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OPERATOR IDEALS RELATED TO ABSOLUTELY SUMMING
AND COHEN STRONGLY SUMMING OPERATORS

GERALDO BOTELHO, JAMILSON R. CAMPOS AND JOEDSON SANTOS

We study the ideals of linear operators between Banach spaces determined
by the transformation of vector-valued sequences involving the new se-
quence space introduced by Karn and Sinha and the classical spaces of ab-
solutely, weakly and Cohen strongly summable sequences. As applications,
we prove a new factorization theorem for absolutely summing operators
and a contribution to the existence of infinite-dimensional spaces formed
by nonabsolutely summing operators is given.

Introduction and background

In the theory of ideals of linear operators between Banach spaces (operator ideals), a
central role is played by classes of operators that improve the convergence of series,
which are usually defined or characterized by the transformation of vector-valued
sequences. The most famous of such classes is the ideal of absolutely p-summing
linear operators, which are the ones that send weakly p-summable sequences to
absolutely p-summable sequences. The celebrated monograph [Diestel et al. 1995]
is devoted to the study of absolutely summing operators.

For a Banach space E , let `p(E), `wp (E) and `p〈E〉 denote the spaces of abso-
lutely, weakly and Cohen strongly p-summable E-valued sequences, respectively.
Karn and Sinha [2014] recently introduced a space `mid

p (E) of E-valued sequences
such that

(1) `p〈E〉 ⊆ `p(E)⊆ `mid
p (E)⊆ `wp (E).

In the realm of the theory of operator ideals, it is a natural step to study the classes
of operators T : E→ F that send: (i) sequences in `wp (E) to sequences in `mid

p (F),
(ii) sequences in `mid

p (E) to sequences in `p(F), (iii) sequences in `mid
p (E) to

sequences in `p〈F〉. This is the basic motivation of this paper.
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We start by taking a closer look at the space `mid
p (E) in Section 1. First we give

it a norm that makes it a Banach space. Next we consider the relationship with the
space `u

p(E) of unconditionally p-summable E-valued sequences. We show that,
although (1) and `p(E)⊆ `u

p(E)⊆ `
w
p (E) hold for every E , in general `mid

p (E) and
`u

p(E) are not comparable. It is also proved that the correspondence E 7→ `mid
p (E)

enjoys a couple of desired properties in the context of operator ideals.
In Section 2 we prove that the classes of operators described in (i), (ii) and

(iii) above are Banach operator ideals. Characterizations of each class and their
corresponding norms are given and properties of each ideal are proved. We establish
a factorization theorem for absolutely summing operators and a question left open
in [Karn and Sinha 2014] is settled. In both Sections 1 and 2 we study Banach
spaces E for which `p(E)= `mid

p (E) or `mid
p (E)= `wp (E).

In Section 3 we give an application to the existence of infinite-dimensional
Banach spaces formed, up to the null operator, by nonabsolutely summing linear
operators on nonsuperreflexive spaces.

Let us define the classical sequences spaces we shall work with:

• `p(E) = absolutely p-summable E-valued sequences with the usual norm ‖·‖p.

• `wp (E) = weakly p-summable E-valued sequences with the norm

‖(x j )
∞

j=1‖w,p = sup
x∗∈BE∗

‖(x∗(x j ))
∞

j=1‖p.

• `u
p(E) =

{
(x j )

∞

j=1 ∈ `
w
p (E) : limk

‖(x j )
∞

j=k‖w,p = 0
}

with the norm inherited
from `wp (E) (unconditionally p-summable sequences, see [Defant and Floret
1993, 8.2]).

• `p〈E〉=
{
(x j )

∞

j=1∈ EN
: ‖(x j )

∞

j=1‖C,p := sup
(x∗j )

∞

j=1∈B`wp∗ (E
∗)

‖(x∗j (x j ))
∞

j=1‖1<∞

}
,

where 1/p+ 1/p∗ = 1, (Cohen strongly p-summable sequences or strongly
p-summable sequences, see, e.g., [Cohen 1973]).

The letters E, F shall denote Banach spaces over K = R or C. The closed unit
ball of E is denoted by BE and its topological dual by E∗. The symbol E 1↪→ F
means that E is a linear subspace of F and ‖x‖F ≤ ‖x‖E for every x ∈ E . By
L(E ; F) we denote the Banach space of all continuous linear operators T : E→ F
endowed with the usual sup norm. By 5p;q we denote the ideal of absolutely
(p ; q)-summing linear operators [Defant and Floret 1993; Diestel et al. 1995].
If p = q we simply write 5p. The ideal of Cohen strongly p-summing linear
operators [Campos 2013; Cohen 1973] shall be denoted by Dp. We use the standard
notation of the theory of operator ideals [Defant and Floret 1993; Pietsch 1980].
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1. The space lmid
p (E)

In this section we give the space of sequences defined by Karn and Sinha [2014]
a norm that makes it a Banach space and establish some useful properties of this
space.

The vector-valued sequences introduced in [Karn and Sinha 2014] are called
operator p-summable sequences. This term is quite inconvenient for our purposes,
and considering the intermediate position of the space formed by such sequences
between `p(E) and `wp (E) (see (1)), we shall use the term mid-p-summable se-
quences. Instead of the original definition, we shall use a characterization proved
in [Karn and Sinha 2014, Lemma 2.3 and Proposition 2.4]:

Definition 1.1. A sequence (x j )
∞

j=1 in a Banach space E is said to be mid-p-
summable, 1≤ p <∞, if ((x∗n (x j ))

∞

j=1)
∞

n=1 ∈ `p(`p) whenever (x∗n )
∞

n=1 ∈ `
w
p (E

∗).
The space of all such sequences shall be denoted by `mid

p (E).

