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THREE-DIMENSIONAL DISCRETE CURVATURE FLOWS
AND DISCRETE EINSTEIN METRICS

HUABIN GE, XU XU AND SHIJIN ZHANG

A discrete version of the Einstein–Hilbert functional was introduced by
Regge. In this paper, we define the discrete Einstein metrics as critical
points of Regge’s Einstein–Hilbert functional with normalization on tri-
angulated 3-manifolds. We also introduce some discrete curvature flows,
which are closely related to the existence of discrete Einstein metrics.

1. Introduction

For triangulated manifolds, the most natural metrics seem to be the piecewise linear
metrics defined on all edges, satisfying some nondegenerate conditions so that
each simplex in the triangulation can be realized as a Euclidean or hyperbolic
simplex. In his work on constructing hyperbolic metrics on 3-manifolds, Thurston
[1980] introduced the circle packing metric on a triangulated surface with prescribed
intersection angles and further proved that this metric induces a piecewise linear
metric. Similarly, for triangulated 3-manifolds, Cooper and Rivin [1996] introduced
a ball (or sphere) packing metric. They endowed each vertex with a notion of
combinatorial scalar curvature which is defined to be the angle defect of solid
angles. Glickenstein [2005] introduced a type of discrete Yamabe flow, aiming
at finding sphere packing metrics with constant combinatorial scalar curvature.
In [Ge and Xu 2014], we also defined discrete quasi-Einstein metrics and gave
some analytical conditions for the existence of discrete quasi-Einstein metrics by
introducing two different discrete scalar curvature flows.

However, on one hand, similar to the 2-dimensional case, the ball packing metrics
are special piecewise linear metrics and then too restrictive. On the other hand, the
combinatorial curvatures studied above are all defined on vertices and may only
be considered as an analogue of scalar curvature. As was pointed out by Regge
[1961], the discrete curvatures are concentrated on codimension two simplexes. For
these reasons, we want to study the general piecewise linear metrics and discrete
curvatures defined on edges for 3-dimensional triangulated manifolds. In this paper,
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we shall study Regge’s Einstein–Hilbert functional carefully, and give a definition
of discrete Einstein metric. Moreover, we will introduce two types of discrete edge
curvature flows; one is of second order, the other is of fourth order. Discrete edge
curvature flow of second order may be considered as an analogue of smooth Ricci
flow. However, discrete edge curvature flow of fourth order seems to be more
powerful than the flow of second order.

2. Discrete Ricci curvature and discrete Einstein metric

Consider a compact 3-dimensional manifold M with a triangulation T. The tri-
angulation is written as T D fV;E; F; T g, where V;E; F; T represent the set of
vertices, edges, faces and tetrahedrons respectively. Denote v1; v2; : : : ; vN as the
vertices of T , where N is the number of vertices. We often write i instead of vi .
A piecewise linear metric (written as PL-metric for short) is a map l WE! .0;C1/

such that for any tetrahedron � Dfi; j; k; lg2T , the tetrahedron � with edge lengths
lij ; lik; lil ; ljk; ljl ; lkl can be realized as a Euclidean geometric tetrahedron. We
may take PL-metrics as points in Rm>0, m times the Cartesian product of .0;C1/,
where m is the number of edges in E. Not all points in Rm>0 represent PL-metrics
and we need some nondegenerate conditions. For a start, the triangle inequality
should be satisfied, but this alone is not enough. Consider a Euclidean tetrahedron
� D fi; j; k; lg 2 T with edge lengths lij ; lik; lil ; ljk; ljl ; lkl , then the volume of
the Euclidean tetrahedron fi; j; k; lg has the following formula due to Tartaglia in
the sixteenth century:
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So, V� > 0 for all tetrahedrons � is another restriction for l to be a PL-metric.
For fixed 3-manifolds M with triangulation T , denote the space of all admissible

PL-metrics as

MT , fl WE! .0;C1/ is a PL-metric on .M 3; T /g;

M2
T , fl

2
WE! .0;C1/ is a PL-metric on .M 3; T /g:

Mei, Zhou and Ge proved M2
T is a nonempty connected open convex cone, see

Theorem 1.1 in [Ge et al. 2015] (see also Theorem 3.1 in [Schrader 2016]). On
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the other hand, it is easy to prove that MT is homeomorphic to M2
T . Hence we

know MT is a simply connected open set. However, this set is not convex, due to
an observation from [Rivin 2003].

Discrete Ricci curvature and the Einstein–Hilbert–Regge functional. Given a
Euclidean tetrahedron fi; j; k; lg 2 T , the dihedral angle at edge fi; j g is denoted
by ˇij;kl . If an edge is in the interior of the triangulation, the discrete Ricci curvature
at this edge is 2� minus the sum of dihedral angles at the edge. More specifically,
denote Rij as the discrete Ricci curvature at the edge fi; j g, then

(2-1) Rij D 2� �
X

fi;j;k;lg2T

ˇij;kl ;

where the sum is taken over all tetrahedrons with fi; j g as one of its edges. If
this edge is on the boundary of the triangulation, then the discrete Ricci curvature
should be Rij D � �

P
fi;j;k;lg2T ˇij;kl .

