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Let S be a surface, perhaps with boundary, and either compact or with
a finite number of points removed from the interior of the surface. We
consider the inclusion ι : Fn(S) →

∏n
1 S of the n-th configuration space

Fn(S) of S into the n-fold Cartesian product of S, as well as the induced
homomorphism ι# : Pn(S) →

∏n
1 π1(S), where Pn(S) is the n-string pure

braid group of S. Both ι and ι# were studied initially by J. Birman, who
conjectured that Ker(ι#) is equal to the normal closure of the Artin pure
braid group Pn in Pn(S). The conjecture was later proved by C. Goldberg
for compact surfaces without boundary different from the 2-sphere S2 and
the projective plane RP2. In this paper, we prove the conjecture for S2 and
RP2. In the case of RP2, we prove that Ker(ι#) is equal to the commutator
subgroup of Pn(RP2), we show that it may be decomposed in a manner
similar to that of Pn(S

2) as a direct sum of a torsion-free subgroup Ln and
the finite cyclic group generated by the full twist braid, and we prove that
Ln may be written as an iterated semidirect product of free groups. Finally,
we show that the groups Bn(S

2) and Pn(S
2) (resp. Bn(RP2) and Pn(RP2))

have finite virtual cohomological dimension equal to n − 3 (resp. n − 2),
where Bn(S) denotes the full n-string braid group of S. This allows us to
determine the virtual cohomological dimension of the mapping class groups
of S2 and RP2 with marked points, which in the case of S2 reproves a result
due to J. Harer.

1. Introduction

Let S be a connected surface, perhaps with boundary, and either compact or with
a finite number of points removed from the interior of the surface. The n-th
configuration space of S is defined by

Fn(S)= {(x1, . . . , xn) ∈ Sn
| xi 6= x j if i 6= j }.
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It is well known that π1(Fn(S))∼= Pn(S), the pure braid group of S on n strings,
and that π1(Fn(S)/Sn)∼= Bn(S), the braid group of S on n strings, where Fn(S)/Sn

is the quotient space of Fn(S) by the free action of the symmetric group Sn given
by permuting coordinates [Fadell and Neuwirth 1962; Fox and Neuwirth 1962]. We
compose elements of Bn(S) from left to right. If S is the 2-disc D2 then Bn(D

2)

(resp. Pn(D
2)) is the Artin braid group Bn (resp. the Artin pure braid group Pn).

The canonical projection Fn(S)→ Fn(S)/Sn is a regular n!-fold covering map, and
thus gives rise to the short exact sequence

(1) 1→ Pn(S)→ Bn(S)→ Sn→ 1.

If D2 is a topological disc lying in the interior of S and containing the basepoints
of the braids then the inclusion j : D2

→ S induces a group homomorphism
j# : Bn → Bn(S). This homomorphism is injective if S is different from the
2-sphere S2 and the real projective plane RP2 [Birman 1969; Goldberg 1973]. Let
j#|Pn : Pn → Pn(S) denote the restriction of j# to the corresponding pure braid
groups. If β ∈ Bn then we shall denote its image j#(β) in Bn(S) simply by β. It
is well known that the centre of Bn and of Pn is infinite cyclic, generated by the
full twist braid that we denote by 12

n , and that 12
n , considered as an element of

Bn(S
2) or of Bn(RP2), is of order 2 and generates the centre. If G is a group then

we denote its commutator subgroup by 02(G) and its Abelianisation by GAb, and
if H is a subgroup of G then we denote its normal closure in G by 〈〈H〉〉G .

Let
∏n

1 S = S× · · ·× S denote the n-fold Cartesian product of S with itself, let
ιn : Fn(S)→

∏n
1 S be the inclusion map, and let

ιn# : π1(Fn(S))→ π1

( n∏
1

S
)

denote the induced homomorphism on the level of fundamental groups. To simplify
the notation, we shall often just write ι and ι# if n is given. The study of ι# was
initiated by Birman [1969]. She had conjectured that 〈〈Im( j#|Pn )〉〉Pn(S) = Ker(ι#)
if S is a compact orientable surface, but states without proof that her conjecture is
false if S is of genus greater than or equal to 1 [Birman 1969, page 45]. However,
Goldberg [1973, Theorem 1] proved the conjecture several years later in both the
orientable and nonorientable cases for compact surfaces without boundary different
from S2 and RP2. In connection with the study of Vassiliev invariants of surface
braid groups, González-Meneses and Paris [2004] showed that Ker(ι#) is also
normal in Bn(S), and that the resulting quotient is isomorphic to the semidirect
product π1

(∏n
1 S
)
o Sn , where the action is given by permuting coordinates (their

work was within the framework of compact orientable surfaces without boundary,
but their construction is valid for any surface S). In the case of RP2, this result was
reproved using geometric methods [Tochimani 2011].
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If S = S2, then Ker(ι#) is clearly equal to Pn(S
2), and so by [Gonçalves and

Guaschi 2004b, Theorem 4], it may be decomposed as

(2) Ker(ι#)= Pn(S
2)∼= Pn−3(S

2
\ {x1, x2, x3})×Z2,

where the first factor of the direct product is torsion-free, and the Z2-factor is
generated by 12

n .
The aim of this paper is to resolve Birman’s conjecture for surfaces without

boundary in the remaining cases, namely S =S2 or RP2, to determine the cohomo-
logical dimension of Bn(S) and Pn(S), where S is one of these two surfaces, and
to elucidate the structure of Ker(ι#) in the case of RP2. In Section 2, we start by
considering the case S = RP2, we study Ker(ι#), which we denote by Kn , and we
show that it admits a decomposition similar to that of (2).

Proposition 1. Let n ∈ N.

(a) (i) Up to isomorphism, the homomorphism

ι# : π1(Fn(RP2))→ π1

( n∏
1

RP2
)

coincides with Abelianisation. In particular, Kn = 02(Pn(RP2)).
(ii) If n ≥ 2 then there exists a torsion-free subgroup Ln of Kn such that Kn is

isomorphic to the direct sum of Ln and the subgroup 〈12
n〉 generated by

the full twist that is isomorphic to Z2.

(b) If n ≥ 2 then any subgroup of Pn(RP2) that is normal in Bn(RP2) and that
properly contains Kn possesses an element of order 4.

Note that if n = 1 then B1(RP2)= P1(RP2)∼= Z2 and 12
1 is the trivial element,

so parts (a)(ii) and (b) do not hold. Part (a)(i) will be proved in Proposition 8.
We shall see later on in Remark 14 that there are precisely 2n(n−2) subgroups that
satisfy the conclusions of part (a)(ii), and to prove the statement, we shall exhibit
an explicit torsion-free subgroup Ln . We then prove Birman’s conjecture for S2

and RP2, using Proposition 1(a)(i) in the case of RP2.

Theorem 2. Let S be S2 or RP2, and let n ≥ 1. Then 〈〈Im( j#|Pn )〉〉Pn(S) = Ker(ι#).

In Section 3, we analyse Ln in more detail, and we show that it may be decom-
posed as an iterated semidirect product of free groups.

Theorem 3. Let n ≥ 3. Consider the Fadell–Neuwirth short exact sequence

(3) 1→ Pn−2(RP2
\{x1, x2})→ Pn(RP2)

q2#
−−→ P2(RP2)→ 1,



74 DACIBERG LIMA GONÇALVES AND JOHN GUASCHI

where q2# is given geometrically by forgetting the last n− 2 strings. Then Ln may
be identified with the kernel of the composition

Pn−2(RP2
\{x1, x2})→ Pn(RP2)

ι#
−→Z2× · · ·×Z2︸ ︷︷ ︸

n copies

,

where the first homomorphism is that appearing in (3). The image of this compo-
sition is the product of the last n − 2 copies of Z2. In particular, Ln is of index
2n−2 in Pn−2(RP2

\{x1, x2}). Further, Ln is isomorphic to an iterated semidirect
product of free groups of the form F2n−3 o (F2n−5 o (· · ·o (F5 o F3) · · ·)), where
for all m ∈ N, Fm denotes the free group of rank m.

In the semidirect product decomposition of Ln , note that every factor acts on each
of the preceding factors. This is also the case for Pn−2(RP2

\{x1, x2}) (see (13)),
and as we shall see in Remark 13(a), this implies an Artin combing-type result
for this group. Analysing these semidirect products in more detail, we obtain the
following results.

Proposition 4. If n ≥ 3 then

(a)
(
Pn−2(RP2

\{x1, x2})
)Ab ∼= Z2(n−2),

(b) (Ln)
Ab ∼= Zn(n−2).

In two papers in preparation, we shall analyse the homotopy fibre of ι, as well
as the induced homomorphism ι# when S = S2 or RP2 [Gonçalves and Guaschi
≥ 2017], and when S is a space form manifold of dimension different from two [Go-
lasiński et al. 2016]. In the first of these papers, we shall also see that Ln is closely
related to the fundamental group of an orbit configuration space of the open cylinder.

In Section 4, we study the virtual cohomological dimension of the braid groups
of S2 and RP2. Recall from [Brown 1982, page 226] that if a group 0 is virtually
torsion-free then all finite index torsion-free subgroups of 0 have the same coho-
mological dimension by Serre’s theorem, and this dimension is defined to be the
virtual cohomological dimension of 0. Using (2) and (3), we prove the following
result, namely that if S=S2 or RP2, the groups Bn(S) and Pn(S) have finite virtual
cohomological dimension, and we compute these dimensions.

Theorem 5. (a) Let n ≥ 4. Then the virtual cohomological dimension of both
Bn(S

2) and Pn(S
2) is equal to the cohomological dimension of the group

Pn−3(S
2
\ {x1, x2, x3}). Furthermore, for all m ≥ 1, the cohomological dimen-

sion of the group Pm(S
2
\ {x1, x2, x3}) is equal to m.

(b) Let n ≥ 3. Then the virtual cohomological dimension of both Bn(RP2) and
Pn(RP2) is equal to the cohomological dimension of the group Pn−2(RP2

\

{x1, x2}). Furthermore, for all m ≥ 1, the cohomological dimension of the
group Pm(RP2

\ {x1, x2}) is equal to m.
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The methods of the proof of Theorem 5 have recently been applied to compute
the cohomological dimension of the braid groups of all other compact surfaces
(orientable and nonorientable) without boundary [Gonçalves et al. 2016]. Theorem 5
also allows us to deduce the virtual cohomological dimension of the punctured map-
ping class groups of S2 and RP2. If n ≥ 0, let MCG(S, n) denote the mapping class
group of a connected, compact surface S relative to an n-point set. If S is orientable
then Harer [1986, Theorem 4.1] determined the virtual cohomological dimension
of MCG(S, n). In the case of S2 and D2, he obtained the following results:

(a) If n ≥ 3, the virtual cohomological dimension of MCG(S2, n) is equal to n−3.

(b) If n ≥ 2, the cohomological dimension of MCG(D2, n) is equal to n−1 (recall
that MCG(D2, n) is isomorphic to Bn [Birman 1974]).