Observe that `p(E) ⊆ `mid
p (E) ⊆ `wp (E). The following extreme cases will be

important throughout the paper:

Theorem 1.2 [Karn and Sinha 2014, Proposition 3.1 and Theorem 4.5]. Let E be
a Banach space and 1≤ p <∞. Then:

(i) `mid
p (E)= `wp (E) if and only if 5p(E; `p)= L(E; `p).

(ii) `mid
p (E) = `p(E) if and only if E is a subspace of L p(µ) for some Borel

measure µ.

We say that a Banach space E is a weak mid-p-space if `mid
p (E)= `wp (E); and

it is a strong mid-p-space if `mid
p (E)= `p(E).

The space `mid
p (E) is not endowed with a norm in [Karn and Sinha 2014]. Our

first goal in this section is to give it a useful complete norm. Let us see first that the
norm inherited from `wp (E) is unhelpful. We believe the next lemma is folklore; we
give a short proof because we have found no reference to quote. As usual, c00(E)
means the space of finite (or possibly null) E-valued sequences.

Lemma 1.3. If E is infinite-dimensional, then the norms ‖ · ‖p and ‖ · ‖w,p are not
equivalent on c00(E). In particular, `p(E) is not closed in `wp (E).

Proof. It is clear that c00(E) is dense in (`p(E), ‖ · ‖p), and the definition of `u
p(E)

makes clear that c00(E) is dense in (`u
p(E), ‖·‖w,p) as well. Assume that the norms

‖ · ‖p and ‖ · ‖w,p are equivalent on c00(E). Then

`p(E)= c00(E)
‖·‖p
= c00(E)

‖·‖w,p
= `u

p(E).

It follows that the identity operator in E is absolutely p-summing [Defant and Floret
1993, Proposition 11.1(c)], hence E is finite-dimensional. Now the second assertion
follows from the open mapping theorem and the inclusion c00(E)⊆ `p(E). �
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From Theorem 1.2(ii) we know that `mid
p (`p)= `p(`p), so `mid

p (`p) is not closed
in `wp (`p) by Lemma 1.3, proving ‖·‖w,p does not make `mid

p (E) complete in general.

Proposition 1.4. The expression

(2) ‖(x j )
∞

j=1‖mid,p := sup
(x∗n )

∞

n=1∈B`wp (E∗)

( ∞∑
n=1

∞∑
j=1

|x∗n (x j )|
p
)1/p

,

is a norm that makes `mid
p (E) a Banach space and `p(E) 1↪→ `mid

p (E) 1↪→ `wp (E).

Proof. Let x = (x j )
∞

j=1 ∈ `
mid
p (E). By definition, the double series in (2) is

convergent (this is why we chose this condition to be the definition of `mid
p (E)).

The map

Tx : `
w
p (E

∗)→ `p(`p), Tx((x∗n )
∞

n=1)= ((x
∗

n (x j ))
∞

j=1)
∞

n=1,

is a well-defined linear operator. By the closed graph theorem, it is continuous.
Therefore,( ∞∑

n=1

∞∑
j=1

|x∗n (x j )|
p
)1/p

= ‖Tx((x∗n )
∞

n=1)‖ ≤ ‖Tx‖ · ‖(x∗n )
∞

n=1‖w,p

for every (x∗n )
∞

n=1 ∈ `
w
p (E

∗), showing that the supremum in (2) is finite. Straightfor-
ward computations prove that ‖ · ‖mid,p is a norm and a canonical argument shows
that (`mid

p (E), ‖ · ‖mid,p) is a Banach space.
For every ϕ ∈ BE∗ , it is clear that (ϕ, 0, 0, . . .) ∈ B`wp (E∗), so ‖ · ‖w,p ≤ ‖ · ‖mid,p

in `mid
p (E).

Let (x j )
∞

j=1 ∈ `p(E) and (x∗n )
∞

n=1 ∈ `
w
p (E

∗). Since BE , regarded as a subspace
of E∗∗, is a norming subset of E∗∗, we have ‖(x∗n )

∞

n=1‖
p
w,p= supx∈BE

∑
∞

n=1|x
∗
n (x)|

p.
Putting J = { j ∈ N : x j 6= 0}, we have

∞∑
j=1

∞∑
n=1

|x∗n (x j )|
p
=

∑
j∈J

(
‖x j‖

p
·

( ∞∑
n=1

∣∣∣x∗n( x j

‖x j‖

)∣∣∣p
))

≤ ‖(x∗n )
∞

n=1‖
p
w,p ·

∑
j∈J

‖x j‖
p
= ‖(x∗n )

∞

n=1‖
p
w,p ·

∞∑
j=1

‖x j‖
p,

from which the inequality ‖ · ‖mid,p ≤ ‖ · ‖p follows. �

Proposition 1.5. The following are equivalent for a weak mid-p-space E :

(a) `p(E) is closed in `mid
p (E).

(b) The norms ‖ · ‖p and ‖ · ‖mid,p are equivalent on `p(E).

(c) The norms ‖ · ‖p and ‖ · ‖mid,p are equivalent on c00(E).

(d) E is finite-dimensional.
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Proof. (a)⇒ (b) follows from the open mapping theorem, (b)⇒ (c) and (d)⇒ (a)
are obvious. Let us prove (c)⇒ (d): Since E is a weak mid-p-space, the norms
‖·‖mid,p and ‖·‖w,p are equivalent on `mid

p (E) by the open mapping theorem, hence
they are equivalent on c00(E). The assumption gives that the norms ‖·‖p and ‖·‖w,p
are equivalent on c00(E). By Lemma 1.3 it follows that E is finite-dimensional. �

Analogously, we have:

Proposition 1.6. The following are equivalent for a strong mid-p-space E :

(a) `mid(E) is closed in `wp (E).

