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MAXIMAL OPERATORS FOR THE p-LAPLACIAN FAMILY

PABLO BLANC, JUAN P. PINASCO AND JULIO D. ROSSI

We prove existence and uniqueness of viscosity solutions for the problem

maxf��p1
u.x/; ��p2

u.x/g D f .x/

in a bounded smooth domain � � RN with u D g on @�. Here ��pu D

.N C p/�1jDuj2�pdiv
�
jDujp�2Du

�
is the 1-homogeneous p-Laplacian

and we assume that 2 � p1; p2 � 1. This equation appears naturally
when one considers a tug-of-war game in which one of the players (the one
who seeks to maximize the payoff ) can choose at every step which are the
parameters of the game that regulate the probability of playing a usual tug-
of-war game (without noise) or playing at random. Moreover, the operator
maxf��p1

u.x/; ��p2
u.x/g provides a natural analogue with respect to p-

Laplacians to the Pucci maximal operator for uniformly elliptic operators.
We provide two different proofs of existence and uniqueness for this

problem. The first one is based in pure PDE methods (in the framework
of viscosity solutions) while the second one is more connected to probability
and uses game theory.

1. Introduction

In this paper our goal is to show existence and uniqueness of viscosity solutions
to the Dirichlet problem for the maximal operator associated with the family of
p-Laplacian operators, ��puD� div

�
jrujp�2ru

�
with 2� p �1.

When one considers the family of uniformly elliptic second-order operators of
the form � tr.AD2u/ and looks for maximal operators, one finds the so-called
Pucci maximal operator, PC

�;ƒ
.D2u/DmaxA2A� tr.AD2u/, where A is the set of

uniformly elliptic matrices with ellipticity constant between � andƒ. This maximal
operator plays a crucial role in the regularity theory for uniformly elliptic second-
order operators and has the following properties; see [Caffarelli and Cabré 1995]:

(1) (monotonicity) If �1 � �2 �ƒ2 �ƒ1, then PC
�2;ƒ2

.D2u/� PC
�1;ƒ1

.D2u/.

(2) (positive homogeneity) If ˛ � 0, then PC
�;ƒ

.˛D2u/D ˛PC
�;ƒ

.D2u/.

MSC2010: 35J70, 49N70, 91A15, 91A24.
Keywords: Dirichlet boundary conditions, dynamic programming principle, p-Laplacian, tug-of-war

games.
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(3) (subsolutions) If u verifies PC
�;ƒ

.D2u/ � 0 in the viscosity sense, then
� tr.AD2u/ � 0 for every matrix A with ellipticity constants � and ƒ (that
is, a subsolution to the maximal operator is a subsolution for every elliptic
operator in the class). Therefore, from the comparison principle we get that a
solution to PC

�;ƒ
.D2u/� 0 provides a lower bound for every solution of any

elliptic operator in the class with the same boundary values.

If we try to reproduce these properties for the family of p-Laplacians, we are
led to consider the operator maxp1�p�p2

��pu.x/. As we will show in this paper,
this operator has similar properties to the ones that hold for the Pucci maximal
operator, but with respect to the p-Laplacian family.

Hence, it is natural to consider the Dirichlet problem for the partial differential
equation

(1-1) max
p1�p�p2

��pu.x/D f .x/

in a bounded smooth domain��RN for 2�p1; p2�1. Here we have normalized
the p-Laplacian and considered the operator

�puD
div
�
jrujp�2ru

�
.N Cp/jrujp�2

;

which is called the 1-homogeneous p-Laplacian. We will assume that f � 0 or
that f is strictly positive or negative in �. We will consider solutions u (along the
whole paper we consider solutions in the viscosity sense, see [Crandall et al. 1992])
to this problem with f � 0, as p1-p2-harmonic functions.

Note that, formally, the 1-homogeneous p-Laplacian can be written as

�puD
p�2

NCp
�1uC

1

NCp
�u;

where �u is the usual Laplacian and �1u is the normalized1-Laplacian, that is,

�uD

NX
iD1

uxixi
and �1uD

1
jruj2

NX
i;jD1

uxi
uxixi

uxj
:

Therefore, we can think about the 1-homogeneous p-Laplacian as a convex combi-
nation of the Laplacian divided by N C 2 and the1-Laplacian, in fact,

�puD
p�2

NCp
�1uC

NC2

NCp

�u

NC2
D ˛�1uC ��u

with ˛D .p�2/=.NCp/ and �D1=.NCp/ (we reserve ˇ for a different constant)
for 2� p <1, and ˛ D 1 and � D 0 for p D1.
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Since we are dealing with convex combinations, equation (1-1) becomes

(1-2) max
p1�p�p2

��pu.x/Dmaxf��p1
u.x/; ��p2

u.x/g D f .x/;

with 2� p1; p2 �1.
Our main result concerning viscosity solutions to (1-2) reads as follows:

Theorem 1.1. Let � be a bounded domain such that the exterior ball condition
holds when p1 � N or p2 � N. Assume that inf� f > 0, sup� f < 0 or f � 0.
Then, given g a continuous function defined on @�, there exists a unique viscosity
solution u 2 C.�/ of (1-2) with uD g in @�.

Moreover, a comparison principle holds: if u; v 2 C.�/ are such that

max
˚
��p1

u;��p2
u
	
� f and max

˚
��p1

v;��p2
v
	
� f

are in � and v � u on @�, then v � u in �.
In addition, we have a Hopf’s lemma: let u be a supersolution to (1-2) and

x0 2 @� be such that u.x0/ > u.x/ for all x 2�, then we have

lim sup
t!0C

u.x0�t�/�u.x0/

t
< 0;

where � is exterior normal to @�.

Remark 1.2. An analogous result holds for the equation min
p1�p�p2

��pu.x/D f:

Remark 1.3. For the homogeneous case, f � 0, we have that viscosity sub- and
supersolutions to the 1-homogeneous p-Laplacian,

�
p�2

NCp
�1u�

1

NCp
�uD 0;

coincide with viscosity sub and supersolutions to the usual (.p�1/-homogeneous)
p-Laplacian � div

�
jrujp�2ru

�
D 0; see [Manfredi et al. 2012b].

Therefore, for f � 0 we are providing existence and uniqueness of viscosity
solutions to maxp1�p�p2

��pu.x/ D 0; with �pu being the usual p-Laplacian
that comes from calculus of variations.

Remark 1.4. This maximal operator for the p-Laplacian family has the following
properties that are analogous to the ones described above for Pucci’s operator:

(1) (monotonicity) If p1;1 � p2;1 � p2;2 � p1;2 then

max
p2;1�p�p2;2

��pu� max
p1;1�p�p1;2

��pu:

(2) (positive homogeneity) If ˛ � 0, then

max
p1�p�p2

��p.˛u/D ˛ max
p1�p�p2

��pu:
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(3) (subsolutions) A viscosity solution u to maxp1�p�p2
��pu.x/ � 0; is a

viscosity solution to ��pu.x/� 0 for every p1 � p � p2. Hence, from the
comparison principle, we get that a solution to maxp1�p�p2

��pu.x/ � 0

provides a lower bound for every solution of any elliptic operator in the class
with the same boundary values.

We have two different approaches for this problem. The first one is based on
PDE tools in the framework of viscosity solutions. The second one is related to
probability theory (game theory) using the game that we describe below.

Let us introduce a game that we call unbalanced tug-of-war game with noise. It
is a two-player ( Players I and II ) zero-sum stochastic game. The game is played in
a bounded open set � � RN. Fix an " > 0. At the initial time, the players place
a token at a point x0 2� and Player I chooses a coin between two possible ones.
They toss the chosen coin which is biased with probabilities ˛i and ˇi , ˛iCˇi D 1
and 0 � ˛i ; ˇi � 1, i D 1; 2. Now, they play the tug-of-war with noise game
described in [Manfredi et al. 2012b] with probabilities ˛i , ˇi . If they get heads
(probability ˛i ), they toss a fair coin (with equal probability of heads and tails) and
the winner of the toss moves the game position to any x1 2 B".x0/ of his choice.
On the other hand, if they get tails (probability ˇi ) the game state moves according
to the uniform probability density to a random point x1 2 B".x0/. Once the game
position leaves �, let’s say at the � -th step, the game ends. The payoff is given by
a running payoff function f W�! R and a final payoff function g W RN n�! R

(note that we only use the values of g in a strip of width " around @�). At the end
Player II pays to Player I the amount given by the formula

g.x� /C "
2
��1X
nD0

f .xn/:

Note that the positions of the game depend on the strategies adopted by Players I
and II. From this procedure we get two extreme functions, uI.x0/ (the value of the
game for Player I ) and uII.x0/ (the value of the game for Player II ), that are in a
sense the best expected outcomes that each player may expect choosing a strategy
when the game starts at x0. When uI.x0/ and uII.x0/ coincide at every x0 2� this
function u" WD uI D uII is called the value of the game.

Theorem 1.5. Assume that f is a Lipschitz function with sup� f <0 or inf� f >0
or f � 0. The unbalanced tug-of-war game with noise with f˛1; ˛2g ¤ f0; 1g when
f � 0 has a value and that value satisfies the dynamic programming principle,
given by

u".x/D"
2f .x/C max

i2f1;2g

�
˛i
2

˚
sup

y2B".x/

u".y/C inf
y2B".x/

u".y/
	
Cˇi �

Z
B".x/

u".y/ dy

�
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for x 2�, with u".x/D g.x/ for x 62�.
Moreover, if g is Lipschitz and � satisfies the exterior ball condition, then there

exists a uniformly continuous function u such that

u"! u uniformly in �:

This limit u is a viscosity solution to�
maxf��p1

u;��p2
ug D f on �;

uD g on @�;

where f D 2f and p1; p2 are given by

˛i D
pi�2

piCN
; ˇi D

2CN

piCN
; i D 1; 2:

Remark 1.6. When f is strictly positive or negative, we have that the game ends
almost surely (a.s.). The same is true (regardless of the strategies adopted by the
players) when they play with some noise at every turn, that is, when the two ˇi are
positive. This fact simplifies the arguments used in the proofs.

When one of the ˛i is 1 (and therefore the corresponding ˇi is 0) the argument
is more delicate; see Section 4.

Remark 1.7. The proof of Theorem 1.5 follows from the results in Sections 4
and 5. In Section 4 we establish that the game has a value and that the value is
the unique function that satisfies the dynamic programming principle (DPP). In
Section 5 we prove the convergence part of the theorem. In Proposition 4.4 we
establish the existence of a function satisfying the DPP. In Theorem 4.6 we prove
that the function satisfying the DPP is unique and coincides with the game value,
in the case ˇ1; ˇ2 > 0, supf < 0 or inff > 0. The same result is obtained in the
remaining cases in Theorems 4.8 and 4.9. Here is where we had to assume that
f˛1; ˛2g ¤ f0; 1g. Finally, the convergence is established in Corollaries 5.8 and 5.9.

Remark 1.8. Note that in the limit problem one only considers the values of g on
@� while in the game one needs g to be defined in a bigger set. Given a Lipschitz
function defined on @� we can just extend it to this larger set without affecting
the Lipschitz constant. For simplicity but making an abuse of notation we also call
such an extension g.

Remark 1.9. We also prove uniqueness of solutions to the DPP; see Section 4.
That is, there exists a unique function verifying

v.x/D "2f .x/C max
i2f1;2g

�
˛i
2

˚
sup

y2B".x/

v.y/C inf
y2B".x/

v.y/
	
Cˇi �

Z
B".x/

v.y/ dy

�
;

for x 2�, with v.x/D g.x/ for x 62�.
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Remark 1.10. When Player II (the player who wants to minimize the expected
outcome) has the choice of the probabilities ˛ and ˇ we end up with a solution to�

minf��p1
u;��p2

ug D f on �;
uD g on @�:

Let us make some brief comments on related work. First, let us recall that Pucci
operators are crucial in regularity theory for uniformly elliptic operators, due to
their natural comparison with a nondivergence linear operator with measurable
coefficients. We refer to [Busca et al. 2005; Caffarelli and Cabré 1995; Felmer et al.
2006; Quaas and Sirakov 2006].

On the other hand, concerning probabilistic ideas for PDEs, the fundamental
works of Doob, Hunt, Kakutani, Kolmogorov and many others have shown the
profound and powerful connection between the classical linear potential theory
and the corresponding probability theory. The idea behind the classical interplay
is that harmonic functions and martingales share a common origin in mean value
properties. This approach turns out to be useful in the nonlinear theory as well,
since p-harmonic functions verify an asymptotic mean value property; see, for
example, [Manfredi et al. 2010; Hartenstine and Rudd 2013; Kawohl et al. 2012;
Llorente 2014; 2015]. Concerning tug-of-war games and PDEs the story begins
with [Peres et al. 2009; Peres and Sheffield 2008] and was extended in [Atar and
Budhiraja 2010; Bjorland et al. 2012a; 2012b; Nyström and Parviainen 2014], etc.
For the p-Laplacian the equivalence between viscosity and weak solutions was
proved in [Julin and Juutinen 2012; Juutinen et al. 2001]. This probability approach
was used to obtain regularity properties of solutions; we refer to [Armstrong and
Smart 2010; Luiro and Parviainen 2015; Luiro et al. 2013; Ruosteenoja 2016].

We finish the introduction with a comment on the main technical novelties
contained in this manuscript. To obtain existence and uniqueness for our maximal
PDE we first use ideas and techniques from viscosity solutions theory. This part
follows the usual steps (the first one shows a comparison principle and then applies
Perron’s method, including the construction of barriers near the boundary), but here
some extra care is needed to deal with points at which the gradient of a test function
vanishes. Concerning the game theoretical approach we want to emphasize that when
p2D1 we don’t know a priori that the game terminates almost surely and this fact
introduces some extra difficulties. The argument that shows that there is a unique so-
lution to the dynamic programming principle in this case is delicate; see Theorem 4.8.
The proof of convergence of the values of the game as the size of the steps goes
to zero is also different from previous results in the literature since here one has to
take care of the strategy of the player who chooses the parameters of the game. In
particular, the proof that when any of the two players pull in a fixed direction the
expectation of the exit time is bounded above C"2 is more involved; see Lemma 5.2.
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The paper is organized as follows: In Section 2 we prove the comparison principle
and then existence and uniqueness for our problem using Perron’s method; in
Section 3 we introduce a precise description of the game; in Section 4 we show that
the game has a value and that this value is the solution to the dynamic programming
principle; and finally, in Section 5 we collect some properties of the value function
of the game and show that these values converge to the unique viscosity solution of
our problem.

2. Existence and uniqueness

First, let us state the definition of a viscosity solution. We have to handle some
technical difficulties as the 1-homogeneous1-Laplacian is not well-defined when
the gradient vanishes. Observing that

�uD tr.D2u/ and �1uD
ru

jruj
D2u

ru

jruj
;

we can write (1-2) as F.ru;D2u/D f , where

F.v;X/D max
i2f1;2g

n
�˛i

v

jvj
X
v

jvj
� �i tr.X/

o
:

Note that F is degenerate elliptic, that is,

F.v;X/� F.v; Y / for v 2 RN n f0g and X; Y 2 SN provided X � Y;

as is generally requested to work in the context of viscosity solutions.
This function F W RN �SN 7! R is not well-defined at v D 0 (here SN denotes

the set of real symmetric N �N matrices). Therefore, we need to consider the
lower semicontinuous F� and upper semicontinuous F � envelopes of F. These
functions coincide with F for v ¤ 0, and for v D 0 are given by

F �.0; X/D max
i2f1;2g

f�˛i�min.X/� �i tr.X/g;

F�.0; X/D max
i2f1;2g

f�˛i�max.X/� �i tr.X/g;

where �min.X/ and �max.X/ are the minimum and maximum eigenvalues of X,
respectively.

Now we are ready to give the definition for a viscosity solution to our equation.

Definition 2.1. For 2� p1; p2 �1 consider the equation

maxf��p1
u;��p2

ug D f

in �. Then we have the following definitions:
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(1) A lower semicontinuous function u is a viscosity supersolution if for every
� 2 C 2 such that � touches u at x 2� strictly from below, we have

F �
�
r�.x/;D2�.x/

�
� f .x/:

(2) An upper semicontinuous function u is a subsolution if for every  2C 2 such
that  touches u at x 2� strictly from above, we have

F�
�
r .x/;D2 .x/

�
� f .x/:

(3) Finally, u is a viscosity solution if it is both a sub- and supersolution.

In the case f � 0, the comparison holds for our equation as a consequence of
the main result of [Koike and Kosugi 2015]. See also [Barles and Busca 2001].
Note that the comparison principle obtained in the former is slightly more general
than the one obtained in the latter. We need this more general result here as our F
is not necessarily continuous when the gradient vanishes. In [Koike and Kosugi
2015] a different notion of viscosity solution is considered. We remark that when a
function is a viscosity sub- or supersolution in the sense of Definition 2.1 it is also
that in the sense considered in [Koike and Kosugi 2015]. Therefore we can use the
comparison result established there once we check their hypotheses.

Proposition 2.2. Let u 2 USC.�/ and v 2 LSC.�/ be, respectively, a viscosity
subsolution and a viscosity supersolution of (1-2) with f � 0. If u� v on @�, then
u� v in �.

Proof. We just apply the main result in [Koike and Kosugi 2015], referring to
notations and details therein. To this end we need to check some conditions. First,
let us show that F is elliptic. In fact, we have

F.v;X ��v˝ v/D max
i2f1;2g

n
�˛i

v

jvj
.X ��v˝ v/

v

jvj
� �i tr.X ��v˝ v/

o
D max
i2f1;2g

n
�˛i

v

jvj
X
v

jvj
C˛i�jvj

2
� �i tr.X/C �i�jvj2

o
D max
i2f1;2g

n
�˛i

v

jvj
X
v

jvj
� �i tr.X/C �i

o
C�jvj2

D F.v;X/C�jvj2:

Moreover, F is invariant by rescaling in v and 1-homogeneous in X.
So, using the notation from [Koike and Kosugi 2015], we can take �0.v/D jvj2,

�1.t/D t and �� 0 that satisfy the conditions imposed in that paper, to obtain the
comparison result. �

Now we deal with the case where f is assumed to be nontrivial and does not
change sign. In fact, we assume that inff > 0 or supf < 0. We follow similar
ideas to the ones in [Lu and Wang 2008].
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Lemma 2.3. If we have u; v 2 C.�/ such that

maxf��p1
u;��p2

ug � f and maxf��p1
v;��p2

vg � g;

where g > f and v � u in @�, then we have v � u in �.

Proof. By adding a constant if necessary we can assume that u; v > 0. Arguing by
contradiction we assume that

max
�

.u� v/ > 0�max
@�
.u� v/:

Now we double the variables and consider

sup
x;y2�

˚
u.x/� v.y/� .j=2/jx�yj2

	
:

For large j the supremum is attained at interior points xj , yj such that xj ! yx,
yj ! yx, where yx is an interior point (that yx cannot be on the boundary can be
obtained as in [Lindqvist and Lukkari 2010]).

Now, we observe that there exists a constant C such that j jxj �yj j � C . The
theorem of sums (see Theorem 3.2 from [Crandall et al. 1992]) implies that there are
symmetric matrices Xj , Yj , with Xj �Yj such that .j jxj �yj j;Xj /2J 2;C.u/.xj /
and .j jxj �yj j;Yj / 2 J 2;�.v/.yj /, where J 2;C.u/.xj / and J 2;�.v/.yj / are the
closures of the super- and subjets of u and v respectively. Using the equations,
assuming that xj ¤ yj , we have

max
i2f1;2g

�
�˛i

�
Xj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �i tr.Xj /

�
� f .yj /

and

max
i2f1;2g

�
�˛i

�
Yj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �i tr.Yj /

�
� g.yj /:

Now we observe that, since Xj � Yj we get

� tr.Xj /� � tr.Yj /

and

�

�
Xj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �

�
Yj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
:

Hence

f .yj /� max
i2f1;2g

�
�˛i

�
Xj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �i tr.Xj /

�
� max
i2f1;2g

�
�˛i

�
Yj
.xj �yj /

jxj �yj j
;
.xj �yj /

jxj �yj j

�
� �i tr.Yj /

�
� g.xj /:
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This gives a contradiction passing to the limit as j !1.
When xj D yj we obtain

max
i2f1;2g

˚
�˛i�max.Yj /� �i tr.Yj /

	
� f .yj /

and
max
i2f1;2g

˚
�˛i�min.Xj /� �i tr.Xj /

	
� g.xj /;

which also lead to a contradiction since �max.Yj /� �max.Xj /� �min.Xj /.
Hence we have obtained that u� v, as we wanted to prove. �

Lemma 2.4. If u; v 2 C.�/ are such that

maxf��p1
u;��p2

ug � f; and max
˚
��p1

v;��p2
v
	
� f

in � with inf� f > 0 and v � u on @�, then we have v � u in �.

Proof. By adding a constant if necessary we can assume that u; v >0. Let’s consider
vı D .1C ı/v, then

maxf��p1
u;��p2

ug � f < .1C ı/f �maxf��p1
vı ;��p2

vıg

and vı � v � u in @�. Then by the preceding lemma we conclude that vı � u in
� for all ı > 0. Making ı! 0, we get v � u in � as we wanted to show. �
Remark 2.5. The above lemma is also true when sup� f < 0. So, we have
comparisons for the cases inf� f >0, sup� f <0 and f �0. From this comparison
result we get uniqueness of solutions.

Now we deal with the existence of solutions. In the proof of this result we are
only using that the exterior ball condition holds for � when p1 �N or p2 �N.

Theorem 2.6. Assume that inff > 0, supf < 0 or f � 0. Then, given g a
continuous function defined on @�, there exists u 2 C.�/ which is a viscosity
solution of (1-2) such that uD g in @�.

Proof. We consider the set

AD
˚
v 2 C.�/ Wmaxf��p1

v;��p2
vg � f in � and v � g on @�

	
;

where the inequality for the equation inside � is verified in the viscosity sense and
the inequality on @� in the pointwise sense. Since �jxj2 D 2n and �1jxj2 D 2,
we have that maxf��p1

v;��p2
vg > 0 for v.x/D �jxj2. Hence we can choose

K1 such that the operator applied to �K1jxj2 is greater than supf and then we
can choose K2 such that K2�K1jxj2 � g.x/ in @�. We conclude that the function
K2�K1jxj

2 is in A for suitable K1; K2. Therefore the set A is not empty.
We define

u.x/D inf
v2A

v.x/; x 2�:
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This infimum is finite since, as the comparison holds, we have u.x/��L2CL1jxj2

for all u 2A for large L1; L2. The function u, being the infimum of supersolutions,
is a supersolution. We already know that u is upper semicontinuous, as it is the
infimum of continuous functions. Let us see that it is indeed a solution. Suppose not,
then there exists � 2 C 2 such that � touches u at x0 2� strictly from above, but

maxf��p1
�.x0/;��p2

�.x0/g> f .x0/:

Let us write

�.x/D �.x0/Cr�.x0/ � .x�x0/C
1
2

˝
D2�.x0/.x�x0/; x�x0

˛
Co

�
jx� x0j

2
�
:

We define y�.x/D �.x/�ı for a small positive number ı. Then y� < u in a small
neighborhood of x0, contained in the set

˚
x Wmaxf��p1

�.x/;��p2
�.x/g>f .x/

	
,

but y� � u outside this neighborhood, if we take ı small enough.
Now we can consider vDminfy�; ug. Since u is a viscosity supersolution in� and
y� also is a viscosity supersolution in the small neighborhood of x0, it follows that v is
a viscosity supersolution. Moreover, on @�, vDu�g. This implies v 2A, but vD
y� <u near x0, which is a contradiction with the definition of u as the infimum in A.

Finally, we want to prove that uD g on @� and that boundary values are attained
with continuity. To this end, we have to construct barriers for our operator. It is
enough to prove that for every x0 2 @� and " > 0 there exists a supersolution
such that v � g on @� and v.x0/� g.x0/C ", and that there exists a subsolution
such that v � g on @� and v.x0/� g.x0/� ". We prove now the existence of the
supersolution, and the subsolution can be obtained in a similar way.

Let us consider � a radial function, �.x/D  .r/ with  0.r/ > 0. Then

�1� D  
00 and �� D  00C

N�1

r
 0

and we get

max
i2f1;2g

˚
��pi

�
	
D max
i2f1;2g

˚
�˛i�1� � �i��

	
D max
i2f1;2g

n
�˛i 

00
� �i

�
 00C

N�1

r
 0
�o

D max
i2f1;2g

n
�
pi�2

NCpi
 00�

1

NCpi

�
 00C

N�1

r
 0
�o

D max
i2f1;2g

n
�
pi�1

NCpi
 00�

1

NCpi

N�1

r
 0
o
:

We want this last expression to be greater than a positive constant.
To have a function of the form  .r/D r with  > 0 that fulfills this, we need

max
i2f1;2g

n
�
pi�1

NCpi
. � 1/�

N�1

NCpi

o
r�2 � c > 0:
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Hence we have to choose  according to

0 <  < 1�
N�1

pi�1
:

We have that such  exists ifN <p1 orN <p2. We will require that minfp1;p2g>N,
that is, N < p1; p2.

In this case we can consider v.x/DK�.x�x0/Cg.x0/C" with K big enough.
If Kc > supf , then v is a supersolution. We have that v.x0/ D g.x0/C ", it
remains to prove that v � g on @�. Since g is continuous at x0, there exists ı > 0
such that jg.x/�g.x0/j < " for every x 2 Bı.x0/. Then we have that v � g on
@�\Bı.x0/. Finally we can pick K such that Kı Cg.x0/C " > supg, and we
obtain v � g on @�\Bı.x0/c.

When N � p1 or N � p2, we can find (with similar computations) a barrier of
the form  .r/D�r with  < 0. Note that this function is not well-defined at 0.
In this case, we have a barrier if the exterior ball condition holds. Given x0 2 @�,
there exist � > 0 and y0 2�c such that jx0�y0j D � and B�.y0/��c. We can
consider v.x/DK.�.x�y0/��.x0�y0//Cg.x0/C " and pick K in a similar
way to above. �

Now, we prove a version of the Hopf lemma for our equation. Note that since we
deal with viscosity solutions, the normal derivative may not exist in a classical sense.

Lemma 2.7. Let � � RN be a domain with the interior ball condition and u a
subsolution to (1-2) with f � 0. Given x0 2 @� such that u.x0/ > u.x/ for all
x 2�, we have

lim sup
t!0C

u.x0�t�/�u.x0/

t
< 0:

where � is exterior normal to @�.

Proof. As the interior ball condition holds, we can assume there exists a ball centered
at 0, contained in � that has x0 in its boundary; that is, we have Br.0/�� and
x0 2 @Br.0/. Let us consider �.x/ D 1=

�
jxjN�2

�
� 1=

�
rN�2

�
if N > 2 and

�.x/D� lnjxjC ln.r/ for N D 2. It is easy to check that

�� D 0; �1� � 0; in Br.0/ n f0g:

So we have

maxf��p1
�;��p2

�g � 0 in Br.0/ n f0g;

� � 0 on @Br.0/:

As u.x0/ > u.x/ for all x 2�, in particular on @Br=2.0/, then there exists " > 0
such that u.x0/� "� � u on @Br=2.0/. Therefore, by the comparison principle, we
get u.x0/� "� � u in Br.0/ nBr=2.0/ and the result follows. �
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3. Unbalanced tug-of-war games with noise

In this section we introduce the game that we call unbalanced tug-of-war game
with noise. First, let us describe the game without entering in mathematical details.
It is a two-player zero-sum stochastic game. The game is played over a bounded
open set �� RN. An " > 0 is given. Players I and II play as follows. At an initial
time, they place a token at a point x0 2 � and Player I chooses a coin between
two possible ones (each of the two coins have different probabilities of getting a
head). We think of this as choosing i 2 f1; 2g. Now they play the tug-of-war with
noise introduced in [Manfredi et al. 2012b] starting with the chosen coin. They toss
the chosen coin, which is biased with probabilities ˛i and ˇi , where ˛i Cˇi D 1
and 0 � ˛i ; ˇi � 1. If they get heads (probability ˛i ), they toss a fair coin (with
the same probability for heads and tails) and the winner of the toss moves the
game position to any x1 2 B".x0/ of his choice. On the other hand, if they get
tails (probability ˇi ) the game state moves according to the uniform probability
density to a random point x1 2 B".x0/. Note that Player I chooses the probability
of playing the usual tug-of-war game or moving at random with the choice of the
first coin between two possibilities. Then they continue playing from x1. At each
turn Player I may change the choice of coin.

This procedure yields a sequence of game states x0; x1; : : : . Once the game
position leaves �, let’s say at the �-th step, the game ends. At that time the token
will be on the compact boundary strip around � of width " that we denote

�" D fx 2 Rn n� W dist.x; @�/� "g:

The payoff is given by a running payoff function f W�! R and a final payoff
function g W �" ! R. At the end, Player II pays Player I the amount given by
g.x� /C "

2
P��1
nD0f .xn/, that is, Player I will have earned

g.x� /C "
2
��1X
nD0

f .xn/

while Player II will have earned

�g.x� /� "
2
��1X
nD0

f .xn/:

We can think of this as Player II paying Player I "2f .xi / when the token leaves xi ,
and g.x� / when the game ends.

A strategy SI for Player I is a pair of collections of measurable mappings

SI D
�
fkg1kD0; fS

k
I g
1
kD0

�
;
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such that, given a partial history .x0; x1; : : : ; xk/, Player I chooses coin 1 with
probability

k.x0; x1; : : : ; xk/D  2 Œ0; 1�

and the next game position is

SkI .x0; x1; : : : ; xk/D xkC1 2 B".xk/

if Player I wins the toss. Similarly, Player II plays according to a strategy

SII D fS
k
II g
1
kD0:

Then, the next game position xkC12B".xk/, given a partial history .x0; x1; : : : ; xk/,
is distributed according to the probability

�SI;SII.x0; x1; : : : ; xk; A/D

ˇjA\B".xk/j

jB".xk/j
C
˛

2
ıSk

I .x0;x1;:::;xk/
.A/C

˛

2
ıSk

II .x0;x1;:::;xk/
.A/;

where  D k.x0; x1 : : : ; xk/, ˛D ˛1C˛2.1�/, ˇD ˇ1Cˇ2.1�/ and A
is any measurable set (note that ˛ and ˇ depend on SI and .x0; x1; : : : ; xk/; we do
not make this explicit to avoid overloading the notation). From now on, we shall
omit k and simply denote the strategies by  , SI and SII.

Let �"D�[�" �Rn be equipped with the natural topology, and the � -algebra
B of the Lebesgue measurable sets. The space of all game sequences

H1 D fx0g ��" ��" � � � � ;

is a product space endowed with the product topology.
Let fFkg1kD0 denote the filtration of � -algebras, F0�F1� � � � which are defined

as follows: Fk is the product �-algebra generated by cylinder sets of the form
fx0g �A1 � � � � �Ak ��" ��" � � � with Ai 2 B. For

! D .x0; !1; : : :/ 2H
1;

we define the coordinate processes

Xk.!/D !k; Xk WH
1
! Rn; k D 0; 1; : : :

so that Xk is an Fk-measurable random variable. Moreover, F1D �
�S

Fk
�

is the
smallest � -algebra so that all Xk are F1-measurable. To denote the time when the
game state reaches �", we define a random variable

�.!/D inffk W Xk.!/ 2 �"; k D 0; 1; : : :g;

which is a stopping time relative to the filtration fFkg1kD0.
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A starting point x0 and the strategies SI and SII define (by Kolmogorov’s
extension theorem) a unique probability measure P

x0

SI;SII
in H1 relative to the

� -algebra F1. We denote by E
x0

SI;SII
the corresponding expectation.

Then, if SI and SII denote the strategies adopted by Player I and II respectively,
we define the expected payoff for Player I as

Vx0;I.SI; SII/D

(
E
x0

SI;SII

�
g.X� /C "

2
P��1
nD1 f .xn/

�
if the game ends a.s.,

�1 otherwise,

and then the expected payoff for Player II as

Vx0;II.SI; SII/D

(
E
x0

SI;SII

�
g.X� /C "

2
P��1
nD1 f .xn/

�
if the game ends a.s.,

C1 otherwise.

Note that we penalize both players when the game doesn’t end almost surely.
The value of the game for Player I is given by

uI.x0/D supSI
infSII Vx0;I.SI; SII/;

while the value of the game for Player II is given by

uII.x0/D infSII supSI
Vx0;II.SI; SII/:

When uI D uII we say the game has a value u WD uI D uII. The values uI.x0/ and
uII.x0/ are in a sense the best outcomes each player can expect when the game
starts at x0. For the measurability of the value functions we refer to [Maitra and
Sudderth 1993; 1996].

Comment. It seems natural to consider a more general protocol to determine ˛ in a
prescribed closed set. It is clear that there are only two possible scenarios: At each
turn, Player I wants to maximize the value of ˛ and Player II wants to minimize
it, or the converse. An expected value for ˛ is obtained in each case assuming
each player plays optimally. Depending on the value of ˛ in each case, we are
considering a game equivalent to the one that we described previously or another
one where Player II gets the choice of the first coin, for certain values of ˛i .

4. The game value function and the dynamic programming principle

In this section, we prove that the game has a value, that is, uI D uII and that this
value function satisfies the dynamic programming principle (DPP) given by

u.x/D

8<:"2f .x/C max
i2f1;2g

�
˛i
2

˚
sup
B".x/

uC inf
B".x/

u
	
Cˇi �

Z
B".x/

u.y/ dy

�
; x 2�;

g.x/; x 2 �":
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Let’s see intuitively why this holds. At each step we have that Player I chooses
i 2 f1; 2g and then we have three possibilities:

� With probability ˛i=2, Player I moves the token, trying to maximize the
expected outcome.

� With probability ˛i=2, Player II moves the token, trying to minimize the
expected outcome.

� With probability ˇi , the token moves at random.

Since Player I chooses i trying to maximize the expected outcome we obtain a
maxi2f1;2g in the DPP. Finally, the expected payoff at x is given by "2f .x/ plus
the expected payoff for the rest of the game.

Similar results are proved in [Antunović et al. 2012; Liu and Schikorra 2013;
Luiro et al. 2013; Manfredi et al. 2012a; Peres et al. 2009; Ruosteenoja 2016]. Note
that when ˛1 D ˛2 (and hence ˇ1 D ˇ2) Player I has no choice to make and we
recover known results for tug-of-war games (with or without noise); see [Peres
et al. 2009; Manfredi et al. 2012b]. We follow [Ruosteenoja 2016] where the idea
is to prove the existence of a function satisfying the DPP and then that this function
gives the game value. For the existence of a solution to the DPP we borrow some
ideas from [Antunović et al. 2012], and for the uniqueness of such a solution and
the existence of the value of the game we use martingales as in [Manfredi et al.
2012a]. However we will have two different cases: One, where the noise or the
strict positivity (or negativity) of f assures us that the game ends almost surely,
independently of the strategies adopted by the players. And another one where
we have to handle the problem of getting strategies for the players to play almost
optimally and to make sure that the game ends almost surely.

In what follows, � � RN is a bounded open set and " > 0, g W �" ! R and
f W�!R are bounded Borel functions such that f � 0, inf� f >0 or sup� f <0.

Definition 4.1. A function u is sub-p1-p2-harmonious if

u.x/�

8<:"2f .x/C max
i2f1;2g

�
˛i
2

˚
sup
B".x/

uC inf
B".x/

u
	
Cˇi �

Z
B".x/

u.y/ dy

�
x 2�;

g.x/ x 2 �":

Analogously, a function u is super-p1-p2-harmonious if

u.x/�

8<:"2f .x/C max
i2f1;2g

�
˛i
2

˚
sup
B".x/

uC inf
B".x/

u
	
Cˇi �

Z
B".x/

u.y/ dy

�
; x 2�;

g.x/; x 2 �":

Finally, u is p1-p2-harmonious if it is both sub- and super-p1-p2-harmonious (i.e.,
the equality holds).
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�

xN

xN�
"
2

t "
2
C
"
2t "

2

Figure 1. The partition considered in the proof of Lemma 4.2.

Here ˛i and ˇi are given by

˛i D
pi�2

piCN
and ˇi D

NC2

piCN
; i D 1; 2:

Our next task is to prove uniform bounds for these functions.

Lemma 4.2. Sub-p1-p2-harmonious functions are uniformly bounded from above.

Proof. We will consider the space partitioned along the xN axis in strips of width "=2.
To this end we define

D D
jfy 2 B" W yN < �"=2gj

jB"j
D
jfy 2 B1 W yN < �1=2gj

jB1j
and C D 1�D:

The constant D gives the fraction of the ball B".x/ covered by the shadowed
section in Figure 1, fy 2 B" W yN < xN � "=2g, and C the fraction occupied by its
complement.

Given x 2�, let us consider t 2 R such that xN < t"=2C "=2. We getn
y 2 B".x/ W yN < xN �

"

2

o
�

n
z 2 RN W zN < t

"

2

o
:

Now, given u a sub-p1-p2-subharmonious function, we have that

u.x/� "2f .x/C max
i2f1;2g

�
˛i
2

˚
sup
B".x/

uC inf
B".x/

u
	
Cˇi �

Z
B".x/

u.y/ dy

�
:
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Now we can bound the terms in the right-hand side considering the partition given
above, see Figure 1. We have

supB".x/
u� sup�"

u;

infB".x/ u� supfy2B".x/WyN<xN�"=2g
u� sup�"\fzN<t"=2g

u;

and

�

Z
B".x/

u.y/ dy �
ˇ̌̌n
y 2 B".x/ W yN � xN �

"

2

oˇ̌̌
supfy2B".x/WyN�xN�"=2g

u

C

ˇ̌̌n
y 2 B".x/ W yN < xN �

"

2

oˇ̌̌
supfy2B".x/WyN<xN�"=2g

u

� C sup�"
uCD sup�"\fzN<t"=2g

u:

Hence, we obtain

u.x/� "2 sup� f Cmaxi2f1;2g
�
˛i
2

˚
sup�"

uC sup�"\fzN<t"=2g
u
	

Cˇi
˚
C sup�"

uCD sup�"\fzN<t"=2g
u
	�

D "2 sup� f Cmaxi2f1;2g
�n
˛i
2
CˇiC

o
sup�"

u

C

n
˛i
2
CˇiD

o
sup�"\fzn<t"=2g

u
�

D "2 sup� f Cmaxi2f1;2g
n
˛i
2
CˇiC

o
sup�"

u

Cmini2f1;2g
n
˛i
2
CˇiD

o
sup�"\fzN<t"=2g

u

D "2 sup� f CK sup�"
uC .1�K/ sup�"\fzN<t"=2g

u;

where K Dmaxi2f1;2g
˚
˛i=2CˇiC

	
. We conclude that

sup�"\fzN<.tC1/"=2g
uk�"

2 sup� fCK sup�"
ukC.1�K/ sup�"\fzN<t"=2g

uk :

Then, inductively, we get

sup�"\fzN<.tCn/"=2g
u�

�
"2 sup� f CK sup�"

u
�

�

Xn�1

iD0
.1�K/i C .1�K/n sup�"\fzN<t"=2g

u:

We assume without loss of generality that �� fx 2 RN W 0 < xN <Rg for some
R > 0. Now, we apply the formula for t D 0 and n such that n"=2 > R, and get

sup�"
u�

�
"2 sup� f CK sup�"

u
�Xn�1

iD0
.1�K/i C .1�K/n sup�"

g

D
�
"2 sup� f CK sup�"

u
�1�.1�K/n
1�.1�K/

C .1�K/n sup�"
g

D
1�.1�K/n

K
"2 sup� f C

�
1� .1�K/n

�
sup�"

uC .1�K/n sup�"
g:
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Hence, we obtain

.1�K/n sup�"
u�

1�.1�K/n

K
"2 sup� f C .1�K/

n sup�"
g;

that gives the desired upper bound,

sup�"
u�

1�.1�K/n

K.1�K/n
"2 sup� f C sup�"

g: �

Analogously, there holds that super-p1-p2-harmonious functions are uniformly
bounded from below.

Now with these results we can show that there exists a p1-p2-harmonious function
as in [Liu and Schikorra 2015] applying Perron’s Method. Remark that when f
and g are bounded we can easily obtain the existence of sub-p1-p2-harmonious and
super-p1-p2-harmonious functions.

We prefer a constructive argument (since we will use this construction again in
what follows). Let uk W�"! R be a sequence of functions such that uk D g on
�" for all k 2 N, then u0 is sub-p1-p2-harmonious and

ukC1.x/D "
2f .x/C max

i2f1;2g

�
˛i
2

˚
sup
B".x/

ukC inf
B".x/

uk
	
Cˇi �

Z
B".x/

uk.y/ dy

�
;

for x 2�.
Now, our main task is to show that this sequence converges uniformly. To this

end, let us prove an auxiliary lemma where we borrow some ideas from [Antunović
et al. 2012].

Lemma 4.3. Let x 2�, n 2 N and fix �i for i D 1; : : : ; 4, such that

unC1.x/�un.x/� �1; kun�un�1k1 � �2; �

Z
B".x/

un�un�1 � �3;

�3 < �1, and �4 > 0. Then, for ˛ WD maxf˛1; ˛2g > 0, there exists y 2 B".x/
such that

inf
B".x/

un � un�1.y/C
2�1
˛
��2�

2.1�˛/�3
˛

��4:

Proof. Given unC1.x/�un.x/� �1, by the recursive definition, we have

�1 � "
2f .x/C max

i2f1;2g

�
˛i
2

˚
sup
B".x/

unC inf
B".x/

un
	
Cˇi �

Z
B".x/

un.y/ dy

�
�"2f .x/� max

i2f1;2g

�
˛i
2

˚
sup
B".x/

un�1C inf
B".x/

un�1
	
Cˇi �

Z
B".x/

un�1.y/ dy

�
:
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Since maxfa; bg�maxfc; dg �maxfa� c; b� dg, we get

�1 � max
i2f1;2g

�
˛i
2

˚
sup
B".x/

unC inf
B".x/

un� sup
B".x/

un�1� inf
B".x/

un�1
	

Cˇi �

Z
B".x/

un.y/�un�1.y/ dy

�
:

Using that �
R
B".x/

un�un�1 � �3 we get

max
i2f1;2g

�
˛i
2

˚
sup
B".x/

unC inf
B".x/

un� sup
B".x/

un�1� inf
B".x/

un�1
	
Cˇi�3

�
� �1:

Now �3 < �1 implies
˛

2

˚
sup
B".x/

unC inf
B".x/

un� sup
B".x/

un�1� inf
B".x/

un�1
	
C .1�˛/�3 � �1:

We bound the difference between the suprema using kun�un�1k1 � �2 and we
obtain

˛

2

˚
inf
B".x/

un� inf
B".x/

un�1
	
C
˛�2
2
C .1�˛/�3 � �1;

that is,

inf
B".x/

un � inf
B".x/

un�1C
2�1
˛
��2�

2.1�˛/�3
˛

:

Finally we can choose y 2 B".x/ such that

un�1.y/� inf
B".x/

un�1C�4;

which gives the desired inequality. �

Now we are ready to prove the uniform convergence and, therefore, the existence
of a p1-p2-harmonious function.

Proposition 4.4. The sequence uk converges uniformly and the limit is a solution
to the DPP.

Proof. Since u0 is sub-p1-p2-harmonious we have u1�u0. In addition, if uk�uk�1,
by the recursive definition, we have ukC1 � uk . Then, by induction, we obtain that
the sequence of functions is an increasing sequence. Replacing uk � ukC1 in the
recursive definition we can see that uk is a sub-p1-p2-harmonious function for all k.
This gives us a uniform bound for uk (independent of k). Hence, the uk converge
pointwise to a bounded Borel function u.

In the case ˛1 D ˛2 D 0 we can pass to the limit on the recursion because of
Fatou’s lemma. Hence we assume ˛ WDmaxf˛1; ˛2g> 0.

Now we show that the convergence is uniform. Suppose not. Observe that if
kunC1 � unk1 ! 0 we can extract a uniformly Cauchy subsequence, thus this
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subsequence converges uniformly to a limit u. This implies that the uk converge
uniformly to u, because of the monotonicity. By the recursive definition we have
kunC1�unk1 � kun�un�1k1 � 0. Then, as we are assuming the convergence
is not uniform, we have

kunC1�unk1!M and kunC1�unk1 �M

for some M > 0.
Let us observe that by Fatou’s lemma it follows that

lim
n!1

Z
�

u.y/�un.y/ dy D 0;

so we can bound �
R
B".x/

unC1�un uniformly on x.
Given ı > 0, let n0 2 N such that for all n� n0,

kunC1�unk1 �M C ı and �

Z
B".x/

unC1�un < ı;

for all x 2�. We fix k � 0. Let x0 2� such that

un0Ck.x0/�un0Ck�1.x0/�M � ı:

Now we apply Lemma 4.3 for �1 DM � ı, �2 DM C ı, �3 D ı and �4 D ı and
we get

un0Ck�1.x0/;un0Ck�1.x1/� inf
B".x0/

un0Ck�1

� un0Ck�2.x1/C
2.M�ı/

˛
�.MCı/�

2.1�˛/

˛
�ı

D un0Ck�2.x1/CM
�
2

˛
�1
�
�ı

4

˛

� un0Ck�2.x1/CM�ı
4

˛
;

for some x1 2 B".x0/. Let us define � D 4=˛. If we repeat the argument for x1,
but now with �1 DM � ı� , we obtain

un0Ck�2.x1/; un0Ck�2.x2/� un0Ck�3.x2/CM � ı
�
�2C �

�
:

Inductively, we obtain a sequence xl , 1� l � k� 1 such that

un0Ck�l.xl�1/; un0Ck�l.xl/� un0Ck�l�1.xl/CM � ı
Xl

tD1
� t :

In Lemma 4.3 we require �3 < �1, so we need k.ı/ to satisfy

M � ı

lX
tD1

� t > ı;
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that is,

M > ı

lX
tD0

� t

for 1� l � k�1. As the right-hand side term grows with l , it is enough to check it
for l D k� 1. Since

lX
tD1

� t D �
�l�1

��1
� �lC1� 1� �lC1;

we obtain
un0Ck�l.xl�1/� un0Ck�l�1.xl/CM � ı�

lC1:

Adding these inequalities for 1� l � k�1, and un0Ck.x0/�un0Ck�1.x0/�M �ı

we get

un0Ck.x0/� un0
.xk�1/C kM � ı

Xk�1

lD0
�lC1:

From the last inequality and the condition for k.ı/, since

k�1X
lD0

�lC1 D

kX
lD1

�l � �kC1;

we have
un0Ck.x0/� un0

.xk�1/C kM � ı�
kC1

for all k such that M > ı�kC1. For kC 1D
�

log.M=ı/=log �
˘

this gives

un0Ck.x0/� un0
.xk�1/C

�
log.M=ı/

log �
� 3

�
M;

which is a contradiction since

lim
ı!0C

log.M=ı/
log �

D1

and the sequence un is bounded. We have that un! u uniformly, therefore the
result follows by passing to the limit in the recursive definition of un. In fact, that
the uniform limit of the sequence un is a solution to the DPP is immediate since
from the uniform convergence we can pass to the limit as n!1 in all the terms
of the DPP formula. �

Now we want to prove that this solution to the DPP, u, is unique and that it
gives the value of the game. To this end we have to take special care of the fact
that the game ends (or not) almost surely. First, we deal with the case ˇ1; ˇ2 > 0,
sup� f < 0 or inf� f > 0. We apply a martingale argument to handle these cases.
In other cases we also use the construction of the sequence uk .
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Lemma 4.5. Assume that ˇ1; ˇ2 > 0, supf < 0 or inff > 0. Then, if the function
v is a p1-p2-harmonious function for gv and fv such that gv � guI and fv � fuI ,
then v � uI.

Proof. By choosing a strategy according to the points where the maximal values
of v are attained, we show that Player I can obtain a certain process which is a
submartingale. The optional stopping theorem then implies that the expectation of
the process under this strategy is bounded by v. Moreover, this process provides a
lower bound for uI.

Player II follows any strategy and Player I follows a strategy S0I such that at
xk�1 2� he chooses  to be 1 if

˛1

2

˚
sup

y2B".x/

u.y/C inf
y2B".x/

u.y/
	
Cˇ1�

Z
B".x/

u.y/ dy

>
˛2

2

˚
sup

y2B".x/

u.y/C inf
y2B".x/

u.y/
	
Cˇ2�

Z
B".x/

u.y/ dy

and 0 otherwise, and he chooses to step to a point that almost maximizes v, that is,
to a point xk 2 B".xk�1/ such that

v.xk/� supB".xk�1/
v� �2�k

for some fixed � > 0. We start from the point x0. It follows that

E
x0

SI;S
0
II

h
v.xk/C "

2
k�1X
nD0

f .xn/� �2
�k
W x0; : : : ; xk�1

i
� max
i2f1;2g

�
˛i
2

˚
inf

B".xk�1/
v� �2�kC sup

B".xk�1/

v
	
Cˇi �

Z
B".xk�1/

v dy
�

C "2
k�1X
nD0

f .xn/� �2
�k

� v.xk�1/� "
2f .xk�1/� �2

�k
C "2

k�1X
nD0

f .xn/� �2
�k

D v.xk�1/C "
2
k�2X
nD0

f .xn/� �2
�kC1;

where we have estimated the strategy of Player II by inf and used the fact that v is
p1-p2-harmonious. Thus

Mk D v.xk/C "
2
k�1X
nD0

f .xn/� �2
�k

is a submartingale.
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Now we observe the following: if ˇ1; ˇ2 > 0 then the game ends almost surely
and we can continue (see below). If supf < 0 the fact that Mk is a submartingale
implies that the game ends in a finite number of moves (that can be estimated). In
the case inff > 0 if the game does not end in a finite number of moves then we
have to play until the accumulated payoff (recall that f gives the running payoff)
is greater than v and then choose a strategy that ends the game almost surely (for
example pointing to some prescribed point x0 outside �).

Since gv � guI and fv � fuI , we deduce

uI.x0/D sup
SI

inf
SII

E
x0

SI;SII

h
gu"

I
.x� /C "

2
X��1

nD0
f .xn/

i
� inf
SII

E
x0

S0
I ;SII

h
gv.x� /C "

2
X��1

nD0
f .xn/� �2

��
i

� inf
SII

lim inf
k!1

E
x0

S0
I ;SII

h
v.x�^k/C "

2
X.��1/^k

nD0
f .xn/� �2

�.�^k/
i

� inf
SII

ES0
I ;SII

ŒM0�D v.x0/� �;

where .� � 1/ ^ k D min.� � 1; k/, and we used Fatou’s lemma as well as the
optional stopping theorem for Mk . Since � is arbitrary, this proves the claim. �

A symmetric result can be proved for uII, hence we obtain the following result:

Theorem 4.6. Assume that ˇ1; ˇ2 > 0, supf < 0 or inff > 0. Then there exists
a unique p1-p2-harmonious function. Even more the game has a value, that is
uI D uII, which coincides with the unique p1-p2-harmonious function.

Proof. Let u be a p1-p2-harmonious function, which exits, as we know from
Proposition 4.4. From the definition of the game values we know that uI � uII.
Then by Lemma 4.5 we have that

uI � uII � u� uI:

Thus uI D uII D u. Since we can repeat the argument for any p1-p2-harmonious
function, uniqueness follows. �
Remark 4.7. Note that if we have a sub-p1-p2-harmonious function u, then v given
by vDu�C in� and vDu in �" is sub-p1-p2-harmonious for every constantC >0.
In this way we can obtain a sub-p1-p2-harmonious function smaller than any super-
p1-p2-harmonious function, and then if we start the above construction with this
function we get the smallest p1-p2-harmonious function. That is, there exists a
minimal p1-p2-harmonious function. We can use the analogous construction to get
the largest p1-p2-harmonious function (the maximal p1-p2-harmonious function).

We now tackle the remaining case in which f � 0 and one of the ˇi is 0 (that is
the same as saying that one of the ˛i is equal to 1).
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Theorem 4.8. There exists a unique p1-p2-harmonious function when ˛1 D 1,
˛2 > 0 and f � 0.

Proof. Suppose not, then we have u and v such that

v.x/Dmax
�
1
2

�
sup
B".x/

vC inf
B".x/

v
�
; ˛
2

�
sup
B".x/

vC inf
B".x/

v
�
Cˇ�

Z
B".x/

v

�

u.x/Dmax
�
1
2

�
sup
B".x/

uC inf
B".x/

u
�
; ˛
2

�
sup
B".x/

uC inf
B".x/

u
�
Cˇ�

Z
B".x/

u

�
in � and

uD v D g

on �" with
ku� vk1 DM > 0:

As we observed in Remark 4.7 we can assume u� v (just take v as the minimal
solution to the DPP). Now we want to build a point where the difference between u
and v is almost attained and v has a large variation in the ball of radius " around
this point (all this has to be carefully quantified). First, we apply a compactness
argument. We know that

�"=4 �
[
x2�

B"=2.x/:

As �"=4 is compact, there exists yi such that

�"=4 �

k[
iD1

B"=2.yi /:

Let AD
˚
i 2 f1; : : : ; kg W u or v are not constant on B"=2.yi /

	
and let � > 0 such

that, for every i 2 A,

sup
B".yi /

u� inf
B".yi /

u >

�
4C

4ˇ

˛

�
� or sup

B".yi /

v� inf
B".yi /

v > 2�:

We fix this �. Now, for every ı > 0 such that � > ı and M > ı, let z 2� such that
M � ı < u.z/� v.z/. Let

O D fx 2� W u.x/D u.z/ and v.x/D v.z/g ��:

Take z 2 @O ��. Letting i0 be such that z 2 B"=2.yi0/, we have

B"=2.yi0/\O ¤∅ and B"=2.yi0/\O
c
¤∅;

hence i0 2 A. Let x0 2 B"=2.yi0/\O . In this way we have obtained x0 such that
u.x0/� v.x0/ >M � ı and one of the following holds:
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(1) sup
B".x0/

u� inf
B".x0/

u >

�
4C

4ˇ

˛

�
�;

(2) sup
B".x0/

v� inf
B".x0/

v > 2�:

Let us show that in fact the second statement must hold. Suppose not, then the first
holds and we have

sup
B".x0/

v� inf
B".x0/

v � 2�:

Given that
v.x0/�

1
2

�
sup
B".x0/

vC inf
B".x0/

v
�
;

we get
v.x0/C�� sup

B".x0/

v:

Hence
v.x0/C�CM � sup

B".x0/

vCM � sup
B".x0/

u:

Further, since
u.x0/� v.x0/ >M � ı >M ��;

we get
u.x0/C 2� > sup

B".x0/

u;

and

sup
B".x0/

u > inf
B".x0/

uC

�
4C

4ˇ

˛

�
�:

Hence

u.x0/�

�
2C

4ˇ

˛

�
� > inf

B".x0/
u:

If we bound the integral by the value of the supremum we can control all the terms
in the DPP in terms of u.x0/. We have

u.x0/Dmax
�
1
2

�
sup
B".x0/

uC inf
B".x0/

u
�
; ˛
2

�
sup
B".x0/

uC inf
B".x0/

u
�
Cˇ�

Z
B".x0/

u

�
< max

�
1
2

�
u.x0/C 2�Cu.x0/�

�
2C

4ˇ

˛

�
�

�
;

˛
2

�
u.x0/C 2�Cu.x0/�

�
2C

4ˇ

˛

�
�

�
Cˇ

�
u.x0/C 2�

��
< max

�
u.x0/�

4ˇ

˛
�; u.x0/

�
D u.x0/;
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which is a contradiction. Hence, the second condition must hold, that is, we have

sup
B".x0/

v� inf
B".x0/

v > 2�:

Applying the DPP we get

v.x0/�
1
2

�
sup
B".x0/

vC inf
B".x0/

v
�

together with the fact that

sup
B".x0/

v� inf
B".x0/

v > 2�;

and then we conclude that

v.x0/ > inf
B".x0/

vC�:

We have proved that there exists x0 such that

v.x0/ > inf
B".x0/

vC� and u.x0/� v.x0/ >M � ı:

Now we are going to build a sequence of points where the difference between u
and v is almost maximal and where the value of v decreases by at least � in every
step. Applying the DPP to M � ı < u.x0/� v.x0/ and bounding the difference of
the suprema by M we get:

M �
2

˛
ıC inf

B".x0/
v < inf

B".x0/
u:

Let x1 be such that v.x0/ > v.x1/C� and infB".x0/ vC ı > v.x1/. We get

M �
�
1C

2

˛

�
ıC v.x1/ < u.x1/:

To repeat this construction we need the following two results:

� In the last inequality, if ı is small enough u.x1/¤ v.x1/, hence x1 2�.

