical equivalence

CAlgk ' P6(Tdisc(k)).

The reader might want to consult also [Lurie 2011b, Remark 4.1.2] for another
discussion of this equivalence.

The next step is to introduce the étale topology on the model category sAlgk . As
this notion only depends on the homotopy category of sAlgk [Toën and Vezzosi
2005, Definition 4.3.1], it also defines a Grothendieck topology on the∞-category
CAlgk [Lurie 2009, 6.2.2.3]. We briefly recall that a morphism f : A→ B in sAlgk
is said to be étale if π0( f ) : π0(A)→ π0(B) is étale and the canonical map

πi (A)⊗π0(A) π0(B)→ πi (B)

is an isomorphism (that is, the morphism is strong). Similarly, a morphism f : A→ B
is smooth if it is strong and π0( f ) : π0(A)→ π0(B) is smooth. We denote by τét

the étale topology and by Pét (resp. Psm) the collection of étale (resp. smooth)
morphisms. Using these data, one can form the model category of hypersheaves
with respect to the étale topology. Recall that this is obtained in two steps:

(1) considering the global projective model structure on Fun(sAlgk, sSet);
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(2) considering next the Bousfield localization of this model structure at the
collection of hypercovers (see [Toën and Vezzosi 2005, §4.4 and §4.5] or
[Lurie 2009, §6.5.3]).

The result is what is denoted in [Toën and Vezzosi 2008] by dAff∼,τét . It follows
from [Lurie 2009, 6.5.2.14, 6.5.2.15] that the underlying∞-category of dAff∼,τét

can be identified with the hypercompletion Sh(dAffk, τét)
∧ (we refer the reader to

[Lurie 2009, §6.5.2] for a detailed discussion of this notion). We usually refer to
the objects in Sh(dAffk, τét)

∧ as stacks (for the étale topology). The next step is to
consider geometric stacks inside Sh(dAffk, τét)

∧. Since there are many references
for this subject [Simpson 1996; Toën and Vezzosi 2008; Toën and Vaquié 2008;
Porta and Yu 2016], we do not repeat the full definition here, but we limit ourselves
to describing the general idea. Roughly speaking, geometric stacks are stacks X
admitting a morphism p :U → X satisfying the following conditions:

(1) U is an affine derived scheme (seen as a stack via the∞-categorical Yoneda
embedding, see [Lurie 2009, §5.1.3] or [Lurie 2016a, §5.2.1]).

(2) p :U→ X is an effective epimorphism (see [Lurie 2009, §6.2.3 and 7.2.1.14]).

(3) p is either an étale or a smooth morphism.

The notions of étale and smooth morphisms between geometric stacks must be
defined with some care, proceeding by induction on the “geometric level” of the
stack. See [Porta and Yu 2016, Definition 2.8] or [Toën and Vezzosi 2008, §1.3.3]
for a complete review. When p can be chosen to be étale, we refer to X as a (higher)
derived Deligne–Mumford stack; if instead p can only be chosen to be smooth, we
refer to X as a (higher) derived Artin stack. We are mostly concerned with derived
Deligne–Mumford stacks (see however Remark 1.9). We denote the full subcategory
of Sh(dAffk, τét)

∧ spanned by derived Deligne–Mumford stacks by DM. Let us
complete the review of [Toën and Vezzosi 2008] with some additional remarks:

(1) Geometric stacks are stable under weak equivalences because only homotopy
invariant categorical constructs are used in the definition (i.e., homotopy coproducts,
homotopy geometric realizations, etc.). Therefore [Lurie 2009, 4.2.4.1] shows
that the notion of geometric stack can be equally formulated at the level of the
∞-category Sh(dAffk, τét)

∧.

(2) The category DM is naturally filtered by the notion of geometric level: a stack is
said to be (−1)-geometric if it is representable by an object in dAffk . If A ∈CAlgk ,
we choose to represent its functor of points by Spec(A) ∈ DM⊂ Sh(dAffk, τét)

∧.
Next, proceeding by induction, we say that a stack X is n-geometric if it admits an
atlas p :U→ X which is representable by (n−1)-geometric stacks in the following
precise sense: for every representable stack Spec(A) and any map Spec(A)→ X
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the base change Spec(A)×X U is (n−1)-geometric. We say that a derived stack is
geometric if it is n-geometric for some n.

(3) We denote by DMn the full subcategory of DM spanned by geometric derived
Deligne–Mumford stacks whose restriction to CAlg♥k is an n-truncated stack (i.e.,
it takes values in n-truncated spaces).

DAG V framework. The point of view taken in [Lurie 2011b] is quite different.
We refer the reader to the introduction of [Porta 2015] for an expository account of
the role of (pre)geometries (compare [Lurie 2011b, §1.2, 3.1]) in the construction of
affine derived objects. Here, we content ourselves with a short review of the theory
of G-schemes for a given geometry G from the point of view of [Lurie 2011b].
Recall either from [Lurie 2011b, Definition 12.8] or from the introduction of [Porta
2015] that a geometry is an ∞-category G with finite limits and equipped with
some extra structure, consisting of a collection of “admissible” morphisms and
a Grothendieck topology τ on G generated by admissible morphisms. If X is an
∞-topos and G is a geometry, they define an∞-category of G-structures, denoted
StrG(X). Recall that a G-structure is a functor G→ X which is left exact and takes
τ -coverings to effective epimorphisms in X.

Before moving on, it is important to discuss a very important special case. If X
is the∞-topos of S-valued sheaves on some topological space X , we can think of
a G-structure on X as a sheaf on X with values in the∞-category Ind(Gop) having
special behavior on the stalks, as the next key example shows:

Example 1.1. Let k be a fixed (discrete) commutative ring. We denote by Gét(k)
the category ((CRing♥k )

f.p.)op, the opposite of the category of discrete k-algebras of
finite presentation. Moreover, we declare a morphism in Gét(k) to be an admissible
morphism if and only if it is étale, and we endow Gét(k)with the usual étale topology.
In this case, Ind(Gét(k)op) ' CAlg♥k , the category of discrete k-algebras of finite
presentation. Then a Gét(k)-structure O on Sh(X) is a sheaf of discrete commutative
rings on X whose stalks are strictly henselian local rings. The fact that O has to
be discrete follows from its left-exactness (see [Lurie 2009, §5.5.6] for a general
discussion of truncated objects in an∞-category and more specifically [Lurie 2009,
5.5.6.16] for the needed property). The statement on stalks, instead, is due to the
following fact: for every point x ∈ X (formally seen as a geometric morphism
x−1
:Sh(X)�S : x∗), the stalk Ox := x−1O has to take étale coverings of k-algebras

of finite presentation to epimorphisms in Set. Unraveling the definitions, this means
that for every étale cover {A→ Ai } in Gét(k) and every solid diagram∐

Spec(Ai )

Spec(Ox) Spec(A),
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the lifting exists. This is a possible characterization of strictly henselian local rings
(see [de Jong et al. 2005–, Tag 04GG, condition (8)]).

As in the case of locally ringed spaces, we are not really interested in all the
transformations of G-structures, but only in those that have good local behavior.
This can be made precise by introducing the notion of local transformation of
G-structures. We recall that a morphism f : O→ O′ in StrG(X) is said to be local
if for every admissible morphism f :U → V in G the induced square

O(U ) O(V )

O′(U ) O′(V )

is a pullback in X. In Example 1.1, morphisms satisfying the above condition
simply become local morphisms of local rings.

Precisely as in the case of locally ringed spaces, we can use G-structures and local
morphisms of such to build an∞-category of G-structured topoi, denoted Top(G).
The actual construction is rather involved, and we refer to [Lurie 2011b, Definition
1.4.8] for the details. Here, we content ourselves with the following rougher idea:
the∞-category Top(G) has as objects pairs (X,OX), where X is an∞-topos and
OX is a G-structure on X, and as 1-morphisms pairs ( f, α) : (X,OX)→ (Y,OY),
where f is a geometric morphism f −1

: Y�X : f∗ and α : f −1OY→OX is a local
transformation of G-structures on X.

The category Top(G) is too huge to be of any practical interest. Therefore we
are going to construct a full subcategory Sch(G) which intuitively corresponds
to the subcategory of Sh(dAffk, τét)

∧ spanned by geometric stacks. We will see
in discussing Theorem 1.7 that this is not quite a true statement, but until then
it is a reasonable analogy. The idea is rather straightforward: as schemes are
a full subcategory of locally ringed spaces spanned by those objects which are
locally isomorphic to special ones constructed out of commutative rings, so objects
Sch(G) are structured topoi locally equivalent to a collection of special models. As
Example 1.1 suggests, it is possible to associate a G-structured topos to every object
of Ind(G). To keep the exposition as elementary as possible, we limit ourselves to
considering the case of objects in G, and we refer the reader to [Lurie 2011b, §2.2]
for the general discussion.

Let A ∈ Gop. We will denote by Aadm the small admissible site of A. The under-
lying∞-category of Aadm is the opposite of the full subcategory of Gop

A/ spanned
by admissible morphisms A→ B. We then endow Aadm with the Grothendieck
topology induced from the one on G, which we still denote τ . Finally, we let XA be
the nonhypercomplete∞-topos of (S-valued) sheaves on Aadm. We next construct
the G-structure on XA. There is a forgetful functor Aadm → G which induces a
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composition
Aop

adm×G→ Gop
×G y
−→ S,

where y is the functor classifying the Yoneda embedding, see [Lurie 2016a, §5.2.1].
This corresponds to a functor

OA : G→ PSh(Aadm)
L
−→ Sh(Aadm, τ ),

where L is the sheafification functor. Note that if the Grothendieck topology on G

were subcanonical, there would not be any need to apply L. Observe further that
OA is indeed left-exact by its very construction. We leave as an exercise to the
reader to prove that OA takes τ -coverings in effective epimorphisms (cf., [Lurie
2011b, Proposition 2.2.11]). Therefore the pair (XA,OA) defines a G-structured
topos, which we denote as SpecG(A).

Remark 1.2. As often happens in the ∞-categorical world, the construction of
the functoriality is the most subtle point in the definition of an∞-functor. So, to
build SpecG(−) as an∞-functor G' (Gop)op

→ Top(G), some additional effort is
needed. The details are out of the scope of this review, but the rough idea is to
prove that SpecG(A) enjoys a universal property, which makes SpecG(−) a right
adjoint to the global section functor Top(G)→ Ind(Gop), informally defined by
(X,OX) 7→MapX(1X,OX). Observe that the latter becomes a finite-limit-preserving
functor G→ S and therefore can be identified with an element of Ind(Gop). We
refer the reader to [Lurie 2011b, §2.2] (and especially to [Lurie 2011b, Theorem
2.2.12]) for a detailed discussion.

With these preparations, it is now easy to define Sch(G) as a full subcategory of
Top(G). We will that a G-structured topos (X,OX) is a G-scheme (resp. a G-scheme
locally of finite presentation) if there exists a collection of objects Ui ∈X satisfying
the following two conditions:

(1) The joint morphism
∐

Ui → 1X is an effective epimorphism.

(2) For every index i , there exists an object Ai ∈ Ind(Gop) (resp. an object Ai ∈G
op)

and an equivalence of G-structured topoi (X/Ui ,OX|Ui )' SpecG(Ai ).

We conclude this review with two important examples and some discussion about
them.

Example 1.3. Let us go back to the geometry G := Gét(k) of Example 1.1. The
category Sch(G) contains a very interesting full subcategory. To describe it, let us
briefly recall that an∞-topos X is said to be n-localic (for n ≥−1 an integer) if it
can be thought of as the category of (S-valued) sheaves on some Grothendieck site
(C, τ ) with G being an n-category (see our conventions on the meaning of this). We
refer the reader to [Lurie 2009, §6.4.5] for a more detailed account of this notion.
Let Sch≤1(G) be the full subcategory of Sch(G) spanned by G-schemes (X,OX)
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such that X is 1-localic. Then [Lurie 2011b, Theorem 2.6.18] shows that Sch≤1(G)

is equivalent to the category of 1-geometric (underived) Deligne–Mumford stacks.
More generally, Theorem 1.7 implies Sch≤n(G) is equivalent to the∞-category of
n-truncated (underived) Deligne–Mumford stacks.

Example 1.4. Let us define a new geometry Gder
ét (k) as follows. We let the under-

lying∞-category of Gder
ét (k) to be the opposite of the full subcategory of CAlgk

spanned by compact objects. Observe that CAlgk = Ind(Gder
ét (k)

op). We say that a
morphism in Gder

ét (k) is admissible precisely when it is a (derived) étale morphism
(see the previous section for the definition). We will further endow Gder

ét (k) with the
(derived) étale topology, which we will still denote τét (observe that if A→ B is an
étale map in the derived sense and the source is discrete, then so is the target). In
this special case, we write Specét instead of SpecG

der
ét (k). Following [Lurie 2011b,

Definition 4.3.20] (and using the important [Lurie 2011b, Proposition 4.3.15]), we
say that a derived Deligne–Mumford stack (in the sense of [Lurie 2011b]) is a
Gder

ét (k)-scheme.

The following theorem summarizes several results of [Lurie 2011b]. We report
them here because it clarifies the relation between the above two examples:

Theorem 1.5. (1) [Lurie 2011b, Proposition 4.3.15] The natural inclusion

Tét(k)→ Gder
ét (k)

exhibits the latter as a geometric envelope of Tét(k).

(2) [Lurie 2011b, Remark 4.3.14 and Corollary 4.3.16] The truncation functor
π0 : G

der
ét (k)→ Gét(k) exhibits the latter as a 0-stub for Gder

ét (k). In particular,
the composition Tét(k)→ Gder

ét (k)→ Gét(k) exhibits Gét(k) as a 0-truncated
geometric envelope of Tét(k).

(3) [Lurie 2011b, Proposition 4.3.21] The category of 1-localic Gét(k)-schemes
is equivalent to the category of Gder

ét (k)-schemes which are 1-localic and 0-
truncated.

Remark 1.6. The derived Deligne–Mumford stacks of Example 1.4 are locally
connective. There is a nonconnective variation of such objects, known as spectral
Deligne–Mumford stacks. This plays a major role in a certain branch of algebraic
topology known as chromatic homotopy theory. As we are not be concerned with
such objects in this note, we invite the interested reader to consult [Lurie 2011c,
§2, §8]. Then [Lurie 2011c, Corollary 9.28] completes the task of comparing the
category of spectral Deligne–Mumford stacks with the one of Example 1.4. We
would like to draw the attention of the reader to the fact that characteristic 0 is
needed to have such a comparison. This is a complication that comes from the
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interaction with power operations in algebraic topology. In this note, no hypothesis
on the characteristic is required.

The main theorem. Finally, we are ready to discuss the main comparison result.
In order to avoid confusion, we will refer from this moment on to derived Deligne–
Mumford stacks as the geometric stacks for the HAG context (dAffk, τét,Pét) we
discussed in Section 1, and to Gder

ét (k)-schemes to the derived Deligne–Mumford
stacks in the sense of [Lurie 2011b] we introduced in Example 1.4.

Taking inspiration from the comparison discussed in Example 1.3, we introduce
the full subcategory Sch≤n(G

der
ét (k)) of Sch(Gder

ét (k)) spanned by Gder
ét (k)-schemes

(X,OX) whose underlying∞-topos X is n-localic. We further let Schloc(G
der
ét (k))

be the union of the∞-categories Sch≤n(G
der
ét (k)) as n varies. The comparison result

can therefore be stated as follows:

Theorem 1.7. There exists an equivalence of∞-categories

8 : Schloc(G
der
ét (k))� DM :9.

Moreover, for every n ≥ 1, this restricts to an equivalence

Sch≤n(G
der
ét (k))' DMn.

The next section is entirely devoted to the proof of this theorem.

Remark 1.8. The statement Theorem 1.7 is very similar to the one of [Porta 2015,
Theorem 3.7]. However, the proof of Theorem 1.7 is somehow subtler. One of
the key points is that if (X,OX) is a derived C-analytic space (cf., [Lurie 2011a,
Definition 12.3] or [Porta 2015, Definition 1.3]), then the ∞-topos X is always
hypercomplete (see [Porta 2015, Lemma 3.2]). This is false in the algebraic setting,
and the reason is that if A ∈ CAlgk , then usually XA := Sh(Aét) itself is not
hypercomplete. As a consequence, there is no direct analogue in this setting of
[Porta 2015, Corollary 3.4]: one needs to restrict oneself to the case of localic
Gder

ét (k)-schemes to prove the corresponding statement (see Proposition 2.3).
Another important point that marks the difference is that if A ∈ CAlgk then XA

is 1-localic instead of 0-localic. Therefore the case of algebraic spaces needs to
be dealt with separately and it cannot be uniformly included in an induction proof.
This is done in Section 2.

Remark 1.9. Theorem 1.7 actually implies that the two∞-categories of derived
Artin stacks considered in [Toën and Vezzosi 2008] and in the DAG series are
equivalent. Indeed, it is not possible to deal with Artin stacks from the point of
view of structured topoi. Therefore, even in the DAG series and in J. Lurie’s Ph.D.
thesis [2004], derived Artin stacks are defined as geometric stacks with respect to
the context of affine derived Deligne–Mumford stacks in DMn .
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2. The proof of the comparison result

We start with the construction of the two functors 8 and 9. [Lurie 2011b, Theorem
2.4.1] provides us with a fully faithful embedding

φ : Sch(Gder
ét (k))→ Fun(Ind(Gder

ét (k)
op), S)= Fun(dAffop, S),

Unraveling the definition of φ, we see that for X = (X,OX) ∈ Sch(Gder
ét (k)), the

functor φ(X)
φ(X) : CAlgk→ S

is defined informally by

φ(X)(A)=MapSch(Gder
ét (k))

(Specét(A), X).

It follows from [Lurie 2011b, Lemma 2.4.13] that this functor factors through
Sh(dAffk, τét).

To obtain the functor 8 of Theorem 1.7, we are left to show that the restriction
of φ to Schloc(G

der
ét (k)) factors through DM. Let X = (X,OX)∈Sch(Gder

ét (k)). More
specifically, the proof of Theorem 1.7 breaks into the following independent steps:

(1) Let n ≥ 1. If the underlying∞-topos of X is n-localic, then φ(X) is hyper-
complete.

(2) Let n≥ 1. If the underlying∞-topos of X is n-localic, then φ(X) is geometric
and n-truncated.

(3) The previous two points imply that φ factors through a fully faithful functor8 :
Sch(Gder

ét (k))→ DM. Therefore, to complete the proof, it will be sufficient to
show that every object in DM arises is of the form φ(X) for X ∈Schloc(G

der
ét (k)).

We deal with the first point in Section 2. In Section 2 we discuss the special case
of derived algebraic spaces, which is then used as base for the proof by induction
of the second point given in Section 2. Finally, we treat the third point in Section 2,
where the proof of Theorem 1.7 will be achieved.

Hypercompleteness. Let us begin with a couple of preliminary lemmas.

Lemma 2.1. Let f : B→ A be a morphism in CAlgk between finitely presented
objects. The following conditions are equivalent:

(1) f is étale.

(2) The morphism Specét(A)→ Specét(B) is étale in the sense of [Lurie 2011b,
Definition 2.3.1].

Proof. A proof of this lemma can be formally deduced from [Lurie 2011d, Theorem
1.2.1]. We will propose here a shorter proof that works fine in the connective
situation. The implication (1) ⇒ (2) is [Lurie 2011b, Example 2.3.8]. Let us
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show that (2) ⇒ (1). Since both A and B are finitely presented, we see that
π0(A)→ π0(B) is finitely presented. If we show that LA/B ' 0, we will obtain that
B→ A is finitely presented (in virtue of [Lurie 2011a, Proposition 8.8]1

Let
f −1
: Sh(Aét, τét)→ Sh(Bét, τét)

be the inverse image functor. Consider the sheaf LOA/ f −1OB on Aét defined by

C 7→ LOA(C)/ f −1OB(C) = LC/ f −1OB(C).

Since the morphism of Tét(k)-structured topoi Specét(A)→ Specét(B) is étale in
the sense of [Lurie 2011b, Definition 4.3.1], we see that f −1OB ' OA. Therefore
this sheaf is identically zero.

On the other side, if η−1
: Sh(Aét, τét)→ S is a geometric point, then

η−1(LOA/ f −1OB )' Lη−1OA/η−1 f −1OB .

We can identify η−1 f −1OB with a strictly henselian B-algebra B ′. Since the map
B→ B ′ is formally étale, we conclude that

Lη−1OA/η−1 f −1OB ' Lη−1OA/B .

This is also the stalk of the sheaf on Aét defined by

C 7→ LC/B .

Therefore, this sheaf vanishes as well. In particular, LA/B ' 0, completing the
proof. �

Let us recall the following result from [Lurie 2011d]:

Lemma 2.2. Let Top≤n be the full subcategory of RTop spanned by n-localic
∞-topoi. Then Top≤n is categorically equivalent to an (n+ 1)-category.

