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ON LOCALLY COHERENT HEARTS

MANUEL SAORÍN

Let G be a locally coherent Grothendieck category. We show that, under
particular conditions, if a t-structure τ in the unbounded derived category
D(G) restricts to the bounded derived category Db(fp(G)) of its category
of finitely presented (i.e, coherent) objects, then its heart Hτ is a locally
coherent Grothendieck category on which Hτ ∩ Db(fp(G)) is the class of
finitely presented objects. Those particular conditions are always satisfied
when G is arbitrary and τ is the Happel–Reiten–Smalø t-structure in D(G)
associated to a torsion pair in fp(G) or when G = Qcoh(X) is the category
of quasicoherent sheaves on a noetherian affine scheme X and τ is any
compactly generated t-structure in D(X) := D(Qcoh(X)) which restricts to
Db(X) :=Db(coh(X)). In particular, the heart of any t-structure in Db(X) is
the category of finitely presented objects of a locally coherent Grothendieck
category.

1. Introduction

Beilinson, Bernstein and Deligne [1982] introduced the notion of a t-structure
in a triangulated category in their study of perverse sheaves on an algebraic or
analytic variety. If D is such a triangulated category, a t-structure is a pair of full
subcategories satisfying some axioms which guarantee that their intersection is an
abelian category H, called the heart of the t-structure. This category comes with a
cohomological functor D→H. Roughly speaking, a t-structure allows to develop
an intrinsic (co)homology theory, where the homology “spaces” are again objects
of D itself.

Nowadays, t-structures are used in several branches of mathematics, with special
impact in algebraic geometry, homotopical algebra, and representation theory of
groups and algebras. When dealing with t-structures, a natural question arises. It
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asks under which conditions the heart of a given t-structure is a “nice” abelian cate-
gory. Using a classical hierarchy for abelian categories introduced by Grothendieck,
one may think of Grothendieck and module categories as the nicest possible abelian
categories. It is therefore not surprising that the question of when the heart of a
t-structure is a Grothendieck or module category received much attention in recent
times (see, e.g., [Hoshino et al. 2002; Colpi et al. 2007; 2011; Colpi and Gregorio
2010; Mantese and Tonolo 2012; Parra and Saorín 2016b; 2015; Psaroudakis and
Vitória 2015; Nicolás et al. 2015]).

Among Grothendieck categories, the most studied ones are those that have
finiteness conditions (e.g., those which are locally coherent, locally noetherian
or even locally finite). Module categories over noetherian or coherent rings or
over Artin algebras, or the categories of quasicoherent sheaves over coherent or
noetherian schemes provide examples of such categories. A natural subsequent
question would ask when a given t-structure has a heart which is a Grothendieck
category with good finiteness conditions. In this paper, we tackle the question for
the locally coherent condition, assuming that the t-structure lives in the (unbounded)
derived category D(G) of a Grothendieck category G which is itself locally coherent.
Although to find a general answer seems to be hopeless, it is not so when the
t-structure restricts to Db(fp(G)), the bounded derived category of the category of
finitely presented (i.e., coherent) objects. Our basic technical result in the paper,
Proposition 4.5, gives a precise list of sufficient conditions on a t-structure in
D(G) so that its heart H is a locally coherent Grothendieck category on which
H∩Db(fp(G)) is the class of its finitely presented objects. As an application, we
give the main results of the paper, referring the reader to the next section for the
notation and terminology used:

(1) (Theorem 5.2) Let G be a locally coherent Grothendieck category and t =
(T ,F) be a torsion pair in G. The associated Happel–Reiten–Smalø t-structure
in D(G) restricts to Db(fp(G)) and has a heart which is a locally coherent
Grothendieck category if, and only if, F is closed under taking direct limits in
G and t restricts to fp(G).

(2) (Theorem 6.3) If R is a commutative noetherian ring, then any compactly
generated t-structure in D(R) which restricts to Db

fg(R)∼= Db(R-mod) has a
heart H which is a locally coherent Grothendieck category on which H∩Db

fg(R)
is the class of its finitely presented objects.

(3) (Corollary 6.4) If R is a commutative noetherian ring, then the heart of each
t-structure in Db

fg(R) is equivalent to the category of finitely presented objects
of some locally coherent Grothendieck category.

Of course, when taking the affine scheme X = Spec R in (2) and (3), one obtains
the geometric versions mentioned in the abstract (see also Corollary 6.5).
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The organization of the paper is as follows. Section 2 introduces all the concepts
and terminology used in the paper. In Section 3 we give some general results about
locally coherent Grothendieck categories which are used later. Section 4 contains
the technical Proposition 4.5, which is central to the paper, and a few auxiliary
results needed for its proof. Section 5 is dedicated to the Happel–Reiten–Smalø
t-structure and the proof of Theorem 5.2. The final Section 6 gives Theorem 6.3, of
which Corollary 6.4 is a direct consequence, and two lemmas needed for its proof.

2. Preliminaries and terminology

All categories in this paper will be additive and all rings will be supposed to be
associative with unit, unless otherwise specified. Whenever the term “module”
is used over a noncommutative ring, it will mean “left module” and, for a given
ring R, we will denote by R-Mod the category of all R-modules. Let A be an
additive category in the rest of the paragraph. If C is any class of objects in A, the
symbol C⊥ (resp. ⊥C) will denote the full subcategory of A whose objects are those
X ∈ Ob(A) such that HomA(C, X) = 0 (resp. HomA(X,C) = 0), for all C ∈ C.
The expression “A has products (resp. coproducts)” will mean that A has arbitrary
set-indexed products (coproducts). If S is a set of objects in A, we denote by
sum(S) the class of objects which are isomorphic to a finite coproduct of objects
of S, and by add(S) the class of objects isomorphic to a direct summand of a finite
coproduct of objects of S. When A has coproducts, we shall say that an object X
is a compact (or small ) object when the functor HomA(X, ?) :A→ Ab preserves
coproducts.

Two types of additive categories will get most of our interest in this paper:
abelian categories (see [Popescu 1973]) and triangulated categories (see [Neeman
2001]). Diverting from the terminology in this latter reference, for a triangulated
category D, the shift or suspension functor will be denoted by ?[1], putting ?[k] for
its k-th power, for each k ∈ Z. We shall use the term class (resp. set) of generators
with two different meanings, depending on whether we are in the abelian or the
triangulated context. When A is an abelian category with coproducts, a class (resp.
set) of generators S is a class (set) of objects such that each object in A is an
epimorphic image of a coproduct of objects in S. When S is a class (set) of objects
in the triangulated category D, we shall say that it is a class (set) of generators if an
object X of D is zero exactly when HomD(S[k], X)= 0, for all S ∈ S and all k ∈ Z.