� We know that 2v.x1/� infB".x1/ vCsupB".x1/
v >v.x0/CinfB".x1/ v. Hence,

since v.x0/ > v.x1/C�, we get v.x1/ > infB".x1/ vC�.

Then we get
v.xn�1/ > v.xn/C�

and

M �

� nX
kD0

�
2

˛

�k�
ıC v.xn/ < u.xn/:
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We can repeat this argument as long as

M �

� nX
kD0

�
2

˛

�k�
ı > 0;

which is a contradiction with the fact that v is bounded. �

Now we want to show that this unique function that satisfies the DPP is the
game value. The key point of the proof is to construct a strategy based on the
approximating sequence that we used to construct the solution.

Theorem 4.9. Given f � 0, the game has a value, that is uID uII, which coincides
with the unique p1-p2-harmonious function.

Proof. Let u be the unique p1-p2-harmonious function (the uniqueness is given by
Theorems 4.6 and 4.8). We will show that u � uI. The analogous result can be
proved for uII, completing the proof.

Let us consider a sub-p1-p2-harmonious function u0 which is smaller than inf� g
at every point in �. Starting with this u0 we build the corresponding uk as in
Proposition 4.4. We have that uk! u as k!1.

Now, given ı > 0, let n > 0 be such that un.x0/ > u.x0/� ı=2. We build a
strategy S0I for Player I: in the first n moves, given xk�1 he will choose to move to
a point that almost maximizes un�k , that is, he chooses xk 2 B".xk�1/ such that

un�k.xk/ > sup
B".xk�1/

un�k �
ı

2n

and chooses  in order to maximize

˛i
2

n
inf

B".xk�1/
un�k �

ı

2n
C sup
B".xk�1/

un�k

o
Cˇi �

Z
B".xk�1/

un�k dy:

After the first n moves he will follow a strategy that ends the game almost surely
(for example pointing in a fix direction).

We have

E
x0

S0
I ;SII

h
un�k.xk/C

kı

2n
W x0; : : : ; xk�1

i
� max
i2f1;2g

�
˛i
2

n
inf

B".xk�1/
un�k�

ı

2n
C sup
B".xk�1/

un�k

o
Cˇi �

Z
B".xk�1/

un�k dy

�
C
kı

2n

� un�kC1.xk�1/C
.k�1/ı

2n
;
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where we have estimated the strategy of Player II by inf and used the construction
for the uk . Thus

Mk D

8<:un�k.xk/C
kı

2n
�
ı

2
for 0� k � n;

inf� g for k > n;

is a submartingale.
Now we have

uI.x0/D sup
SI

inf
SII

E
x0

SI; SII
Œg.x� /�

� inf
SII

E
x0

S0
I ; SII

Œg.x� /�

� inf
SII

lim inf
k!1

E
x0

S0
I ;SII

ŒMk�

� inf
SII

ES0
I ;SII

ŒM0�D un.x0/�
ı

2
> u.x0/� ı;

where � ^kDmin.�; k/, and we used the optional stopping theorem for Mk . Since
ı is arbitrary, this proves the claim. �

As an immediate corollary of our results in this section we obtain a comparison
result for solutions to the DPP.

Corollary 4.10. If v and u are p1-p2-harmonious functions for gv , fv and gu, fu,
respectively such that gv � gu and fv � fu, then v � u.

5. Properties of harmonious functions and convergence

First, we show some properties of p1-p2-harmonious functions that we need to
prove convergence as "! 0. We want to apply the following Arzelà–Ascoli-type
lemma. For its proof, see [Manfredi et al. 2012b, Lemma 4.2].

Lemma 5.1. Let fu" W�! R; " > 0g be a set of functions such that

(1) there exists C > 0 such that ju".x/j< C for every " > 0 and every x 2�,

(2) given � > 0 there are constants r0 and "0 such that for every " < "0 and any
x; y 2� with jx�yj< r0,

ju".x/�u".y/j< �:

Then, there exists a uniformly continuous function u W�! R and a subsequence
still denoted by fu"g such that

u"! u uniformly in �;

as "! 0.



286 PABLO BLANC, JUAN P. PINASCO AND JULIO D. ROSSI

So our task now is to show that the family u" satisfies the hypotheses of the
previous lemma. To this end we need some bounds on the expected exit time in the
case of a player choose a certain strategy.

Let us start showing that u" are uniformly bounded. In Lemma 4.2 we obtained
a bound for the value of the game for a fixed "; here we need a bound independent
of ". To this end, let us define what we understand by pulling in one direction: we
fix a direction, that is, a unitary vector v and at each turn of the game the player
strategy is given as S.xk�1/D xk�1C ."� "3=2k/v.

Lemma 5.2. In a game where a player pulls in a fixed direction the expectation of
the exit time is bounded above by

EŒ� �� C"�2

for some C > 0 independent of ".

Proof. First, let us assume without loss of generality that

�� fx 2 Rn W 0 < xn <Rg

and that the direction that the player is pulling to is �en. Then

Mk D .xk/nC
"3

2k

is a supermartingale. Indeed, if the random move occurs, then we know that the
expectation of .xkC1/n is equal to .xk/n. If the tug-of-war game is played we
know that with probability one half, .xkC1/n D .xk/n� "C "3=2k and if the other
player moves .xkC1/n � .xk/n C ", so the expectation is less than or equal to
.xk/nC "

3=2kC1.
Let us consider the expectation for .MkC1�Mk/

2. If the random walk occurs,
then the expectation is "2=.nC 2/C o."2/. Indeed,

�

Z
B"

x2n D
1

n
�

Z
B"

jxj2 D
1

"nnjB1j

Z "

0

r2j@Br j dr D
j@B1j

"nnjB1j

Z "

0

rnC1 dr D
"2

nC2
:

If the tug-of-war occurs we know that with probability one half .xkC1/n D
.xk/n� "C "

3=2k , so the expectation is greater than or equal to "2=3.
Let us consider the expectation for M 2

k
�M 2

kC1
. We have

EŒM 2
k �M

2
kC1�D EŒ.MkC1�Mk/

2�C 2EŒ.Mk �MkC1/MkC1�:

As .xk/n is positive, we have 2EŒ.Mk �MkC1/MkC1�� 0. Then

EŒM 2
k �M

2
kC1�� "

2=.nC 2/;
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so M 2
k
C k"2=.nC 2/ is a supermartingale. According to the optional stopping

theorem for supermartingales,

E

�
M 2
�^kC

.�^k/"2

nC2

�
�M 2

0 :

We have

EŒ.� ^ k/�
"2

nC2
�M 2

0 �EŒM
2
�^k��M

2
0 :

Taking the limit in k, we get a bound for the expected exit time,

EŒ� �� .nC 2/M 2
0 "
�2;

so the statement holds for C D .nC 2/R2. �

Lemma 5.3. An f-p1-p2-harmonious function u" with boundary values g satisfies

(5-1) inf
y2�"

g.y/CC inf
y2�

f .y/� u".x/� sup
y2�"

g.y/CC sup
y2�

f .y/:

Proof. We use the connection to games. Let one of the players choose a strategy of
pulling in a fixed direction. Then

EŒ� �� C"�2;

and this gives the upper bound

E

�
g.X� /C "

2
��1X
nD0

f .Xn/

�
� sup
y2�"

g.y/CEŒ��"2 sup
y2�

f .y/

� sup
y2�"

g.y/CC sup
y2�

f .y/:

The lower bound follows analogously. �

Let us show now that the u" are asymptotically uniformly continuous. First we
need a lemma that bounds the expectation for the exit time when one player is
pulling towards a fixed point.

Let us consider an annular domain BR.y/ nBı.y/ and a game played inside. In
each round the token starts at a certain point x, an "-step tug-of-war is played inside
BR.y/ or the token moves at random with uniform probability in BR.y/\B".x/.
If an "-step tug-of-war is played, there is a probability of one half for either player
to move the token to a point of his choosing in BR.y/\B".x/. We can think there
is a third player choosing whether the "-step tug-of-war or the random move occurs.
The game ends when the position reaches Bı.y/, that is, when x�� 2 Bı.y/.
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Lemma 5.4. Assume that one of the players pulls towards y in the game described
above. Then, no mater how many times the tug-of-war is played or the random
move is done, the exit time verifies

(5-2) Ex0.��/�
�
C.R=ı/ dist.@Bı.y/; x0/C o.1/

�
="2;

for x0 2 BR.y/ nBı.y/. Here �� is the exit time in the previously described game
and o.1/! 0 as "! 0 can be taken as depending only on ı and R.

Proof. Let us denote
h".x/D Ex.�/:

By symmetry, we know that h" is radial and it is easy to see that it is increasing in
r D jx�yj. If we assume that the other player wants to maximize the expectation
for the exit time and that the random move or tug-of-war is chosen in the same way,
we have that the function h" satisfies a dynamic programming principle,

h".x/Dmax
�
1
2

�
max

B".x/\BR.y/
h"C min

B".x/\BR.y/
h"

�
; �

Z
B".x/\BR.y/

h" dz

�
C 1;

by the above assumptions and that the number of steps always increases by 1 when
making a step. Further, we denote v".x/D "2h".x/ and obtain

v".x/Dmax
�
1
2

�
sup

B".x/\BR.y/

v"C inf
B".x/\BR.y/

v"

�
; �

Z
B".x/\BR.y/

v" dz

�
C "2:

This induces us to look for a function v such that

(5-3) v.x/� �

Z
B".x/

v dzC "2 and v.x/� 1
2

�
sup
B".x/

vC inf
B".x/

v
�
C "2:

Note that for small " this is a sort of discrete version of the following inequalities:

(5-4)
�
�v.x/� �2.nC 2/; x 2 BRC".y/ nBı�".y/;

�1v.x/� �2; x 2 BRC".y/ nBı�".y/:

This leads us to consider the problem

(5-5)

8̂̂<̂
:̂
�v.x/D�2.nC 2/; x 2 BRC".y/ nBı.y/;

v.x/D 0; x 2 @Bı.y/;

@v

@�
D 0; x 2 @BRC".y/;

where @v=@� refers to the normal derivative. The solution to this problem is radially
symmetric and strictly increasing in r D jx�yj. It takes the form

v.r/D

(
�ar2� br2�N C c if N > 2, and

�ar2� b log.r/C c if N D 2.
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If we extend this v toBı.y/nBı�".y/, it satisfies�v.x/D�2.NC2/ inBRC".y/n
Bı�".y/. We know that

�1v D vrr � vrr C
N�1

r
vr D�v:

Thus, v satisfies the inequalities (5-4). Then, the classical calculation shows that v
satisfies (5-3) for each B".x/� BRC".y/ nBı�".y/.

In addition, as v is increasing in r , it holds for each x 2 BR.y/ nBı.y/ that

�

Z
B".x/\BR.y/

v dz � �

Z
B".x/

v dz � v.x/� "2

and

1
2

�
sup

B".x/\BR.y/

vC inf
B".x/\BR.y/

v
�
�
1
2

�
sup
B".x/

vC inf
B".x/

v
�
� v.x/� "2:

It follows that

EŒv.xk/C k"
2
W x0; : : : ; xk�1�

�max
�
1
2

�
sup

B".xk�1/\BR.y/

vC inf
B".xk�1/\BR.y/

v
�
; �

Z
B".xk�1/\BR.y/

v dz

�
� v.xk�1/C .k� 1/"

2;

if xk�1 2BR.y/nBı.y/. Thus v.xk/Ck"2 is a supermartingale, and the optional
stopping theorem yields

(5-6) Ex0 Œv.x��^k/C .�
�
^ k/"2�� v.x0/:

Because x�� 2 Bı.y/ nBı�".y/, we have

0� �Ex0 Œv.x��/�� o.1/:

Furthermore, the estimate

0� v.x0/� C.R=ı/ dist
�
@Bı.y/; x0

�
holds for the solutions of (5-5). Thus, by passing to the limit as k!1, we obtain

"2Ex0 Œ���� v.x0/� EŒu.x��/�� C.R=ı/
�
dist.@Bı.y/; x0/C o.1/

�
:

This completes the proof. �

Next we derive a uniform bound and estimate for the asymptotic continuity of
the family of p1-p2-harmonious functions.

We assume here that � satisfies an exterior sphere condition: for each y 2 @�,
there exists Bı.z/� Rn n� such that y 2 @Bı.z/.
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Lemma 5.5. Let g be Lipschitz continuous in �" and f Lipschitz continuous in �
such that f � 0, inff > 0 or supf < 0. The p1-p2-harmonious function u" with
data g and f satisfies

(5-7) ju".x/�u".y/j � Lip.g/
�
jx�yjC ı

�
CC.R=ı/

�
jx�yjC o.1/

�
.1Ckf k1/C zC Lip.f /jx�yj;

for every small enough ı > 0 and for every two points x; y 2 �[�". Here o.1/
can be taken depending only on ı and R.

Proof. The case x; y 2 �" is clear. Thus, we can concentrate on the cases x 2�
and y 2 �" as well as x; y 2�.

We use the connection to games. Suppose first that x 2� and y 2 �". By the
exterior sphere condition, there exists Bı.z/� Rn n� such that y 2 @Bı.z/. Now
Player I chooses a strategy of pulling towards z, denoted by SzI . Then

Mk D jxk � zj �C"
2k

is a supermartingale for a sufficiently large constant C , independent of ". Indeed,

E
x0

Sz
I ;SII

�
jxk � zj W x0; : : : ; xk�1

�
� max
i2f1;2g

�
˛i
2

˚
jxk�1� zjC "� "

3
Cjxk�1� zj � "

	
Cˇi �

Z
B".xk�1/

jx� zj dx

�
� jxk�1� zjCC"

2:

The first inequality follows from the choice of the strategy, and the second from the
estimate

�

Z
B".xk�1/

jx� zj dx � jxk�1� zjCC"
2:

By the optional stopping theorem, this implies that

(5-8) E
x0

Sz
I ;SII

�
jx� � zj

�
� jx0� zjCC"

2E
x0

Sz
I ;SII

Œ� �:

Next we can estimate E
x0

Sz
I ;SII

Œ� � by the stopping time of Lemma 5.4. Let R > 0
be such that �� BR.z/. Thus, by (5-2),

"2E
x0

Sz
I ;SII

Œ� �� "2E
x0

Sz
I ;SII

Œ���� C.R=ı/
�
dist.@Bı.z/; x0/C o.1/

�
:

Since y 2 @Bı.z/,
dist

�
@Bı.z/; x0

�
� jy � x0j;

and thus, (5-8) implies

E
x0

Sz
I ;SII

�
jx� � zj

�
� C.R=ı/

�
jx0�yjC o.1/

�
:
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We get
g.z/�C.R=ı/

�
jx�yjC o.1/

�
� E

x0

Sz
I ;SII

Œ g.x� / �:

Thus, we obtain

supSI
infSII E

x0

SI;SII

�
g.x� /C "

2
��1X
nD0

f .xn/

�
� infSII E

x0

Sz
I ;SII

�
g.x� /C "

2
��1X
nD0

f .xn/

�
� g.z/�C.R=ı/

�
jx0�yjC o.1/

�
� "2 infSII E

x0

Sz
I ;SII

Œ� �kf k1

� g.y/�Lip.g/ı�C.R=ı/
�
jx0�yjC o.1/

�
.1Ckf k1/:

The upper bound can be obtained by choosing for Player II a strategy where he
points to z, and thus, (5-7) follows.

Finally, let x; y 2� and fix the strategies SI; SII for the game starting at x. We
define a virtual game starting at y: we use the same coin tosses and random steps as
the usual game starting at x. Furthermore, the players adopt their strategies SvI ; S

v
II

from the game starting at x, that is, when the game position is yk�1 a player chooses
the step that would be taken at xk�1 in the game starting at x. We proceed in this
way until for the first time xk 2 �" or yk 2 �". At that point we have

jxk �ykj D jx�yj;

and we may apply the previous steps that work for xk 2 �, yk 2 �" or for
xk; yk 2 �".

If we are in the case f � 0 we are done. In the case infy2�jf .y/j > 0, as we
know that the u" are uniformly bounded according to Lemma 5.3, we have that the
expected exit time is bounded by

zC D
maxy2�"

jg.y/jCC maxy2�jf .y/j
infy2�jf .y/j

:

So the expected difference in the running payoff in the game starting at x and
the virtual one is bounded by zC Lip.f /jx�yj, because jxi �yi j D jx�yj for all
0� i � k. �

Corollary 5.6. Let fu"g be a family of p1-p2-harmonious functions. Then there
exists a uniformly continuous u and a subsequence still denoted by fu"g such that

u"! u uniformly in �:

Proof. Using Lemmas 5.3 and 5.5 we get that the family u" satisfies the hypothesis
of compactness in Lemma 5.1. �
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Theorem 5.7. The function u obtained as a limit in Corollary 5.6 is a viscosity
solution to (1-2) when we consider the game with f=2 as the running payoff
function.

Proof. First, we observe that u D g on @� since u" D g on @� for all " > 0.
Hence, we can focus our attention on showing that u is p1-p2-harmonic inside
� in the viscosity sense. To this end, we recall from [Manfredi et al. 2010] an
estimate that involves the regular Laplacian (p D 2) and an approximation for the
infinity Laplacian (p D1). Choose a point x 2� and a C 2-function � defined in
a neighborhood of x. Note that since � is continuous we have

min
y2B".x/

�.y/D inf
y2B".x/

�.y/

for all x 2�. Let x"1 be the point at which � attains its minimum in B".x/,

�. x"1 /D min
y2B".x/

�.y/:

It follows from the Taylor expansions in [Manfredi et al. 2010] that

(5-9) ˛

2

�
max

y2B".x/

�.y/C min
y2B".x/

�.y/
�
Cˇ�

Z
B".x/

�.y/ dy ��.x/

�
"2

2.nCp/

�
.p� 2/

�
D2�.x/

�
x"1� x

"

�
;

�
x"1� x

"

��
C��.x/

�
C o."2/:

Suppose that � touches u at x strictly from below. We want to prove that
F �.r�.x/;D2�.x//� f .x/. By the uniform convergence, there exists a sequence
fx"g converging to x such that u"�� has an approximate minimum at x", that is,
for �" > 0, there exists x" such that

u".x/��.x/� u".x"/��.x"/� �":

Moreover, considering z�D��u".x"/��.x"/, we can assume that �.x"/Du".x"/.
Thus, by recalling the fact that u" is p1-p2-harmonious, we obtain

�" � "
2f .x"/

2
��.x"/C max

i2f1;2g

�
˛i
2

�
max
B".x"/

�C min
B".x"/

�
�
Cˇi �

Z
B".x"/

�.y/ dy

�
;

and thus, by (5-9), and choosing �" D o."2/, we have

0�
"2

2
max
i2f1;2g

�
˛i

�
D2�.x"/

�
x"1� x"

"

�
;

�
x"1� x"

"

��
C �i��.x"/

�
C "2

f .x"/

2
C o."2/:
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Next we need to observe that�
D2�.x"/

�
x"1� x"

"

�
;

�
x"1� x"

"

��
converges to �1�.x/ when r�.x/ ¤ 0 and is always bounded in the limit by
�min.D

2�.x// and �max.D
2�.x//. Dividing by "2 and letting "! 0, we get

F �.r�.x/;D2�.x//� f .x/:

Therefore u is a viscosity supersolution.
To prove that u is a viscosity subsolution, we use a reverse inequality to (5-9)

by considering the maximum point of the test function and choose a smooth test
function that touches u from above. �

Now, we just observe that this probabilistic approach provides an alternative
existence proof of viscosity solutions to our PDE problem.

Corollary 5.8. Any limit function obtained as in Corollary 5.6 is a viscosity solution
to the problem �

maxf��p1
u;��p2

ug D f on �;
uD g on @�:

In particular, the problem has a solution.

We proved that the problem has an unique solution using PDE methods, therefore
we conclude that we have convergence as "!0 of u" (not only along subsequences).

Corollary 5.9. It holds that

u"! u uniformly in �;

being u the unique solution to the problem�
maxf��p1

u;��p2
ug D f on �;

uD g on @�:
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VAN EST ISOMORPHISM FOR HOMOGENEOUS COCHAINS

ALEJANDRO CABRERA AND THIAGO DRUMMOND

VB-groupoids define a special class of Lie groupoids which carry a compati-
ble linear structure. We show that their differentiable cohomology admits a
refinement by considering the complex of cochains which are k-homogeneous
on the linear fiber. Our main result is a van Est theorem for such cochains.
We also work out two applications to the general theory of representations
of Lie groupoids and algebroids. The case k = 1 yields a van Est map for
representations up to homotopy on 2-term graded vector bundles and, more-
over, to a new proof of a rigidity conjecture posed by Crainic and Moerdijk.
Arbitrary k-homogeneous cochains on suitable VB-groupoids lead to a novel
van Est theorem for differential forms on Lie groupoids with values in a rep-
resentation.
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1. Introduction

The van Est theorem [1953a; 1953b; 1955a; 1955b] is a classical result relating
the differentiable cohomology associated to a Lie group with the underlying Lie
algebra cohomology. More precisely, given a Lie group G with Lie algebra g, the
van Est map is a map

VE : C p(G)= { f ∈ C∞(G p) : f (g1, . . . , gp)= 0 if gi = e} → CE(g)=3pg∗
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taking (normalized) differentiable p-cochains on G to Lie algebra p-cochains. It is
defined (up to sign) by

(1-1) VE( f )(u1, . . . , u p)=
∑
σ∈Sp

sgn(σ )Ruσ(1) . . . Ruσ(p) f,

where Ru :C p(G)→C p−1(G) is the operator which differentiates f ( · , g2, . . . , gp)

at the unit e with respect to the right-invariant vector field corresponding to u. The
map VE can be seen as a model for the pullback of functions along the projection
of the universal G-bundle EG → BG. The van Est theorem then states that if
G is (topologically) p0-connected, the map induced by VE in cohomology is an
isomorphism for p≤ p0 and injective for p= p0+1. In the setting of Lie groupoids,
the van Est theorem was first studied by A. Weinstein and P. Xu [1991] for p0 = 1
and later generalized for arbitrary degrees by M. Crainic [2003] (see also the more
recent work of D. Li-Bland and E. Meinrenken [2015]).

In this paper, we provide a refinement of this theorem for a particular class of
Lie groupoids endowed with a compatible linear structure, called VB-groupoids
[Pradines 1988] (see also [Bursztyn et al. 2016; Gracia-Saz and Mehta 2010; 2011]).
In this case, the linear structure allows us to refine the van Est theorem by looking
at homogeneous cochains, and we are able to derive several interesting applications
from this general result.

To illustrate our approach, we examine here a simple situation involving a Lie
group G and a linear representation ρG : G→ Aut(V ) on a (finite-dimensional)
real vector space V. The associated complex of differentiable cochains for G with
values in V is C p(G, V ) = { f : G p

→ V : f (g1, . . . , gp) = 0 if gi = e} with
a differential δ : C p(G, V )→ C p+1(G, V ) which encodes ρG (see Example 2.5
below for an explicit formula). Infinitesimally, associated to the induced Lie algebra
representation ρg : g→ End(V ), we have the Chevalley–Eilenberg complex of Lie
algebra cochains with values in V , namely CEp(g, V )=3pg∗⊗ V. In this setting,
there exists a natural analogue of the van Est map

(1-2) 9ρ : C p(G, V )→ CEp(g, V ).

How can one prove a van Est theorem for 9ρ? There are two approaches: the first
one is to re-prove the statement from scratch mimicking the proof of the standard
case. The second one is to deduce the desired result from the known van Est theorem
for Lie groupoids by relating the map (1-2) to the van Est map VE for the action
groupoid V = V ∗oG. It is the second approach that we pursue in this paper.

To relate VE and 9ρ , notice that both V and its space of p-composable arrows
BpV define vector bundles V→ G and BpV→ G p, respectively. (Actually, BpV
is isomorphic to V ∗ × G p.) One can then show that the differentiable cochains
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f ∈ C∞(BpV) which are fiberwise k-homogeneous define a subcomplex

C p
k-hom(V)⊂ C p(V).

Analogously, the Lie algebroid v= V ∗o g of V also defines a trivial vector bundle
v→ g and the fiberwise k-homogeneous cochains define a subcomplex

CEp
k-hom(v)⊂3

pv∗.

The key point is that VE preserves k-homogeneous cochains, thus restricting to a map

VEk-hom : C
p
k-hom(V)→ CEp

k-hom(v)

which, by a simple homological algebra argument (see page 307), is an isomorphism
(resp. injective) in cohomology whenever VE is. Finally, to obtain the van Est
theorem for V -valued cochains one has to verify that

H p(C•1-hom(V))' H p(C•(G, V )),

H p(CE•1-hom(v))' H p(3•g∗⊗ V ),

VE1-hom '9ρ .

In this paper, we follow the same reasoning but with V replaced by an arbi-
trary VB-groupoid. The main arguments follow directly as above but nontrivial
computational effort needs to go into the last ingredient of the argument, namely,
into relating the complexes of homogeneous (groupoid and algebroid) cochains to
certain complexes already introduced in the literature from different perspectives.
In particular, we obtain explicit formulas for the underlying van Est maps.

We work out two applications: in the first, we deduce a van Est theorem for repre-
sentations up to homotopy in 2-term graded vector bundles [Arias Abad and Crainic
2012; 2013; Gracia-Saz and Mehta 2010; 2011] by looking at 1-homogeneous
cochains and generalizing the case of ρ above, recovering results from [Arias Abad
and Schätz 2011]. Moreover, we prove a cohomological vanishing result for these
1-homogeneous cochains which, in the case of the adjoint representation, leads
to a realization of the original idea proposed in [Crainic and Moerdijk 2008] for
showing a rigidity result for certain proper groupoids. (This last result was also
proven in [Arias Abad and Schätz 2011] using different methods.) The second
application provides a new van Est theorem for differential forms on Lie groupoids
with coefficients in a representation, generalizing [Arias Abad and Crainic 2011]
on the Bott–Shulmann complex and [Crainic et al. 2015b] on Spencer operators. It
is interesting to notice that, in this second application, another idea is incorporated
(which has its roots in supergeometry and was used in a Lie-theoretic context
by Mehta [2009]): forms in 3k V ∗ are k-homogeneous functions on V k. For this
application, we need the refinement of the van Est theorem in its full extent (i.e., for
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k-homogeneous cochains, where k is arbitrary). Even in the particular case of differ-
ential forms with trivial coefficients, our proof of the corresponding van Est theorem
is new and can be seen as illustration of the usefulness of homogeneous cochains.

Outline of the paper.

• In Section 2 we set up some notation, introduce homogeneous cochains on VB-
groupoids and VB-algebroids and provide our main result: the corresponding
refinement of the van Est theorem.

• In Section 3, we specialize to 1-homogeneous cochains and deduce a van Est
result for representations up to homotopy. Along the way, we mention how this
argument can be used to provide an alternative proof of the rigidity conjecture
as originally proposed in [Crainic and Moerdijk 2008].

• In Section 4, by means of k-homogeneous cochains in suitable VB-groupoids
and VB-algebroids, we prove a van Est theorem for differential forms with
coefficients in a representation.

To keep the main text as simple as possible, we postpone to the Appendix some
of the more technical or computational parts of the arguments in Section 4. Most of
the explicit formulas contained in the Appendix follow from extensions of known
lift properties of vector fields to Lie groupoids (see [Mackenzie and Xu 1994;
1998]). We would like to mention that part of this paper grew out of the project of
understanding the Lie theory of multiplicative tensors on Lie groupoids [Bursztyn
and Drummond ≥ 2017].

2. Homogeneous cochains and the van Est map for VB-groupoids

In this section, we present a refinement of groupoid and algebroid cohomology the-
ory for VB-groupoids and VB-algebroids by considering k-homogeneous cochains.
We also show that an analogue of the van Est theorem holds for such homogeneous
cochains.

Homogeneous functions on vector bundles. Given any vector bundle π : V → B,
fiberwise multiplication by scalars h : R× V → V defines an action of the mul-
tiplicative monoid R which we shall call the homogeneous structure of V → B.
Following [Grabowski and Rotkiewicz 2009], we recall that the homogeneous
structure completely characterizes the underlying vector bundle structure and that, in
particular, a smooth map between the total spaces defines a vector bundle morphism
if and only if it commutes with the underlying R-actions. (See [Bursztyn et al.
2016] for applications of these ideas in a Lie-theoretic context.)

For each k ∈ N, we consider

C∞k-hom(V ) := { f ∈ C∞(V ) : h∗λ f = λk f ∀ λ ∈ R},
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the set of fiberwise k-homogeneous functions. Note that

C∞0-hom(V )= { f ∈ C∞(V ) : ∃ f0 ∈ C∞(B) such that f = f0 ◦π} ∼= C∞(B).

Multiplication of functions gives a map C∞k-hom(V )×C∞k′-hom(V )→ C∞k+k′-hom(V )
and, in particular, each C∞k-hom(V ) is a C∞(B)-module. In fact, C∞k-hom(V ) ∼=
0(B, Sk V ∗) for the symmetric algebra bundle Sk V ∗ → B. The isomorphism
0(B, V ∗)∼=C∞1-hom(V ) takes a section µ∈0(B, V ∗) to the fiberwise-linear function
`µ ∈ C∞1-hom(V ) given by

`µ(v)= 〈µ(b), v〉, v ∈ Vb, b ∈ B.

The k-th derivative along the fiber defines a projection Pk-hom :C∞(V )→C∞k-hom(V ),

(2-1) Pk-hom( f )=
1
k!

dk

dλk (h
∗

λ f )|λ=0.

If (x, ξ1, . . . , ξn) are trivializing coordinates on V , then

Pk-hom( f )(x, ξ)=
∑

k1+···+kn=k

1
k1! · · · kn!

∂k f

∂ξ
k1
1 · · · ∂ξ

kn
n
(x, 0) ξ k1

1 · · · ξ
kn
n .

Homogeneous groupoid cochains. Let G ⇒ M be a Lie groupoid with source and
target maps s, t : G→ M , unit 1 : M→ G, inversion ι : G→ G and multiplication
m :Gs×tG→G. We denote by BpG the manifold of composable p-tuples (B0G=M).
The nerve of G is the simplicial manifold whose space of p-simplices is BpG with
the simplicial structure given by the face maps ∂i : BpG→ Bp−1G, i = 0, . . . , p,
defined by

∂i (g1, . . . , gp)=


(g2, . . . , gp) if i = 0,
(g1, . . . , gi−1, gi gi+1, gi+2, . . . , gp) if 1≤ i ≤ p− 1,
(g1, . . . , gp−1) if i = p,

and the degeneracy maps si : Bp−1G→ BpG, i = 0, . . . , p− 1, defined by

si (g1, . . . , gp−1)= (g1, . . . , gi , 1t(gi+1), gi+1, . . . , gp−1).

For p = 1, ∂0 = s, ∂1 = t and s0 = 1.
The nerve defines a functor B• from the category of Lie groupoids to the category

of simplicial manifolds. For a groupoid morphism φ : G1 → G2, the morphism
Bφ : BG1→ BG2 is defined by Bpφ(g1, . . . , gp)= (φ(g1), . . . , φ(gp)).

The space of (normalized) p-cochains C p(G) on G consists of smooth functions
f : BpG → R such that s∗i f = 0 for i = 0, . . . , p − 1. These define a cochain



302 ALEJANDRO CABRERA AND THIAGO DRUMMOND

complex with differential δ : C p−1(G)→ C p(G) defined by

(2-2) δ =

p∑
i=0

(−1)i∂∗i .

The differentiable cohomology of G is the cohomology of the complex (C•(G), δ)
and we denote it by H •(G). For f1 ∈C p(G), f2 ∈C p′(G), the cup product f1 ? f2 ∈

C p+p′(G) is defined by

(2-3) ( f1 ? f2)(g1, . . . , gp+p′)= f1(g1, . . . , gp) f2(gp+1, . . . , gp+p′).

It defines an algebra structure on C•(G) which passes to cohomology due to the
Leibniz formula

δ( f1 ? f2)= δ( f1) ? f2+ (−1)p f1 ? δ( f2).

In the following, we investigate how the differentiable cohomology of a VB-
groupoid interacts with its underlying homogeneous structure.

Definition 2.1. A VB-groupoid is given by a commutative square

(2-4)

V

�� ��

// G

�� ��

E // M ,

where the left and right sides are Lie groupoids and the top and bottom sides are
vector bundles satisfying the following compatibility condition:

(2-5)

V

�� ��

hG
λ
// V

�� ��

E
hλ
// E

defines a Lie groupoid morphism for each λ∈R, where hG
λ :V→V and hλ : E→ E

are the homogeneous structures corresponding to V→ G and E→ M , respectively.
We denote the structure maps of V ⇒ E by sV , tV , 1V , ιV ,mV .

Instead of looking at the homogeneous structure, VB-groupoids can be alterna-
tively defined by focusing on the fiberwise defined sum (see [Gracia-Saz and Mehta
2011]). Our choice of definition comes from [Bursztyn et al. 2016], where the two
definitions are shown to be equivalent (see Theorem 3.2.3 therein).

VB-groupoids have found several applications in recent years ([Bursztyn and
Cabrera 2012; Bursztyn et al. 2016; Bursztyn and Drummond ≥ 2017; Gracia-Saz
and Mehta 2011; Mackenzie and Xu 1994; 1998] to mention just a few). Natural
examples of VB-groupoids are given by the tangent TG ⇒ TM and cotangent
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T ∗G ⇒ Lie(G)∗ groupoids, which provide intrinsic versions of the adjoint and
coadjoint representations (up to homotopy; see Section 3 below) of a Lie groupoid G.
Ordinary representations also provide examples of VB-groupoids, as we shall see
in detail in Example 2.5 below.

From now on, we focus on introducing homogeneous cochains on a VB-groupoid
and to study their properties with respect to the van Est map, while having in mind
the applications to be developed in Sections 3 and 4. The first result states that B•
restricts to a functor from VB-groupoids to simplicial vector bundles.

Lemma 2.2. Let V⇒ E be a VB-groupoid over G⇒ M. The space of p-composable
arrows BpV is a vector bundle over BpG. Moreover, the face and degeneracy maps
are all vector bundle maps.

Proof. Consider V p
= V×· · ·×V as a vector bundle over G p. We shall present BpV

as a subbundle of V p restricted to BpG ⊂ G p. It follows from the commutativity
of (2-4) that BpV projects onto BpG. As BpV is a smooth submanifold of V p, it
remains to check that it is invariant by the homogeneous structure of the vector
bundle V p

→ G p (see [Grabowski and Rotkiewicz 2009]). This is a straightforward
consequence of the fact that (2-5) is a groupoid morphism. The statement regarding
the face and degeneracy maps follows now from the fact that the multiplication
mV : B2V→ V is a vector bundle map (see also [Bursztyn et al. 2016]). �

Note that the homogeneous structure hBpG
λ : BpV→ BpV of the vector bundle

BpV→ BpG satisfies

BphG
λ = hBpG

λ .

It is now a straightforward consequence of Lemma 2.2 that homogeneous cochains
define a subcomplex of the differentiable cohomology of V .

Proposition 2.3. Let V ⇒ E be a VB-groupoid. If

PG,p
k-hom : C

∞(BpV)→ C∞k-hom(BpV)

is the projection (2-1) induced by hBpG
λ , then

PG,p+1
k-hom ◦ δ = δ ◦ PG,p

k-hom.

In particular,
δ(C∞k-hom(BpV))⊂ C∞k-hom(Bp+1V).

Thus, for a VB-groupoid V ⇒ E , we define natural subcomplexes of (C•(V), δ)
by considering the set of fiberwise k-homogeneous functions:

C•k-hom(V) := C∞k-hom(V
(•)) and H •k-hom(V)= H(C•k-hom(V)).
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Remark 2.4. For k = 0, we have C•0-hom(V)' C•(G) and the cup product (2-3) on
C•(V) induces a right C•(G)-module (resp. H •(G)-module) structure on C•k-hom(V)
(resp. H •k-hom(V)).

Example 2.5. Let C→ M be a (left) representation of the Lie groupoid G ⇒ M .
The vector bundle V = t∗C∗ → G carries a VB-groupoid structure t∗C∗ ⇒ C∗

defined by

sV(g, ξ)=1∗g(ξ), tV(g, ξ)= ξ,

ιV(g, ξ)= (g−1,1∗g(ξ)), 1V(ξ)= (1π(ξ), ξ), mV((g, ξ1), (h, ξ2))= (gh, ξ1),

where 1g :Cs(g)→Ct(g) is the action of g ∈ G. Note that t∗C∗=C∗oG, the action
groupoid for the adjoint action of G on C∗. As vector bundles over BpG, one has
that Bp(t

∗C∗) = t∗pC∗, where tp : BpG→ M is given by tp(g1, . . . , gp) = t(g1)

and the isomorphism is given by ((g1, ξ1), . . . , (gp, ξp)) 7→ ((g1, . . . , gp), ξ1). In
particular,

C p
1-hom(V)∼= 0(BpG, t∗pC).

The right C•(G)-module structure on C•1-hom(V) corresponds to a right module
structure on 0(B•G, t∗•C) given by

(2-6) (φ ? f )(g1, . . . , gp+p′)= φ(g1, . . . , gp) f (gp+1, . . . , gp+p′),

f ∈ C p′(G), φ ∈ 0(BpG, t∗pC).

Further, the differential on C•1-hom(V) corresponds to the differential on 0(B•G, t∗•C)
given by

(δφ)(g1,...,gp+1)

=1g1(φ(g2,...,gp))+

p−1∑
i=1

(−1)iφ(g1,...,gi gi+1,...,gp)+(−1)pφ(g1,...,gp−1).

Hence, as H •(G)-modules, H •1-hom(V)∼= H •(G,C), the cohomology of G with coef-
ficients on the representation C (see [Crainic 2003]). More generally, H •k-hom(V)∼=
H •(G, SkC).

Homogeneous algebroid cochains. Given a VB-groupoid V⇒ E , its Lie algebroid
v→ E inherits the structure of a VB-algebroid; see [Bursztyn et al. 2016]. As for
VB-groupoids, we take our working definition from that paper.

Definition 2.6. A VB-algebroid is given by a commutative square

(2-7)

v

��

// g

��

E // M ,
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where the left and right sides are Lie algebroids and the top and bottom sides are
vector bundles satisfying the following compatibility condition:

(2-8)

v

��

hg
λ
// v

��

E
hλ
// E

defines a Lie algebroid morphism for each λ ∈ R, where hg
λ and hλ are the homoge-

neous structures of the vector bundles v→ g and E→ M , respectively.

Parallel to VB-groupoids, VB-algebroids together with Lie theory for VB-objects
have found several applications in recent years (again, we list just a few of the
available references: [Bursztyn and Cabrera 2012; Bursztyn et al. 2016; Bursztyn
and Drummond ≥ 2017; Gracia-Saz and Mehta 2010; Mackenzie and Xu 1994;
1998]). The tangent T A→ TM and the cotangent lift T ∗A→ A∗ define examples of
VB-algebroids corresponding to TG and T ∗G when A= Lie(G), providing intrinsic
versions of the adjoint and coadjoint representations (up to homotopy; see Section 3
below) of a Lie algebroid A. Ordinary representations of A also provide examples
of VB-groupoids, as explained in Example 2.9 below. We now investigate the
infinitesimal version of the notion of homogeneous cochains.

For any Lie algebroid A→ M , let CEp(A) := 0(M,3p A∗) and d : CEp(A)→
CEp+1(A) be the (Chevalley–Eilenberg) differential. The Lie algebroid cohomology
H •(A) is the cohomology of the complex (CE•(A), d). The wedge product on
0(M,3•A∗) induces a graded commutative algebra structure on H •(A).

When considering a VB-algebroid A = v, the dual v∗ is always taken with
respect to the Lie algebroid side v→ E , so that CEp(v)= 0(E,3pv∗). The space
of fiberwise (with respect to v→ g) k-homogeneous p-forms on v→ E is

(2-9) 0k-hom(E,3pv∗) := {α ∈ 0(E,3qv∗) : hg ∗
λ α = λ

kα ∀ λ ∈ R}.

The wedge product induces a map

· ∧ · : 0k-hom(E,3pv∗)×0k′-hom(E,3p′v∗)→ 0k+k′-hom(E,3p+p′v∗).

Similarly to equation (2-1), there exists a projection Pg,p
k-hom : 0(E,3

pv∗)→

0k-hom(E,3pv∗) defined by

(2-10) Pg,p
k-homα =

1
k!

dk

dλk (h
g ∗
λ α)|λ=0.

Proposition 2.7. Let v→ E be a VB-algebroid. For each k ∈N0 and every p ≥ 0,

Pg,p+1
k-hom ◦ d = d ◦ Pg,p

k-hom.
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In particular,
d(0k-hom(E,3pv∗))⊂ 0k-hom(E,3p+1v∗).

Proof. Since the Chevalley–Eilenberg differential d is a local operator, we can
assume v→ E is trivial. By looking at hv ∗

λ α as a smooth 1-parameter family of
forms, one can see that d commutes with d/dλ. The statement then follows from
the fact that hv

λ is a Lie algebroid morphism and, hence, hv ∗
λ commutes with d . �

Thus, for each k ∈N0, the k-homogeneous forms define a subcomplex CE•k-hom(v)

of (CE•(v), d). The notation we use is

CEp
k-hom(v) := 0k-hom(E,3pv∗) and H •k-hom(v)= H(CE•k-hom(v)).

Remark 2.8. For k = 0, we have 00-hom(E,3pv∗)∼= 0(M,3pg∗) and the wedge
product turns 0k-hom(E,3•v∗) (resp. H •k-hom(v)) into a right 0(M,3•g∗)-module
(resp. H •(g)-module).

Example 2.9. Let C→ M be a representation of the Lie algebroid g→ M defined
by a flat g-connection ∇ : 0(g) × 0(C) → 0(C). Consider the vector bundle
v= C∗×M g→ C∗. Given u ∈ 0(g), let χu : C∗→ v be the section given by

(2-11) χu(ξ)= (ξ, u(m)) for ξ ∈ C∗m .

The sections χu with u varying on 0(g) generate 0(C∗, v) as a C∞(C∗)-module.
One can now show that the action algebroid structure C∗o g→ C∗, determined by

[χu1, χu2] = χ[u1,u2], u1, u2 ∈ 0(g),

ρv(χu1)(`µ)= `∇u1µ
, ρv(χu1)( f ◦π)= (Lρ(u1) f )◦π, f ∈ C∞(M), µ ∈ 0(C),

endows v→C∗ with a VB-algebroid structure, where π :C∗→M is the projection.
The chain complex CE•1-hom(v) is naturally isomorphic to 0(3•g∗⊗C) with the
Koszul differential

d∇γ (u1, . . . , u p+1)

=

p+1∑
i=1

(−1)i+1
∇uiγ (u1, . . . , ûi , . . . , u p+1)

+

∑
1≤i< j≤p+1

(−1)i+ jγ ([ui , u j ], u1, . . . , ûi , . . . , û j , . . . , u p+1),

where γ ∈ 0(3pg∗⊗C). More precisely, the evaluation map ev : CEp
1-hom(v)→

0(3pg∗⊗C), given by

〈ev(α)(u1, . . . , u p), ξ〉 = α(χu1(ξ), . . . , χu p(ξ)) for u1, . . . , u p ∈ 0(g), ξ ∈ C∗,

defines a chain isomorphism. The induced right 0(3•g∗)-module structure on
0(3•g∗⊗C) is wedge multiplication on the right in the 3•g∗ factor. In particular,
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as H(g)-modules, H •1-hom(v)
∼= H •(g,C), the cohomology of g with values in the

representation C . As for groupoids, H •k-hom(v)
∼= H •(g, SkC).

Van Est theorem for homogeneous cochains. Let G ⇒ M be a Lie groupoid with
Lie algebroid g. For every section u ∈ 0(g), consider the corresponding right
invariant vector field Eu ∈X(G). In the following, we denote by Bpu the vector field
on the space of p-composable arrows BpG given by

(2-12) Bpu(g1, . . . , gp)= (Eu(g1), 0g2, . . . , 0gp).

Let us now recall the definition of the van Est map. First, using the degeneracy
map s0 : Bp−1G→ BpG, we define Ru : C p(G)→ C p−1(G) by

Ru = s∗0 ◦LBpu .

The van Est map VE : C p(G)→ CEp(g) is defined (up to p-dependent sign) as
follows [Crainic 2003]: for a p-cochain f ∈ C p(G),

(2-13) VE( f )(u1, . . . , u p)=
∑
σ∈Sp

sgn(σ )Ruσ(1) . . . Ruσ(p)( f ).

In [Crainic 2003] it is shown that it induces a map in cohomology which preserves
the corresponding product structures. We also need the following naturality result
about VE.

Lemma 2.10. Let H1,H2 be Lie groupoids with Lie algebroids h1, h2, respectively.
If φ :H1→H2 is a Lie groupoid morphism with the corresponding Lie algebroid
morphism Lie(φ) : h1→ h2, then

VE(Bpφ
∗ f )= Lie(φ)∗VE( f ) ∀ f ∈ C p(H2).

Proof. For any χ ∈ 0(h1) we can write

Lie(φ)(χ)=
∑

i

γi (χ̃i ◦φ0) ∈ 0(φ
∗

0h2),

where φ0 = B0φ : M1 → M2 denotes the map between objects induced by φ,
γi ∈ C∞(M1) and χ̃i ∈ 0(h2). A direct computation shows that

Rχ ((Bpφ)
∗ f )=

∑
i

(t∗p−1γi )(Bp−1φ)
∗(Rχ̃i f ) ∀ f ∈ C p(H2).

If we apply the above formula p times, we notice that most of the terms in
Rχ1 . . . Rχp(Bpφ)

∗ f will vanish since VE is defined on normalized cochains (namely,
s∗i f = 0). The only remaining terms are∑

i1,...,i p

γi1 . . . γi pφ
∗

0(Rχ̃1 . . . Rχ̃p f ),

and we thus get the statement of the lemma. �
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The main result about the van Est map in the present context is as follows.

Theorem 2.11 [Crainic 2003]. Let G be a Lie groupoid and let g be its Lie algebroid.
The van Est map (2-13) induces an algebra homomorphism

VE : H •(G)→ H •(g).

Moreover, if G has p0-connected source fibers, then VE is an isomorphism in
degrees p ≤ p0, and it is injective for p = p0+ 1.

To get our refinement of Theorem 2.11 for homogeneous cochains on VB-
groupoids and algebroids, we first state a simple homological algebra fact.

Homological lemma. Let (C•i , δi ) be differential complexes, i = 1, 2, endowed
with projections Pi : C•i → C•i (i.e., Pi ◦ δi = δi ◦ Pi and P2

i = Pi ). If F : C•1→ C•2
is a morphism satisfying F ◦ P1 = P2 ◦ F , then for each p such that F : H p(C1)→

H p(C2) is injective (resp. surjective) its restriction Fr : H p(S1)→ H p(S2) is also
injective (resp. surjective), where S•i = Pi (C•i ).

We are thus left with studying the behavior of the projections onto homogeneous
cochains under the van Est map. To that end, let V ⇒ E be a VB-groupoid over
G ⇒ M and let v→ E be its Lie algebroid.

Proposition 2.12. For each k ∈ N0 and every p ≥ 0,

VE ◦ PG,p
k-hom = Pg,p

k-hom ◦VE .

In particular, VE(C∞k-hom(BpV))⊂ 0k-hom(3
pv∗).

Proof. Let hG
λ : V→ V and hg

λ : v→ v be the homogeneous structures of the vector
bundles V → G and v→ g, respectively. By Lemma 2.10, the fact that hG

λ is a
groupoid homomorphism with Lie(hG

λ )= hg
λ implies that

VE ◦ hG ∗
λ = hg ∗

λ ◦VE ∀ λ.

Hence, by applying d
dλ

∣∣
λ=0 on both sides, one obtains the commutation relation

between VE and the projections P ·,phom,k . The result now follows directly. �

The restriction of the van Est map to the subcomplex of k-homogeneous cochains
shall be denoted by

VEk-hom := VE|C p
k-hom(V)

: C p
k-hom(V)→ CEp

k-hom(v).

Example 2.13 (0-homogeneous cochains). For k = 0, using the isomorphisms
C p

0-hom(V) ∼= C p(G) and CEp
0-hom(v)

∼= CEp(g), one can check that VE0-hom ∼=

VEG : C p(G)→ CEp(g). To see this, take f ∈ C p
0-hom(V) and χ1, . . . , χp ∈ v, and

notice that VE0-hom( f )(χ1, . . . , χp) only depends on the projections ui ∈ g of χi ,
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i = 1, . . . , p. Hence, to compute VE0-hom, it suffices to take χ1, . . . , χp linear
sections1 of v covering u1, . . . , u p ∈ 0(g). In this case,

VE0-hom( f )(χ1, . . . , χp)= π
∗

E VEG( f0)(u1, . . . , u p),

where f =π∗BpG f0, f0∈C∞(BpG), and where πE : E→M , πBpV : BpV→ BpG are
the vector bundle projections.

We are now ready to state and prove our main theorem.

Theorem 2.14. Let G ⇒ M be a Lie groupoid with Lie algebroid g. For a VB-
groupoid V ⇒ E over G with underlying VB-algebroid v→ E , the van Est map on
k-homogeneous cochains induces a module homomorphism

VEk-hom : H •k-hom(V)→ H •k-hom(v)

covering the algebra homomorphism VEG : H •(G)→ H •(g). Moreover, if G has
p0-connected source fibers, then VEk-hom is an isomorphism for all p ≤ p0 and it is
injective for p = p0+ 1.

Proof. The H •(G)-module structure on H •k-hom(v) comes from the cup product of
C•k-hom(V) and C•0-hom(V)∼=C•(G). So, the first statement follows from the fact that
VEk-hom is the restriction of the van Est map of V to homogeneous cochains and
that VE0-hom ∼= VEG .

Let us now assume that G has p0-connected source fibers. First note that this
implies that V ⇒ E is also source p0-connected. Indeed, a source fiber of V ⇒ E
is an affine bundle over the corresponding source fiber of G ⇒ M. So, the van Est
theorem (Theorem 2.11) implies that VE : H p(V)→ H p(v) is an isomorphism for
p ≤ p0 and injective for p = p0+ 1. The result now follows from Proposition 2.12
by applying the homological lemma to F = VE, (C•1, δ1) = (C∞(B•V), δ) and
(C•2, δ2)= (0(E,3•v∗), d)with projections P1= PG,•

k-hom :C
∞(B•V)→C∞k-hom(B•V)

and P2 = Pg,•
k-hom : 0(E,3

•v∗)→ 0k-hom(E,3•v∗). �

3. 1-homogeneous cochains and representations up to homotopy

In [Gracia-Saz and Mehta 2010; 2011], it was shown that VB-groupoids and VB-
algebroids provide an intrinsic version of the notion of (2-term) representation up to
homotopy, generalizing the example given in the introduction, as well as Examples
2.5 and 2.9 above. In this section, we show how Theorem 2.14, when applied
to 1-homogeneous cochains, recovers a van Est result for the underlying 2-term
representations up to homotopy [Arias Abad and Schätz 2011]. We also outline a
new proof, realizing an original proposal [Crainic and Moerdijk 2008] of a rigidity
conjecture involving the deformation cohomology underlying proper groupoids.

1A linear section χ of v is a section χ : E→ v which is a vector bundle homomorphism covering
a section u : M→ g (see [Gracia-Saz and Mehta 2010]).
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VB-groupoid and VB-algebroid cohomology. Following [Gracia-Saz and Mehta
2011], given a VB-groupoid π : V → G we define C p

VB(V) to be the space of
1-homogeneous cochains φ ∈ C∞1-hom(BpV) satisfying the two additional conditions

(1) φ(0g, ξ1, . . . , ξp−1)= 0,

(2) φ(0g · ξ1, . . . , ξp)= φ(ξ1, . . . , ξp)

for all (ξ1, . . . , ξp) ∈ BpV and g ∈ G such that (0g, ξ1) ∈ B2V . As observed in
[Gracia-Saz and Mehta 2011], condition (1) above implies that φ(ξ1, ξ2, . . . , ξp)

only depends on ξ1 and on the projections gi = π(ξi ) ∈ G, i = 1, . . . , p, while
condition (2) is a left-invariance property.

It is shown in that paper that C•VB(V) defines a subcomplex of C•1-hom(V). More-
over, the cup product with C•0-homV ∼= C•(G) defines a right C•(G)-submodule
structure on C•VB(V). The next lemma relates the cohomology of the two complexes.

Lemma 3.1. The inclusion ι : C•VB(V) ↪→ C•1-hom(V) induces an isomorphism of
right H •(G)-modules in cohomology.

Proof. It is enough to show that for every φ ∈ C p
1-hom(V) with δφ ∈ C p+1

VB (V) there
exists a ψ ∈ C p−1

1-hom(V) so that φ + δψ ∈ C p
VB(V). To that end, first notice that

if an arbitrary φ is such that both φ and δφ satisfy condition (1), then φ satisfies
condition (2). This follows directly from evaluating

0= (δφ)(0g, ξ1, . . . , ξp).

We are thus left with showing that for each φ∈C∞1-hom(BpV) such that δφ satisfies (1)
there exists aψ ∈C∞1-hom(Bp−1V) such that φ+δψ satisfies (1). This, in turn, follows
by applying recursively the following claim: if δφ satisfies (1) and

(3-1) φ(ξ0, . . . , ξp−1)= 0

for all (ξ0, . . . , ξp−1)∈ BpV such that ξi =0gi , i =0, . . . , l≤ p−1, then there exists
a ψ ∈ C∞1-hom(Bp−1V) such that φ+ δψ satisfies (3-1) for all (ξ0, . . . , ξp−1) ∈ BpV
such that ξi = 0gi , i = 0, . . . , l− 1. Notice that for l = p− 1, (3-1) follows from φ

being homogeneous of degree 1. To prove this claim for l < p− 1, one chooses
any ψ ∈ C∞1-hom(Bp−1V) such that

ψ(ξ1, . . . , ξp−1)=−φ(0π(ξp−1)−1···π(ξ1)−1, ξ1, . . . , ξp−1)

for all (ξ1, . . . , ξp−1) ∈ Bp−1V such that tV(ξ1)= 0t(π(ξ1)). This is always possible
since the subset of such elements in Bp−1V is a smooth embedded submanifold
since the target map is a submersion. What needs to be shown now is

(φ+ δψ)(ξ0, . . . , ξp−1)= 0 ∀ (ξ0, . . . , ξp−1) ∈ BpV, ξi = 0gi , i = 0, . . . , l − 1.
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Finally, this last identity follows by evaluating

0= (δφ)(0π(ξp−1)−1···π(ξ0)−1, ξ0, . . . , ξp−1)

and using the recursion hypothesis. �

For a VB-algebroid v→ A, the VB-algebroid cochain complex is defined exactly
as the complex of 1-homogeneous cochains

CEk
VB(v) := CEk

1-hom(v).