(b) The norms ‖ · ‖mid,p and ‖ · ‖w,p are equivalent on `mid
p (E).

(c) The norms ‖ · ‖mid,p and ‖ · ‖w,p are equivalent on c00(E).

(d) E is finite-dimensional.

The next examples show that the spaces `u
p(E) and `mid

p (E) are incomparable in
general.

Example 1.7. On the one hand, combining Theorem 1.2(i) with [Diestel et al.
1995, Theorem 3.7] we have `mid

2 (c0)= `
w
2 (c0). Since `u

2(c0) is a proper subspace
of `w2 (c0) [Defant and Floret 1993, page 93], it follows that `mid

2 (c0)* `u
2(c0). On

the other hand,
`u

1(`1)= `
w
1 (`1)* `1(`1)= `

mid
1 (`1),

where the first equality follows from the fact that bounded linear operators from c0

to `1 are compact combined with [Defant and Floret 1993, Proposition 8.2(1)], and
the last equality is a consequence of Theorem 1.2(ii).

We saw that `mid
p (E) is not contained in `u

p(E) in general. But sometimes this
happens:

Proposition 1.8. If E is a strong mid-p-space, then `mid
p (E) 1↪→ `u

p(E).

Proof. The norms ‖ · ‖p and ‖ · ‖mid,p are equivalent on `mid
p (E) = `p(E) by

the open mapping theorem. Let x = (x j )
∞

j=1 ∈ `
mid
p (E). Since (x j )

k
j=1

k
−→ x in

`p(E), we have (x j )
k
j=1

k
−→ x in `mid

p (E), by the equivalence of the norms. As
`mid

p (E) 1↪→ `wp (E), we have

‖(x j )
∞

j=k‖w,p =
∥∥(x j )

∞

j=1− (x j )
k−1
j=1

∥∥
w,p ≤

∥∥(x j )
∞

j=1− (x j )
k−1
j=1

∥∥
mid,p

k→∞
−−−→ 0,

proving that x ∈ `u
p(E). �

The purpose of the next section is to study the operator ideals determined by
the transformation of vector-valued sequences belonging to the sequence spaces
in the chain (1). A usual approach, proving all the desired properties using the
definitions of the underlying sequence spaces, would lead to long and boring proofs.
Alternatively, we shall apply the abstract framework constructed in [Botelho and
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Campos 2016] to deal with operators of this kind. In this fashion we will end up
with short and concise proofs. Instead of its definition, we shall use that the class
of mid-p-summable sequences enjoys the two properties we prove below. For the
definitions of finitely determined and linearly stable sequence classes, see [Botelho
and Campos 2016].

Proposition 1.9. The correspondence E 7→ `mid
p (E) is a finitely determined se-

quence class.

Proof. It is plain that c00(E)⊆`mid
p (E) and ‖e j‖mid,p=1, where e j is the j -th canon-

ical unit scalar-valued sequence. Since `mid
p (E) 1↪→`

w
p (E) and `wp (E) 1↪→`∞(E), we

have `mid
p (E) 1↪→ `∞(E). Let (x j )

∞

j=1 be an E-valued sequence. The equality

sup
(x∗n )

∞

n=1∈B`wp (E∗)

( ∞∑
n=1

∞∑
j=1

|x∗n (x j )|
p
)1/p

= sup
k

sup
(x∗n )

∞

n=1∈B`wp (E∗)

( ∞∑
n=1

k∑
j=1

|x∗n (x j )|
p
)1/p

shows that (x j )
∞

j=1 ∈ `
mid
p (E) if and only if supk ‖(x j )

k
j=1‖mid,p < ∞ and that

‖(x j )
∞

j=1‖mid,p = supk ‖(x j )
k
j=1‖mid,p. �

Proposition 1.10. The correspondence E 7→ `mid
p (E) is linearly stable.

Proof. Let T ∈L(E ; F). By the linear stability of `wp ( · ) [Botelho and Campos 2016,
Theorem 3.3], (T ∗(y∗n ))

∞

n=1 = (y
∗
n ◦ T )∞n=1 ∈ `

w
p (E

∗) for every (y∗n )
∞

n=1 ∈ `
w
p (F

∗),
where T ∗ : F∗→ E∗ is the adjoint of T . Therefore,

((y∗n (T (x j )))
∞

j=1)
∞

n=1 = ((y
∗

n ◦ T (x j ))
∞

j=1)
∞

n=1 ∈ `p(`p),

hence (T (x j ))
∞

j=1 ∈ `
mid
p (F) for every (x j )

∞

j=1 ∈ `
mid
p (E). Defining T̂ : `mid

p (E)→
`mid

p (F) by T̂ ((x j )
∞

j=1)= (T (x j ))
∞

j=1, a standard calculation shows that ‖T ‖=‖T̂ ‖,
completing the proof. �

2. Mid-summing operators

Following the classical line of studying operators that improve the summability of
sequences, in this section we investigate the obvious classes of operators, involving
mid-p-summable sequences, determined by the chain

`p〈E〉 ⊆ `p(E)⊆ `mid
p (E)⊆ `wp (E).

From now on in this section, 1≤ q ≤ p<∞ are real numbers and T ∈L(E ; F)
is a continuous linear operator.