For simplicity we will write lij and Rij as l1; : : : ; lm and R1; : : : ; Rm, respec-
tively, in the following, where m is the number of edges in E, and they are ordered
sequentially. Set l D .l1; : : : ; lm/T ; R D .R1; : : : ; Rm/T , to be the transpose of
.l1; : : : ; lm/; .R1; : : : ; Rm/ respectively. We define the matrix L as

(2-2) LD
@.R1; : : : ; Rm/

@.l1; : : : ; lm/
D

0B@
@R1

@l1
� � �

@R1

@lm:::
:::

:::
@Rm

@l1
� � �

@Rm

@lm

1CA :
The Einstein–Hilbert–Regge functional was first introduced by Regge [1961] as

(2-3) S D

mX
iD1

Ri li ;

and the discrete quadratic energy functional is defined to be

(2-4) C.l/D kRk2 D
mX
iD1

R2i :

By the Schläfli formula
Pm
iD1 lidRi D 0, we have

dS D

mX
iD1

Ridli C

mX
iD1

lidRi D

mX
iD1

Ridli ;

so

rlS DR and Hessl S D L;
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which implies that the matrix L is symmetric. It is easy to get

@C
@lj
D 2

mX
iD1

@Ri
@lj

Ri ;

so

(2-5) rlC D 2LTR:

Since R.tl1; t l2; : : : ; t lm/DR.l1; l2; : : : ; lm/, we have the Euler formula

(2-6) Ll D 0:

Discrete Einstein metric. The curvature Rij is a combinatorial analogue of Ricci
curvature in smooth cases. Fixing i , the sum of all Rij with j connected to i
is the curvature defined by Cooper and Rivin [1996], which is interpreted as the
combinatorial scalar curvature. Inspired by the definition of discrete quasi-Einstein
metric in [Ge and Xu 2014], we define the discrete Einstein metric as follows.

Definition 2.1. A PL-metric l is called a discrete Einstein metric, if there exists a
constant � such that RD �l .

If l is a discrete Einstein metric, the corresponding PL-metric and curvature will
be denoted by lDE and RDE , respectively, in the following. When RD �l , or say
l is a discrete Einstein metric, �D S=klk2.

Definition 2.1 is a straightforward analogy of the smooth manifold case. Rij is
somewhat similar to smooth Ricci curvature Ric, and lij is somewhat similar to the
smooth metric g. Then the Einstein metric g with RicD �g on smooth manifolds
M can be transformed to a discrete Einstein metric l with RD �l on triangulated
manifolds .M 3; T /. In this sense, the analogy seems to be only formal. However,
for this type of metric, we can develop many more properties which suggest the
use of the term discrete Einstein is appropriate.

In [Champion et al. 2011], Champion, Glickenstein and Young studied various
normalized Einstein–Hilbert–Regge functionals and related discrete Yamabe invari-
ants on triangulated manifolds with PL-metrics. In this paper, we shall introduce a
new type of normalized Einstein–Hilbert–Regge functional, which is different from
theirs. Fixing .M 3; T /, consider a new type of normalized Einstein–Hilbert–Regge
functional

(2-7) Q.l/D
S

klk
:

It’s easy to calculate

rlQD
1

klk

�
rlS �

S

klk2
l

�
D

1

klk

�
R�

S

klk2
l

�
:
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Then we have:

Theorem 2.2. On .M 3; T / with PL-metric l , l is a discrete Einstein metric if and
only if l is a critical point of the normalized Einstein–Hilbert–Regge functional Q.

Theorem 2.2 is similar to the smooth case. On smooth manifolds, the metric g
is Einstein if and only if it is a critical point of the functional

Q.g/D
1

V 1=3

Z
M

Rd�g :

Fixing the triangulation, discrete curvatures Rij are uniformly bounded, that is
.2�d/� <Rij <2� , where d is the maximum edge degree of the triangulation. So

jQ.l/j D

ˇ̌̌̌
S

klk

ˇ̌̌̌
D

ˇ̌̌̌
RT l

klk

ˇ̌̌̌
� kRk:

The Cauchy inequality indicates that l is a discrete Einstein metric if and only if
jQ.l/j D kRk.

Using this type of normalized Einstein–Hilbert–Regge functional, we can intro-
duce some new invariants associated to the triangulation .M 3; T /. The combinato-
rial Yamabe invariant with respect to T is defined as

YM;T D inf
l2MT

Q.l/:

The admissible PL-metric space MT for a given triangulated manifold .M 3; T /
may be considered as an analogue of the conformal class Œg0� of a Riemannian
manifold .M; g0/. Hence we may call MT the combinatorial conformal class
for .M 3; T /. It is uniquely determined by the triangulation T . Moreover, we can
introduce a topology invariant associated to M , i.e., YM D supT YM;T , where the
supremum is taken on all triangulations of M .

Similar to [Ge and Xu 2014; Ge and Xu 2016b], we can consider the following
combinatorial Yamabe problem.

Question. Given a 3-dimensional manifold M with triangulation T , how many
discrete Einstein metrics are there in the combinatorial conformal class MT , and
how to find them?

Inspired by work on the existence of combinatorial Gauss curvature in [Thurston
1980; Chow and Luo 2003; Luo 2004], we ask the following similar question:

Question. For a manifold M 3, find a suitable triangulation, or find topological and
combinatorial obstructions, so that M admits discrete Einstein metrics.