The restriction of the van Est map to 1-homogeneous cochains as on page 307
provides a map VE1-hom : C•1-hom(V)→ CE•VB(v). Its restriction to the subcomplex
C•VB(V)⊂ C•1-hom(V) will be denoted by

VEVB : C•VB(V)→ CE•VB(v).

Corollary 3.2. With the notations above, the van Est map

VEVB : H •(CVB(V))→ H •(CEVB(v))

is a right-module homomorphism over VEG : H •(G)→ H •(g). Moreover, if G is
source p0-connected, then VEVB is an isomorphism in degree p for all p ≤ p0 and
it is injective for p = p0+ 1.

Cohomological vanishing for proper groupoids. The VB-groupoid cohomology
can be shown to be trivial in several cases as shown by the following proposition.

Proposition 3.3. When G is a proper groupoid or, more generally, admits a Haar
system dµ together with a cutoff function c ∈ C∞(M) (see, e.g., [Arias Abad and
Crainic 2013] and the proof below), then

H p(C•VB(V))= 0, p ≥ 2.

Proof. The idea is to define a map C p
VB(V) 3 φ 7→ κ(φ) ∈ C p−1

VB (V) for p ≥ 2 by
the formula

κ(φ)(ξ1, . . . , ξp−1)=

∫
t−1(s(gp−1))

φ
(
ξ1, . . . , ξp−1, σ (h, sV(ξp−1))

)
c(s(h)) dµ(h),

where gi = π(ξi ) ∈ G, i = 1, . . . , p− 1, as before and σ : t∗E → V is any linear
splitting of the epimorphism tV : V → t∗E . Notice that the right-hand side in
the formula above is independent of the choice of σ since φ only depends on
(g1, . . . , gp−1, h) and ξ1. The key point is that, for δφ = 0, φ ∈C p

VB(V), p ≥ 2, we
have δκ(φ)= (−1)pφ, hence leading to the above cohomological vanishing. This
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statement can be checked by direct computation: let us write ξp+1(h)=σ(h, sV(ξp))

for h ∈ t−1(s(gp)) and ηp(k)= σ(k, sV(ξp−1)) for k ∈ t−1(s(gp−1)). Then

δκ(φ)(ξ1, . . . , ξp)

=

∫
t−1(s(gp))

[
φ(ξ2, . . . , ξp, ξp+1(h))

+

p−1∑
i=1

(−1)iφ(ξ1, . . . , ξiξi+1, . . . , ξp, ξp+1(h))
]

c(s(h)) dµ(h)

+ (−1)p
∫
t−1(s(gp−1))

φ(ξ1, . . . , ξp−1, ηp(k)) c(s(k)) dµ(k)

= (−1)p
∫
t−1(s(gp))

[
−φ(ξ1, . . . , ξp−1, ξpξp+1(h))+φ(ξ1, . . . , ξp)

]
c(s(h)) dµ(h)

+ (−1)p
∫
t−1(s(gp−1))

φ(ξ1, . . . , ξp−1, ηp(k)) c(s(k)) dµ(k)

= (−1)pφ(ξ1, . . . , ξp).

Above, the first equality follows from the definitions of δ and κ , the second equality
follows by applying δφ = 0 inside the square brackets and, finally, the third equality
follows by the normalization condition

∫
t−1(x) c(s(h)) dµ(h) = 1 and by the left

invariance of the measure
∫
t−1(s(g)) f (gh) dµ(h) =

∫
t−1(t(g)) f (k) dµ(k) together

with the independence of φ(ξ1, . . . , ξp) on the ξ j for j > 1, as was mentioned
before. �

Let us now mention an application of the above general vanishing result, following
[Crainic and Moerdijk 2008]. Given a Lie algebroid g→ M , there exists a complex
C•def(g) controlling the deformations of g and which is related to VB-cohomology as
follows. Consider the induced linear Poisson structure on g∗, π ∈ 0(32 Tg∗). The
cotangent Lie algebroid T ∗g→ g∗ has the property that its Chevalley–Eilenberg
complex (CE(T ∗g), d) is isomorphic to the Poisson complex (X(g∗), [π, · ]); see
[Mackenzie and Xu 1994]. Under this isomorphism, the subcomplex CE•VB(T

∗g)⊂

CE•(T ∗g) corresponds to the so-called linear Poisson complex Xlin(g
∗) of g∗. On

the other hand, Proposition 7 in [Crainic and Moerdijk 2008] shows that X•lin(g
∗)∼=

C•def(g), so that
CE•VB(T

∗g)∼= X•lin(g
∗)∼= C•def(g).

On the groupoid side, for a Lie groupoid G ⇒ M , the complex CVB(T ∗G) was
shown in [Crainic et al. 2015a] to be isomorphic to the complex Cdef(G) controlling
deformations of the Lie groupoid structure.

In this context, Corollary 3.2 recovers a result from [Crainic et al. 2015a]: the map

VEdef : H •def(G)→ H •def(g)
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defines a (graded) module homomorphism covering VEG : H •(G)→ H •(g) which
induces isomorphisms in degrees p≤ p0 and a monomorphism in degree p= p0+1
when G is source p0-connected.

By combining this result with our general vanishing criteria (Proposition 3.3
above), we further obtain an independent proof of the (cohomological) rigidity
conjecture of [Crainic and Moerdijk 2008]: if G is proper and source 2-connected,
then H 2

def(g)= 0. Note that the map VEdef is the “lin version” of the van Est map
which was assumed to exist by Crainic and Moerdijk [2008] as a step towards
proving their conjecture.

Remark 3.4. The conjecture was originally proved in [Arias Abad and Schätz
2011] using a van Est result for representations up to homotopy. In particular, they
used a vanishing result for cohomologies with coefficients in representations up to
homotopy established in [Arias Abad and Crainic 2013]. Our vanishing result should
be considered as a geometric counterpart to theirs in the 2-term case (see below).

Splittings and representations up to homotopy. VB-groupoids and VB-algebroids
can be (noncanonically) split into the base Lie groupoid and Lie algebroid data and
representation-like information on the fibers (recall Examples 2.5 and 2.9). It turns
out that the correct notion encoding this split data is that of (2-term) representations
up to homotopy [Arias Abad and Crainic 2012; 2013; Gracia-Saz and Mehta 2010;
2011], which we now recall.

Let G ⇒ M be a Lie groupoid with Lie algebroid g→ M and E = C[1]⊕ E a
graded vector bundle over M with C in degree−1 and E in degree 0. The associated
space of E-valued (normalized) p-cochains is defined as

C(G, E)p

:= {µ := (µE , µC) ∈0(BpG; t∗p E)⊕0(Bp+1G; t∗p+1C) | s∗i µE = 0, s∗i µC = 0},

where si : B•G→ B•+1G is the i-th degeneracy map. There is a (right) C•(G)-module
structure on C(G, E)• defined by µ? f = (µE ? f, µC ? f ), where each component
is given by formula (2-6). A representation up to homotopy of G on E is an R-linear
map DG : C(G, E)• → C(G, E)•+1 satisfying D2

G = 0 and

DG(µ ? f )= DG(µ) ? f + (−1)pµ? (δ f ), µ ∈ C(G, E)p, f ∈ C p′(G).

The resulting cohomology is denoted by H(G, E). Note that ? defines a right
H(G)-module structure on H(G, E).

A representation up to homotopy on E can be alternatively given by quasiactions
1E and 1C of G on E and C , respectively, a bundle map ∂ : C → E and a
smooth correspondence which, for each (g1, g2)∈ B2G, gives a linear map �(g1,g2) :

E |s(g2)→C |t(g1) satisfying certain structural equations (see [Arias Abad and Crainic
2013; Gracia-Saz and Mehta 2011]). Moreover, in analogy with the case of an
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ordinary representation (cf. Example 2.5), a representation up to homotopy of G on
E endows V = s∗E∗⊕G t∗C∗⇒ C∗ with a VB-groupoid structure [Gracia-Saz and
Mehta 2011]. The structure maps are given by

(3-2)
sV(ξ, g, η)= (1C

g )
∗ξ − ∂∗η, tV(ξ, g, η)= ξ, ξ ∈ C∗|t(g), η ∈ E∗|s(g),

(ξ1, g1, η1) · (ξ2, g2, η2)=
(
ξ1, g1g2, �

∗

(g1,g2)
ξ1+ (1

E
g2
)∗η1+ η2

)
for compatible arrows and 1V(ξ) = (ξ, 1m, 0) for ξ ∈ C∗|m . Finally, in [Gracia-
Saz and Mehta 2011] the authors show that every VB-groupoid can be presented
(noncanonically) in this form, thus establishing a correspondence between VB-
groupoids and 2-term representations up to homotopy of G.

The above correspondence between VB-groupoid structures and representations
up to homotopy can be understood from the following relation between the cochain
complex associated to E and that of 1-homogeneous cochains on V . Consider the
map 9 : C(G, E)p

→ C∞1-hom(Bp+1V) defined by

(3-3) 9(µ)((ξ1, g1, η1), . . . , (ξp+1, gp+1, ηp+1))

= 〈η1, µE(g2, . . . , gp+1)〉+ 〈ξ1, µC(g1, . . . , gp+1)〉.

In [Gracia-Saz and Mehta 2011] (see Theorem 5.6), it is proven that9 :C(G, E)•→
C•+1

1-hom(V) is a monomorphism of graded C(G)-modules satisfying

9 ◦ (−DG)= δ ◦9

whose image coincides with the VB-groupoid cochain complex C•VB(V)⊂C•1-hom(V)
(shifted by one, hence the minus sign in the equation above). We then obtain the
next lemma as a direct consequence of Lemma 3.1.

Lemma 3.5. The map 9 : H •(G, E)→ H •+1
1-hom(V) induced in cohomology is an

isomorphism of right H •(G)-modules.

Infinitesimal counterpart. Let g be a Lie algebroid and E be as before, and consider

�(g, E)p
= 0(3pg∗⊗ E)⊕0(3p+1g∗⊗C).

The space �(g, E) is a right 0(3•g∗)-module with multiplication defined by wedge
product on the right on the 3•g∗ factor. A representation up to homotopy of g on E
is an R-linear map Dg :�(g, E)• →�(g, E)•+1 satisfying D2

g = 0 and

Dg(ω∧β)= Dg(ω)∧β + (−1)pω∧ dβ, ω ∈�(g, E)p, β ∈ 0(3g∗).

We denote the cohomology of (�(g, E),Dg) by H(g, E).
As in the VB-groupoid case, VB-algebroid structures on v=C∗×M g×M E∗→C∗

are in one-to-one correspondence with representations up to homotopy of g on
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E = C[1]⊕ E (see [Gracia-Saz and Mehta 2010]). We recall here how this corre-
spondence can be seen from the cohomological perspective. The space of sections
0(C∗, v) is generated, as a C∞(C∗)-module, by sections:

χu(ξ)= (ξ, u(m), 0), ϒη(ξ)= (ξ, 0, η(m))

for ξ ∈ C∗|m , u ∈ 0(g), η ∈ 0(E∗). Define a map

(3-4) ev : CEp+1
1-hom(v)→�(g, E)p, ev(α)= (α̂E , α̂C),

where α̂E ∈ 0(3
pg∗⊗ E) and α̂C ∈ 0(3

p+1g∗⊗C), by

〈α̂E(u1, . . . , u p), η〉 = α(ϒη, χu1, . . . , χu p) ∈ C∞0-hom(C
∗)∼= C∞(M),

α̂C(u1, . . . , u p+1)= α(χu1, . . . , χu p+1) ∈ C∞1-hom(C
∗)∼= 0(C)

for u1, . . . , u p+1 ∈ 0(g), η ∈ 0(E∗).

Lemma 3.6. Under the identification 0(3•g∗)∼=CEhom,0(v), the map ev is a (right)
0(3•g∗)-module isomorphism.

Proof. Let {ξ k
}

rank(C∗)
k=1 , {γ j

}
rank(g∗)
j=1 and {ei }

rank(E)
i=1 be local frames for C∗, g∗ and E

respectively. We identify ei (resp. γ j ) with the corresponding section of v∗: C∗|m 3
ξ 7→ (ξ, 0, ei (m)) (resp. ξ 7→ (ξ, γ j (m), 0)). Locally, any element α ∈ CEp+1

1-hom(v)

is written as

α(m, ξ)= ak Ak
j1... jp+1

(m)γ j1 ∧ · · · ∧ γ jp+1 + Bi
j1... jp

(m)ei ∧ γ
j1 ∧ · · · ∧ γ jp,

where ξ = ak ξ
k(m). From the definition, one sees that

Ak
j1... jp+1

(m)= 〈α̂C(u j1, . . . , u jp+1), ξ
k(m)〉,

Bi
j1... jp

(m)= 〈α̂E(u j1,...,u jp
), ηi (m)〉,

where {u j }, {ηi
} are local frames for g and E∗ dual to {γ j

}, {ei }, respectively. It is
now straightforward to prove the statement. �

Hence, the operator Dg defined by Dg◦ev= ev◦(−d), where d is the Chevalley–
Eilenberg differential of v, defines a representation up to homotopy of g on E . (Note
that ev shifts degree by minus one, hence the sign in the definition of Dg.) It is
shown in [Gracia-Saz and Mehta 2010] that, moreover, every VB-algebroid can be
split as v' C∞∗×M g×M E∗→ C∗, thus establishing a correspondence between
VB-algebroids and 2-term representations up to homotopy of g.

Given a representation up to homotopy DG : C(G, E)→ C(G, E) of G on E , the
VB-groupoid V ⇒ C∗ defined by (3-2), seen as a Lie groupoid over C∗, has a Lie
algebroid whose underlying bundle is precisely v = C∗ ×M g×M E∗→ C∗. In
this case, the above construction of Dg can understood as the differentiation of the
representation DG , namely, Dg=Lie(DG). (See also [Arias Abad and Schätz 2011].)



316 ALEJANDRO CABRERA AND THIAGO DRUMMOND

Remark 3.7. A representation up to homotopy of g on E can be alternatively
described by a map ∂ :C→ E , g-connections ∇E and ∇C on E and C , respectively,
and a curvature term R ∈0(32g∗⊗Hom(E,C)) satisfying some compatibility equa-
tions (see [Arias Abad and Crainic 2012; Gracia-Saz and Mehta 2010]). We refer to
[Brahic et al. 2014] for the formulas of the operators (∂,∇E,∇C, R) corresponding
to Lie(DG) in terms of the data defining DG .

Van Est theorem for representations up to homotopy. Define VErep :C(G, E)p
→

�(g, E)p by VErep := ev ◦VE1-hom ◦9. Diagrammatically,

(3-5)

C(G, E)k C∞1-hom(V
(k+1))

�(g, E)k CEk+1
1-hom(v)

9
//

VE1-hom
��

oo
ev

VErep

��

It is clear from the previous discussion that VErep induces a map in cohomology.

Theorem 3.8. The van Est map VErep : H •(G, E)→ H •(g, E) is a right module
homomorphism over VEG : H •(G)→ H •(g). Moreover, if G is source p0-connected,
then the induced map in cohomology VErep : H p(G, E)→ H p(g, E) is an isomor-
phism for −1≤ p ≤ p0− 1 and it is injective for p = p0.

Proof. This is a straightforward consequence of Theorem 2.14 and Lemmas 3.5
and 3.6. Notice the shift in grading for which one has isomorphisms. This arises
because one has to apply Theorem 2.14 to C∞1-hom(Bk+1V)→ CEk+1

1-hom(v) in order
to analyze C(G, E)k→�k(g, E). �

The fact that the above cohomology groups are isomorphic was also proven
in [Arias Abad and Schätz 2011] using different techniques (in the more general
setting of representations on arbitrarily graded vector bundles). Notice that, from
our perspective, it just arises as a refinement of the usual van Est map for V for
1-homogeneous cochains.

Remark 3.9 (formulas for VErep). For u ∈ 0(g), define the map Ru : C p(G, E)→
C p−1(G, E) by

(RuµC)(g1, . . . , gp)=
d
dε

∣∣∣∣
ε=0
1C
φu
ε (t(g1))−1µC(φ

u
ε (t(g1)), g1, . . . , gp),

where φu
ε : M → G is the flow of the right-invariant vector field Eu and the defi-

nition RuµE is analogous. Note that our conventions are different from those in
[Arias Abad and Schätz 2011]. One can now check the identities

Rχu9(µ)=9(RuµC , 0), Rϒη9(µ)= q∗〈µE , η〉,

Rχv Rϒη9(µ)= q∗〈RvµE , η〉, Rϒη Rχv9(µ)= 0,
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where q : B•V → B•G is the projection map. Using these identities, it is now
straightforward to check that

VErep(µ)= (µ̂E , µ̂C) ∈ 0(3
pg∗⊗ E)⊕0(3p+1g∗⊗C)

is given by

µ̂E(u1, . . . , u p)= (−1)p
∑
σ∈Sp

sgn(σ )Ruσ(1) . . . Ruσ(p)µ0,

µ̂C(u1, . . . , u p+1)=
∑
σ∈Sp+1

sgn(σ )Ruσ(1) . . . Ruσ(p+1)µC .

4. Differential forms with values in a representation

In this section, we study differential forms on a Lie groupoid G with values in a
representation C → M . These objects were introduced in [Crainic et al. 2015b]
together with their infinitesimal counterparts, the Spencer operators. We here
provide a van Est theorem for them as an application of our main result. The key
idea is to reinterpret forms as homogeneous functions.

Van Est theorem for differential forms with coefficients. We start this section by
formally defining the ingredients entering the van Est theorem for forms with
coefficients (Theorem 4.4 below) without any reference to the VB-groupoids and
algebroids. Later, we show how VB-groupoids and VB-algebroids provide a use-
ful framework for interpreting many of the definitions and for giving a proof of
Theorem 4.4.

Let G ⇒ M be a Lie groupoid and C→ M be a representation of G and consider
the map tp : BpG→ M , tp(g1, . . . , gp) = t(g1). When no confusion arises, we
omit the reference to p and simply denote tp by t. The space of q-differential forms
on the nerve of G with coefficients in C is �q(B•G, t∗C). It carries a differential
δ :�q(Bp−1G, t∗C)→�q(BpG, t∗C) defined by

δω|(g1,...,gp) =1g1 ◦ ∂
∗

0ω+

p∑
i=1

(−1)i∂∗i ω for p ≥ 2,

δω|g =1g ◦ s
∗ω− t∗ω for p = 1.

It is straightforward to check that δ2
= 0.

Note that, for ω ∈�q(G, t∗C),

δω|(g1,g2) =1g1 ◦ pr∗2ω−m∗ω+ pr∗1ω,

where pri (g1, g2) = gi for i = 1, 2. In this case, a form ω ∈ �q(G, t∗C) which
satisfies δω = 0 is called multiplicative (see [Crainic et al. 2015b]). Note that
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�q(B•G, t∗C) is a right dg-module for C•(G) with the module structure defined as
usual by

(ω? f )|(g1,...,gp+p′ )
=ω|(g1,...,gp) f (gp+1, . . . ,gp+p′), ω∈�

q(BpG, t∗C), f ∈C p′(G).

Remark 4.1. In the case of trivial coefficients (i.e., when C is the trivial line bundle),
the de Rham differential turns �q(BpG, t∗C)=�q(BpG) into a double complex
known as the Bott–Shulman double complex associated to G (see [Arias Abad
and Crainic 2011]). In the remainder of this paper, we focus on the cohomology
of δ alone and leave the investigation of compatible double complex structures
(corresponding to “multiplicative linear flat connections”) for future work.

Let g→ M be the Lie algebroid of G. Similarly to [Arias Abad and Crainic
2011], we define the Weil complex W p,q(g,C) to be the space of sequences c =
(c0, c1, . . . ), where each

ck : 0(g)× · · ·×0(g)︸ ︷︷ ︸
p−k times

→�q−k(M, Skg∗⊗C)

is an R-linear skew-symmetric map whose failure at being C∞(M)-linear is con-
trolled by

(4-1) ck( f u1, . . . , u p−k | · )

= f ck(u1, . . . , u p−k | · )+d f∧ck+1(u2, . . . , u p−k |u1, · ) ∀ f ∈C∞(M).

For each q, the complex W •,q(g,C) carries a differential dW : W p,q(g,C) →
W p+1,q(g,C), which we now define. First, note that �i (M, S jg∗⊗C) is a module
for the Lie algebra 0(g). Indeed, for α ∈�i (M) and P ∈ 0(S jg∗⊗C),

u · (α⊗ P)= (Lρ(u)α)⊗ P +α⊗ (u · P), u ∈ 0(g),

defines an action of 0(g) on �i (M, S jg∗⊗C), where

(u · P)(v1, . . . , vk)=∇u P(v1, . . . , vk)−

k∑
i=1

P(v1, . . . , [u, vi ], . . . , vk),

and ∇ :0(g)×0(C)→0(C) is the g-connection giving the representation C . Now,
dW is defined by

(4-2) dW (c)k(u1, . . . , u p−k+1|v1, . . . , vk)

= (−1)k
(

dCE(ck)(u1, . . . , u p−k+1|v1, . . . , vk)

−

k∑
j=1

iρ(vj )ck−1(u1, . . . , u p−k+1|v1, . . . , v̂j , . . . , vk)

)
,
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where dCE is the Chevalley–Eilenberg differential on C•(0(g),�q−k(M, Skg∗⊗C)).
There is a right 0(3•g∗)-module structure on W •,q(g,C). It is defined, for β ∈
0(3p′g∗) and c ∈W p,q(g,C), by

(c∧β)k(u1, . . . , u p+p′−k | · )

=

∑
σ∈S(p−k,p′)

sgn(σ )ck(uσ(1), . . . , uσ(p−k))β(uσ(p−k+1), . . . , uσ(p+p′−k)),

where S(p− k, p′) is the space of (p−k, p′)-unshuffles.

Proposition 4.2. W •,q(g,C) is a right dg-module for 0(3•g∗).

This result will follow from an evaluation isomorphism similar to (3-4) (see
Proposition 4.12 below) between W •,q(g,C) and another right dg-module for
0(3•g∗). It is important to remark that all the signs appearing in the above formula
for dW , as well as in formula (4-4) below, are natural consequences of a simple
ordering convention in the definition of this evaluation isomorphism.

Remark 4.3. For p = 0 we have W 0,q(g,C) = �q(M,C). In this case, for c ∈
W 0,q(g,C) we have dW (c)= (dW (c)0,dW (c)1), where dW (c)0 :0(g)→�q(M,C)
and dW (c)1 ∈�q−1(M,g∗⊗C) are given by

dW (c)0(u)= u · c and dW (c)1(v)= iρ(v)c.

For W 1,q(g,C), its elements are c= (c0, c1), where c0 : 0(g)→�q(M,C) and
c1 ∈�

q−1(M, g∗⊗C)∼= Hom(g,3q−1T ∗M ⊗C). In this case,

dW (c)0(u1, u2)= u1 · c0(u2)− u2 · c0(u1)− c0([u1, u2]),

dW (c)1(u|v)= iρ(v)c0(u)− u · c1(v)+ c1([u, v]),

dW (c)2(v1, v2)=−iρ(v1)c1(v2)− iρ(v2)c1(v2).

Note that, in the case p = 1, the equation d(c)= 0 is equivalent to (c0, c1) being
a C-valued Spencer operator on g [Crainic et al. 2015b] and, thus, in particular, to
(c0, c1) being an infinitesimally multiplicative form [Arias Abad and Crainic 2011]
when C = R, with the trivial representation.

Van Est map. Given u ∈ 0(g), let φu
ε : G→ G be the flow of the right-invariant

vector field Eu. The flow of the corresponding vector field Bpu ∈X(BpG) is given by

ψu
ε (g1, . . . , gp)= (φ

u
ε (g1), g2, . . . , gp).

Define operators Ru :�
q(BpG, t∗C)→�q(Bp−1G, t∗C) and Ju :�

q(BpG, t∗C)→
�q−1(Bp−1G, t∗C) by

(4-3)
Ruω|(g1,...,gp−1) = s∗0

(
d
dε

∣∣∣∣
ε=0
1φu

ε (t(g1)))−1 ◦ψu ∗
ε ω

)
,

Juω = s∗0 iBpuω.
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The van Est map VE� : �q(BpG, t∗C)→ W p,q(g,C), defined by VE�(ω) =
(c0(ω), c1(ω), . . . ), has each ck(ω) given by

(4-4) ck(ω)(u1, . . . , u p−k |v1, . . . , vk)

= (−1)k(k−1)/2
∑
σ∈S(p)

sgn(σ )(−1)ε(σ,k)Dσ(1) . . . Dσ(p)ω,

where

(4-5) D j =

{
Jv j if j ∈ {1, . . . , k},
Ru j−k if j ∈ {k+ 1, . . . , p},

and

ε(σ, k)= #{(i, j) ∈ {1, . . . , k}× {1, . . . , k} | i < j and σ−1(i) > σ−1( j)}.

Theorem 4.4. VE� induces a map on cohomology VE� : H •(�q(B•G, t∗C))→
H •(W •,q(g,C)) which is a right module homomorphism over VEG : H •(G) →
H •(g). Moreover, if G is source p0-connected, then

V E� : H p(�q(B•G, t∗C))→ H p(W •,q(g,C))

is an isomorphism for p ≤ p0 and it is injective for p = p0+ 1, for each fixed q.

In the remainder of the paper, we prove Theorem 4.4 by showing how it can
be framed as a van Est result for a class of VB-groupoids. Notice that the above
theorem recovers Theorem 5.1 of [Arias Abad and Crainic 2011] (up to some sign
conventions) when C = M ×R with the trivial representation. It is interesting that,
even in this particular case, our proof is independent of the one given in that paper.

Forms as functions. The key idea in the proof of Theorem 4.4 is that differential
forms can be seen as homogeneous functions on an appropriate space. In this
subsection, we elaborate on this classical viewpoint.

Let V1, . . . , Vq+1 be vector bundles over B and consider the fiber product∏q+1
j=1 V j = V1 ×B · · · ×B Vq+1 with the natural vector bundle structure over B

(the Whitney sum V1⊕ · · ·⊕ Vq+1→ B).

Simple functions. For i = 1, . . . , q + 1, let 0i :
∏

j 6=i V j →
∏

j V j be the inclusion
which puts a zero in the i-th coordinate. Then a function f ∈ C∞

(∏
j V j

)
is said

to be simple if

0∗i f = 0 ∀ i = 1, . . . , q + 1.

For a subset I ⊂{1, . . . , q+1}, denote by |I | its cardinality and by 0I :
∏

j /∈I V j→∏
j V j the inclusion which puts a zero in the entries indicated by the elements of I .



VAN EST ISOMORPHISM FOR HOMOGENEOUS COCHAINS 321

Define P(l) : C∞
(∏

j V j
)
→ C∞

(∏
j V j

)
, l =−1, 0, 1, . . . , q , by

(4-6)
P(−1)( f )= f,

P(l)( f )= P(l−1)( f )−
∑

|I |=q+1−l

0∗I P(l−1)( f ) for l = 0, . . . , q.

Each P(l), l = 0, . . . , q , is a projection onto the space of functions of
∏

j V j which
vanishes whenever q+1−l entries are zero. In particular, Pspl := P(q) is a projection
onto the space of simple functions.

Multilinearity and skew-symmetry. The map

0(B, V ∗1 ⊗ · · ·⊗ V ∗q+1)→ C∞
(∏q+1

j=1 V j
)
,

µ1⊗ · · ·⊗µq+1 7→ (`µ1 ◦ pr1) · · · (`µq+1 ◦ prq+1),

is a monomorphism of C∞(B)-modules, where pri :
∏q+1

j=1 V j 7→Vi is the projection
onto the i-th summand. It follows from Taylor’s theorem that its image is the space
of simple (q+1)-homogeneous functions.

We are mainly interested in the case V1 = · · · = Vq = V and Vq+1 = W ∗

and we denote the q-fold fiber product V ×B · · · ×B V by×
q
B V. A function

f ∈ C∞
(
×

q
B V ×B W ∗

)
is said to be skew-symmetric if

f (vσ(1), . . . , vσ(q), ξ)= sgn(σ ) f (v1, . . . , vq , ξ) ∀ vi ∈ V, ξ ∈W ∗, σ ∈ Sq .

The map Psk : C∞
(
×

q
B V ×B W ∗

)
→ C∞

(
×

q
B V ×B W ∗

)
, defined by

(4-7) Psk( f )=
1
q!

∑
σ∈Sq

sgn(σ ) f ◦ σ,

is a projection onto the space of skew-symmetric functions, where Sq is the sym-
metric group and σ :×

q
B V ×B W ∗→×

q
B V ×B W ∗ is the permutation of the

first q entries belonging to V according to σ . Let us define

(4-8)
F : 0(B,3q V ∗⊗W )→ C∞

(
×

q
B V ×W ∗

)
,

ω = (µ1 ∧ · · · ∧µq)⊗ ξ 7→ q!Psk
(
(`µ1 ◦ pr1) · · · (`µq ◦ prq)(`ξ ◦ prq+1)

)
.

It is straightforward to check that F is a monomorphism of C∞(B)-modules whose
image is the space of simple, skew-symmetric (q+1)-homogeneous functions. We
denote the image of F by C∞ext

(
×

q
B V×W ∗

)
. The projections Psk, Pspl and Pq+1-hom

commute with each other, and so

(4-9) Pext := Psk ◦ Pspl ◦ Pq+1-hom : C∞
(
×

q
B V ×B W ∗

)
→ C∞ext

(
×

q
B V ×B W ∗

)
is a projection onto C∞ext

(
×

q
B V ×B W ∗

)
.
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Example 4.5. For V = B × Rn , let {θ1, . . . , θm} be a local frame for W and
{e1, . . . , en

} be a global frame for V ∗. A point p ∈×
q
B V ×B W ∗, q ≤ n, has

coordinates

p = (x, y1, . . . , yq , ξ1, . . . , ξm), x ∈ B, y j = (y1, j , . . . , yn, j ) ∈ Rn, ξl ∈ R.

For a function f ∈ C∞
(
×

q
B V ×B W ∗

)
, we have Pext f = 1

q!
F(ω f ), where ω f ∈

0(B,3q V ∗⊗W ) is given by

ω f (p)

=

∑
1≤k1<···<kq≤n

m∑
i=1

∑
σ∈Sq

sgn(σ )
∂q+1 f

∂ykσ(1),1 · · ·∂ykσ(q),q ∂ξi
(x,0)ek1∧·· ·∧ekq ⊗θi (x).

The VB-groupoid behind the curtains. We define here the VB-groupoid whose
differentiable cochain complex contains the complex of differential forms with
coefficients. Later on, we show how the Weil complex is embedded in the Chevalley–
Eilenberg complex of its Lie algebroid.

Differential forms with coefficients. Let TG ⇒ TM be the tangent groupoid, ob-
tained by taking the derivative of all the structure maps defining G. Let us introduce
the VB-groupoid Gq ⇒ Mq defined by

(4-10)

Gq = TG×G · · · ×G TG︸ ︷︷ ︸
q times

×G t∗C∗ G

Mq = TM ×M · · · ×M TM︸ ︷︷ ︸
q times

×M C∗ M

//

//

�� �� ����

where the structure maps are defined2 componentwise and t∗C∗ ⇒ C∗ is the
action groupoid corresponding to the right action of G (see Example 2.5) on C∗

obtained by taking adjoints. We frequently omit the subscript q when no confusion
arises. The q-fold fiber products on (4-10) are also denoted as×

q
G TG ×G t∗C∗

and×
q
M TM ×M C∗.

Lemma 4.6. The space of p-composable arrows BpG is isomorphic as a vector
bundle over BpG to the q-fold fiber product TBpG×BpG · · · ×BpG TBpG×BpG t∗C∗.
More concisely,

(4-11) BpG= Bp
(
×

q
G TG×G t∗C∗

)
∼=
(
×

q
BpG TBpG

)
×BpG t∗C∗.

2There is a more general fact playing a role here: Whitney sums of VB-groupoids yield VB-
groupoids (see [Bursztyn and Cabrera 2012]).
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The proof consists in simply defining the isomorphism

BpG 3 (U (1), . . . ,U (p))

7→
(
(U (1)

1 , . . . ,U (p)
1 ), . . . , (U (1)

q , . . . ,U (p)
q ), (g1, . . . , gp, ξ1)

)
,

where each U (i)
= (U (i)

1 , . . . ,U (i)
q , (gi , ξi )) ∈ G.

One important consequence of the isomorphism (4-11) is that the space of
differential forms �q(BpG, t∗C) can be identified with a subspace of C∞(BpG),
which we denote by C∞ext(BpG). It is the image of the map (4-8):

(4-12) F :�q(BpG, t∗C)→ C∞
((
×

q
BpG TBpG

)
×BpG t∗C∗

)
∼= C∞(BpG).

In order to characterize C∞ext(BpG)more explicitly, note that, given a permutation
σ ∈ Sq , the permutation map

σG :×
q
G TG×G t∗C→×

q
G TG×G t∗C

is a groupoid morphism and, under the isomorphism (4-11),

(4-13) BpσG ∼= σBpG

for the corresponding permutation map

σBpG :×
q
BpG TBpG×BpG t∗C→×

q
BpG TBpG×G t∗C.

Similarly, the zero maps 0Gi :Gq−1→Gq (i = 1, . . . , q) and 0Gq+1 :×
q
G TG→Gq

are groupoid morphisms and

(4-14) Bp0G
i
∼= 0BpG

i ∀ i = 1, . . . , q + 1.

Hence,

C∞ext(BpG)=
{

f ∈ C∞(q+1)-hom(BpG) | (BpσG)
∗ f = sgn(σ ) f, (Bp0G

i )
∗ f = 0

∀ σ ∈ Sq , i = 1, . . . , q + 1
}
.

Note that the projection (4-9) gives here, under the isomorphism (4-11), a projection
Pext,G : C∞(BpG)→ C∞ext(BpG).

Proposition 4.7. The projection Pext,G satisfies

Pext,G ◦ δ = δ ◦ Pext,G .

In particular, C∞ext(B•G) is a subcomplex.

Proof. The result follows directly from (4-13), (4-14) and the fact that

(Bp+1φ)
∗δ f = δ(Bpφ)

∗ f

for an arbitrary groupoid morphism φ :H1→H2 and f ∈ C p(H2). �
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In the following, we denote by C•ext(G) and H •ext(G) the complex (C∞ext(B•G), δ)
and its cohomology, respectively.

Proposition 4.8. The map F : �q(BpG, t∗C)→ C p
ext(G) is a dg-module isomor-

phism.

Proof. Let ∂i : Bp+1G→ BpG and /∂ i : Bp+1G→ BpG, i = 0, . . . , p+ 1, be the
face maps and let sj : Bp−1G→ BpG and s j : Bp−1G→ BpG, j = 0, . . . , p−1, be
the degeneracy maps for G and G, respectively. The result follows from the fact that

/∂
∗

0Fω = Fg1·∂
∗

0ω
, /∂

∗

i Fω = F∂∗i ω, s∗jFω = Fs∗j ω ∀ω ∈�q(BpG, t∗C),

when restricted to the fiber over (g1, . . . , gp) ∈ BpG. �

Remark 4.9. The framework presented here can be used to define multiplicativity
for differential forms on a Lie groupoid with values in a 2-term representation
up to homotopy. This was done in [Egea 2016] by simply changing t∗C∗ to
V = s∗E∗⊕ t∗C∗ with the VB-groupoid structure defined by (3-2).

Weil complex. The Lie algebroid Aq →M of the Lie groupoid (4-10) Gq ⇒ Mq is
the q-fold fiber-product3×

q
g Tg×g π

∗C∗→×
q
M TM ×M C∗, where π : g→ M

denotes the projection map of the Lie algebroid of G.

Definition 4.10. Let α ∈ 0(M,3•A∗). We say that α is skew-symmetric with
respect to A→ g if

(4-15) σ ∗g α = sgn(σ )α ∀ σ ∈ Sq ,

where σg :Aq→Aq permutes the q-coordinates on×
q
g Tg according to σ. Similarly,

α is multilinear with respect to A→ g if

hg ∗
λ α = λ

q+1α,(4-16)

(0gi )
∗α = 0 ∀ i = 1, . . . , q + 1,(4-17)

where h
g
λ : Aq → Aq is the homogeneous structure of the vector bundle Aq → g,

and 0gi : Aq−1→ Aq and 0gq+1 :×
q
g Tg→ Aq , i = 1, . . . , q , are the zero maps.

Let 0ext(M,3
pA∗q) be the subspace of 0(M,3pA∗q) of skew-symmetric multi-

linear forms with respect to A→ g. In particular, 0ext(M,3
pA∗q) is a subset of

0(q+1)-hom(M,3
pAq). In the following, we frequently omit the reference to q on the

Lie algebroid Aq . There exists a projection Pext,g : 0(M,3
pA)→ 0ext(M,3

pA∗)

obtained exactly as (4-9) composing the projection Pg,p
(q+1)-hom (2-10) with the ones

constructed from the zero maps 0gi and permutations σ g exactly as in (4-6) and
(4-7), respectively.

3As with VB-groupoids, Whitney sums of VB-algebroids yield VB-algebroids. Moreover, Whitney
sums are preserved by the Lie functor (see [Bursztyn and Cabrera 2012]).
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Proposition 4.11. The projection Pext,g satisfies

Pext,g ◦ d = d ◦ Pext,g.

In particular, 0ext(M,3
•A∗) is a subcomplex of CE•(A).

Proof. The result follows from the fact that the maps hg
λ, 0gi , σg are all Lie algebroid

morphisms. In fact,

(4-18) hg
λ = Lie(hGλ ), 0gi = Lie(0G

i ), σg = Lie(σG)

for the corresponding maps hGλ , 0G
i , σG on the Lie groupoid G. �

In the following, we shall denote by CE•ext(A) and by H •ext(A) the complex
(0ext(M,3

•A∗), d) and its cohomology, respectively. Note that CE•ext(A) is a right
dg-module for 0(3•g)∼= 00-hom(M,3

•A∗) by considering the wedge product.

Proposition 4.12. There exists a right 0(3•g∗)-module isomorphism ev : CE•ext(A)

→W •,q(g,C) satisfying
ev ◦ d = dW ◦ ev.

We refer to the Appendix (see Proposition A.3) for a proof. It is important to
note that Proposition 4.12 implies that W •,q(g,C) is a right dg-module for 0(3•g∗)
as stated in Proposition 4.2. It is also worth noting that ev is a map defined similarly
to (3-4) (i.e., it evaluates an element α ∈ 0ext(M,3

pA∗) on a set of generators of
0(M,A) to give the sequence (c0, c1, . . . ) ∈W p,q(g,C)).

Remark 4.13. An alternative characterization of 0ext(M,3
pA∗) can be given by

seeing vector bundles as Lie groupoids (with multiplication given by addition on the
fibers). Set A(p)

=×
p
M A and g(p) =×

p
M g. One has A(p)

= BpA and g(p) = Bpg.
In particular, the isomorphism (4-11) implies that

(4-19) A(p) ∼=×
q
g(p)

Tg(p)×g(p) π
∗C∗

as vector bundles over g(p), where π : g(p)→ M is defined (following the previous
convention for t : G(p)→ M) as π(u1, . . . , u p) = π(u1). Hence, �q(g(p), π∗C),
the space of differential forms on g(p) with values on C , can be embedded as a
subspace of C∞(A(p)) via (4-8). Similarly, 0(M,3pA) can also be embedded as a
subspace of C∞(A(p)). One can now check that

0ext(M,3
pA∗)= 0(M,3pA)∩�q(g(p), π∗C).

In the case where C = R, with the trivial representation, Li-Bland and Meinrenken
[2015] gave a similar characterization of the Weil algebra as a subspace of differential
forms on g. In this context, the case p= 1 was already studied by Bursztyn, Cabrera
and Ortiz [Bursztyn and Cabrera 2012; Bursztyn et al. 2009].
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Proof of the van Est theorem for differential forms with coefficients. Let VE :
(C•(G), δG)→ (0(M,3•A∗), d) be the van Est map (2-13) for the groupoid G⇒M.

Proposition 4.14. We have

VE ◦ PG,p
ext = Pg,p

ext ◦VE .

In particular, VE(C∞ext(BpG))⊂ 0ext(M,3
pA∗).

Proof. From Proposition 2.12, one already has that VE satisfies VE ◦ PG,p
q+1-hom =

Pg,p
q+1-hom ◦VE. It remains to show that VE commutes with the projections asso-

ciated to the skew-symmetry and the simplicity properties. But this follows from
Lemma 2.10 together with the relations (4-13), (4-14) and (4-18). �

Let VEext : C∞ext(BpG)→ 0ext(M,3
pA∗) be the restriction of the van Est map.

Lemma 4.15. The following diagram commutes:

(4-20)

�q(BpG, t∗C) C∞ext(BpG)

W p,q(g,C) 0ext(M,3
pA∗)

F
//

VEext
��

ev
oo

VE�
��

The proof of Lemma 4.15 consists of a direct but technical verification that
we postpone until the Appendix (see page 328). Finally, we are ready to prove
Theorem 4.4.

Proof of Theorem 4.4. As ev and F are dg-module isomorphisms, it remains to
show that VEext induces isomorphisms on the cohomology H p(C∞ext(B•G)) →
H p(0ext(M,3

•A∗)) for p ≤ p0 and a monomorphism for p = p0+ 1. Since the
ordinary van Est map VEG for G satisfies the above, the theorem then follows from
the homological lemma by means of the underlying projections exactly as in the
proof of Theorem 2.14. �

Remark 4.16. The space �•(B•G, t∗C) is a bigraded right module for the bigraded
algebra�•(B•G)with the cup product [Dupont 1978]. The multiplication is given by

ω∪ η = (−1)qp′pr∗ω∧ pr′∗η, ω ∈�q(BpG, t∗C), η ∈�q ′(Bp′G),

where pr : Bp+p′G→ BpG (resp. pr′ : Bp+p′G→ Bp′G) is the projection onto the first
p arrows (resp. last p′ arrows). It is interesting to note that such module structure
can also be described within the VB-groupoid context. Indeed, by considering
the projections p̃r : Gq+q ′

→ Gq and p̃r′ : Gq+q ′
→×

q ′
G TG, one can check that

Fω∪η ∈ C∞(Bp+p′G
q+q ′) can be obtained from (Bpp̃r)∗Fω ∈ C∞(BpGq+q ′) and

(Bp′ p̃r′)∗Fη ∈ C∞(Bp′G
q+q ′) by skew-symmetrizing their cup product

(Bpp̃r)∗Fω ? (Bp′ p̃r′)∗Fη ∈ C∞(Bp+p′G
q+q ′).
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Similarly, one can define a bigraded module structure on W •,•(g,C) for the Weil al-
gebra W •,•(g) [Arias Abad and Crainic 2011] using the wedge product for their mod-
els as subcomplexes of the Chevalley–Eilenberg complexes. These bigraded module
structures should be useful for studying “multiplicative linear flat” connections on C.

Appendix: Formulas for the evaluation map

We turn to the proof of Lemma 4.15 relating the formula for VE� with the standard
van Est map for G and A. In the process, we also give a detailed description (see
(A-8) below) of the map ev : 0ext(M,3

pA∗q)→W p,q(g,C), making use of special
sections of Aq .

Special sections. Let TB→ B be the tangent bundle of B. Given a vector field
X ∈X(B), let X T, Xv

∈X(TB) be its tangent and vertical lift respectively.4 Define
vector fields X T,q and Xv,q

( j) , j = 1, . . . , q , on the manifold×
q
B TB as follows:

X T,q(v1, . . . , vq)= (X T (v1), . . . , X T (vq)),(A-1)

Xv,q
( j) (v1, . . . , vq)= (0v1, . . . , Xv(vj ), . . . , 0vq ).(A-2)

Let now G ⇒ M be a Lie groupoid with Lie algebroid π : g → M . For a
representation C→M of G, consider the Lie groupoid (4-10),×

q
G TG×G×t

∗C∗⇒
×

q
M TM×M C∗, with corresponding Lie algebroid×

q
g Tg×gπ

∗C∗. For a section
u : M→ g, let T u : TM→ Tg be its derivative and χu : C∗→ π∗C∗ = C∗×M g

the section defined by (2-11). The expressions

Tu(x1, . . . , xq , ξ)= (T u(x1), . . . , T u(xq), χu(ξ)),

Zi u(x1, . . . , xq , ξ)=

(
T 0(x1), . . . , T 0(xi )+

d
dε

∣∣∣∣
ε=0
(εu(m)), . . . , T 0(xq), 0ξ

)
,

for i = 1, . . . , q , x1, . . . , xq ∈ Tm M, ξ ∈C∗m and m ∈ M, define sections of the Lie
algebroid A=×

q
g Tg×g π

∗C∗→M=×
q
M TM×M C∗. It is known that Tu and

Zi u, i = 1, . . . , q , generate 0(M,A) as a C∞(M) module.5

Lemma A.1. As vector fields on Bp(×
q
G TG×G t∗C∗)∼=×

q
BpG TBpG×BpG t∗C∗,

the following identities hold:

Bp(Tu)= ((Bpu)T,q , Xu),(A-3)

Bp(Ziv)= ((Bpv)
v,q
(i) , 0),(A-4)

4The flow at time ε of X T (resp. Xv) is the derivative of the flow at time ε of X (resp. translation
by εX ).

5This follows from a general result regarding core and linear sections of double vector bundles
(see [Mackenzie 2011]).
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where Xu ∈ X(t
∗C∗) is the vector field whose time-ε flow is given by

(g1, . . . , gp, ξ) 7→ (ψεu (g1, . . . , gp),1
∗

φεu(t(g1))−1(ξ)).

In particular, for ω ∈�q(BpG, t∗C),

s∗0LBp(Tu)Fω = FRuω,(A-5)

s∗0LBp(Zi u)Fω = (−1)i−1FJuω ◦ prp−1,q
(i) ,(A-6)

where Ru and Ju were defined in (4-3),

pr·,q(i) :×
q
B·G TB·G×B·G t∗C∗→×

q−1
B·G TB·G×B·G t∗C∗

is the projection which forgets the i-th component and s0 is the first degeneracy map
for G.

Proof. For u ∈ 0(g), consider the sections Zu, T u of Tg→ TM , where

Zu(x)= T 0(x)+
d
dε

∣∣∣∣
ε=0
(εu(m)), x ∈ Tm M.

One has that
−−→

T u = EuT and
−−→

Zu = Euv as vector fields on TG ⇒ TM (see [Mackenzie
and Xu 1994]). Also, the flow of the right invariant vector field −→χu ∈ X(t

∗C∗) is
given by

(g, ξ) 7→ (φεu(g), φ
ε
u(t(g))

−1
· ξ).

The identities (A-3) and (A-4) now follow from analyzing the flows together with
the rearrangement isomorphism (4-11). Hence, for ω ∈�q(BpG, t∗C),

(LBp(Tu)Fω)|(U 1,...,U q ,(g1,...,gp,ξ))

=
d
dε

∣∣∣∣
ε=0

Fω
(
Tψεu (U 1), . . . , Tψεu (U q), (ψ

ε
u (g1, . . . , gp), φ

ε
u(t(g1))

−1
· ξ)
)

=
〈
ξ, φ(t(g1))

−1
· (ψεu )

∗ω(U 1, . . . ,U q)
〉
.

Now, (A-5) follows from the commutation relations on Proposition 4.8. The identity
(A-6) follows similarly. �

The evaluation map. We now describe the chain isomorphism ev:0ext(M,3
pA∗)→

W p,q(g,C). First, for α ∈ 0ext(M,3
pA∗)⊂ 0(M,3pA∗), define

c̃k(α) :
(
×

p−k
0(g)

)
×
(
×

k
0(g)

)
→ C∞

(
×

q
M TM ×M C∗

)
as

c̃k(α)(u1, . . . , u p−k |v1, . . . , vk)= α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k).
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Lemma A.2. There exists a map ck(α) :×
p
0(g)→�q−k(M,C) such that

(A-7) c̃k(α)= Fck(α) ◦ pr[1,k] ∀α ∈ 0ext(M,3
pA∗q),

where pr[1,k] :×
q
M TM×M C∗→×

q−k
M TM×M C∗ is the projection which forgets

the first k entries.

Proof. The multilinearity with respect to both vector bundle structures, A→M

and A → g, implies that c̃k(α)(u1, . . . , u p−k |v1, . . . , vk) = Fα ◦ pr[1,k], where
Fα ∈ C∞

(
×

q−k TM ×M C∗
)

is given by

Fα(y1, . . . , yq−k, ξ)

= c̃k(α)(u1, . . . , u p−k |v1, . . . , vk)(0m, . . . , 0m︸ ︷︷ ︸
k times

, y1, . . . , yq−k, ξ).

We now have to check that Fα ∈ C∞ext
(
×

q−k TM ×M C∗
)
, i.e., F is (q−k+1)-

homogeneous, simple and skew-symmetric. The homogeneity of Fα follows from
the homogeneity of α together with the linearity of the sections Tu and the properties
of the section Z jv:

Z j (v)|(0m ,...,0m ,λy1,...,λyq−k ,λξ) = hg
λ

(
Z j

(1
λ
v
)∣∣∣
(0m ,...,0m ,y1,...,yq−k ,ξ)

)
,

Z j (λv)= λ ·Z j (v),

where λ > 0 and · stands for the multiplication for A→M. The simplicity of Fα
follows from the identity

(Fα ◦ 0i ) ◦ pr[1,k] = ((0
g
k+i )

∗α)(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)= 0

for i = 1, . . . , q− k+ 1. Finally, let σ ∈ Sq−k ⊂ Sq , seen as the subgroup acting as
the identity on {1, . . . , k}. One can check that

(Fα ◦ σM) ◦ pr[1,k] = (σ
∗

g α)(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)

= sgn(σ )α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)

= sgn(σ )Fα ◦ pr[1,k].

This shows that Fα ∈ C∞ext
(
×

q−k TM ×M C∗
)

and, therefore, there exists ck(α) :

×
p
0(g)→�q−k(M,C) such that Fα = Fck(α)(u1,...,u p−k |v1,...,vk). �

Our aim is to prove that

(A-8) ev(α)= (c0(α), c1(α), . . . )

defines a map from 0ext(M,3
pA∗) into W p,q(g,C). First note that the sequence

(c0(α), c1(α), . . . ) completely determines α ∈0ext(M,3
pA∗). Indeed, as 0(M,A)

is generated as a C∞(M)-module by sections of the type Tu, Ziv, any element of
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0(M,3pA∗) is determined by its values on these sections. Now, one can check
that, for α ∈ 0ext(M,3

pA∗),

(A-9) iZ jviZ jwα = 0 for j = 1, . . . , q,

and, for a permutation σ ∈ Sq ,

(A-10) α(Zσ(1)v1, . . . ,Zσ(k)vk,Tu1, . . . ,Tu p−k)

= sgn(σ )σ ∗M(α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)).

Hence, to recover α from its values on the sections Tu,Ziv, it suffices to know the
values of α encoded on the sequence (c0(α), c1(α), . . . ). The next result gives the
desired proof of Proposition 4.12.

Proposition A.3. Given α ∈ 0ext(M,3
pA∗), one has that

(1) ck(α) is skew-symmetric on the u entries;

(2) ck(α) is symmetric on the v entries;

(3) given f ∈ C∞(M),

ck(α)(u1, . . . , u p−k |v1, . . . , f vk)= f ck(α)(u1, . . . , u p−k |v1, . . . , vk),

ck(α)( f u1, . . . , u p−k |v1, . . . , vk)= f ck(α)(u1, . . . , u p−k |v1, . . . , vk)

+ d f ∧ ck+1(α)(u2, . . . , u p−k |v1, . . . , vk, u1).

In particular, each ck can be viewed as an R-linear skew-symmetric map ck :

×
p−k

0(g)→ �q−k(M, Skg∗ ⊗ C). Moreover, the map ev : 0ext(M,3
pA∗)→

W p,q(g,C) defined by (A-8) is a right 0(3•g∗)-module isomorphism satisfying

ev ◦ dext = dW ◦ ev.

Proof.

(1) This follows directly from the skew-symmetry of α with respect to A→M.

(2) Let σ ∈ Sk ⊂ Sq , seen as the subgroup acting as the identity on {k+ 1, . . . , q}.
From (A-10) and the skew-symmetry of α with respect to A→M,

α(Z1vσ(1), . . . ,Zkvσ(k),Tu1, . . . ,Tu p−k)

= sgn(σ )α(Zσ(1)vσ(1), . . . ,Zσ(k)vσ(k),Tu1, . . . ,Tu p−k)

= (sgn(σ ))2α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k).

In the second equality we have used the fact that

α(Tu1, . . . ,Tu p−k,Zσ(1)vσ(1), . . . ,Zσ(k)vσ(k)) ∈ C∞
(
×

q TM ×M C∗
)

does not depend on the first k coordinates.
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(3) One can check that

Zi ( f v)= ( f ◦π) ·Ziv,

T( f u)= ( f ◦π) ·Tu+
q∑

j=1

(`d f ◦ pr j ) ·Z j u,

where all the sums and scalar multiplications are with respect to π : A → M,
pr j :×

q
M TM ×M C∗ → TM is the projection onto the j-th factor and `d f ∈

C∞(TM) is the linear function corresponding to d f ∈�1(M). To simplify notation,
we identify �q−k(M,C) with its image on C∞

(
×

q−k TM ×M C∗
)

under F in the
following. The first equation of (3) is now straightforward to check. As for the
second, it follows from (A-9) and (A-10) that

ck(α)( f u1, . . . ,u p−k |v1, . . . ,vk) ◦ pr[1,k]

= ( f ◦π)α(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)

+

q∑
j=k+1

(`d f ◦ pr j )α(Z1v1, . . . ,Zkvk,Z j u1,Tu2, . . . ,Tu p−k)

= ( f ◦π)ck(α)(u1, . . . ,u p−k |v1, . . . ,vk) ◦ pr[1,k]

+

q∑
j=k+1

(−1) j−k−1(`d f ◦ pr j )α(Z1v1, . . . ,Zkvk,Zk+1u1,Tu2, . . . ,Tu p−k) ◦ σ
j

M︸ ︷︷ ︸
(∗)

,

where σ j
∈ Sq is the cycle ( j j−1 · · · k+2 k+1), for k + 1 ≤ j ≤ q, which

has sign equal to (−1) j−k−1. It is now straightforward to check that (∗) equals
d f ∧ ck+1(u2, . . . , u p−k |v1, . . . , vk, u1) ◦ pr[1,k].

It remains to prove that ev is a dg-module isomorphism. Let us first prove that
ev commutes with the multiplication. Let β ∈ 0(3p′g∗)∼= 00-hom(M,3

p′A∗) and
consider ev(α∧β)= (c0(α∧β), c1(α∧β), . . . ). By definition,

ck(α∧β)(u1, . . . , u p+p′−k |v1, . . . , vk) ◦ pr[1,k]
= (α∧β)(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p+p′−k)

=

∑
σ∈S(p−k,p′)

sgn(σ )α(Z1v1, . . . ,Zkvk,Tuσ(1), . . . ,Tuσ(p−k))

×β(Tuσ(p−k+1), . . . ,Tuσ(p+p′−k)),

where S(p−k, p′) is the space of (p−k, p′)-unshuffles and the last equality follows
from the fact that the contraction of β with any section of type Z·v· is zero. The
result now follows easily.