As a consequence of Theorem 5, we are able to compute the virtual cohomological
dimension of MCG(S, n) for S = S2 and RP2.

Corollary 6. Let n ≥ 4 (resp. n ≥ 3). Then the virtual cohomological dimension of
MCG(S2, n) (resp. MCG(RP2, n)) is finite and is equal to n− 3 (resp. n− 2).

If S = S2 or RP2 then for the values of n given by Theorem 5 and Corollary 6,
the virtual cohomological dimension of MCG(S, n) is equal to that of Bn(S). If
S = S2, we thus recover the corresponding result of Harer.

2. The structure of Kn, and Birman’s conjecture for S2 and RP2

Let n ∈ N. As we mentioned in the Introduction, if S is a surface different from
S2 and RP2, the kernel of the homomorphism ι# : Pn(S)→ π1

(∏n
1 S
)

was studied
in [Birman 1969; Goldberg 1973], and if S = S2 then Ker(ι#) = Pn(S

2). In
the first part of this section, we recall a presentation of Pn(RP2), and we prove
Proposition 1(a)(i). The second part of this section is devoted to proving the rest of
Proposition 1 and Theorem 2, the latter being Birman’s conjecture for S2 and RP2.

Consider the model of RP2 given by identifying antipodal boundary points
of D2. We equip Fn(RP2) with a basepoint (x1, . . . , xn). For 1 ≤ i < j ≤ n
(resp. 1 ≤ k ≤ n), we define the element Ai, j (resp. τk , ρk) of Pn(RP2) by the
geometric braids depicted on the left side of Figure 1. Note that the arcs represent
the projections of the strings onto RP2, so that all of the strings of the given braid
are vertical, with the exception of the j-th (resp. k-th) string that is based at the
point x j (resp. xk). As may be seen on the right side of Figure 1, the generator Ai, j

may also be represented by a loop based at the point xi .

Theorem 7 [Gonçalves and Guaschi 2007, Theorem 4]. Let n ∈ N. The following
constitutes a presentation of the pure braid group Pn(RP2):

Generators: Ai, j , 1≤ i < j ≤ n, and τk , 1≤ k ≤ n.
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xkx j

xi

Ai, j

τk
ρk

x j

xi

Ai, j

x1 xn

Figure 1. The elements Ai, j , τk and ρk of Pn(RP2).

Relations:

(a) The Artin relations between the Ai, j emanating from those of Pn:

(4) Ar,s Ai, j A−1
r,s =

Ai, j if i < r < s < j or r < s < i < j ,

A−1
i, j A−1

r, j Ai, j Ar, j Ai, j if r < i = s < j ,

A−1
s, j Ai, j As, j if i = r < s < j ,

A−1
s, j A−1

r, j As, j Ar, j Ai, j A−1
r, j A−1

s, j Ar, j As, j if r < i < s < j .

(b) For all 1≤ i < j ≤ n, τiτ jτ
−1
i = τ

−1
j A−1

i, j τ
2
j .

(c) For all 1≤ i ≤ n, τ 2
i = A1,i · · · Ai−1,i Ai,i+1 · · · Ai,n .

(d) For all 1≤ i < j ≤ n and 1≤ k ≤ n with k 6= j ,

τk Ai, jτ
−1
k =


Ai, j if j < k or k < i ,

τ−1
j A−1

i, j τ j if k = i ,

τ−1
j A−1

k, jτ j A−1
k, j Ai, j Ak, jτ

−1
j Ak, jτ j if i < k < j .

This enables us to prove that ι# is in fact Abelianisation, which is part (a)(i) of
Proposition 1.

Proposition 8. Let n ∈ N. The homomorphism ι# : Pn(RP2)→ π1
(∏n

1 RP2
)

is
defined on the generators of Theorem 7 by ι#(Ai, j )= (0, . . . , 0) for all 1≤ i < j ≤ n,
and ι#(τk)= (0, . . . , 0, 1, 0, . . . , 0), where 1 is in the k-th position, for all 1≤ k ≤ n.
Further, ι# is Abelianisation, and Ker(ι#)= Kn = 02(Pn(RP2)).

Proof. For 1 ≤ k ≤ n, let pk : Fn(RP2)→ RP2 denote projection onto the k-th
coordinate. Observe that ι# = p1#× · · · × pn#, where pk# : Pn(RP2)→ π1(RP2)

is the induced homomorphism on the level of fundamental groups. Identifying
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π1(RP2) with Z2 and using the geometric realisation of Figure 1 of the generators
of the presentation of Pn(RP2) given by Theorem 7, it is straightforward to check
that for all 1≤ k, l ≤ n and 1≤ i < j ≤ n, we have pk#(Ai, j )= 0, pk#(τl)= 0 if
l 6= k and pk#(τk)= 1, and this yields the first part of the proposition. The second
part follows easily from the presentation of the Abelianisation (Pn(RP2))Ab of
Pn(RP2) obtained from Theorem 7. More precisely, if we denote the Abelianisation
of an element x ∈ Pn(RP2) by x̄ , relations (b) and (c) imply respectively that for all
1≤ i< j≤n and 1≤k≤n, Ai, j and τk

2 represent the trivial element of (Pn(RP2))Ab.
Since the remaining relations give no other information under Abelianisation, it
follows that (Pn(RP2))Ab ∼= Z2 ⊕ · · · ⊕ Z2, where τk = (0, . . . , 0, 1, 0, . . . , 0)
with 1 in the k-th position and Ai, j = (0, . . . , 0) via this isomorphism, and the
Abelianisation homomorphism indeed coincides with ι# on Pn(RP2). �

Remark 9. (a) Since Kn=02(Pn(RP2)), it follows immediately that Kn is normal
in Bn(RP2), since 02(Pn(RP2)) is characteristic in Pn(RP2), and Pn(RP2) is
normal in Bn(RP2).

(b) A presentation of Kn may be obtained by a long but routine computation using
the Reidemeister–Schreier method, although it is not clear how to simplify the
presentation. In Theorem 3, we will provide an alternative description of Kn using
algebraic methods.

(c) In what follows, we shall use Van Buskirk’s presentation of Bn(RP2) [1966,
page 83], whose generating set consists of the standard braid generators σ1, . . . , σn−1

emanating from the 2-disc, as well as the surface generators ρ1, . . . , ρn depicted in
Figure 1. We have the following relation between the elements τk and ρk :

τk = ρ
−1
k Ak,k+1 · · · Ak,n for all 1≤ k ≤ n,

where for 1≤ i < j ≤n, Ai, j =σj−1 · · · σi+1σ
2
i σ
−1
i+1 · · · σ

−1
j−1. In particular, it follows

from Proposition 8 that

(5) ι#(ρk)= ι#(τk)= (0, . . . , 0, 1, 0, . . . , 0) for all 1≤ k ≤ n,

where 1 is in the k-th position.

If n ≥ 2, the full twist braid 12
n , which may be defined by 12

n = (σ1 · · · σn−1)
n,

is of order 2 [Van Buskirk 1966, page 95], it generates the centre of Bn(RP2)

[Murasugi 1982, Proposition 6.1], and it is the unique element of Bn(RP2) of
order 2 [Gonçalves and Guaschi 2004a, Proposition 23]. Since 12

n ∈ Pn(RP2), it
thus belongs to the centre of Pn(RP2), and just as for the Artin braid groups and
the braid groups of S2, it generates the centre of Pn(RP2):

Proposition 10. Let n ≥ 2. Then the centre Z(Pn(RP2)) of Pn(RP2) is generated
by 12

n .
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Proof. We prove the result by induction on n. If n = 2 then P2(RP2) ∼= Q8

[Van Buskirk 1966, page 87], the quaternion group of order 8, and the result follows
since 12

2 is the element of P2(RP2) of order 2. So suppose that n ≥ 3. From the
preceding remarks, 〈12

n〉 ⊂ Z(Pn(RP2)). Conversely, let x ∈ Z(Pn(RP2)), and
consider the Fadell–Neuwirth short exact sequence

1→ π1(RP2
\ {x1, . . . , xn−1})→ Pn(RP2)

q(n−1)#
−−−→ Pn−1(RP2)→ 1,

where q(n−1)# is the surjective homomorphism induced on the level of fundamental
groups by the projection qn−1 : Fn(RP2)→ Fn−1(RP2) onto the first n− 1 coordi-
nates. Now q(n−1)#(x)∈ Z(Pn−1(RP2)) by surjectivity, and thus q(n−1)#(x)=12ε

n−1
for some ε∈ {0, 1} by the induction hypothesis. Further, q(n−1)#(1

2
n)=1

2
n−1, hence

1−2ε
n x ∈ Ker(q(n−1)#)∩ Z(Pn(RP2)),

and therefore 1−2ε
n x ∈ Z(Ker(q(n−1)#)). But Z(Ker(q(n−1)#)) is trivial because

Ker(q(n−1)#) is a free group of rank n−1. This implies that x ∈ 〈12
n〉 as required. �

Proof of Proposition 1. Let n ≥ 3.

(a) Recall that part (a)(i) of Proposition 1 was proved in Proposition 8, so let
us prove part (ii). The projection q2 : Fn(RP2)→ F2(RP2) onto the first two
coordinates gives rise to the Fadell–Neuwirth short exact sequence (3). Since
Kn = 02(Pn(RP2)) by Proposition 8, the image of the restriction q2#|Kn of q2#

to Kn is the subgroup 02(P2(RP2)) = 〈12
2〉, and so we obtain the commutative

diagram

(6)

1 Kn ∩ Pn−2(RP2
\{x1, x2}) Kn 〈12

2〉 1

1 Pn−2(RP2
\{x1, x2}) Pn(RP2) P2(RP2) 1,

q2#|Kn

q2#

where the vertical arrows are inclusions. Now 〈12
2〉
∼= Z2, so Kn is an exten-

sion of the group Ker(q2#|Kn ) = Kn ∩ Pn−2(RP2
\ {x1, x2}) by Z2. The fact that

q2#(1
2
n)=1

2
2 implies that the upper short exact sequence splits, a section being

defined by the correspondence 12
2 7→12

n , and since 12
n ∈ Z(Pn(RP2)), the action

by conjugation on Ker(q2#|Kn ) is trivial. Part (a) of the proposition follows by
taking Ln = Ker(q2#|Kn ) and by noting that Pn−2(RP2

\{x1, x2}) is torsion-free.

(b) Recall first that any torsion element in Pn(RP2)\〈12
n〉 is of order 4 [Gonçalves

and Guaschi 2004a, Corollary 19 and Proposition 23], and is conjugate in Bn(RP2)

to one of an or bn−1, where a = ρnσn−1 · · · σ1 and b = ρn−1σn−2 · · · σ1 satisfy

(7) an
= ρn · · · ρ1 and bn−1

= ρn−1 · · · ρ1
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by [Gonçalves and Guaschi 2010b, Proposition 10]. Let N be a normal subgroup of
Bn(RP2) that satisfies Kn $ N ⊂ Pn(RP2). We claim that for all u ∈ π1

(∏n
1 RP2

)
(which we identify henceforth with Z2⊕ · · · ⊕Z2), exactly one of the following
two conditions holds:

(i) N ∩ ι−1
# ({u}) is empty.