The following is an example of a manifold with a triangulation admitting a
discrete Einstein metric.
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Example (the 16-cell). Consider the standard 3-dimensional sphere S3 embedded
in R4. Taking the vertices of T to be A1 D .1; 0; 0; 0/; A2 D .�1; 0; 0; 0/; B1 D
.0; 1; 0; 0/; B2D .0;�1; 0; 0/; C1D .0; 0; 1; 0/; C2D .0; 0;�1; 0/;D1D .0; 0; 0; 1/,
D2 D .0; 0; 0;�1/; the edges of T are PiQj (where P ¤Q 2 fA;B;C;Dg and
i; j 2 f1; 2g), the faces of T are PiQjRk (where exactly two of .P;Q;R/ 2
fA;B;C;Dg are different, with i; j; k 2 f1; 2g), and the tetrahedrons of T are the
regular tetrahedrons AiBjCkDl (with i; j; k; l 2 f1; 2g). We know all edges have
the same length �

2
. It is easy to calculate that Rij D 2� � 4 arccos 1

3
for all edges.

So RD .l=�/
�
4� � 8 arccos 1

3

�
and l D �

2
f1; : : : ; 1gT is a discrete Einstein metric

associated to .S3; T /.

It is easy to see that the argument in this example works for any generalization
of the platonic solids (uniform polychora) with tetrahedral cells, including the
5-cell (or pentachoron), the 600-cell, etc. In these cases, the PL-metric arises
from symmetry and taking the lengths equal. It would be interesting to know
whether these are the only triangulations that admit discrete Einstein metrics for
the triangulation structure.

3. Combinatorial second order flow

Inspired by combinatorial curvature flow methods, we study discrete Einstein
metrics by combinatorial curvature flows in the following sections. The two flows
we introduce are negative gradient flows of some discrete functionals. One is the
normalized Einstein–Hilbert–Regge functional Q.l/, which determines a normal-
ized discrete curvature flow of second order. The other is the discrete quadratic
energy C D kRk2, which determines a discrete curvature flow of fourth order.

Definition and evolution equations. We define the combinatorial second order
flow as

(3-1) Pl.t/ij D�Rij ; or Pl.t/D�R:

It is useful to consider the normalized combinatorial second order flow

(3-2) Pl.t/ij D �lij �Rij ; or Pl.t/D �l �R;

where �D S=klk2 and klk2 D
Pn
iD1 l

2
i .

Flows (3-1) and (3-2) differ from each other only by a change of scale in space
and a change of parametrization in time. Let t; l; R; � denote the variables for the
flow (3-1), and Qt ; Ql ; zR; Q� for the flow (3-2). Suppose l.t/; t 2 Œ0; T /, is a solution
of (3-1). Set Ql. Qt /D '.t/l.t/, where

'.t/D exp
�Z t

0

�.�/ d�

�
; Qt D

Z t

0

'.�/ d�:
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Then we have
Q�D '�1�; zRDR:

This gives
d Ql
d Qt
D
d Ql
dt
dt
d Qt
D .�'l �'R/'�1 D Q� Ql � zR:

Conversely, if Ql. Qt /; Qt 2 Œ0; zT /, is a solution of (3-2), set l.t/D '. Qt / Ql. Qt /, where

'. Qt /D exp
�
�

Z Qt
0

Q�.�/ d�

�
; t D

Z Qt
0

'.�/ d�;

then it is easy to check that dl=dt D�R.
Notice that rlQD�.�l �R/=klk and dklk2=dt D 2lT Pl D 2lT .�l �R/D 0,

hence we have:

Theorem 3.1. Along the flow (3-2), klk2 is a constant. Moreover, the flow (3-2) is
a negative gradient flow.

We can take klk2 as a certain discrete “content” (here we use the word “content”
instead of “volume”, because the triangulated 3-manifolds have classical volume,
that is, the sum of the volume of all tetrahedrons). It plays a similar role to “volume”
in smooth cases. We also refer to the second order normalized discrete curvature flow
(3-2) as the combinatorial Ricci flow. Moreover, we have the following evolution
equations along this flow,

(3-3) PRD @R
@l
Pl D L.�RC�l/D�LR;

where we have used the Euler formula Ll D 0. So

(3-4) PC D�2RTLR;
and

PS D

mX
iD1

PRi li CRi Pli D�kRk
2
C�S

D
S2�klk

2kRk2

klk2
D
<R; l >2�klk

2kRk2

klk2

D�kR��lk2 D�





R� S

klk2
l





2
� 0:

Hence

(3-5) P�D
PS

klk2
D�

�
kRk

klk

�2
C�2 D�

kR��lk2

klk2
� 0:
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Since klk2 is invariant along the flow (3-2), we can always assume l.0/ 2 Sm�1

and then l.t/2Sm�1 for all t 2 Œ0; T / in the following. Moreover, �DS=klk2�S
along (3-2). It is easy to derive the following result.

Proposition 3.2. The quadratic energy functional C is uniformly bounded on MT ,
where the bound depends only on the triangulation. The Einstein–Hilbert–Regge
functional S is uniformly bounded on MT \Sm�1. Moreover, along the discrete
flow (3-2), S is nonincreasing and bounded.

Remark. By the Schläfli formula, the differential 1-form ! D
Pm
iD1Ridli D dS

is exact. Combining this with the fact that MT is simply connected, we have

S.l/D

Z l

a

mX
iD1

Ridli CS.a/;

where a is an arbitrary point of MT .