Finally, to prove that ev intertwines the differential, consider

ev(dα)= (c0(dα), . . . , ck(dα), . . . ),
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where

ck(dα)(u1, . . . , u p+1−k |v1, . . . , vk) ◦ pr[1,k]

= dα(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p+1−k)

=

k∑
j=1

(−1) j+1Lρ(Z jvj )α(Z1v1, . . . , Ẑ jvj , . . . )︸ ︷︷ ︸
(A)

+

p−k+1∑
i=1

(−1)i+k+1Lρ(Tui )α(Z1v1, . . . , T̂ui , . . . )︸ ︷︷ ︸
(B)

+

∑
1≤i< j≤p+1−k

(−1)i+ jα([Tui ,Tu j ], . . . , T̂ ui , . . . , T̂ u j , . . . )︸ ︷︷ ︸
(C)

+

p+1−k∑
i=1

k∑
j=1

(−1) j+(k+i)α([Z jvj ,Tui ], . . . , Ẑ jvj , . . . , T̂ui , . . . )︸ ︷︷ ︸
(D)

.

Notice that there are no terms containing [Z j1v j1,Z j2v j2] since these brackets are
all zero. To study the remaining terms, we use some properties of the tangent Lie
algebroid Tg→ TM (see [Mackenzie and Xu 1994]) and the action algebroid
C∗×M g→ C∗.

(A): From (A-10),

α(Z1v1, . . . , Ẑ jvj , . . . ,Zkvk,Tu1, . . . ,Tu p+k−1)

= (−1)k− jσ ∗M(Fck−1(α)(u1,...,u p+1−k |v1,...,v j−1,v j+1,...,vk) ◦ pr[1,k−1]),

where σ = ( j k)( j k−1) · · · ( j j+1) ∈ Sq . Now,

pr[1,k−1] ◦ σM(x1, . . . , xq , ξ)= (x j , xk+1, . . . , xq , ξ),

ρ(Z jvj )= (ρ(vj )
v,q
( j) , 0)

and
L(Xv,q

(1) ,0)
Fω = FiXω ◦ pr(1) ∀ X ∈ X(M), ω ∈�q(M,C),

where pr(1) :×
q TM ×M C∗→×

q−1 TM ×M C∗ is the projection which forgets
the first component. These facts imply that

(A)= (−1)k+1
k∑

j=1

(
iρ(vj )ck−1(α)(u1, . . . , u p+1−k |v1, . . . , v j−1, v j+1,

. . . , vk)
)
◦ pr[1,k].
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(B): The fact that ρ(Tui ) = (ρ(ui )
T , ρ(χu)), where ( · )T stands for tangent lift,

implies that, for ω∈�q(M,C), Lρ(Tui )Fω=Fui ·ω, where u ·(β⊗µ)=Lρ(u)β⊗µ+
β ⊗∇uµ, β ∈ �q(M), µ ∈ 0(C) and ∇ is the g-connection on C defining the
representation of g on C . Hence,

(B)= (−1)k
p−k+1∑

i=1

(−1)i+1(ui · ck(u1, . . . , ûi , . . . , u p+1−k |v1, . . . , vk)
)
◦ pr[1,k].

(C) and (D): From the identities [Tui ,Tu j ] =T[ui , u j ], [Tui ,Z jvj ] =Z j [ui , vj ],
it is straightforward to check that

(C)= (−1)k
∑

1≤i1<i j≤p−k+1

(−1)i1+i2
(
ck(α)([ui1,ui2],u1, . . . , ûi1, . . . , ûi2,

. . . ,u p−k+1|v1, . . . ,vk)
)
◦pr[1,k],

(D)= (−1)k
p−k+1∑

i=1

k∑
j=1

(−1)i
(
ck(α)(u1, . . . , ûi ,

. . . ,u p+1−k |v1, . . . , [ui ,vj ], . . . ,vk)
)
◦pr[1,k].

Hence,

(A)+ (B)+ (C)+ (D)= dW (c(α))k(u1, . . . , u p−k+1|v1, . . . , vk) ◦ pr[1,k]
H⇒ c(dα)k = dW (c(α))k,

as we wanted. �

Proof of Lemma 4.15.

Lemma 4.15 rephrased. Let ω be an element of �q(BpG, t∗C) and consider
VE�(ω) = (c0(ω), c1(ω), . . .) as defined in (4-4). Also, let α = VEext(Fω) ∈

0ext(M,3
pA∗) and consider ev(α)= (c0(α), c1(α), . . .) defined by (A-7). Then

ck(ω)= ck(α) ∀ k ≥ 0.

Proof. From (2-13),

Fck(α)(u1,...,u p−k |v1,...,vk) ◦ pr[1,k] = VEext(Fω)(Z1v1, . . . ,Zkvk,Tu1, . . . ,Tu p−k)

=

∑
σ∈Sp

sgn(σ )Rχσ(1) . . . Rχσ(p)Fω,

where χi = Zivi (resp. Tui−k) if i ∈ {1, . . . , k} (resp. if i ∈ {k + 1, . . . , p}). The
main ingredients of the proof are the identities from Lemma A.1:

RTuiFω = s∗0LBpTuiFω = FRui ω
,

RZiviFω = (−1)i−1FJvi ω ◦ prp−1,q
(i) ,
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where pr ·,q(i) :×
q
B·G TB·G ×B·G t∗C∗ →×

q−1
B·G TB·G ×B·G t∗C∗ is the projection

which forgets the i-th component. In the rest of the proof, the difficulty lies in the
combinatorics needed to count the number of −1’s appearing due to the presence
of the sections Zivi .

Let 0 ≤ r ≤ p, 1 ≤ s ≤ q and 1 ≤ i, j ≤ s. For η ∈ �s−1(BrG, t∗C), one can
check that

RTu(Fη ◦ prr,s
(i))= FRuη ◦ prr−1,s

(i)

and

RZ jv(Fη ◦ prr,s
(i))=


(−1) j−1FJvη ◦ prr−1,s−1

( j) ◦ prr−1,s
(i) if i > j,

−(−1) j−1FJvη ◦ prr−1,s−1
(i) ◦ prr−1,s

( j) if i < j,

0 if i = j.

Let us now fix a permutation σ ∈ Sq . For 1≤ l ≤ k, let jl = σ−1(l) for l ≥ 1 and set
j0 = 0. Denote by τ the permutation of {0, 1, . . . , k} such that jτ(0) < · · ·< jτ(k).
One can now prove by induction that, for jτ(l) ≤ r < jτ(l+1),

(A-11) Rχσ(r+1) . . . Rχσ(p)Fω = δ(k, l)
(
FDσ(r+1)...Dσ(p)ω ◦ prr,q−k+l

(i1)
◦ · · · ◦ prr,q

(ik−l)

)
,

where the D j are the operators (4-5), {i1 < · · ·< ik−l} = {τ(l + 1), . . . , τ (k)} and

δ(k, l)= (−1)k−l(−1)τ(l+1)+···+τ(k)(−1)N (τ,l)

with

N (τ, l)= #
{
(i, j) ∈ {l+ 1, . . . , k}× {l+ 1, . . . , k} | i < j and σ−1(i) > σ−1( j)

}
.

Note that, for l = 0,

δ(k, 0)= (−1)k(−1)1+···+k(−1)ε(σ,k) = (−1)k(k−1)/2(−1)ε(σ,k).

In particular, when r = 0, we have

Fck(α)(u1,...,u p−k |v1,...,vk) ◦ pr[1,k]

=

∑
σ∈Sp

sgn(σ )Rχσ(1) . . . Rχσ(p)Fω

= (−1)k(k−1)/2
∑
σ∈Sp

sgn(σ )(−1)ε(σ,k)FDσ(1)...Dσ(p)ω ◦ pr0,q−k
(1) ◦ · · · ◦ pr0,q

(k)

= Fck(ω)(u1,...,u p−k |v1,...,vk) ◦ pr[1,k]. �
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THE RICCI–BOURGUIGNON FLOW

GIOVANNI CATINO, LAURA CREMASCHI, ZINDINE DJADLI,
CARLO MANTEGAZZA AND LORENZO MAZZIERI

We present some results on a family of geometric flows introduced by J. P.
Bourguignon in 1981 that generalize the Ricci flow. For suitable values of
the scalar parameter involved in these flows, we prove short time existence
and provide curvature estimates. We also state some results on the associ-
ated solitons.

1. Introduction

In this paper we consider an n-dimensional, compact, smooth, Riemannian manifold
M (without boundary) whose metric g = g(t) is evolving according to the flow
equation

(1-1) ∂

∂t
g =−2Ric+ 2ρRg =−2(Ric− ρRg)

where Ric is the Ricci tensor of the manifold, R its scalar curvature and ρ is a real
constant. This family of geometric flows contains, as a special case, the Ricci flow,
setting ρ = 0. Moreover, by a suitable rescaling in time, when ρ is nonpositive,
they can be seen as an interpolation between the Ricci flow and the Yamabe flow
(see [Brendle 2005; Schwetlick and Struwe 2003; Ye 1994], for instance), obtained
as a limit when ρ→−∞.

It should be noticed that for special values of the constant ρ the tensor Ric−ρRg
appearing on the right-hand side of the evolution equation is of special interest. In
particular,

• ρ = 1/2, the Einstein tensor Ric− R
2 g,

• ρ = 1/n, the traceless Ricci tensor Ric− R
n g,

• ρ = 1/2(n− 1), the Schouten tensor Ric− R
2(n−1)g,

• ρ = 0, the Ricci tensor Ric.

MSC2010: 53C21.
Keywords: Ricci flow, Ricci-Bourguignon flow, short time existence.
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In dimension two, the first three tensors are zero, hence the flow is static, and in
higher dimension the values of ρ are strictly ordered as above, in descending order.

Apart from these special values of ρ, for which we will call the associated flows
by the name of the corresponding tensor, in general we will refer to the evolution
equation defined by the PDE system (1-1) as the Ricci–Bourguignon flow (or shortly
RB flow).

The study of these flows was proposed by Jean-Pierre Bourguignon [1981,
Question 3.24], building on some unpublished work of Lichnerowicz in the sixties
and a paper of Aubin [1970]. In 2003, Fischer [2004] studied a conformal version of
this problem where the scalar curvature is constrained along the flow. In 2011, Lu,
Qing and Zheng [Lu et al. 2014] also proved some results on the conformal Ricci–
Bourguignon flow. Some results concerning solitons of the Ricci–Bourguignon
flow (called gradient ρ-Einstein solitons) can be found in [Catino and Mazzieri
2016; Catino et al. 2015b].

We will see in the next section that when ρ is larger than 1/2(n−1) the principal
symbol of the operator in the right hand side of the second order quasilinear parabolic
PDE (1-1) has negative eigenvalues, not allowing even a short time existence result
for the flow for general initial data (manifold M and initial metric g0). On the
contrary, the main task of Section 2 will be to show that for any ρ<1/2(n−1), every
initial compact Riemannian manifold (M, g0) has a unique smooth solution g(t)
solving the flow equation (1-1), with g(0)= g0, at least in a positive time interval.

However, the problem of knowing whether the “critical” Schouten flow

(1-2)

{
∂

∂t
g =−2Ric+ R

n−1
g,

g(0)= g0,

when ρ=1/2(n−1), admits or not a short time solution for general initial manifolds
and metrics remains open, when n ≥ 3.

We will see that if ρ ≤ 1/2(n− 1), the principal symbol of the elliptic operator
is nonnegative definite and it actually contains some zero eigenvalues due to the
diffeomorphism invariance of the geometric flow. When ρ < 1/2(n−1), these zero
eigenvalues are the only ones, while all the others are actually positive, hence, they
can be dealt with (as is customary by now) by means of the so-called DeTurck’s
trick [1983; 2003]. In the case of the Schouten flow ρ = 1/2(n − 1) instead,
the principal symbol contains an extra zero eigenvalue besides the ones due to
the diffeomorphism invariance, preventing this argument from being sufficient to
conclude and to give a general short time existence result.

We mention that the presence of this extra zero eigenvalue should be expected,
as the Cotton tensor, which is obtained from the Schouten tensor A by

Ci jk =∇kAi j −∇j Aik =∇kRi j −∇j Rik −
1

2(n−1)
(∇kRgi j −∇j Rgik),
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satisfies the following invariance under the conformal change of metric g̃ = e2ug,

e3uC̃i jk = Ci jk + (n− 2)Wi jkl∇
lu;

see [Catino et al. 2016, equation 3.35]. Recently, Delay [2014], following the work
of Fischer and Marsden, gave some evidence on the fact that DeTurck’s trick should
fail for the Schouten tensor.

In Section 3, we will compute the evolution equations for the curvature.
In Section 4, by means of the maximum principle, we derive, from the evolution of

the curvature, some conditions on the curvature which are preserved by the RB flow.
In particular, we show that the Hamilton–Ivey estimate in dimension three holds.

In Section 5, we establish some a priori estimates on the Riemann tensor and
prove that, if a compact solution of the flow exists up to a finite maximal time T,
then the Riemann tensor is unbounded when approaching T.

Finally, in the last section we discuss the structure and the classification of the
solitons of the RB flow.

1A. Notation and preliminaries. The Riemann curvature operator of a Riemann-
ian manifold (M, g) of dimension n is defined as in [Gallot et al. 1990] by

Riem(X, Y )Z =∇Y∇X Z −∇X∇Y Z +∇[X,Y ]Z ,

and we will denote by dµg the canonical volume measure associated to the metric g.
In a local coordinate system, the components of the (3, 1)-Riemann curvature

tensor are given by Rl
i jk(∂/∂x l) = Riem(∂/∂x i , ∂/∂x j )∂/∂xk , and we denote by

Ri jkl = glmRm
ijk its (4, 0)-version.

With this choice, for the sphere Sn we have Riem(v,w,v,w)=Ri jklv
iw jvkwl>0.

The Ricci tensor is obtained as the contraction Rik = g jlRi jkl , and R= gikRik

will denote the scalar curvature.
The so-called Weyl tensor is then defined by the decomposition formula (see

[Gallot et al. 1990, Chapter 3, Section K]) of the Riemann tensor in dimension
n ≥ 3,

(1-3) Wi jkl = Ri jkl +
R

(n−1)(n−2)
(gik gjl − gil gjk)

−
1

n−2
(Rik gjl −Ril gjk +R jl gik −R jk gil).

The tensor W satisfies all the symmetries of the curvature tensor and all its traces
with the metric are zero, as can be easily seen from the above formula.

In dimension three, W is identically zero for every Riemannian manifold (M, g),
and it becomes relevant when n ≥ 4 since it vanishes if and only if (M, g) is
locally conformally flat. This latter condition means that around every point p ∈ M
there is a conformal deformation g̃i j = e f gi j of the original metric g, such that the
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new metric is flat, namely, the Riemann tensor associated to g̃ is zero in Up (here
f :Up→ R is a smooth function defined in a open neighborhood Up of p).

2. Short time existence

Theorem 2.1. Let ρ < 1/2(n − 1). Then, the evolution equation (1-1) has a
unique solution for a positive time interval on any smooth, n-dimensional, compact
Riemannian manifold M (without boundary) for any initial metric g0.

Proof. We first compute the linearized operator DLg0 of the operator L =−2(Ric−
ρRg) at a metric g0. The Ricci tensor and the scalar curvature have the following
linearizations (see [Besse 1987, Theorem 1.174] or [Topping 2006]), where we use
the metric g0 to lower and raise indices and to take traces:

DRicg0(h)ik =
1
2(−1hik −∇i∇k tr(h)+∇i∇

t htk +∇k∇
t hi t)+LOT,

DRg0(h)=−1(tr h)+∇s
∇

t hst +LOT.

Here LOT stands for lower order terms.
Then, the linearization of L at g0 is given by

DLg0(h)ik =−2(DRicg0(h)ik − ρDRg0(h)(g0)ik)+ 2ρRg0hik

=1hik +∇i∇k tr(h)−∇i∇
t htk −∇k∇

t hi t

− 2ρ(1(tr h)−∇s
∇

t hst)(g0)ik +LOT,

for every bilinear form h ∈0(S2 M). Now, we obtain the principal symbol of the lin-
earized operator in the direction of an arbitrary cotangent vector ξ by replacing each
covariant derivative ∇α appearing in the higher order terms with the corresponding
component ξα:

σξ (DLg0)(h)ik = ξ
tξt hik + ξiξk trg0(h)− ξiξ

t hkt − ξkξ
t hi t

−2ρξ tξt trg0(h)(g0)ik + 2ρξ tξ shts(g0)ik .

As usual, since the symbol is homogeneous we can assume that |ξ |g0 = 1 and we
perform all the computations in an orthonormal basis {ei }i=1,...,n of Tp M such that
ξ = g0(e1, · ), that is, ξi = 0 for i 6= 1.

Hence we obtain

σξ (DLg0)(h)ik = hik + δi1δk1 trg0(h)− δi1hk1− δk1hi1− 2ρ trg0(h)δik + 2ρh11δik,

which can be represented in the coordinate system

(h11, h22, . . . , hnn, h12, . . . , h1n, h23, h24, . . . , hn−1,n)
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for any h ∈ 0(S2 M), by the following matrix

σξ (DLg0)=



0 1− 2ρ · · · 1− 2ρ
... A[n− 1]
0

0 0

0 0 0

0 0 Id(n−1)(n−2)/2


,

where A[n− 1] is the (n− 1)× (n− 1) matrix given by

A[n− 1] =


1− 2ρ −2ρ · · · −2ρ
−2ρ 1− 2ρ · · · −2ρ
...

...
. . .

...

−2ρ −2ρ · · · 1− 2ρ

.
We can see that there are at least n null eigenvalues, as would be expected by the
diffeomorphism invariance of the operator L , and (n − 1)(n − 2)/2 eigenvalues
equal to 1. The remaining n − 1 eigenvalues can be computed by the following
lemma which is easily proved by induction on the dimension of A.

Lemma 2.2. Let A[m] be the m×m matrix

(2-1) A[m] =


1− 2ρ −2ρ · · · −2ρ
−2ρ 1− 2ρ · · · −2ρ
...

...
. . .

...

−2ρ −2ρ · · · 1− 2ρ

 .
Then we have

det(A[m] − λIdm)= (1− λ)(m−1)(1− 2mρ− λ).

Using this lemma, we conclude that the eigenvalues of the principal symbol of
DLg0 are 0 with multiplicity n, 1 with multiplicity 1

2(n+1)(n−2) and 1−2(n−1)ρ
with multiplicity 1.

Now we apply the so-called DeTurck’s trick [1983; 2003] to show that the RB
flow is equivalent to a Cauchy problem for a strictly parabolic operator, modulo
the action of the diffeomorphism group of M. Let V : 0(S2 M) → 0(TM) be
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“DeTurck’s” vector field defined by

(2-2) V j(g)=−g jk
0 g pq
∇p
( 1

2 trg(g0)gqk − (g0)qk
)

=−
1
2 g jk

0 g pq(∇k(g0)pq −∇p(g0)qk −∇q(g0)pk),

where g0 is a fixed Riemannian metric on M and g jk
0 are the components of the

inverse matrix of g0.
DeTurck’s trick (see [DeTurck 1983, 2003] for details) states that in order to

show the smooth existence part of the theorem, we only need to check that the
operator D(L −LV )g0 is strongly elliptic, where LV is the Lie derivative operator
in the direction of V.

The principal symbol of this latter operator, with the same notation used above,
is well known and is given by

σξ (DLV )g0(h)ik = δi1δk1 trg0(h)− δi1hk1− δk1hi1.

Then we can easily see that the linearized DeTurck–Ricci–Bourguignon operator
has principal symbol in the direction ξ , with respect to an orthonormal basis
{ξ [, e2, . . . , en}, given by

σξ ((D(L −LV )g0)=



1 −2ρ · · · −2ρ
... A[n− 1]
0

0 0

0 Id(n−1) 0

0 0 Id(n−1)(n−2)/2


,

expressed in the coordinate system

(h11, h22, . . . , hnn, h12, h13, . . . , h1n, h23, h24, . . . , hn−1,n)

for any h ∈ 0(S2 M).
Using Lemma 2.2 again, this matrix has 1

2 n(n+ 1)− 1 eigenvalues equal to 1
and 1 eigenvalue equal to 1−2(n−1)ρ. Therefore, by DeTurck’s trick, a sufficient
condition for the existence of a solution is that ρ < 1/(2(n− 1)).

The uniqueness part of the theorem is proven in the same way as for the Ricci
flow (see [Hamilton 1995]). The RB flow is equivalent, via the one parameter
group of diffeomorphisms generated by DeTurck’s vector field, to the DeTurck–RB
flow which is strictly parabolic. On the other hand, the one parameter group of
diffeomorphisms satisfies the harmonic map flow introduced by Eells and Sampson
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[1964], which is also parabolic. These two facts imply the uniqueness of the
solution for the RB flow (see [Chow and Knopf 2004, Chapter 3, Section 4] for
more details). �

3. Evolution of the curvature

3A. The evolution of curvature. As the metric tensor evolves by

∂

∂t
gi j =−2(Ri j − ρRgi j ),

it is easy to see, differentiating the identity gi j g jl
= δl

i , that

(3-1) ∂

∂t
g jl
= 2(Ric jl

− ρRg jl).

It follows that the canonical volume measure µ satisfies

dµ
dt
=
∂

∂t
√

det gi j L
n
=

√
det gi j gi j ∂

∂t gi j

2
Ln
= (nρ−1)R

√
det gi j L

n
= (nρ−1)Rµ.

Computing in a normal coordinate system, the evolution equation for the Christof-
fel symbols is given by

∂

∂t
0i

jk =
1
2

gil
{
∂

∂xj

(
∂

∂t
gkl

)
+

∂

∂xk

(
∂

∂t
gjl

)
−

∂

∂xl

(
∂

∂t
gjk

)}
+

1
2
∂

∂t
gil
{
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}
=

1
2

gil
{
∇j

(
∂

∂t
gkl

)
+∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}
=− gil

{∇j (Rkl − ρRgkl)+∇k(R jl − ρRgjl)−∇l(R jk − ρRgjk)}

=−∇j Ri
k −∇kRi

j −∇
i R jk + ρ(∇j Rδi

k +∇kRδi
j +∇

i Rgjk).

Proposition 3.1. Along the RB flow on a n-dimensional Riemannian manifold
(M, g), the curvature tensor, the Ricci tensor and the scalar curvature satisfy the
following evolution equations:

(3-2) ∂

∂t
Ri jkl =1Ri jkl + 2(Bi jkl −Bi jlk −Bil jk +Bik jl)

− g pq(RpjklRqi +Ri pklRq j +Ri jplRqk +Ri jkpRql)

− ρ(∇i∇kRgjl −∇i∇lRgjk −∇j∇kRgil +∇j∇lRgik)+ 2ρRRi jkl,
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where the tensor B is defined as Bi jkl = g pq grsRi pjr Rkqls ,

∂

∂t
Rik =1Rik + 2g pqgrsRpirkRqs − 2g pqRpi Rqk(3-3)

− (n− 2)ρ∇i∇kR− ρ1Rgik,

∂

∂t
R= (1− 2(n− 1)ρ)1R+ 2|Ric|2− 2ρR2.(3-4)

Proof. The following computation is analogous to the one for the Ricci flow
performed by Hamilton [1982].

By the first variation formula for the (4, 0)-Riemann tensor (see [Besse 1987,
Theorem 1.174] or [Topping 2006]), we have in general

∂

∂t
Riem(X,Y,W,Z)= 1

2(h(Riem(X,Y )W,Z)− h(Riem(X,Y )Z,W ))

−
1
2(−∇

2
Y,W h(X,Z)−∇2

X,Z h(Y,W )+∇2
X,W h(Y,Z)+∇2

Y,Z h(X,W )),

where X, Y,W, Z ∈ 0(TM) are vector fields and h = (∂/∂t)g. Along the RB flow
h =−2(Ric− ρRg), and therefore

∂

∂t
Riem(X, Y,W, Z)

=−Ric(Riem(X, Y )W, Z)+Ric(Riem(X, Y )Z ,W )

−∇
2
Y,W Ric(X, Z)−∇2

X,Z Ric(Y,W )+∇2
X,W Ric(Y, Z)+∇2

Y,Z Ric(X,W )

−ρ(−∇2
Y,W Rg(X, Z)−∇2

X,Z Rg(Y,W )+∇2
X,W Rg(Y, Z)+∇2

Y,Z Rg(X,W ))

+ 2ρRRiem(X, Y,W, Z).

Using the second Bianchi identity and the commutation formula for second covariant
derivatives, we get the following equation for the Laplacian of the Riemann tensor:

1Riem(X, Y,W, Z)

=−∇
2
Y,W Ric(X, Z)−∇2

X,Z Ric(Y,W )+∇2
X,W Ric(Y, Z)+∇2

Y,Z Ric(X,W )

−Ric(Riem(W, Z)Y, X)+Ric(Riem(W, Z)X, Y )− 2(B(X, Y,W, Z)

−B(X, Y, Z ,W )+B(X,W, Y, Z)−B(X, Z , Y,W )).

Plugging it into the evolution equation, we obtain

∂

∂t
Riem(X,Y,W, Z)

=1Riem(X,Y,W, Z)− ρ(∇2R 7 g)(X,Y,W, Z)

+ 2(B(X,Y,W, Z)−B(X,Y, Z,W )+B(X,W,Y, Z)−B(X, Z,Y,W ))

−Ric(Riem(X,Y )W, Z)+Ric(Riem(X,Y )Z,W )−Ric(Riem(W, Z)X,Y )

+Ric(Riem(W, Z)Y, X)+ 2ρRRiem(X,Y,W, Z),
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which is formula (3-2) once written in coordinates. Here the symbol 7 denotes the
Kulkarni–Nomizu product of two symmetric bilinear forms p and q , defined by

(p 7 q)(X, Y, Z , T )

= p(X, Z)q(Y, T )+ p(Y, T )q(X, Z)− p(X, T )q(Y, Z)− p(Y, Z)q(X, T ),

for every tangent vector fields X, Y, Z , T ∈ 0(TM).
Taking into account the evolution equation for the inverse of the metric (3-1),

contracting equation (3-2) and using again the second Bianchi identity, formula
(3-3) follows (see [Hamilton 1982] for details). Contracting again one gets the
evolution equation (3-4) for the scalar curvature. �

3B. Uhlenbeck’s trick and the evolution of the curvature operator. In this sub-
section we want to study the evolution equation of the curvature operator, as was
done for the Ricci flow by Hamilton [1986].

First of all, we simplify the expression of the reaction term in equation (3-2) by
means of the so-called Uhlenbeck’s trick [Hamilton 1986]. Briefly, we will relate
the curvature tensor of the evolving metric to an evolving tensor of an abstract
bundle with the same symmetries of the curvature (see Proposition 3.4) and a nicer
evolution equation; afterwards we will find a suitable orthonormal moving frame
of (TM, g(t)) and write the evolution equation of the coordinates of the Riemann
tensor with respect to this frame. The result will be a system of scalar evolution
equations and no more a tensorial equation (see [Chow and Knopf 2004] for more
details on this method in the case of Ricci flow).

Let (M, g(t))t∈[0,T ) be the solution of the RB flow with initial data g0 and
consider on the tangent bundle TM the family of endomorphisms {ϕ(t)}t∈[0,T )
defined by the evolution equation

(3-5)
{ ∂
∂t ϕ(t)= Ric#

g(t) ◦ϕ(t)− ρRg(t)ϕ(t),
ϕ(0)= IdTM ,

where Ric#
g(t) is the endomorphism of the tangent bundle canonically associated to

the Ricci tensor by raising an index.
For every point p of the manifold M, the evolution equation (3-5) represents a

system of linear ODEs on the fiber Tp M; therefore a unique solution exists as long as
the RB flow exists. Moreover, if we let (h(t))t∈[0,T ) be the family of bundle metrics
defined by h(t)= ϕ(t)∗(g(t)), where ϕ(t) satisfies system (3-5), then h(t)= g0 for
every t ∈ [0, T ). As

for all t ∈ [0, T ), ϕ(t) : (TM, g0)→ (TM, g(t))

is a bundle isometry, the pullback via ϕ(t) of the Levi-Civita connection associated
to g(t) is a connection on TM compatible with the metric g0. In the following, we
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will denote by (V, h) the vector bundle (TM, g0) in order to stress the fact that we
are not considering the Levi-Civita connection associated to g0, but the family of
time-dependent connections D(t) defined via the bundle isometries ϕ(t).

The following lemma states some basic properties of these pullback connections:

Lemma 3.2 (see [Chow and Knopf 2004, Chapter 6, Section 2]). Let D(t) :
0(TM)×0(V )→ 0(V ) be the pullback connection defined by

D(t)Xζ = ϕ(t)∗(∇
g(t)
X (ϕ(t)(ζ ))),

for all t ∈ [0, T ), for all X ∈ 0(TM), for all ζ ∈ 0(V ), where ∇g(t) is the Levi-
Civita connection of g(t).

Let again D(t) be the canonical extension to the tensor powers of V and T be a
covariant tensor on M. Then, for every t ∈ [0, T ) and X ∈ 0(TM) we have

D(t)X (ϕ(t)∗(T ))= ϕ(t)∗(∇
g(t)
X T ).

In particular, D(t)X h = ϕ∗(∇g(t)
X g(t))= 0, so every connection of the family D(t)

is compatible with the bundle metric h on V.
Let D2

: 0(TM)×0(TM)×0(V )→ 0(V ) be the second covariant derivative
defined by

D2
X,Y (ζ )= DX (DY ζ )− D

∇
g(t)
X Y ζ, for all X, Y ∈ 0(TM), for all ζ ∈ 0(V ),

and the rough Laplacian defined by1D = trg(D2). Then, for every covariant tensor
T on M, we have

D2
X,Y (ϕ

∗(T ))= ϕ∗(∇2
X,Y T ) for all X, Y ∈ 0(TM),(3-6)

1D(ϕ
∗(T ))= ϕ∗(1gT ).(3-7)

Remark 3.3. Let R ∈ End(32 M) be the Riemann curvature operator defined by

(3-8) 〈R(X ∧ Y ),W ∧ Z〉 = Riem(X, Y,W, Z),

where 〈 · , · 〉 is the linear extension of g to the exterior powers of TM.
In the following, we use a convention on the Lie algebra structure of 32 M which

is different from the original one chosen by Hamilton [1986]. More precisely, with
his convention, the eigenvalues of the curvature operator are twice the sectional
curvatures, whereas with our convention the curvature operator has the sectional cur-
vatures as eigenvalues. In particular, every formula differs from the corresponding
one in the usual theory of the Ricci flow by a factor of 2 (see also [Chow and Knopf
2004, Chapter 6, Section 3] for the details). We recall that R can be considered as
an element of 0(S2(32 M)), and the following equations hold:

R= 2
∑
i<k

R(ik)
(ik), (R2)i jkl = Bi jkl −Bi jlk, (R#R)i jkl = Bik jl −Bil jk,



THE RICCI–BOURGUIGNON FLOW 347

where B is defined as in Proposition 3.1. For more details on the structure of the
curvature operator we refer the reader again to [Chow and Knopf 2004, Chapter 6,
Section 3].

We now consider the pullback of the Riemann curvature tensor and the curvature
operator.

Proposition 3.4. Let Piem be the pullback of the Riemann curvature tensor via the
family of bundle isometries {ϕ(t)}t∈[0,T ). The following statements hold true:

(1) Piem has the same symmetry properties as Riem, i.e., it can be seen as an
element of 0(S2(32V )) and it satisfies the first Bianchi identity;

(2) For every p ∈ M and t ∈ [0, T ) the algebraic curvature operator P(p, t) ∈
End(32Vp) (see Remark 3.7), defined by ϕ◦P=R◦ϕ has the same eigenvalues
as R(p, t). In particular, P is positive (nonnegative) definite if and only if R
is positive (nonnegative) definite;

(3) Pic(t)= trh(Piem(t))= ϕ(t)∗(Ricg(t));

(4) P= trh(Pic(t))= Rg(t);

(5) B(Piem)=ϕ∗(B(Riem)), where B is defined the same way as in Proposition 3.1
for a generic element of S2(32V ∗).

Finally, we can compute the evolution of Piem and P .

Proposition 3.5. The tensors Piem and P satisfy respectively the following evolu-
tion equations

(3-9) ∂

∂t
(Piem)abcd =1D(Piem)abcd− ρ(ϕ

∗(∇2R)7 h)abcd

+ 2(B(Piem)abcd−B(Piem)abdc+B(Piem)acbd−B(Piem)adbc)

− 2ρPPiemabcd ,

(3-10) ∂

∂t
P =1DP − 2ρϕ∗(∇2 trh(P))7 h+ 2P2

+ 2P#
− 4ρ trh(P)P,

where trh(P(t))= trg(t)(R(t))= 1
2 R(t).

Remark 3.6. On the right-hand side of (3-9) the term ϕ∗(∇2R) appears (i.e., the
pullback of the Hessian of the scalar curvature, seen as a symmetric 2-form on the
tangent bundle) and it cannot be expressed in terms of the connection D(t).
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Proof. Let ζ1, . . . , ζ4 be sections of V ; then combining the evolution equations of
the Riemann tensor (3-2) and of the bundle isometry ϕ (3-5), we obtain

∂

∂t
(Piem)(ζ1,ζ2,ζ3,ζ4)

= ϕ∗
( ∂
∂t

Riem
)
(ζ1,ζ2,ζ3,ζ4)+Riem

(∂ϕ
∂t
(ζ1),ϕ(ζ2),ϕ(ζ3),ϕ(ζ4)

)
+Riem

(
ϕ(ζ1),

∂ϕ

∂t
(ζ2),ϕ(ζ3),ϕ(ζ4)

)
+Riem

(
ϕ(ζ1),ϕ(ζ2),

∂ϕ

∂t
(ζ3),ϕ(ζ4)

)
+Riem

(
ϕ(ζ1),ϕ(ζ2),ϕ(ζ3),

∂ϕ

∂t
(ζ4)

)
= ϕ∗(1gRiem)(ζ1,ζ2,ζ3,ζ4)− ρϕ

∗(∇2R 7 g)(ζ1,ζ2,ζ3,ζ4)

+ 2ϕ∗(B(Riem)(ζ1,ζ2,ζ3,ζ4)−B(Riem)(ζ1,ζ2,ζ4,ζ3)−B(Riem)(ζ1,ζ4,ζ2,ζ3)

+B(Riem)(ζ1,ζ3,ζ2,ζ4))+ 2ρRϕ∗(Riem)(ζ1,ζ2,ζ3,ζ4)

−Riem(Ric#
◦ϕ(ζ1),ϕ(ζ2),ϕ(ζ3),ϕ(ζ4))−Riem(ϕ(ζ1),Ric#

◦ϕ(ζ2),ϕ(ζ3),ϕ(ζ4))

−Riem(ϕ(ζ1),ϕ(ζ2),Ric#
◦ϕ(ζ3),ϕ(ζ4))−Riem(ϕ(ζ1),ϕ(ζ2),ϕ(ζ3),Ric#

◦ϕ(ζ4))

+Riem((Ric#
◦ϕ− ρRϕ)(ζ1),ϕ(ζ2),ϕ(ζ3),ϕ(ζ4))

+Riem(ϕ(ζ1), (Ric#
◦ϕ− ρRϕ)(ζ2),ϕ(ζ3),ϕ(ζ4))

+Riem(ϕ(ζ1),ϕ(ζ2), (Ric#
◦ϕ− ρRϕ)(ζ3),ϕ(ζ4))

+Riem(ϕ(ζ1),ϕ(ζ2),ϕ(ζ3), (Ric#
◦ϕ− ρRϕ)(ζ4))

=1D(Piem)(ζ1,ζ2,ζ3,ζ4)− ρ(ϕ
∗(∇2R)7 h)(ζ1,ζ2,ζ3,ζ4)

+ 2ϕ∗(B(Piem)(ζ1,ζ2,ζ3,ζ4)−B(Piem)(ζ1,ζ2,ζ4,ζ3)−B(Piem)(ζ1,ζ4,ζ2,ζ3)

+B(Piem)(ζ1,ζ3,ζ2,ζ4))− 2ρPPiem(ζ1,ζ2,ζ3,ζ4),

where we used several identities stated above. For ζ1, . . . , ζ4 belonging to a local
frame we get the desired equation (3-9).

Combining the evolution equation for Piem with the formulas in Remark 3.3,
we find the evolution equation of P . �

Remark 3.7. It must be noticed that, even though for every p∈M and t ∈[0, T ), the
tensor P(p, t) belongs to the set of algebraic curvature operators Cb(Vp), in general it
does not coincide with the curvature operator of the pullback connection D(t). In the
present literature the pullback tensor is always denoted by Riem and this abuse of no-
tation is somehow misleading, suggesting wrongly that Piem(t)=ϕ(t)∗(Riemg(t)) is
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equal to Riemϕ(t)∗(g(t))=Riemh , but this is no longer true for general isomorphisms
of the tangent bundle (however it is true for ϕ ∈ Diff(M)).

By Uhlenbeck’s trick, the evolution equation (3-10) for P allows a simpler use
of the maximum principle for tensors as the reaction term is nicer and the metric
on S2(32V ) is independent of time. Moreover, the subsets of S2(32V ) preserved
by such PDE correspond to curvature conditions preserved under the RB flow.

4. Preserved curvature conditions

In this section we will use the maximum principle in various formulations in order
to find curvature conditions which are preserved by the RB flow.

4A. The scalar curvature. We begin by considering the evolution equation for the
scalar curvature (3-4), which behaves as under the Ricci flow.

Proposition 4.1. Let (M, g(t))t∈[0,T ) be a compact maximal solution of the RB flow
(1-1). If ρ ≤ 1/(2(n− 1)), the minimum of the scalar curvature is nondecreasing
along the flow. In particular if Rg(0) ≥ α, for some α ∈ R, then Rg(t) ≥ α for every
t ∈ [0, T ). Moreover if α > 0 then T ≤ n/(2(1− nρ)α).

Proof. As ρ ≤ 1/(2(n− 1))≤ 1/n, for any n > 1, it follows that

∂

∂t
R= (1− 2(n− 1)ρ)1R+ 2|Ric|2− 2ρR2

≥ (1− 2(n− 1)ρ)1R+ 2R2/n− 2ρR2

≥ (1− 2(n− 1)ρ)1R,

hence, by the maximum principle, the minimum of the scalar curvature is nonde-
creasing along the RB flow on a compact manifold. In particular, for every α ∈ R,
the condition R≥ α is preserved.

Finally, integrating the inequality

∂

∂t
Rmin ≥ 2

(1
n
− ρ

)
R2

min,

that holds almost everywhere for t ∈ [0, T ) (by Hamilton’s trick (see [Hamilton
1997], [Mantegazza 2011, Lemma 2.1.3])), we obtain

(4-1) Rmin(t)≥
nα

n−2(1−nρ)αt
,

which, for α > 0, gives the estimate on the maximal time of existence. �

Remark 4.2. In the special case of the Schouten flow (when ρ = 1/2(n− 1)), we
actually have

∂

∂t
R≥ n−2

n(n−1)
R2,
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at every point of the manifold, which implies that the scalar curvature is pointwise
nondecreasing and diverges in finite time.

Remark 4.3. By means of the strong maximum principle, it follows that if the
initial manifold has nonnegative scalar curvature, then either the manifold is Einstein
(Ric = 0) or the scalar curvature becomes positive for every positive time under
any RB flow with ρ ≤ 1/(2(n− 1)).

Proposition 4.4. Let (M, g(t))t∈(−∞,0] be a compact, n-dimensional, ancient so-
lution of the RB flow (1-1). If ρ ≤ 1/(2(n− 1)) then, either R > 0 or Ric ≡ 0 on
M × (−∞, 0].

Proof. As g(t) is an ancient solution, for every t0 < t1 ≤ 0, we can define g̃(s)=
g(s + t0), which is a solution of the RB flow for s ∈ [0, t1 − t0]. Then we have
R̃min(0)= Rmin(t0), hence, from formula (4-1)

R̃min(s)≥
n

nR̃−1
min(0)− 2(1− nρ)s

,

for every s ∈ (0, t1− t0]. In particular, we have

Rmin(t1)= R̃min(t1− t0)≥
n

nR−1
min(t0)− 2(1− nρ)(t1− t0)

.

If Rmin(t0)≥ 0, by Proposition 4.1, it follows that Rmin(t1)≥ 0, so we can assume
that Rmin(t0) < 0, hence

Rmin(t1)≥
n

nR−1
min(t0)− 2(1− nρ)(t1− t0)

>−
n

2(1− nρ)(t1− t0)
,

for every t1 < t0, and sending t0 to −∞, we still conclude that Rmin(t1)≥ 0. Since
this holds for every t1 ≤ 0 the previous remark implies the result. �

4B. Maximum principle for uniformly elliptic operators. Let M be a smooth
compact manifold, g(t), t ∈ [0, T ), a family of Riemannian metrics on M and
(E, h(t)) t ∈ [0, T ), be a real vector bundle on M, endowed with a (possibly time-
dependent) bundle metric. Let D(t) : 0(TM)×0(E)→ 0(E) be a family of linear
connections on E , compatible at each time with the bundle metric h(t). We have
already seen in Section 3B how to define the second covariant derivative, using also
the Levi-Civita connections ∇g(t) associated to the Riemannian metrics on M.

Definition 4.5. We consider a second order linear operator L on 0(E) that lacks a
0-th order term, and hence can be written in a local frame field {ei }i=1,...,n of TM

(4-2) L= ai j D2
ei ej
− bi Dei

where a = ai j ei ⊗ ej ∈ 0(S2(TM)) is a symmetric (0, 2)-tensor and b = bi ei is a
smooth vector field. We say L is uniformly elliptic if a is uniformly positive definite.
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Remark 4.6. In the previous definition, both the coefficients and the connections
are in general time-dependent and we say that L is uniformly elliptic if it is so for
every t ∈ [0, T ) uniformly in time.

Weinberger [1975] proved the maximum principle for systems of solutions of
a time-dependent heat equation in Euclidean space; Hamilton [1986] treated the
general case of a vector bundle over an evolving Riemannian manifold. Here we
present a slight generalization of Hamilton’s theorem for parabolic equations with
uniformly elliptic operator (Savas-Halilaj and Smoczyk [2014, Theorem 2.2] proved
a “static” version). As before, (M, g(t)) is a smooth compact manifold equipped
with a family of Riemannian metrics; we consider a real vector bundle E over M,
equipped with a fixed bundle metric h and a family of time-dependent connections
D(t) compatible at every time with h.

Definition 4.7. Let S ⊂ E be a subbundle and denote Sp = S∩ Ep for every p ∈ M.
We say that S is invariant under parallel translation with respect to D, if for every
curve γ : [0, l] → M and vector v ∈ Sγ (0), the unique parallel (with respect to D)
section v(s) ∈ Eγ (s) along γ (s) with v(0)= v is contained in S.

Theorem 4.8 (vectorial maximum principle). Let u : [0, T )→ 0(E) be a smooth
solution of the following parabolic equation

(4-3)
∂

∂t
u = Lu+ F(u, t),

where L is a uniformly elliptic operator as defined in (4-2) and F : E×[0, T )→ E
is a continuous map, locally Lipschitz in the E factor, which is also fiber-preserving,
i.e., F(v, t) ∈ Ep for every p ∈ M, v ∈ Ep, t ∈ [0, T ).

Let K ⊂ E be a closed subbundle (for the metric h), invariant under parallel
translation with respect to D(t), for every t ∈ [0, T ), and convex in the fibers, i.e.,
Kp = K ∩ Ep is convex for every p ∈ M.

Suppose that K is preserved by the ODE associated to (4-3), i.e., for every p ∈M
and U0 ∈ Kp, the solution U (t) of

(4-4)
{ dU

dt = Fp(U (t), t),
U (0) =U0.

remains in Kp. Then, if u is contained in K at time 0, u remains in K, i.e.,
u(p, t) ∈ Kp for every p ∈ M, t ∈ [0, T ).

Proof. (Sketch) We can follow exactly the detailed proof written in [Chow et al.
2008, Chapter 10, Section 3], provided that we generalize their Lemma 10.34 to the
analogue one for uniformly elliptic operator (see again [Savas-Halilaj and Smoczyk
2014, Lemma 2.2]): if K ⊂ E satisfies all the hypotheses of Theorem 4.8 and
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u ∈ 0(E) is a smooth section of E , then

u(p) ∈ Kp for all p ∈ M H⇒ L(u)p ∈ Cu(p)Kp for all p ∈ M,

where Cu(p)Kp is the tangent cone of the convex set Kp at u(p). �

There is a further generalization of this maximum principle which allows the
subset K to be time-dependent.

Theorem 4.9 (vectorial maximum principle, time-dependent set). Let u : [0, T )→
0(E) be a smooth solution of the parabolic equation (4-3), with the notations of the
previous theorem. For every t ∈ [0, T ), let K (t)⊂ E be a closed subbundle (for the
metric h), invariant under parallel translation with respect to D(t), convex in the
fibers and such that the spacetime track

T = {(v, t) ∈ E ×R : v ∈ K (t), t ∈ [0, T )}

is closed in E × [0, T ). Suppose that, for every t0 ∈ [0, T ), K (t0) is preserved by
the ODE associated, i.e., for any p ∈ M, any solution U (t) of the ODE that starts
in K (t0)p remains in K (t)p, as long as it exists. Then, if u(0) is contained in K (0),
u(p, t) ∈ K (t)p for ever p ∈ M, t ∈ [0, T ).

The proof of this theorem, when K depends continuously on time and F does not
depend on time is due to Bohm and Wilking [2007, Theorem 1.1]. In the general
case the proof can be found in [Chow et al. 2008, Chapter 10, Section 5], with the
usual adaptation to the uniformly elliptic case.

As remarked before, the evolution equation (3-2) of the Riemann tensor has
some mixed products of type Riem ∗Ric which makes it difficult to understand the
behavior of the reaction term. On the other hand, if we perform Uhlenbeck’s trick,
the evolution equation (3-9) becomes a little nicer and can be used to understand
how the RB flow affects the geometry.

More precisely, we use the evolution equation (3-10) for the algebraic curvature
operator P ∈0(S2(32V ∗)) to prove that the cone of nonnegative curvature operators
is preserved by the RB flow.

Proposition 4.10. Let (M, g(t))t∈[0,T ) be a compact solution of the RB flow (1-1)
with ρ < 1/(2(n− 1)) and such that the initial data g0 has nonnegative curvature
operator. Then Rg(t) ≥ 0 for every t ∈ [0, T ).

Proof. We recall the evolution equation (3-10) for P = ϕ−1
◦R ◦ϕ,

∂

∂t
P =1DP − 2ρϕ∗(∇2 trh(P))7 h+ 2P2

+ 2P#
− 4ρ trh(P)P,

where trh(P(t)) = 1/2R(t) is half of the scalar curvature of the metric g(t). By
Proposition 3.4, it suffices to show that the nonnegativity of P is preserved by



THE RICCI–BOURGUIGNON FLOW 353

equation (3-10). We want to apply the vectorial maximum principle Theorem 4.8,
and therefore we must show that

L(Q)=1D Q− 2ρϕ∗(∇2 trh(Q))7 h

is a uniformly elliptic operator on the bundle (0(S2(32V ∗)), h, D(t)).
As L is a linear second order operator, we compute as usual its principal symbol

in the arbitrary direction ξ . In order to simplify the computations, we choose
opportune frames at every point p ∈ M and time t ∈ [0, T ). Then let {ei }i=1,...,n be
an orthonormal basis of (Vp, hp) such that ξ = hp(e1, · ). According to Uhlenbeck’s
trick (Section 3B) and the convention on algebraic curvature operators (Section 3B)
we have that { fi = ϕ(t)p(ei )}i1,...,n is an orthonormal basis of Tp M with respect to
g(t)p, the components of ϕ(t)p with these choices are ϕa

i = δ
a
i , and {ei ∧ ej }i< j

is an orthonormal basis of 32Vp. Hence, the principal symbol of the operator L
written in these frames is

σξ (LQ)(i j)(kl) = ξ
pξp Q(i j)(kl)− 2ρδa

i δ
b
j δ

c
kδ

d
l trh(Q)(ξ ⊗ ξ 7 h)(ab)(cd)

= |ξ |2 Q(i j)(kl)− 2ρ trh(Q)(ξ ⊗ ξ 7 h)(i j)(kl)

= Q(i j)(kl)− 2ρ
(∑

p<q

Q(pq)(pq)

)
δ1

i δ
1
kδjl,

where we used that |ξ | = 1, i < j and k < l in the last step. Now it is easy to see
that the matrix representing the symbol has the following form:

σξ (L)=



A[n− 1]

−2ρ · · · 2ρ
...

. . .
...

−2ρ · · · −2ρ

0

0 Id(n−1)(n−2)/2 0

0 0 IdN (N−1)/2


,

where we have ordered the components as follows: first the n− 1 ones of the form
(1 j)(1 j) with j > 1, then the (n − 1)(n − 2)/2 ones of the form (i j)(i j) with
1< i < j, and last the N (N − 1)/2 “nondiagonal” ones, with N = n(n− 1)/2 and
A is the matrix defined in (2-1).

By Lemma 2.2 the eigenvalues of the symbol are 1 with multiplicity 1
2 N (N+1)−1

and 1−2(n−1)ρ with multiplicity 1, since ρ<1/2(n−1) the operator L is uniformly
elliptic.
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We next consider the reaction term F(Q)= 2(Q2
+ Q#

− 2ρ trh(Q)Q). Clearly
F is continuous, locally Lipschitz and fiber-preserving. Let � ⊂ 0(S2(32V ∗))
be the set of nonnegative algebraic curvature operators, where we have identified
S2(32V ∗)'EndS A(3

2V ) via the metric h. We observe that�={Q : λN (Qp)≥ 0},
where N = n(n− 1)/2 and λN is the least eigenvalue of Qp. Hence � is clearly
closed, by [Chow et al. 2008, Lemma 10.11] it is invariant under parallel translation
with respect to every connection D(t) and it is convex, provided that the function
Q 7→ λN (Qp) is concave. We can rewrite

λN (Qp)= inf
{v∈32Vp :|v|h=1}

h(Qp(v), v),

so it is easy to conclude, by the bilinearity of the metric h and the concavity of
inf, that the function defining � is actually concave and so its superlevels are
convex. In order to finish the proof we have to show that the ODE dQ/dt = F(Q)
preserves �. Now, by standard facts in convex analysis, we only need to prove that
Fp(Qp) ∈ TQp�p for every p ∈ M such that Qp ∈ ∂�p, where ∂�p is the set of
Qp ∈�p where there is v ∈32Vp such that Qp(v, v)= 0 and the tangent cone is

TQp�p={Sp ∈ S2(32V ∗p ) : Sp(v, v)≥0 for every v∈32Vp such that Qp(v, v)=0}

Let v ∈32Vp and {θα} be respectively a null eigenvector of Qp and an orthonormal
basis of 32Vp that diagonalizes Qp. Clearly v = vαθα and (Qp)αβ = λαδαβ . with
λα ≥ 0. Then (Q2

p)αβ = λ
2
αδαβ and (Q#

p)αβ =
1
2(c

γ ν
α )

2λγλνδαβ and

Fp(Qp)(v, v)= λ
2
α(v

α)2+ 1
2(c

γ ν
α )

2λγλν(v
α)2 ≥ 0. �

4C. The evolution of the Weyl tensor. By means of the evolution equations found
for the curvatures, we are also able to write the equation satisfied by the Weyl tensor
along the RB flow (1-1). In [Catino and Mantegazza 2011] the authors compute the
evolution equation of the Weyl tensor during the Ricci flow (see [Catino et al. 2015a]
for a significant application of this formula) and we use most of their computations.

Proposition 4.11. During the RB flow of an n-dimensional Riemannian manifold
(M, g) the Weyl tensor satisfies the following evolution equation:

∂

∂t
Wi jkl =1Wi jkl + 2(B(W)i jkl −B(W)i jlk −B(W)il jk +B(W)ik jl)

+ 2ρRWi jkl − g pq(WpjklRqi +Wi pklRq j +Wi jplRqk +Wi jkpRql)

+
2

(n−2)2
(Ric2 7 g)i jkl +

1
(n−2)

(Ric 7 Ric)i jkl

−
2R

(n−2)2
(Ric 7 g)i jkl +

R2
−|Ric|2

(n−1)(n−2)2
(g 7 g)i jkl,

where B(W )i jkl = g pq grsWi pjr Wkqls .



THE RICCI–BOURGUIGNON FLOW 355

Proof. By recalling the decomposition formula for the Weyl tensor (1-3) we have

∂

∂t
W= ∂

∂t
Riem+ 1

2(n−1)(n−2)

(
∂

∂t
Rg 7 g+ 2 ∂

∂t
g 7 g

)
−

1
n−2

(
∂

∂t
Ric 7 g+Ric 7 ∂

∂t
g
)

= LII +L0,

where LII is the second order term in the curvatures and L the 0-th one. We deal
first with the higher order term; plugging in the evolution equations of Riem,Ric
and R (Proposition 3.1) we get

LII =1Riem− ρ(∇2R 7 g)+
1− 2(n− 1)ρ

2(n− 1)(n− 2)
1Rg 7 g

−
1

n− 2
(1Ric 7 g− (n− 2)ρ∇2R 7 g− ρ1Rg 7 g)

=1Riem+
1− 2(n− 1)ρ+ 2(n− 1)ρ

2(n− 1)(n− 2)
1Rg 7 g−

1
n− 2

1Ric 7 g

=1W.

Then we consider the lower order terms

(L0)i jkl = 2(B(Riem)i jkl − B(Riem)i jlk − B(Riem)il jk + B(Riem)ik jl)

− g pq(RpjklRqi +Ri pklRq j +Ri jplRqk +Ri jkpRql)

+ 2ρR
(

W− 1
2(n−1)(n−2)

Rg7g+ 1
n−2

Ric7g
)

i jkl

+
1

2(n−1)(n−2)
(2|Ric|2g7g−2ρR2g7g−4RRic7g+4ρR2g7g)i jkl

−
1

n−2
[2(Riem ∗Ric)7g− 2Ric2 7g− 2Ric7Ric+ 2ρRRic7g]i jkl

= 2(B(Riem)i jkl − B(Riem)i jlk − B(Riem)il jk + B(Riem)ik jl)

− g pq(RpjklRqi +Ri pklRq j +Ri jplRqk +Ri jkpRql)+ 2ρRWi jkl

−
2

n−2
[(Riem ∗Ric)7g−Ric2 7g−Ric7Ric]i jkl

−
2R

(n−1)(n−2)
(Ric7g)i jkl +

|Ric|2

(n−1)(n−2)
(g 7g)i jkl,

where (Riem ∗Ric)ab = RapbqRst g ps gqt and (Ric2)ab = RapRbq g pq .
Now we deal separately with every term containing the full curvature Riem,

using its decomposition formula, expanding the Kulkarni–Nomizu products and
then contracting again. We have that

[(g7g)∗Ric]ab=2[Rg−Ric]ab, [(Ric7g)∗Ric]ab=[−2Ric2
+RRic+|Ric|2g]ab.



356 G. CATINO, L. CREMASCHI, Z. DJADLI, C. MANTEGAZZA AND L. MAZZIERI

Hence

(4-5) (Riem ∗Ric)7 g = (W ∗Ric)7 g−
2

n− 2
Ric2 7 g

+
nR

(n− 1)(n− 2)
Ric 7 g+

(n− 1)|Ric|2−R2

(n− 1)(n− 2)
g 7 g.