Given a triangulated category D, a subcategory E will be called a triangulated
subcategory when it is closed under taking extensions and E[1] = E . If, in addition,
it is closed under taking direct summands, we will say that E is a thick subcategory
of D. When S is a set of objects of D, we shall denote by triaD(S) the smallest
triangulated subcategory of D that contains S, and by thickD(S)) the smallest thick
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subcategory of D that contains S.
For an additive category A, we will denote by C(A) and K(A) the category of

chain complexes of objects of A and the homotopy category of A. Diverting from
the classical notation, we will write superindices for chains, cycles and boundaries in
ascending order. We will denote by C−(A), C+(A), and Cb(A) the full subcategories
of C(A) consisting of those objects isomorphic to upper bounded, lower bounded,
and upper and lower bounded complexes, respectively, and similarly for K(A),
K−(A), K+(A), and Kb(A). Note that K(A) is always a triangulated category
of which K−(A), K+(A) and Kb(A) are triangulated subcategories. When A
is an abelian category, we will denote by D(A) its derived category, which is
the one obtained from C(A) by keeping the same objects and formally inverting
the quasi-isomorphisms (see [Verdier 1996] for the details). We shall denote
by D−(A), D+(A), and Db(A) the full subcategory of D(A) consisting of those
complexes X such that H k(X) = 0, for all k � 0, k � 0, and |k| � 0, respec-
tively, where H k

: D(A)→A denotes the k-th homology functor, for each k ∈ Z.
The objects of D−(A) (resp. D+(A), Db(A)) will be called homologically upper
bounded (resp. homologically lower bounded, homologically bounded) complexes.
For integers m ≤ n, we will denote by D [m,n](A) the full subcategory of D(A)
consisting of the complexes X such that H k(X)= 0 for integers k not in the closed
interval [m, n]. We will also use D≤n(A), D<n(A), D≥n(A), and D>n(A) to denote
the full subcategories consisting of the complexes X such that H i (X) = 0, for
all i > n, i ≥ n, i < n, and i ≤ n, respectively.

Strictly speaking, for a general abelian category A, the category D(A) need not
exist since the morphisms between two given objects could form a proper class and
not just a set. However, this problem disappears when A = G is a Grothendieck
category. This is a cocomplete abelian category with a set of generators on which
direct limits are exact. In a Grothendieck category G an object S is called finitely
presented when HomG(S, ?) : G → Ab preserves direct limits. We say that G is
locally finitely presented when it has a set of finitely presented generators. The
reader is referred to [Crawley-Boevey 1994] for the corresponding more general
concept of locally finitely presented additive categories with direct limits and is
invited to check that, in the case of Grothendieck categories, it coincides with
the one given here. Recall that an object in a Grothendieck category is called
noetherian when it satisfies the ascending chain condition on subobjects. A locally
noetherian Grothendieck category is a Grothendieck category which has a set of
noetherian generators. When G is locally finitely presented and locally noetherian,
an object N of G is noetherian if and only if it is finitely presented. (See [Krause
1997, Proposition A.11] for one direction, the reverse one being obvious since each
noetherian object in such a category is an epimorphic image of a finitely presented
one and the kernel of this epimorphism is again noetherian.)
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Recall that if D and A are a triangulated and an abelian category, respectively,
then an additive functor H : D→A is a cohomological functor when, given any
triangle X→ Y → Z +

−→, one gets an induced long exact sequence in A:

· · · → H n−1(Z)→ H n(X)→ H n(Y )→ H n(Z)→ H n+1(X)→ · · · ,

where H n
:= H ◦ (?[n]), for each n ∈ Z.

A torsion pair in the abelian category A is a pair t = (T ,F) of full subcategories
such that HomA(T, F) = 0, for all T ∈ T and F ∈ F , and each object X of A
fits into an exact sequence 0→ TX → X→ FX → 0, where TX ∈ T and FX ∈ F .
In this latter case the assignments X  TX and X  FX extend to endofunctors
t, (1 : t) : A→ A. The functor t is usually called the torsion radical associated
to t . The torsion pair t will be called hereditary when T is closed under taking
subobjects in A.

Now let D be a triangulated category. A t-structure in D (see [Beilinson et al.
1982, Section 1]) is a pair τ = (U,W) of full subcategories, closed under taking
direct summands in D, which satisfy the following properties:

(i) HomD(U,W [−1])= 0, for all U ∈ U and W ∈W .

(ii) U[1] ⊆ U .

(iii) For each X ∈ Ob(D), there is a triangle U → X→ V +
−→ in D, where U ∈ U

and V ∈W[−1].

In this case W = U⊥[1] and U = ⊥(W[−1])= ⊥(U⊥) and, for this reason, we will
write a t-structure as τ = (U,U⊥[1]). We will call U and U⊥ the aisle and the co-aisle
of the t-structure. The objects U and V in the above triangle are uniquely determined
by X , up to isomorphism, and define functors τU : D→ U and τU⊥ : D→ U⊥

which are right and left adjoints to the respective inclusion functors. We call them
the left and right truncation functors with respect to the given t-structure. The
full subcategory H = U ∩W = U ∩ U⊥[1] is called the heart of the t-structure
and it is an abelian category, where the short exact sequences “are” the triangles
in D with its three terms in H. Moreover, with the obvious abuse of notation,
the assignments X  (τU ◦ τ

U⊥[1])(X) and X→ (τU
⊥
[1]
◦ τU )(X) define naturally

isomorphic functors D→H which are cohomological (see [Beilinson et al. 1982]).
We will identify them and denote the corresponding functor by H̃ . When D has
coproducts, the t-structure τ will be called compactly generated when there is a
set S ⊆ U , formed by compact objects in D, such that W[−1] = U⊥ consists of the
objects Y such that HomD(S[k], Y )= 0, for all S ∈ S and integers k ≥ 0.

When D is a triangulated category with coproducts, we will use the term Milnor
colimit of a sequence of morphisms X0

x1−→ X1
x2−→· · ·

xn−→ Xn
xn+1−−→· · · , which

in [Neeman 2001] is called the homotopy colimit. It will be denoted Mcolim(Xn),
without reference to the xn .
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3. Generalities about locally coherent Grothendieck categories

In this section we are interested in a particular case of locally finitely presented
Grothendieck categories. Let us start with the following result which is folklore.

Lemma 3.1. Let A be an abelian category and B be a full additive subcategory.
The following assertions are equivalent:

(1) B is an abelian category such that the inclusion functor B ↪→A is exact.

(2) B is closed under taking finite (co)products, kernels and cokernels in A.

In this case we will say that B is an abelian exact subcategory of A.

Note that if G is a locally finitely presented Grothendieck category, then the class
fp(G) of finitely presented objects is skeletally small and is closed under taking
cokernels and finite coproducts.

Definition. A Grothendieck category G is called locally coherent when it is locally
finitely presented and the subcategory fp(G) is an abelian exact subcategory of G
(equivalently, when fp(G) is closed under taking kernels).

Recall that a pseudokernel of a morphism f : X → Y in the additive category
A is a morphism u : Z → X such that the sequence of contravariant functors
HomA(?, Z) u∗−→HomA(?, X) f∗

−→HomA(?, Y ) is exact, and similarly, a pseudo-
cokernel of a morphism f : X → Y in the additive category A is a morphism
v : Y → Z such that the sequence of covariant functors

HomA(Z , ?) v∗
−→HomA(Y, ?) f∗

−→HomA(X, ?)

is exact. We say that A has pseudokernels (resp. pseudocokernels) when each
morphism in A has a pseudokernel (pseudocokernel).