(ii) ι−1
# ({u}) is contained in N.

To prove the claim, suppose that x ∈ N ∩ ι−1
# ({u}) 6=∅, and let y ∈ ι−1

# ({u}). Now
ι#(x) = ι#(y) = u, so there exists k ∈ Kn such that x−1 y = k. Since Kn ⊂ N , it
follows that y = xk ∈ N , which proves the claim. Further, ι#(an)= (1, . . . , 1) and
ι#(bn−1)= (1, . . . , 1, 0) by Proposition 8 and equations (5) and (7), so by the claim
it suffices to prove that there exists z∈N such that ι#(z)∈{(1, . . . , 1), (1, . . . , 1, 0)},
for then we are in case (ii) above, and it follows that one of an or bn−1 belongs to N.

It thus remains to prove the existence of such a z. Let x ∈ N \ Kn . Then ι#(x)
contains an entry equal to 1 because Kn = Ker(ι#). If ι#(x)= (1, . . . , 1) then we
are done. So assume that ι#(x) also contains an entry that is equal to 0. By (5), there
exist 1≤ r < n and 1≤ i1 < · · ·< ir ≤ n such that ι#(ρi1 · · · ρir )= ι#(x). It follows
from the claim and the fact that x ∈ N that ρi1 · · · ρir ∈ N also, and so without loss
of generality, we may suppose that x = ρi1 · · · ρir . Further, since ι#(x) contains both
a 0 and a 1, there exists 1 ≤ j ≤ r such that pi j #(x) = 1 and p(i j+1)#(x) = 0, the
homomorphisms pk# being those defined in the proof of Proposition 8. Note that
we consider the indices modulo n, so if i j = n (so j = r ) then we set i j +1= 1. By
[Gonçalves and Guaschi 2004a, page 777], conjugation by a−1 permutes cyclically
the elements ρ1, . . . , ρn, ρ

−1
1 , . . . , ρ−1

n of Pn(RP2), so the (n−1)-st (resp. n-th)
entry of x ′ = a−(n−1−i j )xa(n−1−i j ) is equal to 1 (resp. 0), and x ′ ∈ N because N is
normal in Bn(RP2). Using the relation b = σn−1a, we determine the conjugates
of the ρi by b−1:

b−1ρi b = a−1σ−1
n−1ρiσn−1a = a−1ρi a = ρi+1 for all 1≤ i ≤ n− 2,

b−1ρn−1b = a−1σ−1
n−1ρn−1σn−1a = a−1σ−1

n−1ρn−1σ
−1
n−1. σ

2
n−1a

= a−1ρna. a−1σ 2
n−1a = ρ−1

1 . a−1σ 2
n−1a,

where we used the relations ρiσn−1=σn−1ρi if 1≤ i ≤n−2 and σ−1
n−1ρn−1σ

−1
n−1=ρn

of Van Buskirk’s presentation of Bn(RP2), as well as the effect of conjugation
by a−1 on the ρ j . Now σ 2

n−1 = An−1,n ∈ Kn by Proposition 8, so a−1σ 2
n−1a ∈ Kn

by Remark 9(a), and hence ι#(b−1ρn−1b) = (1, 0, . . . , 0). It then follows that
ι#(a−1x ′a) and ι#(b−1x ′b) have the same entries except in the first and last positions,
so if x ′′= a−1x ′a. b−1x ′b, we have ι#(x ′′)= (1, 0, . . . , 0, 1). Further, x ′′ ∈ N since
N is normal in Bn(RP2). Let n= 2m+ε, where m ∈N and ε ∈ {0, 1}. Then setting

z = a−εx ′′aε· a−(2+ε)x ′′a2+ε
· · · a−(2(m−1)+ε)x ′′a2(m−1)+ε,
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we see once more that z ∈ N , and ι#(z) = (1, . . . , 1) if n is even and ι#(z) =
(1, . . . , 1, 0) if n is odd, which completes the proof of the existence of z, and thus
that of Proposition 1(b). �

Proof of Theorem 2. Let S = S2 or RP2. If n = 1 then ι# is an isomorphism
and Im( j#|Pn ) is trivial so the result holds. If n = 2 and S = S2 then Pn(S

2) is
trivial, and there is nothing to prove. Now suppose that S = S2 and n ≥ 3. As
we mentioned in the Introduction, Ker(ι#) = Pn(S

2). Let (Ai, j )1≤i< j≤n be the
generating set of Pn , where Ai, j has a geometric representative similar to that given
in Figure 1. It is well known that the image of this set by j# yields a generating set
for Pn(S

2) (see [Scott 1970, page 616]), so j#|Pn is surjective, and the statement
of the theorem follows. Finally, assume that S = RP2 and n ≥ 2. Once more,
Im( j#|Pn ) = 〈Ai, j | 1 ≤ i < j ≤ n 〉, and since Ai, j ∈ Ker(ι#) by Proposition 8,
we conclude that 〈〈Im( j#|Pn )〉〉Pn(S) ⊂ Ker(ι#). To prove the converse, first recall
from Proposition 8 that Ker(ι#)= 02(Pn(RP2)). Using the standard commutator
identities

[x, yz] = [x, y]
[
y, [x, z]

]
[x, z]

and
[xy, z] =

[
x, [y, z]

]
[y, z][x, z],

02(Pn(RP2)) is equal to the normal closure in Pn(RP2) of the set{
[x, y]

∣∣ x, y ∈ {Ai, j , ρk | 1≤ i < j ≤ n and 1≤ k ≤ n }
}
.

It then follows using the relations of Theorem 7 that the commutators [x, y] belong-
ing to this set also belong to 〈〈Ai, j |1≤ i< j≤n 〉〉Pn(RP2), which is nothing other than
〈〈Im( j#|Pn )〉〉Pn(S). We conclude by normality that Ker(ι#)⊂ 〈〈Im( j#|Pn )〉〉Pn(S). �

3. Some properties of the subgroup Ln

Let S = S2 or S = RP2, and for all m, n ≥ 1, let 0m,n(S)= Pm(S \ {x1, . . . , xn})

denote the m-string pure braid group of S with n points removed. In this section,
we study Pn−2(RP2

\{x1, x2}), which is 0n−2,2(RP2), in more detail, and we prove
Theorem 3 and Proposition 4, which enable us to understand better the structure of
the subgroup Ln defined in the proof of Proposition 1(a)(ii).

We start by exhibiting a presentation of the group 0m,n(RP2) in terms of the
generators of Pm+n(RP2) described at the beginning of Section 2. A presentation
for 0m,n(S

2) is given in [Gonçalves and Guaschi 2005, Proposition 7] and will
be recalled later in Proposition 15, when we come to proving Theorem 5. For
1≤ i < j ≤ m+ n, let

(8) Ci, j = A−1
j−1, j · · · A

−1
i+1, j Ai, j Ai+1, j · · · Aj−1, j
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x j

xi

Ci, j

Figure 2. The element Ci, j in Pm+n(RP2).

in Pm+n(RP2) (see Figure 2). In what follows, any element of the form Ai, j or Ci, j ,
where i ≥ j , should be interpreted as the trivial element. The proof of the following
proposition is similar in nature to that for S2, but is a little more involved due to
the presence of extra generators that emanate from the fundamental group of RP2.

Proposition 11. Let n,m ≥ 1. The following constitutes a presentation of the group
0m,n(RP2):

Generators: Ai, j , ρ j , where 1≤ i < j and n+ 1≤ j ≤ m+ n.

Relations:

(I) The Artin relations described by (4) among the generators Ai, j of 0m,n(RP2).

(II) For all 1≤ i < j and n+ 1≤ j < k ≤ m+ n, Ai, jρk A−1
i, j = ρk .

(III) For all 1≤ i < j and n+ 1≤ k < j ≤ m+ n,

ρk Ai, jρ
−1
k =


Ai, j if k < i ,

ρ−1
j C−1

i, j ρ j if k = i ,

ρ−1
j C−1

k, jρ j Ai, jρ
−1
j Ck, jρ j if k > i .

(IV) For all n+ 1≤ k < j ≤ m+ n, ρkρ jρ
−1
k = Ck, jρ j .

(V) For all n+ 1≤ j ≤ m+ n,

ρ j

( j−1∏
i=1

Ai, j

)
ρ j =

( m+n∏
l= j+1

Aj,l

)
.

The elements Ci, j and Ck, j appearing in relations (III) and (IV) should be rewritten
using (8).
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x1 x j

xn+m

−−−−→ x1 x j xn+m+1

Figure 3. The relation
(∏m+n

l= j+1 Aj,l
)−1
ρ j
(∏ j−1

i=1 Ai, j
)
ρ j = Aj,n+m+1

in 0m+1,n(RP2) for n+ 1≤ j ≤ n+m+ 1.

Proof. If m, n ≥ 1, we have the following Fadell–Neuwirth short exact sequence of
pure braid groups of RP2

\ {x1, . . . , xn}:

(9) 1→ P1(RP2
\ {x1, . . . , xn, xn+1, . . . , xn+m})

→ 0m+1,n(RP2)
q
−→0m,n(RP2)→ 1,

where the homomorphism q is given geometrically by forgetting the last string.
The generators Ai, j and ρ j of 0m,n(RP2) given in the statement of the proposition
are represented geometrically as in Figure 1, and the basepoints of the m strings
of 0m,n(RP2) are the points xn+1, . . . , xn+m . Using induction on m, we apply
standard methods to obtain a group presentation of an extension from presentations
of the kernel and the quotient [Johnson 1997, Proposition 1, Chapter 10], using the
geometric representations of Figure 1 to derive some of the relations.

Let n ≥ 1. If m = 1 then 01,n(RP2)= π1(RP2
\{x1, . . . , xn}, xn+1) is generated

by {Ai,n+1, ρn+1 | 1 ≤ i ≤ n } subject to the surface relation
∏n

i=1 Ai,n+1 = ρ
−2
n+1,

which is equivalent to the single relation given by (V). Since the remaining rela-
tions (I)–(IV) are empty, the given presentation of 01,n(RP2) is correct.