Proof. This is a direct consequence of [Lurie 2011d, Lemma 1.3.5] and of [Lurie
2009, 2.3.4.18]. �

Proposition 2.3. Let X = (X,OX) be a Gder
ét (k)-scheme and suppose that X is

n-localic, with n ≥ 1. Then the functor φ(X) : C→ S is a hypercomplete sheaf.

1We warn the reader that there is a small mistake in [Lurie 2011a, Example 8.4], when considering
morphisms of finite presentation to order 0. Namely, it is not true that a discrete A-algebra B is finitely
generated if the canonical map colim HomA(B,Cα)→ HomA(B, colim Cα) is injective for every
filtered diagram {Cα} of A-algebras, the easiest counterexample being A = Z and B =Q. However,
the converse is true, and this is precisely what is used afterwards. Therefore the subsequent results are
not affected by this. This issue has been fixed in [Lurie 2016b].
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Proof. Let U •→U be an étale hypercover in the category dAffk . Let Top≤n(G
der
ét (k))

be the ∞-category of Gder
ét (k)-structured ∞-topoi which are m-localic for some

m ≤ n. We claim that the geometric realization of the simplicial object Specét(U •)
is Top≤n(G

der
ét (k)) is precisely Specét(U ). The claim directly implies the lemma,

since
φ(X)(Specét(U ))=MapSch(Tét(k))(Specét(U ), X)

=MapTop≤n(Tét(k))(Specét(U ), X)

= lim MapTop≤n(Tét(k))(Specét(U •), X)

= limφ(X)(Specét(U •)).

We are therefore reduced to proving the claim. Let us denote by XU the topos of
(nonhypercomplete) sheaves on the small étale site of U . It follows from Lemma 2.1
that each face map

Specét(U n)→ Specét(U n−1)

is étale. Thus, we can find objects V n
∈ XU and identifications XU n ' (XU )/V n .

The universal property of étale subtopoi (see [Lurie 2009, 6.3.5.6]), shows that we
can arrange the V n into a simplicial object in XU . Using statement (3′) in the proof
of [Lurie 2011b, Proposition 2.3.5], we are reduced to prove that in Top≤n one has
an equivalence

XU ' colimXU • .

Since Top≤n is an n-category in virtue of Lemma 2.2, Proposition A.1 shows that a
presheaf with values in Top≤n has descent if and only if it has hyperdescent. We are
therefore reduced to the case where U • is the Čech nerve of the map U 0

→U . In
this case, the general descent theory for∞-topoi (see [Lurie 2009, 6.1.3.9]) allows
us to conclude. �

The case of algebraic spaces. Let A ∈ CAlgk . We denote by Abig, ét the big étale
site of A: that is, its underlying ∞-category is the opposite of (CAlgk)A/, and
the Grothendieck topology is the (derived) étale one. There are continuous and
cocontinuous morphisms of∞-sites

(Aét, τét) (Abig,ét, τét) (dAffk, τét)
u v

.

Note that u commutes with finite limits. It follows from [Porta and Yu 2016, Lemma
2.14] that the induced adjunction

us : Sh(Aét, τét)� Sh(Abig, ét, τét) : us

is a geometric morphism of∞-topoi, in other words, us commutes with finite limits.
Here us denotes the restriction functor along u and us is obtained via the left Kan
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extension along u. We refer the reader to [Porta and Yu 2016, §2.4] for a more
detailed discussion of the chosen notations. In particular, we can use [Lurie 2009,
5.5.6.16] to conclude that us takes n-truncated objects to n-truncated objects.

This is not true for v, because it commutes only with weakly contractible limits.
However, we still have an adjunction

vs : Sh(Abig, ét, τét)� Sh(dAffk, τét) : v
s,

which can be identified with the canonical adjunction

vs : Sh(dAffk, τét)/Spec(A) � Sh(dAffk, τét) : v
s,

where Spec(A) denotes the functor of points associated to A, accordingly to the
notation introduced at the end of Section 1.

Definition 2.4. Let k be a commutative ring, A a commutative k-algebra and
X ∈Sh(dAffk, τét) any sheaf equipped with a natural transformation α : X→Spec(A).
We will say that α exhibits X as an étale derived algebraic space over Spec(A) if
there exists a 0-truncated sheaf F ∈ Sh(Aét, τét) and an equivalence X ' vs(us(F))
in Sh(dAffk, τét)/Spec(A).

Remark 2.5. The above definition is the analogue of [Lurie 2011b, Definition
2.6.4] in the derived setting. Indeed, let us replace the ∞-category CAlgk with
the 1-category CAlg♥k . Keeping the same notations as above, we see that if
G ∈ Sh(Abig, ét, τét) then

vs(G)=
∐

φ:A→B

G(φ).

If moreover F is an object in Sh(Aét, τét), then (us F)(φ)= φ−1(F)(B). In conclu-
sion, we have

vs(us(F))(B)= {(φ, η) | φ ∈ Homk(A, B), η ∈ (φ−1 F)(B)}.

This coincides precisely with the definition of F̂ given in [Lurie 2011b, Notation
2.6.2]. A similar description holds true in the derived setting. Indeed, there is
a natural transformation vs(us(F))→ Spec(A). The fiber over a given map f :
Spec(B)→ Spec(A) coincides precisely with the global sections of the discrete
object f −1(F).

The following proposition is the analogue of [Lurie 2011b, 2.6.20]. The proof is
essentially unchanged.

Proposition 2.6. Let α : Y → Spec(A) be a natural transformation of stacks. Write
Specét(A)= (X,OX). The following conditions are equivalent:

(1) α exhibits Y as an étale derived algebraic space over Spec(A).
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(2) Y is representable by a Gder
ét (k)-scheme (Y,OY) and α induces an equivalence

(Y,OY)' (X/U ,OX|U ) for some discrete object U ∈ X.

(3) The morphism α is 0-truncated and 0-representable by étale maps.

Proof. We first prove the equivalence of (1) and (2). If α exhibits Y as an étale de-
rived algebraic space over Spec(A), we can find a 0-truncated sheaf U ∈Sh(Aét, τét)

and an equivalence Y ' vs(us(U )) in Sh(dAff, τét)/Spec(A). Now, [Lurie 2011b,
Remark 2.3.4] and Remark 2.5 show together that the functor represented by
(X/U ,OX|U ) coincides with Y . Conversely, if (2) is satisfied, then U defines an
étale derived algebraic space vs(us(U )) over Spec(A), and [Lurie 2011b, Remark
2.3.4] again allows us to identify it with Y .

Let us now prove the equivalence of (1) and (3) First, assume that (3) is satisfied.
In this case, we can define a sheaf U : Aét→ S by sending an étale map f : A→ B
to the fiber product

U (B) Y (B)

{∗} Map(A, B).

αB

f

Since α is 0-truncated, we see that U takes values in Set. Since it is obviously a
sheaf, it defines a 0-truncated object in Sh(Aét, τét). [Lurie 2011b, Remark 2.3.4]
shows that vs(us(U )) can be canonically identified with Y .

Finally, let us show that (1) implies (3). We already know that, in this situation,
α is 0-truncated. Choosing sections ηα ∈ Y (Aα) which generate Y , we obtain an
effective epimorphism ∐

Spec(Aα)→ vs(us(Y ))

in Sh(dAffk, τét). Suppose that there exists a (−1)-truncated morphism

vs(us(Y ))→ Spec(B)

for some B ∈ CAlgk . In this case, we see that

Spec(Aα)×vs(us(Y )) Spec(Aβ)' Spec(Aα)×Spec(B) Spec(Aβ)' Spec(Aα⊗B Aβ).

In the general case, each fiber product Yα,β := Spec(Aα)×vs(us(Y )) Spec(Aβ) is
again a derived algebraic space étale over A. We claim moreover that the canonical
morphism Yα,β → Spec(Aα ⊗A Aβ) is (−1)-truncated. Assuming the claim, it
follows that Yα,β→ Spec(A) is (−1)-representable by étale maps, hence it would
follow that the morphism Spec(Aα)→ vs(us(Y )) is 0-representable. Finally, we
see that it is representable by étale maps combining the equivalence between (1)
and (2) with Lemma 2.1.
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We are left to prove the claim. Fix fα : Aα→ B, fβ : Aβ→ B together with a
homotopy making the diagram

A Aα

Aβ B

fα
fβ

commutative. We have pullback squares

Yα,β vs(us(Y ))

Spec(Aα)×Spec(Aβ) vs(us(Y ))×Spec(A) vs(us(Y )),

and since α : vs(us(Y ))→ Spec(A) is 0-truncated, the statement follows. �

φ(X) is geometric. We can now prove that if X ∈ Sch≤n+1(G
der
ét (k)), then φ(X)

belongs to DMn . The proof goes by induction, and Proposition 2.6 serves as basis
of the induction. Before doing that, however, it is convenient to prove the following
lemma:

Lemma 2.7. Let n ≥ 0 be an integer. Fix X = (X,OX) ∈ Sch≤n+1(G
der
ét (k)) and let

V ∈ X be an object such that (X/V ,OX|V )' Specét(A) for some A ∈ CAlgk . Then
V is n-truncated.

Proof. We start by replacing X with t0(X) := (X, π0OX ), which is a Gét(k)-scheme
in virtue of [Lurie 2011b, Corollary 4.3.30]. We can therefore replace A by π0(A)
(observe also that Specét(π0(A))' SpecGét(k)(π0(A))).

Let us denote by FX :CAlg♥k →S the (truncated) functor of points associated to X .
Similarly, let FV : CAlg♥k → S be the functor of points associated to (X/V ,OX|V ).
The hypothesis shows that FV is nothing but the functor of points associated to π0(A)
(with the notations of [Toën and Vezzosi 2008], this would be t0(Spec(π0(A)))).
Reasoning as in the proof of [Lurie 2011b, Theorem 2.6.18], we see that to prove
that V is n-truncated is equivalent to prove that for every (discrete) k-algebra B the
fibers of FV (B)→ FX (B) are n-truncated. [Lurie 2011b, Lemma 2.6.19] shows
that F(B) is (n+ 1)-truncated for every k-algebra B. On the other side, FV (B) is
discrete by hypothesis. It follows from the long exact sequence of homotopy groups
that the fibers of FV (B)→ FX (B) are n-truncated, thus completing the proof. �

Proposition 2.8. Let X = (X,OX ) ∈ Sch(Gder
ét (k)) and suppose that X is n-localic

for n ≥ 1. Then the stack φ(X) is (n+ 1)-geometric and moreover its truncation
t0(φ(X)) is n-truncated.
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Proof. The fact that t0(φ(X)) is n-truncated follows directly from [Lurie 2011b,
Lemma 2.6.19].

Suppose now that X = (X,OX) is an n-localic Gder
ét (k)-scheme. By definition,

we can find a collection of objects Vi ∈ X such that

(1) the morphism
∐

Vi → 1X is an effective epimorphism, and

(2) the Gder
ét (k)-schemes (X/Vi ,OX |Vi ) are equivalent to Specét(Ui ) for Ui ∈ dAffk ,

and each Ui is of finite presentation.

Set V :=
∐

Vi . By functoriality, we obtain a map∐
φ(Vi )→ φ(X).

We only need to show that this map is (n− 1)-representable by étale morphisms
and that it is an effective epimorphism. The second statement is an immediate
consequence of [Lurie 2011b, Lemma 2.4.13].

Suppose first that X ' Specét(A). In this case, the universal property of Specét

proved in [Lurie 2011b, §2.2] shows that φ(X)= Spec(A), and therefore φ(X) is
(−1)-geometric. Now suppose that X is a general n-localic Gder

ét (k)-scheme. Since
φ commutes with fiber products and is fully faithful, we see that for every map
Spec(B)= φ(Specét(B))→ X , one has

Spec(B)×φ(X) φ(Vi )' φ(Specét(B)×(X,OX ) (X/Vi ,OX |Vi )).

Let ( f∗, ϕ) : Specét(B) → (X,OX ) be the given map. Then the fiber product
Specét(B) ×(X,OX ) (X/Vi ,OX |Vi ) is the étale map to Specét(B) classified by the
object f −1(Vi ) ∈ XA, as it easily follows from [Lurie 2009, 6.3.5.8].

We complete the proof proving by induction on n that each morphism

φ(X/Vi ,OX|Vi )→ φ(X)

is (n − 1)-representable by étale maps. If n = 1, Lemma 2.7 shows that each
object Vi is 0-truncated. It follows from Proposition 2.6 that the fiber product
Spec(A)×φ(X)φ(Vi ) is 1-geometric. Therefore, φ(X) is 2-geometric. Now suppose
that X is n-localic for n>1. Lemma 2.7 again shows that each Vi is (n−1)-truncated,
and therefore [Lurie 2011b, Lemma 2.3.16] shows that the underlying∞-topos of

Specét(A)×(X,OX ) (X/Vi ,OX |Vi )

is (n − 1)-localic. The inductive hypothesis shows therefore that its image via
the functor φ is n-geometric, and that the map to Spec(A) is étale. The proof is
therefore complete. �
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Essential surjectivity. We finally prove that φ is essentially surjective. Let X ∈DM
be m-geometric and suppose that t0(X) is n-truncated. It follows that the small
étale site (t0(X))ét is equivalent to an n-category. Recall that there is an equivalence
of∞-categories

Xét � (t0(X))ét

(one can proceed as in [Porta 2015, Proposition 3.16] using as base of the induction
[Toën and Vezzosi 2008, Corollary 2.2.2.10]). We conclude that Xét is an n-category.
In particular, the∞-topos X := Sh(Xét, τét) is n-localic. Define a Gder

ét (k)-structure
on X as follows. Introduce the functor

Gder
ét (k)× (Xét)

op
→ S,

defined as
(U, V ) 7→MapdAffk

(V,U ).

Fix U ∈ Gder
ét (k). Since the Grothendieck topology on dAffk is hypersubcanonical,

we see that the resulting object of Fun((Xét)
op, S) is a hypersheaf. In particular, we

obtain a well defined functor

OX : Tét→ Sh(Xét, τét)

that in fact factors through the hypercompletion of this category. In order to show
that it is a Tét-structure, we only need to check the following statements:

(1) OX is left-exact.

(2) OX takes τét-coverings to effective epimorphisms.

Since limits in Sh(Xét, τét) are computed objectwise, the first statement follows
directly from the definition of OX . We are left to show that OX takes τét-coverings
to effective epimorphisms. Let {Ui→U } be a τét-cover in Tét(k). We have to show
that the morphism ∐

OX (Ui )→ OX (U )

is an effective epimorphism. In other words, we have to show that

(2-1)
∐

π0OX (Ui )→ π0OX (U )

is an epimorphism of sheaves of sets.
Fix V ∈ Xét and let α ∈ (π0OX (U ))(V ). By definition of the sheaf π0OX (U ),

this is equivalent to the given of an étale cover {V j → V } plus morphisms V j →U .
For every pair of indexes i and j , let

Vi j :=Ui ×U V j .
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Then the collection of morphisms {Vi j → V j }i for j fixed is an étale cover of
V j . Furthermore, the composition Vi j → V j → U can be seen as an element
in αi j ∈ (π0OX (U ))(V j ), while the canonical map Vi j → Ui defines an element
in βi j ∈ (π0OX (Ui ))(Vi j ). The construction shows that the image of βi j via the
canonical map

(π0OX (Ui ))(Vi j )→ π0OX (U )(Vi j )

coincides with αi j . Since the collection of maps {Vi j → V }i is an étale cover, we
have precisely proven that (2-1) is an epimorphism of sheaves of sets.

We therefore conclude that OX is a hypercomplete Tét(k)-structure on X. Since
Gder

ét (k) is a geometric envelope for Tét(k), we can identify OX with a Gder
ét (k)-

structure on X. The next step is to prove that the pair (X,OX ) is a Gder
ét (k)-scheme.

To do this, we need the following criterion for a morphism of Grothendieck sites
to induce an equivalence between the associated hypercomplete∞-topoi. It is the
∞-categorical analogue of [de Jong et al. 2005–, Tag 039Z], and we refer to [Porta
and Yu 2016, Proposition 2.22] for a proof.

Lemma 2.9. Let (C, τ ), (D, σ ) be two∞-sites. Let u :C→D be a functor. Assume
that

(i) u is continuous;

(ii) u is cocontinuous;

(iii) u is fully faithful;

(iv) for every object V ∈ D there exists a σ -covering of V in D of the form
{u(Ui )→ V }i∈I ;

(v) for every object D ∈ D, the representable presheaf hD is a hypercomplete
sheaf.

Then the induced adjunction Sh(C, τ )∧ ' Sh(D, σ )∧ is an equivalence of ∞-
categories.

Proposition 2.10. The pair (X,OX ) is a Gder
ét (k)-scheme.

Proof. Choose an étale atlas p :
∐

Ui → X in the category DM. Since each
morphism pi :Ui→ X is étale, we see each of them defines an element in the small
étale site (Xét, τét). Since this site is subcanonical, we can identify each Ui with
objects Vi ∈X. Moreover, the étale subtopos (X/Vi ,OX |Vi ) is canonically identified
with (Sh((Ui )ét, τét),OUi ). The construction of the (absolute) spectrum functor of
[Lurie 2011b, §2.2], shows that

Specét(Ui )' (Sh((Ui )ét, τét),OUi ).

It will therefore be sufficient to show that the morphism
∐

Vi → 1X is an effective
epimorphism. In order to do this, it is convenient to replace the small étale site Xét
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with the site ((Geom≤n
/X )ét, τét) of étale maps Y → X , where Y is a geometric stack

such that t0(Y ) is n-truncated. We claim that the natural inclusion

(2-2) (Xét, τét)→ ((Geom≤n
/X )ét, τét)

is a Morita equivalence of sites. In other words, we claim that it induces an
equivalence of∞-topoi

Sh(Xét, τét)' Sh((Geom≤n
/X )ét, τét).

Lemma 2.9 implies that the morphism (2-2) induces an equivalence of hypercom-
plete∞-topoi:

(2-3) Sh(Xét, τét)
∧
' Sh((Geom≤n

/X )ét, τét)
∧.

Observe now that the mapping spaces in (Geom≤n
/X )ét are n-truncated, hence [Lurie

2009, 2.3.4.18] implies (Geom≤n
/X )ét is (categorically equivalent to) an n-category.

Therefore, the ∞-topos Sh((Geom≤n
/X )ét, τét) is n-localic. The same statement

holds for Sh(Xét, τét), as we already discussed. Therefore, in order to check that
the induced adjunction is an equivalence of∞-categories, it is enough to check
that the restriction to n-truncated object is an equivalence. This follows from
equivalence (2-3), since we know from [Lurie 2009, 6.5.2.9] that n-truncated
objects are hypercomplete.

In this way, we see that 1X is the representable sheaf associated to the identity
map idX : X→ X . We are therefore left to show that∐

π0 Map(−,Ui )→ π0 Map(−, X)

is an epimorphism of sheaves on ((Geom≤n
/X )ét, τét). This follows immediately from

the fact that the maps Ui → X were an atlas for X . �

We are left to prove that φ(X,OX ) ' X . We can proceed by induction on the
geometric level m of X . If m = −1, the statement is obvious. Otherwise, let
Ui → X be an étale atlas for X . Let U :=

∐
Ui and let U • be the Čech nerve of

U→ X . Combining the proof of Proposition 2.10, Proposition 2.8 and the induction
hypothesis, we see that U • is a groupoid presentation for both X and φ(X,OX ).
We therefore proved that the essential image of the functor

φ : Sch(Gder
ét (k))→ Sh(dAffk, τét)

contains all the Deligne–Mumford stacks in the sense of [Toën and Vezzosi 2008].

Appendix: Descent versus hyperdescent

Let (C, τ ) be an∞-Grothendieck site. It is well known that for a presheaf on C

with values in a truncated ∞-category, descent and hyperdescent are equivalent
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conditions. However, we could not locate a precise reference in the literature. For
this reason, we decided to include a proof of this fact:

Proposition A.1. Let (C, τ ) be an∞-Grothendieck site and let D be an (n+ 1, 1)-
category. Then A functor F : Cop

→ D satisfies descent if and only if it satisfies
hyperdescent.