Nonsingular solution and singularity of solution. To study the convergence of
the discrete Ricci flow (3-2), we need to classify the solutions of the flow.

Definition 3.3. A solution l.t/ of (3-2) is nonsingular if the solution exists for
t 2 Œ0;C1/ and fl.t/gbMT \Sm�1.

In fact, by fl.t/gbMT \Sm�1, we know that the solution of (3-2) exists for
t 2 Œ0;C1/. Furthermore, we have the following result for nonsingular solutions
of (3-2).

Theorem 3.4. If there exists a nonsingular solution for the discrete flow (3-2), there
exists at least one discrete Einstein metric on .M 3; T /.

Proof. Let l.t/, t 2 Œ0;C1/, be a nonsingular solution of the flow (3-2). As S is
descending and bounded from below along (3-2), S.C1/ exists. We can choose
tn " C1, such that

(3-6) S 0.tn/D�k�.tn/l.tn/�R.tn/k
2
! 0:

Using fl.t/g b MT , we can further choose a subsequence tnk
of tn, such that

l.tnk
/! l�. Combining this with (3-6), we get R� D ��l� and l� is a discrete

Einstein metric. �

If the solution of flow (3-2) converges to a nondegenerate PL-metric, the unit
solution �.t/=k�k must be nonsingular. First, assume the maximal time T <C1.
Since �.T / is a nondegenerate PL-metric, the flow can be extended beyond T , so
we obtain T DC1. Second, since limt!1 l.t/D l

� 2MT , there exists t0 > 0
such that l.t/ is close to l� when t > t0, so l.t/ 2MT . On the other hand, for
t 2 Œ0; t0�, l.t/ 2MT . Hence we know .�.t/=k�k/bMT \Sm�1.

Then we have the following corollary:
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Corollary 3.5. If the solution l.t/ of the discrete Ricci flow (3-2) exists for all time
and converges to a nondegenerate PL-metric l.C1/, then there exists at least one
discrete Einstein metric on .M; T /. Moreover, l.C1/ is a discrete Einstein metric.

Definition 3.6. A maximal solution l.t/, t 2 Œ0; T /, of (3-2) is said to be singular if

fl.t/g\ @.MT \Sm�1/¤∅:

We say the solution develops a type-I singularity at time T if there is an edge
li and a sequence tn ! T such that li .tn/! 0. We say the solution develops a
type-II singularity at time T if there is a sequence tn approaching T such that li .tn/
remains in a compact set of R>0 for all i and there is a tetrahedron � D fi; j; k; lg
in T such that V� ! 0 as tn! T.

Remark. In [Bobenko et al. 2015; Ge and Jiang 2016a; Ge and Jiang 2016b; Luo
2011], the authors studied the degeneration of a triangle. In fact, they considered the
generalized triangle, that is a topological triangle with three positive edge lengths.
While the triangle inequality is not valid, they found that the definition of discrete
Gaussian curvatures can be generalized to this case. However, we don’t know how
to do this degeneration for tetrahedrons, and hence we know very little about the
degeneration behavior of a tetrahedron.

The following conjectures are likely to hold for the discrete flow (3-2).

Conjecture. The normalized discrete Ricci flow (3-2) will not develop type-I singu-
larity in finite time.

Conjecture. If no singularity develops along the normalized flow (3-2), the solution
converges to a discrete Einstein metric as time approaches infinity.

Just like Hamilton and Perelman’s methods approaching smooth Ricci flow,
whenever discrete curvature flow develops type-II singularity, we hope to continue
the discrete flow by surgery which changes the combinatorial structure of the
triangulation. We hope that discrete curvature flow converges to a discrete Einstein
metric after a finite number of surgeries.

Convergence of the combinatorial second order flow. Finding good metrics is
always a central topic in Riemannian geometry. In the last section, we proved that
if the solution of the flow (3-2) exists for all time and converges to a nondegenerate
PL-metric l1, the discrete Einstein metric exists. Moreover, l1 is such a metric.
Conversely, we have:

Theorem 3.7. Given a nondegenerate metric l , assume there exists a discrete
Einstein metric lDE such that RDE D �lDE with

�DE

�
Im�

lDE l
T
DE

klDEk2

�
�LDE � 0;
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where Im denotes them�m identity matrix. Then there exists a constant " > 0 such
that, if

kl.0/� lDEk< ";

then the solution of normalized combinatorial second order flow (3-2) with initial
metric l.0/D l exists for all time and converges exponentially fast to the discrete
Einstein metric lDE .