Now suppose that the given presentation of 0m,n(RP2) is correct for some m ≥ 1.
We shall show that we obtain the presentation of 0m+1,n(RP2) by applying the
above-mentioned methods to the short exact sequence (9). Although Ker(q) is a
free group, it shall be convenient to consider it as the group with generating set

Yn+m+1 = {Ai,n+m+1, ρn+m+1 | 1≤ i ≤ n+m },

subject to the single relation ρn+m+1
(∏n+m

i=1 Ai,n+m+1
)
ρn+m+1=1 (this may be seen

by taking j = n+m+ 1 in Figure 3). According to [Johnson 1997, Proposition 1,
Chapter 10], 0m+1,n(RP2) is generated by the union of Yn+m+1 with the set of
coset representatives

Xm,n = {Ai, j , ρ j | 1≤ i < j and n+ 1≤ j ≤ m+ n }
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x1 xi
x j

xn+m+1
−−−−→

x1

xi

x j

xn+m+1

Figure 4. The relation ρi Ai, jρ
−1
i = ρ

−1
j C−1

i, j ρ j in 0m+1,n(RP2)

for 1≤ i < j and n+ 1≤ j ≤ n+m+ 1.

in 0m+1,n(RP2) of the given set of generators of 0m,n(RP2). This yields the
required set of generators of 0m+1,n(RP2). Once more by [Johnson 1997, Proposi-
tion 1, Chapter 10], there are three types of relation in 0m+1,n(RP2):

(1) the (single) given relation of Ker(q), which yields the surface relation (V) with
j = n+m+ 1;

(2) the relators of 0m,n(RP2), rewritten in terms of the elements of Yn+m+1;

(3) the conjugates of the elements of Yn+m+1 by the elements of Xm,n , also rewrit-
ten in terms of the elements of Yn+m+1.

Let us study the relations of type (2) using the geometric representatives given
in Figure 1. The Artin relations (I) of 0m,n(RP2) lift directly to relations in
0m+1,n(RP2), and yield the relations (I) of 0m+1,n(RP2) for all n+1≤ j ≤ n+m.
The relations (II) (resp. relations (III) with k < i) of 0m,n(RP2) involve elements
that are represented geometrically by disjoint loops. They also lift directly to
relations in 0m+1,n(RP2), and yield the relations (II) (resp. relations (III) with
k < i) of 0m+1,n(RP2) for all k ≤ n +m (resp. for all n + 1 ≤ j ≤ n +m). The
relations (III) with k= i or k> i (resp. relations (IV)) of 0m,n(RP2) are represented
in Figures 4, 5 and 6 respectively (in 0m,n(RP2), the point xn+m+1 is unmarked),
and from these figures, we see that each of the relations also lifts directly to
0m+1,n(RP2). We thus obtain all of the relations (I)–(IV) of 0m+1,n(RP2) for all
n+1≤ j ≤ n+m in relations (I), (III) and (IV), and for all k ≤ n+m in relation (II).
From Figure 3, we observe that

(∏m+n
l= j+1 Aj,l

)−1
ρ j
(∏ j−1

i=1 Ai, j
)
ρ j = Aj,n+m+1 for

all n+ 1≤ j ≤ n+m. Together with the relation of type (1), this yields all of the
relations (V) in 0m+1,n(RP2). It remains to determine the relations of type (3).
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x1 xi xk
x j

xn+m+1
−−−−→

x1 xi

xk

x j

xn+m+1

Figure 5. The relation ρk Ai, jρ
−1
k = ρ

−1
j C−1

k, jρ j Ai, jρ
−1
j Ck, jρ j in

0m+1,n(RP2) for 1≤ i < k < j and n+ 1≤ k < j ≤ n+m+ 1.

x1 xk
x j

xn+m+1
−−−−→

x1 xk x j

xn+m+1

Figure 6. The relation ρkρ jρ
−1
k = Ck, jρ j in 0m+1,n(RP2) for

n+ 1≤ k < j ≤ n+m+ 1.

• If Ai, j ∈ Xm,n and Ak,n+m+1 ∈ Yn+m+1 then Ai, j Ak,n+m+1 A−1
i, j is given by the

Artin relations (4), and together with the Artin relations of type (2), we obtain all
of the relations (I) in 0m+1,n(RP2).

• If Ai, j ∈ Xm,n and ρn+m+1 ∈ Yn+m+1, then since j ≤ n +m, Ai, j and ρn+m+1

commute since they are represented geometrically by disjoint loops. This yields
relations (II) in 0m+1,n(RP2) with k = n+m+1. Together with the corresponding
relations of type (2), we obtain all of the relations (II) in 0m+1,n(RP2).

• If ρk ∈ Xm,n and Ai,n+m+1 ∈ Yn+m+1, we consider three cases:

(a) If k < i , then ρk and Ai,n+m+1 commute since they are represented geometri-
cally by disjoint loops.
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(b) If k = i , we obtain ρi Ai,n+m+1ρ
−1
i = ρ

−1
n+m+1C−1

i,n+m+1ρn+m+1 by taking j =
n+m+ 1 in Figure 4.

(c) If k > i , by taking j = n+m+ 1 in Figure 5, we see that ρk Ai,n+m+1ρ
−1
k =

ρ−1
n+m+1C−1

k,n+m+1ρn+m+1 Ai,n+m+1ρ
−1
n+m+1Ck,n+m+1ρn+m+1.

Together with the corresponding relations of type (2), we obtain all of the rela-
tions (III) in 0m+1,n(RP2).

• If ρk ∈ Xm,n and ρn+m+1 ∈ Yn+m+1 then by taking j = n +m + 1 in Figure 6,
we see that ρkρn+m+1ρ

−1
k = Ck,n+m+1ρn+m+1, which yields relations (IV) with

j = n+m+ 1. Together with the corresponding relations of type (2), we obtain all
of the relations (IV) in 0m+1,n(RP2). �

In the rest of this section, we shall assume that n = 2, and we shall focus our
attention on the groups 0m,2(RP2), where m ≥ 1, which we interpret as subgroups
of Pm+2(RP2) via the short exact sequence (3). Before proving Theorem 3 and
Proposition 4, we introduce some notation that will be used to study the subgroups
Kn and Ln . Let m ≥ 2, and consider the Fadell–Neuwirth short exact sequence

(10) 1→�m+1→ Pm(RP2
\{x1, x2})

rm+1
−−→ Pm−1(RP2

\{x1, x2})→ 1,

where rm+1 is given geometrically by forgetting the last string, and where �m+1 =

π1(RP2
\ {x1, . . . , xm+1}, xm+2). From the Fadell–Neuwirth short exact sequences

of the form of (3), rm+1 is the restriction of q(m+1)# : Pm+2(RP2)→ Pm+1(RP2)

to Ker(q2#). The kernel �m+1 of rm+1 is a free group of rank m+ 1 with a basis
Bm+1 being given by

(11) Bm+1 = {Ak,m+2, ρm+2 | 1≤ k ≤ m }.

The group �m+1 may also be described as the subgroup of Pm(RP2
\ {x1, x2})

generated by {A1,m+2, . . . , Am+1,m+2, ρm+2} subject to the relation

(12) Am+1,m+2 = A−1
m,m+2 · · · A

−1
1,m+2ρ

−2
m+2,

obtained from relation (V) of Proposition 11. Equations (8) and (12) imply notably
that Al,m+2 and Cl,m+2 belong to �m+1 for all 1 ≤ l ≤ m + 1. Using geometric
methods, for m ≥ 2, we proved the existence of a section

sm+1 : Pm−1(RP2
\{x1, x2})→ Pm(RP2

\{x1, x2})

for rm+1 in [Gonçalves and Guaschi 2010a, Theorem 2(a)]. Applying induction
to (10), it follows that for all m ≥ 1,

(13) Pm(RP2
\{x1, x2})∼=�m+1 o (�m o (· · ·o (�3 o�2) · · · )).
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So Pm(RP2
\ {x1, x2}) ∼= Fm+1 o (Fm o (· · · o (F3 o F2) · · · )), which may be

interpreted as the Artin combing operation for Pm(RP2
\{x1, x2}). It follows from

this and (11) that Pm(RP2
\{x1, x2}) admits Xm+2 as a generating set, where

(14) Xm+2 = {Ai, j , ρ j | 3≤ j ≤ m+ 2, 1≤ i ≤ j − 2}.

Remark 12. For what follows, we will need to know an explicit section sm+1

for rm+1. Such a section may be obtained as follows: for m ≥ 2, consider the
homomorphism Pm(RP2

\{x1, x2})→ Pm−1(RP2
\{x1, x2}) given by forgetting

the string based at x3. By [Gonçalves and Guaschi 2010a, Theorem 2(a)]), a
geometric section is obtained by doubling the second (vertical) string, so that there
is a new third string, and renumbering the following strings, which gives rise to an
algebraic section for the given homomorphism of the form

Ai, j 7→


A1, j+1 if i = 1,
A2, j+1 A3, j+1 if i = 2,
Ai+1, j+1 if 3≤ i < j ,

ρ j 7→ ρ j+1

for all 3≤ j ≤ m+ 1. However, in view of the nature of rm+1, we would like this
new string to be in the (m+2)-nd position. We achieve this by composing the above
algebraic section with conjugation by σm+1 · · · σ3, which gives rise to a section

sm+1 : Pm−1(RP2
\{x1, x2})→ Pm(RP2

\{x1, x2})

for rm+1 that is defined by

(15)


sm+1(Ai, j )=


Aj,m+2 A1, j A−1

j,m+2 if i = 1,
Aj,m+2 A2, j if i = 2,
Ai, j if 3≤ i < j ,

sm+1(ρ j )= ρ j A−1
j,m+2

for all 1≤ i < j and 3≤ j ≤ m+ 1. A long but straightforward calculation using
the presentation of Pm(RP2

\ {x1, x2}) given by Proposition 11 shows that sm+1

does indeed define a section for rm+1.

We now prove Theorem 3, which lets us give a more explicit description of Ln .

Proof of Theorem 3. Let n ≥ 3. By the commutative diagram (6) of short exact
sequences, the restriction of the homomorphism q2# : Pn(RP2)→ P2(RP2) to
Kn factors through the inclusion 〈12

2〉 → P2(RP2), and the kernel Ln of q2#|Kn is
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contained in Pn−2(RP2
\{x1, x2}). We may then add a third row to this diagram:

(16)

1 1 1

1 Ln Kn 〈12
2〉 1

1 Pn−2(RP2
\{x1, x2}) Pn(RP2) P2(RP2) 1

1 Zn−2
2 Zn

2 Z2
2 1,

1 1 1

q2#|Kn

ι̂n−2

q2#

ιn# ι2#

` q̂2

where q̂2 : Z
n
2→ Z2

2 is projection onto the first two factors, and ` : Zn−2
2 → Zn

2 is
the monomorphism defined by

`(ε1, . . . , εn−2)= (0, 0, ε1, . . . , εn−2).

The commutativity of diagram (16) thus induces a homomorphism

ι̂n−2 : Pn−2(RP2
\{x1, x2})→ Zn−2

2

that is the restriction of ιn# to Pn−2(RP2
\ {x1, x2}) that makes the bottom left-

hand square commute. To see that ι̂n−2 is surjective, notice that if x ∈ Zn−2
2

then the first two entries of `(x) are equal to 0, and using (5), it follows that
there exist 3 ≤ i1 < · · · < ir ≤ n such that ιn#(ρi1 · · · ρir ) = `(x). Furthermore,
ρi1 · · · ρir ∈ Ker(q2#), and by the commutativity of the diagram, we also have
ιn#(ρi1 · · · ρir )= ` ◦ ι̂n−2(ρi1 · · · ρir ), whence x = ι̂n−2(ρi1 · · · ρir ) by the injectivity
of `. It remains to prove the exactness of the first column. The fact that Ln ⊂

Ker(ι̂n−2) follows easily. Conversely, if x ∈Ker(ι̂n−2) then x ∈ Pn−2(RP2
\{x1, x2}),

and x ∈ Kn by the commutativity of the diagram, so x ∈ Ln . This proves the first
two assertions of the theorem.