Proof. Let D ∈D be any object and let cD :D→ S be the functor corepresented
by D. Then F satisfies descent (resp. hyperdescent) if and only if cD ◦ F does.
Since D is an (n+1, 1)-category, we see that cD◦F takes values in τ≤nS. Therefore,
we may replace D with S and suppose that F takes values in the full subcategory
of n-truncated objects. For every U ∈ C, let us denote by hU the sheafification of
the presheaf associated to U . Since F is an n-truncated object, we see that

MapSh≤n(C,τ )
(τ≤nhU , F)'MapSh(C,τ )(hU , F)' F(U ),

where the last equivalence is obtained combining the universal property of the
sheafification with the Yoneda lemma. Therefore, it will be sufficient to show that
for every hypercover U •→U in C, the augmented simplicial diagram

τ≤nhU •→ τ≤nhU

is a colimit diagram in Sh≤n(C, τ ). Since τ≤n is a left adjoint, we see that in
Sh≤n(C, τ ) the relation

|τ≤nhU • | ' τ≤n|hU • |

holds. Moreover, since U • → U is an hypercover, the morphism |hU • | → hU

is ∞-connected in virtue of [Lurie 2009, 6.5.3.11]. Since τ≤n commutes with
∞-connected morphisms, we conclude that

τ≤n|hU • | → τ≤nhU

is an ∞-connected morphism between n-truncated objects. Therefore it is an
equivalence in Sh(C, τ ). In conclusion, the morphism |τ≤nhU • | → τ≤nhU is an
equivalence in Sh≤n(C, τ ). The proof is now complete. �
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ON LOCALLY COHERENT HEARTS

MANUEL SAORÍN

Let G be a locally coherent Grothendieck category. We show that, under
particular conditions, if a t-structure τ in the unbounded derived category
D(G) restricts to the bounded derived category Db(fp(G)) of its category
of finitely presented (i.e, coherent) objects, then its heart Hτ is a locally
coherent Grothendieck category on which Hτ ∩ Db(fp(G)) is the class of
finitely presented objects. Those particular conditions are always satisfied
when G is arbitrary and τ is the Happel–Reiten–Smalø t-structure in D(G)
associated to a torsion pair in fp(G) or when G = Qcoh(X) is the category
of quasicoherent sheaves on a noetherian affine scheme X and τ is any
compactly generated t-structure in D(X) := D(Qcoh(X)) which restricts to
Db(X) :=Db(coh(X)). In particular, the heart of any t-structure in Db(X) is
the category of finitely presented objects of a locally coherent Grothendieck
category.

1. Introduction

Beilinson, Bernstein and Deligne [1982] introduced the notion of a t-structure
in a triangulated category in their study of perverse sheaves on an algebraic or
analytic variety. If D is such a triangulated category, a t-structure is a pair of full
subcategories satisfying some axioms which guarantee that their intersection is an
abelian category H, called the heart of the t-structure. This category comes with a
cohomological functor D→H. Roughly speaking, a t-structure allows to develop
an intrinsic (co)homology theory, where the homology “spaces” are again objects
of D itself.

Nowadays, t-structures are used in several branches of mathematics, with special
impact in algebraic geometry, homotopical algebra, and representation theory of
groups and algebras. When dealing with t-structures, a natural question arises. It
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asks under which conditions the heart of a given t-structure is a “nice” abelian cate-
gory. Using a classical hierarchy for abelian categories introduced by Grothendieck,
one may think of Grothendieck and module categories as the nicest possible abelian
categories. It is therefore not surprising that the question of when the heart of a
t-structure is a Grothendieck or module category received much attention in recent
times (see, e.g., [Hoshino et al. 2002; Colpi et al. 2007; 2011; Colpi and Gregorio
2010; Mantese and Tonolo 2012; Parra and Saorín 2016b; 2015; Psaroudakis and
Vitória 2015; Nicolás et al. 2015]).

Among Grothendieck categories, the most studied ones are those that have
finiteness conditions (e.g., those which are locally coherent, locally noetherian
or even locally finite). Module categories over noetherian or coherent rings or
over Artin algebras, or the categories of quasicoherent sheaves over coherent or
noetherian schemes provide examples of such categories. A natural subsequent
question would ask when a given t-structure has a heart which is a Grothendieck
category with good finiteness conditions. In this paper, we tackle the question for
the locally coherent condition, assuming that the t-structure lives in the (unbounded)
derived category D(G) of a Grothendieck category G which is itself locally coherent.
Although to find a general answer seems to be hopeless, it is not so when the
t-structure restricts to Db(fp(G)), the bounded derived category of the category of
finitely presented (i.e., coherent) objects. Our basic technical result in the paper,
Proposition 4.5, gives a precise list of sufficient conditions on a t-structure in
D(G) so that its heart H is a locally coherent Grothendieck category on which
H∩Db(fp(G)) is the class of its finitely presented objects. As an application, we
give the main results of the paper, referring the reader to the next section for the
notation and terminology used:

(1) (Theorem 5.2) Let G be a locally coherent Grothendieck category and t =
(T ,F) be a torsion pair in G. The associated Happel–Reiten–Smalø t-structure
in D(G) restricts to Db(fp(G)) and has a heart which is a locally coherent
Grothendieck category if, and only if, F is closed under taking direct limits in
G and t restricts to fp(G).

(2) (Theorem 6.3) If R is a commutative noetherian ring, then any compactly
generated t-structure in D(R) which restricts to Db

fg(R)∼= Db(R-mod) has a
heart H which is a locally coherent Grothendieck category on which H∩Db

fg(R)
is the class of its finitely presented objects.

(3) (Corollary 6.4) If R is a commutative noetherian ring, then the heart of each
t-structure in Db

fg(R) is equivalent to the category of finitely presented objects
of some locally coherent Grothendieck category.

Of course, when taking the affine scheme X = Spec R in (2) and (3), one obtains
the geometric versions mentioned in the abstract (see also Corollary 6.5).
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The organization of the paper is as follows. Section 2 introduces all the concepts
and terminology used in the paper. In Section 3 we give some general results about
locally coherent Grothendieck categories which are used later. Section 4 contains
the technical Proposition 4.5, which is central to the paper, and a few auxiliary
results needed for its proof. Section 5 is dedicated to the Happel–Reiten–Smalø
t-structure and the proof of Theorem 5.2. The final Section 6 gives Theorem 6.3, of
which Corollary 6.4 is a direct consequence, and two lemmas needed for its proof.

2. Preliminaries and terminology

All categories in this paper will be additive and all rings will be supposed to be
associative with unit, unless otherwise specified. Whenever the term “module”
is used over a noncommutative ring, it will mean “left module” and, for a given
ring R, we will denote by R-Mod the category of all R-modules. Let A be an
additive category in the rest of the paragraph. If C is any class of objects in A, the
symbol C⊥ (resp. ⊥C) will denote the full subcategory of A whose objects are those
X ∈ Ob(A) such that HomA(C, X) = 0 (resp. HomA(X,C) = 0), for all C ∈ C.
The expression “A has products (resp. coproducts)” will mean that A has arbitrary
set-indexed products (coproducts). If S is a set of objects in A, we denote by
sum(S) the class of objects which are isomorphic to a finite coproduct of objects
of S, and by add(S) the class of objects isomorphic to a direct summand of a finite
coproduct of objects of S. When A has coproducts, we shall say that an object X
is a compact (or small ) object when the functor HomA(X, ?) :A→ Ab preserves
coproducts.

Two types of additive categories will get most of our interest in this paper:
abelian categories (see [Popescu 1973]) and triangulated categories (see [Neeman
2001]). Diverting from the terminology in this latter reference, for a triangulated
category D, the shift or suspension functor will be denoted by ?[1], putting ?[k] for
its k-th power, for each k ∈ Z. We shall use the term class (resp. set) of generators
with two different meanings, depending on whether we are in the abelian or the
triangulated context. When A is an abelian category with coproducts, a class (resp.
set) of generators S is a class (set) of objects such that each object in A is an
epimorphic image of a coproduct of objects in S. When S is a class (set) of objects
in the triangulated category D, we shall say that it is a class (set) of generators if an
object X of D is zero exactly when HomD(S[k], X)= 0, for all S ∈ S and all k ∈ Z.

Given a triangulated category D, a subcategory E will be called a triangulated
subcategory when it is closed under taking extensions and E[1] = E . If, in addition,
it is closed under taking direct summands, we will say that E is a thick subcategory
of D. When S is a set of objects of D, we shall denote by triaD(S) the smallest
triangulated subcategory of D that contains S, and by thickD(S)) the smallest thick
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subcategory of D that contains S.
For an additive category A, we will denote by C(A) and K(A) the category of

chain complexes of objects of A and the homotopy category of A. Diverting from
the classical notation, we will write superindices for chains, cycles and boundaries in
ascending order. We will denote by C−(A), C+(A), and Cb(A) the full subcategories
of C(A) consisting of those objects isomorphic to upper bounded, lower bounded,
and upper and lower bounded complexes, respectively, and similarly for K(A),
K−(A), K+(A), and Kb(A). Note that K(A) is always a triangulated category
of which K−(A), K+(A) and Kb(A) are triangulated subcategories. When A
is an abelian category, we will denote by D(A) its derived category, which is
the one obtained from C(A) by keeping the same objects and formally inverting
the quasi-isomorphisms (see [Verdier 1996] for the details). We shall denote
by D−(A), D+(A), and Db(A) the full subcategory of D(A) consisting of those
complexes X such that H k(X) = 0, for all k � 0, k � 0, and |k| � 0, respec-
tively, where H k

: D(A)→A denotes the k-th homology functor, for each k ∈ Z.
The objects of D−(A) (resp. D+(A), Db(A)) will be called homologically upper
bounded (resp. homologically lower bounded, homologically bounded) complexes.
For integers m ≤ n, we will denote by D [m,n](A) the full subcategory of D(A)
consisting of the complexes X such that H k(X)= 0 for integers k not in the closed
interval [m, n]. We will also use D≤n(A), D<n(A), D≥n(A), and D>n(A) to denote
the full subcategories consisting of the complexes X such that H i (X) = 0, for
all i > n, i ≥ n, i < n, and i ≤ n, respectively.

Strictly speaking, for a general abelian category A, the category D(A) need not
exist since the morphisms between two given objects could form a proper class and
not just a set. However, this problem disappears when A = G is a Grothendieck
category. This is a cocomplete abelian category with a set of generators on which
direct limits are exact. In a Grothendieck category G an object S is called finitely
presented when HomG(S, ?) : G → Ab preserves direct limits. We say that G is
locally finitely presented when it has a set of finitely presented generators. The
reader is referred to [Crawley-Boevey 1994] for the corresponding more general
concept of locally finitely presented additive categories with direct limits and is
invited to check that, in the case of Grothendieck categories, it coincides with
the one given here. Recall that an object in a Grothendieck category is called
noetherian when it satisfies the ascending chain condition on subobjects. A locally
noetherian Grothendieck category is a Grothendieck category which has a set of
noetherian generators. When G is locally finitely presented and locally noetherian,
an object N of G is noetherian if and only if it is finitely presented. (See [Krause
1997, Proposition A.11] for one direction, the reverse one being obvious since each
noetherian object in such a category is an epimorphic image of a finitely presented
one and the kernel of this epimorphism is again noetherian.)
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Recall that if D and A are a triangulated and an abelian category, respectively,
then an additive functor H : D→A is a cohomological functor when, given any
triangle X→ Y → Z +

−→, one gets an induced long exact sequence in A:

· · · → H n−1(Z)→ H n(X)→ H n(Y )→ H n(Z)→ H n+1(X)→ · · · ,

where H n
:= H ◦ (?[n]), for each n ∈ Z.

A torsion pair in the abelian category A is a pair t = (T ,F) of full subcategories
such that HomA(T, F) = 0, for all T ∈ T and F ∈ F , and each object X of A
fits into an exact sequence 0→ TX → X→ FX → 0, where TX ∈ T and FX ∈ F .
In this latter case the assignments X  TX and X  FX extend to endofunctors
t, (1 : t) : A→ A. The functor t is usually called the torsion radical associated
to t . The torsion pair t will be called hereditary when T is closed under taking
subobjects in A.

Now let D be a triangulated category. A t-structure in D (see [Beilinson et al.
1982, Section 1]) is a pair τ = (U,W) of full subcategories, closed under taking
direct summands in D, which satisfy the following properties:

(i) HomD(U,W [−1])= 0, for all U ∈ U and W ∈W .

(ii) U[1] ⊆ U .

(iii) For each X ∈ Ob(D), there is a triangle U → X→ V +
−→ in D, where U ∈ U

and V ∈W[−1].

In this case W = U⊥[1] and U = ⊥(W[−1])= ⊥(U⊥) and, for this reason, we will
write a t-structure as τ = (U,U⊥[1]). We will call U and U⊥ the aisle and the co-aisle
of the t-structure. The objects U and V in the above triangle are uniquely determined
by X , up to isomorphism, and define functors τU : D→ U and τU⊥ : D→ U⊥

which are right and left adjoints to the respective inclusion functors. We call them
the left and right truncation functors with respect to the given t-structure. The
full subcategory H = U ∩W = U ∩ U⊥[1] is called the heart of the t-structure
and it is an abelian category, where the short exact sequences “are” the triangles
in D with its three terms in H. Moreover, with the obvious abuse of notation,
the assignments X  (τU ◦ τ

U⊥[1])(X) and X→ (τU
⊥
[1]
◦ τU )(X) define naturally

isomorphic functors D→H which are cohomological (see [Beilinson et al. 1982]).
We will identify them and denote the corresponding functor by H̃ . When D has
coproducts, the t-structure τ will be called compactly generated when there is a
set S ⊆ U , formed by compact objects in D, such that W[−1] = U⊥ consists of the
objects Y such that HomD(S[k], Y )= 0, for all S ∈ S and integers k ≥ 0.

When D is a triangulated category with coproducts, we will use the term Milnor
colimit of a sequence of morphisms X0

x1−→ X1
x2−→· · ·

xn−→ Xn
xn+1−−→· · · , which

in [Neeman 2001] is called the homotopy colimit. It will be denoted Mcolim(Xn),
without reference to the xn .
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3. Generalities about locally coherent Grothendieck categories

In this section we are interested in a particular case of locally finitely presented
Grothendieck categories. Let us start with the following result which is folklore.

Lemma 3.1. Let A be an abelian category and B be a full additive subcategory.
The following assertions are equivalent:

(1) B is an abelian category such that the inclusion functor B ↪→A is exact.

(2) B is closed under taking finite (co)products, kernels and cokernels in A.

In this case we will say that B is an abelian exact subcategory of A.

Note that if G is a locally finitely presented Grothendieck category, then the class
fp(G) of finitely presented objects is skeletally small and is closed under taking
cokernels and finite coproducts.

Definition. A Grothendieck category G is called locally coherent when it is locally
finitely presented and the subcategory fp(G) is an abelian exact subcategory of G
(equivalently, when fp(G) is closed under taking kernels).

Recall that a pseudokernel of a morphism f : X → Y in the additive category
A is a morphism u : Z → X such that the sequence of contravariant functors
HomA(?, Z) u∗−→HomA(?, X) f∗

−→HomA(?, Y ) is exact, and similarly, a pseudo-
cokernel of a morphism f : X → Y in the additive category A is a morphism
v : Y → Z such that the sequence of covariant functors

HomA(Z , ?) v∗
−→HomA(Y, ?) f∗

−→HomA(X, ?)

is exact. We say that A has pseudokernels (resp. pseudocokernels) when each
morphism in A has a pseudokernel (pseudocokernel).

Examples 3.2. Here are some locally coherent Grothendieck categories to which
the results in this and next section apply. The first is well-known; for the others we
provide a brief justification.

1. R-Mod, when R is a left coherent ring R (i.e., when each finitely generated left
ideal of R is finitely presented).

2. The category [C,Ab] (resp. [Cop,Ab]) of covariant (resp. contravariant) additive
functors C → Ab, where C is a skeletally small additive category with pseudo-
cokernels (pseudokernels). In particular, when C is a skeletally small abelian or
triangulated category, both [C,Ab] and [Cop,Ab] are locally coherent Grothendieck
categories.

The covariant version follows from Propositions 1.3 and 2.1 of [Herzog 1997],
taking into account that, in the second of these, the proof that each representable
functor (X, ?) is a coherent object only requires that each morphism X→ Y has a
pseudocokernel. The contravariant version follows by duality.
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3. The category Qcoh(X) of quasicoherent sheaves, where X is a coherent scheme,
i.e., a quasicompact and quasiseparated scheme admitting a covering X =

⋃
i∈I Ui

by affine open subschemes Ui such that Ui = Spec Ai , for a commutative coherent
ring Ai , for each i ∈ I .

For the proof, see [Garkusha 2009, Proposition 40], and also [Sitte 2014, Example
1.1.6.iv].

4. Any locally noetherian and locally finitely presented Grothendieck category.
This is clear, since fp(G) coincides with the class of noetherian objects in that

case, and this latter class is always closed under taking kernels (even subobjects).

Lemma 3.3. Let G be a locally coherent Grothendieck category, let S be a set of
finitely presented generators of G and let M be any object in D(G). The following
assertions hold:

(1) M is a homologically upper bounded complex whose homology objects are
finitely presented if , and only if , M is isomorphic in D(G) to an upper bounded
complex N of objects in sum(S). Moreover, N can be chosen such that
max{i ∈ Z : N i

6= 0} =max{i ∈ Z : H i (M) 6= 0}.

(2) M is homologically bounded and its homology objects are finitely presented if ,
and only if , M is isomorphic in D(G) to a bounded complex

· · · 0→ N m
→ N m+1

→ N n−1
→ N n

→ 0 · · · ,

where the N i are finitely presented objects (and N i
∈ sum(S), for m < i ≤ n).

If , moreover, the objects of S form a set of compact generators of D(G),
then the following assertion also holds:

(3) The compact objects of D(G) are those isomorphic to direct summands of
bounded complexes of objects in add(S).

Proof. We will frequently use the fact that if M is a complex whose homology
objects are all finitely presented, then a given k-cycle object Z k

= Z k(M) is finitely
presented if and only if so is the k-boundary object Bk

= Bk(M).

(1) The proof of this assertion is reminiscent of the dual of the proof of Lemma 4.6(3)
in [Hartshorne 1966, Chapter I], with A′ = fp(G) and A= G, although the assump-
tions of that lemma do not hold in our situation. By truncating at the greatest integer
i such that H i (M) 6= 0 and shifting if necessary, we can assume without loss of
generality that M is concentrated in degrees ≤ 0 and that H 0(M) 6= 0. We then
inductively construct a sequence in C(G)

· · · Mn
fn
−→Mn−1→ · · · → M1

f1
−→M0

f0
−→M

satisfying the following properties:
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(a) Each Mn is concentrated in degrees ≤ 0.

(b) The connecting chain maps fn : Mn→ Mn−1 are quasi-isomorphisms, for all
n ∈ N (with the convention that M−1 = M).

(c) Given n ∈ N, one has M−k
n ∈ sum(S) for 0≤ k ≤ n.

(d) Given any k ∈ N, the morphism f −k
n : M

−k
n → M−k

n−1 is the identity map, for
all n > k.

Once the sequence has been constructed, we clearly see that the inverse limit of
the sequence, X := lim

←−−C(G)(Mn), is a complex of objects in sum(S) concentrated
in degrees ≤ 0 such that the induced chain map X→ M is a quasi-isomorphism.

We now move on to construct the mentioned sequence. At the initial step,
one easily gets a morphism f : X0

→M0 such that X0
∈ add(S) and the composition

X0 f
−→M0 p

−→ H 0(M) is an epimorphism, where p is the projection. Now, taking
the pullback of f and the differential M−1

→M0, we easily get a quasi-isomorphism
f0 : M0→ M , where f −k

0 : M
−k
0 = M−k

→ M−k is the identity map for all k ≥ 2,
and f 0

0 : M
0
0 = X0

→ M0 is f .
Assume now that n > 0 and that the quasi-isomorphisms

Mn−1
fn−1
−−→Mn−2→ · · · → M1

f1
−→M0

f0
−→M

have already been constructed, satisfying the requirements. Note that Z−k
:=

Z−k(Mn−1), and hence also B−k
:= B−k(Mn−1), are finitely presented objects

for k = 0, 1, . . . , n − 1. Let us fix a direct system (Yi )i∈I in fp(G) such that
lim
−−→

Yi ∼= M−n
n−1. Replacing the directed set I by a cofinal subset if necessary, there

is no loss of generality in assuming that the composition

Y j
u j
−→ lim

−−→
Yi ∼= M−n

n−1
d−n
−−→B−n+1

is an epimorphism, for all j ∈ I , where u j is the canonical morphism to the direct
limit. It is seen in a straightforward way that we have a direct system of exact
sequences

0→ u−1
i (Z−n)→ Yi

d−n
◦ui−−−→ B−n+1

→ 0 (i ∈ I )

whose direct limit is precisely the canonical exact sequence

0→ Z−n
→ X−n d−n

−−→ B−n+1
→ 0.