Proof. We want to prove lDE is a local attractor of the flow. For the evolution
equation of the combinatorial two-order flow

Pl D ‡.l/D�RC�l;

we have
‡.lDE /D�RDE C�DE lDE D 0:

The differential of ‡.l/D�RC�l at l is

(3-7)

Dl‡.l/D�DlRC�Dl l C lDl‡

D�LT C�ImC l

�
LTlCR

klk2
�
2Sl

klk4

�T
D �Im�LC

lRT

klk2
� 2S

l lT

klk4

D �

�
Im�

l lT

klk2

�
�LC

l.R��l/T

klk2
;

where we have used the symmetry ofL and the Euler formula in the third equality. So

Dl‡.l/jlDlDE
D �DE

�
I �

lDE l
T
DE

klDEk2

�
�LDE � 0;

and lDE is a local attractor of the flow. The system is asymptotically stable at lDE .
If the initial metric l.0/ is close enough to lDE , then the solution l.t/ exists for all
time and converges to lDE exponentially fast. �

4. Fourth order flow

In this section, we consider the combinatorial fourth order flow

(4-1) Pl D�LTR;

where LT denotes the transpose of L. Combining this with (2-5), we know that the
combinatorial fourth order flow (4-1) is in fact a gradient flow of energy C (which
is called discrete Calabi energy in [Ge 2013; Ge and Xu 2016a]), that is:

(4-2) Pl D�1
2
rlC D�LTR:
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It is easy to obtain the following evolution equations:

PRD�LLTR;(4-3)

PC D�2RTLLTRD�2.LTR/T .LTR/D�1
2
krlCk2 � 0;(4-4)

PS D . PR/T lCRT Pl D�.LLTR/T lCRT .�LTR/D�RTLLT l�RTLTR

D�RTLTR:

If there is only a single tetrahedron in the triangulation, then mD 6 and it is easy to
calculate rank.L/D 5. Thus we guess rank.L/Dm� 1 for general triangulations.

Conjecture. rank.L/Dm� 1 for each l 2MT :

The above conjecture is hopefully true. If so, then l is the only solution (up to
scaling) of matrix equation Lx D 0. Moreover, each nonsingular solution to the
fourth order flow (4-1) contains a subsequence converging to a discrete Einstein
metric.

Theorem 4.1. If there exists a discrete Einstein metric lDE with rank.LDE /Dm�1
on .M 3; T /, then there exists a constant " > 0 such that, for any initial metric
l.0/ with

kl.0/� lDEk< ";

the solution to combinatorial fourth order flow Pl D LT .RDE �R/ exists for all
time t � 0 and converges exponentially fast to the metric lDE .

Proof. Along the normalized fourth order flow (4-1),

PRD
@R

@l
Pl D LLT .RDE �R/;

PC D�2.RDE �R/TLLT .RDE �R/� 0;

where C D
Pm
iD1..RDE /i �Ri /

2. Now we consider the ODE system

Pl D ‡.l/D LT .RDE �R/:

Then ‡.lDE /D 0 and Dl‡.l/jlDlDE
D�LDEL

T
DE � 0. As rank.LDE /Dm�1,

Dl‡.l/jlDlDE
is negative definite up to scaling. Hence lDE is a local attractor and

the system is asymptotically stable at lDE . �

5. Discrete curvature flow in non-Euclidean geometry

K -space form triangulation and discrete curvature flow. Assume K 2 R is a
constant and, moreover, K ¤ 0. In this section, we will consider a 3-dimensional
compact manifold M 3 with a K-space form triangulation T on M 3. Let MK be
the space form with constant sectional curvature K. The basic blocks of K-space
form triangulation T are tetrahedrons embedded in MK .
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A tetrahedron embedded in MK is determined by its six edge lengths. Not
every group of six positive numbers can be realized as the six edge lengths of
some tetrahedrons embedded in MK . Similar to the Euclidean case, there are
nondegenerate conditions too. All admissible groups of six positive numbers which
can be realized as the six edge lengths of some tetrahedrons embedded in MK

form an open connected set in R6>0. The set is open due to Theorems 3.1 and 4.1
in [Yakut et al. 2009]; the set is connected due to the fact any tetrahedron can be
deformed continuously to regular tetrahedrons.

The combinatorial Ricci curvature Rij is defined in the same way as that of the
Euclidean PL-manifold. We need to define a new functional SK corresponding to
the total curvature functional S .

Definition 5.1. Set V D
P
fi;j;k;lg2T Vijkl and define

SK , 2KV C
mX
iD1

Ri li :

Now we recall the famous Schläfli formula for a K-space form tetrahedrons.
For any K-space form tetrahedrons fi; j; k; lg 2 T , one has (see [Milnor 1994;
Schlenker 2000])

@Vijkl
@ p̌q

D
lpq

2K
; p; q 2 fi; j; k; lg;

where p̌q is the dihedral angle at the edge fp; qg in the tetrahedrons fi; j; k; lg.
Using the formula, one can get

2KdV C

mX
iD1

lidRi D 0:

Hence

dSK D 2KdV C

mX
iD1

.lidRi CRidli /D

mX
iD1

Ridli ;

which implies @SK=@li DRi . Then we have rlSK DR and Hessl SK D L.

Conjecture. The symmetric matrix L is nonsingular and indefinite.

We affirm the conjecture for the case of a single tetrahedron, and include the
proof in the Appendix, see Theorem A.6.

With K-space form triangulation, we consider discrete curvature flow Pl D�R
of second order and flow Pl D�LTR of fourth order. Most properties are laid out
in the following table:
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Discrete curvature flow of second order Discrete curvature flow of fourth order
Pl D�RD�rlSK Pl D�LTRDrlC
PRD�LR PRD�LLTR
PSK D�R

TRD�C � 0 PSK D�R
TLTR

PC D�2RTLR PC D�2kRTLk2 � 0

Theorem 5.2. If the solution to second order flow Pl D�R exists for all time and
converges to a nondegenerate metric l1, then l1 is a discrete Ricci-flat metric.