To prove the last part of the theorem, let m ≥ 1, and consider (10). Since ι̂m is the
restriction of ι(m+2)# to Pm(RP2

\{x1, x2}), we have ι̂m(ρ j )= (0, . . . , 0, 1, 0, . . . , 0),
where 1 is the in the ( j−2)-nd position, and ι̂m(Ai, j )= (0, . . . , 0) for all 1≤ i < j
and 3 ≤ j ≤ m + 2. So for each 2 ≤ l ≤ m + 1, ι̂m restricts to a surjective
homomorphism ι̂m |�l :�l→ Z2 of each of the factors of (13), with Z2 being the
(l−1)-st factor of Zm

2 , and using (11), we see that Ker( ι̂m |�l ) is a free group of rank
2l − 1 with basis B̂l given by

(17) B̂l = {Ak,l+1, ρl+1 Ak,l+1ρ
−1
l+1, ρ

2
l+1 | 1≤ k ≤ l − 1}.
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As we shall now explain, for all m ≥ 2, the short exact sequence (10) may be
extended to a commutative diagram of short exact sequences as follows:

(18)

1 1 1

1 Ker( ι̂m |�m+1) Lm+2 Lm+1 1

1 �m+1 Pm(RP2
\{x1, x2}) Pm−1(RP2

\{x1, x2}) 1

1 Z2 Zm
2 Zm−1

2 1.

1 1 1

rm+1|Lm+2

ι̂m |�m+1

rm+1

ι̂m ι̂m−1

sm+1

To obtain this diagram, we start with the commutative diagram that consists of the
second and third rows and the three columns (so a priori, the arrows of the first row
are missing). The commutativity implies that rm+1 restricts to the homomorphism
rm+1|Lm+2 : Lm+2 → Lm+1, which is surjective, since if w ∈ Lm+1 is written in
terms of the elements of Xm+1 then the same word w, considered as an element of
Pm(RP2

\{x1, x2}), belongs to Lm+2, and satisfies rm+1(w)= w. Then the kernel
of rm+1|Lm+2 , which is also the kernel of ι̂m |�m+1 , is equal to Lm+2 ∩�m+1. This
establishes the existence of the complete commutative diagram (18) of short exact
sequences. By induction, it follows from (17) and (18) that for all m ≥ 1, Lm+2 is
generated by

(19) X̂m+2 =

m+2⋃
j=3

B̂j−1 = {Ai, j , ρ j Ai, jρ
−1
j , ρ

2
j | 3≤ j ≤m+2, 1≤ i ≤ j −2}.

By (15), for each x ∈ X̂m+1, ι̂m ◦ sm+1(x) is the trivial element of Zm
2 , and thus

sm+1(x) ∈ Lm+2. Hence sm+1 restricts to a section sm+1|Lm+1 : Lm+1→ Lm+2 for
rm+1|Lm+2 . We conclude by induction on the first row of (18) that

Lm+2 ∼= Ker( ι̂m |�m+1)oLm+1(20)
∼= Ker( ι̂m |�m+1)o

(
Ker( ι̂m |�m )o

(
· · ·o

(
Ker( ι̂m |�3)oKer( ι̂m |�2)

)
· · ·
))
,(21)

the actions being induced by those of (13), so by (17), Lm+2 is isomorphic to a
repeated semidirect product of the form F2m+1 o (F2m−1 o (· · ·o (F5 o F3) · · · )).
The last part of the statement of Theorem 3 follows by taking m = n− 2. �

A finer analysis of the actions that appear in (13) and (21) now allows us to
determine the Abelianisations of Pn−2(RP2

\{x1, x2}) and Ln .

Proof of Proposition 4. If n = 3 then the two assertions are clear. So assume by
induction that they hold for some n ≥ 3. From the split short exact sequence (10)
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and (20) with m = n− 1, we have

(22)
{

Pn−1(RP2
\{x1, x2})∼=�n oψ Pn−2(RP2

\{x1, x2}),

Ln+1 ∼= Ker( ι̂n−1|�n )oψ Ln,

where ψ denotes the action given by the section sn , as well as the action induced
by the restriction of the section sn to Ln .

Before going any further, we recall some general considerations from [Gonçalves
and Guaschi 2009, pages 3387–88] concerning the Abelianisation of semidirect
products. If H and K are groups, and if ϕ : H → Aut(K ) is an action of H on K ,
then one may deduce easily from Proposition 3.3 of that paper that

(23) (K oϕ H)Ab ∼=1(K )⊕ H Ab,

where

1(K )= K/K1, K1= 〈02(K )∪ K̂ 〉 and K̂ = 〈ϕ(h)(k) ·k−1
| h ∈ H and k ∈ K 〉.

Recall that K̂ is normal in K (see [Gonçalves and Guaschi 2009, lines 1–4,
page 3388]), so K1 is normal in K , K1 = 02(K ). K̂ = K̂ .02(K ), and 1(K ) ∼=
K Ab/p(K̂ ), where p : K→ K Ab is the canonical projection. If k ∈ K , let k̄ = p(k).
For all k, k ′ ∈ K and h, h′ ∈ H , we have

ϕ(h−1)(k) · k−1
=
(
ϕ(h)(ϕ(h−1)(k)) · (ϕ(h−1)(k))−1)−1

,(24)

ϕ(h)(k−1) · k =
(
k−1(ϕ(h)(k) · k−1)k

)−1
,(25)

ϕ(hh′)(k) · k−1
= ϕ(h)(ϕ(h′)(k)) ·ϕ(h′)(k−1) ·ϕ(h′)(k) · k−1(26)

= ϕ(h)(k ′′) · k ′′−1
·ϕ(h′)(k) · k−1,

ϕ(h)(kk ′) · (kk ′)−1
=
(
ϕ(h)(k) · k−1)

· k
(
ϕ(h)(k ′) · k ′−1)k−1,(27)

where k ′′ = ϕ(h′)(k) belongs to K . Let H and K be generating sets for H and K ,
respectively. By induction on word length relative to the elements of H, (24)
and (26) imply that K̂ is generated by elements of the form ϕ(h)(k) · k−1, where
h ∈H and k ∈ K . A second induction on word length relative to the elements of K
and (25) and (27) imply that K̂ is normally generated by the elements of the form
ϕ(h)(k) · k−1, where h ∈H and k ∈K. It follows that the subgroup p(K̂ ) of K Ab

is generated by the elements of the form ϕ(h)(k) · k−1, where h ∈H and k ∈ K,
and that a presentation of 1(K ) may be obtained from a presentation of K Ab by
adjoining these elements as relators.

We now take K =�n (resp. K =Ker( ι̂n−1|�n )), H = Pn−2(RP2
\{x1, x2}) (resp.

H = Ln) and ϕ = ψ . Applying the induction hypothesis and (23) to (22), to prove
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parts (a) and (b), it thus suffices to show that

1(�n)∼= Z2,(28)

1
(
Ker( ι̂n−1|�n )

)
∼= Z2n−1,(29)

respectively. We first establish the isomorphism (28). As we saw above, to obtain a
presentation of 1(�n), we add the relators of the form ψ(τ)(ω) ·ω−1 to a presenta-
tion of (�n)

Ab, where τ ∈Xn and ω∈Bn , with Xn and Bn as defined in (14) and (11),
respectively. In (�n)

Ab, these relators may be written as sn(τ )ω(sn(τ ))−1ω−1, or
equivalently in the form

(30) sn(τ )ω(sn(τ ))−1 ω−1.

We claim that it is not necessary to know explicitly the section sn in order to
determine these relators. Indeed, for all τ ∈ Xn , we have rn(τ )= τ ; note that we
abuse notation here by letting τ also denote the corresponding element of Xn+1 in
Pn−1(RP2

\ {x1, x2}). Thus sn(τ )τ
−1
∈ Ker(rn), and hence there exists ωτ ∈ �n

such that sn(τ )= ωτ τ . Therefore

sn(τ )ω(sn(τ ))−1 = ωτ τωτ−1ω−1
τ = ωτ τωτ−1 ω−1

τ = τωτ−1

in (�n)
Ab, and thus the relators of (30) become

(31) sn(τ )ω(sn(τ ))−1ω−1 = τωτ−1 ω−1.

This proves the claim. Hence the subgroup p(�̂n) of (�n)
Ab is generated by the

elements of the form given by (31), where τ ∈Xn and ω ∈Bn . In what follows, the
relations (I)–(V) refer to those of the presentation of Pn−1(RP2

\{x1, x2}) described
by Proposition 11. Using this presentation, we see immediately that τωτ−1 = ω in
(�n)

Ab for all τ ∈ Xn and ω ∈Bn , with the following exceptions:

(i) τ = ρ j and ω = Aj,n+1 for all 3≤ j ≤ n− 1. Then

ρ j Aj,n+1ρ
−1
j = C−1

j,n+1 = A−1
j,n+1,

using relation (III) and (8), which yields the element (Aj,n+1)
2 of p(�̂n).

(ii) τ = ρ j and ω = ρn+1 for all 3≤ j ≤ n. Then

ρ jρn+1ρ
−1
j = C j,n+1ρn+1 = Aj,n+1 ρn+1

by relation (IV) and (8), which yields the element Aj,n+1 of p(�̂n).

The relators of (ii) above clearly give rise to those of (i), and so p(�̂n) is the
subgroup of (�n)

Ab generated by the elements Aj,n+1, where 3 ≤ j ≤ n. Since
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by (11), (�n)
Ab is the free Abelian group with basis

{Aj,n+1, ρn+1 | 1≤ j ≤ n− 1},

1(�n) is the Abelian group generated by this set, subject to the condition that
Aj,n+1 is trivial for all 3≤ j ≤ n. So in 1(�n), the elements Aj,n+1 are trivial for
all j = 3, . . . , n− 1. Further, An,n+1 is also trivial, hence by relation (12), one of
the remaining generators Aj,n+1 may be deleted, where j ∈ {1, 2}, say A2,n+1, from
which we see that 1(�n) is a free Abelian group of rank 2 with {A1,n+1, ρn+1} as
a basis. This establishes the isomorphism (28), and so proves part (a).