Due to the fact that H−n
:= H−n(Mn−1) is finitely presented, there is some index

j ∈ I such that the composition u−1
j (Z

−n)
u j
−→Z−n p

−→H−n is an epimorphism. We
fix such an index j and choose any epimorphism ε : X−n� Y j , with X−n

∈ sum(S).
Putting M−n

n := X−n , the composition g : M−n
n

ε
−→Y j

u j
−→ lim

−−→
(Y j )∼= M−n

n−1 is then
a morphism which leads to the following commutative diagram, where all squares
are bicartesian:
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M−n−1
n

//

g′

��

B̃−n � � //

��

g−1(Z−n)
� � //

��

M−n
n

g

��

M−n−1
n−1

d−n−1
// B−n � � // Z−n � � // M−n

n−1

We derive a quasi-isomorphism h :Mn→Mn−1, where h−k
:M−k

n =M−k
n−1→M−k

n−1
is the identity map, for k ≥ 0 and k 6= n, n+ 1, and where h−n−1

= g′ and h−n
= g

are the morphisms from the last diagram.

(2) By assertion (1), we can assume that M is of the form

· · · → N k
→ N k+1

→ · · · → N n−1
→ N n

→ 0 · · · ,

where the N i are in sum(S). Let us assume that m = min{ j ∈ Z : H j (M) 6= 0}.
Then the intelligent truncation at m gives the complex

τ≥m M : · · · 0→ Bm ↪→ N m
→ N m+1

→ · · · → N n−1
→ N n

→ 0 · · · ,

where Bm is an m-boundary object of M . But Bm is finitely presented because
Zm
=Ker(N m

→ N m+1) is. We then take N m
= Bm and the proof of the implication

is complete because the canonical map τ≥m M→ M is an isomorphism in D(G).
In the rest of the proof, we assume that S is a set of compact generators of D(G).

(3) Note that each bounded complex of objects in add(S) is compact in D(G) since
it is a finite iterated extension of stalks X [k], with X ∈ add(S). Conversely, suppose
that M is a compact object in D(G). It follows from [Keller 1994, Theorem 5.3] that
it is a direct summand of a finite iterated extension of complexes of the form S[k],
with S ∈ S and k ∈Z. In particular M has bounded and finitely presented homology.
If we fix now a quasi-isomorphism f : P → M such that P is a bounded above
complex of objects in add(S), then we can assume without loss of generality that
P0
6= 0 = Pk , for all k > 0. Note that then P is the Milnor colimit of the stupid

truncations σ≥−n P . Since P is compact in D(G), an argument as in the proof of
[Keller 1994, Theorem 5.3] shows that the identity map 1P factors in the form
P→ σ≥−n P→ P , for some n ∈ N. It follows that M ∼= P is isomorphic in D(G)
to a direct summand of a bounded complex of objects in add(S). �

When G is a locally coherent Grothendieck category, one easily gets from asser-
tions (1) and (2) of the last lemma that Db(fp(G)) is equivalent, as a triangulated
category, to the full subcategory Db

fp(G) of D(G) consisting of those complexes
M ∈ Db(G) such that H i (M)∈ fp(G), for all i ∈ Z. In the sequel we will identify
these equivalent triangulated categories, viewing Db(fp(G)) as a full triangulated
subcategory of D(G).
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Definition. Let G be a locally finitely presented Grothendieck category. An object
Y of G will be called fp-injective when Ext1

G(?, Y ) vanishes on finitely presented
objects.

The following is an easy consequence of the proof of implication 1)⇒ 2) in
[Št’ovíček 2014, Proposition B.3], after a clear induction argument:

Lemma 3.4. Let G be a locally coherent Grothendieck category. If Y is an fp-
injective object of G, then Extk

G(?; Y ) vanishes on finitely presented objects, for
all k > 0.

Recall that if F : G → Ab is any left exact functor, then an object Y of G
is F-acyclic when the right derived functors Rk F : G → Ab vanish on Y , for
all k > 0. Recall also that, for each X ∈ Ob(G), one can calculate Rk F(X)
by considering F-acyclic resolutions. That is, if one picks an exact sequence
0 → X → Y 0 d0

−→Y 1 d1
−→· · · Y n dn

−→· · · , where all the Y k are F-acyclic, then
Rk F(X) is the k-th homology group of the complex

· · · 0→ F(Y 0)
F(d0)
−−−→ F(Y 1)

F(d1)
−−−→· · · F(Y n)

F(dn)
−−−→· · · ,

for each integer k ≥ 0. The following result seems to be well-known (see [Gillespie
2016, Introduction] or [Prest 2009, Chapter 11]), but we include a proof after not
finding an explicit one in the literature.

Proposition 3.5. Let G be a locally finitely presented Grothendieck category, let X
be a finitely presented object, let (Mi )i∈I be a direct system in G and consider the
canonical map µk : lim−−→Extk

G(X,Mi )→ Extk
G(X, lim

−−→
Mi ), for each integer k ≥ 0.

(1) µ0 is an isomorphism and µ1 is a monomorphism.

(2) When G is locally coherent, µk is an isomorphism, for all k ≥ 0.

Proof. (1) The case k = 0 follows from the definition of a finitely presented object.
An element of lim

−−→
Ext1

G(X,Mi ) is represented by a direct system (εi )i∈I of exact
sequences

εi : 0→ Mi → Ni → X→ 0

whose “projection” on the first component is precisely the direct system (Mi )i∈I and
where X is viewed as a constant direct system. The image of (εi ) by the canonical
map lim

−−→
Ext1

G(X,Mi )→ ExtG(X, lim
−−→

Mi ) is the induced exact sequence

0→ lim
−−→

Mi → lim
−−→

Ni
π
−→ X→ 0.

If this latter sequence splits and we fix a section µ : X→ lim
−−→

Ni for π , then, since X
is a finitely presented object, µ factors in the form X µ j

−→ N j
u j
−→ lim

−−→
Ni , for some

j ∈ I , where u j is the canonical morphism to the direct limit. This immediately
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implies that the j -th sequence ε j : 0→ M j → N j → X→ 0 splits and, hence, that
(εi )i∈I is the zero element of lim

−−→
Ext1

G(X,Mi ).

(2) By [Adámek and Rosický 1994, Corollary 1.7 and subsequent remark], we can
assume without loss of generality that I =λ={α ordinal : α<λ} is an infinite limit
ordinal and that, for each limit ordinal α < λ, one has Mα = lim

−−→β<α
Mβ . We now

construct a direct system (Eα)α<λ in the category C(G) of complexes, satisfying
the following properties:

(a) Eα : · · · 0→ E0
α → E1

α → · · · → En
α → · · · is a complex concentrated in

degrees ≥ 0 and H k(Eα)= 0, for all α < λ and all k 6= 0.

(b) En
α is an fp-injective object, for all α < λ and all integers n ≥ 0.

(c) The direct system (H 0(Eα))α<λ in G is isomorphic to (Mα)α<λ.

Once the direct system (Eα)α<λ is constructed, the exactness of the direct limit
functor in G and the fact that the class of fp-injective objects is closed under taking
direct limits (see [Št’ovíček 2014, Proposition B.3]) will give that Eλ := lim

−−→C(G) Eα
is a complex of fp-injective objects concentrated in degrees ≥ 0 whose only nonzero
homology object is H 0(Eλ) ∼= lim

−−→α<λ
Mα. That is, Eλ is a (deleted) fp-injective

resolution of M := lim
−−→α<λ

Mα. By the previous lemma, we know that each fp-
injective object is HomG(X, ?)-acyclic, whenever X ∈ fp(G). It follows that, for
such an X , we have that Extk

G(X,M) is the k-th homology abelian group of the
complex HomG(X, Eλ). But, by definition of Eλ and the fact that HomG(X, ?)
preserves direct limits, we have an isomorphism of complexes of abelian groups
lim
−−→C(Ab)(HomG(X, Eα))∼= HomG(X, Eλ). Then the k-th homology map will give
the desired isomorphism

lim
−−→

Extk
G(X,Mα)

∼=
−→Extk

G(X,M)= Extk
G(X, lim

−−→
α<λ

Mα).

It remains to construct the direct system (Eα)α<λ in C(G). Let uα : Mα→ Mα+1

denote the morphism from the direct system (Mα)α<λ. For a nonlimit ordinal α,
Eα will be the (deleted) minimal injective resolution of Mα . If α is a limit ordinal
and we already have defined the direct system (Eβ)β<α, then Eα = lim

−−→β<α
Eβ ,

where the direct limit is taken in C(G). Note that H 0(Eα)∼= lim
−−→β<α

Mβ = Mα . For
the construction of (Eα)α<λ one just needs to define the connecting chain map
Eα → Eα+1, when α < λ is any ordinal for which Eα is already defined. This
connecting chain map is defined by choosing a family ( f n

α : En
α → En

α+1)n≥0 of
morphisms in G such that the following diagram is commutative and the induced
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map Ker(E0
α→ E1

α)→ Ker(E0
α+1→ E1

α+1) is the morphism uα : Mα→ Mα+1:

0 // E0
α

//

f 0
α

��

E1
α

//

f 1
α

��

· · ·

0 // E0
α+1

// E1
α+1

// · · ·

The reader is invited to check that the direct system (Eα)α<λ satisfies all the
requirements. �

4. Some sufficient conditions for the heart to be
a locally coherent Grothendieck category

Definition. Let D′ be a full triangulated subcategory of the triangulated category
D and let (U,U⊥[1]) be a t-structure in D. We say that this t-structure restricts to
D′ when (U ∩D′, (U⊥ ∩D′)[1]) is a t-structure of D′. This is equivalent to saying
that, for each object X of D′, the truncation triangle τU (X)→ X → τU

⊥

(X) +−→
has its three vertices in D′.

Lemma 4.1. Let D′ be a full triangulated subcategory of D and let (U,U⊥[1]) be
a t-structure in D whose heart is H. If the t-structure restricts to D′, then H∩D′ is
an abelian exact subcategory of H.

Proof. Let f : X→ Y be a morphism in H∩D′ and complete it to a triangle, which
is in D′:

X f
−→ Y → Z +

−→ .

Note that then Z ∈ U ∩ U⊥[2] and hence Z [−1] ∈ U⊥[1]. According to [Parra
and Saorín 2015, Lemma 3.1], we have H̃(Z)= τU

⊥

(Z [−1])[1] and H̃(Z [−1])=
τU (Z [−1]). Moreover, since the t-structure restricts to D′ we get that both H̃(Z)
and H̃(Z [−1]) are in H∩D′. But we then have a triangle

H̃(Z [−1])[1] → Z→ H̃(Z) +−→ .

By [Beilinson et al. 1982], we have isomorphisms KerH( f ) ∼= H̃(Z [−1]) and
CokerH( f )∼= H̃(Z) and, hence, H∩D′ is closed under taking kernels and cokernels
in H. That it is also closed under taking finite coproducts is clear. �

Setting 4.2. In the rest of the section we assume that G is a locally coherent
Grothendieck category and we fix a set S of finitely presented generators of G.
Recall that then S is also a set of generators of D(G) as a triangulated category (see
[Nicolás et al. 2015, Lemma 9] or [Psaroudakis and Vitória 2015, Lemma 4.10]).

Lemma 4.3. Let X ∈ D≤0(G) have bounded finitely presented homology (i.e., X is
homologically bounded and H k(X) ∈ fp(G), for all k ∈ Z) and let n be a natural
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number. There is a complex P ∈Cb(sum(S)) together with a morphism g : P→ X in
D(G) such that the restriction of the natural transformation g∗ : HomD(G)(X, ?)→
HomD(G)(P, ?) to D [−n,0](G) is a natural isomorphism.

Proof. By Lemma 3.3, there is an isomorphism p : Q → X in D(G) such that
Q is a complex of objects in sum(S) concentrated in degrees ≤ 0. We have
that p∗ : HomD(G)(X, ?)

∼=
−→HomD(G)(Q, ?) is a natural isomorphism of functors

D(G)→ Ab. Stupid truncation at −n− 2 gives a triangle in K(G)

σ>−n−2 Q h
−→ Q→ σ≤−n−2 Q +

−→,

where the left vertex is in Cb(sum(S)). Since HomD(G)(σ
≤−n−2 Q[k], ?) vanishes

on D [−n,0](G), for k=−1, 0, we get that the restriction of the natural transformation

h∗ : HomD(G)(Q, ?)→ HomD(G)(σ
>−n−2 Q, ?)

to D [−n,0](G) is an isomorphism. Putting P := σ>−n−2 Q, the desired morphism g
is the composition P h

−→ Q p
−→ X . �

Remark 4.4. Let (U,U⊥[1]) be a t-structure in any triangulated category D and
suppose that it restricts to a full triangulated subcategory D′. If H̃ : D→H is the
associated cohomological functor, then H̃(M) is in H∩D′, for all M ∈ D′. This is
because τU (D′)⊆ D′ and τU

⊥
[1](D′)⊆ D′.

The following technical result is crucial for the main results of the paper.

Proposition 4.5. Let G and S be as in Setting 4.2, let (U,U⊥[1]) be a t-structure
in D(G), with heart H, and let H̃ : D(G)→ H be the associated cohomological
functor. Suppose that the following conditions hold:

(1) (U,U⊥[1]) restricts to Db(fp(G)).
(2) There exist integers m ≤ n such that D≤m(G)⊆ U ⊆ D≤n(G).
(3) H∩Db(fp(G)) is a (skeletally small) class of generators of H.

(4) For each direct system (Mi )i∈I in H, for each S ∈ S and for each k ∈ Z, the
canonical map ηS[k] : lim−−→HomD(G)(S[k],Mi )→ HomD(G)(S[k], lim

−−→H Mi ) is
an isomorphism.

Then H is a locally coherent Grothendieck category on which H ∩Db(G) is the
class of its finitely presented objects.

Proof. Take the cohomological functor H ′ :=
∐

S∈S HomD(G)(S, ?) : D(G)→ Ab.
Using condition (4) and the fact that S is a set of generators of D(G), we see that,
with the terminology of [Parra and Saorín 2015, Section 3], the pair (H ′,+∞) is a
cohomological datum in D(G) for H. Then [Parra and Saorín 2015, Proposition 3.4]
says that H is an AB5 abelian category. But condition (3) says that it has a set of
generators, so that H is a Grothendieck category.
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Fix a direct system (Mi )i∈I in H in the sequel and consider the full subcategory
C of D(G) consisting of those complexes X such that

ηX [k] : lim−−→HomD(G)(X [k],Mi )→ HomD(G)(X [k], lim
−−→
H

Mi )

is an isomorphism, for all k ∈ Z. Using the Five Lemma, one readily sees that
C is a thick subcategory of D(G) which, by condition (4), contains S. We then
have thickD(G)(S)⊆ C. In particular, if a complex X ∈ Cb(sum(S)) is viewed as an
object of D(G), then X ∈ C.

We now claim that ηX is also an isomorphism, for each X ∈ Db(fp(G)). Indeed,
condition (2) implies that H⊆D [m,n](G). Let X ∈Db(fp(G)) be arbitrary. Replacing
n by a larger integer if necessary, we can assume that X ∈ D≤n(G). Then the obvious
generalization of Lemma 4.3 says that there exist a P ∈ Cb(sum(S)) and a morphism
g : P→ X in D(G) such that the natural transformation

g∗ : HomD(G)(X, ?)→ HomD(G)(P, ?)

is an isomorphism when evaluated on objects of D [m,n](G). We then have the
following commutative diagram

lim
−−→

HomD(G)(X,Mi )
ηX
//

g∗

��

HomD(G)(X, lim
−−→H Mi )

g∗

��

lim
−−→

HomD(G)(P,Mi )
ηP
// HomD(G)(P, lim

−−→H Mi )

where the vertical arrows are isomorphisms and, due to the previous paragraph,
the lower horizontal arrow is an isomorphism also. This settles our claim. In
particular, it implies that H∩Db(G) is a class of finitely presented objects in H
and, by conditions (1) and (3), it is a class of generators of H (see Remark 4.4).
In particular H is locally finitely presented. Note also that, by condition (1) and
Lemma 4.1, we know that H∩Db(fp(G)) is closed under taking cokernels (and
kernels) in H. It immediately follows that each finitely presented object of H is in
H∩Db(fp(G)) since it is the cokernel of a morphism in this latter category. Then
we have that H∩Db(fp(G))= fp(H), and this is an abelian exact subcategory of H.
Therefore H is locally coherent. �

Remark 4.6. Condition (1) of the last proposition is not necessary for the heart to
be a locally coherent Grothendieck category. Indeed, by [Parra and Saorín 2014,
Corollary 5.12] and using the terminology of that reference, if R is a commutative
noetherian ring and Z ( Spec R is a perfect sp-subset, then (U,U⊥[1]) is a t-
structure whose heart is equivalent to RZ -Mod, where U consists of the complexes
U such that Supp(H j (U ))⊆ Z , for all j >−1. Then the heart is locally coherent
since RZ is a noetherian commutative ring. But the associated sp-filtration φ = φU
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of Spec R (see [Alonso et al. 2010, Section 2.8 and Theorem 3.11]) is given by
φ(i)= Spec R, for i ≤−1, and φ(i)= Z , for all i >−1. This sp-filtration does not
satisfy in general the weak Cousin condition, in whose case (U,U⊥[1]) does not
restrict to Db(fp(R-Mod))∼=Db

fg(R) (see [Alonso et al. 2010, Corollary 4.5]). As an
example of the last situation, consider R = Z and Z = Spec Z\{0}, so that RZ =Q.
We have a canonical triangle Q/Z[−1] → Z→Q

+
−→, where Q/Z[−1] ∈ U and

Q ∈ U⊥.

5. The case of the Happel–Reiten–Smalø t-structure

Recall (see [Happel et al. 1996]) that if A is any abelian category and t = (T ,F)
is a torsion pair in A, then (Ut ,U⊥t [1])= (Ut ,Vt) is a t-structure in D(A), where

Ut = {U ∈ D≤0(A) : H 0(U ) ∈ T } and Vt = {V ∈ D≥−1(A) : H−1(V ) ∈ F}.

This t-structure will be called the Happel–Reiten–Smalø (or just HRS ) t-structure
associated to t . In this paper we are only interested in the case when A= G is a
locally coherent Grothendieck category.

Therefore, all throughout this section, G will be a locally coherent Grothendieck
category and t = (T ,F) will be a torsion pair in G. Recall that t is said to be of
finite type when the torsion radical t : G→ T preserves direct limits or, equivalently,
when F is closed under taking direct limits in G (see [Krause 1997, Section 2]). We
shall say that t restricts to fp(G) when t (X) is in fp(G), for each X ∈ fp(G). Note
that this is equivalent to saying that t ′ = (T ∩ fp(G),F ∩ fp(G)) is a torsion pair
in fp(G).

Proposition 5.1. Let (Ut ,U⊥t [1]) be the HRS t-structure in D(G) associated to t .
The following assertions are equivalent:

(1) The t-structure (Ut ,U⊥t [1]) restricts to Db(fp(G)).
(2) The torsion pair t restricts to fp(G).

In particular, if G is locally noetherian then (Ut ,U⊥t [1]) restricts to Db(fp(G)).

Proof. Given M ∈ Db(fp(G)), we have canonical triangles in D(G)

τ≤−1 M→M→ τ≥0 M +
−→,

t (H 0(M))[0] →τ≥0 M→W +
−→,

where W ∈ D≥0(G), H 0(W )∼= (H 0(M))/(t (H 0(M))) and H k(W )= H k(M), for
all k > 0. Then W ∈ U⊥t = Vt [−1]. Applying the octahedron axiom to the last two
triangles, we obtain two new triangles

τ≤−1 M→U → t (H 0(M))[0] +−→,

U →M→W +
−→ .
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It follows from the first triangle that U ∈ Ut since the outer vertices of the triangle
are in Ut . We then conclude that the second triangle is precisely the truncation
triangle of M with respect to (Ut ,U⊥t [1]).

The last truncation triangle is in Db(fp(G)) if, and only if, U ∈ Db(fp(G)).
But this happens exactly when t (H 0(M))[0] ∈ Db(fp(G)). That is, exactly when
t (H 0(M)) is a finitely presented object. The equivalence of assertions (1) and (2)
is now clear.

Noting that G is locally coherent all throughout this section, when G is also locally
noetherian we have that fp(G) coincides with the class noeth(G) of noetherian
objects, which is obviously closed under taking subobjects. Therefore t always
restricts to fp(G). �

We are now ready to prove the first main result of the paper.

Theorem 5.2. Let G be a locally coherent Grothendieck category, let t = (T ,F)
be a torsion pair in G, let (Ut ,U⊥t [1]) be the associated t-structure in D(G) and let
Ht be its heart. The following assertions are equivalent:

1) (Ut ,U⊥t [1]) restricts to Db(fp(G)) and Ht is a locally coherent Grothendieck
category (with Ht ∩Db(fp(G) as the class of finitely presented objects).

2) t is of finite type and restricts to fp(G).

3) There exists a torsion pair t ′ = (T ′,F ′) in fp(G) such that t = (lim
−−→

T ′, lim
−−→

F ′).