Examples 3.2. Here are some locally coherent Grothendieck categories to which
the results in this and next section apply. The first is well-known; for the others we
provide a brief justification.

1. R-Mod, when R is a left coherent ring R (i.e., when each finitely generated left
ideal of R is finitely presented).

2. The category [C,Ab] (resp. [Cop,Ab]) of covariant (resp. contravariant) additive
functors C → Ab, where C is a skeletally small additive category with pseudo-
cokernels (pseudokernels). In particular, when C is a skeletally small abelian or
triangulated category, both [C,Ab] and [Cop,Ab] are locally coherent Grothendieck
categories.

The covariant version follows from Propositions 1.3 and 2.1 of [Herzog 1997],
taking into account that, in the second of these, the proof that each representable
functor (X, ?) is a coherent object only requires that each morphism X→ Y has a
pseudocokernel. The contravariant version follows by duality.
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3. The category Qcoh(X) of quasicoherent sheaves, where X is a coherent scheme,
i.e., a quasicompact and quasiseparated scheme admitting a covering X =

⋃
i∈I Ui

by affine open subschemes Ui such that Ui = Spec Ai , for a commutative coherent
ring Ai , for each i ∈ I .

For the proof, see [Garkusha 2009, Proposition 40], and also [Sitte 2014, Example
1.1.6.iv].

4. Any locally noetherian and locally finitely presented Grothendieck category.
This is clear, since fp(G) coincides with the class of noetherian objects in that

case, and this latter class is always closed under taking kernels (even subobjects).

Lemma 3.3. Let G be a locally coherent Grothendieck category, let S be a set of
finitely presented generators of G and let M be any object in D(G). The following
assertions hold:

(1) M is a homologically upper bounded complex whose homology objects are
finitely presented if , and only if , M is isomorphic in D(G) to an upper bounded
complex N of objects in sum(S). Moreover, N can be chosen such that
max{i ∈ Z : N i

6= 0} =max{i ∈ Z : H i (M) 6= 0}.

(2) M is homologically bounded and its homology objects are finitely presented if ,
and only if , M is isomorphic in D(G) to a bounded complex

· · · 0→ N m
→ N m+1

→ N n−1
→ N n

→ 0 · · · ,

where the N i are finitely presented objects (and N i
∈ sum(S), for m < i ≤ n).

If , moreover, the objects of S form a set of compact generators of D(G),
then the following assertion also holds:

(3) The compact objects of D(G) are those isomorphic to direct summands of
bounded complexes of objects in add(S).

Proof. We will frequently use the fact that if M is a complex whose homology
objects are all finitely presented, then a given k-cycle object Z k

= Z k(M) is finitely
presented if and only if so is the k-boundary object Bk

= Bk(M).

(1) The proof of this assertion is reminiscent of the dual of the proof of Lemma 4.6(3)
in [Hartshorne 1966, Chapter I], with A′ = fp(G) and A= G, although the assump-
tions of that lemma do not hold in our situation. By truncating at the greatest integer
i such that H i (M) 6= 0 and shifting if necessary, we can assume without loss of
generality that M is concentrated in degrees ≤ 0 and that H 0(M) 6= 0. We then
inductively construct a sequence in C(G)

· · · Mn
fn
−→Mn−1→ · · · → M1

f1
−→M0

f0
−→M

satisfying the following properties:
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(a) Each Mn is concentrated in degrees ≤ 0.

(b) The connecting chain maps fn : Mn→ Mn−1 are quasi-isomorphisms, for all
n ∈ N (with the convention that M−1 = M).

(c) Given n ∈ N, one has M−k
n ∈ sum(S) for 0≤ k ≤ n.

(d) Given any k ∈ N, the morphism f −k
n : M

−k
n → M−k

n−1 is the identity map, for
all n > k.

Once the sequence has been constructed, we clearly see that the inverse limit of
the sequence, X := lim

←−−C(G)(Mn), is a complex of objects in sum(S) concentrated
in degrees ≤ 0 such that the induced chain map X→ M is a quasi-isomorphism.

We now move on to construct the mentioned sequence. At the initial step,
one easily gets a morphism f : X0

→M0 such that X0
∈ add(S) and the composition

X0 f
−→M0 p

−→ H 0(M) is an epimorphism, where p is the projection. Now, taking
the pullback of f and the differential M−1

→M0, we easily get a quasi-isomorphism
f0 : M0→ M , where f −k

0 : M
−k
0 = M−k

→ M−k is the identity map for all k ≥ 2,
and f 0

0 : M
0
0 = X0

→ M0 is f .
Assume now that n > 0 and that the quasi-isomorphisms

Mn−1
fn−1
−−→Mn−2→ · · · → M1

f1
−→M0

f0
−→M

have already been constructed, satisfying the requirements. Note that Z−k
:=

Z−k(Mn−1), and hence also B−k
:= B−k(Mn−1), are finitely presented objects

for k = 0, 1, . . . , n − 1. Let us fix a direct system (Yi )i∈I in fp(G) such that
lim
−−→

Yi ∼= M−n
n−1. Replacing the directed set I by a cofinal subset if necessary, there

is no loss of generality in assuming that the composition

Y j
u j
−→ lim

−−→
Yi ∼= M−n

n−1
d−n
−−→B−n+1

is an epimorphism, for all j ∈ I , where u j is the canonical morphism to the direct
limit. It is seen in a straightforward way that we have a direct system of exact
sequences

0→ u−1
i (Z−n)→ Yi

d−n
◦ui−−−→ B−n+1

→ 0 (i ∈ I )

whose direct limit is precisely the canonical exact sequence

0→ Z−n
→ X−n d−n

−−→ B−n+1
→ 0.

Due to the fact that H−n
:= H−n(Mn−1) is finitely presented, there is some index

j ∈ I such that the composition u−1
j (Z

−n)
u j
−→Z−n p

−→H−n is an epimorphism. We
fix such an index j and choose any epimorphism ε : X−n� Y j , with X−n

∈ sum(S).
Putting M−n

n := X−n , the composition g : M−n
n

ε
−→Y j

u j
−→ lim

−−→
(Y j )∼= M−n

n−1 is then
a morphism which leads to the following commutative diagram, where all squares
are bicartesian:
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M−n−1
n

//

g′

��

B̃−n � � //

��

g−1(Z−n)
� � //

��

M−n
n

g

��

M−n−1
n−1

d−n−1
// B−n � � // Z−n � � // M−n

n−1

We derive a quasi-isomorphism h :Mn→Mn−1, where h−k
:M−k

n =M−k
n−1→M−k

n−1
is the identity map, for k ≥ 0 and k 6= n, n+ 1, and where h−n−1

= g′ and h−n
= g

are the morphisms from the last diagram.

(2) By assertion (1), we can assume that M is of the form

· · · → N k
→ N k+1

→ · · · → N n−1
→ N n

→ 0 · · · ,

where the N i are in sum(S). Let us assume that m = min{ j ∈ Z : H j (M) 6= 0}.
Then the intelligent truncation at m gives the complex

τ≥m M : · · · 0→ Bm ↪→ N m
→ N m+1

→ · · · → N n−1
→ N n

→ 0 · · · ,

where Bm is an m-boundary object of M . But Bm is finitely presented because
Zm
=Ker(N m

→ N m+1) is. We then take N m
= Bm and the proof of the implication

is complete because the canonical map τ≥m M→ M is an isomorphism in D(G).
In the rest of the proof, we assume that S is a set of compact generators of D(G).