Theorem 5.3. If the solution to fourth order flow Pl D�LTR exists for all time and
converges to a nondegenerate metric l1 with L1 nonsingular, then l1 is a discrete
Ricci-flat metric.

Proof. The limit limt!C1 C.t/ exists because of the convergence of the flow
Pl D �LTR, and C.t/ is nonincreasing along the fourth order discrete curvature
flow. So we have

lim
t!C1

PC.t/D 0;

which implies that limt!C1.L
TR/T .LTR/D 0. Hence LTRD 0. Since L1 is

nonsingular, R1 D 0. �

Theorem 5.4. If there exists a discrete Ricci-flat metric lDE withLDE nonsingular,
then the solution of fourth order discrete curvature flow Pl D LTR exists for all time
and converges to the discrete Einstein metric lDE when the initial discrete Calabi
energy C.0/ is small enough.

Proof. At the point lDE , Dl.�LTR/D�LLT < 0. Hence lDE is a local attractor
of the flow. �

A fourth order flow for hyperbolic 3-manifolds. In the above subsection, we have
seen that the matrix L is not so good for evolving a useful curvature flow. This
is mainly because of the nondefiniteness of L. For a special type of manifolds
and a special kind of triangulations, Feng Luo [2005] introduced a second order
combinatorial curvature flow. In this short subsection, we introduce a fourth order
flow which is very similar to Luo’s flow.

Suppose M is a compact 3-manifold whose boundary is nonempty and is a
union of surfaces with negative Euler characteristic. M can be ideally triangulated.
The basic building blocks are strictly hyperideal tetrahedrons. For a single strictly
hyperideal tetrahedron, let l1; : : : ; l6 be the edge lengths of a strictly hyperideal
tetrahedron, and ˇ1; : : : ; ˇ6 be the dihedral angles at respective edges. Then
the volume V is a strictly concave function of its dihedral angles, that is to say,
Hessˇ V D�12@.l1; : : : ; l6/=@.ˇ1; : : : ; ˇ6/ is negative definite.
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ForM with ideal triangulation, denote lD .l1; : : : ; lm/T as the edge lengths,RD
.R1; : : : ; Rm/

T as the combinatorial curvatures at all edges. Here the combinatorial
curvatureRi at an edge i is 2� minus the sum of dihedral angles at the edge. Denote
C.l/D kRk2 D

Pm
iD1R

2
i . Consider the combinatorial curvature flow

(5-1) Pl D�1
2
rlC D�LR;

where

LD @.R1; : : : ; Rm/=@.l1; : : : ; lm/

is positive definite from [Luo 2005]. The equilibrium points of the combinatorial
curvature flow (5-1) are the only flat metric with R � 0, that is, the complete
hyperbolic metric with totally geodesic boundary. Moreover, by

Dl.�LR/D�L
2 < 0;

we know that each equilibrium point is a local attractor of this flow. Hence, when
the initial discrete energy C.0/ is small enough, the solution of flow (5-1) exists for
all time and converges to the flat metric, i.e., the complete hyperbolic metric with
totally geodesic boundary.

Appendix

In this appendix we study the matrix L in space forms MK , where subindex K
represents the constant sectional curvature. We conclude that the matrix L is
nonsingular and indefinite whenever K ¤ 0.

Consider a single tetrahedron � D fA;B;C;Dg embedded in MK . Since �
varies with its six edge lengths, all tetrahedrons can be considered as points of
some connected open set in R6>0. Denote ˇAB as the dihedral angle at edge fA;Bg.
The dihedral angles and the edge lengths are mutually determined. On one hand,
six dihedral angles are determined by six edge lengths. On the other hand, each
tetrahedron in the space form MK is determined, up to a motion, by its Gram
matrix, which, in turn, is determined by the dihedral angles of the tetrahedron
(see Chapter 6 §1 and Chapter 7 §2 in [Alekseevskij et al. 1993]). Therefore the
Jacobian of dihedral angles over edges, which is denoted by

�LABCD ,
@. ˇAB ; ˇAC ; ˇAD; ˇBC ; ˇBD; ˇCD/

@.lAB ; lAC ; lAD; lBC ; lBD; lCD/
;

is nonsingular.
Next we prove that LABCD is indefinite. A tetrahedron is called regular, if all

lengths are equal.
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B
β D

A

C

E
B β D

A

C

E

F

Figure 1

Proposition A.1. For the regular tetrahedron, we have

�LABCD D

0BBBBBBB@

x y y y y z

y x y y z y

y y x z y y

y y z x y y

y z y y x y

z y y y y x

1CCCCCCCA
;

where

x D
@ˇAB

@lAB
; y D

@ˇAB

@lAC
D
@ˇAB

@lAD
D
@ˇAB

@lBC
D
@ˇAB

@lBD
; z D

@ˇAB

@lCD
:

Moreover, the eigenvalues of the above �LABCD are x�z, xCz�2y, xCzC4y
with degree 3, 2, 1 respectively.

In the following, we claim that, when K ¤ 0, the matrix L is nonsingular but
not definite. It’s enough to determine the sign of x� z, xC z�2y and xC zC4y.