When in addition G is locally noetherian, these assertions are also equivalent to:

4) t is of finite type.

Proof. All throughout the proof, we fix a set S of finitely presented generators of G.
1)⇒ 2) By Proposition 5.1, we know that t restricts to fp(G) and, by [Parra and

Saorín 2015, Theorem 4.8], we know that t is of finite type.
2) ⇒ 3) If we put T ′ = T ∩ fp(G) and F ′ = F ∩ fp(G), then t ′ = (T ′,F ′)

is a torsion pair in fp(G) since t restricts to fp(G). By [Crawley-Boevey 1994,
Lemma 4.4], we know that (lim

−−→
T ′, lim
−−→

F ′) is a torsion pair in G. But T and F
are closed under taking direct limits in G, which implies that lim

−−→
T ′ ⊆ T and

lim
−−→

F ′ ⊆F . Since we always have F = T ⊥ ⊆ (lim
−−→

T ′)⊥ = lim
−−→

F ′ we conclude that
(T ,F)= (lim

−−→
T ′, lim
−−→

F ′).
3)⇒ 2) is clear.
2)⇒ 1) The finite type condition of t implies that Ht is a Grothendieck category

(see [Parra and Saorín 2016a, Theorem 1.2]). Now, let (Mi )i∈I be a direct system
in Ht . Bearing in mind that F is closed under taking direct limits in G and using
[Parra and Saorín 2015, Proposition 4.2], we get an exact sequence in Ht :

0→ (lim
−−→

H−1(Mi ))[1] → lim
−−→
Ht

Mi → (lim
−−→

H 0(Mi ))[0] → 0.
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To abbreviate, let us put (X, Y )= HomD(G)(X, Y ), for all X, Y ∈ D(G). Then, for
each S ∈ S and each k ∈ Z, we have a commutative diagram of abelian groups with
exact columns, where the horizontal arrows are the canonical morphisms:

lim
−−→
(S[k], H 0(Mi )[−1])

��

oo

lim
−−→
(S[k], H−1(Mi )[1])

��

oo

lim
−−→
(S[k],Mi )

��

oo

lim
−−→
(S[k], H 0(Mi )[0])oo

��

lim
−−→
(S[k], H−1(Mi )[2])oo

(S[k], (lim
−−→

H 0(Mi ))[−1])

��

(S[k], (lim
−−→

H−1(Mi ))[1])

��

(S[k], lim
−−→Ht

Mi )

��

(S[k], (lim
−−→

H 0(Mi ))[0])

��

(S[k], (lim
−−→

H−1(Mi ))[2])

By Proposition 3.5, we have that the two uppermost and the two lowermost horizon-
tal arrows are isomorphisms, which implies the canonical map lim

−−→
(S[k],Mi )→

(S[k], lim
−−→Ht

Mi ) is also an isomorphism.
We will check now that all conditions (1)–(4) of Proposition 4.5 are satisfied

by (Ut ,Ut [1]). By Proposition 5.1, we know that (Ut ,U⊥t [1]) restricts to Db(fp(G))
and, by definition of the HRS t-structure, we know that D≤−1(G)⊆ Ut ⊆ D≤0(G),
so that conditions (1) and (2) of Proposition 4.5 hold. Moreover, the previous
paragraph says that condition (4) also holds.

We will finally check that each object of Ht is an epimorphic image of a coproduct
of objects of Ht ∩Db(fp(G)), which will give condition (3) of Proposition 5.1 and
will end the proof. Let M be any object of Ht and let us write H 0(M) = lim

−−→
Ti ,

for some direct system (Ti )i∈I in T ∩ fp(G). Note that this is possible since T =
lim
−−→
(T ∩ fp(G)). Considering the canonical exact sequence

0→ H−1(M)[1] → M→ H 0(M)[0] → 0

and pulling it back, for each i ∈ I , along the obvious map Ti [0] → H 0(M)[0], we
get a direct system of exact sequences in Ht :

0→ H−1(M)[1] → Mi → Ti [0] → 0.

Since Ht is a Grothendieck category it immediately follows that M = lim
−−→Ht

Mi , so
that M is an epimorphic image of

∐
i∈I Mi . Replacing M by any of the Mi , we can

and shall assume in the rest of the proof that H 0(M) ∈ T ∩ fp(G). We then write
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M as a complex · · · 0→ M−1
→ M0

→ 0 · · · concentrated in degrees −1 and 0.
Note that if we put M0

= lim
−−→

M0
i , where (M0

i )i∈I is a direct system in fp(G), then
some composition M0

j
ι j
−→ lim

−−→
M0

i = M0 p
−� H 0(M) should be an epimorphism,

because H 0(M) is finitely presented. Replacing M0 by M0
j if necessary, we can

assume in the sequel that M0 is also finitely presented.
Once we assume that H 0(M) and M0 are both finitely presented, we follow the

lines of the proof of [Parra and Saorín 2015, Proposition 4.7] with an easy adaptation.
The details are left to the reader. Since M−1 is a direct limit of finitely presented
objects, we can fix an epimorphism

∐
j∈J X j � M−1 in G, where X j ∈ fp(G) for

all j ∈ J . Now we construct a four-row commutative diagram as in the mentioned
proof, where G(J ) and G(F) are replaced in our case by

∐
j∈J X j and

∐
j∈F X j ,

respectively. The key point now is that the appearing UF and X F are finitely
presented objects. Since t restricts to fp(G), we also know that t (X F ) and M0

F are
finitely presented, for each finite subset F ⊆ J . If now L = H̃|Ut : Ut →Ht is the
left adjoint to the inclusion functor (see [Parra and Saorín 2015, Lemma 3.1]), the
mentioned proof shows that we have epimorphisms

∐
F⊂J, F finite L(KF )� L(K J )

and L(K J )�M in Ht , where L(KF ) is the object of Ht represented by the complex

· · · 0→
∐

j∈F X j

t (UF )
→ M0

F → 0 · · · ,

concentrated in degrees −1 and 0. But t (UF ) is finitely presented, because so is UF .
It follows that the latter complex is a complex of finitely presented objects, and
hence L(KF ) ∈Ht ∩Db(fp(G)).

4)⇒2)=3) If G is locally noetherian, each torsion pair restricts to its subcategory
of noetherian objects, that is, to fp(G). �

6. The heart of a restricted t-structure in the
derived category of a commutative noetherian ring

All throughout this section R is a commutative noetherian ring. To apply the results
of earlier sections, we will consider G=R-Mod the category of all R-modules, which
is a locally noetherian Grothendieck category. Then we have that fp(G)= R-mod
is the subcategory of finitely generated R-modules and, as usual (see comments on
page 207), we identify Db

fg(R) := Db
fp(R-Mod) with Db(R-mod).

Recall that a filtration by supports or sp-filtration of Spec R is a decreasing map
φ : Z→ P(Spec R) such that φ(i)⊆ Spec R is a stable under specialization subset,
for each i ∈ Z. Filtrations by supports turn out to be in bijection with the compactly
generated t-structures in D(R) (see [Alonso et al. 2010, Theorem 3.11]). Concretely,
given an sp-filtration φ and putting

Uφ = {U ∈ D(R) : Supp(H i (U ))⊆ φ(i), for all i ∈ Z},
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we get a compactly generated t-structure τφ = (Uφ,U⊥φ [1]) and the assignment
φ  τφ gives the mentioned bijection. All through this section, the reader is
referred to [Alonso et al. 2010] for all nondefined terms that we might use.

Lemma 6.1. Let X ∈Db
fg(R) and Y ∈D+(R). For each p ∈ Spec R, the canonical

map
HomD(R)(X, Y ) p→ HomD(Rp)(X p, Y p)

is an isomorphism.

Proof. Let us fix Y ∈ D+(R), which we consider to be a bounded below complex
of injective R-modules. For each Z in Db

fg(R), we denote by ηZ the canonical map
HomD(R)(Z , Y ) p→ HomD(Rp)(Z p, Y p). We then consider the full subcategory C
of Db

fg(R) consisting of those Z such that ηZ [k] is an isomorphism, for all k ∈ Z. It
is clear that C is a thick subcategory of Db

fg(R).
We claim that M[0] ∈ C, for each finitely generated R-module M . Once this is

proved, the proof will be finished. Indeed, we will conclude that C = Db
fg(R) since

each Z ∈ Db
fg(R) is a finite iterated extension of the stalk complexes H−k(Z)[k],

and each H−k(Z) is finitely generated. Recall that HomD(R)(M[−k], Y ) is the
k-th homology module of the complex of R-modules HomR(M, Y ). Similarly,
HomD(Rp)(M p[−k],Y p) is the k-th homology module of the complex of Rp-modules
HomRp(M p, Y p) since Y p is a bounded below complex of injective Rp-modules.
The claim follows from the exactness of the localization at p and from the truth of
the result when Y is a module (see, e.g., [Kunz 1985, Proposition IV.1.10]). �

Lemma 6.2. Let R be connected, let (U,U⊥[1]) be a compactly generated t-
structure in D(R) which restricts to Db

fg(R), let H be its heart and let U ∈
D−(R)∩U be a complex with finitely generated homology modules. Then H̃(U ) is
in H∩Db

fg(R).

Proof. Let φ be the sp-filtration of Spec R associated to (U,U⊥[1]). By Corollaries
4.5 and 4.8 of [Alonso et al. 2010], we know that there exists some j0 ∈ Z such that
φ( j0)= Spec R. Without loss of generality, we assume that j0 = 0. We then have

D≤0(R)⊆ U and H⊆ D≥0(R).

By considering now for the object U of the statement the canonical truncation
triangle

τ≤0(U [−1])→U [−1] g
−→ τ>0(U [−1]) +−→

and applying the octahedron axiom, we see that

τU
⊥

(g) : τU
⊥

(U [−1])→ τU
⊥

(τ>0(U [−1]))

is an isomorphism. However, the codomain of this morphism is in Db
fg(R) since
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τ>0(U [−1]) ∈ Db
fg(R) and the t-structure (U,U⊥[1]) restricts to Db

fg(R). Then
H̃(U )= τU

⊥

(U [−1])[1] is in Db
fg(R) (see [Parra and Saorín 2015, Lemma 3.1]).

�

We are now ready to prove the main result of the paper.

Theorem 6.3. Let R be a commutative noetherian ring and let (U,U⊥[1]) be a
compactly generated t-structure in D(R) which restricts to Db

fg(R). The heart H of
this t-structure is a locally coherent Grothendieck category where H∩Db

fg(R) is
the subcategory of its finitely presented objects.

Proof. All throughout the proof, without loss of generality, we assume that R is
connected. Remember that then the associated sp-filtration φ satisfies the weak
Cousin condition and, hence, has the property that φ(i)= Spec R, for i � 0 (see
[Alonso et al. 2010, Theorem 4.4 and Corollary 4.8]). This in turn implies that
H = Hφ ⊆ D≥m(R), for some m ∈ Z. Moreover, by [Parra and Saorín 2014,
Theorem 4.10], we know that H=Hφ is a Grothendieck category.

Step 1: H∩Db
fg(R) is a (skeletally small) class of generators of H: Let U ′ denote

the full subcategory of U consisting of complexes in U ∩D−(R) which have finitely
generated homology modules. Each object of U ′ is isomorphic in D(R) to a bounded
above complex of finitely generated R-modules. Let L = H̃|U : U→H be the left
adjoint to the inclusion functor H ↪→ U . A slight modification of the proof of [Parra
and Saorín 2014, Proposition 3.10] shows that X := L(U ′) is a skeletally small
class of generators of H. By Lemma 6.2, we get that X ⊆H∩Db

fg(R), which ends
this first step.

Step 2: The result is true when φ is eventually trivial (i.e., when φ(i) = ∅, for
some i ∈ Z): We shall check all conditions (1)–(4) of Proposition 4.5. Without loss
of generality, we assume that the filtration is

SpecR= ···φ(−n−1)=φ(−n))φ(−n+1)⊇ ··· ⊇φ(0))φ(1)=φ(2)= ··· =∅,

in which case we have that D≤−n(R) ⊆ U ⊆ D≤0(R) and H = Hφ ⊆ D [−n,0](R)
(see [Parra and Saorín 2014, Lemma 4.1]). Then condition (2) of Proposition 4.5
holds and condition (1) holds by hypothesis. Moreover, Step 1 of this proof gives
condition (3) of that proposition. Finally, bearing in mind that we have a natural
isomorphism H k ∼= HomD(R)(R[−k], ?) of functors D(R)→ R-Mod, by taking
S = {R} and using [Parra and Saorín 2014, Theorem 4.9] we also get that condition
(4) holds.

Step 3: The general case. The proof reduces to checking that H∩Db
fg(R)⊆ fp(H).

Indeed, if this is proved, then Step 1 implies that H is locally finitely presented
and that each object in fp(H) is the cokernel of a morphism in H∩Db

fg(R). It will
follow from Lemma 4.1 that fp(H)=H∩Db

fg(R) and that this is an abelian exact
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subcategory of H. That is, H will be a locally coherent Grothendieck category with
H∩Db

fg(R) as its class of finitely presented objects.
We then prove the inclusion H∩Db

fg(R)⊆ fp(H). Let (Mi )i∈I be a direct system
in H and let X ∈H∩Db

fg(R) be any object. We consider the canonical morphism

ηX : lim−−→HomD(R)(X,Mi )→ HomD(R)(X, lim
−−→
H

Mi ),

which is a morphism in R-Mod. Localization at any prime ideal p preserves
direct limits and, by [Parra and Saorín 2014, Proposition 3.11], we also have
that (lim

−−→H Mi ) p ∼= lim
−−→H p

(Mi ) p. Here if H = Hφ , then we put H p = Hφ p , using
the terminology of [Parra and Saorín 2014]. Therefore, using Lemma 6.1, we
can identify (ηX ) p : (lim−−→HomD(R)(X,Mi )) p→ (HomD(R)(X, lim

−−→H Mi )) p with the
canonical morphism

ηX p : lim−−→HomD(Rp)(X p, (Mi ) p)→ HomD(Rp)(X p, lim
−−→
H p

(Mi ) p).

But the sp-filtration φ p of Spec Rp also satisfies the weak Cousin condition and,
since Rp has finite Krull dimension, we get that φ p is eventually trivial (see [Alonso
et al. 2010, Corollary 4.8]). The truth of the theorem when the associated filtration
is eventually trivial implies that ηX p is an isomorphism, for all p ∈ Spec R, because
X p ∈ fp(H p). Therefore the kernel and cokernel of ηX are R-modules with empty
support. Then they are both zero, so that ηX is an isomorphism, and hence X is in
fp(H) as desired. �

Corollary 6.4. Let R be a commutative noetherian ring. The heart of any t-structure
in Db

fg(R) is equivalent to the category of finitely presented objects of a locally
coherent Grothendieck category.

Proof. Each t-structure in Db
fg(R) is the restriction of the t-structure τφ in D(R)

associated to an sp-filtration (see [Alonso et al. 2010, Corollary 3.12]). The result
is then an immediate consequence of the last theorem, using [Alonso et al. 2010,
Theorem 3.10]. �

As a final comment, we give the geometric translation of the last theorem and
corollary:

Corollary 6.5. Let X be an affine noetherian scheme and let (U,U⊥[1]) be a t-
structure in D(X) := D(Qcoh(X)) which restricts to Db

coh(X)
∼= Db(coh(X)). The

heart H of the t-structure is a locally coherent Grothendieck category on which
H ∩Db

coh(X) is the class of finitely presented objects. In particular, the heart of
each t-structure in Db(coh(X)) is equivalent to the category of finitely presented
objects of a locally coherent Grothendieck category.
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APPROXIMABILITY OF CONVEX BODIES
AND VOLUME ENTROPY IN HILBERT GEOMETRY

CONSTANTIN VERNICOS

The approximability of a convex body is a number which measures the dif-
ficulty in approximating that convex body by polytopes. In the interior of a
convex body one can define its Hilbert geometry. We prove on the one hand
that the volume entropy is twice the approximability for a Hilbert geometry
in dimension two or three, and on the other hand that in higher dimensions
the approximability is a lower bound of the entropy. As a corollary we
solve the volume entropy upper bound conjecture in dimension three and
give a new proof in dimension two different from the one given in (Pacific J.
Math. 245:2 (2010), 201–225). Moreover, our method allows us to prove the
existence of Hilbert geometries with intermediate volume growth on the one
hand, and that in general the volume entropy is not a limit on the other hand.

Introduction and statement of results

Hilbert geometries are all the metric spaces obtained by defining the so-called
Hilbert distance on open bounded convex sets in Rn. The definition of this distance
uses cross ratios in the same way as in the Klein projective model of the hyperbolic
geometry [Hilbert 1971]. These metric spaces are actually length spaces whose
structure is defined by a Finsler metric which is Riemannian if and only if the
underlying open bounded convex set is an ellipsoid [Kay 1967].

These geometries were introduced by D. Hilbert in a letter addressed to F. Klein
and have attracted a lot of interest lately. The studies of the shape of spheres in
[Busemann 1955, Chapter 18] and of perpendicularity in [Busemann and Kelly
1953, Chapter 28] seem to be among the first ones to appear. In the same period
P. J. Kelly and E. Straus [1958], Y. Nasu [1961] and D. C. Kay [1967] were looking
at characterisations of the hyperbolic geometry among them in terms of curvature,
transitive actions and the ptolemaic inequality, respectively. After a break of twenty
or so years, they started to be studied from the projective structure viewpoint by
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W. Goldman [1990] and by I. Kim [2005], and from the perspective of the group
acting on them by P. de la Harpe [1993]. At the start of the new millennium the
quest for characterisation of the Hilbert geometries being hyperbolic in the sense
of Gromov began with A. Karlsson and G. Noskov [2002] and more noticeably
with an equivalence between the hyperbolicity and a property of the boundary
called quasisymmetric convexity discovered by Y. Benoist [2003; 2008], who also
studied dynamical aspects of these geometries and clarified the fractal shape of
their boundary in dimension three. At the same time the infinite-dimensional ones
were studied from a functional-analytical point of view; see, for instance, [Lins and
Nussbaum 2008]. Lately, understanding the analogue of geometric finiteness in the
setting of projective structures has been at the centre of the works of L. Marquis
[2012], M. Crampon and Marquis [2014], and D. Cooper, D. Long and S. Tillman
[Cooper et al. 2015]. Other aspects of interest can be found in the recent Handbook
of Hilbert geometry [Papadopoulos and Troyanov 2014].

The present paper focuses on the volume growth of these geometries and more
specifically on the volume entropy.

Let � be a bounded open convex set in R endowed with its Hilbert geometry. If
we consider the Busemann volume Vol� and denote by B�(p, r) the metric ball of
radius r centred at the point p ∈�, then the lower and the upper volume entropies
of � will be defined respectively by

(1) Ent�= liminf
r→+∞

ln(Vol� B�(p,r))
r

and Ent�= limsup
r→+∞

ln(Vol� B�(p,r))
r

.

When the two limits coincide we denote their common limit by Ent� and call it
the volume entropy of �.

Let us stress that in this definition the upper and lower volume entropy of � do
not depend on the base point p and are actually projective invariants attached to �.

The question we address in this paper is twofold. On the one hand it is an inves-
tigation of the existence of an analogue, for all Hilbert geometries, of the relation
between the volume entropy and the Hausdorff dimension of the radial limit set on
the universal cover of a compact Riemannian manifold with nonpositive curvature.
On the other hand we focus on the volume entropy upper bound conjecture, which
states that if � is an open and bounded convex subset of Rn, then Ent� ≤ n− 1.
To put our work into perspective let us recall the main related results.

The first one is a complete answer to the conjecture in the two-dimensional
case by G. Berck, A. Bernig and C. Vernicos in [Berck et al. 2010], where the
authors actually obtained an upper bound as a function of d , the upper Minkowski
dimension (or ball-box dimension) of the set of extreme points of �, namely

(2) Ent�≤
2

3− d
≤ 1.
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The second result is a more precise statement with respect to the asymptotic
volume growth of balls. It involves another projective invariant introduced by
Berck, Bernig and Vernicos in the introduction of [Berck et al. 2010], called the
centroprojective area of � and defined by

(3) Ap(�) :=

∫
∂�

√
k(x)

〈n(x), x − p〉
1
2 (n−1)

(
2α(x)

1+α(x)

)1
2 (n−1)

dA(x),

where for any x ∈ ∂�, k(x) is the Gauss curvature, n(x) is the outward normal
and α(x) > 0 is the function defined by p−α(x)(x − p) ∈ ∂�. Let us recall here
that both k and n are defined almost everywhere as Alexandroff’s theorem states
[Alexandroff 1939].