(3) Note that each bounded complex of objects in add(S) is compact in D(G) since
it is a finite iterated extension of stalks X [k], with X ∈ add(S). Conversely, suppose
that M is a compact object in D(G). It follows from [Keller 1994, Theorem 5.3] that
it is a direct summand of a finite iterated extension of complexes of the form S[k],
with S ∈ S and k ∈Z. In particular M has bounded and finitely presented homology.
If we fix now a quasi-isomorphism f : P → M such that P is a bounded above
complex of objects in add(S), then we can assume without loss of generality that
P0
6= 0 = Pk , for all k > 0. Note that then P is the Milnor colimit of the stupid

truncations σ≥−n P . Since P is compact in D(G), an argument as in the proof of
[Keller 1994, Theorem 5.3] shows that the identity map 1P factors in the form
P→ σ≥−n P→ P , for some n ∈ N. It follows that M ∼= P is isomorphic in D(G)
to a direct summand of a bounded complex of objects in add(S). �

When G is a locally coherent Grothendieck category, one easily gets from asser-
tions (1) and (2) of the last lemma that Db(fp(G)) is equivalent, as a triangulated
category, to the full subcategory Db

fp(G) of D(G) consisting of those complexes
M ∈ Db(G) such that H i (M)∈ fp(G), for all i ∈ Z. In the sequel we will identify
these equivalent triangulated categories, viewing Db(fp(G)) as a full triangulated
subcategory of D(G).
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Definition. Let G be a locally finitely presented Grothendieck category. An object
Y of G will be called fp-injective when Ext1

G(?, Y ) vanishes on finitely presented
objects.

The following is an easy consequence of the proof of implication 1)⇒ 2) in
[Št’ovíček 2014, Proposition B.3], after a clear induction argument:

Lemma 3.4. Let G be a locally coherent Grothendieck category. If Y is an fp-
injective object of G, then Extk

G(?; Y ) vanishes on finitely presented objects, for
all k > 0.

Recall that if F : G → Ab is any left exact functor, then an object Y of G
is F-acyclic when the right derived functors Rk F : G → Ab vanish on Y , for
all k > 0. Recall also that, for each X ∈ Ob(G), one can calculate Rk F(X)
by considering F-acyclic resolutions. That is, if one picks an exact sequence
0 → X → Y 0 d0

−→Y 1 d1
−→· · · Y n dn

−→· · · , where all the Y k are F-acyclic, then
Rk F(X) is the k-th homology group of the complex

· · · 0→ F(Y 0)
F(d0)
−−−→ F(Y 1)

F(d1)
−−−→· · · F(Y n)

F(dn)
−−−→· · · ,

for each integer k ≥ 0. The following result seems to be well-known (see [Gillespie
2016, Introduction] or [Prest 2009, Chapter 11]), but we include a proof after not
finding an explicit one in the literature.

Proposition 3.5. Let G be a locally finitely presented Grothendieck category, let X
be a finitely presented object, let (Mi )i∈I be a direct system in G and consider the
canonical map µk : lim−−→Extk

G(X,Mi )→ Extk
G(X, lim

−−→
Mi ), for each integer k ≥ 0.

(1) µ0 is an isomorphism and µ1 is a monomorphism.

(2) When G is locally coherent, µk is an isomorphism, for all k ≥ 0.

Proof. (1) The case k = 0 follows from the definition of a finitely presented object.
An element of lim

−−→
Ext1

G(X,Mi ) is represented by a direct system (εi )i∈I of exact
sequences

εi : 0→ Mi → Ni → X→ 0

whose “projection” on the first component is precisely the direct system (Mi )i∈I and
where X is viewed as a constant direct system. The image of (εi ) by the canonical
map lim

−−→
Ext1

G(X,Mi )→ ExtG(X, lim
−−→

Mi ) is the induced exact sequence

0→ lim
−−→

Mi → lim
−−→

Ni
π
−→ X→ 0.

If this latter sequence splits and we fix a section µ : X→ lim
−−→

Ni for π , then, since X
is a finitely presented object, µ factors in the form X µ j

−→ N j
u j
−→ lim

−−→
Ni , for some

j ∈ I , where u j is the canonical morphism to the direct limit. This immediately
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implies that the j -th sequence ε j : 0→ M j → N j → X→ 0 splits and, hence, that
(εi )i∈I is the zero element of lim

−−→
Ext1

G(X,Mi ).

(2) By [Adámek and Rosický 1994, Corollary 1.7 and subsequent remark], we can
assume without loss of generality that I =λ={α ordinal : α<λ} is an infinite limit
ordinal and that, for each limit ordinal α < λ, one has Mα = lim

−−→β<α
Mβ . We now

construct a direct system (Eα)α<λ in the category C(G) of complexes, satisfying
the following properties:

(a) Eα : · · · 0→ E0
α → E1

α → · · · → En
α → · · · is a complex concentrated in

degrees ≥ 0 and H k(Eα)= 0, for all α < λ and all k 6= 0.

(b) En
α is an fp-injective object, for all α < λ and all integers n ≥ 0.

(c) The direct system (H 0(Eα))α<λ in G is isomorphic to (Mα)α<λ.

Once the direct system (Eα)α<λ is constructed, the exactness of the direct limit
functor in G and the fact that the class of fp-injective objects is closed under taking
direct limits (see [Št’ovíček 2014, Proposition B.3]) will give that Eλ := lim

−−→C(G) Eα
is a complex of fp-injective objects concentrated in degrees ≥ 0 whose only nonzero
homology object is H 0(Eλ) ∼= lim

−−→α<λ
Mα. That is, Eλ is a (deleted) fp-injective

resolution of M := lim
−−→α<λ

Mα. By the previous lemma, we know that each fp-
injective object is HomG(X, ?)-acyclic, whenever X ∈ fp(G). It follows that, for
such an X , we have that Extk

G(X,M) is the k-th homology abelian group of the
complex HomG(X, Eλ). But, by definition of Eλ and the fact that HomG(X, ?)
preserves direct limits, we have an isomorphism of complexes of abelian groups
lim
−−→C(Ab)(HomG(X, Eα))∼= HomG(X, Eλ). Then the k-th homology map will give
the desired isomorphism

lim
−−→

Extk
G(X,Mα)

∼=
−→Extk

G(X,M)= Extk
G(X, lim

−−→
α<λ

Mα).