Definition 2.1. The operator T is said to be

(i) absolutely mid-(p ; q)-summing if

(3) (T (x j ))
∞

j=1 ∈ `p(F) whenever (x j )
∞

j=1 ∈ `
mid
q (E);
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(ii) weakly mid-(p ; q)-summing if

(4) (T (x j ))
∞

j=1 ∈ `
mid
p (F) whenever (x j )

∞

j=1 ∈ `
w
q (E);

(iii) Cohen mid-p-summing if

(5) (T (x j ))
∞

j=1 ∈ `p〈F〉 whenever (x j )
∞

j=1 ∈ `
mid
p (E).

The spaces formed by the operators above are denoted5mid
p;q(E ; F),W mid

p;q (E ; F)
and Dmid

p (E ; F), respectively. When p = q we simply write mid-p-summing
instead of mid-(p ; p)-summing and use symbols 5mid

p and W mid
p . A standard

calculation shows that if p < q then 5mid
p;q(E ; F)=W mid

p;q (E ; F)= {0}. From the
definitions it is clear that

5p;q ⊆W mid
p;q ∩5

mid
p;q and Dmid

p ⊆ Dp ∩5
mid
p .

Having in mind the properties of `mid
p (E) proved in the previous section, the

following three results are straightforward consequences of [Botelho and Campos
2016, Proposition 1.4] (with the exception of the equivalences in Theorem 2.3
involving `u

p(E), which follow from [Botelho and Campos 2016, Corollary 1.6]).
Recall that any map T : E→ F induces a map T̃ between E-valued sequences and
F-valued sequences given by T̃ ((x j )

∞

j=1)= (T (x j ))
∞

j=1.

Theorem 2.2. The following are equivalent:

(i) T ∈5mid
p;q(E ; F).

(ii) The induced map T̃ : `mid
q (E)→ `p(F) is a well-defined continuous linear

operator.

(iii) There is a constant A > 0 such that ‖(T (x j ))
k
j=1‖p ≤ A‖(x j )

k
j=1‖mid,q for

every k ∈ N and all x j ∈ E , j = 1, . . . , k.

(iv) There is a constant A > 0 such that ‖(T (x j ))
∞

j=1‖p ≤ A‖(x j )
∞

j=1‖mid,q for
every (x j )

∞

j=1 ∈ `
mid
q (E).

Moreover,

‖T ‖5mid
p;q
:= ‖T̃ ‖ = inf{A : (iii) holds} = inf{A : (iv) holds}.

Theorem 2.3. The following are equivalent:

(i) T ∈W mid
p;q (E ; F).

(ii) The induced map T̃ : `wq (E)→ `mid
p (F) is a well-defined continuous linear

operator.

(iii) (T (x j ))
∞

j=1 ∈ `
mid
p (F) whenever (x j )

∞

j=1 ∈ `
u
q(E).

(iv) The induced map T̂ : `u
q(E)→ `mid

p (F) is a well-defined continuous linear
operator.
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(v) There is a constant B > 0 such that ‖(T (x j ))
k
j=1‖mid,p ≤ B‖(x j )

k
j=1‖w,q for

every k ∈ N and all x j ∈ E , j = 1, . . . , k.

(vi) There is a constant B > 0 such that( ∞∑
n=1

k∑
j=1

|y∗n (T (x j ))|
p
)1/p

≤ B‖(x j )
k
j=1‖w,q · ‖(y

∗

n )
∞

n=1‖w,p

for every k ∈ N, all x j ∈ E , j = 1, . . . , k, and every (y∗n )
∞

n=1 ∈ `
w
p (F

∗).

(vii) There is a constant B > 0 such that( ∞∑
n=1

∞∑
j=1

|y∗n (T (x j ))|
p
)1/p

≤ B‖(x j )
∞

j=1‖w,q · ‖(y
∗

n )
∞

n=1‖w,p

for all (x j )
∞

j=1 ∈ `
w
q (E) and (y∗n )

∞

n=1 ∈ `
w
p (F

∗).

Moreover,

‖T ‖W mid
p;q
:=‖T̃ ‖=‖T̂ ‖= inf{B : (v) holds}= inf{B : (vi) holds}= inf{B :(vii) holds}.

Theorem 2.4. The following are equivalent:

(i) T ∈ Dmid
p (E ; F).

(ii) The induced map T̃ : `mid
p (E)→ `p〈F〉 is a well-defined continuous linear

operator.

(iii) There is a constant C > 0 such that ‖(T (x j ))
k
j=1‖C,p ≤ C‖(x j )

k
j=1‖mid,p for

every k ∈ N and all x j ∈ E , j = 1, . . . , k.

(iv) There is a constant C > 0 such that

k∑
j=1

|y∗j (T (x j ))| ≤ C‖(x j )
k
j=1‖mid,p · ‖(y∗j )

k
j=1‖w,p∗

for every k ∈ N, all x j ∈ E and y∗j ∈ F∗, j = 1, . . . , k.

(v) There is a constant C > 0 such that
∞∑
j=1

|y∗j (T (x j ))| ≤ C‖(x j )
∞

j=1‖mid,p · ‖(y∗j )
∞

j=1‖w,p∗

for all (x j )
∞

j=1 ∈ `
mid
p (E) and (y∗j )

∞

j=1 ∈ `
w
p∗(F

∗).

Moreover,

‖T ‖Dmid
p
:= ‖T̃ ‖ = inf{C : (iii) holds} = inf{C : (iv) holds} = inf{C : (v) holds}.