Then

Rqi Rpjkl g pq
= Rqi

(
Wpjkl −

R
(n−1)(n−2)

(gpk gjl − gpl gjk)
)

g pq

+
1

n−2
Rqi (Rpk gjl +R jl gpk −Rpl gjk −R jk gpl)g pq

= Rqi Wpjkl g pq
−

R
(n−1)(n−2)

(Rik gjl −Ril gjk)

+
1

n−2
(R2

ik gjl −R2
il gjk +RikR jl −RilR jk).

Interchanging the index and using the symmetry properties we get

(4-6) g pq(RpjklRqi +Ri pklRq j +Ri jplRqk +Ri jkpRql)

= g pq(WpjklRqi +Wi pklRq j +Wi jplRqk +Wi jkpRql)

+
2

n−2
(Ric2 7 g)i jkl +

2
n−2

(Ric 7 Ric)i jkl −
2R

(n−1)(n−2)
(Ric 7 g)i jkl .

Finally the “B”-terms:

B(Riem)abcd

=

(
W− R

2(n−1)(n−2)
g 7 g+ 1

n−2
Ric 7 g

)
apbq(

W− R
2(n−1)(n−2)

g 7 g+ 1
n−2

Ric 7 g
)

csdt
g ps gqt

(Wapbq(g 7 g)csdt + (g 7 g)apbqWcsdt)g ps gqt
=−2Wadbc− 2Wcbda

(Wapbq(Ric 7 g)csdt + (Ric 7 g)apbqWcsdt)g ps gqt

= (W ∗Ric)abgcd + (W ∗Ric)cd gab

−(WcbdpRaq +WcpdaRbq +WadbpRcq +WapbdRdq)g pq

(g 7 g)apbd(g 7 g)csdt g ps gqt

=4((n−2)gabgcd+gacgbd)((Ric7g)apbq(g7g)csdt+(Ric7g)csdt(g7g)apbq)g psgqt

= 2((n− 4)Rabgcd + (n− 4)Rcd gab+ 2Racgbd + 2Rbd gac)

(Ric 7 g)abpq(Ric 7 g)csdt g psgqt

=−2R2
abgcd − 2R2

cd gab+R2
acgbd +R2

bd gac

+ (n− 4)RabRcd + 2RacRbd +R(Rabgcd +Rcd gab)+ |Ric|2gabgcd
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Now, adding the same type quantities for the different index permutations and using
the symmetry properties of W we obtain

(4-7) B(Riem)i jkl − B(Riem)i jlk − B(Riem)il jk + B(Riem)ik jl

= B(W)i jkl − B(W)i jlk − B(W)il jk + B(W)ik jl

+
1

n−2
((W∗Ric)7g)i jkl−

1
(n−2)2

(Ric2 7g)i jkl+
1

2(n−2)
(Ric7Ric)i jkl

+
R

(n−1)(n−2)2
(Ric7 g)i jkl +

(
|Ric|2

2(n−2)2
−

R2

2(n−1)(n−2)2
)
(g 7 g)i jkl .

We are ready to complete the computation of the 0-th order term in the evolution
equation, using the previous formulas (4-5), (4-6), (4-7):

(L0)i jkl = 2(B(W)i jkl − B(W)i jlk − B(W)il jk + B(W)ik jl)+ 2ρRWi jkl

− g pq(WpjklRqi +Wi pklRq j +Wi jplRqk +Wi jkpRql)

+
2

(n−2)2
(Ric2 7 g)i jkl +

1
(n−2)

(Ric 7 Ric)i jkl

−
2R

(n−2)2
(Ric 7 g)i jkl +

R2
−|Ric|2

(n−1)(n−2)2
(g 7 g)i jkl �

4D. Conditions preserved in dimension three. In general dimension, it is very
hard to find other curvature conditions preserved by the flow, and this is due
principally to the complex structure of the reaction terms; for example in the
evolution equation satisfied by the Ricci tensor (3-3), the reaction terms involve
the full curvature tensor. Therefore it is easier to restrict our attention to the three
dimensional case, in which the Weyl part of the Riemann tensor vanishes and all
the geometric information is encoded in the Ricci tensor.

In the special case of dimension three, we can also use the evolution equation
(3-10) of the pullback of the curvature operator to obtain more refined conditions
preserved, because we can rewrite the ODE associated to the evolution of P as a
system of ODEs in the eigenvalues of P that, by Proposition 3.4, are nothing but
the sectional curvatures of R. This point of view was introduced for the Ricci flow
by Hamilton [1997] and can be easily generalized to the RB flow as follows:

Lemma 4.12. If n = 3, then Pp has 3 eigenvalues, λ, µ, ν, and the ODE fiberwise
associated to equation (3-10) can be written as the following system:

(4-8)


dλ
dt = 2λ2

+ 2µν− 4ρλ(λ+µ+ ν),
dµ
dt = 2µ2

+ 2λν− 4ρµ(λ+µ+ ν),
dν
dt = 2ν2

+ 2λµ− 4ρν(λ+µ+ ν).

In particular, if we assume λ(0)≥ µ(0)≥ ν(0), then λ(t)≥ µ(t)≥ ν(t) as long as
the solution of the system exists.
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Proof. We can pointwise identify Vp with an orthonormal frame of R3 with the
standard basis. Then 32Vp ' so(3) with the standard structure constants and if an
algebraic operator Qp is diagonal, both Q2

p and Q#
p are diagonal with respect to

the same basis (for the detailed computation of this fact, see [Chow and Knopf
2004, Chapter 6.4]). Hence the ODE (d/dt)Qp = Fp(Qp), associated fiberwise
to equation (3-10), preserves the eigenvalues of Qp, that is, if Qp(0) is diagonal
with respect to an orthonormal basis, Qp(t) stays diagonal with respect to the same
basis and the ODE can be rewritten as the system (4-8) in the eigenvalues.

To prove the last statement, we observe that

d
dt
(λ−µ)= 2(λ−µ)((1− 2ρ)(λ+µ)− (1+ 2ρ)ν),

d
dt
(µ− ν)= 2(µ− ν)((1− 2ρ)(µ+ ν)− (1+ 2ρ)λ). �

Remark 4.13. We already proved that the differential operator in the evolution
equation of P is uniformly elliptic if ρ < 1/2(n− 1), that is, ρ < 1

4 in dimension
three. Therefore any geometric condition expressed in terms of the eigenvalues
is preserved along the RB flow if the cone identified by the condition is closed,
convex and preserved by the system (4-8).

By using this method, we can prove:

Proposition 4.14. Let (M, g(t))t∈[0,T ) be a compact, three dimensional solution of
the RB flow (1-1). If ρ < 1

4 , then

(i) nonnegative Ricci curvature is preserved along the flow;

(ii) nonnegative sectional curvature is preserved along the flow;

(iii) the pinching inequality Ric≥ εRg is preserved along the flow for any ε ≤ 1
3 .

Proof.

(i) If Ric(g(0))≥ 0, then Ricg(t) ≥ 0. The eigenvalues of Ric are the pairwise sums
of the sectional curvatures. Hence the condition is identified by the cone

Kp = {Qp : (µ+ ν)(Qp)≥ 0}.

The closedness is obvious; in order to see that Kp is convex, we observe that the
greatest eigenvalue can be characterized by λ(Qp)=max{Qp(v, v) :v∈Vp|v|h=1}.
Hence Kp is convex. Then the function Qp 7→µ(Qp)+ν(Qp)= tr(Qp)−λ(Qp) is
concave and this implies that its superlevels are convex. By system (4-8) we obtain

d
dt
(µ+ ν)= 2µ2

+ 2ν2
+ 2λ(µ+ ν)− 4ρ(µ+ ν) tr(Qp).

There is the stationary solution corresponding to µ(0) = 0 = ν(0). Otherwise,
whenever µ(t0)+ ν(t0) = 0 with µ(t0) 6= 0 and ν(t0) 6= 0, (d/dt)(µ+ ν)(t0) =
2(µ2
+ ν2)(t0) > 0, then K is preserved.
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(ii) If Sec(g(0)) ≥ 0, then Secg(t) ≥ 0. This condition is the nonnegativity of P ,
already proved in general dimension in Proposition 4.10, identified by the cone
Kp = {Qp : ν(Qp)≥ 0}, which is convex as a superlevel of a concave function. We
suppose that ν(t0)= 0. Then

d
dt
ν(t0)= 2λ(t0)µ(t0)≥ 0,

since the order between the eigenvalues is preserved and therefore λ(t0)≥µ(t0)≥ 0.

(iii) For every ε∈
(
0, 1

3

]
, if Ric(g(0))−εR(g(0))g(0)≥0, then Ricg(t)−εRg(t)g(t)≥

0. Translating in terms of eigenvalues of P , the condition means µ(Qp)+ν(Qp)−

2ε tr(Qp) ≥ 0; that is, λ(Qp) ≤ (1− 2ε)/(2ε)(µ(Qp)+ ν(Qp)). Then the right
cone is

Kp = {Qp : λ(Qp)−C(ε)(µ(Qp)+ ν(Qp))≤ 0},

where C(ε)= (1− 2ε)/(2ε) ∈
[ 1

2 ,+∞
)
. The defining function is the sum of two

convex functions, hence its sublevels are convex. Now, for C = 1
2 , that corresponds

to ε = 1
3 , and we have λ(0) = µ(0) = ν(0) at each point of M; that is, the initial

metric g(0) has constant sectional curvature and this condition is preserved along
the flow.

For C > 1
2 , we suppose λ(t0)= C(µ(t0)+ ν(t0)), then

d
dt
(λ−C(µ+ ν))(t0)

= 2[λ2
+µν−C(µ2

+ ν2
+ λ(µ+ ν))− 2ρ tr(Qp)(λ−C(µ+ ν))](t0)

= 2[C2(µ(t0)+ ν(t0))2+µ(t0)ν(t0)−C(µ(t0)2+ ν(t0)2)−C2(µ(t0)+ ν(t0))2]

≤ (1− 2C)(µ(t0)2+ ν(t0)2)≤ 0,

which completes the proof. �

4E. Hamilton–Ivey estimate. A remarkable property of the three dimensional
Ricci flow is the pinching estimate, independently proved by Hamilton [1995]
and Ivey [1993], which says that positive sectional curvature dominates negative
sectional curvature during the Ricci flow, that is, if the initial metric g0 has a
negative sectional curvature somewhere, the Ricci flow starting at g0 evolves the
scalar curvature towards the positive semiaxis in future times, which means that
there will be a greater (in absolute value) positive sectional curvature.

We have generalized the pinching estimate and some consequences for positive
values of the parameter ρ. In the same notation used before, let λ≥ µ≥ ν be the
ordered eigenvalues of the curvature operator.
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Theorem 4.15 (Hamilton–Ivey estimate). Let (M, g(t)) be a solution of the RB
on a compact three-manifold such that the initial metric satisfies the normalizing
assumption minp∈M νp(0) ≥ −1. If ρ ∈

[
0, 1

6

)
, then at any point (p, t) where

νp(t) < 0, the scalar curvature satisfies

(4-9) R≥ |ν|(log |ν| + log(1+ 2(1− 6ρ)t)− 3).

Proof. We would like to apply the maximum principle for time-dependent sets
in Theorem 4.9. Hence we need to express condition (4-9) in terms of a family
of closed, convex, invariant subsets of S2(32V ∗), where (V, h(t), D(t)) is the
usual bundle isomorphism of the tangent bundle defined via Uhlenbeck’s trick
(Section 3B). Moreover, by [Chow et al. 2008, Lemma 10.11], we already know
that, for any t ∈ [0, T ), the set

Kp(t)=
{

Qp : tr(Qp)≥−
3

1+2(1−6ρ)t and if ν(Qp)≤−
1

1+2(1−6ρ)t ,

then tr(Qp)≥ |ν(Qp)|(log |ν(Qp)| + log(1+ 2(1− 6ρ)t)− 3)

}
defines a closed invariant subset of S2(32V ∗). Since, for ρ ∈

[
0, 1

6

)
, K (t) depends

continuously on time, the spacetime track of K (t) is closed in S2(32V ∗).
Now we show that Kp(t) is convex for every p ∈ M and t ∈ [0, T ). Following

[Chow and Knopf 2004, Lemma 9.5], we consider the map

8 : S2(32V ∗p )→ R2, 8(Qp)= (|ν(Qp)|, tr(Qp))

Clearly, we have that Qp ∈ Kp(t) if and only if 8(Qp) ∈ A(t), where

A(t)=
{
(x, y) ∈ R2

: y ≥− 3
1+2(1−6ρ)t ; y ≥−3x;

if x ≥ 1
1+2(1−6ρ)t , then y ≥ x(log x + log(1+ 2(1− 6ρ)t)− 3)

}
is a convex subset of R2. Then in order to show that Kp(t) is convex it is sufficient
to show that the segment between any two algebraic operators in Kp(t) is sent
by the map 8 into A(t). Therefore let Qp, Q′p ∈ Kp(t), s ∈ [0, 1] and Qp(s) =
s Qp + (1− s)Q′p. About the first defining condition for A(t), the trace is a linear
functional, hence it is obviously fulfilled by Qp(s), while the second condition is
satisfied by any algebraic operator.

The third condition is a bit tricky. If ν(Qp), ν(Q′p)>−1/(1+(1−6ρ)t), then the
condition is empty for every point of the segment because ν is a concave function.
By continuity we can assume that ν(Qp(s)) ≤ −1/(1+ (1− 6ρ)t) without loss
of generality for every s ∈ [0, 1], and hence x(Qp(s)) = −ν(Qp(s)) is a convex
function and x(Qp(s)) ≤ sx(Qp)+ (1− s)x(Q′p). On the other hand the second
condition implies that x(Qp(s)) ≥ −y(Qp(s))/3 = − 1

3(sy(Qp)+ (1− s)y(Q′p)).
Then 8(Qp(s)) belongs to the trapezium of vertices

8(Qp),
(
−

1
3 y(Qp), y(Qp)

)
,8(Q′p),

(
−

1
3 y(Q′p), y(Q′p)

)
,
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which is contained in A(t), as its vertices are, and A(t) is convex.
Now we prove that K (t) is preserved by the system (4-8). By taking the sum of

the three equations in the system (see also Remark 4.13) we get

d
dt

tr(Qp)≥
4
3
(1− 3ρ) tr(Qp)

2.

By hypothesis, ν(Qp)(0) ≥ −1, hence tr(Qp)(0) ≥ −3 for every p ∈ M and by
integrating the previous inequality,

tr(Qp)(t)≥−
3

1+4(1−3ρ)t
≥−

3
1+2(1−6ρ)t

,

which holds for any ρ ∈
[
0, 1

6

)
.

In order to prove that the second inequality is preserved, too, we consider, for
every p ∈ M such that ν(Qp)(0) < 0, the function

(4-10) f (t)=
tr(Qp)

−ν(Qp)
− log(−ν(Qp))− log(1+ 2(1− 6ρ)t),

and we compute its derivative along the flow:

d
dt

f = 1
ν2 [(−2ν)(λ2

+µ2
+ ν2
+ λµ+ λν+µν− 2ρ(λ+µ+ ν)2)

+ 2(λ+µ+ ν)(ν2
+ λµ− 2ρν(λ+µ+ ν))]

−
2
ν
(ν2
+ λµ− 2ρν(λ+µ+ ν))− 2(1−6ρ)

1+2(1−6ρ)t

=
2
ν2 [−ν(λ

2
+µ2
+ λµ)+ λµ(λ+µ)− ν3

+ 2ρν2(λ+µ+ ν)] −
2(1−6ρ)

1+2(1−6ρ)t
.

As in the case of the Ricci flow, it is easy to see that the quantity−ν(λ2
+µ2
+λµ)+

λµ(λ+µ) is always nonnegative if ν < 0. In fact, if µ > 0 it is obvious, whereas
if µ≤ 0 one has

−ν(λ2
+µ2

+ λµ)+ λµ(λ+µ)= (µ− ν)(λ2
+µ2

+ λµ)−µ3
≥ 0.

Hence we get

(4-11) d
dt

f (t)≥−2ν+ 4ρ(λ+µ+ ν)− 2(1−6ρ)
1+2(1−6ρ)t

.

If ρ ≥ 0, since λ+µ+ ν ≥ 3ν, we obtain

d
dt

f ≥−2(1− 6ρ)
(
ν+

1
1+2(1−6ρ)t

)
≥ 0

whenever ν ≤−1/(1+ 2(1− 6ρ)t) and ρ ≤ 1
6 .

Hence, if (λ, µ, ν) is a solution of system (4-8) in [0, T )with (λ(0), µ(0), ν(0))∈
Kp(0), we suppose that there is t1> 0 such that ν(t1) <−1/(1+2(1−6ρ)t1). Then
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either ν(t) <−1/(1+2(1−6ρ)t) for any t ∈ [0, t1], or there exists t0 < t1 such that
ν(t0)=−1/(1+2(1−6ρ)t0) and ν(t)<−1/(1+2(1−6ρ)t) for any t ∈ (t0, t1]. In the
first case, by hypothesis we obtain f (0)≥−3 and (d/dt) f (t)≥ 0 for any t ∈ [0, t1],
therefore f (t1)≥−3; in the second case f (t0)= (λ+µ+ν)(t0)/−ν(t0)≥−3 and
(d/dt) f (t)≥ 0 for any t ∈ [t0, t1], therefore again f (t1)≥−3, which is equivalent
to the second inequality. �

Remark 4.16. The extra term 4ρ(λ+µ+ ν) on the key equation (4-11) requires
strong assumptions on the parameter ρ since we have no information on the sign
of the trace. However, combining equation (4-11) with Proposition 4.4, we can
enlarge the range of ρ to

[
0, 1

4

)
, simply by dropping the extra term, nonnegative for

ancient solutions and therefore conclude that an ancient solution to the RB flow on
a compact three-manifold with bounded scalar curvature has nonnegative sectional
curvature for any value of ρ ∈

[
0, 1

4

)
(see [Chow and Knopf 2004, Corollary 9.8]).

Proposition 4.17. Let (M, g(t))t∈(−∞,0] be a compact, three dimensional, ancient
solution of the RB flow (1-1) with uniformly bounded scalar curvature. If ρ ∈

[
0, 1

4

)
then the sectional curvature is nonnegative.

5. Curvature estimates

5A. Technical lemmas. Before proving the curvature estimates for the RB flow,
we need some technical results, the first being the following proposition:

Proposition 5.1. Let k ∈N, p ∈ [1,+∞] and q ∈ [1,+∞). There exists a constant
C(n, k, p, q) such that for all 0≤ j ≤ k and all tensors T

‖∇
j T ‖rj ≤ C‖T ‖1− j/k

p ‖∇
k T ‖ j/k

q ,

where 1/rj = (1− j/k)/p+ j/k/q.

To prove this proposition, we need several lemmas.

Lemma 5.2. Let p ∈ [1,+∞], q ∈ [1,+∞) and r ∈ [2,+∞) such that 2/r =
1/p+ 1/q. There exists a constant C(n, r) such that for all tensors T,

‖∇T ‖2r ≤ C‖T ‖p‖∇
2T ‖q .
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Proof.

‖∇T ‖rr =
∫

M
〈∇T, |∇T |r−2

∇T 〉 dµg

=−

∫
M
〈T,∇

(
|∇T |r−2

∇T
)
〉 dµg

=−

∫
M
〈T, (r − 2)∇2T |∇T |r−3

∇T 〉 dµg −

∫
M
〈T, |∇T |r−2

∇
2T 〉 dµg

≤ C
∫

M
|T ||∇2T ||∇T |r−2 dµg

≤ C‖T ‖p‖∇
2T ‖q‖∇T ‖r−2

r ,

using Hölder’s inequality with (r − 2)/r + 1/p+ 1/q = 1. This ends the proof of
this lemma. �

Lemma 5.3 [Hamilton 1982, Corollary 12.5]. Let k ∈ N. If f : {0, . . . , k} → R

satisfies for all 0< j < k

f ( j)≤ C f ( j − 1)
1
2 f ( j + 1)

1
2 ,

where C is a positive constant, then for all 0≤ j ≤ k,

f ( j)≤ C j (k− j) f (0)1− j/k f (k) j/k .

Proof of Proposition 5.1. We apply Lemma 5.3 with f ( j) = ‖∇ j T ‖rj . Since
2/rj = 1/rj−1+ 1/rj+1, Lemma 5.2 shows that there exists C(n, k, p, q) such that

f ( j)≤ C f ( j − 1)
1
2 f ( j + 1)

1
2 ,

and then Lemma 5.3 gives Proposition 5.1, since r0 = p a rk = q. �

Lemma 5.4. For all tensors of the form S ∗ T, there exists C depending on the
dimension and the coefficients in the expression such that

|S ∗ T | ≤ C |S||T |.

Proof. By the Cauchy–Schwarz inequality, (trgT )2= (gαβTαβ)2≤nTαβT αβ
=n|T |2.

Then

|S ∗ T | ≤ C(n)|S⊗ T ⊗ g⊗ j
⊗ (g−1)⊗k

≤ C(n)n
j+k
2 |S||T |. �

Let k ∈ N, and set, for a tensor T, Fg(T )=
∑

j+l=k; j,l≥0 ∇
j T ∗∇l T ∗∇k T.

Lemma 5.5. Let k ∈N. Let p ∈ [2,+∞] and q ∈ [2,+∞) such that 1/p+2/q = 1.
There exists C(n, k, p, q, F) such that for all tensors T,∫

M
|Fg(T )| dµg ≤ C‖T ‖p‖∇

k T ‖2q .
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Proof. Let us consider one term in Fg(T ) that can be written ∇ j T ∗ ∇l T ∗ ∇k T,
j, l ≥ 0. We set

1
rj
=

1− j
k

p
+

j
k

q
and

1
rl
=

1− l
k

p
+

l
k

q
.

Since 1/rj + 1/rj + 1/q = 1, by Lemma 5.4 and Hölder’s inequality we have∫
M
|∇

j T ∗∇l T ∗∇k T | dµg ≤ C ′
∫

M
|∇

j T ||∇l T ||∇k T | dµg

≤ C ′‖∇ j T ‖rj‖∇
l T ‖rl‖∇

k T ‖q ,

Then, by applying Proposition 5.1 to the first two factors, we get∫
M
|∇

j T ∗∇l T ∗∇k T | dµg ≤ C‖T ‖p‖∇
k T ‖2q .

The result follows since Fg(T ) is a linear combination of such terms. �

5B. Curvature estimates.

Theorem 5.6. Assume ρ < 1/(2(n− 1)). If g(t) is a compact solution of the RB
flow for t ∈ [0, T ) such that

sup
(x,t)∈M×[0,T )

|Riem(x, t)| ≤ K ,

then for all k ∈N there exists a constant C(n, ρ, k, K , T ) such that for all t ∈ (0, T ]

‖∇
kRiemg(t)‖

2
2 ≤

C
tk sup

t∈[0,T )
‖Riemg(t)‖

2
2.

Proof. A direct computation gives

∂

∂t
|Riem|2 =1(|Riem|2)− 2|∇Riem|2− 8ρRi j∇

i
∇

j R+Riem ∗Riem ∗Riem

∂

∂t
R2
= (1− 2(n− 1)ρ)1(R2)− 2(1− 2(n− 1)ρ)|∇R|2+ 4R|Ric|2− 4ρR3.

It follows that

d
dt

∫
M
|Riem|2 dµg =−2

∫
M
|∇Riem|2 dµg − 8ρ

∫
M

Ri j∇
i
∇

j R dµg

+

∫
M

Riem ∗Riem ∗Riem dµg

d
dt

∫
M

R2dµg =−2(1− 2(n− 1)ρ)
∫

M
|∇R|2dµg +

∫
M

Riem ∗Riem ∗Riem dµg.
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Now we want to compute
∫

M Ri j∇
i
∇

j R dµg. Using the Bianchi identity we have∫
M

Ri j∇
i
∇

j R dµg =−
1
2

∫
M
|∇R|2 dµg .

We conclude that

d
dt

∫
M
|Riem|2 dµg =−2

∫
M
|∇Riem|2 dµg + 4ρ

∫
M
|∇R|2 dµg

+

∫
M

Riem ∗Riem ∗Riem dµg

and

d
dt

∫
M

R2 dµg =−2(1− 2(n− 1)ρ)
∫

M
|∇R|2 dµg +

∫
M

Riem ∗Riem ∗Riem dµg.

As we did before, a straightforward computation gives:

d
dt

∫
M
|∇

kRiem|2 dµg =−2
∫

M
|∇

k+1Riem|2 dµg + 4ρ
∫

M
|∇

k+1R|2 dµg

+

∑
j+l=k; j,l≥0

∫
M
∇

j Riem ∗∇lRiem ∗∇kRiem dµg

d
dt

∫
M
|∇

kR|2 dµg =−2(1− 2(n− 1)ρ)
∫

M
|∇

k+1R|2 dµg

+

∑
j+l=k; j,l≥0

∫
M
∇

j Riem ∗∇lRiem ∗∇kRiem dµg.

Consider

Ak :=

∫
M
|∇

kRiem|2 dµg +
4|ρ|

(1−2(n−1)ρ)

∫
M
|∇

kR|2 dµg,

and set fk(t) :=
∑k

j=0(β
j t j/j !)A j, where β :=min(1, 1− 2(n− 1)ρ). We have

(5-1) f ′k(t)=
k−1∑
j=0

β j t j

j !
(A′j +βA j+1)+

βk tk

k!
A′k .

We have by a direct computation, for any j :

A′j +βA j+1 = (−2+β)‖∇ j+1Riem‖22+
(

4ρ−8|ρ|+
4β|ρ|

1− 2(n− 1)ρ

)
‖∇

j+1R‖22

+

∑
i+l= j,i,l≥0

∫
M
∇

i Riem ∗∇lRiem ∗∇ j Riem dµg.
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We need to estimate∑
i+l= j,i,l≥0

∫
M
∇

i Riem ∗∇lRiem ∗∇ j Riem dµg.

For this we use Lemma 5.5 with p =+∞ and q = 2:∑
i+l= j,i,l≥0

∫
M
∇

i Riem ∗∇lRiem ∗∇ j Riem dµg ≤ C‖Riem‖∞‖∇ j Riem‖22.

Using Proposition 5.1, with k = j + 1 we get∑
i+l=k

∫
M
∇

iRiem ∗∇lRiem ∗∇ jRiem dµg ≤ C‖Riem‖∞(‖Riem‖22)
1

j+1(‖∇ j+1Riem‖22)
j

j+1,

where i, l ≥ 0. Now we apply Young’s inequality ab ≤ a p/p+ bq/q , where

a = C‖Riem‖∞(‖Riem‖22)
1

j+1 , b = (‖∇ j+1Riem‖22)
j

j+1

and p = j + 1, q = ( j + 1)/j . We use the hypothesis on the boundedness of
‖Riem‖∞ and we obtain∑
i+l= j

∫
M
∇

iRiem∗∇lRiem∗∇ jRiem dµg≤C ′(n, ρ, j, K )‖Riem‖22+‖∇
j+1Riem‖22,

where i, l ≥ 0. Putting this last inequality in the previous computation, we obtain

A′j +βAj+1 ≤ (−1+β)‖∇ j+1Riem‖22 +
(
4ρ− 8|ρ| +

4β|ρ|
1− 2(n− 1)ρ

)
‖∇

j+1R‖22

+C ′(n, ρ, j, K )‖Riem‖22
≤ C ′(n, ρ, j, K )‖Riem‖22,

where we use the facts that −1+β ≤ 0 and 4ρ−8|ρ|+4|ρ|β/(1− 2(n− 1)ρ)≤ 0.
The same estimates holds for the last term in equation (5-1), since

A′k ≤A′k +βAk+1 ≤ C ′(n, ρ, k, K )‖Riem‖22

Therefore

f ′k(t)≤
k∑

j=0

β j t j

j !
C ′(n, ρ, j, K )‖Riem‖22

≤ C(n, ρ, k, K )‖Riem‖22(e
βt
− 1)≤ C̃(n, ρ, k, K , T )‖Riem‖22.
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Since fk(0) = A0 ≤ C(ρ, n)‖Riem‖22, by integrating the previous inequality we
finally get

‖∇
kRiem‖22 ≤Ak ≤

k!
βk tk fk(t)≤

Ĉ
tk

[
fk(0)+ C̃t‖Riem‖22

]
≤

Ĉ[C(ρ, n)+ C̃t]
tk ‖Riem‖22 ≤

C
tk ‖Riem‖22,

which concludes the proof of the theorem. �

5C. Long time existence. In this section we will prove the following result.

Theorem 5.7. Assume ρ < 1/(2(n− 1)). If g(t) is a compact solution of the RB
flow on a maximal time interval [0, T ), T <+∞, then

lim sup
t→T

max
M
|Riem( · , t)| = +∞.

Proof. This proof follows exactly the one given by Hamilton for the Ricci flow
(see [Hamilton 1982, Section 14]). First of all we observe that, if the Riemann
tensor is uniformly bounded as t → T and T < +∞, then also its L2-norm is
uniformly bounded, because from the previous computations, for A0 = ‖Riem‖22+
4|ρ|/(1− 2(n− 1)ρ)‖R‖22, so we have A′0 ≤ CA0.

Then, by Theorem 5.6, we get, for any j ∈ N

‖∇
j Riem‖22 ≤ C j .

Now, by using the interpolation inequalities in Proposition 5.1 with p =∞, q = 2,
we immediately get the estimates

‖∇
j Riem‖2k

j
≤ C j,k,

for all j ∈ N and k ≥ j. Therefore, by interpolation the same result holds for a
generic exponent r , with a constant that depends on j and r .

Now, let E j := |∇
j Riem|2. Then, for all r <+∞ we have∫

M
(|E j |

r
+ |∇E j |

r ) dµg ≤ C ′j,r .

Thus, by the Sobolev inequality, if r > j, one has

max
M
|E j |

r
≤ Ct

∫
M
(|E j |

r
+ |∇E j |

r ) dµg.

Notice that the constant Ct depends on the metric g(t), but it does not depend on the
derivatives of g(t). Moreover, from [Hamilton 1982, Lemma 14.2], it follows that
the metrics are all equivalent. Hence, the constant Ct is uniformly bounded as t→ T
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and, from the previous estimates, it follows that, if |Riem| ≤ C on M ×[0, T )], for
every j ∈ N one has

max
M
|∇

j Riem| ≤ C j ,

where the constant C j depends only on the initial value of the metric and the
constant C .

Arguing now as in [Hamilton 1982, Section 14], it follows that the metrics g(t)
converge to some limit metric g(T ) in the C∞ topology (with all their time/space
ordinary partial derivatives, once written in local coordinates), hence, we can restart
the flow with this initial metric g(T ), obtaining a smooth flow in some larger time
interval [0, T + δ), in contradiction with the fact that T was the maximal time of
smooth existence. This completes the proof of Theorem 5.7. �
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Dedicated to Alan Weinstein on the occasion of his 70th birthday

We prove a normal form theorem for Poisson structures around Poisson
transversals (also called cosymplectic submanifolds), which simultaneously
generalizes Weinstein’s symplectic neighborhood theorem from symplectic
geometry and Weinstein’s splitting theorem. Our approach turns out to be
essentially canonical, and as a byproduct, we obtain an equivariant version
of the latter theorem.
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1. Introduction

This paper is devoted to the study of semilocal properties of Poisson transversals.
These are submanifolds X of a Poisson manifold .M; �/ that meet each symplectic
leaf of � transversally and symplectically. A Poisson transversal X carries a
canonical Poisson structure, whose leaves are the intersections of leaves of �
with X , and are endowed with the pullback symplectic structure.

Even though this class of submanifolds has very rarely been dealt with in full
generality — much to our dismay and surprise — Poisson transversals permeate the
whole theory of Poisson manifolds, often playing a quite fundamental role. This lack
of specific attention is especially intriguing since they are a special case of several
distinguished classes of submanifolds which have aroused interest lately: Poisson
transversals are Lie–Dirac submanifolds [Xu 2003], Poisson–Dirac submanifolds
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[Crainic and Fernandes 2004], and also pre-Poisson submanifolds [Cattaneo and
Zambon 2009] (see also [Zambon 2011] for a survey on submanifolds in Poisson
geometry).

No wonder, then, that Poisson transversals have shown up already in the infancy
of Poisson geometry, in the foundational paper of Weinstein [1983]. Namely, if L
is a symplectic leaf and x 2L, then a submanifold X that intersects L transversally
at x and has complementary dimension is a Poisson transversal, and its induced
Poisson structure governs much of the geometry transverse to L. In fact, a small
enough tubular neighborhood of L in M will have the property that all its fibers are
Poisson transversals. Such fibrations are nowadays called Poisson fibrations, and
were studied by Vorobjev [2001] — mostly in connection with the local structure
around symplectic leaves — and also by Fernandes and Brahic [2008]. That Poisson
fibrations are related to Haefliger’s formalism of geometric structures described
by groupoid-valued cocycles (see [Haefliger 1958] and also [Gromov 1986]) — of
which the “automatic transversality” of Lemma 7 is also reminiscent — should not
escape notice. In fact, in physics literature, Poisson fibrations have long been known
in the guise of second class constraints, and motivated the introduction by P. Dirac
[1950] of what we know today as the induced Dirac bracket, which in our language
is the induced Poisson structure on the fibers.

The role played by Poisson transversals in Poisson geometry is similar to that
played by symplectic submanifolds in symplectic geometry and by transverse
submanifolds in foliation theory (see the examples in the next section). The key
observation is that the transverse geometry around a Poisson transversal X is of
nonsingular and contravariant nature: it behaves more like a 2-form than as a
bivector in the directions conormal to X . This allows us to make particularly
effective use of the tools of “contravariant geometry”. In the core of our arguments
lies the fact that the contravariant exponential map expX associated to a Poisson
spray X gives rise to a tubular neighborhood adapted to X � .M; �/, in complete
analogy with the classical construction of a tubular neighborhood of a submanifold
X in a Riemannian manifold .M; g/, thus effectively reducing many problems to
the symplectic case.

The main result of this paper is a local normal form theorem around Poisson
transversals, which simultaneously generalizes Weinstein’s splitting theorem [1983]
and Weinstein’s symplectic neighborhood theorem [1971]. At a Poisson transversal
X of .M; �/, the restriction of the Poisson bivector �jX 2�.^2TM jX / determines

� a Poisson structure on X , denoted �X ,

� a nondegenerate, fiberwise 2-form on the conormal bundle p W N �X ! X ,
denoted

wX 2 �.^
2NX/:
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Let z� be a closed 2-form on N �X that extends � WD �wX , i.e., which restricts on
T .N �X/jX D TX ˚N

�X to the trivial extension of � by zero.
To such an extension we associate a Poisson structure �.z�/ on an open set

U.z�/�N �X aroundX . The symplectic leaves of �.z�/ are in one-to-one correspon-
dence with the leaves of �X ; namely if .L; !L/ is a leaf of �X , the corresponding
leaf of �.z�/ is an open set zL � p�1.L/ around L endowed with the 2-form
!zL WD p

�.!L/C z� jzL. The Poisson manifold .U.z�/; �.z�// is the local model of �
around X . We will provide a more conceptual description of the local model using
Dirac geometry.

Theorem 1 (normal form theorem). Let .M; �/ be a Poisson manifold and X �M
be an embedded Poisson transversal. An open neighborhood of X in .M; �/ is Pois-
son diffeomorphic to an open neighborhood of X in the local model .U.z�/; �.z�//.

Under stronger assumptions (which always hold around points in X) we can
provide an even more explicit description of the normal form. Assuming symplectic
triviality of the conormal bundle to X , the theorem implies a generalized version
of the Weinstein splitting theorem, expressing the Poisson as a product, i.e., in the
form (1) below. This coincides with Weinstein’s setting when we look at (small)
Poisson transversals of complementary dimension to a symplectic leaf.

The proof of Theorem 1 relies on the symplectic realization constructed in
[Crainic and Mărcut, 2011] with the aid of global Poisson geometry, and on elemen-
tary Dirac-geometric techniques; the former is the crucial ingredient that allows
us to have a good grasp of directions conormal to the Poisson transversal, and the
latter furnishes the appropriate language to deal with objects which have mixed
covariant-contravariant behavior. As an illustration of the strength and canonicity
of our methods, we present as an application the proof of an equivariant version
of Weinstein’s splitting theorem. Other applications of the normal form theorem,
which reveal the Poisson-topological aspects of Poisson transversals, will be treated
elsewhere.

Theorem 2. Let .M; �/ be a Poisson manifold and let G be a compact Lie group
acting by Poisson diffeomorphisms on M . If x 2 M is a fixed point of G, then
there are coordinates .p1; : : : ; pn; q1; : : : ; qn; y1; : : : ; ym/ 2 R2nCm centered at x
such that

(1) � D

nX
iD1

@

@qi
^

@

@pi
C
1

2

mX
j; kD1

$j; k.y/
@

@yj
^

@

@yk
;

and in these coordinates G acts linearly and keeps the subspaces R2n � f0g and
f0g �Rm invariant.
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This answers in the negative a question posed by Miranda and Zung [2006] about
the necessity of the “tameness” condition they assume in their proof of this result.
We wish to thank Miranda for bringing this problem to our attention.

We should probably also say a few words about terminology. Poisson transver-
sals are also referred to as cosymplectic submanifolds in the literature, and this
is motivated by the fact that the conormal directions to such a submanifold are
symplectic, i.e., the Poisson tensor is nondegenerate on the conormal bundle to
the submanifold. Even though this nomenclature is perfectly reasonable, there are
several reasons why we decided not to use this name. Foremost among these:

(1) There is already a widely used notion of a cosymplectic manifold, defined as a
manifold of dimension 2nC 1, endowed with a closed 1-form � and a closed
2-form ! such that � ^!n is a volume form.

(2) The general point of view of transverse geometric structures is of great insight
into Poisson transversals when we rephrase the problem in terms of Dirac
structures and contravariant geometry. Moreover, the proximity between the
dual pairs used in the proof of the normal form theorem, and the gadget of
Morita equivalence, which is known to govern the transverse geometry to the
symplectic leaves, is too obvious to ignore.

2. Some basic properties of Poisson transversals

Let .M; �/ be a Poisson manifold. A Poisson transversal in M is an embedded
submanifold X �M that meets each symplectic leaf of � transversally and sym-
plectically. We translate both these conditions algebraically. Let x 2 X and let
.L; !/ be the symplectic leaf through x. Transversality translates to

TxX CTxLD TxM:

Taking annihilators in this equation, we obtain that N �xX \ ker.�]x/ D f0g, or
equivalently, that the restriction of �] to N �xX is injective:

(2) 0!N �xX
�

]
x�!TxM:

For the second condition, note that the kernel of !xjTxX\TxL is TxX \�
]
x.N

�
xX/.

So the condition that TxX \TxL be a symplectic subspace is equivalent to

(3) TxX \�
]
x.N

�
xX/D f0g:

Since TxX and N �xX have complementary dimensions, (2) and (3) imply the
following decomposition, which is equivalent to X being a Poisson transversal:

(4) TX ˚�].N �X/D TM jX :
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The decomposition of the tangent bundle (4) canonically gives an embedded
normal bundle, denoted

NX WD �].N �X/� TM jX ;

and a corresponding decomposition for the cotangent bundle

N �X ˚N ıX D T �M jX :

For � 2N �xX and � 2N ıxX , we have that �].�/ 2NxX , hence �.�; �/D 0. This
implies that �jX has no mixed component in the decomposition

^
2TM jX D^

2TX ˚ .TX ˝NX/˚^2NX:

Therefore �jX splits as

�jX D �X CwX ; �X 2 �.^
2TX/; wX 2 �.^

2NX/:

It is well known that these two tensors satisfy the following properties, but for
completeness we include a proof.

Lemma 3. The bivector �X is Poisson and wX , regarded as a 2-form on N �X , is
fiberwise nondegenerate.

Proof. To prove that �X is Poisson, we will use Dirac-geometric techniques (for
other approaches, see [Crainic and Fernandes 2004; Xu 2003]; for the basics of Dirac
geometry, see [Bursztyn and Radko 2003]). It suffices to show that the pullback
via the inclusion i WX !M of the Dirac structure L� WD

˚
�].�/C � W � 2 T �M

	
equals the almost Dirac structure L�X

WD
˚
�
]
X .�/C � W � 2 T

�X
	
, since this makes

L�X
automatically involutive, and hence �X Poisson. But to show this it suffices

to prove the following inclusion:

L�X
D
˚
�
]
X .�/C � W � 2 T

�X
	
D
˚
�
]
X .i
��/C i�� W � 2N ıX

	
D
˚
�].�/C i�� W � 2N ıX

	
� i�L� ;

where we used that w]X .�/D 0, for � 2N ıX .
The map w]X WN

�X !NX is just the restriction of � , which, by the decompo-
sition (4), is a linear isomorphism. �

We recall three natural instances of Poisson transversals, which appear throughout
Poisson geometry:

Example 4. If � is nondegenerate then X is a Poisson transversal if and only if X
is a symplectic submanifold of .M; �/.

Example 5. If L is the symplectic leaf of .M; �/ through a point x 2M , a sub-
manifold X that intersects L transversally at x and is of complementary dimension
is a Poisson transversal around x.
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Example 6. If .M; �/ is a regular Poisson manifold with underlying foliation F
of codimension q, then every submanifold X of dimension q that is transverse to
F is a Poisson transversal.

A very useful — and somewhat surprising — fact about Poisson transversals is
that they behave well with respect to Poisson maps:

Lemma 7. Let ' W .M0; �0/! .M1; �1/ be a Poisson map and X1 � M1 be a
Poisson transversal. Then:

(1) ' is transverse to X1.

(2) X0 WD '�1.X1/ is also a Poisson transversal.

(3) ' restricts to a Poisson map 'jX0
W .X0; �X0

/! .X1; �X1
/.

(4) The differential of ' along X0 restricts to a fiberwise linear isomorphism
between embedded normal bundles '�jNX0

WNX0!NX1.

(5) The map F W N �X0! N �X1, F.�/D .'�/�1.�/, � 2 N �X0 is a fiberwise
linear symplectomorphism between the symplectic vector bundles

F W .N �X0; wX0
/! .N �X1; wX1

/:

Corollary 8. Let .M; �/ be a Poisson manifold, X �M be a Poisson transversal
and W �M be a Poisson submanifold. Then W and X intersect transversally, and
X \W is

� a Poisson transversal in .W; �jW /, and

� a Poisson submanifold of .X; �X /.

Proof of Lemma 7. Consider x 2X0 and let y WD '.x/ 2X1. Since ' is a Poisson
map we have:

�
]
1.�/D '�

�
�
]
0.'
��/

�
; for all � 2 T �yM1;

therefore �]1.T
�
yM1/�'�.TxM0/. ButX1 being a Poisson transversal now implies

that ' is transverse to X1:

TyM1 D TyX1C�
]
1.T
�
yM1/D TyX1C'�.TxM0/:

In particular,X0 is a submanifold ofM0. To show thatX0 is a Poisson transversal,
we will prove that the decomposition TX0˚�

]
0.N

�X0/D TM0jX0
holds. Note

first that
TxX0 D .'�/

�1.TyX1/ and N �xX0 D '
�.N �y X1/:

Let v 2 TxM0, and decompose '�v D uC�
]
1.�/, with u 2 TyX1 and � 2N �y X1.

Then '�� 2 N �xX0 and w WD v � �]0.'
��/ projects to u, hence w 2 TxX0. This
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shows that v D wC�]0.'
��/ 2 TxX0C�

]
0.N

�
xX0/, hence

TxM0 D TxX0C�
]
0.N

�
xX0/:

Counting dimensions, we conclude that this is a direct sum decomposition, and
therefore X0 is a Poisson transversal.

Note, moreover, that '� preserves the embedded normal bundles

'�.NxX0/D '�
�
�
]
0.N

�
xX0/

�
D '�

�
�
]
0.'
�.N �y X1//

�
D �

]
1.N

�
y X1/DNyX1;

and because they have the same rank, '�jNX0
is a fiberwise isomorphism. Since

we also have '�.TxX0/� TyX1, the Poisson condition '�.�0;x/D �1;y implies
that '�.�X0;x/D �X1;y and '�.wX0;x/D wX1;y . This implies (3) and (4). �

3. The local model

The local model around a Poisson transversal depends on an extra choice:

Definition 9. Let .E; �/ be a symplectic vector bundle over X . A closed extension
of � is a closed 2-form z� defined on a neighborhood of X in E, such that its
restriction to TEjX D TX ˚ E equals the trivial extension of � to TEjX . We
denote the space of all closed extensions by ‡.E; �/.

Closed extensions always exist, and can be constructed employing the standard
de Rham homotopy operator (see, e.g., the extension theorem in [Weinstein 1977]).

In the warm-up for the construction below of the local model, let us revisit the
three instances which are generalized by our main result.

Example 10 (Weinstein’s symplectic neighborhood theorem [1971]). Let .M;!/
be a symplectic manifold, and .X; !X / �M be a symplectic submanifold. The
symplectic orthogonal of TX , denoted by E WD TX! , is a symplectic vector bundle
with bilinear form � WD !jE . The local model around X is given by the closed
2-form z� Cp�.!X / on E, where p W E ! X is the projection and z� 2 ‡.E; �/.
Weinstein’s symplectic neighborhood theorem says that a neighborhood of X in
.M;!/ is symplectomorphic to a neighborhood of X in .E; z� Cp�.!X //.

Example 11 (Weinstein’s splitting theorem [1983]). Let .M; �/ be a Poisson man-
ifold and let x 2M . Let also .L; !/ be the symplectic leaf through x 2M , and
.X; �X / a Poisson transversal at x, of complementary dimension. The local model
around x is given by the product of Poisson manifolds

.TxL;!
�1
x /� .X; �X /:

Weinstein’s splitting theorem (or Darboux–Weinstein theorem) asserts that .M; �/
is Poisson diffeomorphic around x to an open set around .0; x/ in the local model.
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Example 12 (transversals to foliations). Let M be a manifold carrying a smooth
(regular) foliation F , and let X �M be a submanifold transverse to F ,

TxX CTxF D TxM; for all x 2X:

Let FX be the induced foliation on X . The local model of the foliation F around
X is .NX; p�FX /, where p W NX ! X is the normal bundle to X ; note that the
leaves of the local model are of the form p�1.L/, for L a leaf of FX . To build an
isomorphism between F and its model aroundX , consider a metric g on TF and let
expg WTF �U !M denote the leafwise exponential map of g, i.e., for each leaf L,
expg W .TL \ U/! L is the (Levi-Civita) exponential map of the Riemannian
manifold .L; gjL/. Then TF?X � TF jX is a complement to TX in TM jX , and
the composition

NX ��!TF?X
expg
��!M

pulls the foliation F to the local model.

The idea for constructing the local model around a Poisson transversal is to
put the foliation in normal form in the sense of Example 12, and then perform
Weinstein’s construction of Example 10 along all symplectic leaves simultaneously.

Let .E; �/ be a symplectic vector bundle over a Poisson manifold .X; �X / with
projection p WE!X and consider a closed extension z� 2‡.E; �/. As mentioned
in the introduction, the symplectic leaves of the local model are .zL;!zL/, for .L; !L/
a symplectic leaf of .X; �X /, where zL� p�1.L/ is an open set containing L and

!zL WD z� jzLCp
�.!L/:

To show this construction yields a smooth Poisson bivector around X , we rewrite it
using the language of Dirac geometry. LetL�X

be the Dirac structure corresponding
to �X . Dirac structures can be pulled back along submersions. The pullback of L�X

to E, denoted by p�.L�X
/, has presymplectic leaves .p�1.L/; p�.!L//, where

.L; !L/ is a symplectic leaf of �X . Finally, the gauge transform by z� , denoted
by p�.L�X

/z� , has the required effect: it adds to each leaf the restriction of z� .

Lemma 13. Let .E; �/ be a symplectic vector bundle over a Poisson manifold
.X; �X /, and let z� 2‡.E; �/ be a closed extension of � . On a neighborhood U.z�/
of X in E, we have that the Dirac structure

L.z�/ WD p�.L�X
/z�

corresponds to a Poisson structure �.z�/ that decomposes along X as

�.z�/jX D �X C �
�1
2 �.^2TX/˚�.^2E/:

Equivalently, .X; �X / is a Poisson transversal for �.z�/, the canonical normal
bundle is E � TEjX , and the induced nondegenerate bivector is wX D ��1.
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Proof. The condition that L.z�/ be Poisson is open, thus it suffices to show that
L.z�/ has the expected form along X . This can be easily checked, since

p�.L�X
/jX D

˚
�
]
X .�/CY C � W � 2 T

�X; Y 2E
	
;

and therefore

L.z�/jX D
˚
�
]
X .�/CY C �C �Y � W � 2 T

�X; Y 2E
	

D
˚
�
]
X .�/C .�

�1/].�/C �C � W � 2 T �X; � 2E�
	

D
˚
.�X C �

�1/].�/C � W � 2 T �EjX
	
: �

Definition 14. The Poisson manifold .U.z�/; �.z�// from the lemma is called the
local model associated to .E; �/ and .X; �X /.

If X is a Poisson transversal of a Poisson manifold .M; �/, �X is the induced
Poisson structure on X , E DN �X is the conormal bundle to X and

� D�wX D�.�jN�X /;

then .U.z�/; �.z�// is called the local model of � around X .

Remark 15. We point out that there is a choice in having the local models of �
around X live in the conormal bundle to X , as opposed to its normal bundle NX ,
as is typically the case for normal form theorems. In fact, since

wX W .N
�X;�wX /! .NX;w�1X /

is an isomorphism of symplectic vector bundles, we can translate canonically all
our constructions to NX via wX .

That we chose N �X instead of NX is meant to emphasize that we regard
the conormal N �X as the more appropriate notion of “contravariant normal”,
an opinion which is corroborated by the scheme of proof of Theorem 1, where
we spread out a tubular neighborhood of X by following contravariant geodesics
starting in directions conormal to X .

The construction of the local model depends on the choice of a closed exten-
sion. A Poisson version of the Moser argument, which first appeared in [Alekseev
and Meinrenken 2007] (see also [Alekseev and Meinrenken 2016]) will be later
employed to prove that different extensions induce isomorphic local models.

Lemma 16 (Moser lemma). Suppose we are given a path of Poisson structures
of the form t 7! �t WD � td˛, where � is a Poisson structure and ˛ 2 �1.M/.
Then the isotopy �t; sV generated by the time-dependent vector field Vt WD ��t

].˛/

stabilizes �t :
�
t; s
V��s D �t ;

whenever this is defined.
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Proof. Recall that Poisson cohomology is computed by the complex .X�.M/; d�/,
where d� W X�.M/! X�C1.M/ is defined by d� WD Œ�; � � and Œ � ; � � stands for
the Schouten bracket on multivector fields. Moreover, � , regarded as a map
�] W T �M ! TM , induces a chain map

.�1/�C1 ^� �] W .��.M/; d/! .X�.M/; d�/;

from the de Rham complex of differential forms, see, e.g., [Dufour and Zung 2005].
In particular,

LVt
�t D

�
�t ; �

]
t .˛/

�
D d�t

�
]
t .˛/D�^

2 �
]
t .d˛/:

As maps, this can be written as

.LVt
�t /

]
D �

]
t ı .d˛/

[
ı�

]
t ;

where .d˛/[ W TM ! T �M stands for d˛ regarded as a map. Also, by the very def-
inition of gauge transformation, we have the identity �] D �]t ı

�
idCt .d˛/[ ı�]

�
,

whence

0D
d�]

dt
D
d�

]
t

dt
ı
�
idCt .d˛/[ ı�]

�
C�

]
t ı .d˛/

[
ı�]

D

�
d�

]
t

dt
C�

]
t ı .d˛/

[
ı�

]
t

�
ı
�
idCt .d˛/[ ı�]

�
D

�
d�t
dt
CLVt

�t

�]
ı
�
idCt .d˛/[ ı�]

�
:

Finally, we obtain

d

dt
.�
t; s
V /��t D .�

t; s
V /�

�
LVt

�t C
d�t
dt

�
D 0;

showing that .�t; sV /��t D �s . �

Next, we show that different choices of closed extensions yield isomorphic local
models.

Lemma 17. If .E; �/ is a symplectic vector bundle over a Poisson manifold .X; �X /,
then all corresponding local models are isomorphic around X by diffeomorphisms
that fix X up to first order.

Proof. If z�1 2 ‡.E; �/ is a second extension, z�1 � z� is a closed 2-form on E
that vanishes on TEjX . Since the inclusion X � E is a homotopy equivalence,
z�1� z� is exact, and one can choose a primitive � 2�1.E/ that vanishes on TEjX .
Actually, by the relative Poincaré lemma in [Weinstein 1977], one may choose �
with vanishing first derivatives along X . Denote �.z�/ and �.z�Cd�/ by �0 and �1,
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respectively. Then �1 is the gauge transform by d� of �0, denoted �1 D �
d�
0 .

These bivectors can be interpolated by the family of Poisson structures

�t WD �
td�
0 ; t 2 Œ0; 1�:

Now, �t corresponds to the smooth family of Dirac structuresLt WDp�.L�X
/z�Ctd� ,

and the set U � R�E of those points .t; x/ where Lt; x is Poisson is open. Since
Œ0; 1��X �U , there is an open neighborhood V of X in E such that Œ0; 1��V �U .
Thus, �t is defined on V for all t 2 Œ0; 1�. By the Moser lemma (Lemma 16), we
see that the flow of the time-dependent vector field

Yt WD ��
]
t .�/

trivializes the family, i.e., .�t; sY /�.�t /D �s whenever it is defined. Since � and its
first derivatives vanish along X , it follows that �t; sY fixes X and that its differential
is the identity on TEjX . Arguing as before, the set where �t;0Y is defined up
to t D 1 contains an open neighborhood V 0 � V of X , so we obtain a Poisson
diffeomorphism

�
1;0
Y W .V

0; �0/
��!

�
�
1;0
Y .V 0/; �1

�
: �

4. The normal form theorem

The normal form theorem (Theorem 1) for a Poisson structure .M; �/ around
a Poisson transversal X states that � and its local model (built out of �jX ) are
isomorphic around X . In the symplectic case, this follows from the Moser argument
in a straightforward manner. For general Poisson manifolds, the proof is more
involved. The main difficulty is to put the foliation in normal form; namely, to find
a tubular neighborhood of X along the leaves of � . If the foliation is regular, such
a construction can be performed by restricting a metric to the leaves and taking
leafwise the Riemannian exponential (cf. Example 12). If � is not regular, it is not
a priori clear if these maps glue to a smooth tubular neighborhood of X in M . We
will use instead a contravariant version of this argument in which we replace the
classical exponential from Riemannian geometry by its Poisson-geometric analog:
the contravariant exponential. The more surprising outcome is that a contravariant
exponential not only puts the foliation in normal form, but also provides a closed
extension and the required isomorphism to the local model. A funny consequence
is that a choice of Poisson spray X for .M; �/ puts all of its Poisson transversals
in normal form canonically and simultaneously!

We start by recalling some notions and results from contravariant geometry.

Definition 18. A Poisson spray X 2 X1.T �M/ on a Poisson manifold .M; �/ is a
vector field on T �M such that

(1) p�X .�/D �].�/, for all � 2 T �M ,
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(2) m�t X D tX , for all t > 0,

where p WT �M!M is the projection andmt WT �M!T �M is the multiplication
by t . The flow �tX of X is called the geodesic flow.