We now prove part (b) by establishing the isomorphism (29). We equip K =
Ker( ι̂n−1|�n ) (resp. H = Ln) with the basis B̂n (resp. the generating set X̂n) of (17)
(resp. of (19)). Since K is a free group of rank 2n−1, it suffices to show that p(K̂ )
is the trivial subgroup of K Ab. The fact that K is normal in �n implies that Al,n+1,
ρn+1 Al,n+1ρ

−1
n+1, Cl,n+1 and ρn+1Cl,n+1ρ

−1
n+1 belong to K for all 1 ≤ l ≤ n by (8)

and (12). Repeating the argument given between (30) and (31), we see that (31)
holds for all τ ∈ X̂n and ω ∈ B̂n , where k̄ denotes the element p(k) of K Ab for all
k ∈ K . For α ∈ Pn−2(RP2

\{x1, x2}), let cα denote conjugation in K by α (which
we consider to be an element of Pn−1(RP2

\{x1, x2})). Since K =�n ∩ Ln+1 by
the commutative diagram (18), K is normal in Pn−1(RP2

\{x1, x2}), and hence the
automorphism cα is well defined. The fact that 02(K ) is a characteristic subgroup
of K implies that cα induces an automorphism ĉα of K Ab (the inverse of ĉα is ĉα−1).
In particular, if α, α′ ∈ Pn−2(RP2

\{x1, x2}) and ω ∈ K then

ĉαα′(ω)= αα′ωα′−1α−1 = cαα′(ω)= ĉα(ĉα′(ω)).

From the first part of the proof, p(K̂ ) is generated by the elements ĉτ (ω)ω−1,
where τ ∈ X̂n and ω ∈ B̂n . To complete the proof of part (b), it suffices to prove
that these elements are trivial in K Ab, or equivalently, that ĉτ (ω)= ω for all τ ∈ X̂n

and ω ∈ B̂n .

(1) First suppose that τ = Ai, j , where 3≤ j ≤ n and 1≤ i ≤ j − 2.

(i) Let ω = Al,n+1, for 1≤ l ≤ n− 1. Then

τωτ−1

=


Al,n+1 if j<l or if l<i ,

A−1
l,n+1 A−1

i,n+1 Al,n+1 Ai,n+1 Al,n+1 if j=l,

A−1
j,n+1 Al,n+1 Aj,n+1 if i=l,

A−1
j,n+1 A−1

i,n+1 Aj,n+1 Ai,n+1 Al,n+1 A−1
i,n+1 A−1

j,n+1 Ai,n+1 Aj,n+1 if i<l< j

by the Artin relations (4), from which we conclude that τωτ−1 = ω.
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(ii) If ω = ρn+1 Al,n+1ρ
−1
n+1, where 1≤ l ≤ n− 1, then

τωτ−1
= ρn+1(Ai, j Al,n+1 A−1

i, j )ρ
−1
n+1,

and from case (i), we deduce also that τωτ−1 = ω.

(iii) Let ω = ρ2
n+1. Then τωτ−1

= ω, hence τωτ−1 = ω.

We conclude that ĉAi, j = IdK Ab .

(2) Let τ = ρ j Ai, jρ
−1
j , where 3 ≤ j ≤ n and 1 ≤ i ≤ j − 2. Then for all ω ∈ B̂n ,

we have

τωτ−1 = cτ (ω)= ĉρ j ◦ ĉAi, j ◦ ĉρ−1
j
(ω)= ω,

since ĉAi, j = IdK Ab , so ĉρ j Ai, jρ
−1
j
= IdK Ab .

(3) By (19), it remains to study the elements of the form τωτ−1, where τ = ρ2
j ,

3≤ j ≤ n, and ω ∈ B̂n . Since ĉρ2
j
(ω)= ρ2

jωρ
−2
j = ĉ2

ρ j
(ω), we first analyse ĉρ j .

(i) If ω = Al,n+1, where 1≤ l ≤ n− 1, then by relation (III) and (8) and (12), we
have

(32)
ĉρ j (ω)

= ĉρ j (Al,n+1)= ρ j Al,n+1ρ
−1
j

=


Al,n+1 if j < l,

ρ−2
n+1 ·ρn+1C−1

l,n+1ρ
−1
n+1 ·ρ

2
n+1 if j = l,

ρ−2
n+1 ·ρn+1C−1

j,n+1ρ
−1
n+1 ·ρ

2
n+1 ·Al,n+1 ·ρ

−2
n+1 ·ρn+1C j,n+1ρ

−1
n+1 ·ρ

2
n+1 if j > l

=

Al,n+1 if j 6= l,

ρn+1C−1
j,n+1ρ

−1
n+1=

(
ρn+1 Aj,n+1ρ

−1
n+1

)−1 if j = l.

(ii) Let ω = ρn+1 Al,n+1ρ
−1
n+1, where 1 ≤ l ≤ n − 1. Relation (IV) implies that

ρ jρn+1ρ
−1
j = C j,n+1ρn+1, and so by case (i) above, we have

(33) ĉρ j (ω)= ĉρ j

(
ρn+1 Al,n+1ρ

−1
n+1

)
=

ρn+1 Al,n+1ρ
−1
n+1 if j 6= l,

C−1
j,n+1 =

(
Aj,n+1

)−1 if j = l.

Combining (32) and (33), we see that

(34) ĉρ2
j
(ω)= ω for all ω ∈ B̂n \ {ρ

2
n+1}.
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(iii) Let ω = ρ2
n+1. By relation (IV) and (8), (12), (32) and (33), we have

ĉρ j (ω)= ĉρ j (ρ
2
n+1)= (ρ jρn+1ρ

−1
j )2 = C j,n+1 · ρn+1C j,n+1ρ

−1
n+1 · ρ

2
n+1

= ĉρ j

(
ρn+1 A−1

j,n+1ρ
−1
n+1

)
· ĉρ j (A

−1
j,n+1) · ρ

2
n+1,

from which we obtain

ĉρ2
j

(
ρ2

n+1

)
= ρn+1 A−1

j,n+1ρ
−1
n+1 · A

−1
j,n+1 ·C j,n+1 · ρn+1C j,n+1ρ

−1
n+1 · ρ

2
n+1 = ρ

2
n+1

using (34). So by (17), we also have ĉρ2
j
= IdK Ab .

Hence for all τ ∈ X̂n and ω ∈ B̂n , it follows that ĉτ (ω) = ω, and thus p(K̂ ) is
the trivial subgroup of K Ab. We conclude that 1(K ) ∼= K Ab ∼= Z2n−1, and this
completes the proof of part (b). �

Remark 13. (a) An alternative description of Pn−2(RP2
\{x1, x2}), similar to that

of (13), but with the parentheses in the opposite order, may be obtained as follows.
Let m ≥ 2 and q ≥ 1, and consider the Fadell–Neuwirth short exact sequence

(35) 1→ Pm−1(RP2
\ {x1, . . . , xq+1})→ Pm(RP2

\ {x1, . . . , xq})

→ P1(RP2
\ {x1, . . . , xq})→ 1,

given geometrically by forgetting the last m− 1 strings. Since the quotient is a free
group Fq of rank q, the above short exact sequence splits, and so

Pm(RP2
\ {x1, . . . , xq})∼= Pm−1(RP2

\ {x1, . . . , xq+1})o Fq ,

and thus

(36) Pn−2(RP2
\ {x1, x2}))∼= (· · · ((Fn−1 o Fn−2)o Fn−3)o · · ·o F3)o F2

by induction. The ordering of the parentheses thus occurs from the left, in contrast
with that of (13). The decomposition given by (13) is in some sense stronger than
that of (36), since in the first case, every factor acts on each of the preceding factors,
which is not necessarily the case in (36), so (13) gives rise to a decomposition of the
form (36). This is a manifestation of the fact that the splitting of the corresponding
Fadell–Neuwirth sequence (10) is nontrivial, while that of (35) is obvious.

(b) Note that L4, the kernel of the homomorphism ι̂2 : P2(RP2
\{x1, x2})→ Z2

2, is
also the subgroup of index 4 of the group (B4(RP2))(3) that appears in [Gonçalves
and Guaschi 2011, Theorem 3(d)]. Indeed, by equation (127) of that paper, this
subgroup of index 4 is isomorphic to the semidirect product

F5(A1,4, A2,4, ρ
2
4 , ρ4 A1,4ρ

−1
4 , ρ4 A2,4ρ

−1
4 )o F3(A2,3, ρ

2
3 , ρ3 A2,3ρ

−1
3 ),

the action being given by equations (129)–(131) of the same paper (the element
Bi, j of [Gonçalves and Guaschi 2011] is the element Ai, j of this paper).
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(c) It follows from the proof of Proposition 4(b) that the induced action of Ln on
the Abelianisation of Ker( ι̂n−1|�n ) is trivial. Since Ker( ι̂n−1|�n ) is a free group, its
higher homology groups are trivial, and so Ln acts trivially on the homology of
Ker( ι̂n−1|�n ).

Remark 14. Using the ideas of the last paragraph of the proof of Proposition 1(b),
one may show that Ln is not normal in Bn(RP2). Although the subgroup Ln is
not unique with respect to the properties of the statement of Proposition 1(a)(ii),
there are only a finite number of subgroups, 2n(n−2) to be precise, that satisfy these
properties. To prove this, we claim that the set of torsion-free subgroups L ′n of Kn

such that Kn = L ′n⊕〈1
2
n〉 is in bijection with the set {Ker( f ) | f ∈Hom(Ln,Z2)}.

To prove the claim, let K = Kn , L = Ln , and q : K → K/L be the canonical
surjection, and set

1= {L ′ | L ′ < K , L ′ is torsion-free, and K = L ′⊕〈12
n〉}.

Clearly L ∈1, so 1 6=∅. Consider the map ϕ :1→{Ker( f ) | f ∈Hom(L ,Z2)}

defined by ϕ(L ′)= L∩L ′. This map is well defined, since if L ′= L then ϕ(L ′)= L
is the kernel of the trivial homomorphism of Hom(L ,Z2), and if L ′ 6= L then
L ′ 6⊂ L since [K : L ′] = [K : L] = 2, and so q|L ′ is surjective as K/L ∼= Z2. Thus
Ker(q|L ′)= ϕ(L ′) is of index 2 in L , and in particular, ϕ(L ′) is the kernel of some
nontrivial element of Hom(L ,Z2).

We now prove that ϕ is surjective. Let f ∈ Hom(L ,Z2), and set L ′′ = Ker( f ).
If f = 0 then L ′′ = L , and ϕ(L)= L ′′. So suppose that f 6= 0. Then f is surjective,
and L ′′ = Ker( f ) is of index 2 in L . Let x ∈ L \ L ′′. Then

(37) L = L ′′q x L ′′,

where q denotes the disjoint union. Since K = L q12
n L , it follows that

(38) K = L ′′q x L ′′q12
n L ′′q x12

n L ′′.