Theorem 2.5. The classes (5mid
p;q , ‖·‖5mid

p;q
), (W mid

p;q , ‖·‖W mid
p;q
) and (Dmid

p , ‖·‖Dmid
p
)

are Banach operator ideals.
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Proof. We use the notation and the language of [Botelho and Campos 2016]. All
involved sequence classes are linearly stable. Comparing Definition 2.1 and [Botelho
and Campos 2016, Definition 2.1], a linear operator T is mid-(p ; q)-summing if
and only if it is (`mid

q ( · ) ; `p( · ))-summing. Since `mid
q (K) 1↪→ `p = `p(K), from

[Botelho and Campos 2016, Theorem 2.6] it follows that 5mid
p;q is a Banach operator

ideal. The other cases are similar. �

The following characterizations of weak and strong mid-p-spaces complement
the ones proved in [Karn and Sinha 2014, Theorems 3.7 and 4.5].

Theorem 2.6. The following are equivalent for a Banach space E and 1≤ p <∞:

(a) E is a weak mid-p-space.

(b) 5mid
p (E ; F)=5p(E ; F) for every Banach space F.

(c) 5mid
p (E; `p)=5p(E; `p)= L(E; `p).

(d) W mid
p (F ; E)= L(F ; E) for every Banach space F.

(e) idE ∈W mid
p (E ; E).

Proof. The implications (a)⇒ (b), (d)⇒ (e)⇒ (a), and (b)⇒ the first equality
in (c) are obvious. Let us see that the first equality in (c) implies (a): Given
x∗ = (x∗k )

∞

k=1 ∈ `
w
p (E

∗), the identification `wp (E
∗) = L(E, `p) (see the proof of

Proposition 2.12) yields that the map

Sx∗ : E→ `p, Sx∗(x)= (x∗k (x))
∞

k=1,

is a bounded linear operator. By the definition of `mid
p (E),

(Sx∗(xn))
∞

n=1 = ((x
∗

k (xn))
∞

k=1)
∞

n=1 ∈ `p(`p),

for every (xn)
∞

n=1 ∈ `
mid
p (E). This means that Sx∗ ∈ 5

mid
p (E; `p), hence Sx∗ ∈

5p(E; `p) by assumption, for every x∗ = (x∗k )
∞

k=1 ∈ `
w
p (E

∗). Therefore, given
(xn)

∞

n=1 ∈ `
w
p (E), it follows that (Sx∗(xn))

∞

n=1 = ((x
∗

k (xn))
∞

k=1)
∞

n=1 ∈ `p(`p) for
every x∗ = (x∗k )

∞

k=1 ∈ `
w
p (E

∗); proving that (xn)
∞

n=1 ∈ `
mid
p (E).

That (a) is equivalent to the second equality in (c) is precisely Theorem 1.2(i).
To complete the proof, let us check that (a) ⇒ (d): Let T ∈ L(F ; E) and

(x j )
∞

j=1 ∈ `
w
p (F) be given. The linear stability of `wp ( · ) and the assumption give

(T (x j ))
∞

j=1 ∈ `
w
p (E)= `

mid
p (E). This proves that T ∈W mid

p (F ; E). �

The corresponding characterizations of strong mid-p-spaces are less interesting.
We state them just for the record:

Theorem 2.7. The following are equivalent for a Banach space F and 1≤ p <∞:

(a) F is a strong mid-p-space.

(b) 5mid
p (E ; F)= L(E ; F) for every Banach space E.
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(c) idF ∈5
mid
p (F ; F).

(d) F is a subspace of L p(µ) for some Borel measure µ.

Recall that an operator ideal I is

• injective if u ∈ I(E, F) whenever v ∈L(F,G) is a metric injection (‖v(y)‖=
‖y‖ for every y ∈ F) such that v ◦ u ∈ I(E,G);

• regular if u ∈ I(E, F) whenever JF ◦ u ∈ I(E, F∗∗), where JF : F→ F∗∗ is
the canonical embedding.

Proposition 2.8. The operator ideal5mid
p;q is injective and the operator ideals W mid

p;q
and Dmid

p are regular.

Proof. The injectivity of 5mid
p;q is clear. To prove the regularity of W mid

p;q , let
(y j )

∞

j=1 ⊆ F be such that (JF (y j ))
∞

j=1 ∈ `
mid
p (F∗∗). We have

(6) (y∗∗∗n (JF (y j )))
∞

j,n=1 ∈ `p(`p) for every (y∗∗∗n )∞n=1 ∈ B`wp (F∗∗∗).

In order to prove that (y j )
∞

j=1 ∈ `
mid
p (F), let (y∗n )

∞

n=1 ∈ B`wp (F∗) be given. Then

(7)
∞∑

n=1

|JF (y)(y∗n )|
p
=

∞∑
n=1

|y∗n (y)|
p
≤ 1 for every y ∈ BF .

Let us see that, defining y∗∗∗n := JF∗(y∗n ) ∈ F∗∗∗ for each n, we have (y∗∗∗n )∞n=1 ∈

B`wp (F∗∗∗). To accomplish this task, let y∗∗ ∈ BF∗∗ be given. By Goldstine’s theorem,
there is a net (yλ)λ in BF such that JF (yλ) w

∗

−→ y∗∗, that is,

(8) y∗(yλ)= JF (yλ)(y∗)→ y∗∗(y∗) for every y∗ ∈ F∗.

From (7) it follows that
∑
∞

n=1|y
∗
n (yλ)|

p
≤ 1 for every λ, in particular

(9)
k∑

n=1

|y∗n (yλ)|
p
≤ 1 for every k and every λ.