The contravariant exponential of X is the map

expX W U !M; � 7! p ı�1X .�/;

on an open set U � T �M where the geodesic flow is defined up to time 1. By
abuse of notation, we will write expX W T

�M !M , as if it were defined on T �M .

Poisson sprays exist on every Poisson manifold. For example, ifr is a connection
on T �M , then the map that associates to � 2 T �M the horizontal lift of �].�/ is a
Poisson spray.

The main feature of Poisson sprays is that they produce symplectic realizations.

Theorem 19 [Crainic and Mărcut, 2011]. Given .M; �/ a Poisson manifold and X
a Poisson spray, there exists an open neighborhood †� T �M of the zero section,
on which the average of the canonical symplectic structure !can 2�

2.T �M/ under
the geodesic flow

(5) �X WD

Z 1

0

.�tX /
�!can dt;

is a symplectic structure on †, and the projection p W .†;�X / ! .M; �/ is a
symplectic realization (i.e., a surjective Poisson submersion).

Let X � .M; �/ be a Poisson transversal. As before, we denote by �X the
induced Poisson structure on X , and by wX WD �jN�X . We are ready to state the
main result of this paper.

Theorem 20 (detailed version of Theorem 1). Let .M; �/ be a Poisson manifold
and let X � M be a Poisson transversal. A Poisson spray X induces a closed
extension of � WD �wX in a neighborhood of X in N �X , given by

z�X WD ��X jN�X 2 ‡.N
�X; �/:

The corresponding local model �.z�X / is isomorphic to � around X . Explicitly, a
Poisson diffeomorphism between open sets around X is given by the map

expX jN�X W .N
�X;�.z�X //

��! .M; �/:

For the proof of Theorem 20, we need some properties of dual pairs. Recall
from [Weinstein 1971]:

Definition 21. A dual pair consists of a symplectic manifold .†;�/, two Poisson
manifolds .M0; �0/ and .M1; �1/, and two Poisson submersions

.M0; �0/
s
 � .†;�/ t

�! .M1; �1/
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with symplectically orthogonal fibers:

ker ds� D ker dt:

The pair is called a full dual pair, if s and t are surjective.

Dual pairs and Poisson transversals interact pretty well, as the following shows:

Lemma 22. Let .M0; �0/
s
 �.†;�/ t

�!.M1; �1/ be a dual pair, and letX0�M0

andX1�M1 be Poisson transversals. Then† WDs�1.X0/\t�1.X1/ is a symplectic
submanifold that fits into the dual pair

.X0; �X0
/ s
 � .†;�j†/

t
�! .X1; �X1

/:

Proof. First note that † is the inverse image of the Poisson transversal X0 �X1
under the Poisson map

.s; t/ W .†;�/! .M0; �0/� .M1; �1/:

By Lemma 7, .s; t/ is transverse to X0�X1, † is a symplectic manifold and .s; t/
restricts to a Poisson map

.s; t/ W .†;�j†/! .X0; �X0
/� .X1; �X1

/:

It remains to show that the maps

s WD sj† W†!X0 and t WD t j† W†!X1

are submersions with symplectically orthogonal fibers. Let mi WD dim.Mi / and
xi WD dim.Xi /. The fact that s and t are submersions with orthogonal fibers implies
that dim.†/ D m0 Cm1. By transversality of .s; t/ and X0 �X1, we have that
codim.†/ D codim.X0 �X1/; thus dim.†/ D x0C x1. Now, for a point p 2 †,
one clearly has ker dpt � .ker dps/�j† , and since † is symplectic, it follows that

dim.ker dps/C dim.ker dpt /� dim.†/D x0C x1:

On the other hand, we have that dim.ker dps/ � dim.†/ � dim.X0/ D x1, and
similarly dim.ker dpt /�x0, so we obtain dim.ker dps/Dx1 and dim.ker dpt /Dx0.
This implies that dps and dpt are surjective, and that ker dps and ker dpt are
symplectically orthogonal. �

Lemma 23 shows how �0; �1 and � are related.

Lemma 23. Let .M0; �0/
s
 � .†;�/ t

�! .M1; �1/ be a dual pair. Then the Dirac
structures L�i

corresponding to �i satisfy the following relation:

s�.L�0
/�� D t�.L��1

/:
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Proof. An element � 2 s�.L�0
/�� is of the form

�D Y C s�� � �Y�; where � 2 T �M0; s�Y D �
]
0.�/:

Then, since s���1.s��/D �
]
0.�/, we have that

Y � .��1/].s��/ 2 ker ds D .��1/].t�T �M1/:

Hence there is � 2 T �M1 such that

Y D .��1/].s��/� .��1/].t��/:

Applying t� and � (separately) to both sides, we find that

t�Y D�t�.�
�1/].t��/D��

]
1.�/ and s�� � �Y�D t

��;

and hence
�D Y C s�� � �Y�D Y C t

�� 2 t�.L��1
/:

This shows one inclusion; the other follows by symmetry. �

As a first step towards the proof of Theorem 20, we analyze what happens
infinitesimally.

Lemma 24. We have that z�X extends � , z�X 2 ‡.N �X; �/, and that expX is a
diffeomorphism between open sets around X .

Proof. We identify the zero section of T �M with M , and for x 2M , we identify
Tx.T

�M/ D TxM ˚ T
�
xM . The properties of the Poisson spray imply that the

geodesic flow fixes M , and that its differential along M is given (see [Crainic and
Mărcut, 2011]) by

dx�
t
X W TxM ˚T

�
xM ! TxM ˚T

�
xM; .Y; �/ 7! .Y C t�].�/; �/:

In particular, expX D p ı �
1
X is a diffeomorphism around X , restricting to the

identity along X , and the following formula for �X holds along M :

�X ..Y1; �1/; .Y2; �2//D �2.Y1/� �1.Y2/C�.�1; �2/:

Taking .Yi ; �i / 2 TxX ˚N �xX D Tx.N
�X/, for x 2X , we obtain

�X ..Y1; �1/; .Y2; �2//D �.�1; �2/D wX .�1; �2/;

showing that z�X 2 ‡.N �X;�wX /. �

Next, we observe that Theorem 19 implies the existence of self-dual pairs.

Lemma 25. Let X be a Poisson spray on the Poisson manifold .M; �/, and denote
by �X the symplectic form from Theorem 19. On an open neighborhood of the zero
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section †� T �M we have a full dual pair:

.M; �/
p
 � .†;�X /

expX
��! .M;��/:

Proof. Let † be an open neighborhood of the zero section on which the geodesic
flow �tX is defined for all t 2 Œ0; 1�, and on which�X is nondegenerate. In the proof
of Theorem 19 from [Crainic and Mărcut, 2011] it is shown that the symplectic
orthogonals of the fibers p are the fibers of expX . To show that expX pushes ��1X
down to a bivector on M , one could invoke Libermann’s theorem, and then, using
the formulas from the proof of Lemma 24, one could check that along the zero
section this bivector is indeed �� . We adopt a more direct approach. First, note
that �X is a Poisson spray for �� , and that on †� WD �1X .†/, the geodesic flow
of �X is defined up to time 1. Moreover, ��X is nondegenerate on †�, because

.�1X /
���X D

Z 1

0

.�1X /
�.�t�X /

�!can dt D

Z 1

0

.�1�tX /�!can dt D

Z 1

0

.�tX /
�!can dt

D�X :

This also finishes the proof, since expX is the composition of Poisson maps:

.†;�X /
�1
X
��! .†�; ��X /

p
�! .M;��/: �

We are ready to conclude the proof.

Proof of Theorem 20. We use the self-dual pair from Lemma 25, which, by abuse
of notation, we write as if it were defined on the entire T �M :

.M; �/
p
 � .T �M;�X /

expX
��! .M;��/:

Using Lemma 22, we take the preimage under .p; expX / of X �M to obtain a new
dual pair (again, the maps are defined only around X ),

.X; �X /
p
 � .T �M jX ; �X jT �M jX /

expX jT�M jX
�������! .M;��/:

By Lemma 23, we have the following equality of Dirac structures:

p�.L�X
/��X jT�M jX D .expX jT �M jX /

�.L�/:

Since the left-hand side restricts along N �X to the Dirac structure of the local
model �.z�X /, we have

L�.z�X / D .expX jN�X /
�.L�/:

Since expX jN�X is a diffeomorphism around X (Lemma 24), we see that it is a
Poisson diffeomorphism around X :

expX jN�X W .N
�X;�.z�X //

��! .M; �/: �
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5. Application: equivariant Weinstein splitting theorem

As an application of the normal form theorem (or rather of its proof), we obtain an
equivariant version of Weinstein’s splitting theorem around fixed points. A version
of this result with extra assumptions was obtained in [Miranda and Zung 2006].

Theorem 26 (detailed version of Theorem 2). Let .M; �/ be a Poisson manifold
and G a compact Lie group acting by Poisson diffeomorphisms onM . If x 2M is a
fixed point of G, then there are coordinates .p1; : : : ; pn; q1; : : : ; qn; y1; : : : ; ym/ 2
R2nCm centered at x such that

� D

nX
iD1

@

@qi
^

@

@pi
C
1

2

mX
j;kD1

$j;k.y/
@

@yj
^

@

@yk
; $j;k.0/D 0;

and in these coordinates G acts linearly and keeps the subspaces R2n � f0g and
f0g �Rm invariant.

In other words, .M; �/ is G-equivariantly Poisson diffeomorphic around x to an
open set around .0; x/ in the product

(6) .TxL;!
�1
x /� .X; �X /;

where .L; !/ is the symplectic leaf through x, X is a G-invariant Poisson transver-
sal of complementary dimension, and G acts diagonally on (6).

On equivariant symplectic trivializations. In the proof of Theorem 26 we will use a
lemma on equivariant trivializations of symplectic vector bundles, which we present
here. We start with a result about symplectic vector spaces:

Lemma 27. Let .V; !0/ be a symplectic vector space. There exist an open neigh-
borhood U.!0/ of !0 in ^2V �, invariant under the group Sp.V; !0/ of linear
symplectomorphisms of !0, and a smooth map

b W U.!0/! Gl.V /; ! 7! b! ;

satisfying
b�!.!0/D !; b!0

D id; s�1 ı b! ı s D bs�.!/;

for all ! 2 U.!0/ and all s 2 Sp.V; !0/.

Proof. On the open set O WD C n .�1; 0� consider the holomorphic square root,p
. � / WO! C;

p
eaCi� WD ea=2Ci�=2; a 2 R; � 2 .��; �/:

Denote the set of linear isomorphisms of V with eigenvalues in O by O.V /�Gl.V /.
By holomorphic functional calculus [Wikipedia 2013], there is an “extension” of
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the square root to O.V /, which satisfies�p
x
�2
Dx;

p

x�1D
�p
x
��1
;

q
.y ı x ıy�1/Dyı

p
xıy�1;

p
x�D

�p
x
��
;

for every x 2O.V / and every linear isomorphism y W V !W.
Consider U.!0/ WD f!0 ı x j x 2O.V /g, and define the map

b W U.!0/! Gl.V /; b! WD

q
!�10 ı!:

Note that via the identification ^2V � � Hom.V; V �/, the action of Gl.V / on
^2V � becomes y�.!/D y� ı! ıy. Let ! D !0 ıx 2 U.!0/, with x 2O.V / and
s 2 Sp.V; !0/. The following shows that U.!0/ is Sp.V; !0/-invariant:

s�.!/D s� ı!0 ı x ı s D .s
�
ı!0 ı s/ ı .s

�1
ı x ı s/D !0 ı s

�1
ı x ı s 2 U.!0/:

For the next condition, note first that

b�! D
�q

!�10 ı!
��
D

q
! ı!�10 D !0 ı b! ı!

�1
0 ;

therefore
b�!.!0/D b

�
! ı!0 ı b! D !0 ı b

2
! D !:

Finally, for s 2 Sp.V; !0/, we have that

s�1 ı b! ı s D

q
s�1 ı!�10 ı! ı s D

q
s�1 ı!�10 ı .s

�/�1 ı s� ı! ı s

D

q
.s�.!0//�1 ı s�.!/D bs�.!/: �

Remark 28. The lemma can also be proved using the Moser argument. First
note that U.!0/ can be described as the set of 2-forms ! 2 ^2V � for which
!t WD t!0C .1� t /! is nondegenerate for all t 2 Œ0; 1�. The 2-form ! �!0 has a
canonical primitive given by � WD 1

2
��.!�!0/, where � is the Euler vector field of V .

Let Xt .!/ be the time-dependent vector field defined by the equation �Xt .!/!t D �.
The Moser argument shows that the time t flow of Xt .!/ pulls t!0C .1� t /! to !,
and one can easily check that b! is the time-one flow of Xt .!/.

Lemma 29. Let .E; �/!X be a symplectic vector bundle, and letG be a compact
group acting on E by symplectic vector bundle automorphisms. If x 2 X is a
fixed point, there exist an invariant open set U �X around x and a G-equivariant
symplectic vector bundle isomorphism,

.E; � jU /
��! .Ex �U; �x/;

where the action of G on Ex �U is the product one.
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Proof. We first construct a G-equivariant product decomposition. Let U be a G-
invariant open set over which E trivializes, and fix a trivialization EjU ŠEx �U .
The action of G on Ex �U is of the form g.e; y/D .�y.g/e; gy/. To make the
action diagonal, we apply the vector bundle isomorphism,

˛ WEx �U
��!Ex �U; .e; y/ 7! .Ay.e/; y/; Ay WD

Z
G

�x.g/
�1�y.g/d�.g/;

where � is the Haar measure on G. Note that Ay is a linear isomorphism for y
near x, and that it satisfies

Agy ı �y.g/D �x.g/ ıAy :

Thus, by shrinking U , we may assume that the action on Ex �U is the product
action, which we simply denote by g.e; y/D .ge; gy/.

The symplectic structures are given by a smooth family f�ygy2U of bilinear
forms on Ex . This family is G-invariant, in the sense that it satisfies

�gy D .g
�1/�.�y/; g 2G; y 2 U:

Consider the open set U.�x/�^2E�x and the map b W U.�x/! Gl.Ex/ from the
previous lemma. By shrinking U , we may assume that �y 2 U.�x/, for all y 2 U .
Since b��y

.�x/D �y , we have a “canonical” symplectic trivialization:

ˇ WEx �U
��!Ex �U; .e; y/ 7! .b�y

e; y/:

Now g�1 WEx!Ex preserves �x , so

b�gy
D b.g�1/��y

D g ı b�y
ıg�1:

Equivalently, the map ˇ is G-equivariant:

ˇ.ge; gy/D .b�gy
ge; gy/D .gb�y

e; gy/D gˇ.e; y/:

Thus, ˇ ı ˛ is an isomorphism of symplectic vector bundles that trivializes the
symplectic structure, and turns the G-action into the product one. �

Proof of Theorem 26. We split the proof into four steps.

Step 1: a G-invariant transversal. Let .L; !/ denote the leaf through x. Since x is
a fixed point, it follows that G preserves L. Thus G acts by symplectomorphisms
on .L; !/.

We fixX�M , aG-invariant transversal through x such that dim.L/Cdim.X/D
dim.M/. The existence of such a transversal follows from Bochner’s linearization
theorem: the action around x is isomorphic to the linear action of G on TxM ; by
choosing a G-invariant inner product on TxM , we let X be an invariant ball around
the origin in the orthogonal complement of TxL.
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Let �jX D �X CwX denote the decomposition of � along X . Then G acts by
Poisson diffeomorphisms on .X; �X /, and by symplectic vector bundle automor-
phisms on .N �X;�wX /.

Step 2: the G-invariant spray. Let X be a G-invariant Poisson spray. Such a vector
field can be constructed by averaging any Poisson spray; the conditions that a
vector field on T �M be a Poisson spray are affine. The flow of X is therefore
G-equivariant. By Theorem 20, and with the notations used there, we obtain a
G-equivariant Poisson diffeomorphism around X ,

expX W .N
�X;�.z�X //! .M; �/;

where z�X 2 ‡.N �X;�wX / is automatically G-invariant.

Step 3: a G-equivariant symplectic trivialization. Note first that wX , regarded as a
map N �X ! TM jX , yields a symplectic isomorphism,

wX;x W .N
�
xX;�wX;x/

��! .TxL;!x/:

This remark and Lemma 29 imply that around the fixed point x, by shrinking X if
necessary, we can simultaneously trivialize the bundle .N �X;�wX / symplectically
and turn the action to a product action, hence, we obtain a G-equivariant symplectic
vector bundle isomorphism

‰ W
�
pr2 W .TxL;!x/�X !X

�
��!

�
p W .N �X;�wX /!X

�
;

where the action on TxL�X is the product action. Therefore, z!X WD‰
�.z�X / is a

closed G-invariant extension of !x , i.e., z!X 2‡.TxL�X;!x/. Moreover, the map

‰ W .TxL�X;�.z!X //
��! .N �X;�.z�X //

is a G-equivariant Poisson diffeomorphism, where �.z!X / denotes the Poisson
structure around X corresponding to the Dirac structure pr�2.L�X

/z�X .

Step 4: the G-equivariant Moser argument. Note that !x has a second extension
to TxL�X given by !x WD pr�1.!x/. The corresponding local model is the Poisson
structure from the statement

.TxL�X;�.!x//D .TxL;!
�1
x /� .X; �X /:

By Steps 2 and 3, we are left to find a G-equivariant diffeomorphism around X
that sends �.z!X / to �.!x/. For this we need the equivariant version of Lemma 17,
whose proof can be easily adapted to this setting: first, note that the 2-form !x� z!X
has a primitive

� 2�1.TxL�X/
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such that �.0;y/ D 0 for all y 2 X . Since both !x and z!X are G-invariant, by
averaging, we can make � G-invariant as well. Consider the time-dependent
vector field,

Yt WD ��
]
t .�/;

where �t WD�.z!X /
td� . The time-one flow �

1;0
Y sends �0D�.z!X / to �1D�.!x/.

Since both �t and � are G-invariant, it follows that �1;0Y is G-equivariant as well.
This concludes the proof. �
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SOME CLOSURE RESULTS FOR C-APPROXIMABLE GROUPS

DEREK F. HOLT AND SARAH REES

We investigate closure results for C-approximable groups, for certain classes
C, of groups with invariant length functions. In particular we prove, each
time for certain (but not necessarily the same) classes C that: (i) the di-
rect product of two C-approximable groups is C-approximable; (ii) the re-
stricted standard wreath product G o H is C-approximable when G is C-
approximable and H is residually finite; and (iii) a group G with normal
subgroup N is C-approximable when N is C-approximable and G/N is
amenable. Our direct product result is valid for LEF, weakly sofic and
hyperlinear groups, as well as for all groups that are approximable by finite
groups equipped with commutator-contractive invariant length functions
(considered by A. Thom). Our wreath product result is valid for weakly
sofic groups, and we prove it separately for sofic groups. This last result has
recently been generalised by Hayes and Sale, who proved that the restricted
standard wreath product of any two sofic groups is sofic. Our result on
extensions by amenable groups is valid for weakly sofic groups, and was
proved by Elek and Szabó (2006) for sofic groups N .

1. Introduction

Our interest in C-approximable groups stems from the fact that, by making an
appropriate choice of the class C, the definition of a C-approximable group equates
to that of one of a variety of classes of groups currently of interest, including
sofic groups, hyperlinear groups, weakly sofic groups, linear sofic groups, and
LEF groups. Hence techniques that apply to one such class can often be applied
to another. In this article we develop some general techniques to establish some
closure properties for many of these classes, specifically for direct products, for
wreath products with residually finite groups, and for extensions by amenable
groups. We shall refer to closure results in the literature, mostly for specific classes
of C-approximable groups; in some cases our proofs have been inspired by the
proofs of those. We are grateful to the anonymous referee of the paper for a careful
reading and several helpful comments and corrections.

MSC2010: primary 20F65; secondary 20E22.
Keywords: C-approximable group, sofic, hyperlinear, weakly sofic, linear sofic.
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Our definition of a C-approximable group is taken from [Thom 2012, Defini-
tion 1.6] and specialises to the definitions of sofic and hyperlinear groups in [Capraro
and Lupini 2015]; we shall discuss some of the alternative definitions later on in
this section. Our definition requires the concept of an invariant length function on
a group K ; that is, a map ` : K → [0, 1] such that, for all x, y ∈ K :

`(x)= 0⇐⇒ x = 1, `(x−1)= `(x),

`(xy)≤ `(x)+ `(y), `(xyx−1)= `(y).

Every group admits the trivial length function `0 defined by `0(x) = 1 if x 6= 1,
`0(1)= 0, and may admit many others. The Hamming norm, which computes the
proportion of points moved by a permutation of a finite set, gives an invariant length
function for finite symmetric groups.

In the following definition C is understood to be a set of pairs, each pair consisting
of a group K together with an invariant length function `K on K ; so the same group
may occur in C with more than one length function. For a group K , the statement
K ∈ C means that K is the group in at least one such pair.

Definition 1.1. (1) For a group G, a map δ :G→R (for which we write δg rather
than δ(g)) is a weight function for G if δ1 = 0 and δg > 0 for all 1 6= g ∈ G.

(2) Let G be a group with weight function δ, let K be a group with invariant
length function `K , let ε > 0, and let F be a finite subset of G. Then the map
φ : G→ K is an (F, ε, δ, `K )-quasihomomorphism if
• φ(1)= 1,
• ∀g, h ∈ F , `K (φ(gh)φ(h)−1φ(g)−1)≤ ε, and
• ∀g ∈ F \ {1}, `K (φ(g))≥ δg.

(3) Let C be a class of groups with associated invariant length functions. Then
a group G is C-approximable if it has a weight function δ, such that, for
each ε > 0 and for each finite subset F of G, there exists an (F, ε, δ, `K )-
quasihomomorphism φ : G→ K for some (K , `K ) ∈ C.

Since these conditions cannot possibly be satisfied if δg > 1 for some g ∈ G, we
shall always assume that δg ≤ 1.

In particular, sofic groups are precisely those groups that are C-approximable
with respect to the class C of finite symmetric groups with length function defined by
the Hamming norms, and with weight functions of the form δg = c for all 1 6= g ∈G,
for some fixed constant c > 0; see [Pestov and Kwiatkowska 2009, Theorem 5.2].

The (normalised) Hilbert–Schmidt norm on the set of n× n complex matrices
A = (ai j ) is defined by

‖(ai j )‖HSn :=

√
1
n

∑
i, j |ai j |

2 =

√
1
n Tr(A∗A).
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The hyperlinear groups are precisely those groups that are C-approximable with re-
spect to the class C of finite-dimensional unitary groups with length function defined
by `(g)= 1

2‖g− In‖HSn , and with the same weight functions as for sofic groups; see
[Pestov and Kwiatkowska 2009, Theorem 4.2]. Furthermore, weakly sofic groups,
linear sofic groups and LEF groups can all be defined as C-approximable groups,
where the classes C are (respectively) the class F of all finite groups equipped with
all associated invariant length functions, the groups GLn(C) equipped with the
norm `(g)= 1

n rk(In − g) [Arzhantseva and Păunescu 2017], and the finite groups
equipped with the trivial length function. We refer the reader to [Arzhantseva and
Gal 2013; Ciobanu et al. 2014; Elek and Szabó 2006; 2011; Păunescu 2011; Stolz
2013] for a number of closure results involving various of these classes of groups.

Following [Thom 2012] we say that an invariant length function ` : K → [0, 1]
is commutator-contractive if it satisfies the condition

`([x, y])≤ 4`(x)`(y) ∀x, y ∈ K .

Note that the trivial length function is commutator-contractive. Let FC be the
class of all finite groups, each equipped with all commutator-contractive length
functions. The main result of [Thom 2012] is that Higman’s group [1951] is not
FC -approximable. This group is widely seen as a candidate for a first example of a
nonsofic group.

There are many variations in the literature of the definition of a C-approximable
group, not all of which are believed to be equivalent in general to our basic definition,
although the paucity of known examples of groups that are not C-approximable
makes it difficult to prove their inequivalence.

Some definitions, such as [Glebsky 2015, Definition 2] and [Stolz 2013, §2]
allow invariant length functions to take values in [0,∞) rather than in [0, 1]. This
does not affect the classes of sofic, hyperlinear, linear sofic and LEF groups, since
the length functions used in these classes all have range [0, 1]. It is also easily seen
that the class of weakly sofic groups is not changed by this variant since, if a group
is weakly sofic using length functions with range [0,∞), and `K is such a length
function on a finite group K , then simply by replacing `K (g) by the new length
function max(`K (g), 1), we can show that G is weakly sofic using length functions
with range [0, 1]. So this variation in the range of permissible length functions does
not appear to us to be significant.

The more substantial variants involve the condition

∀g ∈ F, `K (φ(g))≥ δg

in the definition of C-approximability. These are discussed in Section 2 of [Stolz
2013]. The group G is said to have the discrete C-approximation property if the
weight function for G can be chosen to be constant on all nonidentity elements. It
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is said to have the strong discrete C-approximation property if the condition above
is replaced by

∀g ∈ F, `K (φ(g))≥ diam(K )− ε,

where diam(K ) is defined to be sup{`K (x) : x ∈ K }, and ε is as in Definition 1.1(3).
By choosing the weight function δg = diam(G)/2 for all g ∈ G \ {1}, we see
immediately that the strong discrete C-approximation property implies the discrete
C-approximation property, which clearly implies that G is C-approximable using
our definition. But the converse implications are not clear, and may not hold in
general.

The definition given for sofic groups in [Elek and Szabó 2006] enforces the
strong discrete approximation property. But it is shown in [Capraro and Lupini
2015, Exercise II.1.8] that, for this class, any C-approximable group has the strong
discrete C-approximation property.

It is proved in [Arzhantseva and Păunescu 2017, Proposition 5.13] that lin-
early sofic groups have the discrete C-approximation property, but it appears to be
unknown whether they have the strong discrete C-approximation property.

Hyperlinear groups do not have the strong C-approximation property, and we are
grateful to the referee for pointing this out to us. The diameter of the unitary group
U(n) with length function defined as above by `(g)= 1

2‖g− In‖HSn is 1. By using
the identity

‖g− h‖2HSn
+‖g+ h‖2HSn

= 4

for g, h ∈ U(n) and putting h = In , we see that, if 1− `(g) is small, then g is close
to −In with respect to the Hilbert–Schmidt metric. So if 1− `(g1) and 1− `(g2)

are both small, then g1g2 is close to In and hence `(g1g2) is close to 0. It follows
that a hyperlinear group with the strong discrete C-approximation property must be
finite with order at most 2.

For hyperlinear groups, it is true that, for any finite F ⊆G and ε > 0, there exists
an approximately multiplicative map φ : G→ U(n) for which |Tr(φ(g))/n| < ε
for all g ∈ F \ {1}. This was first proved in [Elek and Szabó 2005] using ideas
introduced in [Rădulescu 2008].

It is not difficult to show that the classes of F-approximable (i.e., weakly sofic)
and FC -approximable groups both have the strong discrete C-approximation prop-
erty. For a finite subset F of a group G in one of these two classes, and ε > 0, let
c =min{δg : g ∈ F}, and let φ : G→ K be an (F, cε, δ, `K )-quasihomomorphism.
Then, by replacing `K by the length function `′K (x) := min(`K (x)/c, 1), which
is commutator-contractive if `K is, we see that φ is an (F, ε, δ, `′K )-quasihomo-
morphism for which `′K (φ(g)) = 1 for all g ∈ F , so G has the strong discrete
C-approximation property.
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We prove our closure results for direct products, wreath products, and extensions
by amenable groups in Sections 2, 3 and 4, and 5, respectively. To prove the last of
these, on extensions of C-approximable groups N by amenable groups, we need to
assume that the group N has the discrete C-approximation property. For each of our
closure results, it is straightforward to show that, if the groups that are assumed to be
C-approximable have the discrete or the strong discrete C-approximation property,
then so does the group G that is proved to be C-approximable.

Concerning free products, we note that it is proved in [Elek and Szabó 2006,
Theorem 1], [Stolz 2013, Theorem 5.6] and [Popa 1995; Voiculescu 1998], re-
spectively, that the classes of sofic, linear sofic, and hyperlinear groups are closed
under free products; further it is proved in [Brown et al. 2008] that free products
of hyperlinear groups amalgamated over amenable subgroups are hyperlinear. We
thank the referee for bringing to our attention the results for hyperlinear groups. We
are unaware of any corresponding results for weakly sofic groups, and our efforts
to prove such a result have so far been unsuccessful.

2. The direct product result

In order to state and prove our closure result for direct products of C-approximable
groups, we must construct an appropriate invariant length function for the direct
product of two groups in C. Suppose that (J, `J ), (K,`K )∈C. Then, for p∈N∪{∞},
we define the functions L p

`J ,`K
: J × K → [0, 1] by

L p
`J ,`K

(x, y) := p
√

1
2(`J (x)p + `K (y)p), p ∈ N,

and L∞`J ,`K
(x, y) :=max(`J (x), `K (y)). We write just L p(x, y) when there is no

ambiguity.
Note that L p(x, y)≤ L∞(x, y)≤ 1 for all p ≥ 1.
It follows immediately from Minkowski’s inequality (basically the triangle in-

equality for the L p norm) that L p satisfies the rule

L p(x1x2, y1 y2)≤ L p(x1, y1)+ L p(x2, y2),

and hence is an invariant length function on J × K. As we shall see below, we can
use L p (for some choice of p) to deduce the closure of C-approximable groups
under direct products provided that (J × K , L p) ∈ C.

Theorem 2.1. Let C be a class of groups with associated invariant length functions
and suppose that, for some fixed p ∈ N∪ {∞}, and for any groups J, K ∈ C,

(J, `J ), (K , `K ) ∈ C⇒ (J × K , L p) ∈ C.

Then the direct product G × H of two C-approximable groups G and H is also
C-approximable.
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Proof. Suppose that C, p satisfy the conditions of the theorem.
Let G and H be C-approximable with associated weight functions δG and δH .

We define the weight function δG×H by

δG×H (g, h) := p
√

1
2(δ

G(g)p + δH (h)p).

Now suppose that ε > 0 is given, and let F be a finite subset of G × H. Then
we can find finite subsets FG ⊆ G, FH ⊆ H such that F ⊆ FG × FH , pairs
(J, `J ), (K , `K ) ∈ C, an (FG, ε, δ

G, `J )-quasihomomorphism φG : G→ J , and an
(FH , ε, δ

H , `K )-quasihomomorphism φH : H → K.
We define φ : G × H → M := J × K by φ(g, h) := (φG(g), φH (h)) and

`M(x, y) := L p(x, y).
We verify easily that, for (g1, h1), (g2, h2) ∈ F , and hence g1, g2 ∈ FG and

g2, h2 ∈ FH ,

`M(φ(g1g2, h1h2)φ(g2, h2)
−1φ(g1, h1)

−1)

= L p(φG(g1g2)φG(g2)
−1φG(g1)

−1, φH (h1h2)φH (h2)
−1φH (h1)

−1)≤ ε,

and the other conditions are similarly verified. �

We can apply the result to deduce closure under direct products for the classes
of weakly sofic groups, LEF groups, hyperlinear groups, linear sofic groups and
Thom’s class [2012] of FC -approximable groups.

For weakly sofic groups, the condition holds for any p, and for LEF groups it
holds for p =∞.

When `J , `K are Hilbert–Schmidt norms in the same dimension n, the function
L2 matches the Hilbert–Schmidt norm in dimension 2n; observing that whenever G
maps by a quasihomomorphism to a linear group in dimension m it also maps to a
linear group in dimension rm, for any r , via a quasihomomorphism with the same
parameters (the composite of the original quasihomomorphism and a diagonal map),
we see that in essence the theorem applies with p = 2 to prove closure under direct
products for the class of hyperlinear groups. Similarly it applies when p = 1 to
prove closure under direct products for the class of linear sofic groups.

But for Hamming norms `J , `K , the function L p
`J ,`K

is not a Hamming norm,
and hence we cannot deduce the closure of the class of sofic groups under direct
products from this result.

Of course all of these specific closure results are already known, and the corre-
sponding result for sofic groups is proved in [Elek and Szabó 2006].

The following lemma together with Theorem 2.1 shows that the class of FC -
approximable groups is closed under direct products.
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Lemma 2.2. Suppose that the groups J, K have commutator-contractive length
functions `J : J → [0, 1], `K : K → [0, 1]. Then L∞, as defined above, is a
commutator-contractive length function for their direct product.

Proof. Let (g1, h1), (g2, h2) ∈ G× H. Then

L∞([(g1, h1), (g2, h2)])= L∞([g1, g2], [h1, h2])

=max(lJ ([g1, g2]), lK ([h1, h2]))

≤max(4lJ (g1)lJ (g2), 4lK (h1)lK (h2))

≤ 4 max(lJ (g1), lK (h1))max(lJ (g2), lK (h2))

= 4L∞(g1, h1)L∞(g2, h2). �

This result does not hold in general for L p with p ∈ [1,∞).

3. The wreath product result

By definition, the restricted standard wreath product W =G oH of two groups G, H
is a semidirect product HnB. The base group B of W is the direct product of copies
of G, one for each h ∈ H , and is viewed as the set of all functions b : H→ G with
finite support (that is, with b(h) trivial for all but finitely many h ∈ H ). Elements
of B are multiplied componentwise; that is, b1b2(h)= b1(h)b2(h) for b1, b2 ∈ B,
h ∈ H. For b ∈ B, we denote by b−1 the function in B defined by b−1(h)= b(h)−1.
The (right) action of H on B is defined by the rule bh(h′) = b(h′h−1); we often
abbreviate (bh)−1

= (b−1)h as b−h . So the elements of W have the form hb with
h ∈ H , b ∈ B, and (h1b1)(h2b2)= h1h2bh2

1 b2, while (h, b)−1
= (h−1, b−h−1

).
To let us state and prove our closure result for wreath products of C-approximable

groups, we need to construct an appropriate invariant length function for the wreath
product J o X of a group J ∈ C by a finite group X .

Where B ′ is the base group of J o X , we define `X
J : J o X → [0, 1] as follows.

For b′ ∈ B ′, we put
`X

L (b
′)=max

x∈X
`J (b′(x)),

and then, for x 6= 1, put
`X

J (xb′)= 1.

It is straightforward to verify that `X
J is an invariant length function.

Theorem 3.1. Let C be a class of groups with associated invariant length functions
and suppose that, for all (J, `J ) ∈ C and all finite groups X , the wreath product
(J o X, `X

J ) is in C. Suppose the group G is C-approximable and the group H is resid-
ually finite. Then the restricted standard wreath product G o H is C-approximable.
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Proof. Suppose that G is C-approximable with associated weight function δ, and
that H is residually finite, and let W = G o H be the restricted standard wreath
product. Let B be the base group.

We define the weight function β :W → R as follows:

βhb =

{
1 if h 6= 1,
maxk∈H δb(k) otherwise.

Let ε > 0 be given, and let F = {hi bi : 1 ≤ i ≤ r} be a finite subset of W. Our
aim is to find (K , `K ) ∈ C and an (F, ε, βW , `K )-quasihomomorphism ψ :W → K.

Let E be a finite subset of H that contains

(i) hi for 1≤ i ≤ r ;

(ii) all h ∈ H with bj (h) 6= 1 for some j with 1≤ j ≤ r ; and

(iii) all h ∈ H with bj (hh−1
i ) 6= 1 for some i, j with 1≤ i ≤ r , 1≤ j ≤ r .

Choose N E H with H/N finite such that the images in H/N of the elements
of E are all distinct and the images of E \ {1} are nontrivial.

Let D = {bj (h) : 1 ≤ j ≤ r, h ∈ H}. Then D is a finite subset of G so, by our
definition of C-approximability, for a given ε > 0, there exists (J, `J ) ∈ C, and a
(D, ε, δ, `J )-quasihomomorphism φ : G→ J.

We will approximate W by K := J o (H/N ), and let `K be the length function
`

H/N
J defined above. Let B ′ be the base group of K , that is, the group of finitely

supported functions from H/N to J.
We define ψ : W → K as follows. Suppose that b ∈ B, and h, k ∈ H. Note

that our choice of N ensures that E ∩ k N is either empty or consists of a single
element k ′ ∈ k N . We let ψ(hb) := hb̂, where we write h for hN and b̂ : H/N→ J
is defined by the rule

b̂(k N )=
{

1 when E ∩ k N =∅,
φ(b(k ′)) when E ∩ k N = {k ′}.

We claim that ψ has the appropriate properties. Certainly ψ(1)= 1.
We first verify the required lower bound on `K (ψ(hb)) for elements hb ∈ F. If

h 6= 1 then our choice of N ensures that h 6= 1, and so `K (ψ(hb))= 1= βhb.
If h = 1, then (where the maximum of an empty set of numbers in [0, 1] is

defined to be 0),

`K (ψ(hb))= `K (ψ(b))= `K (b̂)

= max
k N∈H/N : {k′}:=k N∩E 6=∅

`J (φ(b(k ′)))

=max
k′∈E

`J (φ(b(k ′)))

≥max
k′∈E

δb(k′) =max
k′∈H

δb(k′) = βb.
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The equality of the two maxima in the final line follows from the definition of E ,
which ensures that b(k)= 1 for any k ∈ H \ E and hence that, for such k, δb(k) = 0.

It remains to show that, for hi bi , h j bj ∈ F ,

lK (ψ(hi bi h j bj )(ψ(hi bi )ψ(h j bj ))
−1)≤ ε.

We have
ψ(hi bi h j bj )= ψ(hi h j bh j

i bj )= hi h j b̂ h j
i bj ,

and
ψ(hi bi )ψ(h j bj )= (hi b̂i )(h j b̂j )= hi h j b̂ h j

i b̂j .

Since lK is invariant under conjugation, the length we need is that of the element

b′ := b̂ h j
i bj b̂−1

j

(
b̂ h j

i
)−1

of B ′. By definition, `K (b′)=maxk N∈H/N `J (b′(k N )). So choose a coset k N . We
want to bound `J (b′(k N )) for each such choice. We have

b′(k N )= b̂h j
i bj (k N )(b̂j (k N ))−1(b̂h j

i (k N ))−1

= b̂h j
i bj (k N )(b̂j (k N ))−1(b̂i (kh−1

j N ))−1

=

{
(b̂i (kh−1

j N ))−1 if k N∩E=∅, (1)

φ(bi (k ′h−1
j )bj (k ′))(φ(bj (k ′)))−1(b̂i (kh−1

j N ))−1 if k N∩E={k ′}, (2)

since in case (1) we have b̂ h j
i bj (k N ) = b̂j (k N ) = 1, and in case (2), we have

b̂ h j
i bj (k N )= φ((bh j

i bj )(k ′))= φ(bi (k ′h−1
j )bj (k ′)), and b̂j (k N )= φ(bj (k ′)).

When E ∩ kh−1
j N =∅, we have b̂i (kh−1

j N )= 1. In that case, by the definition
of E , we also have bi (k ′h−1

j )= 1 and so, in both case (1) and case (2), we deduce
that b′(k N )= 1 and `J (b′(k N ))= 0.

Otherwise E ∩ kh−1
j N is nonempty, and its single element is equal to k ′′h−1

j , for
some k ′′∈ k N .

Suppose first that bi (k ′′h−1
j )= 1, and hence again we have b̂i (kh−1

j N )= 1. If we
are in case (2) then we must also have bi (k ′h−1

j )= 1, since if bi (k ′h−1
j ) 6= 1, then

condition (ii) of the definition of E gives k ′h−1
j ∈ E , and so k ′ = k ′′, contradicting

bi (k ′′h−1
j )= 1. Then, just as above, we see that in both cases (1) and (2) we again

get b′(k N )= 1 and `J (b′(k N ))= 0.
Otherwise bi (k ′′h−1

j ) 6= 1 and condition (iii) of the definition of E gives k ′′ ∈ E
and hence we are in case (2) with k ′ = k ′′. Then

b′(k N )= φ(bi (k ′h−1
j )bj (k ′))φ(bj (k ′))−1φ(bi (k ′h−1

j ))−1.

Since φ was assumed to be a (D, ε, δ, `J )-quasihomomorphism, `J (b′(k N ))≤ ε
and, since this is true for all k N ∈ H/N , we get `K (b′)≤ ε as required. �
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The conditions of the theorem clearly hold for the class F , as well as for finite
groups equipped with the trivial length function, and hence the classes of weakly
sofic and LEF groups are both closed under restricted wreath products with residually
finite groups. The following lemma together with Theorem 2.1 shows that the class
of FC -approximable groups is also closed under restricted wreath products with
residually finite groups.

Lemma 3.2. Let J be a group equipped with an invariant function `J . If `J is
commutator-contractive, then so is `X

J , for any finite group X.

Proof. We consider the commutator of two elements x1b1 and x2b2 in J.
First suppose that x1 and x2 are both nontrivial. Then `X

J (x1b1)= `
X
J (x2b2)= 1,

and so the inequality holds trivially.
Now suppose that x1 = x2 = 1. Then

`X
J ([b1, b2])=maxx∈X `J ([b1, b2](x))

=maxx∈X `J ([b1(x), b2(x)])

≤ 4 maxx∈X `J (b1(x))`J (b2(x))

≤ 4 maxx∈X `J (b1(x))maxy∈X `J (b2(y))

= 4`X
J (b1)`

X
J (b2).

Finally suppose that x1 = 1, x2 6= 1 (the other case is very similar). Then

`X
J ([b1, x2b2])= `

X
J (b
−1
1 b−1

2 x−1
2 b1x2b2)

= `X
J (b
−1
1 b−1

2 bx2
1 b2)

=maxx∈X `J (b1(x)−1b2(x)−1bx2
1 (x)b2(x))

=maxx∈X `J (b1(x)−1b2(x)−1b1(xx−1
2 )b2(x))

≤maxx∈X (`J (b1(x)−1)+ `J (b2(x)−1b1(xx−1
2 )b2(x)))

=maxx∈X (`J (b1(x)−1)+ `J (b1(xx−1
2 )))

≤maxx∈X (`J (b1(x)−1))+maxy∈X (`J (b1(y)))

≤ 2 maxx∈X (`J (b1(x)−1)= 2`X
J (b1). �

4. The wreath product result for sofic groups

We prove now the corresponding result for sofic groups. For this, we are not free
to choose our own norm function on the wreath product, but we must use the
Hamming distance norm. The proof is nevertheless very similar in structure to that
of Theorem 3.1. We use the definition of sofic groups given in [Elek and Szabó
2006] where, rather than having a weight function on the group G, we require
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that, for finite F ⊆ G, the proportion of moved points of elements of F \ {1} in an
(F, ε)-quasiaction of G on a finite set is at least 1− ε.

We note that this result has recently been generalised by Hayes and Sale [2016],
who proved that the restricted standard wreath product of any two sofic groups
is sofic.

Theorem 4.1. The restricted standard wreath product G oH of a sofic group G and
a residually finite group H is sofic.

Proof. Assume that G is sofic and H is residually finite, and let W = G o H be the
restricted standard wreath product. So, as in the proof of Theorem 3.1, W is the
semidirect product of its base group B by H.

Let F = {hi bi : 1≤ i ≤ r} be a finite subset of W. Then, for a given ε > 0, we
need to find an (F, ε)-quasiaction of W on some finite set Y.

We define the finite subset E of H , the normal subgroup N of H , and the finite
subset D of G exactly as in the proof of Theorem 3.1. So, in particular, for any k∈H ,
E ∩ k N is either empty or consists of a single element k ′∈ k N . Let m = |H/N |.

Then, by [Elek and Szabó 2006, Lemma 2.1], for a given ε > 0, there is a
(D, ε/m)-quasiaction φ : G→ Sym(X) of G on some finite set X , and we may
assume that φ(1)= 1. Since we can choose both m and X to be arbitrarily large
for given D and ε, we may assume that |X |−m/2 < ε.

Let Y = X H/N be the set of functions δ : H/N → X . So |Y | = |X |m . We define
ψ :W → Sym(Y ) as follows. (The image of ψ is contained in the primitive wreath
product of Sym(X) and H/N , as defined in [Dixon and Mortimer 1996, §2.6].)

For b ∈ B, h, k ∈ H , let δψ(hb)(k N ) := δ(kh−1 N )τ(b,k), where

τ(b, k) :=

{
1 when E ∩ k N =∅,
φ(b(k ′)) when E ∩ k N = {k ′}.

We claim that ψ is an (F, ε)-quasiaction of W on Y. Observe first that ψ(1)= 1.
We check next that, for each hi bi ∈ F \ {1}, ψ(hi bi ) is (1−ε)-different from 1.

If hi 6= 1 then, by assumption, hi 6∈ N , so kh−1
i N 6= k N for all k N ∈ H/N . So, if

δ ∈ Y is a fixed point of ψ(hi bi ), then the value of δ(k N ) is uniquely determined
by that of δ(kh−1

i N ) for each k N ∈ H/N , so the proportion of fixed points is at
most |X |m/2/|X |m = |X |−m/2, which we assumed to be less than ε.

If, on the other hand, hi = 1 and bi 6= 1, then there exists h ∈ E with bi (h) 6= 1.
Now an element δ ∈ Y is fixed by ψ(hi bi )=ψ(bi ) if and only if δ(k N ) is fixed by
τ(b, k) for all k N ∈H/N . Hence, in particular, for a fixed point δ, we have δ(hN )=
δ(hN )τ(bi ,h), and so δ(hN ) is a fixed point of τ(bi , h)= φ(bi (h)). Since the pro-
portion of such points in X is, by assumption, at most ε, the same is true for ψ(bi ).
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Finally we need to verify that ψ(hi bi )ψ(h j bj ) is ε-similar to ψ(hi h j bh j
i bj ) for

each i, j with 1 ≤ i, j ≤ r ; that is, that the two permutations agree on at least a
proportion 1− ε of the points.

Now

δψ(hi bi )ψ(h j bj )(k N )= (δψ(hi bi )(kh−1
j N ))τ(bj ,k) = δ(kh−1

j h−1
i N )τ(bi ,kh−1

j )τ (bj ,k),

and
δψ(hi h j bhj

i bj )(k N )= δ(kh−1
j h−1

i N )τ(b
hj
i bj ,k),

so we need to compare τ(bi , kh−1
j )τ (bj , k) with τ(bh j

i bj , k).
The argument is very similar to that in the analogous part of the proof of

Theorem 3.1. We are in one of two cases. Either

(1) E ∩ k N =∅, in which case τ(bj , k)= τ(bh j
i bj , k)= 1, or

(2) E∩k N ={k ′}, for some k ′ ∈ K , and so τ(bj , k)=φ(bj (k ′)), and τ(bh j
i bj , k)=

φ((bh j
i bj )(k ′))= φ(bi (k ′h−1

j )bj (k ′)).

When E ∩ kh−1
j N = ∅, then bi (k ′h−1

j ) = 1 and, in both case (1) and case (2),
τ(bi , kh−1

j )τ (bj , k)= τ(bh j
i bj , k).

Otherwise, E ∩ kh−1
j N = {k ′′h−1

j } for some k ′′∈ k N .
Suppose first that bi (k ′′h−1

j )= 1. If we are in case (2) then bi (k ′h−1
j )= 1, since

otherwise, just as in the proof of Theorem 3.1, condition (ii) of the definition of
E gives k ′h−1

j ∈ E , and so k ′ = k ′′, and we have a contradiction. Hence, in both
case (1) and case (2) we again have τ(bi , kh−1

j )τ (bj , k)= τ(bh j
i bj , k).

Otherwise bi (k ′′h−1
j ) 6= 1, and then, again just as in the proof of Theorem 3.1,

condition (iii) of the definition of E gives k ′′ ∈ E . Hence we are in case (2)
and k ′ = k ′′. Then

τ(bi , gh−1
j )τ (bj , g)= φ(bi (k ′h−1

j ))φ(bj (k ′))

and
τ(bh j

i bj , g)= φ(bi (k ′h−1
j )bj (k ′)).

Since bi (k ′h−1
j ), bj (k ′) ∈ D, the fact that φ is a (D, ε/m)-quasiaction implies that

the proportion of the points of X on which the permutations φ(bi (k ′h−1
j )bj (k ′))

and φ(bi (k ′h−1
j ))φ(bj (k ′)) have the same image is at least 1− ε/m.

It follows that the proportion of elements δ ∈ Y with

δψ(hi bi )ψ(h j bj )(k N )= δψ(hi h j b
hj
i bj )(k N )

is at least 1− ε/m. But δψ(hi bi )ψ(h j bj ) = δψ(hi h j b
hj
i bj ) if and only if they take the

same values on all k N ∈ H/N , and the proportion of δ ∈ Y for which this is true
is at least 1− ε. �
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5. Extensions by amenable groups

In Section 3 we defined the restricted standard wreath product G oH of groups G, H.
In this section, we shall need wreath products by permutation groups. For a group
K and a finite set A, we define the permutation wreath product W = K oSym(A) as
W = Sym(A)n B where the base group is now the set of all functions b : A→ K.
As before, we define b1b2(a) := b1(a)b2(a) for b1, b2 ∈ B, a ∈ A, and we define
the action of Sym(A) on B by the rule bα(a) = b(aα

−1
), for α ∈ Sym(A), a ∈ A.

Much as before, elements of the wreath product are represented as pairs (α, b)
with α ∈ Sym(A) and b ∈ B, multiplied according to the rule (α1, b1)(α2, b2) =

(α1α2, bα2
1 b2), and with (α, b)−1

= (α−1, b−α
−1
).

In general the length function for finite wreath products that we used in the proof
of Theorem 3.1 is not suitable for the proof of Theorem 5.1 below. So we need to
define a different one.

Given an invariant length function `K on K , we can define an invariant length
function ˆ̀AK on W by

ˆ̀A
K (α, b)= 1

|A|

( ∑
a∈A : aα=a

`K (b(a))+
∑

a∈A : aα 6=a

1
)
.

Most of the conditions for ˆ̀AK to be an invariant length function are straightforward
consequences of the conditions on `K . The verification of

ˆ̀A
K (α1α2, bα2

1 b2)≤ ˆ̀
A
K (α1, b1)+ ˆ̀

A
K (α2, b2)

may require a little more thought. For this, we consider the terms corresponding
to the various a ∈ A in the three sums that make up ˆ̀AK (α1α2, bα2

1 b2), ˆ̀AK (α1, b1),
and ˆ̀AK (α2, b2). We see that, for each a ∈ A with aα1 6= a or aα2 6= a, the term in
ˆ̀A
K (α1α2, bα2

1 b2) is at most 1/|A|, but at least one of the two nonnegative terms
in ˆ̀AK (α1, b1) and ˆ̀AK (α2, b2) is equal to 1/|A|. On the other hand, for a ∈ A with
aα1 = a and aα2 = a, the term corresponding to a in ˆ̀AK (α1α2, bα2

1 b2) is

1
|A|

`K (b
α2
1 (a)b2(a))=

1
|A|

`K (b1(a)b2(a))≤
1
|A|

(`K (b1(a))+ `K (b2(a)),

which is the corresponding term in ˆ̀AK (α1, b1)+ ˆ̀
A
K (α2, b2).

Theorem 5.1. Let C be a class of groups with associated invariant length functions
and suppose that, for all (K , `K ) ∈ C and all finite sets A, the wreath product
(K oSym(A), ˆ̀AK ) is in C. Suppose that the group G has a normal subgroup N with
the discrete C-approximation property (as defined in Section 1) such that G/N is
amenable. Then G has the discrete C-approximation property.

This result has already been proved for sofic groups [Elek and Szabó 2006,
Theorem 1 (3)] and linear sofic groups [Stolz 2013, Theorem 5.3]. However, in
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order to avoid confusion we should comment that, while the above result considers
extensions G of C-approximable normal subgroups N with G/N amenable, by
contrast, [Arzhantseva and Gal 2013, Theorem 7] considers extensions G of finitely
generated residually finite normal subgroups N for which G/N is in a selected
class R of groups (including groups that are residually amenable groups, LEF, LEA,
sofic or surjunctive).

Proof. The proof is based on the corresponding proof in [Elek and Szabó 2006,
Theorem 1 (3)] for sofic groups N.

By assumption, the normal subgroup N of G is C-approximable using a weight
function δ that takes a constant value c on all elements of N \ {1}. Since we can
reduce the value of c without affecting the C-approximability of N , we may assume
that c < 1. If N 6= {1} then we define the weight function β of G by βg = c for
all g 6= 1, and if N = {1}, then we define β by βg =

1
2 for all g 6= 1.

For g ∈ G, let g be the homomorphic image of g in G/N and let σ : G/N → G
be a section (so σ(h) = h for all h ∈ G/N ), where σ(1) = 1. We can lift σ to a
map from G to G for which the image of g ∈ G is σ(g); we shall abuse notation
and call that map σ as well.

To verify the C-approximability condition on G, let F be a finite subset of G
and let ε > 0. We may assume that ε <min

( 1
2 , 1− c

)
.

The amenability of G/N ensures the existence of a finite subset A of G/N con-
taining the identity element such that |Ag\A|≤ε|A| for all g ∈ F ∪F−1

∪F2
∪F−2.

Let A= σ(A); note that all points of A are fixed by the map σ :G→G. We define
a map φ : G→ Sym(A) as follows:

for g ∈ G, a ∈ A, aφ(g) :=
{
σ(ag) if ag ∈ A,
any choice with φ(g) ∈ Sym(A) otherwise.

Let E = N ∩ (A · F · A−1). The C-approximability of N ensures the existence of an
(E, ε, δ, `K )-quasihomomorphism ψ : N → K with (K , `K ) ∈ C.

Now we let W = K o Sym(A) = Sym(A) n B and define 8 : G → W by
8(g)= (φ(g), b) where, for a ∈ A, b(a) := ψ(σ(ag−1)ga−1).

We show first that ˆ̀AK (8(g))≥ βg for g ∈ F. If g 6∈ N then, since φ(g) moves
all points a ∈ A for which ag ∈ A, we have

ˆ̀A
K (8(g))≥ 1− ε > 1

2 = δg.

If g ∈ N \ {1} then ag−1 = a, so σ(ag−1)= a for all a ∈ A, and ˆ̀AK (8(g)) is the
average over a ∈ A of `K (ψ(aga−1)). But since each aga−1

∈ E \ {1}, these all
exceed δg.

Now let g, h ∈ F. We aim to show that

ˆ̀A
K (8(gh)8(h)−18(g)−1)≤ 5ε.
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For a ∈ A, we have

8(g)= (φ(g), b), where b(a)= ψ(σ(ag−1)ga−1),

8(h)= (φ(h), c), where c(a)= ψ(σ(ah−1)ha−1),

8(gh)= (φ(gh), d), where d(a)= ψ(σ(ah−1g−1)gha−1),

8(g)8(h)= (φ(g)φ(h), bφ(h)c),

where (bφ(h)c)(a)= bφ(h)(a)c(a)= b(aφ(h)
−1
)c(a)

= ψ(σ(aφ(h)
−1

g−1)ga−φ(h)
−1
)ψ(σ(ah−1)ha−1)

(where, for a, k ∈ G, we write a−k as shorthand for (a−1)k = (ak)−1). Then

8(gh)(8(g)8(h))−1
= (φ(gh), d)(φ(g)φ(h), bφ(h)c)−1

= (φ(gh), d)((φ(g)φ(h))−1, (bφ(h)c)−(φ(g)φ(h))
−1
)

= (φ(gh)(φ(g)φ(h))−1, (d(bφ(h)c)−1)(φ(g)φ(h))
−1
).