Set L ′ = L ′′q x12
n L ′′. By (37), x212

n L ′′ =12
nx2L ′′ =12

n L ′′ because 12
n is central

and of order 2, and hence K = L ′q x L ′. Using once more (37), we see that L ′ is a
group, and so the equality K = L ′q x L ′ implies that [K : L ′] = 2. Further, since
the only nontrivial torsion element of K is 12

n , L ′ is torsion-free by (38), and so the
short exact sequence 1→ L ′→ K → Z2→ 1 splits. Thus L ′ ∈1, and ϕ(L ′)= L ′′

using (37) and (38).
It remains to prove that ϕ is injective. Let L ′1, L ′2 ∈ 1 be such that L ′1 ∩ L =

ϕ(L ′1)= ϕ(L
′

2)= L ′2∩ L . If one of the L ′i , say L ′1, is equal to L then we must also
have L ′2 = L because L ⊂ L ′2 and L and L ′2 have the same index in K . So suppose
that L ′i 6= L for all i ∈ {1, 2}. If i ∈ {1, 2} then L ′′ = ϕ(L ′i )= L ∩ L ′i =Ker( fi ) for
some nontrivial fi ∈Hom(L ,Z2), and thus [L : L ′′] = 2. Let us show that L ′1 ⊂ L ′2.
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Let x ∈ L ′1. If x ∈ L then x ∈ L ′′, so x ∈ L ′2, and we are done. So assume that x /∈ L ,
and suppose that x /∈ L ′2. Then q(x) is equal to the nontrivial element of K/L ,
and since K/L ∼= Z2 and 12

n /∈ L , we see that x12
n ∈ L . Further, K = L ′2q x L ′2

since [K : L ′2] = 2, and so x12
n ∈ L ′2 (for otherwise x12

n ∈ x L ′2, which implies that
12

n ∈ L ′2, which is impossible because L ′2 is torsion-free). Then x12
n ∈ L∩L ′2= L ′′,

and hence x12
n ∈ L ′1. But this would imply that 12

n ∈ L ′1, which contradicts the fact
that L ′1 is torsion-free. We conclude that L ′1 ⊂ L ′2, and exchanging the rôles of L ′1
and L ′2, we see that L ′1 = L ′2, which proves that ϕ is injective, so is bijective, which
proves the claim. Therefore the cardinality of 1 is equal to the order of the group
H 1(L ,Z2), which is equal in turn to that of H1(L ,Z2). By Proposition 4(b), we
have LAb

= H1(L ,Z)∼=Zn(n−2), so H1(L ,Z2)∼= H1(L ,Z)⊗Z2∼=Z
n(n−2)
2 , and the

number of subgroups of K that satisfy the properties of Proposition 1(a) is equal to
2n(n−2) as asserted.

4. The virtual cohomological dimension of Bn(S) and Pn(S) for S= S2,RP2

Let S=S2 (resp. S=RP2), and for all m, n≥ 1, let 0n,m(S)= Pn(S\{x1, . . . , xm})

denote the n-string pure braid group of S with m points removed. In order to study
various cohomological properties of the braid groups of S and prove Theorem 5,
we shall study 0n,m(S). To prove Theorem 5 in the case S = S2, by (2), it will
suffice to compute the cohomological dimension of Pn−3(S

2
\ {x1, x2, x3}). We

recall the following presentation of 0n,m(S
2) from [Gonçalves and Guaschi 2005].

The result was stated for m ≥ 3, but it also holds for m ≤ 2.

Proposition 15 [Gonçalves and Guaschi 2005, Proposition 7]. Let n,m ≥ 1. The
following constitutes a presentation of the group 0n,m(S

2):

Generators: Ai, j , where 1≤ i < j and m+ 1≤ j ≤ m+ n.

Relations:

(i) The Artin relations described by (4) among the generators Ai, j of 0n,m(S
2).

(ii) For all m+ 1≤ j ≤ m+ n,
(∏ j−1

i=1 Ai, j
)(∏m+n

k= j+1 Aj,k
)
= 1.

Let N denote the kernel of the homomorphism 0n,m(S)→ 0n−1,m(S) obtained
geometrically by forgetting the last string. If S = S2 then N is a free group of rank
m+n−2 and equals 〈A1,m+n, A2,m+n, . . . , Am+n−1,m+n〉. If S =RP2 then N is a
free group of rank m+n−1 and equals 〈A1,m+n, A2,m+n, . . . , Am+n−1,m+n, ρm+n〉.
Clearly N is normal in 0n,m(S). Further, if S=S2 (resp. S=RP2), it follows from
relations (i) of Proposition 15 (resp. relations (III) and (IV) of Proposition 11) that
the action by conjugation of 0n,m(S) on N induces (resp. does not induce) the trivial
action on the Abelianisation of N. In order to determine the virtual cohomological
dimension of the braid groups of S and prove Theorem 5, we shall compute the
cohomological dimension of a torsion-free finite-index subgroup. In the case of S2
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(resp. RP2), we choose the subgroup 0n−3,3(S
2) that appears in the decomposition

given in (2) (resp. the subgroup 0n−2,2(RP2) that appears in (3)).

Proof of Theorem 5. Let S=S2 (resp. S=RP2), let n>3 and k=3 (resp. n>2 and
k = 2), and let k ≤m < n. Then by (2) (resp. (3)) and (1), 0n−m,m(S) is a subgroup
of finite index of both Pn(S) and Bn(S). Further, since Fn−m(S \ {x1, . . . , xm}) is a
finite-dimensional CW-complex and an Eilenberg–Mac Lane space of type K (π, 1)
[Fadell and Neuwirth 1962], the cohomological dimension of 0n−m,m(S) is finite,
and the first part follows by taking m = k.

We now prove the second part, namely that the cohomological dimension of
0n−k,k(S) is equal to n− k for all n > k. We first claim that cd(0m,l(S))≤ m for
all m ≥ 1 and l ≥ k−1. The result holds if m = 1 since F1(S \{x1, . . . , xl}) has the
homotopy type of a bouquet of circles; therefore H i(F1(S\{x1, . . . , xl}), A) is trivial
for all i ≥ 2 and for any local coefficients A, and H 1(F1(S \ {x1, . . . , xl}),Z) 6= 0.
Suppose by induction that the result holds for some m ≥ 1, and consider the
Fadell–Neuwirth short exact sequence

1→ 01,l+m(S)→ 0m+1,l(S)→ 0m,l(S)→ 1

that emanates from the fibration

(39) F1(S \ {x1, . . . , xl, z1, . . . , zm})→ Fm+1(S \ {x1, . . . , xl})

→ Fm(S \ {x1, . . . , xl})

obtained by forgetting the last coordinate. By [Brown 1982, Chapter VIII], it
follows that

cd(0m+1,l(S))≤ cd(0m,l(S))+ cd(01,l+m(S))≤ m+ 1,

which proves the claim. In particular, taking l = k, we have cd(0m,k(S))≤ m.
To conclude the proof of the theorem, it suffices to show that for each m≥ 1 there

are local coefficients A such that H m(0m,l(S), A) 6= 0 for all l≥ k−1. We will show
that this is the case for A=Z. Again by induction suppose that H m(0m,l(S),Z) 6= 0
for all l ≥ k − 1 and for some m ≥ 1 (we saw above that this is true for m = 1).
Consider the Serre spectral sequence with integral coefficients associated to the
fibration (39). Then we have that

E p,q
2 = H p(0m,l(S), Hq(F1(S \ {x1, . . . , xl, z1, . . . , zm}),Z)

)
.

Since cd(0m,l(S)) ≤ m and cd(F1(S \ {x1, . . . , xl, z1, . . . , zm})) ≤ 1 from above,
it follows that this spectral sequence has two horizontal lines whose possible
nonvanishing terms occur for 0≤ p ≤ m and 0≤ q ≤ 1. We claim that the group
Em,1

2 is nontrivial. To see this, first note that H 1(F1(S\{x1, . . . , xl, z1, . . . , zm}),Z)

is isomorphic to the free Abelian group of rank r =m+ l−k+2, so r ≥m+1, and
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hence Em,1
2 = H m(0m,l(S),Zr ), where we identify Zr with (the dual of) N Ab. The

action of 0m,l(S) on N by conjugation induces an action of 0m,l(S) on N Ab. Let
H be the subgroup of N Ab generated by the elements of the form α(x)x−1, where
α ∈ 0m,l(S), x ∈ N Ab, and α(x) represents the action of α on x . Then we obtain a
short exact sequence 0→ H → N Ab

→ N Ab/H → 0 of Abelian groups, and the
long exact sequence in cohomology applied to 0m,l(S) yields
(40)
· · ·→ H m(0m,l(S), N Ab)→ H m(0m,l(S), N Ab/H)→ H m+1(0m,l(S), H)→· · · .

The last term is zero since cd(0m,l(S)) ≤ m, and so the map between the two
remaining terms is surjective. Let us determine N Ab/H . If S = S2 then from the
comments following Proposition 15, the action of 0m,l(S) on N Ab is trivial, so H
is trivial, and N Ab/H ∼= Zr. So suppose that S = RP2. Choosing the basis

{A1,m+l+1, A2,m+l+1, . . . , Am+l−1,m+l+1, ρm+l+1}

of N and using Proposition 11, one sees that the action by conjugation of the
generators of 0m,l(S) on the corresponding basis elements of N Ab is trivial, with
the exception of that of ρi on Ai,m+l+1 for l + 1 ≤ i ≤ m + l − 1, which yields
elements A2

i,m+l+1 ∈ H (by abuse of notation, we denote the elements of N Ab in
the same way as those of N ), and that of ρi on ρm+l+1, where l + 1 ≤ i ≤ m + l,
which yields elements Ai,m+l+1 ∈ H . In the quotient N Ab/H the basis elements
Al+1,m+l+1, . . . , Am+l−1,m+l+1 thus become zero, and additionally, we have also
that Am+l,m+l+1 (which is not in the given basis) becomes zero. Hence the relation∏m+l

i=1 Ai,m+l+1 = ρ
−2
m+l+1 is sent to the relation

∏l
i=1 Ai,m+l+1 = ρ

−2
m+l+1, and

so N Ab/H is generated by (the images of) the elements A1,m+l+1, . . . , Al,m+l+1,
ρm+l+1, subject to this relation (as well as the fact that the elements commute
pairwise). It thus follows that N Ab/H ∼= Zl . Since the induced action of 0m,l(S)
on N Ab/H is trivial, we conclude that

H m(0m,l(S), N Ab/H
)
=
(
H m(0m,l(S),Z)

)s
,

where s = m + l if S = S2 and s = l if S = RP2. It then follows from (40) that
Em,1

2 = H m(0m,l(S), N Ab) 6= 0. Since E p,q
2 = 0 for all p > m and q > 1, we have

Em,1
2 = Em,1

∞
, thus Em,1

∞
is nontrivial, and hence H m+1(0m+1,l(S),Z) 6= 0. �

Proof of Corollary 6. Let S = S2 (resp. S = RP2). If n ≥ 3 (resp. n ≥ 2) then
Bn(S) and MCG(S, n) are closely related by the following short exact sequence
[Scott 1970]:

1→ 〈12
n〉 → Bn(S)