First, we recall the formula of the cosine law in the 2-dimensional space forms
M 2.K/ with constant sectional curvature K. Denote

SK.t/D

8̂<̂
:

sin
�p
Kt
�
=
p
K; K > 0;

t; K D 0;

sinh
�p
�Kt

�
=
p
�K; K < 0;

CK.t/D

8̂<̂
:

cos
�p
Kt
�
; K > 0;

1; K D 0;

cosh
�p
�Kt

�
; K < 0;

fK.r/D

Z r

0

SK.t/ dt D

8<:.1�CK.r//=K, K ¤ 0;

r2=2; K D 0:
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Then we have the following identities:

(1) f
0

K.r/D SK.r/; S
0

K.r/D CK.r/.

(2) KS2K.a/CC
2
K.a/D 1.

(3) SK.aC b/D SK.a/SK.b/CCK.a/CK.b/.

(4) CK.aC b/D CK.a/CK.b/�KSK.a/SK.b/.

(5) CK.2a/D 2C 2K.a/� 1D 1� 2KS
2
K.a/.

So
fK.r/D 2S

2
K.r=2/:

Proposition A.2 (the cosine law). For a geodesic triangle 4ABC in the space
form M 2.K/, with side lengths a; b; c opposite to the angles A;B;C , respectively,
the cosine law is

fK.c/D fK.a� b/CSK.a/SK.b/.1� cosC/:

For K ¤ 0, the above formula is equivalent to

CK.c/D CK.a/CK.b/CKSK.a/SK.b/ cosC:

Now, calculating the exact value of a; b; c, we have the following results.

Lemma A.3. z D

p
2C 2K.l0=2/

SK.l0=2/
p
1C 3CK.l0/

:

Proof. By the definition of L16, we just need to calculate @ˇ=@l6. To calculate it,
we assume the length of AB is l6 and other edges have length l0 in the hyperbolic
tetrahedron in Figure 1(left). As shown there, E is the midpoint of the edge CD,
and the dihedral angle at the edge CD is the angle †AEB, i.e., ˇ.

Using the cosine law in the triangle 4AEB, we have

fK.l6/D fK.0/CS
2
K.h0/.1� cosˇ1/D S2K.h0/.1� cosˇ1/;

where h0 is the length of the altitude in the regular triangle with side length l0. We
can get

@ˇ1

@l6
D

f
0

K.l6/

S2K.h0/ sinˇ
D

SK.l6/

S2K.h0/ sinˇ
:

So at the regular point

z D
SK.l0/

S2K.h0/ sinˇ
;

and
fK.l0/D fK

�
h0�

l0
2

�
CSK.h0/SK

�
l0
2

�
:
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Then we have

CK.h0/D
CK.l0/

CK.l0=2/
;

which implies

S2K.h0/D

8<:
1�C 2K.h0/

K
; K ¤ 0;

h20; K D 0:

For K ¤ 0,

S2K.h0/D
C 2K.l0=2/�C

2
K.l0/

KC 2K.l0=2/
D
S2K.l0=2/.1C 2CK.l0//

C 2K.l0=2/
:

The equation also holds for the case of K D 0. By the cosine law,

cosˇ D
S2K.h0/�fK.l0/

S2K.h0/
:

If K D 0, it is easy to get cosˇ D 1� l20=.2h
2
0/D 1=3. For the case of K ¤ 0,

cosˇ D
.1�C 2K.h0//=K � .1�CK.l0//=K

.1�C 2K.h0//=K
D
CK.l0/�C

2
K.h0/

1�C 2K.h0/

D
CK.l0/�C

2
K.l0/=C

2
K.l0=2/

1�C 2K.l0/=C
2
K.l0=2/

D
CK.l0/.C

2
K.l0=2/�CK.l0//

C 2K.l0=2/�C
2
K.l0/

D
KCK.l0/S

2
K.l0=2/

C 2K.l0=2/�C
2
K.l0/

D
KCK.l0/S

2
K.l0=2/

.1CCK.l0/� 2C
2
K.l0//=2

D
KCK.l0/S

2
K.l0=2/

.1C 2CK.l0//.1�CK.l0//=2
D

KCK.l0/S
2
K.l0=2/

.1C 2CK.l0//KS
2
K.l0=2/

D
CK.l0/

1C 2CK.l0/
:

This formula also holds for K D 0. Then we have

sinˇ D

p
.1CCK.l0//.1C 3CK.l0//

1C 2CK.l0/
D

p
2CK.l0=2/

p
1C 3CK.l0/

1C 2CK.l0/
:

Hence

z D
SK.l0/CK.l0=2/p

2S2K.l0=2/
p
1C 3CK.l0/

D

p
2C 2K.l0=2/

SK.l0=2/
p
1C 3CK.l0/

: �
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Lemma A.4. x D

p
2C 2K.l0/

SK.l0=2/
p
1C 3CK.l0/.1C 2CK.l0//

:

Proof. To calculate it, we assume the length of CD is l1 and other edges have length
l0 in the tetrahedron shown in Figure 1(left). As illustrated there, E is the midpoint
of the edge CD, the dihedral angle at the edge CD is the angle †AEB, i.e., ˇ. We
assume the length of AE is h. By the cosine law,

fK.l0/D fK.0/CS
2
K.h/.1� cosˇ/D S2K.h/.1� cosˇ/;

and we have

�
@ˇ

@l1
D

1� cosˇ
S2K.h/ sinˇ

@S2K.h/

@l1
:

By the cosine law again,

fK.l0/D fK.l1=2� h/CSK.h/SK.l1=2/;

and we have
CK.h/D CK.l0/=CK.l1=2/:

Hence
@CK.h/

@l1
D�

CK.l0/C
0
K.l1=2/

2C 2K.l1=2/
D
KSK.l1=2/CK.l0/

2C 2K.l1=2/
;

and

S2K.h/D

8<:
1�C 2K.h/

K
; K ¤ 0;

h2; K D 0;

which implies that

@S2K.h/

@l1
D

8̂<̂
:
�2CK.h/

K

KSK.l1=2/CK.l0/

2C 2K.l1=2/
D�

C 2K.l0/SK.l1=2/

C 3K.l1=2/
; K ¤ 0;

�
l1
2
; K D 0:

So we obtain
@S2K.h/

@l1
D�

C 2K.l0/SK.l1=2/

C 3K.l1=2/
:

At the regular point, we have

x D
@ˇ

@l1
D
C 2K.l0/SK.l1=2/

C 3K.l1=2/

CK.l0=2/.1CCK.l0//p
2S2K.l0=2/

p
1C3CK.l0/.1C2CK.l0//

D

p
2C 2K.l0/

SK.l0=2/
p
1C 3CK.l0/.1C 2CK.l0//

:
�
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Lemma A.5. y D�

p
2CK.l0/C

2
K.l0=2/

SK.l0=2/.1C 2CK.l0//
p
1C 3CK.l0/

:

Proof. To calculate it, we assume the length of AD is l2 and other edges have
length l0 in the tetrahedron in Figure 1(right). As shown there, E is the midpoint
of the edge CD, the dihedral angle at the edge CD is the angle †FEB, i.e., ˇ. For
simplicity, we assume l2 � l0. Assume the length of AF is s, and the length of
FE is Qh. So the length of FC and FD are equal to l0� s. By the cosine law in the
triangle 4CEF,

fK.l0� s/D fK. Qh� l0=2/CSK. Qh/SK.l0=2/:

By the cosine law in the triangle 4AFD,

fK.l0� s/D fK.l2� s/C
SK.s/

SK.l0/
.fK.l0/�fK.l2� l0//:

By the cosine law in the triangles 4ABF and 4BEF,

fK.l0� s/C
fK.l0/SK.s/

SK.l0/
D fK.h0� Qh/CSK.h0/SK. Qh/.1� cosˇ/:

Differentiating the above three equations at the regular point, i.e., s D 0, l2 D l0,
and QhD h0, we have

�SK.l0/ds D .SK.h0� l0=2/CCK.h0/SK.l0=2//d Qh

D SK.h0/CK.l0=2/d Qh;

�SK.l0/ds D�SK.l0/dsCSK.l0/d l2C
CK.0/

SK.l0/
fK.l0/ds;

�SK.l0/dsC
fK.l0/CK.0/

SK.l0/
ds D�SK.0/d QhCSK.h0/CK.h0/.1� cosˇ/d Qh

CS2K.h0/ sinˇdˇ:

Using the fact SK.0/D 0; CK.0/D 1, we obtain

(1) ds D�
S2K.l0/

fK.l0/
d l2,

(2) d QhD� SK.l0/

SK.h0/CK.l0=2/
ds D

S3K.l0/

fK.l0/SK.h0/CK.l0=2/
dl2,

(3)
fK.l0/�S

2
K.l0/

SK.l0/
ds D SK.h0/CK.h0/.1� cosˇ/d QhCS2K.h0/ sinˇdˇ.

Using

cosˇ D CK.l0/

1C2CK.l0/
; CK.h0/D

CK.l0/

CK.l0=2/
;

we have
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�
.fK.l0/.1C 2CK.l0//�S

2
K.l0//SK.l0/

fK.l0/.1C 2CK.l0//
d l2 D S

2
K.h0/ sinˇdˇ:

Since fK.l0/D 2S2K.l0=2/, we have

�
CK.l0/SK.l0/

1C2CK.l0/
d l2 D S

2
K sinˇdˇ:

Hence

y D
@ˇ

@l2
D�

CK.l0/SK.l0/

1C2CK.l0/

1

S2K.h0/ sinˇ

D�
CK.l0/SK.l0/

1C2CK.l0/

CK.l0=2/p
2S2K.l0=2/

p
1C3CK.l0/

D�

p
2CK.l0/C

2
K.l0=2/

SK.l0=2/.1C 2CK.l0//
p
1C 3CK.l0/

: �

So we have

(1) x� z D�

p
2
p
1C 3CK.l0/

2SK.l0=2/.1C 2CK.l0//
< 0,

(2) xC z� 2y D

p
2
p
1C 3CK.l0/

2SK.l0=2/
> 0,

(3) xC zC 4y D

p
2KSK.l0=2/

.1C 2CK.l0//
p
1C 3CK.l0/

.

Hence xCzC4y >0 whenK>0, xCzC4yD 0 whenKD 0, and xCzC4y <0
when K < 0.

Theorem A.6. When K ¤ 0, the matrix L of one single tetrahedron �LABCD
embedded in MK is nonsingular and indefinite. Hence the conjecture on page 60 is
true for this case.

Proof. By the calculations above, we know that the matrix L at regular points is
indefinite. Any tetrahedron can be deformed continuously to the regular tetrahedron,
so all tetrahedrons have the same properties. �
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