On the other hand, from (8) we have |y∗n (yλ)|
p λ
−→|y∗∗(y∗n )|

p for every n, hence

k∑
n=1

|y∗n (yλ)|
p λ
−→

k∑
n=1

|y∗∗(y∗n )|
p

for every k. So, for every y∗∗ ∈ BF∗∗ ,
∞∑

n=1

|y∗∗∗n (y∗∗)|p =
∞∑

n=1

|JF∗(y∗n )(y
∗∗)|p =

∞∑
n=1

|y∗∗(y∗n )|
p
= sup

k

k∑
n=1

|y∗∗(y∗n )|
p

= sup
k

lim
λ

k∑
n=1

|y∗n (yλ)|
p
≤ 1,
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the last inequality being a consequence of (9). This proves that (y∗∗∗n )∞n=1∈ B`wp (F∗∗∗).
From (6) we get

(y∗n (y j ))
∞

j,n=1 = (JF (y j )(y∗n ))
∞

j,n=1 =
(
[JF∗(y

∗

n )](JF (y j ))
)∞

j,n=1

= (y∗∗∗n (JF (y j )))
∞

j,n=1 ∈ `p(`p).

This holds for arbitrary (y∗n )
∞

n=1 ∈ B`wp (F∗), which allows us to conclude that
(y j )

∞

j=1 ∈ `
mid
p (F). Thus far we have proved that (y j )

∞

j=1 ∈ `
mid
p (F) whenever

(JF (y j ))
∞

j=1 ∈ `
mid
p (F∗∗). Now the regularity of W mid

p;q follows easily.
An adaptation of the argument above shows that (y j )

∞

j=1 ∈ `p〈F〉 whenever
(JF (y j ))

∞

j=1 ∈ `p〈F∗∗〉. The regularity of Dmid
p follows. �

Remark 2.9. The final part of the proof above also proves that the ideal Dp of
Cohen strongly p-summing operators is regular. We also know that it is surjective
because it is the dual of the injective ideal 5p∗ [Cohen 1973].

It is clear from the definitions that 5mid
p,r ◦W mid

r,q ⊆5p,q for q ≤ r ≤ p. Next we
show that the equality holds if p = q , which gives a new factorization theorem for
absolutely p-summing operators:

Theorem 2.10. Every absolutely p-summing linear operator factors through abso-
lutely and weakly mid-p-summing linear operators, that is, 5p =5

mid
p ◦W mid

p .

Proof. We already know that 5mid
p ◦W mid

p ⊆5p. Let u ∈5p(E ; F). By Pietsch’s
factorization theorem ([Defant and Floret 1993, Corollary 1, page 130] or [Diestel
et al. 1995, Theorem 2.13]), there are a Borel–Radon measure µ on (BE∗ , w

∗), a
closed subspace X of L p(µ) and an operator û : X → F such that the following
diagram commutes (iE and jp are the canonical operators and j E

p is the restriction
of jp to iE(E)):

E

iE
��

u
// F

iE (E)
j E
p

// X

û

UU

C(K )

⋂
jp

// L p(µ)

⋂

Let (x j )
∞

j=1 ∈ `
w
p (E). By the continuity of iE and the linear stability of `wp ( · ),

we have (iE(x j ))
∞

j=1 ∈ `
w
p (iE(E)). Since jp is absolutely p-summing, it follows

that ( j E
p (iE(x j )))

∞

j=1 ∈ `p(X) ⊆ `mid
p (X), proving j E

p ◦ iE ∈ W mid
p (E, X). Now,

let (y j )
∞

j=1 ∈ `
mid
p (X). As X is a closed subspace of L p(µ), from Theorem 1.2(ii)

we have (y j )
∞

j=1 ∈ `p(X). Thus, as û is bounded and `p( · ) is linearly stable,
(û(y j ))

∞

j=1 ∈ `p(F), proving that û ∈5mid
p (X, F). �
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Corollary 2.11. Let p > 1, u ∈ L(E, F) and v ∈ L(F,G). If u∗ is absolutely
mid-p∗-summing and v∗ is weakly mid-p∗-summing, then v ◦ u is Cohen strongly
p-summing.

Proof. Denoting, as usual, by I dual the ideal of all operators u such that u∗ ∈ I, we
have

(W mid
p∗ )

dual
◦ (5mid

p∗ )
dual
⊆ (5mid

p∗ ◦W mid
p∗ )

dual
=5dual

p∗ = Dp,

where the inclusion is clear, the first equality follows from Theorem 2.10 and the
second from [Cohen 1973]. �

We finish this section solving a question left open in the last section of [Karn
and Sinha 2014]. There, the authors prove the following characterization in their
Theorem 4.4: an operator T ∈ L(E, F) is weakly mid-p-summing if and only if
S ◦ T ∈5p(E, `p) for every S ∈ L(F, `p). They define

ltp(T )= sup
{
πp(S ◦ T ) : S ∈ L(F, `p) and ‖S‖ ≤ 1

}
,

and prove that (W mid
p , ltp( · )) is a normed operator ideal. The question whether

or not this ideal is a Banach ideal is left open there, and now we solve it in the
affirmative:

Proposition 2.12. Since ltp(T ) = ‖T ‖W mid
p;q

for every T ∈ W mid
p (E ; F), we have

(W mid
p , ltp( · )) is a Banach operator ideal.