Now, the second main theorem in [Berck et al. 2010] — which encompasses
previous results given by B. Colbois and P. Verovic [2004] — asserts that if ∂� is
C1,1 we have

(4) lim
r→+∞

Vol� B�(p, r)

sinhn−1 r
=

1
n− 1

Ap(�) 6= 0

and Ent� = n − 1 is a limit. Moreover, without any assumption on � we have
Ent�≥ n− 1 whenever Ap(�) 6= 0.

The third one — which is also a rigidity result — requires stronger assumptions
about �: it has to be divisible, meaning that it admits a compact quotient, and
its Hilbert metric has to be hyperbolic in the sense of Gromov, which implies its
boundary is C1 and strictly convex by [Benoist 2003]. Let us stress that the Hilbert
metric on such an � is the hyperbolic one if and only if � has a C1,1 boundary, and
that its volume entropy is positive since hyperbolicity implies the nonvanishing of
the Cheeger constant (see Theorem 1.5 in [Colbois and Vernicos 2007]). A result by
Crampon [2009] states that for a divisible open bounded convex set � in Rn whose
boundary is C1 we have Ent�≤ n−1 with equality if and only if � is an ellipsoid.

In the present paper we link the volume entropy to another invariant associated
with a convex body, called the approximability. This name was introduced by
R. Schneider and J. A. Wieacker [1981]. The approximability measures in some
sense how well a convex set can be approximated by polytopes. More precisely, let
N (ε,�) be the smallest number of vertices of a polytope whose Hausdorff distance
to� is less than ε>0. Then the lower and upper approximability of� are defined by

(5) a(�) := lim inf
ε→0

ln N (ε,�)
− ln ε

and a(�) := lim sup
ε→0

ln N (ε,�)
− ln ε

.

The key inequality which is of interest in our work — obtained by Fejes Tóth
[1948] in dimension two and by E. M. Bronshteyn and L. D. Ivanov [1975] in the
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general case — asserts that for any bounded convex set in Rn the following upper
bound on the upper approximability holds: a(�)≤ 1

2(n− 1).
Our main result is as follows.

Theorem 1 (main theorem). Given an open bounded convex set � in Rn, we have

(6) 2a(�)≤ Ent� and 2a(�)≤ Ent�,

with equality for n = 2 or n = 3.

The equality case in (6), together with the upper bound for the upper approxima-
bility, implies the following corollary.

Corollary 2 (volume entropy upper bound conjecture). For any open bounded
convex set � in R2 or R3 we have Ent�≤ n− 1.

The equality case in this main theorem heavily relies on the study of polytopal
Hilbert geometries. As it happens we get an optimal control of the volume of
metric balls in dimension two and three, for in those two cases the number of
edges of a polytope is bounded from above by the number of its vertices up to a
multiplicative and an additive constant. This does not hold in higher dimensions,
following McMullen’s upper bound theorem [McMullen 1971; McMullen and
Shephard 1971].

The second important result concerns the two-dimensional case, where we can
prove that there are Hilbert geometries with intermediate volume growth.

Theorem 3 (intermediate volume growth). Let f : R+ → R+ be an increasing
function that satisfies

lim inf
r→+∞

er

f (r)
> 0.

Then there exist an open bounded convex set � in R2 and a point o in � such that

(7) lim inf
r→+∞

Vol� B�(o, r)
f (r)

> 0 and lim sup
r→+∞

Vol� B�(o, r)
f (r)r2 <+∞,

and

(8) Ent�= lim inf
r→+∞

ln f (r)
r

and Ent�= lim sup
r→+∞

ln f (r)
r

.

In particular there are open bounded convex sets �⊂ R2 with

• maximal volume entropy and zero centroprojective area,

• zero volume entropy which are not polytopes.

This theorem is a consequence of our method for proving the equality in di-
mension two in the main theorem (see Section 2) and Schneider and Wieacker’s
results [1981] on the approximability in dimension two. The last statement follows
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from our work [Vernicos 2009], where we showed that polytopes have polynomial
growth of order r2 in dimension two.

The intermediate volume growth theorem allows us to settle in a quite definite
way the question of whether the entropy is a limit or not.

Corollary 4. The volume entropy is not a limit in general. More precisely, for any α
and β with 0≤ α ≤ β ≤ 1 there exist an open bounded convex set � in R2 such that

Ent�= α and Ent�= β.

The equalities and inequalities also imply the following new results:

Corollary 5. Given an open bounded convex set � in Rn, we have

• dH ≤ Ent�, where dH is the Hausdorff dimension of the set of farthest points
of �;

• if n = 2 or 3 then a(�) is a projective invariant of � and Ent� = Ent�∗,
where �∗ is the polar dual of �;

• if n = 2, then a(�)≤ 1/(3− d).

Section 1 presents the various lemmas and notions needed in Section 2 to prove
the main theorem, and in Section 3 we present the proof of the intermediate volume
growth theorem.

1. Preliminaries on Hilbert geometries and convex bodies

1.1. Notations and definitions. A proper open set in Rn is a set that does not
contain a whole line. A nonempty proper open convex set in Rn will be called a
proper convex domain. The closure of a bounded convex domain is usually called a
convex body.

A Hilbert geometry (�, d�) is a proper convex domain � in Rn endowed with
its Hilbert distance d� defined as follows: for any two distinct points p and q in �,
the line passing through p and q meets the boundary ∂� of � at two points a and b
such that a, p, q, b appear in that order on the line. We denote by [a, p, q, b] the
cross ratio of (a, p, q, b), i.e.,

[a, p, q, b] =
qa
pa
×

pb
qb

> 1,

where for any two points x , y in Rn, xy is their distance with respect to the standard
Euclidean norm ‖ · ‖. Should a or b be at infinity, the corresponding ratio will be
considered equal to 1. Then we define

d�(p, q)= 1
2 ln[a, p, q, b].
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Note that the invariance of the cross ratio by a projective map implies the
invariance of d� by such a map.

The proper convex domain � is also naturally endowed with the C0 Finsler
metric F� defined as follows: given p ∈ � and v ∈ Tp� = Rn with v 6= 0, the
straight line passing through p with direction vector v meets ∂� at two points p+�
and p−� such that p+�− p−� and v have the same direction. Then let t+ and t− be the
two positive numbers such that p+ t+v = p+� and p− t−v = p−� (in other words,
these numbers correspond to the amount of time needed to reach the boundary of �
when starting at p with the velocities v and −v, respectively). Then we define

F�(p, v)=
1
2

(
1
t+
+

1
t−

)
and F�(p, 0)= 0.

Should p+� or p−� be at infinity, then the corresponding ratio will be taken to be
equal to 0.

The Hilbert distance d� is the length distance associated to F�. We shall denote
by B�(p, r) the metric ball of radius r centred at the point p ∈� and by S�(p, r)
the corresponding metric sphere.

Thanks to that Finsler metric, we can make use of two important Borel measures
on �. The first one, which coincides with the Hausdorff measure associated to the
metric space (�, d�) (see Example 5.5.13 in [Burago et al. 2001]), is the Busemann
volume, denoted by Vol� and defined as follows. Given any point p in �, let
β�(p)= {v ∈ Rn

| F�(p, v) < 1} be the open unit ball in Tp�= Rn with respect
to the norm F�(p, · ) and let ωn be the Euclidean volume of the open unit ball of
the standard Euclidean space Rn. Then given any Borel set A in �, its Busemann
volume Vol� is defined by

Vol� A =
∫

A

ωn

λ(β�(p))
dλ(p),

where λ denotes the standard Lebesgue measure on Rn.
The second one is the Holmes–Thompson volume on �, which we will denote

by µH T,�. Given any Borel set A in�, its Holmes–Thompson volume is defined by

µH T,�(A)=
∫

A

λ(β∗�(p))
ωn

dλ(p),

where β∗�(p) is the polar dual of β�(p).
We can actually consider a whole family of measures as follows. Let En be the

set of pointed proper open convex sets in Rn. These are the pairs (ω, x) such that
ω is a proper open convex set and x is a point in ω. We shall say that a function
f : En → R is a proper density if it is positive and satisfies the three following
properties:
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• Continuity with respect to the Hausdorff pointed topology on En .

• Monotone decreasing with respect to the inclusion; i.e., if x ∈ ω ⊂ � then
f (�, x)≤ f (ω, x).

• Chain rule compatibility: for any projective transformation T one has

f
(
T (ω), T (x)

)
Jac(T, x)= f (ω, x).

We will say that f is a normalised proper density if f (ω, x) dλ(x) is the Riemannian
volume when ω is an ellipsoid. Let us denote by PDn the set of proper densities
over En .

A result of Benzécri [1960] states that the action of the group of projective
transformations on En is cocompact. Therefore, for any pair f, g in PDn , there exists
a constant C>0 (C≥1 for the normalised ones) such that for any (ω, x)∈En one has

(9)
1
C
≤

f (ω, x)
g(ω, x)

≤ C.

Given a density f in PDn there is a natural Borel measure associated to any
open bounded convex set �, denoted by µ f,� and defined as follows: for any Borel
subset A of � we let

µ f,�(A)=
∫

A
f (�, p) dλ(p).

Integrating the inequalities (9) we obtain that for any two proper densities f, g
in PDn , there exists a constant C > 0 such that for any Borel set A ⊂� we have

(10)
1
C
µg,�(A)≤ µ f,�(A)≤ Cµg,�(A).

We call the family of measures obtained in this way proper measures with density.
To a proper density g ∈ PDn−1 we can also associate an (n−1)-dimensional

measure, denoted by µ·,g,�, on hypersurfaces in � as follows. Let 6 be a smooth
hypersurface, and consider for a point p in the hypersurface 6 its tangent hyper-
plane H(p). Then the measure will be given by

(11)
dµ6,g,�

dσ
(p)=

dµg,�∩H(p)

dσ
(p),

where σ denotes the Hausdorff (n−1)-dimensional measure associated with the
standard Euclidean distance. In Section 2 we will simply denote by Voln−1,� and
Area� the (n−1)-dimensional measures associated with the Holmes–Thompson
and the Busemann measures, respectively.
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Let now µ f,� be a proper measure with density over �. Then the volume
entropies of � are defined by

(12)
Ent�= lim inf

r→+∞

lnµ f,�(B�(p, r))
r

,

Ent�= lim sup
r→+∞

lnµ f,�(B�(p, r))
r

.

These numbers do not depend on either f nor p, and are equal to the spherical
entropies (see Theorem 2.14 of [Berck et al. 2010]):

(13)
Ent�= lim inf

r→+∞

ln(Area� S�(p, r))
r

,

Ent�= lim sup
r→+∞

ln(Area� S�(p, r))
r

.

1.2. Properties of the Holmes–Thompson and the Busemann measures.

Lemma 6 (monotonicity of the Holmes–Thompson measure). Let (�, d�) be a
Hilbert geometry in Rn. The Holmes–Thompson area measure is monotonic on the
set of convex bodies in �; that is, for any pair of convex bodies K1 and K2 in �
such that K1 ⊂ K2 one has

(14) Voln−1,� ∂K1 ≤ Voln−1,� ∂K2.

Proof. If ∂� is C2 with everywhere-positive Gaussian curvature then the tangent
unit spheres of the Finsler metric are quadratically convex.

According to Álvarez Paiva and Fernandes [1998, Theorem 1.1 and Remark 2]
there exists a Crofton formula for the Holmes–Thompson area, from which the
inequality (14) follows.

Such smooth convex bodies are dense in the set of all convex bodies for the
Hausdorff topology. By approximation, it follows that (14) is valid for any �. �

Lemma 6 associated with the Blaschke–Santaló inequality and the inequality (10)
immediately implies the following result (see also [Berck et al. 2010, Lemma 2.12]).

Lemma 7 (rough monotonicity of the Busemann measure). Let (�, d�) be a Hilbert
geometry, and let p be a point in �. There exists a monotonic function f� and a
constant Cn < 1 such that for all r > 0

(15) Cn f�(r)≤ Area� S�(p, r)≤ f�(r),

where f�(r) is the Holmes–Thompson area of the sphere S�(p, r).

Let us finish by recalling one last statement also proved in [Berck et al. 2010,
Lemma 2.13].
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Figure 1. The area of the triangle (opρ, qρ) is bounded by Cρ2.

Lemma 8 (coarea inequalities). For all r > 0

1
2
ωn

ωn−1
Area� S�(p, r)≤

∂

∂r
Vol� B�(p, r)≤

n
2
ωn

ωn−1
Area� S�(p, r).

1.3. Upper bound on the area of triangles. In this section we bound from above
independently of the two-dimensional Hilbert geometries the area of affine triangles
which are subset of a metric ball, when one of the vertices is the centre of that ball.
We also give a lower bound on the length of some metric segments, when their
vertices go to the boundary of the Hilbert geometry.

Lemma 9. Let (�, d�) be a two-dimensional Hilbert geometry. Then there exists a
constant C independent of � such that for any point o in � and any pair of points
pρ and qρ in the metric ball B�(o, ρ), the area of the affine triangle (opρqρ) is less
than Cρ2.

Proof. Given pρ and qρ in B�(o, ρ), let p and q be the intersections of the boundary
∂�with the half-lines [o, pρ) and [o, qρ) respectively. Let p′ and q ′ be, respectively,
the intersections of the half-lines [pρ, o) and [qρ, o) with the boundary ∂�. (See
Figure 1.)

Then the volume of the triangle (opρqρ) with respect to the Hilbert geometry
of � is less than or equal to its volume with respect to the Hilbert geometry of
the quadrilateral (pqp′q ′). However, the distances of pρ and qρ from o remain the
same in both Hilbert geometries.

Up to a change of chart, we can suppose that this quadrilateral is actually a
square. This allows us to use Theorem 1 from [Vernicos 2015], which states that
the Hilbert geometry of the square is bi-Lipschitz to the product of the Hilbert
geometries of its sides, using the identity as a map. In other words it is bi-Lipschitz
to the Euclidean plane, with a Lipschitz constant equal to C0 > 1, independent of
our initial conditions.
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Figure 2. Distance estimate of Claim 10.

Thus our affine triangle is inside a Euclidean disc of radius C0ρ, which implies
that its area with respect to the Hilbert geometry of � is less than C4

0 ×π × ρ
2. �

To prove that the volume entropy is bounded from below by the approximability
we will need to bound from below the length of certain segments in a given Hilbert
geometry �. To do so we will compare their length in the initial convex domain
with their length in a convex domain projectively equivalent to a triangle, and
containing the initial convex domain �.

Let us make this precise. Consider four points a, b, c and d in the Euclidean
plane (R2, 〈 · 〉) such that Q= (abcd) is a convex quadrilateral. We assume that the
scalar products 〈

−−→

ab,
−−→

bc〉 and 〈
−−→

bc,
−−→

cd〉 are positive and we let q be the intersection
point between the straight lines (ab) and (cd).

Suppose that � is a convex domain such that the segments [a, b], [b, c] and
[c, d] belong to its boundary. Given p a point in the convex domain � we denote
by p′ the intersection between the straight line (pq) and the segment [b, c], and
we define s = bp′/bc.

We then denote by [b(r), c(r)] the image of the segment [b, c] under the dilation
centred at p with ratio 0< tanh r < 1. The image of the segment [b, c] under the
dilation centred at q sending p′ to p will be denoted by [B,C].

Claim 10. Under the above assumption,

(16) d�
(
b(r), c(r)

)
≥

1
2 ln

(
bc

s · BC
tanh r

1− tanh r
+ 1

)
+

1
2 ln

(
bc

(1− s) · BC
tanh r

1− tanh r
+ 1

)
.
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Proof. Straightforward computation, using the fact that the convex domain � is
inside the convex domain Q obtained as the intersection of the half-planes defined
by the lines (ab), (bc) and (cd), and therefore

d�
(
b(r), c(r)

)
≥ dQ

(
b(r), c(r)

)
.

Let b′(r) be the intersection of the lines (ab) and
(
b(r)c(r)

)
, and let c′(r) be the

intersection of the lines (cd) and
(
b(r)c(r)

)
. (See Figure 2.) Then we have

dQ
(
b(r), c(r)

)
=

1
2 ln

(
b(r)c′(r)
c(r)c′(r)

·
c(r)b′(r)
b(r)b′(r)

)
.

Let us focus on the first ratio. On the one hand b(r)c′(r) = b(r)c(r)+ c(r)c′(r),
and on the other hand following Thales’ theorem

(17)
b(r)c(r)= tanh(r)bc,

c(r)c′(r)= (1− tanh r)pC.

But pC = BC · (p′c/bc)= (1− s)BC , and therefore we obtain

ln
(

b(r)c′(r)
c(r)c′(r)

)
= ln

(
bc

(1− s) · BC
tanh r

1− tanh r
+ 1

)
.

The second ratio is treated in the same way. �

1.4. Intrinsic and extrinsic Hausdorff topologies of Hilbert geometries. We de-
scribe the link between the Hausdorff topology induced by a Euclidean metric with
the Hausdorff topology induced by the Hilbert metric on a compact subset of an
open convex set.

We recall that the Löwner ellipsoid of a compact set is the ellipsoid with least
volume containing that set. In this section we will suppose, without loss of generality,
that � is a bounded open convex set whose Löwner ellipsoid E is the Euclidean unit
ball with centre o. It is a standard result that (1/n)E is then contained in �; i.e.,

(18)
1
n
E ⊂�⊂ E .

Definition 11 (asymptotic ball and sphere). The asymptotic ball of radius R centred
at o is the image of � by the dilation of ratio tanh R centred at o, and we denote it
by AsB(o, R). The image of the boundary ∂� by the same dilation will be called
the asymptotic sphere of radius R centred at o and denoted by AsS(o, R).

Recall that the Hausdorff distance is the distance between nonempty compact
subsets in a metric space. We shall use both the Euclidean and Hilbert distance
and we will use the terminology Hausdorff–Euclidean and Hausdorff–Hilbert to
distinguish both cases.
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Figure 3. Illustration of Proposition 12’s proof.

We would like to relate the Hausdorff–Hilbert neighbourhoods of the asymptotic
ball AsB(o, R) with its Hausdorff–Euclidean neighbourhoods.

Proposition 12. Let � be a convex domain and let o be the centre of its Löwner
ellipsoid, which we assume to be the unit Euclidean ball.

(1) The (1− tanh R)/(2n)-Hausdorff–Euclidean neighbourhood of the asymptotic
ball AsB(o, R) is contained in its

( 1
2 ln 3

)
-Hausdorff–Hilbert neighbourhood.

(2) For any K > 0, the K-Hausdorff–Hilbert neighbourhood of the asymptotic
ball AsB(o, R) is contained in its (1− tanh R)-Hausdorff–Euclidean neigh-
bourhood.

Proof. For any point p ∈ ∂� on the boundary of � and for 0< t < 1 let ϕt(p)=
o+ t · −−→op. This map sends ∂� bijectively to the asymptotic sphere AsS(o, arctanh t)
centred at o with radius arctanh t . (See Figure 3.)

Proof of part (1). Any point of a compact set in the (1− tanh R)/(2n)-Hausdorff–
Euclidean neighbourhood of AsB(o, R), either lies inside AsB(o, R) or is contained
in a Euclidean ball of radius (1− tanh R)/(2n) centred on a point of AsB(o, R).

We recall that the ball of radius 1/n is a subset of �, and thus so is the ball of
radius 1/(2n); that is,

1
2n

E ⊂
1
n
E ⊂�.

Let p ∈ ∂� be a point on the boundary. By convexity, the interior of K (p), the
convex hull of p and (1/n)E , is a subset of �— it is the projection of a cone of
basis (1/n)E . Hence Ep,α, the image of (1/n)E by the dilation of ratio 0< α < 1
centred at p, lies in the “cone” K (p). The set Ep,α is therefore a Euclidean ball of
radius α/n centred at ϕ1−α(p), and it is a subset of �.
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A point in the Euclidean ball of radius α/(2n) centred at ϕ1−α(p) is at a distance
less than or equal to 1

2 ln 3 from ϕ1−α(p) with respect to the Hilbert distance of Ep,α .
Now a standard comparison argument states that for any two points x and y in

Ep,α ⊂�,
d�(x, y)≤ dEp,α (x, y).

From this inequality it follows that any point in the Euclidean ball of radius α/(2n)
centred at ϕ1−α(p) is in the Hilbert metric ball centred at ϕ1−α(p) of radius 1

2 ln 3.
Now for any 1≥ α > 1− tanh R, the Euclidean ball of radius α/(2n) contains

the Euclidean ball of radius (1− tanh R)/(2n).
This implies that for any point x in the asymptotic ball AsB(o, R), the Euclidean

ball of radius (1− tanh R)/(2n) centred at x is contained in the Hilbert ball of
radius 1

2 ln 3 centred at x , which allows us to obtain the first part of our claim.

Proof of part (2). This follows from the fact that under our assumptions, � itself
is in the (1− tanh R)-Hausdorff–Euclidean neighbourhood of the asymptotic ball
AsB(o, R). �

Corollary 13. Let � be a convex domain and let o be the centre of its Löwner
ellipsoid, which we assume to be the unit Euclidean ball.