It remains to construct the direct system (Eα)α<λ in C(G). Let uα : Mα→ Mα+1

denote the morphism from the direct system (Mα)α<λ. For a nonlimit ordinal α,
Eα will be the (deleted) minimal injective resolution of Mα . If α is a limit ordinal
and we already have defined the direct system (Eβ)β<α, then Eα = lim

−−→β<α
Eβ ,

where the direct limit is taken in C(G). Note that H 0(Eα)∼= lim
−−→β<α

Mβ = Mα . For
the construction of (Eα)α<λ one just needs to define the connecting chain map
Eα → Eα+1, when α < λ is any ordinal for which Eα is already defined. This
connecting chain map is defined by choosing a family ( f n

α : En
α → En

α+1)n≥0 of
morphisms in G such that the following diagram is commutative and the induced
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map Ker(E0
α→ E1

α)→ Ker(E0
α+1→ E1

α+1) is the morphism uα : Mα→ Mα+1:

0 // E0
α

//

f 0
α

��

E1
α

//

f 1
α

��

· · ·

0 // E0
α+1

// E1
α+1

// · · ·

The reader is invited to check that the direct system (Eα)α<λ satisfies all the
requirements. �

4. Some sufficient conditions for the heart to be
a locally coherent Grothendieck category

Definition. Let D′ be a full triangulated subcategory of the triangulated category
D and let (U,U⊥[1]) be a t-structure in D. We say that this t-structure restricts to
D′ when (U ∩D′, (U⊥ ∩D′)[1]) is a t-structure of D′. This is equivalent to saying
that, for each object X of D′, the truncation triangle τU (X)→ X → τU

⊥

(X) +−→
has its three vertices in D′.

Lemma 4.1. Let D′ be a full triangulated subcategory of D and let (U,U⊥[1]) be
a t-structure in D whose heart is H. If the t-structure restricts to D′, then H∩D′ is
an abelian exact subcategory of H.

Proof. Let f : X→ Y be a morphism in H∩D′ and complete it to a triangle, which
is in D′:

X f
−→ Y → Z +

−→ .

Note that then Z ∈ U ∩ U⊥[2] and hence Z [−1] ∈ U⊥[1]. According to [Parra
and Saorín 2015, Lemma 3.1], we have H̃(Z)= τU

⊥

(Z [−1])[1] and H̃(Z [−1])=
τU (Z [−1]). Moreover, since the t-structure restricts to D′ we get that both H̃(Z)
and H̃(Z [−1]) are in H∩D′. But we then have a triangle

H̃(Z [−1])[1] → Z→ H̃(Z) +−→ .

By [Beilinson et al. 1982], we have isomorphisms KerH( f ) ∼= H̃(Z [−1]) and
CokerH( f )∼= H̃(Z) and, hence, H∩D′ is closed under taking kernels and cokernels
in H. That it is also closed under taking finite coproducts is clear. �

Setting 4.2. In the rest of the section we assume that G is a locally coherent
Grothendieck category and we fix a set S of finitely presented generators of G.
Recall that then S is also a set of generators of D(G) as a triangulated category (see
[Nicolás et al. 2015, Lemma 9] or [Psaroudakis and Vitória 2015, Lemma 4.10]).

Lemma 4.3. Let X ∈ D≤0(G) have bounded finitely presented homology (i.e., X is
homologically bounded and H k(X) ∈ fp(G), for all k ∈ Z) and let n be a natural
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number. There is a complex P ∈Cb(sum(S)) together with a morphism g : P→ X in
D(G) such that the restriction of the natural transformation g∗ : HomD(G)(X, ?)→
HomD(G)(P, ?) to D [−n,0](G) is a natural isomorphism.

Proof. By Lemma 3.3, there is an isomorphism p : Q → X in D(G) such that
Q is a complex of objects in sum(S) concentrated in degrees ≤ 0. We have
that p∗ : HomD(G)(X, ?)

∼=
−→HomD(G)(Q, ?) is a natural isomorphism of functors

D(G)→ Ab. Stupid truncation at −n− 2 gives a triangle in K(G)

σ>−n−2 Q h
−→ Q→ σ≤−n−2 Q +

−→,

where the left vertex is in Cb(sum(S)). Since HomD(G)(σ
≤−n−2 Q[k], ?) vanishes

on D [−n,0](G), for k=−1, 0, we get that the restriction of the natural transformation

h∗ : HomD(G)(Q, ?)→ HomD(G)(σ
>−n−2 Q, ?)

to D [−n,0](G) is an isomorphism. Putting P := σ>−n−2 Q, the desired morphism g
is the composition P h

−→ Q p
−→ X . �

Remark 4.4. Let (U,U⊥[1]) be a t-structure in any triangulated category D and
suppose that it restricts to a full triangulated subcategory D′. If H̃ : D→H is the
associated cohomological functor, then H̃(M) is in H∩D′, for all M ∈ D′. This is
because τU (D′)⊆ D′ and τU

⊥
[1](D′)⊆ D′.

The following technical result is crucial for the main results of the paper.

Proposition 4.5. Let G and S be as in Setting 4.2, let (U,U⊥[1]) be a t-structure
in D(G), with heart H, and let H̃ : D(G)→ H be the associated cohomological
functor. Suppose that the following conditions hold:

(1) (U,U⊥[1]) restricts to Db(fp(G)).
(2) There exist integers m ≤ n such that D≤m(G)⊆ U ⊆ D≤n(G).
(3) H∩Db(fp(G)) is a (skeletally small) class of generators of H.

(4) For each direct system (Mi )i∈I in H, for each S ∈ S and for each k ∈ Z, the
canonical map ηS[k] : lim−−→HomD(G)(S[k],Mi )→ HomD(G)(S[k], lim

−−→H Mi ) is
an isomorphism.

Then H is a locally coherent Grothendieck category on which H ∩Db(G) is the
class of its finitely presented objects.

Proof. Take the cohomological functor H ′ :=
∐

S∈S HomD(G)(S, ?) : D(G)→ Ab.
Using condition (4) and the fact that S is a set of generators of D(G), we see that,
with the terminology of [Parra and Saorín 2015, Section 3], the pair (H ′,+∞) is a
cohomological datum in D(G) for H. Then [Parra and Saorín 2015, Proposition 3.4]
says that H is an AB5 abelian category. But condition (3) says that it has a set of
generators, so that H is a Grothendieck category.
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Fix a direct system (Mi )i∈I in H in the sequel and consider the full subcategory
C of D(G) consisting of those complexes X such that

ηX [k] : lim−−→HomD(G)(X [k],Mi )→ HomD(G)(X [k], lim
−−→
H

Mi )

is an isomorphism, for all k ∈ Z. Using the Five Lemma, one readily sees that
C is a thick subcategory of D(G) which, by condition (4), contains S. We then
have thickD(G)(S)⊆ C. In particular, if a complex X ∈ Cb(sum(S)) is viewed as an
object of D(G), then X ∈ C.