Now, for a proportion of at least 1 − 2ε of the points a ∈ A, we have both
ah−1 ∈ A and ah−1g−1 ∈ A. For those points a, we have aφ(h)

−1
= σ(ah−1) and

so the final expression for (bφ(h)c)(a) above becomes

ψ(σ(ah−1g−1)gσ(ah−1)−1)×ψ(σ(ah−1)ha−1),

and we see that the image of a under the second component of8(gh)(8(g)8(h))−1

is equal to a conjugate of

ψ(xy)ψ(y)−1ψ(x)−1,

where x = σ(ah−1g−1)gσ(ah−1)−1 and y = σ(ah−1)ha−1. The elements x, y are
both in the finite subset E of G, and hence, since ψ is a quasihomomorphism,
`K (ψ(xy)ψ(y)−1ψ(x)−1) < ε, and we deduce that

`K ((d(bφ(h)c)−1)(φ(g)φ(h))
−1
)(a)) < ε,

for at least a proportion 1− 2ε of the points of A.
Our choice of A ensures also that φ(gh)(φ(g)φ(h))−1(a) = a for at least a

proportion 1− 2ε of the points a of A.
Now, for at least a proportion 1− 4ε of the points of A, the conditions of both

of the last two paragraphs hold, and so we can deduce

ˆ̀A
K (8(gh)8(h)−18(g)−1) < ε(1− 4ε)+ 4ε < 5ε. �

In particular, by taking C=F with each K ∈F associated with all possible length
functions, we see that the class of weakly sofic groups is closed under extension by
amenable groups.
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In general, `K commutator-contractive does not imply that ˆ̀AK is commutator-
contractive. But if, instead, we define `A

K as we did in Section 3 (that is, for b ∈ B,
`A

K (b) = maxa∈A `K (b(a)), and `A
K (αb) = 1 when 1 6= α ∈ Sym(A)) then, as we

proved in Lemma 3.2, `A
K is commutator-contractive.

Our proof of Theorem 5.1 does not always work with this commutator-contractive
norm, but it does work if φ : G/N → A is a homomorphism. In particular, when
G/N ∼= (Z,+), we can choose A to be {x ∈ Z : −m ≤ x ≤ m} for some m and
define φ to be addition modulo 2m+ 1. So, by applying this repeatedly, we have:

Proposition 5.2. The class of Fc-approximable groups is closed under extension
by polycyclic groups.
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COMAN CONJECTURE FOR THE BIDISC

ŁUKASZ KOSIŃSKI, PASCAL J. THOMAS AND WŁODZIMIERZ ZWONEK

We show the equality between the Lempert function and the Green function
with two poles with equal weights in the bidisc, thus giving the positive an-
swer to a conjecture of Coman in the simplest unknown case. Actually, we
prove a slightly more general equality which in some sense is natural when
studied from the point of view of the Nevanlinna–Pick problem in the bidisc.

1. Presentation of the problem and its history

Let D be a domain in Cn and let ∅ 6= P := {p1, . . . , pN } ⊂ D where pj 6= pk ,
j 6= k. Let also ν : P→ (0,∞). Denote νj := ν(pj ). Let z ∈ D.

Define lD(z; P; ν) := lD(z; (p1, ν1), . . . , (pN , νN )) as the infimum of the num-
bers

N∑
j=1

νj log |λ j |

such that there is an analytic disc ψ : D → D with ψ(0) = z, ψ(λ j ) = pj,
j = 1, . . . , N.

Recall that lD(z; P; ν) = min{lD(z; A; ν|A) : ∅ 6= A ⊂ P} (see [Nikolov and
Pflug 2006] for arbitrary D or [Wikström 2001] for D convex). The last equality
will be of interest for us since in the case of taut domains (convex and bounded
domains are taut) the infimum in the definition of lD(z; P; ν) will be attained by
some analytic disc defining lD(z; A; ν|A) for some ∅ 6= A ⊂ P.

The function lD( · ; P; ν) is called the Lempert function with the poles at P and
with the weight function ν (or weights νj ).

Analoguously we define the pluricomplex Green function gD(z; P; ν) with the
poles at P and the weight function ν as the supremum of numbers u(z) over all

The authors were supported by the grant of the Polish National Centre number UMO-
2013/08/M/ST1/00986 promoting the cooperation between the groups of complex analysis in the Paul
Sabatier University in Toulouse and the Jagiellonian University in Kraków.
MSC2010: primary 32U35; secondary 30E05.
Keywords: Green function, Lempert function, Carathéodory pseudodistance, Coman conjecture,

m-extremal, m-complex geodesic, bidisc.
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negative plurisubharmonic functions u : D→[−∞, 0) with logarithmic poles at P,
i.e., such that

u( · )− νj log ‖ · −pj‖

is bounded above near pj, j = 1, . . . , N.
It is trivial that gD(z; P; ν) ≤ lD(z; P; ν). D. Coman [2000] conjectured the

equality lD( · ; P; ν)= gD( · ; P; ν) for all convex domains D.
The conjecture has an obvious motivation in the Lempert Theorem [1981] which

implies the equality in the case N = 1, and in the fact that the equality in the case
of the unit ball and two poles with equal weights (D = Bn , N = 2, ν1 = ν2) holds
(see [Coman 2000] and also [Edigarian and Zwonek 1998]).

The conjecture turned out to be false. The first counterexample was found in
[Carlehed and Wiegerinck 2003] (D := D2, N = 2 and different weights). Later a
counterexample was found in the case of the bidisc (D = D2) with N = 4 and all
weights equal (see [Thomas and Trao 2003]).

The simplest nontrivial case that was not clear yet was the case of the bidisc, two
poles and equal weights. Recall that a partial positive answer in this case was found
in [Carlehed 1999] (see also [Edigarian and Zwonek 1998]) in the case the poles
were lying on D×{0}. In [Wikström 2003] numerical computations were carried
out which strongly suggested that the equality in the case D =D2, N = 2, ν1 = ν2

should hold. The aim of this paper is to show that actually the Coman conjecture
holds in the bidisc (D = D2), N = 2, two arbitrary poles and ν1 = ν2. In our proof
we show even more: the equality of the Carathéodory function (defined below) and
the Lempert function with two poles and equal weights in the bidisc. The methods
we use originated with the study of the Nevanlinna–Pick problem for the bidisc.

2. Nevanlinna–Pick problem, m-complex geodesics, formulation of the
solution

As already mentioned, the aim of the paper is to show a more general result than
one claimed in the Coman conjecture for the bidisc, two poles and equal weights.
To formulate the main result we need to introduce a new function. Since we shall
be interested in equal weights we restrict ourselves from now on to the case when
ν ≡ 1. To make the presentation clearer we adopt the notation

dD(z, {p1, . . . , pN }) := dD(z; {(p1, 1), . . . , (pN , 1)})

(d = l or g) where the pj ∈ D are pairwise disjoint, j = 1, . . . , N.
Let us recall the definition of the Carathéodory function with the poles at pj

(with weights equal to one)

(1) cD(z, p1,..., pN ) := sup{log|F(z)| : F ∈O(D,D),F(pj )= 0, j = 1,...,N }.
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It is simple to see that

cD( · , p1, . . . , pN )≤ gD( · , p1, . . . , pN )≤ lD( · , p1, . . . , pN ).

Our main result is the following:

Theorem 1. Let p, q ∈ D2 be two distinct points. Then

cD2(z; p; q)= lD2(z; p; q) for z ∈ D2.

Note that the function F for which the supremum in the definition of the
Carathéodory function is attained always exists. On the other hand, in the case
where D is a taut domain, for a point z ∈ D and pole set P there are always a
set ∅ 6= Q = {q1, . . . , qM} ⊂ P and a mapping f ∈ O(D, D), λ j ∈ D such that
f (0) = z, f (λ j ) = q j, j = 1, . . . ,M and lD(z; P) = lD(z; Q) =

∑M
j=1 log |λ j |.

Consequently, in case the equality cD(z; p1, . . . , pN ) = lD(z; p1; . . . ; pN ) holds,
there exist f ∈O(D, D), F ∈O(D,D) such that f (0)= z, f (λ j )= q j, F(q j )= 0,
|F(0)| =

∏M
j=1 |λ j |, j = 1, . . . ,M, and (thus) F ◦ f is a finite Blaschke product

of degree M ≤ N. This observation leads us to introduce and consider the notions
of m-extremals and m-geodesics.

First recall that given a system of m pairwise different numbers (λ1, . . . , λm),
λ j ∈D and a domain D⊂Cn , a holomorphic mapping f :D→ D is called a (weak)
m-extremal for (λ1, . . . , λm) if there is no holomorphic mapping g : D→ D such
that g(D) b D and g(λ j ) = f (λ j ), j = 1, . . . ,m. In case f is m-extremal with
respect to any choice of m pairwise different arguments the mapping f is called
m-extremal. A holomorphic mapping f : D→ D is called an m-geodesic if there
is an F ∈O(D,D) such that F ◦ f is a finite Blaschke product of degree at most
m− 1. The function F will be called the left inverse to f . It is immediate to see
that any m-geodesic is an m-extremal.

The notions of (weak) m-extremals and m-geodesics, which have clear origin
in Nevanlinna–Pick problems for functions in the unit disk, have been recently
introduced and studied in [Agler et al. 2013; 2015], [Kosiński and Zwonek 2016a],
[Kosiński 2014] and [Warszawski 2015]. It is worth recalling that the description of
m-extremals in the unit disc is classical and well known. The mapping h ∈O(D,D)

is m-extremal for (λ1, . . . , λm), λ j ∈D if and only if h is a finite Blaschke product
of degree at most m − 1. Moreover, in such a case the interpolating function is
uniquely determined (see [Pick 1915]).

The remark after Theorem 1 on the form of functions for which the extremum
in the definition of the Lempert function may be attained may be formulated as
follows. For any taut domain D, for any system of poles P = {p1, . . . , pN } ⊂ D
and any z ∈ D \ P there are a subset Q = {q1, . . . , qM} ⊂ P and f ∈O(D, D) such
that f (λ j )= q j, j = 1, . . . ,M, f (0)= z, and f is a weak (M + 1)-extremal for
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(0, λ1, . . . , λM). Assuming additionally the equality cD(z; P) = lD(z; P) would
then imply the existence of a special (M+1)-geodesic, the one having some subset
Q ⊂ P in its image but such that the left inverse F maps the whole set P to 0.
Consequently a necessary (but not sufficient!) condition for having the desired
equality at z for the set of poles P is the existence of some (M + 1)-geodesic
passing through a subset Q ⊂ P and mapping 0 to z.

Below we present a result on uniqueness of left inverses for m-geodesics in
convex domains in C2 which we shall use in a (very special) case of the bidisc.
The result is a simple generalization of a similar result formulated for 2-geodesics
that can be found in [Kosiński and Zwonek 2016b] (however, for the clarity of the
presentation we restrict ourselves to dimension two). We also present its proof here
for the sake of completeness.

Lemma 2. Let D be a convex domain in C2, λ j ∈ D, j = 1, . . . ,m, m ≥ 2, be
pairwise different and let f, g : D→ D be such that f (λ j ) = g(λ j ) =: z j and
f 6≡ g. Assume additionally that F,G ∈ O(D,D) are such that F ◦ f and G ◦ g
are Blaschke products of degree at most m − 1. Then F ≡ G. Moreover, for any
µ ∈ C and λ ∈ D such that µ f (λ)+ (1−µ)g(λ) ∈ D we have the equality

F(µ f (λ)+ (1−µ)g(λ))= F( f (λ)).

Proof. For t ∈ [0, 1] define ht := t f + (1− t) f ∈ O(D, D). Then ht(λ j ) = z j,
j = 1, . . . ,m, so, due to the uniqueness of the solution of the extremal problem in
the disk, we get that F ◦ ht ≡ G ◦ ht =: B, t ∈ [0, 1], is a finite Blaschke product
of degree ≤ m− 1. Consequently, we get the equality F ≡ G on the set

{t f (λ)+ (1− t)g(λ)= g(λ)+ t ( f (λ)− g(λ)) : t ∈ [0, 1], λ ∈ D}.

Moreover, the identity principle (applied to the map µ 7→ F(µ f (λ)+ (1−µ)g(λ)))
implies that

F(µ f (λ)+ (1−µ)g(λ))= G(µ f (λ)+ (1−µ)g(λ))= B(λ)

for all (µ, λ) ∈ V where V is the set (domain) of all (µ, λ) ∈ C×D such that

8(µ, λ) := µ f (λ)+ (1−µ)g(λ)= g(λ)+µ( f (λ)− g(λ)) ∈ D.

Note that V ⊃ [0, 1]×D. The equality mentioned earlier gives, in particular, F ≡G
on 8(V ).

Let ∅ 6=U bD be a domain such that f (λ) 6= g(λ), λ ∈U, and B|U is injective.
Let V ⊃� :=U1×U ⊃ [0, 1]×U be a domain. We claim that 8|� is injective,

which would finish the proof as in such a case 8(�) would be open and then the
application of the identity principle would imply that F ≡ G on D.
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To see the injectivity take (µ1, λ1), (µ2, λ2)∈� such that8(µ1, λ1)=8(µ2, λ2).
Then B(λ1) = B(λ2) so the injectivity of B|U implies that λ1 = λ2 which (since
f (λ1)− g(λ1)= f (λ2)− g(λ2) 6= 0) gives the equality µ1 = µ2. �

3. Properties of extremals for the Lempert function in case the Coman
conjecture holds

Let us now restrict our considerations to the case of the bidisc and two poles
p, q ∈ D2, p 6= q. Without loss of generality we may assume that z = (0, 0).
Simple continuity properties of the Lempert and Carathéodory function allow us to
reduce the Coman conjecture to the proof of the equality

c(p, q) := cD2((0, 0), p, q)= lD2((0, 0), p, q)=: l(p, q)

for (p, q) from some open, dense subset of D2
×D2

\ 4 to be defined later (4
denotes the diagonal in the corresponding Cartesian product X × X, here X = D2).

Below we shall present the starting point for our considerations. The proof
contains the reasoning which will lead us to the structure of the proof of the equality
c(p, q)= l(p, q) presented later.

Lemma 3. Let p, q ∈ D2
\1 be such that |p1| 6= |p2|, |q1| 6= |q2|, p1 6= q1 and

p2 6= q2. Then the equality c(p, q)= l(p, q) holds if an only if one of the following
conditions is satisfied:

(1) up to a permutation of coordinates |p2|< |p1|, |q2|< |q1| and m(p2/p1,q2/q1)≤

m(p1, q1), or p2 = ωp1, q2 = ωq1 for some unimodular ω, where m is the
Möbius distance on the disc, see Section 4,

(2) there exist α, β, c in the unit disc, a unimodular constant ω, and t ∈ (0, 1) such
that an analytic disc where mα, mβ are (idempotent) Möbius maps

ϕ(λ)= λ(mα(λ), ωmβ(λ)), λ ∈ D,

satisfies ϕ(c)= p and ϕ(mγ (c))= q , where γ = tα+ (1− t)β.

In order to prove Lemma 3 we need the following technical result:

Lemma 4. Let α, β ∈ D, α 6= β, t ∈ [0, 1], ω, τ ∈ T. Define

ϕ(λ) := λ(mα(λ), ωmβ(λ))

and let

(2) G(x) :=
t x1+ (1− t)ωx2+ τωx1x2

1+ τ((1− t)x1+ tωx2)
, x = (x1, x2) ∈ D2.

Set G(ϕ(λ)) =: λ f (λ), λ ∈ D. Denote f (0) = γ := tα+ (1− t)β. Then f is an
automorphism of D (equal to mγ ) if and only if τ = (α−β)/(α−β).
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Proof. The proof of the above lemma reduces to showing that in the inequality
| f ′(0)|/(1− | f (0)|2) ≤ 1 the equality holds if and only if τ = (α−β)/(α − β)
which is elementary although tedious. �

Proof of necessity in Lemma 3. Assume that we have the equality for (p, q). There
are two possibilities (up to a permutation of variables p and q):

(i) there exist a holomorphic ϕ : D→ D2, F : D2
→ D and c ∈ (0, 1) such that

ϕ(0)= (0, 0), ϕ(c)= p and F(p)= F(q)= c, F(0, 0)= 0.
Then F(ϕ(λ)) = λ, so ϕ(λ) = (ωλ,ψ(λ)) where |ω| = 1 (up to switching

coordinates). If ψ /∈ Aut(D) then Lemma 2 implies that F(z) = ωz1 so p1 = q1

and |p2| ≤ |p1|.
The second subcase is when ψ ∈ Aut(D) and ψ(0)= 0. But then |p1| = |p2|.

(ii) The function ϕ realizing the infimum is a weak 3-extremal with respect to
(0, c, d) such that ϕ(0) = (0, 0), ϕ(c) = p, ϕ(d) = q. The special left inverse
F : D2

→ D would satisfy the equalities F(p) = F(q) = 0 and F(0) = cd.
Consequently F ◦ϕ = mcmd . We have two possibilities:

(a) ϕ is a geodesic (2-extremal). This holds if either

• |p2|< |p1|, |q2|< |q1| and m(p2/p1, p2/p1)≤ m(p1, q1), or

• |p1|< |p2|, |q1|< |q2| and m(p1/p2, q1/q2)≤ m(p2, q2), or

• p2 = ωp1 and q2 = ωq1 for some unimodular ω.

(b) ϕ is not a 2-extremal. First note that ϕ(λ)=λψ(λ)whereψ is a 2-extremal (geo-
desic). Consequently, up to a permutation of the coordinates, ϕ(λ)= λ(m(λ), h(λ)),
where m is some Möbius map and h ∈ O(D,D). In the case h is not a Möbius
map the mapping ϕ is not uniquely determined — in the sense that for the triple
(0, c, d) there also exists another 3-extremal mapping ϕ̃ which maps this triple
of numbers to the same triple of points. But existence of the left inverse already
gives its uniqueness (see Lemma 2); moreover, it follows from the same lemma that
F(λm(λ), µ)=mc(λ)md(λ) for any µ∈D, which easily implies that F(z)= a(z1),
where a is some Möbius map. But the last property may hold only if p1 = q1.

Thus the generic case for ϕ being a 3-extremal from the definition of the Lempert
function which are not 2-extremals is the one given by the formula

(3) ϕ(λ)= λ(ω′mα(λ), ωmβ(λ)), λ ∈ D,

where α, β ∈D and ω′, ω ∈ T. Multiplying α, β, c, d by a unimodular constant one
may assume that ω′ = 1.

Our aim is now to show what the necessary form of functions F ∈ O(D2,D)

such that F ◦ϕ is a Blaschke product should be. We present below the reasoning,
employing some results of McCarthy and Agler. Let us also mention that G. Knese
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(personal communication, 2014) let us know about another approach which leads
to the same form of left inverses.

We are looking for a form of a function F : D2
→ D such that F ◦ ϕ = mcmd .

Set G := mcd ◦ F. Clearly G ◦ ϕ(0) = 0, so it suffices to consider the following
situation:

G(λmα(λ), ωλmβ(λ))= λmγ (λ), λ ∈ D.

We are looking for a formula for G. Note that we consider only the case when
α 6= β. The cases γ = α or β = γ are also excluded.

Assuming that G and γ do exist consider the following Pick problem:
(0, 0) 7→ 0
(γmα(γ ), ωγmβ(γ )) 7→ 0,
(λ′mα(λ

′), ωλ′mβ(λ
′)) 7→ λ′mγ (λ

′),

where λ′ is any point in D, λ′ 6= λ. It is quite clear that this problem is strictly 2-
dimensional, extremal and nondegenerate (with the notions understood as defined in
[Agler and McCarthy 2002, Chapter 12], itself drawing from [Agler and McCarthy
2000] where the terminology is slightly different). Therefore, it follows from [Agler
and McCarthy 2002, Theorem 12.13, p. 201–204] that the above problem has a
unique solution which is given by a rational inner function of degree 2, with no
terms in x2

1 or x2
2 . It is easily seen that the solution to this problem is a left inverse

we are looking for. Therefore,

G(x)=
Ax1+ Bx2+Cx1x2

1+ Dx1+ Ex2+Gx1x2
.

Now we proceed in a standard way: comparing multiplicities in the poles of mα

and mβ , etc. After additional calculations we get that A+ωB = 1 and then

(4) G(x)=
t x1+ (1− t)ωx2− ηx1x2

1− ((1− t)x1+ t x2)ω
,

where t ∈ (0, 1) and η∈T. In particular, γ = tα+(1−t)β. It is clear that d=mγ (c),
which finishes the proof of necessity. �

Proof of sufficiency in Lemma 3. Assume first that condition (1) is satisfied. In
other words there is ψ ∈O(D,D) is such that ψ(p1)= p2/p1, ψ(q1)= q2/q1. Let
F(z) := m p1(z1)mq1(z1), z ∈ D2. Put

ϕ(λ) := (λ, λψ(λ)), λ ∈ D.

Observe that ϕ(0) = (0, 0), ϕ(p1) = p, ϕ(q1) = q, F(0, 0) = p1q1 and F(p) =
F(q)= 0 which give the equality

c(p; q)≤ l(p; q)≤ log |p1q1| ≤ c(p; q).
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Now suppose that (2) holds, i.e., the analytic disc λ 7→ϕ(λ)=λ(mα(λ), ωmβ(λ))

satisfies ϕ(c)= p and ϕ(mγ (c))= q. Let G be the function given by the formula
(2) with τ = (α−β)/(α−β). It follows from Lemma 4 that G(ϕ(λ))= λmγ (λ)

for λ ∈ D. In particular
F := mcmγ (c) ◦G

satisfies F ◦ϕ = τmcmmγ (c) for some τ ∈ T. This gives the equality

c(ϕ(c), ϕ(mγ (c)))= l(ϕ(c), ϕ(mγ (c))). �

The above result is a key one — it will turn out that the set of pairs of points
(ϕ(λ), ϕ(mγ (λ))) (parametrized by (α, β, c, t, ω)) will build an open set, which
together with the one constructed with the help of extremals for the Lempert
functions being 2-geodesics will be dense in D2

×D2 — that will complete the
proof.

4. Proof of the equality c( p; q) = l( p; q)

To prove the Coman conjecture for the bidisc we consider open sets in D2
×D2

\4

whose union forms a dense subset of D2
×D2

\ 4 and on each part the desired
equality holds. Let us denote σ(p, q) := ((p2, p1), (q2, q1)), p, q ∈ D2. Define U
as the set of points (p; q) ∈ D2

×D2 satisfying the following inequalities

(5) |p2|< |p1|, |q2|< |q1| and m(p2/p1, q2/q1) < m(p1, q1),

where m is the Möbius distance on the unit disc given by the formula m(λ1, λ2) :=∣∣(λ1− λ2)/(1− λ1λ2)
∣∣.

Denote
�1 :=U ∪ σ(U ).

The equality on �1 was proved in Lemma 3.
We shall consider now the set given by 3-geodesics that are not 2-geodesics and

that appeared in Lemma 3.
Consider a real-analytic mapping

8 : D×D×D×T× (0, 1)→ D2
×D2

given by the formula (below and in the sequel γ := tα+ (1− t)β)

(α, β, c, ω, t) 7→
(
ϕα,β,ω(c), ϕα,β,ω(mγ (c))

)
,

where
ϕα,β,ω(ζ ) := (ωζmα(ζ ), ζmβ(ζ )), ζ ∈ D.

Motivated by the considerations in Section 3 we define open sets.
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Denote A := {(p, q) ∈ D2
×D2

: p1 = q1 or p2 = q2} and

(6) F1 := {(p, q) ∈ D2
×D2

: |p2|> |p1| and |q2|< |q1|}.

We also define the set F2 as the set of points (p, q) ∈ D2
× D2 satisfying the

following inequalities:

(7) |p2|< |p1| and |q2|< |q1| and m
( p2

p1
,

q2

q1

)
> m(p1, q1).

Let F3 = σ(F1), and F4 = σ(F2). Let E j := Fj \A.
Define

�2 := E1 ∪ E2 ∪ E3 ∪ E4.

Certainly the sets E j are disjoint and open. Moreover, they are connected. Actually,
A is an analytic set so it is sufficient to show the connectivity of Fj. But F1 is the
image of D×D∗×D∗×D under the mapping λ 7→ (λ1λ2, λ2, λ4, λ3λ4). On the other
hand the set F2 is the image, under the mapping λ 7→ (λ1, λ1λ2, λ3, λ3λ4) of the set
B := {λ∈D∗×D×D∗×D :m(λ1, λ3)<m(λ2, λ4)}. To show connectedness of the
last set it suffices to show that B̃ := {λ ∈D×D×D×D : m(λ1, λ3) < m(λ2, λ4)}

is connected, as B is obtained from B̃ by removing an analytic set. This is the case
because any point λ ∈ B̃ may be joined by the curve [0, 1] 3 t 7→ (tλ1, λ2, tλ3, λ4)

with (0, λ2, 0, λ4). And now it is sufficient to see that the set {0}×D∗×{0}×D∗

is arc-connected.
Let G j :=8

−1(E j ). To finish the proof of the assertion it suffices to show that

8|G j : G j → E j

is surjective. In fact, in such a case 8(G j )= E j so the equality l = c holds on �2,
which together with �1 builds a dense subset of D2

×D2
\4.

Therefore, to finish the proof of the theorem we go to the proof of the surjectivity
of the mappings defined above.

Without loss of generality we may restrict to the cases j = 1, 2.
First note that the sets G j are nonempty. Therefore, to finish the proof it is

sufficient to show that 8(G j ) is open and closed in E j.
First we show that 8(G j ) is closed. The proof may be conducted with the

standard sequence procedure; however, we shall make use of considerations that
were given in Section 3.

Take (p, q) in the closure of 8(G j ) with respect to E j. The continuity property
implies that c(p, q)= l(p, q). It follows immediately from Lemma 3 that (p, q)
lies in 8(G j ).

To show that the image is open it suffices to prove that 8 is locally injective.
So assume that 8(α, β, c, ω, t)=8(α̃, β̃, c̃, ω̃, t̃).
Let ϕ := ϕα,β,ω, ϕ̃ := ϕα̃,β̃,ω̃.
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Let F(x) = (ωt x1 + (1− t)x2 + ηx1x2)/(1− ((1− t)ωx1 + t x2)η), where η
is properly chosen. It simply follows from the previous discussion that F is a
left inverse to both ϕ and ϕ̃. Therefore, F = F̃, where F̃ denotes the appropriate
left inverse to ϕ̃. Thus t = t̃ and ω = ω̃. Moreover, cmγ (c) = c̃m γ̃ (c̃) =: l 6= 0.
Therefore, it suffices to show the local injectivity of the function

9 : (α, β, c) 7→
(

cmα(c),
l
c

mα

( l
c

)
, cmβ(c),

l
c

mβ

( l
c

))
defined for (α, β, c)∈D3 such that (z, w)=8(α, β, c) satisfies |z1| 6= |z2|, |w1| 6=

|w2|, z1 6= w1 and z2 6= w2 (in particular, α 6= β, c 6= 0).

Proposition 5. 9 is locally injective. Moreover, 9 is two-to-one.

Proof. Observe first that 9(α, β, c) = 9(−α,−β,−c). Therefore, to get the
assertion, it suffices to show that for fixed points z := (z1, z2), w := (w1, w2)

such that z1 6= z2, w1 6= w2, z1 6= w1 and z2 6= w2 the equation 9(α, β, c) =
(z1, z2, w1, w2) has at most two solutions.

From the equation we deduce that

α = c
z2(1− z1/ l)

z2− z1
+

1
c

z1(z2− l)
z2− z1

, and α = c
1− z2/ l
z1− z2

+
1
c

z1− l
z1− z2

,

β = c
w2(1−w1/ l)
w2−w1

+
1
c
w1(w2− l)
w2−w1

, and β = c
1−w2/ l
w1−w2

+
1
c
w1− l
w1−w2

.

We can write the above equations in the form(
α

β

)
= M

(
c

1/c

)
,

(
α

β

)
= N

(
c

1/c

)
,

where M, N ∈ C2×2. Set v :=
( c

1/c

)
. The equations imply that Mv = Nv.

Notice that

det M =
z2(1− z1/ l)w1(w2− l)−w2(1−w1/ l)z1(z2− l)

(z2− z1)(w2−w1)
,

det N =
(1− z2/ l)(w1− l)− (1−w2/ l)(z1− l)

(z2− z1)(w2−w1)
.

The hypotheses made on z andw ensure that (1−z2/ l)(w1−l) and (1−w2/ l)(z1−l)
cannot vanish simultaneously, so if det N = 0, we see that the equation det M = 0
reduces to z2w1− z1w2 = 0. Since l 6= 0, this together with det N = 0 would imply
z1 = z2 or z1 = w1, which is excluded. Therefore at least one of the matrices M
or N is invertible. Suppose for now that M is invertible, we have v = Pv, with
P := M−1 N. Since v = Pv, we see that v = P Pv.

Since M
(

l
1

)
=

(
l
l

)
and N

(
l
1

)
=

(
1
1

)
, then P P

(
l
1

)
= |l|−2

(
l
1

)
, so that we

have an eigenvalue |l|−2 > 1 of P P , and P P 6= I . So dim ker(I − P P)≤ 1, which
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means, since v cannot be 0, that there is a nonzero vector w ∈ C2, depending only
on z, w, l, such that v is collinear to w, which implies c2

= w1/w2. So we have at
most two possible values for (α, β, c).

If det M = 0, then N is invertible and we reason in the same way starting from
v = N−1 Mv. �
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ENDOTRIVIAL MODULES:
A REDUCTION TO p′-CENTRAL EXTENSIONS

CAROLINE LASSUEUR AND JACQUES THÉVENAZ

We examine how, in prime characteristic p, the group of endotrivial mod-
ules of a finite group G and the group of endotrivial modules of a quotient
of G modulo a normal subgroup of order prime to p are related. There
is always an inflation map, but examples show that this map is in general
not surjective. We prove that the situation is controlled by a single central
extension, namely, the central extension given by a p′-representation group
of the quotient of G by its largest normal p′-subgroup.

1. Introduction

Endotrivial modules play an important role in the representation theory of finite
groups. They have been classified in a number of special cases; see, e.g., the recent
papers [Carlson et al. 2014a; Lassueur and Mazza 2015b] and the references therein.
Over an algebraically closed field k of prime characteristic p, endotrivial modules
for a finite group G form an abelian group T (G), which is known to be finitely
generated. One of the main question is to understand the structure of T (G), and, in
particular, of its torsion subgroup TT (G).

We let X (G) be the subgroup of TT (G) consisting of all one-dimensional
representations, that is, X (G) ∼= Hom(G, k×). We also let K (G) be the kernel
of the restriction map ResG

P : T (G)→ T (P) to a Sylow p-subgroup P of G. It
is known that X (G) ⊆ K (G) ⊆ TT (G) and that K (G) = TT (G) in almost all
cases (namely if we exclude the cases when a Sylow p-subgroup of G is cyclic,
generalized quaternion, or semidihedral). Moreover, there are numerous cases,
including infinite families of groups G, for which K (G)= X (G). However, this is
not always the case, and the structure of K (G) is not understood in general.

Let Op′(G) denote the largest normal subgroup of G of order prime to p and set
Q := G/Op′(G) for simplicity. There is always an inflation homomorphism

InfG
Q : T (Q)→ T (G)

MSC2010: primary 20C20; secondary 20C25.
Keywords: Endotrivial modules, Schur multipliers, central extensions, perfect groups.
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which is easily seen to be injective. But examples show that it is in general not
surjective, so we cannot expect an isomorphism between T (G) and T (Q). The
present article analyzes how T (G) and T (Q) are related, by making use of a
suitable central extension of Q. More precisely, associated with Q, there is a
p′-representation group Q̃, which is a central extension with kernel of order prime
to p. This controls the behavior of projective representations of Q (in the sense of
Schur). When Q is a perfect group, then Q̃ is unique and is also called the universal
p′-central extension of Q. When Q is not perfect, then Q̃ may not be unique.

The present work is based on a key result by the first author and S. Koshitani
[Koshitani and Lassueur 2016]. In the course of their investigation of endotrivial
modules for a finite group with dihedral Sylow 2-subgroups, they proved a general
result [op. cit., Theorem 4.4] about endotrivial modules for an arbitrary group G in
the presence of a normal subgroup N of order prime to p, under mild hypotheses
on G (see Hypothesis 3.1). Their result uses modules over twisted group algebras
of G/N . Taking Q = G/N with N = Op′(G), we can view such modules as
modules over the ordinary group algebra of the central extension Q̃. In this way,
we can show that the structure of T (G) is closely related to the structure of T (Q̃).
Our main result is as follows:

Theorem 1.1. Let G be a finite group of p-rank at least 2 and no strongly p-embed-
ded subgroups. Let Q̃ be any p′-representation group of the group Q := G/Op′(G).

(a) There exists an injective group homomorphism

8G,Q̃ : T (G)/X (G)→ T (Q̃)/X (Q̃).

In particular, 8G,Q̃ maps the class of InfG
Q (W ) to the class of Inf Q̃

Q (W ), for
any endotrivial k Q-module W .

(b) The map 8G,Q̃ induces by restriction an injective group homomorphism

8G,Q̃ : K (G)/X (G)→ K (Q̃)/X (Q̃).

(c) In particular, if K (Q̃)= X (Q̃), then K (G)= X (G).

We note that the construction of the map 8G,Q̃ relies on [op. cit., Theorem 4.4],
which itself relies on Navarro and Robinson [Navarro and Robinson 2012], whose
proof makes use of the classification of finite simple groups. This construction
will be made precise in Section 4. Examples show that 8G,Q̃ is in general not
surjective (see Section 7), but the theorem provides some information on K (G), for
all groups G such that G/Op′(G)= Q. In particular, the question of the equality
K (G)= X (G) is reduced to the same question for the single group Q̃.

We also conjecture that 8G,Q̃ induces an isomorphism on the torsion-free part
of T (G) and T (Q̃) (see Section 5). Moreover, in case Q is perfect, then there is an
alternative approach to 8G,Q̃ which we present in Section 6.



ENDOTRIVIAL MODULES: A REDUCTION TO p′-CENTRAL EXTENSIONS 425

The two main assumptions on G in Theorem 1.1 are needed for applying the
results of [Koshitani and Lassueur 2016]. However, these assumptions are not
really restrictive because endotrivial modules are completely understood in the
two excluded cases: they are classified if the p-rank is 1 [Mazza and Thévenaz
2007; Carlson et al. 2013], and T (G) ∼= T (H) if G has a strongly p-embedded
subgroup H ; see [Mazza and Thévenaz 2007, Lemma 2.7].

The two assumptions also allow us to prove that T (G)∼= T (G/[G, A]), where
A = Op′(G), or in other words that the extension

1−→ A −→ G −→ Q −→ 1

with kernel A of order prime to p can always be replaced by the central extension

1−→ A/[G, A] −→ G/[G, A] −→ Q −→ 1.

This is explained in Section 3.

2. Notation and preliminaries

Throughout, unless otherwise specified, we use the following notation. We let k
denote an algebraically closed field of prime characteristic p. We assume that all
groups are finite, and that all modules over group algebras are finitely generated,
and we set ⊗ := ⊗k . If G is an arbitrary finite group and V is a kG-module, we
denote by ρV : G→ GL(V ) the corresponding k-representation, and we denote by
πV : GL(V )→ PGL(V ) the canonical surjection. Furthermore, we denote by V ∗

the k-dual of V endowed with a kG-module structure via (g f )(v)= f (g−1v) for
every g ∈ G, f ∈ V ∗, v ∈ V.

Assuming moreover that p | |G|, we recall that a kG-module V is called endo-
trivial if there is an isomorphism of kG-modules Endk(V )∼= k⊕ (proj), where k
denotes the trivial kG-module and (proj) some projective kG-module, which might
be zero. Any endotrivial kG-module V splits as a direct sum V = V0⊕(proj) where
V0, the projective-free part of V, is indecomposable and endotrivial. The relation

U ∼ V ⇐⇒ U0 ∼= V0

is an equivalence relation on the class of endotrivial kG-modules, and T (G) denotes
the resulting set of equivalence classes (which we denote by square brackets). Then
T (G), endowed with the law [U ] + [V ] := [U ⊗ V ], is an abelian group called the
group of endotrivial modules of G. The zero element is the class [k] of the trivial
module and −[V ] = [V ∗], the class of the dual module V ∗. By a result of Puig, the
group T (G) is known to be a finitely generated abelian group; see, e.g., [Carlson
et al. 2006, Corollary 2.5].
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We let X (G) denote the group of one-dimensional kG-modules endowed with the
tensor product⊗, and recall that X (G)∼=Hom(G, k×)∼= (G/[G,G])p′ . Identifying
a one-dimensional module with its class in T (G), we consider X (G) as a subgroup
of T (G).

Furthermore, if P is a Sylow p-subgroup of G, we set

K (G)= Ker
(
ResG

P : T (G)→ T (P)
)
.

In other words, the class of an indecomposable endotrivial kG-module V belongs
to K (G) if and only if V↓G

P
∼= k ⊕ (proj), that is, in other words, V is a trivial

source module. We have X (G)⊆ K (G) because any one-dimensional kP-module
is trivial. Moreover, K (G)⊆ TT (G) (see [Carlson et al. 2011, Lemma 2.3]), and
K (G)= TT (G) unless P is cyclic, generalized quaternion, or semidihedral, by the
main result of [Carlson and Thévenaz 2005].

By a central extension (E, π) of Q, we mean a group extension

1−→ Z −→ E
π
−→ Q −→ 1

with Z =Kerπ central in E . Recall that (E, π) is said to have the projective lifting
property (relative to k) if, for every finite-dimensional k-vector space V, every group
homomorphism θ : Q→ PGL(V ) can be completed to a commutative diagram of
group homomorphisms:

1 // Z //

λ|Z
��

E π //

λ

��

Q //

θ

��

1

1 // k× · IdV // GL(V )
πV // PGL(V ) // 1

In general, the homomorphism λ is not uniquely defined. However, by the commu-
tativity of the diagram, the following holds:

Lemma 2.1. In the above situation, if λ, λ′ : E→GL(V ) are two liftings of θ to E ,
then there exists a degree one representation µ : E→ GL(k) such that λ′ = λ⊗µ.

By results of Schur (slightly generalized for dealing with the case of charac-
teristic p), given a finite group Q, there always exists a central extension (E, π)
of Q, with kernel Mk(Q) := H2(Q, k×), which has the projective lifting property.
A p′-representation group of Q (or a representation group of Q relative to k) is a
central extension (Q̃, π) of Q of minimal order with the projective lifting property.
In this case Mk(Q)∼= Kerπ ≤ [Q̃, Q̃]. We recall that Mk(Q)∼= H2(Q,C×)p′ , the
p′-part of the Schur multiplier of Q, and that in general a group Q with X (Q) 6= 1
may have several nonisomorphic p′-representation groups. Furthermore, fixing a
p′-representation group (Q̃, π) of Q, the abelian group Mk(Q) becomes isomorphic
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to its k×-dual via the transgression homomorphism

tr : Hom(Mk(Q), k×)→ H2(Q, k×)

defined by tr(ϕ)=[ϕ◦α], where the cocycle α∈ Z2(Q,Mk(Q)) is in the cohomology
class corresponding to the central extension 1→Mk(Q)→ Q̃

π
→Q→1. For further

details and proofs we refer the reader to [Nagao and Tsushima 1989, Chapter 3, §5;
Curtis and Reiner 1981, §11E].

If V,W are two finite-dimensional k-vector spaces, then the tensor product of
linear maps induces a tensor product−⊗−:PGL(V )×PGL(W )→PGL(V⊗W ) via
πV (α)⊗πW (β) :=πV⊗W (α⊗β) for any α∈GL(V ) and any β ∈GL(W ). Therefore,
ifµ :Q→PGL(V ) and ν :Q→PGL(W ) are group homomorphisms, we may define
a group homomorphism µ⊗ν : Q→ PGL(V ⊗W ) via (µ⊗ν)(q) :=µ(q)⊗ν(q)
for every q ∈ Q. We shall use the following well-known results throughout:

Lemma 2.2. Let 1→ A→ G
π
→ Q→ 1 be an arbitrary group extension.

(a) Whenever V is a kG-module such that ρV (A) ⊆ k× · IdV , the group homo-
morphism ρV : G→ GL(V ) induces a uniquely defined group homomorphism
θV : Q→ PGL(V ) such that the following diagram commutes:

1 // A //

ρV |A
��

G π //

ρV

��

Q //

θV

��

1

1 // k× · IdV // GL(V )
πV // PGL(V ) // 1

(b) If V,W are kG-modules such that ρV (A) ⊆ k× · IdV and ρW (A) ⊆ k× · IdW ,
then ρV⊗W (A)⊆ k× · IdV⊗W and we have θV⊗W = θV ⊗ θW .

Proof. (a) Choose a set-theoretic section s :Q→G for π and define θV :=πV ◦ρV ◦s.
Since ρV (A)⊆ k×· IdV , the map θV is a group homomorphism making the diagram
commute. Clearly θV is uniquely defined since π is an epimorphism.

(b) This is a straightforward computation. �

3. Endotrivial modules and central extensions

We now fix G to be a finite group of order divisible by p, we set A := Op′(G) and
Q := G/A, and we denote by πG : G→ Q the quotient map. Moreover, we let
(Q̃, πQ̃) be a fixed p′-representation group of Q.

Since A is a p′-subgroup of G, inflation induces an injective group homomorphism

InfG
Q : T (Q)→ T (G), [V ] → [InfG

Q (V )].

This is because the inflation of a projective module remains projective when the
kernel A is a p′-group. We emphasize that endotrivial kG-modules cannot be
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recovered from endotrivial k Q-modules, as in general the inflation map InfG
Q is not

an isomorphism; see Section 7.

Hypothesis 3.1. Assume G is a finite group fulfilling the following two conditions:

(1) the p-rank of G is greater than or equal to 2; and

(2) G has no strongly p-embedded subgroups.

The next result restates one of the main results of [Koshitani and Lassueur
2016], but in different terms. Our statement will allow us later to avoid working
with modules over twisted group algebras, but simply consider the corresponding
projective representations instead.

Theorem 3.2 [Koshitani and Lassueur 2016]. Suppose G satisfies Hypothesis 3.1.

(a) If V is an indecomposable endotrivial kG-module, then V↓G
A
∼= Y ⊕ · · ·⊕ Y,

where Y is a one-dimensional k A-module.

(b) If V is an indecomposable endotrivial kG-module, then ρV (A)⊆ k× · IdV .

Proof. (a) Since G satisfies Hypothesis 3.1, any composition factor Y of V↓G
A is

G-invariant, by [op. cit., Lemma 4.3]. Therefore V↓G
A
∼= Y ⊕ · · ·⊕ Y and [op. cit.,

Theorem 4.4] proves that dim Y = 1.

(b) This is a restatement of (a). �

Corollary 3.3. Suppose that G satisfies Hypothesis 3.1. The inflation map

InfG
G/[G,A] : T (G/[G, A])→ T (G)

is a group isomorphism.

Proof. Since [G, A] is a normal p′-subgroup of G, the inflation map InfG
G/[G,A] is a

well-defined injective group homomorphism. In order to prove that it is surjective,
it suffices to prove that [G, A] acts trivially on any indecomposable endotrivial
kG-module V. But by Theorem 3.2 we have

ρV ([G, A])⊆ [ρV (G), ρV (A)] ⊆ [ρV (G), k× · IdV ] = {IdV }.

Hence [G, A] acts trivially on V. �

Corollary 3.3 is a reduction to the case of central extensions. Explicitly, for the
study of endotrivial modules, we may always replace the given extension

1→ A→ G→ Q→ 1,

and consider instead the central extension

1→ A/[G, A] → G/[G, A] → Q→ 1.

We shall in fact not use this reduction for the proof of our main result, but rather
apply directly Theorem 3.2.
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Lemma 3.4. Let (Q̃, πQ̃) be a p′-representation group of Q. Then X (Q̃) =
Inf Q̃

Q (X (Q)), hence X (Q̃)∼= X (Q).

Proof. We apply the fact, mentioned in Section 2, that KerπQ̃ ⊆ [Q̃, Q̃]. This
implies that any one-dimensional representation of Q̃ has KerπQ̃ in its kernel, hence
is inflated from Q̃/KerπQ̃

∼= Q.
Another way of seeing the same thing is to associate to the central extension

1−→ Mk(Q)−→ Q̃
πQ̃
−→ Q −→ 1

the Hochschild–Serre five-term exact sequence

1−→ Hom(Q, k×)
Inf
−→ Hom(Q̃, k×)

Res
−→ Hom(Mk(Q), k×)

tr
−→ H2(Q, k×)

Inf
−→ H2(Q̃, k×).

Since the transgression map tr is an isomorphism, the first map Inf must be an
isomorphism as well. �

4. Proof of Theorem 1.1

Keep the notation of the previous section. Moreover, given an endotrivial kG-
module V such that ρV (A)⊆ k× · IdV , we let

θV : Q→ PGL(V )

denote the induced homomorphism constructed in Lemma 2.2(a). The projective
lifting property for the central extension (Q̃, πQ̃) allows us to fix a representation

ρVQ̃
: Q̃→ GL(V )

lifting θV to Q̃. We denote by VQ̃ the corresponding k Q̃-module.

Lemma 4.1. Let V be an endotrivial kG-module such that ρV (A)⊆ k×· IdV . Then
VQ̃ is an endotrivial k Q̃-module.

Proof. We have to work with two group extensions

1−→ A −→ G
πG
−→ Q −→ 1 and 1−→ M −→ Q̃

πQ̃
−→ Q −→ 1,

where M := Mk(Q). Both A and M have order prime to p.
Let P ∈ Sylp(G), set P := AP/A ∈ Sylp(Q), and let ıP : P → AP be the

inclusion map, so that
φ := πG ◦ ıP : P→ P

is an isomorphism. Next choose P̃ ∈ Sylp(Q̃) such that M P̃/M = P ∈ Sylp(Q).
Let ı P̃ : P̃ → M P̃ be the inclusion map, so that ψ := πQ̃ ◦ ı P̃ : P̃ → P is an
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isomorphism. Consider now the two commutative diagrams:

P
φ //

ρV

��

P

θV

��
GL(V )

πV // PGL(V )

and

P̃
ψ //

ρQ̃

��

P

θV

��
GL(V )

πV // PGL(V )

where we write ρQ̃ := ρVQ̃
for simplicity. Since φ and ψ are isomorphisms, for

any u ∈ P,
πVρV φ

−1(u)= θV (u)= πVρQ̃ψ
−1(u).

We claim that if two elements u1, u2 ∈ GL(V ) have p-power order and satisfy
πV (u1)= πV (u2), then u1 = u2. Postponing the proof of the claim, we deduce that

ρV φ
−1(u)= ρQ̃ψ

−1(u),

because they have p-power order. This means that the representations (ρV )|P and
(ρQ̃)|P̃ , transported via isomorphisms to representations of P, are equal. Now, a
module is endotrivial if and only if its restriction to a Sylow p-subgroup is; see
[Carlson et al. 2006, Proposition 2.6]. Moreover, this property is preserved when
transported via group isomorphisms. Since V is endotrivial, so is V↓P , hence so is
VQ̃↓P̃ , and it follows that VQ̃ is endotrivial.

We are left with the proof of the claim. If πV (u1) = πV (u2), then u1 = αu2

where α ∈ k×. For some large enough power pn, we have u pn

1 = u pn

2 = 1. Therefore
we obtain

1= u pn

1 = (αu2)
pn
= α pn

u pn

2 = α
pn
.

But there are no nontrivial p-th roots of unity in k×, so α = 1, hence u1 = u2. �

Proposition 4.2. Assume G satisfies Hypothesis 3.1. Then there is an injective
group homomorphism

8G,Q̃ : T (G)/X (G)→ T (Q̃)/X (Q̃)

defined by8G,Q̃([V ]+X (G)) := [VQ̃]+X (Q̃) for any indecomposable endotrivial
kG-module V. Moreover, for any endotrivial k Q-module W, the homomorphism
8G,Q̃ maps the class of InfG

Q (W ) to the class of Inf Q̃
Q (W ).

Proof. First, Lemma 4.1 allows us to define a map φ : T (G)→ T (Q̃)/X (Q̃) by
setting φ([V ]) := [VQ̃] + X (Q̃) for any [V ] ∈ T (G) such that ρV (A) ⊆ k× · IdV .
The definition of φ([V ]) does not depend on the choice of VQ̃ , for if ρV ′Q̃ is a
second lifting of θV to Q̃, then by Lemma 2.1 there exists X ∈ X (Q̃) such that
V ′Q̃
∼= VQ̃ ⊗ X , hence φ([VQ̃])= φ([V

′

Q̃]).
Next, let V,W be two indecomposable endotrivial kG-modules. Theorem 3.2

implies that ρV⊗W (A) = (ρV ⊗ ρW )(A) ⊆ k× · IdV⊗W . Thus, by Lemma 2.2(b),
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θV⊗W =θV⊗θW , and it is easy to verify that ρVQ̃
⊗ρWQ̃

lifts θV⊗θW to Q̃. Therefore,
by Lemma 2.1, there exists X ∈ X (Q̃) such that (V ⊗W )Q̃

∼= VQ̃ ⊗WQ̃ ⊗ X . This
shows that φ is a group homomorphism.

It is clear that Kerφ = X (G), since by construction dim VQ̃ = dim V for any
indecomposable endotrivial kG-module V. As a result, φ induces the required
homomorphism 8G,Q̃ .

Finally, if W is any endotrivial k Q-module, then the kQ̃-module constructed
from V = InfG

Q (W ) is easily seen to be the inflated module VQ̃ = Inf Q̃
Q (W ), because

the map θV : Q → PGL(V ) comes from a group homomorphism Q → GL(V ).
This shows that the class of InfG

Q (W ) is mapped to the class of Inf Q̃
Q (W ) under the

map 8G,Q̃ , proving the additional statement. �

Corollary 4.3. Assume G satisfies Hypothesis 3.1. If Q̃1 and Q̃2 are two noniso-
morphic p′-representation groups of Q, then

8Q̃1,Q̃2
: T (Q̃1)/X (Q̃1)→ T (Q̃2)/X (Q̃2)

is an isomorphism.

Proof. Let V be an indecomposable kQ̃1-module. By construction

8Q̃1,Q̃2
([V ] + X (Q̃1))= [W ] + X (Q̃2),

where W := VQ̃2
is a k Q̃2-module such that ρW lifts θV : Q→ PGL(V ) to Q̃2. But

then ρV lifts θW = θV to Q̃1, so that by construction

8Q̃2,Q̃1
([W ] + X (Q̃2))= [V ] + X (Q̃1).

In other words, 8Q̃1,Q̃2
◦8Q̃2,Q̃1

= Id. Similarly 8Q̃2,Q̃1
◦8Q̃1,Q̃2

= Id. �

Corollary 4.4. Assume G satisfies Hypothesis 3.1. The map 8G,Q̃ induces by
restriction an injective group homomorphism

8G,Q̃ : K (G)/X (G)→ K (Q̃)/X (Q̃).

In particular, if K (Q̃)∼= X (Q̃), then K (G)∼= X (G).

Proof. Let P ∈ Sylp(G) and let V be an indecomposable endotrivial kG-module.
As in the proof of Lemma 4.1, the two modules V↓G

P and VQ̃↓
Q̃
P̃

are isomorphic,
provided we view them as modules over the group P via the isomorphisms P ∼= P
and P̃ ∼= P. It follows that V has a trivial source if and only if VQ̃ has. Therefore
8G,Q̃ restricts to an injective group homomorphism

8G,Q̃ : K (G)/X (G)→ K (Q̃)/X (Q̃).

The special case follows. �

Proposition 4.2 together with Corollary 4.4 prove Theorem 1.1.
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5. Conjecture on the torsion-free part

We keep the notation of the previous sections. Let TF(G) = T (G)/TT (G), the
torsion-free part of the group of endotrivial modules. Since X (G)⊆ TT (G), the
map

8G,Q̃ : T (G)/X (G)→ T (Q̃)/X (Q̃)

induces an injective group homomorphism

9G,Q̃ : TF(G)→ TF(Q̃).

We know that 8G,Q̃ is in general not surjective, but we conjecture that 9G,Q̃ is
surjective.

Conjecture 5.1. (a) The map InfG
Q : TF(Q)→ TF(G) is an isomorphism.

(b) The map 9G,Q̃ : TF(G)→ TF(Q̃) is an isomorphism.

Note that (b) follows from (a), by applying (a) to both InfG
Q : TF(Q)→ TF(G)

and Inf Q̃
Q : TF(Q)→ TF(Q̃) and composing, because the map 9G,Q̃ : TF(G)→

TF(Q̃) is the identity on modules inflated from Q.
Part (a) of Conjecture 5.1 is in fact a consequence of any of the two conjectures

made in [Carlson et al. 2014b]. First, Conjecture 10.1 in that reference asserts
that, if a group homomorphism φ : G→ G ′ induces an isomorphism between the
corresponding p-fusion systems, then φ should induce an isomorphism TF(G ′)−→∼

TF(G). In the special case where φ is the quotient map φ : G→ Q = G/Op′(G),
it is well-known that the fusion systems are isomorphic, so we would obtain the
isomorphism TF(Q) −→∼ TF(G) of Conjecture 5.1 above. This special case is
explicitly mentioned at the end of Section 10 in [op. cit].

Conjecture 9.2 in [op. cit.] asserts that the group TF(G) should be generated
by endotrivial modules lying in the principal block. Since Op′(G) acts trivially on
any module lying in the principal block of G, such a module is inflated from Q, so
the inflation map InfG

Q : TF(Q)→ TF(G) in Conjecture 5.1 above should be an
isomorphism.

Example 7.3 below illustrates a method allowing one to prove that the maps in
Conjecture 5.1 are isomorphisms in specific cases.

6. The perfect case

When the group Q = G/Op′(G) is perfect, there is an alternative approach to
the construction of the injective group homomorphism of Theorem 1.1(a) using
universal central extensions.
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Recall that a universal p′-central extension of an arbitrary finite group Q is by
definition a central extension

1−→ Mp′ −→ Q̃
πQ̃
−→ Q −→ 1

with Mp′ = KerπQ̃ of order prime to p and satisfying the following universal
property: For any central extension

1−→ Z −→ E
π
−→ Q −→ 1

with Z = Kerπ of order prime to p, there exists a unique group homomorphism
φ : Q̃→ E such that the following diagram commutes:

1 // Mp′ //

φ|Mp′

��

Q̃
πQ̃ //

φ

��

Q //

Id
��

1

1 // Z // E π // Q // 1

A standard argument shows that if a universal p′-central extension (Q̃, πQ̃) exists,
then it is unique up to isomorphism.

Lemma 6.1. If (Q̃, πQ̃) is a universal p′-central extension of a finite group R, then
(Q̃, πQ̃) is p′-representation group of Q.

Proof. Let (Q̌, πQ̌) be an arbitrary p′-representation group of Q. Let V be a
finite-dimensional k-vector space and θ : Q→ PGL(V ) a group homomorphism.
Because (Q̌, πQ̌) has the projective lifting property and (Q̃, πQ̃) is universal, there

exist group homomorphisms θ̃ : Q̌→GL(V ) and φ : Q̃→ Q̌ such that θ̃ ◦φ lifts θ .
Therefore (Q̃, πQ̃) has the projective lifting property as well.

Now, because (Q̃, πQ̃) is universal, it is easy to see that X (Q̃) = X (Q) = 1.
Therefore the Hochschild–Serre 5-term exact sequence associated to (Q̃, πQ̃) is:

1−→ 1−→ 1−→ Hom(Mp′, k×)
tr
−→ H2(Q, k×)

Inf
−→ H2(Q̃, k×)

Thus the transgression map tr : Hom(Mp′, k×)→ H2(Q, k×)= Mk(Q) is injective.
But Mp′ ∼= Hom(Mp′, k×), therefore by minimality of (Q̌, πQ̌), we have |Mp′ | =

|Mk(Q)| and |Q̃| = |Q̌|, proving that (Q̃, πQ̃) is a p′-representation group of Q. �

Lemma 6.2. Any finite perfect group Q admits a universal p′-central extension.