(1) The (1− tanh(R+ ln 2))/(2n)-Hausdorff–Euclidean neighbourhood of B(o, R)
is contained in its ln(3(n+1))-Hausdorff–Hilbert neighbourhood.

(2) For any K > 0, the K-Hausdorff–Hilbert neighbourhood of B(o, R) is con-
tained in its (1− tanh(R+K− ln(n+1)))-Hausdorff–Euclidean neighbourhood.

The proof of this corollary is a straightforward consequence of the following
lemma applied to the conclusion of the Proposition 12.

Lemma 14. Let � be a convex domain, and suppose that o is a point in the interior
of � such that the unit Euclidean open ball centred at o contains�, and� contains
the Euclidean closed ball centred at o of radius 1/(2n). Then we have

(19) B(o, R)⊂ AsB(o, R+ ln 2) and AsB(o, R)⊂ B(o, R+ ln(n+ 1)).

This lemma is a refinement of a result of [Colbois and Verovic 2004] in our case.

Proof of Lemma 14. Let x be a point on the boundary ∂� of �, and let x∗ be the
second intersection of the straight line (ox) with ∂�. Then our assumption implies

(20)
1

2n
< xo ≤ 1 and

1
2n
< ox∗ ≤ 1.

Actually the first inclusion is always true. Indeed suppose y is on the half-line
[ox) such that d�(o, y)≤ R, which in other words implies that we have

ox
yx

yx∗

ox∗
≤ e2R

;
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therefore

ox ≤ e2R ox∗

yx∗
(ox − oy)≤ e2R(ox − oy),

which implies in turn that

oy ≤
e2R
− 1

e2R ox ≤ (1− e−2R)ox ≤ tanh(R+ ln 2)ox .

Now regarding the second inclusion: consider a point y on the half-line [ox)
such that oy ≤ tanh(R)ox . On the one hand we have

ox
yx
=

ox
ox − oy

≤
1

1− tanh R
=

e2R
+ 1

2
,

and, on the other hand, thanks to the inequalities (20) we get

(21)
yx∗

ox∗
≤

ox + ox∗

ox∗
≤ 1+

ox
ox∗
≤ 1+ 2n,

which implies that

(22)
ox
yx

yx∗

ox∗
≤

e2R
+ 1

2
(1+ 2n)≤ (1+ 2n)e2R

≤ (1+ n)2e2R.

The conclusion follows. �

1.5. Distance function to a sphere in a Hilbert geometry. This section is an adap-
tation in the realm of Hilbert geometries of a result concerning the spheres in a
Minkowski space provided to the author by A. Thompson [2012].

Let us first start by recalling the following important fact regarding the distance
of a point to a geodesic in a Hilbert geometry (see [Busemann 1955, Chapter II,
Section 18, page 109]):

Proposition 15. Let (�, d�) be a Hilbert geometry. The distance function of a
straight geodesic (that is, given by an affine line) to a point is a peakless function;
i.e., if γ : [t1, t2] → � is a geodesic segment, then for any x ∈ � and t1 ≤ s ≤ t2
one has

d�
(
x, γ (s)

)
≤max

{
d�
(
x, γ (t1)

)
, d�

(
x, γ (t2)

)}
.

Let us now turn our attention to metric spheres in a two-dimensional Hilbert
geometry.

Proposition 16. Let (�, d�) be a two-dimensional Hilbert geometry. Suppose o is
a point of �, and p and q are two points on the intersection of the metric sphere
S(o, R) centred at o and of radius R with a line passing by o. If C denotes one of
the arcs of the sphere S(o, R) from p to q, then for any point p′ on the half-line
[o, p), the function ϕ(x)= d�(p′, x) is monotonic on C.
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Figure 4. Monotonicity of the distance of a point to a sphere.

Proof. Let p, x, y, q be points in that order on C. We have to show that

d�(p′, x)≤ d�(p′, y).

Suppose first that the line segments [o, x] and [p′, y] intersect at a point z. (See
Figure 4.) Hence we have

d�(o, x)+ d�(p′, y)=
(
d�(o, z)+ d�(z, x)

)
+
(
d�(p′, z)+ d�(z, y)

)
=
(
d�(p′, z)+ d�(z, x)

)
+
(
d�(o, z)+ d�(z, y)

)
≥ d�(p′, x)+ d�(o, y).

Now, as d�(o, y)= d�(o, x)= R, the result follows.
Suppose now that [o, x] and [p′, y] do not intersect, which implies that p′ is

outside the ball B(o, R). Then the line (yx) intersects (op) at z. Because x and y
lie on the sphere of radius R, we have d�(o, z) > R. Also, as p is one of the nearest
points to p′ on C , we have d�(p′, z) ≤ d�(p′, p) ≤ d�(p′, y). Hence if we apply
Proposition 15 to the segment [z, y] and p′, as x ∈ [z, y] we get

d�(p′, x)≤max{d�(p′, z), d�(p′, y)} = d�(p′, y). �

2. Volume entropy and approximability

This section is devoted to the proof of the main theorem. This is done in two
steps. The first step consists in bounding the entropy from above in dimension
two and three by the approximability thanks to the study of the volume growth in
polytopes. The second step is to bound the entropy from below. This is done by
exhibiting a separated subset of the Hilbert geometry whose growth is bigger than
the approximability. We conclude this section with the various corollaries implied.

Theorem 17. Let � be a bounded convex domain in R2 or R3. The doubles of the
approximabilities of � are bigger than the volume entropies; i.e.,

Ent�≤ 2a(�) and Ent�≤ 2a(�).
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The proof of this theorem relies on the following stronger statement which is
a sort of uniform bound on the volume of metric balls and metric spheres in a
polytopal Hilbert geometry. The key fact is that this bound depends, in a coarse
sense, linearly on the number of vertices of the polytope.

Theorem 18. Let n = 2 or n = 3. There are affine maps an, bn from R to R

and polynomials qn, pn−1 of degree n and n − 1 such that for any open convex
polytope PN with N vertices inside the unit Euclidean ball of Rn and containing
the ball of radius 1/(2n), one has

(23)
Voln−1,PN SPN (o, R)≤ an(N )pn−1(R),

VolPN BPN (o, R)≤ bn(N )qn(R).

The same result holds for the asymptotic balls.

Let us stress that our method also yields a control in terms of the vertices in
higher dimensions as well, using the so-called upper bound conjecture proved by
McMullen [McMullen 1971; McMullen and Shephard 1971], but alas a polynomial
of degree strictly bigger than 1 replaces the affine functions an and bn . This is why
we can’t state the equality in the main theorem in higher dimensions.

Notice that this theorem is still valid if we replace the Hausdorff measures by
any measures defined by a pair of proper densities f ∈ PDn and g ∈ PDn−1. The
change of measures will only impact the values of the constants.

Proof of Theorem 18. We will have to deal with dimension two and dimension three
separately, even though both cases follow the same main steps.

The first step of our proof consists in proving the first inequality of (23) for the
Holmes–Thompson measure and for an asymptotic sphere. The uniform inclusion
of metric balls into asymptotic balls (19) then implies the result for the metric
spheres thanks to the monotonicity of the Holmes–Thompson measure (Lemma 6).

The second step is an integration using the coarea inequality (25), which allows
us to get the second inequality of (23) for metric balls with respect to the Busemann
measure.

Let us now make all this more precise. We fix a polytope PN with N vertices
and for any real R > 0 we let PR be the asymptotic ball of radius R centred at o,
and let ∂PR be the associated asymptotic sphere. We also introduce the constant
cn = ln(n+ 1).

Two-dimensional case. The idea is to find an upper bound on the length of each
edge of the asymptotic sphere ∂PR , depending only on R.

To do so, we can use the fact that each edge belongs to the triangle defined by
joining its extremities to the point o. Hence, thanks to the triangle inequality its
length is less than the sum of these two other segments. However, using the second
inclusion (19) of Lemma 14, we know that the asymptotic ball PR is inside the
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Hilbert ball of radius R + c2 centred at o of the convex polygon PN . Hence the
length of each edge is less than 2 ·(R+c2). Therefore the length of the polygon ∂PR

is less than N · 2 · (R+ c2).
Following the first inclusion (19) of Lemma 14, the metric ball of radius r centred

at o is a subset of the asymptotic ball of radius r + ln 2 centred at o. Therefore, we
can use the monotonicity of the Holmes–Thompson length (see Lemma 6) to get
for all r > 0,

(24) LengthPN
SPN (o, r)≤ LengthPN

∂Pr+ln 2 ≤ N · 2(r + ln 2+ c2).

Now using the coarea inequality of Lemma 8, taking into account that the Busemann
length is equal to the Holmes–Thompson length one gets

(25) ∂

∂r
VolPN BPN (o, r)≤

π

4
· N · 2(r + ln 2+ c2).

Hence, integrating the inequality (25) over the interval [0, R], we finally obtain the
following inequality for the ball of radius R > 0:

(26) VolPN BPN (o, R)≤ π
4
· N · (R2

+ 2(ln 2+ c2)R).

The inequalities (24) and (26) are the expected results in dimension two.

Three-dimensional case. Once again the idea is to find an upper bound on the area
of faces of the asymptotic sphere ∂PR . Alas, contrary to the two-dimensional case,
there is not a unique type of faces, and it is therefore pointless to look for an upper
bound depending only on the radius R.

However, each face can be seen as the basis of a pyramid with apex the point o.
All other faces are then triangles, whose areas can be bounded thanks to Lemma 9.
An analogue of the triangle inequality is available in the form of the minimality
of the Holmes–Thompson area (see Berck [2009]). In other words, the Holmes–
Thompson area of each face of ∂PR is less than the sum of the Holmes–Thompson
areas of the triangles obtained as the convex hull of o and an edge of the given face
of ∂PR . Let us call To such a triangle (the subscript o is to stress the fact that the
point o is one of its vertices).

To bound the area of the triangle To it suffices to focus on the intersection
of the polytope PN with the affine plane containing the triangle To. This is a
polygon P̃, to which we can apply Lemma 9, which bounds from above the area
of a two-dimensional triangle inside a metric ball centred on one of its vertices.
This is exactly the situation of our triangle To with respect to the Hilbert geometry
associated to the polygon P̃. Indeed it is included in the asymptotic ball of radius R,
and again thanks to Lemma 14 we know that it is inside the metric ball of radius
R+ c3 with respect to the Hilbert geometry of PN ∈ R3. As P̃ is a plane section
of PN ∈ R3, this still holds for To seen as a subset of P̃. Hence Lemma 9 implies
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that the area of the triangle To is less than C(R + c3)
2, for some constant C > 1

independent of R.
Therefore, if e(N ) is the number of edges of PN , the area of the asymptotic

sphere ∂PR is less than 2e(N )C(R+ c3)
2.

Let f (N ) be the number of faces of PN and let us recall Euler’s formula:

N − e(N )+ f (N )= 2.

Each face being surrounded by at least three edges and each edge belonging to two
faces, one has the classical inequality (where equality is obtained in a simplex)

3 f (N )≤ 2e(N ).

Combining the previous two inequalities we get a linear upper bound on the number
of edges by the number of vertices:

2≤ N − 1
3 e(N ) ⇒ e(N )≤ 3N − 6.

Hence the area of the asymptotic sphere ∂PR is less than (3N − 6) · 2C · (R+ c3)
2.

We can now conclude almost as in the two-dimensional case. Following the first
inclusion (19) of Lemma 14, the metric ball of radius r centred at o is a subset
of the asymptotic ball of radius r + ln 2 centred at o. Therefore, we can use the
monotonicity of the Holmes–Thompson area measure (see Lemma 6) to get for all
r > 0,

(27) Vol2,PN SPN (o, r)≤ Vol2,PN ∂Pr+ln 2 ≤ (3N − 6) · 2C · (r + ln 2+ c3)
2.

Notice that this inequality (27) corresponds to the first part of the inequality (23).
The rough monotonicity of the Busemann measure (see the right-hand side of

the inequality (15) in Lemma 7) states that the Busemann area is smaller than the
Holmes–Thompson one, hence combined with the inequality (27) above, we get
that for all r > 0

(28) AreaPN SPN (o, r)≤ (3N − 6) · 2C · (r + ln 2+ c3)
2.

Taking into account the coarea inequality (see Lemma 8) in conjunction with the
inequality (28) leads to the differential inequality

(29) ∂

∂r
VolPN BPN (o, r)≤ 2 · (3N − 6) · 2C · (r + ln 2+ c3)

2,

which we can integrate over the interval [0, R] to finally obtain that for all R > 0

(30) VolPN BPN (o, R)≤ 2 · (N − 2) · 2C ·
(
(r + ln 2+ c3)

3
− c3

3
)
.

This concludes our proof in the three-dimensional case. �
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Let us remark that if we link this to our study of the asymptotic volume of the
Hilbert geometry of polytopes [Vernicos 2013] we obtain the following corollary:

Corollary 19. Let PN be an open convex polytope with N vertices in Rn, for n = 2
or 3. Then there are three constants αn , βn and γn such that for any point p ∈ PN

one has
αn · N ≤ lim inf

R→+∞

VolPN BPN (p, R)
Rn ≤ βn · N + γn.

Now let us come back to our initial problem and see how Theorem 18 implies
Theorem 17.

Proof of Theorem 17. We remind the reader that Voln−1,� stands for the (n−1)-
dimensional Holmes–Thompson measure. Let o be the centre of the Löwner
ellipsoid of �, which we assume to be the unit Euclidean ball. We consider R
large enough in order to have the Euclidean ball of radius 1/(2n) inside all the
asymptotic balls involved in the sequel.

The idea of the proof consists in replacing for all R large enough the convex
set � by a convex polytope PR such that

• PR is a subset of �;

• the asymptotic ball PR of the polytope PR is inside the (1− tanh R)/(2n)-
Euclidean neighbourhood of the corresponding asymptotic ball AsB�(o, R)
of �;

• the exponential volume growth, with respect to the geometry of �, of the two
families of asymptotic balls (PR)R∈R and (AsB�(o, R))R∈R is the same.

Let us insist on the fact that the convex polytope PR depends on R.
Then using Theorem 18 we will bound from above the area in dimension three or

the perimeter in dimension two of the convex polytope PR by a function depending
linearly on the number of vertices of PR and polynomially on R. This will allow
us to conclude.

Fix R. Among all polytopes included in both the asymptotic ball AsB�(o, R)
and its (1− tanh R)/(2n)-Hausdorff–Euclidean neighbourhood pick a polytope PR

with the minimal number of vertices N (R). Notice that we have

(31) N (R)= N
(

1− tanh R
2n tanh R

, �

)
.

Claim. There exists a constant C > 0 such that for all R,

(32) AsB�(o, R−C)⊂ PR ⊂ AsB�(o, R).

To prove this claim, on the one hand we deduce from the first inclusion of
Lemma 14 that

B�(o, R− ln 2)⊂ AsB�(o, R).
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AsB(o, R)

PR
PR

�

Figure 5. The asymptotic ball and an approximating polytope.

On the other hand the comparison of both Hausdorff–Hilbert and Hausdorff–
Euclidean neighbourhoods, as stated in Proposition 12, implies that the convex
polytope PR lies in the

( 1
2 ln 3

)
-Hausdorff–Hilbert neighbourhood of the asymptotic

ball AsB�(o, R). From these we deduce the inclusion

(33) B�(o, R− ln 6)⊂ PR ⊂ AsB�(o, R).

Taking into account the second inclusion of Lemma 14 we get

(34) AsB�(o, R− ln 6− ln(n+ 1))⊂ PR ⊂ AsB�(o, R),

which proves our claim with C = ln 6+ ln(n+ 1).
Thanks to the monotonicity of the Holmes–Thompson measure (see Lemma 6)

we know that the area of the boundary ∂PR is less than the area of the asymptotic
sphere AsS�(o, R), but larger than the area of the asymptotic sphere of radius
R−C ; that is,

(35) Voln−1,� AsS�(o, R−C)≤ Voln−1,� ∂PR ≤ Voln−1,� AsS�(o, R).

From (35) we deduce that the logarithms of the areas of ∂PR and AsS�(o, R)
are asymptotically the same in the following sense:

(36) lim
R→+∞

ln(Voln−1,� AsS�(o, R))
ln(Voln−1,� ∂PR)

= 1.

Let us denote by PR the image of PR by the dilation of ratio 1/ tanh R. This
is the dilation sending AsB�(o, R) to �. (See Figure 5.) Hence, by construction,
PR ⊂� and therefore we have

(37) Voln−1,� ∂PR ≤ Voln−1,PR ∂PR.
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Now thanks to Theorem 18, for n = 2 or n = 3 and R > 0 such that tanh R > 3
4 ,

there are two constants an, bn and a polynomial Qn of degree n such that

(38) Voln−1,� ∂PR ≤ (an N (R)+ bn)Qn(R).

To conclude we remark that

lim inf
R→+∞

ln N (R)
R

= 2a(�) and lim sup
R→+∞

ln N (R)
R

= 2a(�),

and use it with the inequality (38) to get for instance

lim sup
R→+∞

ln(Voln−1,� ∂PR)

R
≤ 2a(�).

Finally the limit (36) implies that

lim sup
R→+∞

ln(Voln−1,� AsS�(o, R))
R

≤ 2a(�).

The left-hand side of this last inequality is easily seen to be the spherical entropy
(see (13)), which ends our proof. �

The next corollary follows from a result of Bronshteyn and Ivanov (Theorem 31)
which states that 2a ≤ n− 1.

Corollary 20. Let � be an open bounded convex set in Rn for n = 2 or 3. Then

Ent�≤ n− 1.

We are now going to study the reverse inequality.

Theorem 21. Let� be a bounded convex domain in Rn. The volume entropies of �
are greater than or equal to twice the approximabilities of �; i.e.,

2a(�)≤ Ent� and 2a(�)≤ Ent�.

Proof. Without loss of generality we suppose that the Euclidean unit ball is the
Löwner ellipsoid of � and that o is the centre of that ball.

The idea of the proof is the following:

• We will show that for a good positive δ and any positive real number R there
exists a δ-separated set SR in the metric ball of radius B(o, R+ 2δ) such that
the convex closure PR of that set contains the ball B(o, R).

• We will then use the fact that the cardinality of this δ-separated set will be
larger than the cardinality of the set of vertices of a vertex-minimising convex
polytope included in the annulus B(o, R+ 2δ) \ B(o, R).
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In other words, the number of points in the δ-separated set will be bounded
from below by the number N (ε(R),�) from the introduction. Here ε will be
a function of R.

• To conclude we will take into account that the union of the open metric balls
of radius 1

2δ centred at the point of the δ-separated set SR is disjoint and is
in the ball B(o, R + 3δ). Thus we get a lower bound on the volume of the
ball B(o, R+ 3δ) in terms of N (ε(R),�) times a constant depending on the
dimension.

Let us now start the proof. Consider the
( 1

2 ln 3
)
-Hilbert neighbourhood of the

metric ball B(o, R), that is,

V (R)= B
(
o, R+ 1

2 ln 3
)
,

and take a maximal (δ = 1
4 ln 3)-separated set SR on its boundary. This set contains

#SR points. Now let us take the convex hull CR of these points. This is a polytope
with N2(R)≤ #SR vertices.

Claim 22. The polytope CR is included in the 2δ-Hilbert neighbourhood of B(o, R)
and contains B(o, R).

Notice that if the claim holds, then for some real constant c independent of R
(see Corollary 13 once again), we have

(39) #SR ≥ N2(R)≥ Ñ (R− c) := N
( 1

4(1− tanh(R− c)),AsB(o, R− c)
)
.

Proof of Claim 22. First notice that V (R) is a convex set (see Busemann [1955,
Chapter II, Section 18, page 105]). Therefore the convex hull is inside the 2δ-Hilbert
neighbourhood of B(o, R), that is, V (R).

Now let us suppose by contradiction that CR does not contain B(o, R). Hence
there exists some point q in B(o, R) which is not in CR . We will show that we can
find a point on the sphere S(o, R+ 2δ) which is at a distance bigger than δ from
all points of SR , which will contradict its maximality.

Under our assumption, the Hahn–Banach separation theorem asserts that there
exists a linear form a, some constant c and a hyperplane H = {x | a(x)= c} which
separates q and CR , i.e., a(q) > c and a(x) < c for all x ∈ CR . Consider then
Hq = {x | a(x)= a(q)}, the hyperplane parallel to H containing q. Let us say that
a point x such that a(x)≥ a(q) is above the hyperplane Hq .