We now claim that ηX is also an isomorphism, for each X ∈ Db(fp(G)). Indeed,
condition (2) implies that H⊆D [m,n](G). Let X ∈Db(fp(G)) be arbitrary. Replacing
n by a larger integer if necessary, we can assume that X ∈ D≤n(G). Then the obvious
generalization of Lemma 4.3 says that there exist a P ∈ Cb(sum(S)) and a morphism
g : P→ X in D(G) such that the natural transformation

g∗ : HomD(G)(X, ?)→ HomD(G)(P, ?)

is an isomorphism when evaluated on objects of D [m,n](G). We then have the
following commutative diagram

lim
−−→

HomD(G)(X,Mi )
ηX
//

g∗

��

HomD(G)(X, lim
−−→H Mi )

g∗

��

lim
−−→

HomD(G)(P,Mi )
ηP
// HomD(G)(P, lim

−−→H Mi )

where the vertical arrows are isomorphisms and, due to the previous paragraph,
the lower horizontal arrow is an isomorphism also. This settles our claim. In
particular, it implies that H∩Db(G) is a class of finitely presented objects in H
and, by conditions (1) and (3), it is a class of generators of H (see Remark 4.4).
In particular H is locally finitely presented. Note also that, by condition (1) and
Lemma 4.1, we know that H∩Db(fp(G)) is closed under taking cokernels (and
kernels) in H. It immediately follows that each finitely presented object of H is in
H∩Db(fp(G)) since it is the cokernel of a morphism in this latter category. Then
we have that H∩Db(fp(G))= fp(H), and this is an abelian exact subcategory of H.
Therefore H is locally coherent. �

Remark 4.6. Condition (1) of the last proposition is not necessary for the heart to
be a locally coherent Grothendieck category. Indeed, by [Parra and Saorín 2014,
Corollary 5.12] and using the terminology of that reference, if R is a commutative
noetherian ring and Z ( Spec R is a perfect sp-subset, then (U,U⊥[1]) is a t-
structure whose heart is equivalent to RZ -Mod, where U consists of the complexes
U such that Supp(H j (U ))⊆ Z , for all j >−1. Then the heart is locally coherent
since RZ is a noetherian commutative ring. But the associated sp-filtration φ = φU
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of Spec R (see [Alonso et al. 2010, Section 2.8 and Theorem 3.11]) is given by
φ(i)= Spec R, for i ≤−1, and φ(i)= Z , for all i >−1. This sp-filtration does not
satisfy in general the weak Cousin condition, in whose case (U,U⊥[1]) does not
restrict to Db(fp(R-Mod))∼=Db

fg(R) (see [Alonso et al. 2010, Corollary 4.5]). As an
example of the last situation, consider R = Z and Z = Spec Z\{0}, so that RZ =Q.
We have a canonical triangle Q/Z[−1] → Z→Q

+
−→, where Q/Z[−1] ∈ U and

Q ∈ U⊥.

5. The case of the Happel–Reiten–Smalø t-structure

Recall (see [Happel et al. 1996]) that if A is any abelian category and t = (T ,F)
is a torsion pair in A, then (Ut ,U⊥t [1])= (Ut ,Vt) is a t-structure in D(A), where

Ut = {U ∈ D≤0(A) : H 0(U ) ∈ T } and Vt = {V ∈ D≥−1(A) : H−1(V ) ∈ F}.

This t-structure will be called the Happel–Reiten–Smalø (or just HRS ) t-structure
associated to t . In this paper we are only interested in the case when A= G is a
locally coherent Grothendieck category.

Therefore, all throughout this section, G will be a locally coherent Grothendieck
category and t = (T ,F) will be a torsion pair in G. Recall that t is said to be of
finite type when the torsion radical t : G→ T preserves direct limits or, equivalently,
when F is closed under taking direct limits in G (see [Krause 1997, Section 2]). We
shall say that t restricts to fp(G) when t (X) is in fp(G), for each X ∈ fp(G). Note
that this is equivalent to saying that t ′ = (T ∩ fp(G),F ∩ fp(G)) is a torsion pair
in fp(G).

Proposition 5.1. Let (Ut ,U⊥t [1]) be the HRS t-structure in D(G) associated to t .
The following assertions are equivalent:

(1) The t-structure (Ut ,U⊥t [1]) restricts to Db(fp(G)).
(2) The torsion pair t restricts to fp(G).

In particular, if G is locally noetherian then (Ut ,U⊥t [1]) restricts to Db(fp(G)).

Proof. Given M ∈ Db(fp(G)), we have canonical triangles in D(G)

τ≤−1 M→M→ τ≥0 M +
−→,

t (H 0(M))[0] →τ≥0 M→W +
−→,

where W ∈ D≥0(G), H 0(W )∼= (H 0(M))/(t (H 0(M))) and H k(W )= H k(M), for
all k > 0. Then W ∈ U⊥t = Vt [−1]. Applying the octahedron axiom to the last two
triangles, we obtain two new triangles

τ≤−1 M→U → t (H 0(M))[0] +−→,

U →M→W +
−→ .
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It follows from the first triangle that U ∈ Ut since the outer vertices of the triangle
are in Ut . We then conclude that the second triangle is precisely the truncation
triangle of M with respect to (Ut ,U⊥t [1]).

The last truncation triangle is in Db(fp(G)) if, and only if, U ∈ Db(fp(G)).
But this happens exactly when t (H 0(M))[0] ∈ Db(fp(G)). That is, exactly when
t (H 0(M)) is a finitely presented object. The equivalence of assertions (1) and (2)
is now clear.

Noting that G is locally coherent all throughout this section, when G is also locally
noetherian we have that fp(G) coincides with the class noeth(G) of noetherian
objects, which is obviously closed under taking subobjects. Therefore t always
restricts to fp(G). �

We are now ready to prove the first main result of the paper.

Theorem 5.2. Let G be a locally coherent Grothendieck category, let t = (T ,F)
be a torsion pair in G, let (Ut ,U⊥t [1]) be the associated t-structure in D(G) and let
Ht be its heart. The following assertions are equivalent:

1) (Ut ,U⊥t [1]) restricts to Db(fp(G)) and Ht is a locally coherent Grothendieck
category (with Ht ∩Db(fp(G) as the class of finitely presented objects).

2) t is of finite type and restricts to fp(G).

3) There exists a torsion pair t ′ = (T ′,F ′) in fp(G) such that t = (lim
−−→

T ′, lim
−−→

F ′).

When in addition G is locally noetherian, these assertions are also equivalent to:

4) t is of finite type.

Proof. All throughout the proof, we fix a set S of finitely presented generators of G.
1)⇒ 2) By Proposition 5.1, we know that t restricts to fp(G) and, by [Parra and

Saorín 2015, Theorem 4.8], we know that t is of finite type.
2) ⇒ 3) If we put T ′ = T ∩ fp(G) and F ′ = F ∩ fp(G), then t ′ = (T ′,F ′)

is a torsion pair in fp(G) since t restricts to fp(G). By [Crawley-Boevey 1994,
Lemma 4.4], we know that (lim

−−→
T ′, lim
−−→

F ′) is a torsion pair in G. But T and F
are closed under taking direct limits in G, which implies that lim

−−→
T ′ ⊆ T and

lim
−−→

F ′ ⊆F . Since we always have F = T ⊥ ⊆ (lim
−−→

T ′)⊥ = lim
−−→

F ′ we conclude that
(T ,F)= (lim

−−→
T ′, lim
−−→

F ′).
3)⇒ 2) is clear.
2)⇒ 1) The finite type condition of t implies that Ht is a Grothendieck category

(see [Parra and Saorín 2016a, Theorem 1.2]). Now, let (Mi )i∈I be a direct system
in Ht . Bearing in mind that F is closed under taking direct limits in G and using
[Parra and Saorín 2015, Proposition 4.2], we get an exact sequence in Ht :