β
−→MCG(S, n)→ 1,

where the kernel is isomorphic to Z2. Now assume that n ≥ 4 (resp. n ≥ 3), so that
Bn(S) is infinite. If 0 is a torsion-free subgroup of Bn(S) of finite index then β(0),
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which is isomorphic to 0, is a torsion-free subgroup of MCG(S, n) of finite index,
and hence the virtual cohomological dimension of MCG(S, n) is equal to that of
Bn(S). The result then follows by Theorem 5. �
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[Golasiński et al. 2016] M. Golasiński, D. L. Gonçalves, and J. Guaschi, “On the homotopy fibre
of the inclusion map Fn(X) ↪−→

∏n
1 X for some orbit spaces X”, Bol. Soc. Mat. Mex. (online

publication September 2016).
[Goldberg 1973] C. H. Goldberg, “An exact sequence of braid groups”, Math. Scand. 33 (1973),

69–82. MR Zbl
[Gonçalves and Guaschi 2004a] D. L. Gonçalves and J. Guaschi, “The braid groups of the projective

plane”, Algebr. Geom. Topol. 4 (2004), 757–780. MR Zbl
[Gonçalves and Guaschi 2004b] D. L. Gonçalves and J. Guaschi, “The roots of the full twist for

surface braid groups”, Math. Proc. Cambridge Philos. Soc. 137:2 (2004), 307–320. MR Zbl
[Gonçalves and Guaschi 2005] D. L. Gonçalves and J. Guaschi, “The braid group Bn,m(S

2) and a
generalisation of the Fadell–Neuwirth short exact sequence”, J. Knot Theory Ramifications 14:3
(2005), 375–403. MR Zbl

[Gonçalves and Guaschi 2007] D. L. Gonçalves and J. Guaschi, “The braid groups of the projective
plane and the Fadell–Neuwirth short exact sequence”, Geom. Dedicata 130 (2007), 93–107. MR
Zbl

[Gonçalves and Guaschi 2009] D. L. Gonçalves and J. Guaschi, “The lower central and derived series
of the braid groups of the sphere”, Trans. Amer. Math. Soc. 361:7 (2009), 3375–3399. MR Zbl

http://dx.doi.org/10.1002/cpa.3160220104
http://msp.org/idx/mr/0234447
http://msp.org/idx/zbl/0157.30904
http://www.jstor.org/stable/j.ctt1b9rzv3
http://msp.org/idx/mr/0375281
http://msp.org/idx/zbl/0305.57013
http://dx.doi.org/10.1007/978-1-4684-9327-6
http://msp.org/idx/mr/672956
http://msp.org/idx/zbl/0584.20036
http://www.mscand.dk/article/view/10517/8538
http://msp.org/idx/mr/0141126
http://msp.org/idx/zbl/0136.44104
http://www.mscand.dk/article/view/10518/8539
http://msp.org/idx/mr/0150755
http://msp.org/idx/zbl/0117.41101
http://dx.doi.org/10.1007/s40590-016-0150-6
http://dx.doi.org/10.1007/s40590-016-0150-6
http://www.mscand.dk/article/view/11472/9489
http://msp.org/idx/mr/0334182
http://msp.org/idx/zbl/0285.57002
http://dx.doi.org/10.2140/agt.2004.4.757
http://dx.doi.org/10.2140/agt.2004.4.757
http://msp.org/idx/mr/2100679
http://msp.org/idx/zbl/1056.20024
http://dx.doi.org/10.1017/S0305004104007595
http://dx.doi.org/10.1017/S0305004104007595
http://msp.org/idx/mr/2092062
http://msp.org/idx/zbl/1089.20022
http://dx.doi.org/10.1142/S0218216505003841
http://dx.doi.org/10.1142/S0218216505003841
http://msp.org/idx/mr/2149513
http://msp.org/idx/zbl/1072.55013
http://dx.doi.org/10.1007/s10711-007-9207-z
http://dx.doi.org/10.1007/s10711-007-9207-z
http://msp.org/idx/mr/2365780
http://msp.org/idx/zbl/1237.20028
http://dx.doi.org/10.1090/S0002-9947-09-04766-7
http://dx.doi.org/10.1090/S0002-9947-09-04766-7
http://msp.org/idx/mr/2491885
http://msp.org/idx/zbl/1226.20027


INCLUSION OF CONFIGURATION SPACES IN CARTESIAN PRODUCTS 99

[Gonçalves and Guaschi 2010a] D. L. Gonçalves and J. Guaschi, “Braid groups of non-orientable
surfaces and the Fadell–Neuwirth short exact sequence”, J. Pure Appl. Algebra 214:5 (2010), 667–
677. MR Zbl

[Gonçalves and Guaschi 2010b] D. L. Gonçalves and J. Guaschi, “Classification of the virtually
cyclic subgroups of the pure braid groups of the projective plane”, J. Group Theory 13:2 (2010),
277–294. MR Zbl

[Gonçalves and Guaschi 2011] D. L. Gonçalves and J. Guaschi, “The lower central and derived series
of the braid groups of the projective plane”, J. Algebra 331 (2011), 96–129. MR Zbl

[Gonçalves and Guaschi ≥ 2017] D. L. Gonçalves and J. Guaschi, “The homotopy fibre of the
inclusion Fn(M) ↪−→

∏n
1 M for M either S2 or RP2 and orbit configuration spaces”, in preparation.

[Gonçalves et al. 2016] D. L. Gonçalves, J. Guaschi, and M. Maldonado, “Embeddings and the
(virtual) cohomological dimension of the braid and mapping class groups of surfaces”, preprint,
2016. arXiv

[González-Meneses and Paris 2004] J. González-Meneses and L. Paris, “Vassiliev invariants for
braids on surfaces”, Trans. Amer. Math. Soc. 356:1 (2004), 219–243. MR Zbl

[Harer 1986] J. L. Harer, “The virtual cohomological dimension of the mapping class group of an
orientable surface”, Invent. Math. 84:1 (1986), 157–176. MR Zbl

[Johnson 1997] D. L. Johnson, Presentations of groups, 2nd ed., London Mathematical Society
Student Texts 15, Cambridge University Press, 1997. MR Zbl

[Murasugi 1982] K. Murasugi, “Seifert fibre spaces and braid groups”, Proc. London Math. Soc. (3)
44:1 (1982), 71–84. MR Zbl

[Scott 1970] G. P. Scott, “Braid groups and the group of homeomorphisms of a surface”, Proc.
Cambridge Philos. Soc. 68 (1970), 605–617. MR Zbl

[Tochimani 2011] A. Tochimani, Grupos de trenzas de superficies compactas, master’s thesis, Centro
de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2011.

[Van Buskirk 1966] J. Van Buskirk, “Braid groups of compact 2-manifolds with elements of finite
order”, Trans. Amer. Math. Soc. 122 (1966), 81–97. MR Zbl

Received November 12, 2015. Revised July 8, 2016.

DACIBERG LIMA GONÇALVES

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DA UNIVERSIDADE DE SÃO PAULO

DEPARTAMENTO DE MATEMÁTICA

RUA DO MATÃO, 1010 CEP 05508-090
SÃO PAULO-SP
BRAZIL

dlgoncal@ime.usp.br

JOHN GUASCHI

LABORATOIRE DE MATHÉMATIQUES NICOLAS ORESME UMR CNRS 6139
NORMANDIE UNIVERSITÉ

UNIVERSITÉ DE CAEN NORMANDIE

14000 CAEN

FRANCE

john.guaschi@unicaen.fr

http://dx.doi.org/10.1016/j.jpaa.2009.07.009
http://dx.doi.org/10.1016/j.jpaa.2009.07.009
http://msp.org/idx/mr/2577674
http://msp.org/idx/zbl/1195.57013
http://dx.doi.org/10.1515/JGT.2009.040
http://dx.doi.org/10.1515/JGT.2009.040
http://msp.org/idx/mr/2607582
http://msp.org/idx/zbl/1218.20026
http://dx.doi.org/10.1016/j.jalgebra.2010.12.007
http://dx.doi.org/10.1016/j.jalgebra.2010.12.007
http://msp.org/idx/mr/2774649
http://msp.org/idx/zbl/1236.20042
http://msp.org/idx/arx/1610.03288
http://dx.doi.org/10.1090/S0002-9947-03-03116-7
http://dx.doi.org/10.1090/S0002-9947-03-03116-7
http://msp.org/idx/mr/2020030
http://msp.org/idx/zbl/1036.57003
http://dx.doi.org/10.1007/BF01388737
http://dx.doi.org/10.1007/BF01388737
http://msp.org/idx/mr/830043
http://msp.org/idx/zbl/0592.57009
http://dx.doi.org/10.1017/CBO9781139168410
http://msp.org/idx/mr/1472735
http://msp.org/idx/zbl/0906.20019
http://dx.doi.org/10.1112/plms/s3-44.1.71
http://msp.org/idx/mr/642793
http://msp.org/idx/zbl/0489.57003
http://dx.doi.org/10.1017/S0305004100076593
http://msp.org/idx/mr/0268889
http://msp.org/idx/zbl/0203.56302
http://dx.doi.org/10.2307/1994502
http://dx.doi.org/10.2307/1994502
http://msp.org/idx/mr/0189013
http://msp.org/idx/zbl/0138.19103
mailto:dlgoncal@ime.usp.br
mailto:john.guaschi@unicaen.fr




PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Igor Pak
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pak.pjm@gmail.com

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2017 is US $450/year for the electronic version, and $625/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:pak.pjm@gmail.com
mailto:yang@math.princeton.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 287 No. 1 March 2017

1Operator ideals related to absolutely summing and Cohen strongly
summing operators

GERALDO BOTELHO, JAMILSON R. CAMPOS and JOEDSON

SANTOS

19Homology for quandles with partial group operations
SCOTT CARTER, ATSUSHI ISHII, MASAHICO SAITO and
KOKORO TANAKA

49Three-dimensional discrete curvature flows and discrete Einstein
metrics

HUABIN GE, XU XU and SHIJIN ZHANG

71Inclusion of configuration spaces in Cartesian products, and the virtual
cohomological dimension of the braid groups of S2 and RP2

DACIBERG LIMA GONÇALVES and JOHN GUASCHI

101Groups of PL-homeomorphisms admitting nontrivial invariant
characters

DACIBERG L. GONÇALVES, PARAMESWARAN SANKARAN and
RALPH STREBEL

159Bernstein-type theorems for spacelike stationary graphs in Minkowski
spaces

XIANG MA, PENG WANG and LING YANG

177Comparison results for derived Deligne–Mumford stacks
MAURO PORTA

199On locally coherent hearts
MANUEL SAORÍN

223Approximability of convex bodies and volume entropy in Hilbert
geometry

CONSTANTIN VERNICOS

0030-8730(201703)287:1;1-W

Pacific
JournalofM

athem
atics

2017
Vol.287,N

o.1


	1. Introduction
	2. The structure of K_n, and Birman's conjecture for S^2 and RP^2
	3. Some properties of the subgroup L_n
	4. The virtual cohomological dimension of B_n(S) and P_n(S) for S=S^2, RP^2
	Acknowledgements
	References
	
	