Proof. Let T ∈ W mid
p (E ; F) and S ∈ L(F, `p) with ‖S‖ ≤ 1. Here we use that

the spaces `wp (F
∗) and L(F, `p) are canonically isometrically isomorphic via the

correspondence x∗ = (x∗k )
∞

k=1 ∈ `
w
p (F

∗) 7→ Sx∗ ∈ L(F, `p), Sx∗(x) = (x∗k (x))
∞

k=1
[Defant and Floret 1993, Proposition 8.2(2)]. So there exists (y∗k )

∞

k=1 ∈ B`wp (F∗)
such that S(y)= (y∗k (y))

∞

k=1 for every y ∈ F . Thus( ∞∑
j=1

‖S ◦ T (x j )‖
p
p

)1/p

=

( ∞∑
j=1

∞∑
k=1

|y∗k (T (x j ))|
p
)1/p

≤ ‖T ‖W mid
p;q
· ‖(x j )

∞

j=1‖w,p,

for every (x j )
∞

j=1 ∈ `
w
p (E). Therefore S ◦T ∈5p(E; `p) and πp(S ◦T )≤‖T ‖W mid

p;q
.

From( ∞∑
j=1

∞∑
n=1

|y∗n (T (x j ))|
p
)1/p

=

( ∞∑
j=1

‖S◦T (x j )‖
p
p

)1/p

≤πp(S◦T ) ·‖(x j )
∞

j=1‖w,p,

we obtain ‖T ‖W mid
p;q
≤ πp(S ◦ T ), proving that ltp(T ) = ‖T ‖W mid

p;q
. The second

assertion follows now from Theorem 2.5. �
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3. Infinite-dimensional Banach spaces formed by non-summing operators

We say that the subset A of an infinite-dimensional vector space X is lineable if
A ∪ {0} contains an infinite-dimensional subspace. If A ∪ {0} contains a closed
infinite-dimensional subspace than we say that A is spaceable (see [Bernal-González
et al. 2014] and references therein).

Let us give a contribution to this fashionable subject. Improving a result of
[Botelho et al. 2009], in [Kitson and Timoney 2011] it is proved, among other things,
that if E is an infinite-dimensional superreflexive Banach space, then, regardless
of the infinite-dimensional Banach space F , there exists an infinite-dimensional
Banach space formed, up to the null operator, by non-p-summing linear operators
from E to F . Very little is known for spaces of operators on nonsuperreflexive
spaces. We shall give a contribution in this direction.

The next lemma is left as Exercise 9.10(b) in [Defant and Floret 1993]. We give
a short proof for the sake of completeness.

Lemma 3.1. An operator ideal I is injective if and only if the following condition
holds: if u ∈ I(E ; F), v ∈ L(E ;G) and there exists a constant C > 0 (possibly
depending on E, F,G, u and v) such that ‖v(x)‖ ≤ C‖u(x)‖ for every x ∈ E , then
v ∈ I(E ;G).

Proof. Assume that I is injective and let u ∈ I(E ; F), v ∈ L(E ;G) be such that
‖v(x)‖ ≤ C‖u(x)‖ for every x ∈ E . This inequality guarantees that the map

w : u(E)⊆ F→ G, w(u(x))= v(x),

is a well-defined continuous linear operator. Considering the canonical metric
injection JG : G→ `∞(BG∗), by the extension property of `∞(BG∗) [Pietsch 1980,
Proposition C.3.2] there is an extension w̃ ∈L(F ; `∞(BG∗)) of JG ◦w to the whole
of F . From w̃ ◦u = JG ◦v we conclude that JG ◦v belongs to I, and the injectivity
of I gives v ∈ I(E ;G). The converse is obvious. �

Henceforth, all Banach spaces are supposed to be infinite-dimensional. Recall
that a sequence in a Banach space E is overcomplete if the linear span of each of
its subsequences is dense in E (see, e.g., [Chalendar and Partington 2007; Fonf and
Zanco 2014]). We need a weaker condition:

Definition 3.2. A sequence in a Banach space E is weakly overcomplete if the
closed linear span of each of its subsequences is isomorphic to E .

Example 3.3. The sequence (e j )
∞

j=1 formed by the canonical unit vectors is a
weakly overcomplete unconditional basis in the spaces c0 and `p, 1 ≤ p <∞
[Fabian et al. 2011, Proposition 4.45].

Proposition 3.4. Let (I, ‖ · ‖I) be a normed operator ideal, J be an injective
operator ideal and suppose that F contains an isomorphic copy of a space X with a
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weakly overcomplete unconditional basis. If I(E ; X)−J (E ; X) is nonvoid, then
I(E ; F)−J (E ; F) is spaceable (in (I(E ; F), ‖ · ‖I)).

Proof. Let (en)
∞

n=1 be a weakly overcomplete unconditional basis of X with uncon-
ditional basis constant %. Split N=

⋃
∞

j=1 A j into infinitely many infinite pairwise
disjoint subsets. For each j ∈N, define X j = span{en : n ∈ A j } and let Pj : X→ X j

be the canonical projection. It is known that ‖Pj‖ ≤ % [Megginson 1998, Corol-
lary 4.2.26]. For x j ∈ X j we have Pi (x j ) = δi j x j because the sets (A j )

∞

j=1 are
pairwise disjoint. Let I j : X→ X j be an isomorphism, T j : X j→ X denote the formal
inclusion and T : X → F be an isomorphism into. Let u ∈ I(E ; X)−J (E ; X).
Defining

u j : E→ F, u j = T ◦ T j ◦ I j ◦ u,

we have u j ∈ I(E, F). Using that J is injective, u /∈ J (E ; X) and

‖u j (x)‖ =
∥∥T (T j ◦ I j ◦ u(x))

∥∥≥ 1
‖T−1‖

∥∥T j ◦ I j ◦ u(x)
∥∥≥ 1
‖T−1‖·‖I−1

j ‖
‖u(x)‖

for every x ∈ E , we conclude by Lemma 3.1 that each u j /∈ J (E ; F). In particular,
we have u j 6= 0. Let Y := span{u j : j ∈ N}