0→ (lim
−−→

H−1(Mi ))[1] → lim
−−→
Ht

Mi → (lim
−−→

H 0(Mi ))[0] → 0.
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To abbreviate, let us put (X, Y )= HomD(G)(X, Y ), for all X, Y ∈ D(G). Then, for
each S ∈ S and each k ∈ Z, we have a commutative diagram of abelian groups with
exact columns, where the horizontal arrows are the canonical morphisms:

lim
−−→
(S[k], H 0(Mi )[−1])

��

oo

lim
−−→
(S[k], H−1(Mi )[1])

��

oo

lim
−−→
(S[k],Mi )

��

oo

lim
−−→
(S[k], H 0(Mi )[0])oo

��

lim
−−→
(S[k], H−1(Mi )[2])oo

(S[k], (lim
−−→

H 0(Mi ))[−1])

��

(S[k], (lim
−−→

H−1(Mi ))[1])

��

(S[k], lim
−−→Ht

Mi )

��

(S[k], (lim
−−→

H 0(Mi ))[0])

��

(S[k], (lim
−−→

H−1(Mi ))[2])

By Proposition 3.5, we have that the two uppermost and the two lowermost horizon-
tal arrows are isomorphisms, which implies the canonical map lim

−−→
(S[k],Mi )→

(S[k], lim
−−→Ht

Mi ) is also an isomorphism.
We will check now that all conditions (1)–(4) of Proposition 4.5 are satisfied

by (Ut ,Ut [1]). By Proposition 5.1, we know that (Ut ,U⊥t [1]) restricts to Db(fp(G))
and, by definition of the HRS t-structure, we know that D≤−1(G)⊆ Ut ⊆ D≤0(G),
so that conditions (1) and (2) of Proposition 4.5 hold. Moreover, the previous
paragraph says that condition (4) also holds.

We will finally check that each object of Ht is an epimorphic image of a coproduct
of objects of Ht ∩Db(fp(G)), which will give condition (3) of Proposition 5.1 and
will end the proof. Let M be any object of Ht and let us write H 0(M) = lim

−−→
Ti ,

for some direct system (Ti )i∈I in T ∩ fp(G). Note that this is possible since T =
lim
−−→
(T ∩ fp(G)). Considering the canonical exact sequence

0→ H−1(M)[1] → M→ H 0(M)[0] → 0

and pulling it back, for each i ∈ I , along the obvious map Ti [0] → H 0(M)[0], we
get a direct system of exact sequences in Ht :

0→ H−1(M)[1] → Mi → Ti [0] → 0.

Since Ht is a Grothendieck category it immediately follows that M = lim
−−→Ht

Mi , so
that M is an epimorphic image of

∐
i∈I Mi . Replacing M by any of the Mi , we can

and shall assume in the rest of the proof that H 0(M) ∈ T ∩ fp(G). We then write
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M as a complex · · · 0→ M−1
→ M0

→ 0 · · · concentrated in degrees −1 and 0.
Note that if we put M0

= lim
−−→

M0
i , where (M0

i )i∈I is a direct system in fp(G), then
some composition M0

j
ι j
−→ lim

−−→
M0

i = M0 p
−� H 0(M) should be an epimorphism,

because H 0(M) is finitely presented. Replacing M0 by M0
j if necessary, we can

assume in the sequel that M0 is also finitely presented.
Once we assume that H 0(M) and M0 are both finitely presented, we follow the

lines of the proof of [Parra and Saorín 2015, Proposition 4.7] with an easy adaptation.
The details are left to the reader. Since M−1 is a direct limit of finitely presented
objects, we can fix an epimorphism

∐
j∈J X j � M−1 in G, where X j ∈ fp(G) for

all j ∈ J . Now we construct a four-row commutative diagram as in the mentioned
proof, where G(J ) and G(F) are replaced in our case by

∐
j∈J X j and

∐
j∈F X j ,

respectively. The key point now is that the appearing UF and X F are finitely
presented objects. Since t restricts to fp(G), we also know that t (X F ) and M0

F are
finitely presented, for each finite subset F ⊆ J . If now L = H̃|Ut : Ut →Ht is the
left adjoint to the inclusion functor (see [Parra and Saorín 2015, Lemma 3.1]), the
mentioned proof shows that we have epimorphisms

∐
F⊂J, F finite L(KF )� L(K J )

and L(K J )�M in Ht , where L(KF ) is the object of Ht represented by the complex

· · · 0→
∐

j∈F X j

t (UF )
→ M0

F → 0 · · · ,

concentrated in degrees −1 and 0. But t (UF ) is finitely presented, because so is UF .
It follows that the latter complex is a complex of finitely presented objects, and
hence L(KF ) ∈Ht ∩Db(fp(G)).

4)⇒2)=3) If G is locally noetherian, each torsion pair restricts to its subcategory
of noetherian objects, that is, to fp(G). �

6. The heart of a restricted t-structure in the
derived category of a commutative noetherian ring

All throughout this section R is a commutative noetherian ring. To apply the results
of earlier sections, we will consider G=R-Mod the category of all R-modules, which
is a locally noetherian Grothendieck category. Then we have that fp(G)= R-mod
is the subcategory of finitely generated R-modules and, as usual (see comments on
page 207), we identify Db

fg(R) := Db
fp(R-Mod) with Db(R-mod).

Recall that a filtration by supports or sp-filtration of Spec R is a decreasing map
φ : Z→ P(Spec R) such that φ(i)⊆ Spec R is a stable under specialization subset,
for each i ∈ Z. Filtrations by supports turn out to be in bijection with the compactly
generated t-structures in D(R) (see [Alonso et al. 2010, Theorem 3.11]). Concretely,
given an sp-filtration φ and putting

Uφ = {U ∈ D(R) : Supp(H i (U ))⊆ φ(i), for all i ∈ Z},
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we get a compactly generated t-structure τφ = (Uφ,U⊥φ [1]) and the assignment
φ  τφ gives the mentioned bijection. All through this section, the reader is
referred to [Alonso et al. 2010] for all nondefined terms that we might use.

Lemma 6.1. Let X ∈Db
fg(R) and Y ∈D+(R). For each p ∈ Spec R, the canonical

map
HomD(R)(X, Y ) p→ HomD(Rp)(X p, Y p)

is an isomorphism.

Proof. Let us fix Y ∈ D+(R), which we consider to be a bounded below complex
of injective R-modules. For each Z in Db

fg(R), we denote by ηZ the canonical map
HomD(R)(Z , Y ) p→ HomD(Rp)(Z p, Y p). We then consider the full subcategory C
of Db

fg(R) consisting of those Z such that ηZ [k] is an isomorphism, for all k ∈ Z. It
is clear that C is a thick subcategory of Db

fg(R).
We claim that M[0] ∈ C, for each finitely generated R-module M . Once this is

proved, the proof will be finished. Indeed, we will conclude that C = Db
fg(R) since

each Z ∈ Db
fg(R) is a finite iterated extension of the stalk complexes H−k(Z)[k],

and each H−k(Z) is finitely generated. Recall that HomD(R)(M[−k], Y ) is the
k-th homology module of the complex of R-modules HomR(M, Y ). Similarly,
HomD(Rp)(M p[−k],Y p) is the k-th homology module of the complex of Rp-modules
HomRp(M p, Y p) since Y p is a bounded below complex of injective Rp-modules.
The claim follows from the exactness of the localization at p and from the truth of
the result when Y is a module (see, e.g., [Kunz 1985, Proposition IV.1.10]). �

Lemma 6.2. Let R be connected, let (U,U⊥[1]) be a compactly generated t-
structure in D(R) which restricts to Db

fg(R), let H be its heart and let U ∈
D−(R)∩U be a complex with finitely generated homology modules. Then H̃(U ) is
in H∩Db

fg(R).