Then let us define by V ′o = {x ∈ ∂V (R) | a(x)≥ a(q)} the part of the boundary
of V (R) which is above Hq . Now we want to metrically project each point of V ′o
onto Hq , that is to say that to each point of V ′o we associate its closest point on Hq .
However if � is not strictly convex, the projection might not be unique (see the
Appendix); that is why we are going to distinguish two cases.
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First case: the convex set � is strictly convex. Then the metric projection is a
map from V ′o to Hq and it is continuous; furthermore the points on Hq ∩ V ′o are
fixed and by convexity Hq ∩ V ′o is homeomorphic to an (n−2)-dimensional sphere.
Therefore by the Borsuk–Ulam theorem (or a version of it known as the antipodal
map theorem), there is a point p on V ′o whose metric projection is q.

Now as p is on the boundary of V (R), that is, the sphere B(o, R+ 2δ), and q is
in B(o, R) we necessarily have

d�(p, q)≥ 1
2 ln 3.

Hence for all points x in Hq ∩ V ′o , we have

d�(p, x)≥ d�(p, q)≥ 1
2 ln 3.

Second case: the convex set � is not strictly convex. Then let us approximate it by
a smooth and strictly convex set �′ such that � ⊂ �′, and for all pairs of points
x, y ∈ V (R),

(40) 2
3 × d�′(x, y)≥ d�(x, y)≥ d�′(x, y).

Then metrically project V ′o onto Hq with respect to �′. By the same argument
as in the first case, we obtain a point p such that for all x in Hq ∩ V ′o we have

d�′(p, x)≥ d�′(p, q)≥ 3
2 d�(p, q)≥ 3

4 ln 3,

which also implies by the inequalities (40) that for all x in Hq ∩ V ′o we have

d�(p, x)≥ 3
4 ln 3.

In either case, using Proposition 16 of Section 1.5, we deduce that all points on
∂VR at distance less than or equal to 1

4 ln 3 from p are above Hq and are therefore
contained in V ′o . We then infer that there are no points of SR at distance less than
or equal to 1

4 ln 3 from p, which contradicts the maximality of the set SR . �

Now consider the union of the balls of radius 1
2δ centred at the points of SR . This

union is a subset of the ball B(o, R+ 3δ) and the balls are mutually disjoint. Now
following our paper [Vernicos 2013], there exists a constant an such that for any
open proper convex set � and x ∈�, the volume of the ball of radius r centred at x
is at least anrn. Hence from this fact and the inequality (39) we get that for all R> 0,

(41) Vol� B(o, R+ 3δ)≥ #SR · anδ
n

≥ N
( 1

4(1− tanh(R− c)),AsB(o, R− c)
)
· anδ

n.

Now if we take the logarithm of the previous inequalities, divide by R and take
either the lim inf or the lim sup we conclude the proof of Theorem 21. �
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The proof of the main theorem (Theorem 1) is now complete, and we turn to its
corollaries.

A point x of a convex body K is called a farthest point of K if and only if,
for some point y ∈ Rn, x is farthest from y among the points of K . The set of
farthest points of K , which are special exposed points, will be denoted by exp∗ K .
Thus a point x ∈ K belongs to exp∗ K if and only if there exists a ball which
circumscribes K and contains x in its boundary.

In dimension two we get the following corollary:

Corollary 23. Let � be a plane Hilbert geometry, and let dM be the Minkowski
dimension of extremal points and dH the Hausdorff dimension of the set exp∗� of
farthest points. Then we have

(42) dH ≤ Ent�≤ Ent�≤
2

3− dM
.

The inequality on the left remains valid for higher-dimensional Hilbert geometries.

Proof. The inequality on the left of (42) comes from [Schneider and Wieacker 1981],
whereas the one on the right is the first main theorem in [Berck et al. 2010]. �

Remark 24. Inequality (42) induces a new result concerning the approximability
in dimension two, as it implies that

a(�)≤
1

3− d
.

Lastly we are also able to prove the following result, which relates the entropy
of a convex set and the entropy of its polar body.

Corollary 25. Let � be a Hilbert geometry of dimension two or three. Then

Ent�= Ent�∗ and Ent�= Ent�∗.

Proof. It suffices to prove that the approximability of a convex body � containing
the origin and its polar �∗ are equal. Without loss of generality we can assume
that the unit ball is �’s John ellipsoid. Hence � is contained in the ball of radius
the dimension and its polar contains the ball of radius the inverse of the dimension
and is included in the unit ball. Now, notice that for ε small enough, if Pk is
a polytope with k vertices inside the ε-Hausdorff neighbourhood of �, then its
polar P∗k is a polytope with k faces containing �∗ and contained in its (ε · C)-
Hausdorff neighbourhood for some constant C depending only on the dimension.
A known fact (see Gruber [2007, Section 11.2] ) states that the approximability can
be computed by minimising either the vertices or the faces. Hence a(�)= a(�∗)
and a(�)= a(�∗). The statement therefore follows from the main theorem. �
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3. Intermediate growth

In this section we focus on the two-dimensional case. The intermediate volume
growth will follow from Theorem 18 and the following proposition, which allows
us to control both the length of sphere and its volume in dimension two from below,
thanks to the number of vertices of an ad hoc approximating polytope, in the fashion
of Theorem 18, except that here the lower bounds depend on �.

Proposition 26. Let� be an open bounded convex set in R2 whose Löwner ellipsoid
is the Euclidean unit ball centred at o ∈ �. Let N (ε,�) be the minimal number
of vertices of a polygon containing � at Hausdorff–Euclidean distance less than ε
from �, and for any positive real number R let

N (R) := N
(

1− tanh R
4 tanh R

, �

)
.

Then there exist three constants R2, K2 and C2 independent of � such that for
all real numbers R > R2 we have

(43)
Length� S�(o, R)≥

(
N
(
R− 3

2 ln 3
)
− 2

)
K2,

Vol� B�
(
o, R+ 1

2 K2
)
≥
(
N
(
R− 3

2 ln 3
)
− 2

)
C2(K2)

2.

The same result holds for the asymptotic balls with R > R2+ ln 2.

We want to stress once again that there is actually no loss in generality in
supposing the Euclidean unit ball to be the Löwner ellipsoid of �.

Proof. For any positive real number R let ε(R)= 1
4(1− tanh R). The idea is to build

a convex polygon in the ε(R)-neighbourhood of an asymptotic ball of radius R in
such a way that we can control uniformly from below the length of the edges. More
precisely we have the following.

Claim 27. There exists a convex polygon PR such that

• PR contains the asymptotic ball AsB(o, R) and is in its ε(R)-Hausdorff–
Euclidean neighbourhood;

• all the edges of PR but one are tangent to AsB(o, R) and all its vertices
belong to the boundary ∂R AsB of the ε(R)-Hausdorff neighbourhood of the
asymptotic ball AsB�(o, R).

This claim is a consequence of the following algorithm:

Step 1 Draw one tangent to AsB�(o, R). It will meet the boundary ∂R AsB of its
ε(R)-Hausdorff neighbourhood at two points x1 and x2, where −−−→ox1 and −−−→ox2

are positively oriented.

Step 2 We start from x2 and draw the second tangent to AsB�(0, R) passing by x2.
This second tangent will meet the boundary ∂R AsB at a second point x3.
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Step 3 For k > 2, if the second tangent tk+1 to AsB�(0, R) passing by xk has its
second intersection with ∂R AsB on the arc from x1 to xk (in the orientation of
the construction), we stop and consider for PR the convex hull of x1, . . . , xk ;
otherwise we take for xk+1 that second intersection of the tangent tk+1 with
∂R AsB and start that step again.

This algorithm will necessarily finish, because by convexity the arclength of
xi xi+1 on ∂R AsB built this way is bigger than 2ε(R). At the end of this algorithm we
obtain, by minimality, a polygon which has at least N (R)=N

(
ε(R),AsB�(o, R)

)
=

N
(
ε(R)/ tanh R, �

)
edges.

Recall that Proposition 12 guarantees us that the ε(R)-Euclidean neighbourhood
of the asymptotic ball AsB�(o, R) is included in its

( 1
2 ln 3

)
-Hausdorff–Hilbert

neighbourhood and therefore, taking into account the inclusions (19), we obtain

B�(o, R− ln 2)⊂ AsB�(o, R)⊂ PR ⊂ B�
(
o, R+ 3

2 ln 3
)
.

Moreover, the length coincides with the Holmes–Thompson one-dimensional
measure. Therefore, the monotonicity of the latter, as seen in Lemma 6, implies the
following inequalities:

(44) Length� S�(o, R− ln 2)≤ Length� ∂AsB�(o, R)

≤ Length� ∂PR

≤ Length� S�
(
o, R+ 3

2 ln 3
)
.

Now let PR be the image of PR under the dilation of ratio 1/ tanh R centred at o.
By construction PR contains �, which implies

LengthPR
∂PR ≤ Length� ∂PR.

Therefore it suffices to prove the following claim:

Claim 28. Let I (R) ∈ ∂R AsB be a vertex of PR such that the two edges con-
taining I (R) are tangent to AsB�(o, R) at b(R) and c(R). Then for any R >

tanh−1( 1
2

)
= R2,

d�
(
b(R), c(R)

)
≥ dPR

(
b(R), c(R)

)
≥ ln 6

5 = K2.

Indeed, let us assume that Claim 28 is true, and for R > r2 consider a vertex v of
PR whose incident edges are tangent to AsB(o, R). Let b and c be the two points
of tangency. Then by the triangle inequality,

d�(b, v)+ d�(c, v)≥ d�(b, c)≥ K2.

Therefore the length of PR is bigger than (Ñ (R)−2)K2, where Ñ (R) is the number
of edges of PR (because of the possible exception at x1 and the last point of the
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construction above). Hence taking R2=r2+
3
2 ln 3, thanks to (44), we get for R> R2

(45) Length� S�(o, R)≥
(
Ñ
(
R− 3

2 ln 3
)
− 2

)
K2,

and as Ñ
(
R− 3

2 ln 3
)
≥ N

(
R− 3

2 ln 3
)

the first inequality in (43) is proved.
Now concerning the volume of the ball, Claim 28 and Proposition 16 imply

that the contact points of the edges of PR with AsB�(o, R) form a K2-separated
set. Hence we can conclude in the same way as we did during the proof of
Theorem 21; i.e., the balls of radius 1

2 K2 centred at those points are disjoint and
included in the metric ball B�

(
o, R + 3

2 ln 3+ 1
2 K2

)
. Now following [Vernicos

2013], there exists a constant C depending only on the dimension such that the
volume of the ball of radius r is at least C · r2. Hence we obtain that

(46) Vol� B�
(
o, R+ 3

2 ln 3+ 1
2 K2

)
≥
(
Ñ (R)− 2

)
·C ·

( 1
2 K2

)2
,

and the last inequality (43) follows once again from the inequality Ñ (R)≥ N (R).

Proof of Claim 28. Let a(R) (respectively d(R)) be the vertex opposite I (R) on
the edge containing b(R) (respectively c(R)).

Now let us consider the images I, a, b, c and d of the five points I (R), a(R),
b(R), c(R) and d(R) by the dilation of ratio 1/ tanh R centred at o. Then we are
in the same configuration as in Claim 10, with PR instead of �. Let

u(R)=
bc
BC

tanh R
1− tanh R

;

then following (16) we have

dPR

(
b(R), c(R)

)
≥

1
2 ln

(
1+

u(R)+ u(R)2

s(1− s)

)
.

Therefore we need to obtain a lower bound for u(R). To do this, let p be the inter-
section of the line oI with the lines (bc). Then thanks to Thales’ theorem we have

BC
bc
=

oI
pI
=

op+ pI
pI

= 1+
op
pI
.

Concerning the distance op, recall that the unit ball centred at o is the Löwner
ellipsoid of � and therefore we get op ≤ 1/tanh R, because by convexity p is
in �. Regarding the distance pI , as I (R) is on the boundary of the 1

4(1− tanh R)-
Euclidean neighbourhood of AsB(o, R), we have that I is on the boundary of the
(1− tanh R)/(4 tanh R)-neighbourhood of �. Hence we obtain

pI ≥
1− tanh R
4 tanh R

,
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because the segment [p, I ] intersects �. In this way we obtain

BC
bc
≤ 1+

4
1− tanh R

,

which in turn implies that

1≤
5− tanh R
1− tanh R

bc
BC
≤

5
1− tanh R

bc
BC

.

Hence

(47) 1
5 tanh R ≤ u(R).

Therefore if tanh R2 =
1
2 then for all R > R2 we get 10u(R) > 1.

Finally, using the fact that s(1− s)≤ 1
4 and taking R > R2 we get

dPR

(
b(R), c(R)

)
≥

1
2 ln

(
1+ 2

5 +
1

25

)
= ln 6

5 > 0.18. �

Proof of Theorem 3 (intermediate volume growth theorem). Following Theorem 4 of
[Schneider and Wieacker 1981, page 154] and its proof, for any increasing function
f : R+→ R+ such that

lim inf
r→+∞

er

f (r)
> 0

there exists a convex set � f such that

(48) 0< lim inf
r→+∞

N (1− tanh r, � f )

f (r)
≤ lim sup

r→+∞

N (1− tanh r, � f )

f (r)
<+∞.

In the sequel we will write N (r)= N (1− tanh r, � f ) and drop the subscript � f in
the notation of metric and asymptotic balls.

Now let o be the centre of the Löwner ellipsoid of � f . Following Proposition 26
for K2 = ln 6

5 and r > 0 satisfying

tanh
(
r − 3

2 ln 3− 1
2 K2

)
≥

1
2 ,

we have that

(49) Vol� f B(o, r)≥
(
N
(
r − 3

2 ln 3− 1
2 K2

)
− 2

)
C(K2)

2.

This inequality implies that

(50) lim inf
r→+∞

Vol� f B(o, r)
f (r)

≥ C(K2)
2 lim inf

r→+∞

N
(
r − 3

2 ln 3− 1
2 K2

)
− 2

f (r)
.

Now using inequalities (35) to (38) from the proof of Theorem 17 we get the
existence of three constants a, b and c such that if K = ln 18 and r > 0 is a real
number satisfying tanh(r −C) > 3

4 then

(51) Vol� f AsB(o, r −C)≤ N
(

1− tanh r
4 tanh r

, � f

)
(ar2
+ br + c).
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The inclusion B(o, r− ln 2−C)⊂AsB(o, r−C) given by (19) in Corollary 13’s
proof allows us to obtain

(52) Vol� f B(o, r −C − ln 2)≤ N
(

1− tanh r
4 tanh r

, � f

)
(ar2
+ br + c),

which in turn implies that

(53) lim sup
r→+∞

Vol� f B(o, r)
r2 f (r)

≤ a× lim sup
r→+∞

N
(

1−tanh r
4 tanh r , � f

)
f (r)

.

Combining inequalities (49) and (51) and using the asymptotic comparison (48)
we finally conclude that

lim inf
r→+∞

ln(Vol� f B(o, r))
r

= lim inf
r→+∞

ln f (r)
r

.

In the above proofs we can replace lim inf by lim sup.
To obtain the penultimate statement consider f (r)= er/r3, and apply our result

to get a convex set � f whose entropy is 1. However, by the definition of the
centroprojective area and our result in the two-dimensional case [Berck et al. 2010]
we have

(54) Ao(� f )= lim
Vol� f B(o, r)

sinh r
= lim sup

Vol� f B(o, r)
sinh r

= lim sup
Vol� f B(o, r)

err−1 ×
er

r sinh r
= 0.

For the last statement take f (r)= r3 and apply our result to get a convex set � f

such that

lim sup
Vol� f B(o, r)

r2 = lim sup
r Vol� f B(o, r)

r3 =+∞;

hence, following our paper [Vernicos 2013], � f is not a polytope. Furthermore the
entropy of such a convex set is zero as we have lim sup∞ ln(r3)/r = 0. �

To conclude this section let us show how Corollary 4, related to the values
attained by the lower and upper volume entropies, easily follows: Suppose first
that 0< α ≤ β ≤ 1, and start by considering a sequence (Un)n∈N defined for some
x > 0 by U0 = ebx, and for all k ≥ 0 by

U2k+1 = eαU2k and U2k+2 = eβU2k+1.

Then take an increasing function f : R+→ R+ such that for all r ∈ R,

eαr
≤ f (r)≤ eβr,

and f (Un)=Un+1 for all n ≥ 0. We can define such a function piecewise linearly.
If α = 0, replace r 7→ eαr by r 7→ 2r above and take U2k+1 = 2U2k for all k ≥ 0.
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Figure 6. Metric projection of p on H.

Appendix: Metric projection in a Hilbert geometry

The following is a reformulation and a detailed proof of a statement found in
[Busemann and Kelly 1953, Sections 21 and 28] in any dimension.

Proposition 29. Let (�, d�) be a Hilbert geometry in Rn. Let p be a point of �
and H a hyperplane intersecting �. Then q ∈ H ∩� is a metric projection of p
onto H , i.e.,

d�(p, H)= d�(p, q),

if and only if ∂� has, at its intersection with the straight line (pq), supporting
hyperplanes concurrent with H (the intersection of these three hyperplanes is an
(n−2)-dimensional affine space).

Proof. Let us suppose first that such concurrent support hyperplanes exist. Let
x and y be the intersections of the line (pq) with ∂�. Assume that ξ and η are
supporting hyperplanes of ∂� respectively at x and y whose intersection with H is
the (n−2)-dimensional affine space W. (See Figure 6.) Let us show that for any
p′ ∈ (pq) and any q ′ ∈ H we have

(55) d�(p′, q ′)≥ d�(p′, q).

Let us suppose that x is on the half-line [qp′) and y on the half-line [p′q) and
denote by x ′ and y′ the intersections of ∂� with the half-lines [q ′p′) and [p′q ′)



APPROXIMABILITY OF CONVEX BODIES AND VOLUME ENTROPY 253

respectively. Then let x0 be the intersection of ξ with the line (p′q ′) and y0 the
intersection of (p′q ′) with η. By Thales’ theorem, the cross ratio of [x0, p′, q ′, y0]

is equal to the cross ratio of [x, p′, q, y] and standard computation shows that

[x0, p′, q ′, y0] ≤ [x ′, p′, q ′, y′],

with equality if and only if x0 = x ′ and y′ = y0. Hence the inequality (55) holds,
and if the convex set is strictly convex, this inequality is always strict, for q ′ 6= q .

Reciprocally: recall that when a point q ′ of � goes to the boundary, its distance
to p goes to infinity. Hence by continuity of the distance and compactness there
exists a point q on H∩� such that d�(p, H)= d�(p, q). Now consider the Hilbert
ball B�(p, r) of radius r = d�(p, H) centred at p. Let once more x , y, ξ and η be
defined as before, and let H ′ be the hyperplane passing by q and ξ ∩ η =W. Then
this hyperplane has to be tangent to the ball B�(p, r); otherwise one can find a
point q ′ on H ′ inside the open ball (i.e., d(p, q ′) < r). However, by the reasoning
done in our first step we would conclude that this point is at a distance greater than
or equal to r , which would be a contradiction. By minimality of the point q, H
is also a supporting hyperplane of B�(p, r) at q. Hence we have to distinguish
between two cases. If � is C1, then by the uniqueness of the tangent hyperplanes
at every point, H = H ′. Otherwise, � is not C1 at x or y. In that case it is possible
to replace one of the hyperplanes, say ξ , with ξ ′ passing by x and H ∩ η (which
might be at infinity, which would mean that we consider parallel hyperplanes). �

Notice that there is no uniqueness of the metric projections (also called “foot”
by Busemann). However, if the convex set is strictly convex, then we will have a
unique projection, and if furthermore the convex set is C1, this projection will be
given by a unique pair of supporting hyperplanes.

A.1. Approximability of convex bodies seen as a dimension. In this section we
relate our definition of approximability with the definition given in [Schneider and
Wieacker 1981].

Recall that for a convex body � and ε > 0, N (ε,�) denotes the smallest number
of vertices of a polytope whose Hausdorff distance to � is less than ε.

Theorem 30 [Schneider and Wieacker 1981]. Let as := lim infε→0+ N (ε,�)εs.
Then s→ as admits a critical value a(�), called the approximability number of �,
such that if s > a(�) then as(�)= 0, and if s < a(�) then as(�)=∞.

In the same way, we can introduce the upper approximability number of �,
denoted by a(�), as the critical value of s 7→ as(�), where

as(�) := lim sup
ε→0+

N (ε,�)εs.
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The reader familiar with the definition of the ball-box dimension (also known
as the Minkowski dimension) will have no difficulty seeing that this definition
coincides with the one given in the Introduction.

Now the main result in [Bronshteyn and Ivanov 1975] asserts that for any convex
set� inscribed in the unit Euclidean ball, there are no more than c(n)ε(1−n)/2 points
whose convex hull is no more than ε away from � in the Hausdorff topology, which
gives the next result.

Theorem 31 [Bronshteyn and Ivanov 1975]. Let � be a convex body in Rn. Then

a(�)≤ 1
2(n− 1).
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