‖·‖I
⊆ I(E ; F). Given 0 6= v ∈ Y , let

(vn)
∞

n=1⊆span{u j : j ∈N} be such that vn
‖·‖I
−−→v. For each n, write vn=

∑
∞

j=1 an
j u j ,

where an
j 6= 0 for only finitely many j . Let x0 ∈ E be such that v(x0) 6= 0. It is plain

that v(E) ⊆ T (X), so T−1(v(x0)) 6= 0, and in this case there is k ∈ N such that
Pk(T−1(v(x0))) 6= 0. Since ‖ · ‖ ≤ ‖ · ‖I , we have vn(x)→ v(x) for all x ∈ E . So,

an
k Tk(Ik(u(x0)))=

∞∑
j=1

Pk(an
j T j (I j (u(x0))))=

∞∑
j=1

Pk(T−1(an
j T (T j (I j (u(x0))))))

= Pk ◦ T−1(vn(x0))→ Pk ◦ T−1
◦ v(x0) 6= 0.

It follows that

0 6=T ◦Pk◦T−1
◦v(x0)= lim

n
T (an

k Tk(Ik(u(x0))))= lim
n

an
k uk(x0)= (lim

n
an

k )uk(x0).

Setting λ := limn an
k 6= 0, we have

‖uk(x)‖ =
1
|λ|
· lim

n
‖an

k uk(x)‖ ≤
‖T ‖
|λ|
· lim

n

∥∥∥∥Pk

( ∞∑
j=1

T j ◦ I j ◦ u(an
j x)
)∥∥∥∥

≤
%‖T ‖
|λ|
· lim

n

∥∥∥∥ ∞∑
j=1

T j ◦ I j ◦ u(an
j x)
∥∥∥∥

≤
%‖T ‖ · ‖T−1

‖

|λ|
· lim

n

∥∥∥∥T
( ∞∑

j=1

T j ◦ I j ◦ u(an
j x)
)∥∥∥∥
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=
%‖T ‖ · ‖T−1

‖

|λ|
· lim

n

∥∥∥∥ ∞∑
j=1

an
j u j (x)

∥∥∥∥= %‖T ‖ · ‖T−1
‖

|λ|
‖v(x)‖

for every x ∈ E . Since uk does not belong to the injective ideal J , it follows from
Lemma 3.1 that v /∈ J (E ; F). This proves that Y ⊆ (I(E ; F)−J (E ; F)∪ {0}).

Given n ∈N, scalars a1, . . . , an such that
∑n

j=1 a j u j = 0 and k ∈ {1, . . . , n}, let
xk ∈ E be such that uk(xk) 6= 0 (recall that uk 6= 0). From

0=
∥∥∥∥ n∑

j=1

a j u j (xk)

∥∥∥∥≥ 1
‖T−1‖

∥∥∥∥ n∑
j=1

a j (T j ◦ I j ◦ u)(xk)

∥∥∥∥
≥

1
%‖T−1‖

∥∥∥∥Pk

( n∑
j=1

a j (T j ◦ I j ◦ u)(xk)

)∥∥∥∥= 1
%‖T−1‖

‖ak(Tk ◦ Ik ◦ u)(xk)‖

≥
1

%‖T−1‖·‖T ‖
‖T (ak(Tk ◦ Ik ◦ u)(xk))‖ =

1
%‖T−1‖·‖T ‖

|ak | · ‖uk(xk)‖,

it follows that ak = 0, proving that the set {u j : j ∈ N} is linearly independent. �

Remark 3.5. (a) Proposition 3.4 is not a consequence of [Kitson and Timoney
2011, Proposition 2.4] because we are not assuming neither that (I ∩J )(E ; F) is
not closed in I(E ; F) nor that I(E ; F) is complete.

(b) A result related to Proposition 3.4, with different assumptions, has appeared
recently in [Hernández et al. 2015, Theorem 3.5].

Recall that Space(I) denotes the class of all Banach spaces E such that the
identity operator on E belongs to the operator ideal I (cf. [Pietsch 1980, 2.1.2]).

Theorem 3.6. Let E be isomorphic to a subspace of L1(µ) for some Borel mea-
sure µ, let F contain an isomorphic copy of `1 and let (I, ‖ · ‖I) be a Banach
operator ideal such that `1 ∈ Space(I). Then there exists an infinite-dimensional
Banach space formed, up to the null operator, by non-1-summing linear operators
from E to F belonging to I.

Proof. By Theorem 1.2(ii), idE ∈5
mid
1 (E ; E). Since idE fails to be 1-summing,

because E is infinite-dimensional, by Theorem 2.10 we have idE /∈W mid
1 (E ; E).

From Theorem 1.2(i), there is a non-1-summing linear operator u : E → `1. Of
course u ∈ I(E ; `1). Taking into account that the canonical unit vectors form a
weakly overcomplete unconditional basis of `1 (Example 3.3) and that the ideal of
absolutely p-summing linear operators is injective, from Proposition 3.4 we have
that I(E ; F)−51(E ; F) is spaceable. The completeness of (I(E ; F), ‖ · ‖I)
finishes the proof. �

Examples of Banach operator ideals I for which `1 ∈ Space(I) are the following:
separable operators, completely continuous operators, cotype 2 operators, absolutely
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(r , q)-summing operators with 1
r ≤

1
q −

1
2 [Defant and Floret 1993, Corollary 8.9]

(in particular, absolutely (r , 1)-summing operators for every r ≥ 2).
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