Proof. Let φ be the sp-filtration of Spec R associated to (U,U⊥[1]). By Corollaries
4.5 and 4.8 of [Alonso et al. 2010], we know that there exists some j0 ∈ Z such that
φ( j0)= Spec R. Without loss of generality, we assume that j0 = 0. We then have

D≤0(R)⊆ U and H⊆ D≥0(R).

By considering now for the object U of the statement the canonical truncation
triangle

τ≤0(U [−1])→U [−1] g
−→ τ>0(U [−1]) +−→

and applying the octahedron axiom, we see that

τU
⊥

(g) : τU
⊥

(U [−1])→ τU
⊥

(τ>0(U [−1]))

is an isomorphism. However, the codomain of this morphism is in Db
fg(R) since
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τ>0(U [−1]) ∈ Db
fg(R) and the t-structure (U,U⊥[1]) restricts to Db

fg(R). Then
H̃(U )= τU

⊥

(U [−1])[1] is in Db
fg(R) (see [Parra and Saorín 2015, Lemma 3.1]).

�

We are now ready to prove the main result of the paper.

Theorem 6.3. Let R be a commutative noetherian ring and let (U,U⊥[1]) be a
compactly generated t-structure in D(R) which restricts to Db

fg(R). The heart H of
this t-structure is a locally coherent Grothendieck category where H∩Db

fg(R) is
the subcategory of its finitely presented objects.

Proof. All throughout the proof, without loss of generality, we assume that R is
connected. Remember that then the associated sp-filtration φ satisfies the weak
Cousin condition and, hence, has the property that φ(i)= Spec R, for i � 0 (see
[Alonso et al. 2010, Theorem 4.4 and Corollary 4.8]). This in turn implies that
H = Hφ ⊆ D≥m(R), for some m ∈ Z. Moreover, by [Parra and Saorín 2014,
Theorem 4.10], we know that H=Hφ is a Grothendieck category.

Step 1: H∩Db
fg(R) is a (skeletally small) class of generators of H: Let U ′ denote

the full subcategory of U consisting of complexes in U ∩D−(R) which have finitely
generated homology modules. Each object of U ′ is isomorphic in D(R) to a bounded
above complex of finitely generated R-modules. Let L = H̃|U : U→H be the left
adjoint to the inclusion functor H ↪→ U . A slight modification of the proof of [Parra
and Saorín 2014, Proposition 3.10] shows that X := L(U ′) is a skeletally small
class of generators of H. By Lemma 6.2, we get that X ⊆H∩Db

fg(R), which ends
this first step.

Step 2: The result is true when φ is eventually trivial (i.e., when φ(i) = ∅, for
some i ∈ Z): We shall check all conditions (1)–(4) of Proposition 4.5. Without loss
of generality, we assume that the filtration is

SpecR= ···φ(−n−1)=φ(−n))φ(−n+1)⊇ ··· ⊇φ(0))φ(1)=φ(2)= ··· =∅,

in which case we have that D≤−n(R) ⊆ U ⊆ D≤0(R) and H = Hφ ⊆ D [−n,0](R)
(see [Parra and Saorín 2014, Lemma 4.1]). Then condition (2) of Proposition 4.5
holds and condition (1) holds by hypothesis. Moreover, Step 1 of this proof gives
condition (3) of that proposition. Finally, bearing in mind that we have a natural
isomorphism H k ∼= HomD(R)(R[−k], ?) of functors D(R)→ R-Mod, by taking
S = {R} and using [Parra and Saorín 2014, Theorem 4.9] we also get that condition
(4) holds.

Step 3: The general case. The proof reduces to checking that H∩Db
fg(R)⊆ fp(H).

Indeed, if this is proved, then Step 1 implies that H is locally finitely presented
and that each object in fp(H) is the cokernel of a morphism in H∩Db

fg(R). It will
follow from Lemma 4.1 that fp(H)=H∩Db

fg(R) and that this is an abelian exact



ON LOCALLY COHERENT HEARTS 219

subcategory of H. That is, H will be a locally coherent Grothendieck category with
H∩Db

fg(R) as its class of finitely presented objects.
We then prove the inclusion H∩Db

fg(R)⊆ fp(H). Let (Mi )i∈I be a direct system
in H and let X ∈H∩Db

fg(R) be any object. We consider the canonical morphism

ηX : lim−−→HomD(R)(X,Mi )→ HomD(R)(X, lim
−−→
H

Mi ),

which is a morphism in R-Mod. Localization at any prime ideal p preserves
direct limits and, by [Parra and Saorín 2014, Proposition 3.11], we also have
that (lim

−−→H Mi ) p ∼= lim
−−→H p

(Mi ) p. Here if H = Hφ , then we put H p = Hφ p , using
the terminology of [Parra and Saorín 2014]. Therefore, using Lemma 6.1, we
can identify (ηX ) p : (lim−−→HomD(R)(X,Mi )) p→ (HomD(R)(X, lim

−−→H Mi )) p with the
canonical morphism

ηX p : lim−−→HomD(Rp)(X p, (Mi ) p)→ HomD(Rp)(X p, lim
−−→
H p

(Mi ) p).

But the sp-filtration φ p of Spec Rp also satisfies the weak Cousin condition and,
since Rp has finite Krull dimension, we get that φ p is eventually trivial (see [Alonso
et al. 2010, Corollary 4.8]). The truth of the theorem when the associated filtration
is eventually trivial implies that ηX p is an isomorphism, for all p ∈ Spec R, because
X p ∈ fp(H p). Therefore the kernel and cokernel of ηX are R-modules with empty
support. Then they are both zero, so that ηX is an isomorphism, and hence X is in
fp(H) as desired. �

Corollary 6.4. Let R be a commutative noetherian ring. The heart of any t-structure
in Db

fg(R) is equivalent to the category of finitely presented objects of a locally
coherent Grothendieck category.

Proof. Each t-structure in Db
fg(R) is the restriction of the t-structure τφ in D(R)

associated to an sp-filtration (see [Alonso et al. 2010, Corollary 3.12]). The result
is then an immediate consequence of the last theorem, using [Alonso et al. 2010,
Theorem 3.10]. �

As a final comment, we give the geometric translation of the last theorem and
corollary:

Corollary 6.5. Let X be an affine noetherian scheme and let (U,U⊥[1]) be a t-
structure in D(X) := D(Qcoh(X)) which restricts to Db

coh(X)
∼= Db(coh(X)). The

heart H of the t-structure is a locally coherent Grothendieck category on which
H ∩Db

coh(X) is the class of finitely presented objects. In particular, the heart of
each t-structure in Db(coh(X)) is equivalent to the category of finitely presented
objects of a locally coherent Grothendieck category.
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