Proof. Since Q is a perfect group, it is well-known that Q has a representation
group relative to C, say (Q̂, πQ̂), which is unique up to isomorphism and that

Ker(πQ̂)=: M
∼= MC(Q)= H2(Q,C×),
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the Schur multiplier of Q. Moreover, (Q̂, πQ̂) is a universal central extension of Q,
in particular perfect; see [Rotman 1995, Theorem 11.11]. Thus, for any central
extension

1−→ Z −→ E
π
−→ Q −→ 1

where Z = Kerπ , there exists a unique group homomorphism ψ : Q̂→ E such
that the following diagram commutes:

1 // M //

ψ |M
��

Q̂
πQ̂ //

ψ
��

Q //

Id
��

1

1 // Z // E π // Q // 1

If Z has order prime to p, then the p-part Mp of M lies in the kernel of ψ |M .
Passing to the quotient by Mp, we define Q̃ := Q̂/Mp and denote by φ : Q̃→ E
the map induced by ψ . Thus we obtain an induced central extension

1−→ Mp′ −→ Q̃
πQ̃
−→ Q −→ 1

where Mp′ := M/Mp, a universal p′-central extension of Q by construction. �

Given an arbitrary group extension 1→ A→G→Q→1 with perfect quotient Q
and kernel A of order prime to p, there is an induced p′-central extension:

1−→ A/[G, A] −→ G/[G, A]
πG
−→ Q −→ 1

Moreover, by the above, Q admits a universal p′-central extension, which is in fact
a p′-representation group (Q̃, πQ̃) of Q. Therefore, by the universal property, there
exists a unique group homomorphism φG : Q̃→G/[G, A] lifting the identity on Q.

Lemma 6.3. The homomorphism φG : Q̃ → G/[G, A] induces a group homo-
morphism

φ∗G : T (G/[G, A])→ T (Q̃)

such that φ∗G = Inf Q̃
Im(φG)

◦ResG/[G,A]
Im(φG)

. Moreover, both Inf Q̃
Im(φG)

and ResG/[G,A]
Im(φG)

preserve indecomposability of endotrivial modules.

Proof. The kernel of φG is contained in KerπQ̃ = Mp′ , which is a p′-group. There-
fore, there is an induced inflation map Inf Q̃

Im(φG)
: T (Im(φG))→ T (Q̃), preserving

indecomposability of endotrivial modules.
Since Im(φG)maps onto Q via πG , the group G/[G, A] is the product of Im(φG)

and the central p′-subgroup A/[G, A]. It follows that Im(φG) is a normal subgroup
of G/[G, A] of index prime to p. Therefore, the restriction to Im(φG) of any
indecomposable endotrivial k(G/[G, A])-module remains indecomposable and is
endotrivial [Carlson et al. 2009, Proposition 3.1].

We define φ∗G to be the composite of Inf Q̃
Im(φG)

and ResG/[G,A]
Im(φG)

. �
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Composing the group homomorphism

φ∗G : T (G/[G, A])→ T (Q̃)

with the inverse of the isomorphism

InfG
G/[G,A] : T (G/[G, A])→ T (G)

of Corollary 3.3, we obtain a group homomorphism

8 : T (G)→ T (Q̃).

We now show that this provides the alternative approach to the map of Theorem 1.1.

Proposition 6.4. Suppose that G satisfies Hypothesis 3.1 and that Q is perfect.

(a) Ker8= X (G).

(b) The induced injective group homomorphism

8 : T (G)/X (G)→ T (Q̃)= T (Q̃)/X (Q̃)

coincides with the map 8G,Q̃ of Theorem 1.1.

Proof. Consider the map φ∗G : T (G/[G, A])→ T (Q̃) of Lemma 6.3. It is clear
that the image of a one-dimensional module is one-dimensional, hence trivial since
X (Q̃)= 1 by Lemma 3.4. Therefore X (G)⊆ Ker8. It follows that 8 induces a
group homomorphism 8 as in the statement.

Our assumption on G implies that, if V is an endotrivial kG-module, then
[G, A] acts trivially on V (Corollary 3.3). Moreover, ρV :G/[G, A]→GL(V ) lifts
θV :Q→PGL(V ), as in Section 4. It is then clear that ρV φG : Q̃→GL(V ) also lifts
θV : Q→ PGL(V ). Therefore, the definition of 8G,Q̃ (see Proposition 4.2) shows
that the class of V is mapped by 8G,Q̃ to the class of the module VQ̃ corresponding
to the representation ρV φG . In other words, [VQ̃] = 8([V ]) and this shows that
8G,Q̃ coincides with 8.

Finally, since8G,Q̃ is injective and is equal to8, we have Ker8={0}. Therefore
we obtain Ker8= X (G). �

Remark 6.5. The proof we give above shows that Proposition 6.4 remains valid
if the assumption that Q is perfect is replaced by the assumption that Q admits a
universal p′-central extension. It is proved in [Lassueur and Thévenaz 2017] that
this happens if and only if X (Q)= 1, that is, Q is p′-perfect. Here, for simplicity,
we restrict ourselves to the perfect case.

7. Examples

In this final section, we provide various examples, in particular illustrating cases
where the morphism 8G,Q̃ is not surjective.
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Example 7.1. Suppose that Q is simple and take G = Q, hence A= Op′(G)= {1}.
Then 8Q,Q̃ is just the inflation map T (Q)→ T (Q̃). If Q is a finite simple group
listed in the table below, then it is known that its unique p′-representation group
Q̃ has indecomposable endotrivial modules lying in faithful p-blocks, namely not
inflated from Q.

Q p Q̃ T (Q) T (Q̃)

A6 3 2 .A6 Z⊕Z/4 Z⊕Z/8
A6 2 3 .A6 Z2 Z2

⊕Z/3

M22 3 4 .M22 Z⊕ (Z/2)2 Z⊕Z/2⊕Z/4
J3 2 3 . J3 Z Z⊕Z/3
Ru 3 2 . Ru Z⊕Z/2 Z⊕Z/4

Fi22 5 6 . Fi22 Z⊕ (Z/2)2 Z⊕Z/6⊕Z/2

The results concerning the sporadic groups can be found in [Lassueur and Mazza
2015b, Table 3], and those about the alternating group A6 in [Lassueur and Mazza
2015a, Theorems A and B] together with [Carlson et al. 2009, Theorems A and B].

Further examples are given by the exceptional covering group 2.F4(2) of the
exceptional group of Lie type F4(2), which possesses simple torsion endotrivial
modules lying in faithful blocks in characteristics 5 and 7 [Lassueur and Malle 2015,
Proposition 5.5], although the full structure of the group of endotrivial modules has
not been determined in these cases.

Example 7.2. Assume p > 2, let n ≥max{2p, p+ 4} be an integer and denote by
S̃n and Ŝn the two isoclinic p′-representation groups of the symmetric group Sn .
Corollary 4.3 yields

T (S̃n)/X (S̃n)∼= T (Ŝn)/X (Ŝn).

However, Lassueur and Mazza [2015a, Theorem B, parts (1) and (2)] prove a
stronger result, namely

T (S̃n)= InfS̃n
Sn
(T (Sn)) and T (Ŝn)= InfŜn

Sn
(T (Sn)).

Consequently, given any finite group G such that G/Op′(G) is isomorphic to one
of Sn , S̃n or Ŝn (with n ≥max{2p, p+ 4}), by Theorem 1.1 there exist injective
group homomorphisms

T (Sn)/X (Sn)−→ T (G)/X (G)
8G,Ŝn
−→ T (Ŝn)/X (Ŝn)−→

∼ T (Sn)/X (Sn),

where the first map is induced by inflation. Hence we have T (G)/X (G) ∼=
T (Sn)/X (Sn). Recall that the structure of T (Sn) is known [Carlson et al. 2009].
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Example 7.3. In this final example, we outline a method which allows us to show
that the maps Inf Q̃

Q is an isomorphism on the torsion-free part of the groups of
endotrivial modules of Q and Q̃ in some concrete cases.

Specifically, we may use the fact that endotrivial modules are liftable to character-
istic zero, and afford characters taking root of unity values at p-singular conjugacy
classes; see [Lassueur et al. 2016, Theorem 1.3 and Corollary 2.3]. Therefore, if for
every faithful p-block B of k Q̃ (of full defect) no elements of Z IrrC(B) take root of
unity values at p-singular conjugacy classes of Q̃, then any endotrivial k Q̃-module
is inflated from Q, hence

Inf Q̃
Q : TF(Q)→ TF(Q̃)

is an isomorphism.
This was used [Lassueur and Mazza 2015a, Theorem B] in the case that Q =Sn ,

n ≥ max{2p, p+ 4} (as mentioned in Example 7.2 above), as well as for a large
number of sporadic simple groups Q [Lassueur and Mazza 2015b, Lemmas 4.3
and 6.2]. More precisely, in characteristic p = 2 for Q = M12, M22, J2, H S, McL ,
Ru, Suz, ON , Fi22, Co1, Fi ′24, or B; in characteristic p = 3 for Q = M12, J2, HS,
Suz, Fi22, Co1, or B; in characteristic p = 5 for Q = J2, HS, Ru, Suz, Co1, Fi ′24,
or B; and in characteristic p = 7 for Q = Co1, Fi ′24, or B.
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1. Introduction and main result

We consider the fractional Schrödinger–Poisson system

(1-1)
�
.��/suCuCV .jxj/ˆ.x/uD jujp�1u; x 2 R3;

.��/tˆD V .jxj/u2; x 2 R3;

where .��/˛ is the fractional Laplacian operator for ˛D s; t 2 .0; 1/, V .r/ (r Djxj)
is a positive bounded function, and

1< p < 2�.s/� 1D
3C 2s

3� 2s
:

We assume that V .r/ satisfies the following condition:

(V) There are constants a> 0, 3C2s

2.3C2sC1/
<m<

3C2s

2
and � > 0 such that

V .r/D
a

rm
CO

�
1

rmC�

�
as r !C1:
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In (1-1), the first equation is a nonlinear fractional Schrödinger equation in which
the potentialˆ satisfies a nonlinear fractional Poisson equation. The study of elliptic
equations involving fractional powers of the Laplacian appears to be important
in many areas, including physics, biological modeling, mathematical finance and
the study of standing wave solutions of certain nonlinear fractional Schrödinger
equations.

Giammetta [2014] studied the evolution equation associated with the one-dimen-
sional system

(1-2)
�
��uC�ˆ.x/uD g.u/; x 2 R;

.��/tˆD �u2; x 2 R:

Zhang, do Ó and Squassina [Zhang et al. 2016] established the existence of a radial
ground state solution to the following fractional Schrödinger–Poisson system with
a general subcritical or critical nonlinearity:

(1-3)
�
.��/suC�ˆ.x/uD g.u/; x 2 R3;

.��/tˆD �u2; x 2 R3:

Under the assumption that the nonlinearity does not satisfy the Ambrosetti–Rabino-
witz condition, Zhang [2015] used the fountain theorem to obtain the existence of
infinitely many large energy solutions to the system

(1-4)
�
.��/suCV .x/uCˆ.x/uD f .x;u/; x 2 R3;

.��/tˆD �u2; x 2 R3:

When sD t D 1, the system reduces to the classical Schrödinger–Poisson system.
In recent years, many publications have appeared on that system. Zhang [2014]
studied the existence and behavior of bound states of the system

(1-5)
�
�"2�uCV .x/uC�ˆ.x/uD f .u/; x 2 R3;

��ˆD u2; limjxj!1ˆ.x/D 0; x 2 R3;

for � > 0 and small " > 0. For f .u/D jujp�1u, p 2 .1; 5/, there are some results
in the literature. In the case of "D 1, V .x/� 1, the existence of radially symmetric
positive solutions of system (1-5) was obtained by D’Aprile and Mugnai [2004].
Azzollini and Pomponio [2008] established the existence of ground state solutions
for p 2 .2; 5/. Ruiz [2006] proved that (1-5) does not admit any nontrivial solution
for 1< p � 2 and possesses a positive radial solution for 2< p < 5. When �� 1,
Ianni and Vaira [2008] considered the existence of positive bound state solutions
that concentrate on the local minimum of the potential V . Furthermore, Ianni
and Vaira [Ianni and Vaira 2009; Ianni 2009] investigated the radially symmetric
solutions that concentrate on the spheres. Ruiz and Vaira [2011] constructed the
multibump solutions whose bumps concentrate around the local minimum of the
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potential V . The proofs explored in [Ruiz and Vaira 2011] are based on a singular
perturbation, essentially a Lyapunov–Schmidt reduction method. By using the
method of invariant sets of descending flow, Liu, Wang and Zhang [Liu et al. 2016]
showed that this system has infinitely many sign-changing solutions. For more
related results, one can refer to [Alves and Souto 2014; Chen and Wang 2014; He
and Zou 2012; Ianni and Vaira 2015; Kim and Seok 2012; Zhao et al. 2013].

In this paper, inspired by [Long et al. 2016] and [Li et al. 2010], we consider the
infinitely many nonradial positive solutions of the fractional Schrödinger–Poisson
system (1-1). In [Long et al. 2016], Long, Peng and Yang were concerned with
the existence of infinitely many nonradial positive solutions and sign-changing
solutions for the equation

.��/suCuDK.jxj/up; u> 0; u 2H s.RN /:

In [Li et al. 2010], Li, Peng and Yan obtained infinitely many nonradial positive
solutions for (1-1) with s D t D 1.

Compared with the operator��, which is local, the operator .��/s with 0<s<1

on R3 is nonlocal. Unlike the local case s D 1, the leading order of the associated
reduced functional in a variational reduction procedure is of polynomial instead of
exponential order, due to the nonlocal effect. So we need to establish some new
necessary estimates for the Lyapunov–Schmidt reduction. Also, because of the
appearance of the Poisson potential ˆ, problem (1-1) is more complicated than the
problem in [Long et al. 2016] and [Li et al. 2010].

To the best of our knowledge, there are no results on the existence of infinitely
many nonradical positive solutions to the nonlinear fractional Schrödinger–Poisson
system (1-1). In this paper, we will present some results in this direction.

Now, we are able to state our main theorem.

Theorem 1.1. If V .r/ satisfies (V) and 2t C 4s � 3, then the problem (1-1) has
infinitely many nonradial positive solutions.

To prove Theorem 1.1, we will construct solutions with a large number of bumps
near infinity. Since V .r/!0 as r!C1, the solution of (1-1) can be approximated
by using the solution U of the problem

(1-6)
�
.��/suCuD up; u> 0 in R3;

u.0/Dmaxx2R3 u.x/:

It is well known that the unique solution U of (1-6) satisfies U.x/D U.jxj/ and
U 0 < 0 (see [Frank and Lenzmann 2013; Frank et al. 2016]).

Let

(1-7) Qj D

�
r cos

2.j � 1/�

k
; r sin

2.j � 1/�

k
; 0

�
WD .Q0j ; 0/; j D1; 2; : : : ; k;
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where r 2
�
r1k

3C2s
3C2s�2m ; r2k

3C2s
3C2s�2m

�
for some r2 > r1 > 0. Define

Es
D

�
u W u 2H s.R3/; u is even in xh; hD 2; 3;

u.r cos �; r sin �; x3/D u

�
r cos

�
� C

2�j

k

�
; r sin

�
� C

2�j

k

�
; x3

��
:

Let

(1-8) Ur .x/D

kX
jD1

UQj .x/;

where UQj . � /D U. � �Qj /, and Qj is defined in (1-7).
We will prove Theorem 1.1 by proving the following result.

Theorem 1.2. Suppose V .r/ satisfies (V) and 2tC4s � 3. Then there is an integer
k0 > 0 such that for any integer k � k0, (1-1) has a positive solution uk of the form

uk D Urk
.x/Cwk ;

where wk 2 Es, rk 2
�
r1k

3C2s
3C2s�2m ; r2k

3C2s
3C2s�2m

�
for some r2 > r1 > 0 and as

k!C1, kwkks! 0:

Remark 1.3. It follows from Theorems 1.1 and 1.2 that (1-1) has solutions with a
large number of bumps near infinity. Hence the energy of these solutions can be
very large.

This paper is organized as follows. In Section 2, we give some preliminaries.
Then we carry out Lyapunov–Schmidt reduction in Section 3. Finally, we prove
our main result in Section 4. Some technical estimates are left to the Appendix.

2. Some preliminaries

In this section, we outline the variational framework for problem (1-1) and give some
preliminary lemmas. Firstly, we recall some properties of the fractional Sobolev
space and some results which are important in our proof of the main theorem.

The nonlocal operator .��/s in R3 is defined on the Schwartz class through the
Fourier transform

1.��/sf .�/D j�j2s yf .�/;

or via the Riesz potential. Hereb is the Fourier transform. When f has sufficient
regularity, the fractional Laplacian of a function f W R3! R is expressed by the
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formula

(2-1) .��
�s
f .x/D C3;s P:V:

Z
R3

f .x/�f .y/

jx�yj3C2s
dy

D C3;s lim
"!0

Z
R3nB".x/

f .x/�f .y/

jx�yj3C2s
dy;

where C3;sD�
�.2sC3=2/�

�
3
2
Cs
�
=�.�s/. This integral makes sense directly when

s < 1
2

and f 2 C 0; .R3/ with  > 2s, or if f 2 C 1; .R3/ with 1C  > 2s.
When s 2 .0; 1/, the space H s.R3/DW s;2.R3/ is defined by

H s.R3/D

�
u 2L2.R3/ W

ju.x/�u.y/j

jx�yj
3
2
Cs
2L2.R3

�R3/

�
D

�
u 2L2.R3/ W

Z
R3

.1Cj�j2s/jyu.�/j2 d� <1

�
and the norm is

kuks WD kukH s.R3/ D

�Z
R3

Z
R3

ju.x/�u.y/j2

jx�yj3C2s
dx dyC

Z
R3

juj2 dx

�1
2

;

which is induced by the inner product

hu; viH s.R3/ D hu; visChu; viL2.R3/

D

Z
R3

Z
R3

.u.x/�u.y//.v.x/� v.y//

jx�yj3C2s
dx dyC

Z
R3

u.x/v.x/ dx:

Here the term

Œu�H s.R3/ WD

�Z
R3

Z
R3

ju.x/�u.y/j2

jx�yj3C2s
dx dy

�1
2

is the so-called Gagliardo (semi-)norm of u. The following identity yields the
relation between the fractional Laplacian operator .��/s and the fractional Sobolev
space H s.R3/:

Œu�H s.R3/ D C

�Z
R3

j�j2s
jyu.�/j2 d�

�1
2

D Ck.��/
s
2 ukL2.R3/

for a suitable positive constant C depending only on s.
The homogeneous Sobolev space Dt;2.R3/ is defined by

Dt;2.R3/D

�
u 2L2�.t/.R3/ W

Z
R3

j�j2s
jyu.�/j2 d� <1

�
;
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which is the completion of C1
0
.R3/ under the norm

kukDt;2 D

�Z
R3

j�j2t
jyu.�/j2 d�

�1
2

D k.��/
t
2 ukL2.R3/

and the inner product

.u; v/Dt;2 D

Z
R3

.��/
t
2 u.��/

t
2 v dx; u; v 2Dt;2.R3/:

We have the following Sobolev embedding results.

Lemma 2.1 [Di Nezza et al. 2012]. H s.R3/ is continuously embedded into Lq.R3/

for q 2
�
2; 6

3�2s

�
, and locally compact whenever q 2

�
2; 6

3�2s

�
.

Lemma 2.2 [Di Nezza et al. 2012]. For any t 2 .0; 1/, Dt;2.R3/ is continuously
embedded into L2�.t/.R3/; i.e., there exists St > 0 such that�Z

R3

juj2
�.t/ dx

�2=2�.t/

� St

Z
R3

j.��/
t
2 uj2 dx; u 2Dt;2.R3/:

Now, we recall some known results for the limit equation (1-6). In a celebrated
paper, Frank and Lenzmann [2013] proved the uniqueness of the ground state
solution U.x/D U.jxj/� 0 for N D 1, 0< s < 1, 1< p < .N C 2s/=.N � 2s/.
Very recently, Frank, Lenzmann and Silvestre [Frank et al. 2016] obtained the
nondegeneracy of ground state solutions for (1-6) in arbitrary dimension N � 1

and any admissible exponent 1< p < .N C 2s/=.N � 2s/.
For convenience, we summarize the properties of the ground state U of (1-6),

which can be found in [Frank and Lenzmann 2013; Frank et al. 2016].

Lemma 2.3. Let s 2 .0; 1/ and 1<p< .3C2s/=.3�2s/. Then the following hold:

(1) Uniqueness: The ground state solution U 2H s.R3/ for (1-6) is unique up to
translations.

(2) Symmetry, regularity and decay: U.x/ is radial, positive and strictly decreasing
in jxj. Moreover, the function U belongs to H 2sC1.R3/\C1.R3/ and satisfies

C1

1Cjxj3C2s
� U.x/�

C2

1Cjxj3C2s
; x 2 R3;

with some constants C2 � C1 > 0.

(3) Nondegeneracy: The linearized operator L0D .��/
sC1�pjU jp�1 is nonde-

generate, i.e., its kernel is given by

ker L0 D spanf@x1
U; @x2

U; @x3
U g:
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By [Frank et al. 2016, Lemma C.2], @xjU has the following decay estimate for
j D 1; 2; 3:

j@xjU j �
C

1Cjxj3C2s
:

By Lemma 2.1, if 2tC4s� 3, H s.R3/ ,!L12=.3C2t/.R3/. Then, for u2H s.R3/,Z
R3

u2v � kuk212=.3C2t/kvk2�.t/ � Ckuk2skvkDt;2 :

Hence there exists a unique ˆt
u such that .��/tˆt

u D V .x/u2 and the t-Riesz
potential satisfies

ˆt
u.x/D C.t/

Z
R3

V .y/u2.y/

jx�yj3�2t
dy;

where

C.t/D
�
�

3
2
� 2t

�
�

3
2 22t�.t/

:

Substituting ˆt
u in (1-1), we are lead to the equation

(2-2) .��/suCuCV .jxj/ˆt
u.x/uD juj

p�1u:

Let us summarize some properties of ˆt
u.x/ which will be useful throughout the

paper.

Lemma 2.4 [Zhang et al. 2016]. If t; s 2 .0; 1/ and 2t C 4s � 3, then for any
u 2H s.R3/, we have

(1) u 7! ˆt
u W H

s.R3/ 7! Dt;2.R3/ is continuous and maps bounded sets into
bounded sets;

(2) ˆt
u.x/� 0, x 2 R3, and

R
R3 ˆ

t
uu2 dx � Ckuk4s for some C > 0.

3. Finite-dimensional reduction

In this section, we prove Theorem 1.1 by proving Theorem 1.2.
We assume

(3-1) ƒk WD

"�
.3C 2s/B4

2mB5

�˛

� 1
3C2s�2m

k
3C2s

3C2s�2m ;�
.3C 2s/B4

2mB5

C˛

� 1
3C2s�2m

k
3C2s

3C2s�2m

#
;

where ˛ > 0 is a small constant, and where B4 and B5 are defined in Lemma A.5.
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Let r 2ƒk . We define

ED

�
u W u 2Es;

kX
jD1

Z
R3

@UQj

@r
U

p�1
Qj

uD 0

�
:

Define

I.u/D
1

2
hu;uisC

1

2

Z
R3

u2
C

1

4

Z
R3

V .jxj/ˆt
uu2
�

1

pC1

Z
R3

jujpC1
8u 2 E:

It is easy to check that

hu1;u2isC

Z
R3

u1u2�p

Z
R3

U p�1
r u1u2C

Z
R3

V .jxj/ˆt
Ur

u1u2

C 2

Z
R3

V .jxj/

�Z
R3

V .jyj/

jx�yj3�2t
Ur u1 dy

�
Ur u2; u1u2 2 E;

is a bounded bilinear functional in E. Hence, by the Lax–Milgram theorem there is
a bounded linear operator L from E to E such that

hLu1;u2i D hu1;u2isC

Z
R3

u1u2�p

Z
R3

U p�1
r u1u2C

Z
R3

V .jxj/ˆt
Ur

u1u2

C 2

Z
R3

V .jxj/

�Z
R3

V .jyj/

jx�yj3�2t
Ur u1 dy

�
Ur u2; u1u2 2 E:

The following result implies that L is invertible in E.

Lemma 3.1. There exists a positive constant C , independent of k, such that for
any r 2ƒk ,

kLuks � Ckuks; u 2 E:

Proof. We prove the lemma by contradiction. Suppose that there exist k!C1,
rk 2ƒk and uk 2 E with

kLukks D o.1/kukks:

Then we have

(3-2) hLuk ; 'i D o.1/kukksk'ks 8' 2 E:

We may assume that kukk
2
s D k.

Denote

�j D

�
x D .x0;x3/ 2 R2

�R W

�
x0

jx0j
;

Q0j

jQ0j j

�
� cos

�

k

�
; j D 1; 2; : : : ; k:



INFINITELY MANY POSITIVE SOLUTIONS 447

By symmetry, we have

(3-3)
Z
�1

Z
R3

.uk.x/�uk.y//.'.x/�'.y//

jx�yj3C2s
dx dy

C

Z
�1

uk' �p

Z
�1

U p�1
rk

uk'C

Z
�1

V .jxj/ˆt
Urk

uk'

C 2

Z
�1

V .jxj/

�Z
R3

V .jyj/

jx�yj3�2t
Urk

uk dy

�
Urk

'

D
1

k
hLuk ; 'i D o.1/

1
p

k
k'ks 8' 2 E:

Particularly, choosing ' D uk we get

(3-4)
Z
�1

Z
R3

juk.x/�uk.y/j
2

jx�yj3C2s
dx dyC

Z
�1

juk j
2
�p

Z
�1

U p�1
rk
juk j

2

C

Z
�1

V .jxj/ˆt
Urk
juk j

2
C 2

Z
�1

V .jxj/

�Z
R3

V .jyj/

jx�yj3�2t
Urk

uk dy

�
Urk

uk

D o.1/

and

(3-5)
Z
�1

Z
R3

juk.x/�uk.y/j
2

jx�yj3C2s
dx dyC

Z
�1

juk j
2
D 1:

Let Quk.x/D uk.x�Q1/. It is easy to check that for any R> 0, we can choose
k large enough such that BR.Q1/��1. Consequently, (3-5) yields thatZ

BR.0/

Z
R3

j Quk.x/� Quk.y/j
2

jx�yj3C2s
dx dyC

Z
BR.0/

j Quk j
2
� 1:

Thus we may assume the existence of u 2H s.R3/ such that as k!C1,

Quk * u weakly in H s.R3/

and
Quk ! u strongly in L2

loc.R
3/:

Noting that Quk is even in xh, hD 2; 3, we have that u is even in xh, hD 2; 3. On
the other hand, from Z

R3

@UQ1

@r
U

p�1
Q1

uk D 0;

we obtain Z
R3

@U

@Q1

U p�1
Quk D 0:
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So u satisfies

(3-6)
Z

R3

@U

@Q1

U p�1uD 0:

Now we prove that u satisfies

.��/suCu�pU p�1uD 0 in R3:

Define

zED

�
' W ' 2H s.R3/;

Z
R3

@U

@Q1

U p�1' D 0

�
:

For any R > 0, let ' belong to C1
0
.BR.0//\ zE and be even in xh, h D 2; 3.

Then

'1.x/ WD '.x�Q1/ 2 C10 .BR.0//:

We may identify '1.x/ as an element in E by redefining the values outside �1

using symmetry. Using (3-4) and Lemma A.1, we deduce that

(3-7)
Z

R3

Z
R3

.u.x/�u.y//.'.x/�'.y//

jx�yj3C2s
dx dyC

Z
R3

u'�p

Z
R3

U p�1u'D 0:

Furthermore, since u is even in xh, h D 2; 3, (3-7) is true for any function
' 2 C1

0
.R3/ which is odd in xh, h D 2; 3. Therefore, (3-7) holds for any

' 2 C1
0
.BR.0//\ zE. By the density of C1

0
.R3/ in H s.R3/, we see

(3-8)Z
R3

Z
R3

.u.x/�u.y//.'.x/�'.y//

jx�yj3C2s
dx dyC

Z
R3

u'�p

Z
R3

U p�1u'D0 8'2 zE:

But (3-8) is true for ' D @U=@Q1. Thus (3-8) holds for any ' 2H s.R3/, and
hence uD c.@U=@Q1/ because u is even in xh, hD 2; 3. By (3-6), we find uD 0:

Consequently, Z
BR.Q1/

u2
k D o.1/ 8R> 0:

Moreover, Lemma A.1 implies that for any 1 < �� 3C 2s, there is a positive
constant C such that

(3-9) UQk
.x/�

C

.1Cjx�Q1j/3C2s��
; x 2�1:
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Thus, by (3-9) and (V), we have

o.1/D

Z
�1

Z
R3

juk.x/�uk.y/j
2

jx�yj3C2s
dx dyC

Z
�1

juk j
2
�p

Z
�1

U p�1
rk
juk j

2

C

Z
�1

V .jxj/ˆt
Urk
juk j

2
C 2

Z
�1

V .jxj/

�Z
R3

V .jyj/

jx�yj3�2t
Urk

uk dy

�
Urk

uk

�

Z
�1

Z
R3

juk.x/�uk.y/j
2

jx�yj3C2s
dx dyC

Z
�1

juk j
2

CC

�Z
BR

2

.Q1/

C

Z
�1nBR

2

.Q1/

1

.1Cjx�Q1j/3C2s��
u2

n

�
C o.1/

�
1

2
C o.1/COR.1/;

which is impossible for large R. �

Proposition 3.2. There is an integer k0 > 0 such that for each k � k0, there exists
a C 1 map with respect to r from ƒk to Es: ' D '.r/, satisfying ' 2Es, and�

@J.'/

@'
; v

�
D 0 8v 2Es:

Moreover, there is a small � > 0 such that
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Proof. Write
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By direct computation, we have
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�
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Z
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Z
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Z
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Hence,
J.'/D J.0/Cf .'/C 1

2
hL'; 'iCR.'/;

where
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Z
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U
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�
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Z
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We notice that L is the bounded linear map from Es to Es in Lemma 2.1, and
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Z
R3

V .jxj/ˆt
'Ur'C

1

4

Z
R3

V .jxj/ˆt
''

2
�

1

pC1

Z
R3

jUr C'j
pC1

C
1

pC1

Z
R3

jUr j
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Z
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Z
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It is not difficult to verify that f .'/ is a bounded linear functional in Es, so there
exists an fk 2Es such that

f .'/D hfk ; 'i:

Thus, to find a critical point for J.'/, we only need to solve

(3-12) fk CL'CR0.'/D 0:

From Lemma 3.1 we know L is invertible. Therefore, (3-12) can be rewritten as

' DA.'/DW �L�1fk �L�1R0.'/:
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�
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1
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1
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�
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r
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;

where � > 0 is small.
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When 1< p � 2, we can verify that

kR0.'/ks � Ck'kps :

Hence Lemma 3.3 below implies
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:

Thus, A maps N into N when 1< p � 2.
Meanwhile, when 1< p � 2, we see

kR00.'/ks � Ck'kp�1
s :

Thus,
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where " 2 .0; 1/.
Thus, we have proved that when 1< p � 2, A is a contraction map.
When p > 2, by Remark A.2, the Hölder inequality, the Sobolev inequality, and

Lemmas 2.2 and 2.4, we get
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Hence, we deduce that
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�
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3
s

�
:

For the estimate of kR00.'/ks , we have

jR00.'/.�; �/j D

ˇ̌̌̌
2

Z
R3

V .jxj/

�Z
R3

V .jyj/

jx�yj3�2t
�� dy

�
Ur'

C 2

Z
R3

V .jxj/

�Z
R3

V .jyj/

jx�yj3�2t
'� dy

�
Ur�

C 2

Z
R3

V .jxj/

�Z
R3

V .jyj/

jx�yj3�2t
'� dy

�
Ur�

C 2

Z
R3

V .jxj/

�Z
R3

V .jyj/

jx�yj3�2t
'� dy

�
'�

C

Z
R3

V .jxj/ˆt
'���p

Z
R3

.Ur C'/
p�1��Cp

Z
R3

U p�1
r ��

ˇ̌̌̌
� C

�
k'ksCk'k

2
s

�
k�ksk�ks;

which implies
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�
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2
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Thus, we can conclude that

(3-14) kA.'/ks �CkfkksCCk'k2s
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�
1
2
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where " 2 .0; 1/. Hence, A is also a contraction map from N to N .
Now applying the contraction mapping theorem, we can find a unique ' such

that (3-12) holds. Moreover, it follows from (3-13) and (3-14) that (3-10) holds. �

Lemma 3.3. There exist constants C > 0 and � > 0 small enough such that
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Proof. We recall
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Using UQj � UQ1
, x 2�1, 3C2s
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< 2m< 3C 2s and Lemma A.1, we obtain
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where � > 0 is a small constant and � 2
�
0; 3C2s

2

�
.

On the other hand, by Lemma A.4 and Remark A.2, we have
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Inserting (3-16) and (3-17) into (3-15), we can complete the proof. �

4. Proof of the main result

Proof of Theorem 1.2. Let '.r/ be the map obtained in Proposition 3.2. Define

F.r/D I.Ur C'.r// 8r 2ƒk :

It is well known that if r is a critical point of F.r/, then Ur C'.r/ is a solution of
(1-1) (see [Cao and Tang 2006]). As a consequence, in order to complete the proof
of the proposition, we only need to prove that F.r/ has a critical point in ƒk .

Hence, by Proposition 3.2 and Lemma A.5, we have
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;

where B3;B4 and B5 are defined in Lemma A.5.
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We consider its maximum with respect to r :

(4-1) maxfF.r/ W r 2ƒkg:

Assume that (4-1) is achieved by some rk inƒk . We will prove that rk is an interior
point of ƒk .

Consider the following smooth function in ƒk :
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:

It is easy to check that g.r/ has a maximum point Qrk , satisfying
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Thus
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By direct computation, we observe that
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This is a contradiction to (4-2).
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F
��
.3C2s/B4

2mB5

C˛

� 1
3C2s�2m

k
3C2s

3C2s�2m

�

< kB3CkB
3C2s

3C2s�2m

5
B
� 2m

3C2s�2m

4

�
3C2s

2m
�1

��
3C2s

2m

�� 3C2s
3C2s�2m

k
�2m.3C2s/
3C2s�2m

CkO
�
k�

2m.3C2s/
3C2s�2m

��
�
:

Hence we can check that (4-1) is achieved by some rk which is in the interior ofƒk .
As a result, rk is a critical point of F.r/. Therefore

Urk
C'.rk/

is a solution of (1-1). �

Appendix: Some technical estimates

In this section, we give some estimates of the energy expansion for the approximate
solutions. Firstly, we recall
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�
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k
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where ˆt
u is the solution of .��/tˆt

u D V .jxj/u2.
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Recall that U is the unique solution of�
.��/suCuD up; u> 0 in R3;

u.0/Dmaxx2R3 u.x/:

Let K be the solution of�
.��/tv D U 2 in R3;

v 2Dt;2.R3/:

Then K is radial, and r3�2tK.r/!K0 > 0 as r !C1.
To begin, we give the following lemmas.

Lemma A.1 [Long et al. 2016, Lemma A.2]. For any x 2�1, and � 2 .1; 3C 2s�,
there are constants C;B > 0 such that
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Remark A.2. It follows from Lemma A.1 that Ur is bounded.

Lemma A.3 [Wei and Zhao 2013, Lemma 13.1]. Assume that 0 < m < 3 and
n>m. Then
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Now, we estimate ˆUr
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By Lemmas A.1 and A.3, we are led to
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Lemma A.5. We have
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By the result in [Long et al. 2016], we know that
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Using (A-3) and Lemma A.4, we see that
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Above all, we deduce that
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A GAUSSIAN UPPER BOUND
OF THE CONJUGATE HEAT EQUATION

ALONG RICCI-HARMONIC FLOW

XIAN-GAO LIU AND KUI WANG

We mainly study the Ricci-harmonic flow. Using the monotonicity formulae
of entropies, we show a uniform Sobolev inequality along Ricci-harmonic
flow. Furthermore, we obtain a Gaussian upper bound for the fundamental
solutions of the conjugate heat equation via Moser iteration and Sobolev
inequality.

1. Introduction

Let M be a closed manifold of dimension n. List [2008] studied the following Ricci
flow, coupled with a harmonic flow:

(1-1)
{
∂t g(x, t)=−2 Ricg(x,t)+4 dφ(x, t)⊗ dφ(x, t),
∂tφ(x, t)=1g(x,t)φ,

where g(x, t) is a family of Riemannian metrics, and φ(x, t) is a scalar function
on M ×R. This flow is called Ricci-harmonic flow (see also [List 2008; Müller
2012; Zhu 2013]). If φ is a constant, the system (1-1) degenerates to Hamilton’s
Ricci flow, which has been discussed widely recently; see for example the book
[Chow et al. 2006] and celebrated papers [Hamilton 1982; 1986; 1993; Li 2007; Ni
2006; Perelman 2002]. The stationary solutions of (1-1) satisfy the static Einstein
vacuum system {

Ric= 2 dφ⊗ dφ,
1φ = 0.

Similarly to Ricci flow, corresponding theories for Ricci-harmonic flow have been
established; see for instance [List 2008].

For the sake of convenience, we denote as in [List 2008] the symmetric tensor
field Sy ∈ Sym2(M) and its trace by

Si j := Ri j − 2∂iφ∂ jφ and S := R− 2|dφ|2,

Wang is the corresponding author.
MSC2010: 35B40, 53C44, 35K05.
Keywords: Ricci-harmonic flow, Sobolev inequality, Gaussian upper bound.
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where R denotes the scalar curvature of the Riemannian manifold (M, g). Then
the Ricci-harmonic flow can be written simply as{

∂t g =−2Sy,
∂tφ =1φ.

It is well known that Sobolev inequality contains a host of analytical and geo-
metric information (e.g., [Carrillo and Ni 2009; Chau et al. 2011; Hebey 1996;
Saloff-Coste 2002]), including noncollapsing properties, isoperimetric inequalities
and so on. Sobolev inequality is also an important tool in studying elliptic and
parabolic differential equations on manifolds (see for example [Saloff-Coste 2002]).
Via the monotonicity of Perelman’s W entropy, some uniform Sobolev inequalities
were proven in Ricci flow, see [Carrillo and Ni 2009; Chau et al. 2011; Kuang and
Zhang 2008; Zhang 2006; 2007; 2011]. Zhang [2007] showed a global upper bound
for the fundamental solution of the heat equation along the backward Ricci flow{

∂t g =−2 Ric,
1u+ ∂t u− Ru = 0,

providing Ricci curvature is nonnegative and the injective radius is bounded from
below.

Along flow (1-1), we consider the conjugate heat equation

(1-2) ∂t u(x, t)+1u(x, t)− S(x, t)u(x, t)= 0.

In [Zhu 2013], some pointwise gradient estimates for the positive solutions of (1-1)
were proven, which can be viewed as Li–Yau estimates for the parabolic kernel of
the Schrödinger operator in [Chau et al. 2011; Li and Yau 1986; Ni 2004; 2006].

The main goal of this paper is to establish certain Sobolev inequalities under
system (1-1) and a global upper bound for the fundamental solutions of heat
equation (1-2). Via the monotonicity of the entropies, we obtain the following
Sobolev inequality.

Theorem 1.1. Let (M, g(x, t), φ(x, t)) be a solution of the system (1-1) for t ∈
[0, T0) with initial metric g0, where T0 ≤∞ is the life span of (1-1). Let A0 and B0

be positive numbers such that the following L2 Sobolev inequality holds initially,
i.e., for each v ∈W 1,2(M, g0),(∫

M
v2n/(n−2) dµg0

)(n−2)/n

≤ A0

∫
M

(
|∇v|2+ 1

4 Sv2) dµg0 + B0

∫
M
v2 dµg0 .

Then for all v ∈W 1,2(M, g(t)), we have

(1-3)
(∫

M
v2n/(n−2) dµg(t)

)(n−2)/n

≤ A(t)
∫

M

(
|∇v|2+1

4 Sv2) dµg(t)+B(t)
∫

M
v2 dµg(t),
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where A(t) and B(t) are positive constants depending on A0, (1+ t)B0, n and S−0 .
Here S−0 = supx∈M S−(x, 0), and S−(x, 0) denotes the negative part of S(x, 0).

Via Sobolev inequality (1-3), combined with Morse iteration and Davies’ heat
kernel estimates, we prove the following Gaussian-type upper bound for the fun-
damental solutions of (1-2), with constants not depending on the lower bound of
injective radius but on the first eigenvalue of the entropy, different from Zhang’s
result [2007]. More precisely:

Theorem 1.2. Let (M, g(x, t), φ(x, t)) be a smooth solution of system (1-1) in
M ×[0, T ] and G(x, t; y, T ) be a fundamental solution of the following backward
conjugate heat equation (1-2); that is,{
1x G(x, t; y, T )+ ∂t G(x, t; y, T )− S(x, t)G(x, t; y, T )= 0 if 0≤ t < T ;
G(x, t; y, T )= δ(x, y) if t = T .

Assume that Sy ≥ 0 and the first eigenvalue λ0 of inf‖v‖2=1
∫

M(4|∇v|
2
+ Sv2) dµg0

is positive. Then for each t ∈ (0, T ), and x , y ∈ M , we have the following estimates:

(1-4) G(x, t; y, T )≤
c

|B(y,
√

T − t, T )|T
exp
−c1d2(x, y, T )

T − t
,

where c1 is a constant depending only on the dimension n, and c is a constant
depending on n, λ0 and the initial metric g0. Here d(x, y, T ) denotes the distance
between x and y with respect to metric g(T ), B(y,

√
T − t, T ) denotes the geodesic

ball centered at y with radius
√

T − t , and |B(y,
√

T − t, T )|T denotes the volume
of the ball B(y,

√
T − t, T ) with respect to the metric g(T ).

The rest of the paper is organized as follows. We give the evolution equations
of entropies under system (1-1) in Section 2. We prove Sobolev inequalities along
Ricci-harmonic flow in Section 3. In Section 4, we prove Theorem 1.2.

2. Entropies of Ricci-harmonic flow

In this section, we recall the definitions of entropies via corresponding conjugate
heat equation, as Perelman’s [2002] entropy in Ricci flow. Through direct compu-
tations, we obtain the monotonicity of the entropies. Although the monotonicity
of the entropies were proven in [List 2008] via the entropies’ invariance under
diffeomorphism. But here for the completeness, we give a direct computation.

Let u(x, t) be a positive solution to the conjugate heat equation (1-2):

H∗u =1u− Su+ ∂t u = 0.



468 XIAN-GAO LIU AND KUI WANG

Note by (1-2) and equation (1-1) that

d
dt

∫
M

u(x, t) dµg(t) =

∫
M
(∂t − S)u dµg(t) =

∫
M

H∗u dµg(t) = 0,

where we used the closure of M . Hereafter we always assume that u(x, t) satisfies

(2-1)
∫

M
u(x, t) dµg(t) = 1

for each t ∈ [0, T ].
Via the positive solution u, the entropies are defined (see, e.g., [List 2008]) as

follows.

Definition 2.1. F entropy is defined as the following integration:

(2-2) F(t)=
∫

M

(
Su+ |∇u|2

u

)
dµg(t),

and W entropy is defined by

(2-3) W (t)=
∫

M

[
τ
(

Su+ |∇u|2

u

)
− u ln u− n

2
ln(4πτ)u− nu

]
dµg(t),

where dτ/dt =−1.

In order to simplify computations, we introduce a potential function f (x, t) via

u(x, t)=
e− f

(4πτ)n/2
,

i.e.,

(2-4) f =− ln u− n
2
(ln 4πτ).

With the above preparations, we now give a direct calculation of the following
monotonicity formulae.

Proposition 2.2 [List 2008, Theorem 6.1]. Let (M, g, φ) be a solution of (1-1) and
u(x, t) be a positive solution of (1-2). Then both F entropy and W entropy are
nondecreasing in t. Moreover, we have

(2-5) d
dt

F(t)= 2
∫

M

(
|Sy+∇2 f |2+ 2|1φ− dφ(∇ f )|2

)
u dµg(t) ≥ 0,

and

(2-6) d
dt

W (t)=
∫

M

(
2τ
∣∣∣Sy+∇2 f −

g
2τ

∣∣∣2+ 4τ |1φ− dφ(∇ f )|2
)

u dµg(t) ≥ 0.
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Proof. To start, we have by direct calculations that

(2-7) H∗(u ln u)= |∇u|2

u
+ Su,

and

(2-8) H∗
(
|∇u|2

u
+ Su

)
=

2
u

(ui u j

u
− ui j

)2
+

2Si j ui u j

u
+

2Ri j ui u j

u
+ 4〈∇u,∇S〉+ 2u1S+ 2(|Sy|2+ 2|1φ|2)u.

Here we used the well-known equation (see [List 2008, Lemma 3.2])

∂t S =1S+ 2|Sy|2+ 4|1φ|2.

Note that

d
dt

F= d
dt

∫
M

(
S+|∇u|2

u

)
dµ=

∫
M
(∂t−S)

(
Su+|∇u|2

u

)
dµ=

∫
M

H∗
(
Su+|∇u|2

u

)
dµ,

and substituting (2-8) into the above equality we have

(2-9) d
dt

F =
∫

M

[2
u

(ui u j

u
− ui j

)2
+

2Si j ui u j

u
+

2Ri j ui u j

u

+ 4〈∇u,∇S〉+ 2u1S+ 2
(
|Sy|2+ 2|1φ|2

)
u
]

dµ.

By integration by parts and the contracted second Bianchi identity, we see

(2-10)
∫

M
〈∇u,∇S〉 dµ=

∫
M
〈∇u,∇(R− 2|dφ|2)〉 dµ

=

∫
M
(2ui∇j Ri j − 4uiφ jφi j ) dµ

=

∫
M
(−2ui j Ri j + 4ui jφ jφi + 4uiφi1φ) dµ

=

∫
M
(−2ui j Si j + 4uiφi1φ) dµ;

Then substituting (2-10) into (2-9) yields

d
dt

F =
∫

M

[
2
u

(ui u j

u
− ui j

)2
+

2Si j ui u j

u
+

2Ri j ui u j

u

+2〈∇u,∇S〉+ 2
(
|Sy|2+ 2|1φ|2

)
u
]

dµ

=

∫
M

[
2
u

(ui u j

u
− ui j

)2
+

2Si j ui u j

u
+

2Ri j ui u j

u

−4ui j Si j + 8uiφi1φ+ 2
(
|Sy|2+ 2|1φ|2

)
u
]

dµ.
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Replacing u with f in the above equality yields

d
dt

F =
∫

M

[
| fi j|

2
+ 2Si j fi j + |Si j|

2
+ 2|1φ|2+ 2|2 dφ(∇ f )|2− 41φ(dφ(∇ f ))

]
dµ

= 2
∫

M

(
|Sy+∇2 f |2+ 2|1φ− dφ(∇ f )|2

)
u dµ,

proving formula (2-5).
From the definition of W entropy, it follows that

d
dt

W (t)=
∫

M
H∗
(
τ
(
|∇u|2

u
+ Su

))
− H∗(u ln u)− n

2
H∗(u ln τ) dµ.

Substituting (2-7) and (2-8) to the above equation yields

(2-11) d
dt

W = τ d
dt

F − 2F + n
2τ
= τ

d
dt

F − 2
∫

M

(
Su+|∇ f |2u

)
dµ(g(t))+ n

2τ
.

From the definition of f and integrations by parts, we deduce∫
M

(
Su+ |∇u|2

u

)
dµ(g(t))=

∫
M
(Su−〈∇u,∇ f 〉) dµ=

∫
M
(Su+1 f u) dµ.

Substituting the above equality and equality (2-5) into (2-11), we have

d
dt

W = 2τ
∫

M

(
|Sy+∇2 f |2+ 2|1φ− dφ(∇ f )|2

)
u dµ− 2

∫
M
(S+1 f )u dµ+ n

2τ

=

∫
M

2τ
(∣∣∣Sy+Hess( f )−

g
2τ

∣∣∣2+ 2|1φ− dφ(∇ f )|2
)

u dµ,

completing the proof. �

Similarly to the Ricci flow, one can define a family of generalized W entropy
along the Ricci-harmonic flow by

(2-12) W (a, t)=
∫

M

(a2τ

2π

(
Su+ |∇u|2

u

)
− u ln u− n

2
ln(4πτ)u− nu

)
dµg(t)

=

∫
M

(a2τ

2π
(S+ |∇ f |2)+ f − n

)
u dµg(t).

Here the second equality is due to the relations between u and f given in (2-4).
For applications of generalized entropy, we refer to the paper [Li 2007]. Using
the calculations in [Kuang and Zhang 2008], one can easily show the following
monotonicity formula of generalized W entropy along Ricci-harmonic flow.

Proposition 2.3. Let (M, g, φ) be a solution of (1-1) and u(x, t) be a positive
solution of (1-2). Then the generalized entropy W (a, t) is nondecreasing in t and
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we have

d
dt

W (a, t)≥ a2τ

π

∫
M

(∣∣∣Sy+Hess( f )−
g

2τ

∣∣∣2+ 2|1φ− dφ(∇ f )|2
)

u dµ.

Since the proof is similar to that in Ricci flow (see for example [Kuang and
Zhang 2008, Theorem 4.1]), we omit it.

3. Sobolev inequalities in Ricci-harmonic flow

In this section, we mainly use the monotonicity of W entropy to derive a uniform
Sobolev inequality along system (1-1), which will be useful in Section 4.

To prove Theorem 1.1, we need the following lemma, giving the equivalence of
the logarithmic Sobolev inequality, the W 1,2 Sobolev inequality and the so-called
ultracontractivity of the heat semigroup of the associated Schrödinger operator. The
proof of this lemma is more or less standard.

Lemma 3.1 [Zhang 2011, Theorem 4.2.1]. Let (Mn, g) be a closed Riemannian
manifold (n ≥ 3). Then the following inequalities are equivalent up to constants.

(I) Sobolev inequality: there exists positive constants A and B such that for
v ∈W 1,2(M)(∫

M
v2n/(n−2) dµ

)(n−2)/n
≤ A

∫
M
|∇v|2 dµ+ B

∫
M
v2 dµ;

(II) Log-Sobolev inequality: for v ∈W 1,2(M) with ‖v‖2 = 1 and ε > 0,∫
M
v2 ln v2 dµ≤ ε2

∫
M
|∇v|2 dµ− n

2
ln ε2
+ B A−1ε2

+
n
2

ln n A
2e
;

(III) Heat kernel upper bound: for t > 0,

G(x, t; y)≤ (n A)n/2

tn/2 eA−1 Bt .

By Lemma 3.1, to prove Theorem 1.1 it suffices to show some log-Sobolev
inequalities or heat kernel estimates for each t ∈ [0, T0). By the monotonicity of W
entropy, we obtain the following log-Sobolev inequality.

Lemma 3.2 (log-Sobolev inequality). Under the assumptions of Theorem 1.1, for
each t ∈ [0, T0), v ∈W 1,2(M, g(t)) with

∫
Mv

2 dµg(t) = 1 and ε > 0, we have

(3-1)
∫

M
v2lnv2 dµg(t)≤ε

2
∫

M

(
4|∇v|2+Sv2) dµg(t)−n lnε+(t+ε2)B0 A−1

0 +
n
2

lnnA0
2e
.

Proof. For t0 ∈ [0, T0) and ε > 0, we set

τ(t)= ε2
+ t0− t.
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Recall that W entropy is defined by

W (g, f, t)=
∫

M

(
τ(S+ |∇ f |2)+ f − n

)
u dµg(t).

Then from the monotonicity of W entropy in Proposition 2.2, we deduce

(3-2) inf∫
M u dµg(t0)=1

W (g(t0), f, ε2)≥ inf∫
M u0 dµg(0)=1

W (g(0), f0, t0+ ε2).

One can find a more detailed proof of this property in Section 3 of [Perelman 2002].
Here f0 and f are given via the formulae

u0 =
e− f0(

4π(t0+ε2)
)n/2 and u = e− f

(4πε2)n/2
.

Using this notation we rewrite (3-2) as

inf∫
u dµg(t0)=1

∫
M

(
ε2(S+ |∇ ln u|2

)
− ln u− n

2
ln 4πε2

)
u dµg(t0)

≥ inf∫
u0 dµg(0)=1

∫
M

(
(ε2
+ t0)

(
S+ |∇ ln u0|

2)
− ln u0−

n
2

ln 4π(t0+ ε2)
)

u0 dµg(0).

Let v =
√

u and v0 =
√

u0, and the above inequality gives

(3-3) inf∫
v2 dµg(t0)=1

∫
M

[
ε2(Sv2

+ 4|∇v|2)− v2 ln v2] dµg(t0)−
n
2

ln ε2

≥ inf∫
v2

0 dµg(0)=1

∫
M

(
(ε2
+ t0)(Sv2

0+4|∇v0|
2)−v2

0 ln v2
0
)

dµg(0)−
n
2

ln(t0+ε2)

Since ln x is a concave function and
∫

M v
2
0 dµg(0) = 1, then applying Jensen’s

inequality we derive∫
M
v2

0 ln vq−2
0 dµg(0) ≤ ln

∫
v

q−2
0 v2

0 dµg(0),

i.e., ∫
M
v2

0 ln v2
0dµg(0) ≤

1
2 n ln ‖v0‖

2
q ,

where q = 2n/(n− 2). By the assumption that the Sobolev inequality holds for the
initial time t = 0, we have∫

M
v2

0 ln v2
0 dµg(0) ≤

1
2 n ln

(
A0

∫
M
(4|∇v0|

2
+ Sv2

0) dµg(0)+ B0

)
.

From the elementary inequality

ln z ≤ yz− ln y− 1,
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we deduce that for any y, z > 0∫
M
v2

0 ln v2
0 dµg(0) ≤

n
2

y
(

A0

∫
M

(
4|∇v0|

2
+ Sv2

0
)

dµg(0)+ B0

)
−

n
2

ln y− n
2
.

Letting y = 2(t0+ ε2)/(n A0) in the above inequality, we get∫
M
v2

0 ln v2
0 dµg(0) ≤ (t0+ ε2)

∫
M

(
4|∇v0|

2
+ Sv2

0
)

dµg(0)

+
(t0+ε2)B0

A0
−

n
2

ln 2(t0+ε2)

n A0
−

n
2
.

Substituting the above inequality to the right-hand side of (3-3), we arrive at∫
M
v2 ln v2 dµg(t0)≤ε

2
∫

M

(
4|∇v|2+Sv2) dµg(t0)−n ln ε+(t0+ε2)B0 A−1

0 +
n
2

ln n A0
2e

.

Thus the log-Sobolev inequality (3-1) holds. �

Proof of Theorem 1.1. As the right-hand side of inequality (1-3) has an extra
term S, we can not use Lemma 3.1 directly. Instead, we use Zhang’s [2007] trick
to obtain the estimates of the fundamental solutions of the heat equation, and then
use Lemma 3.1 to derive the Sobolev inequality. More precisely, we consider the
following heat equation:

1g(t0)u(x, t)− 1
4 S(x, t0)u(x, t)− S−0 u(x, t)− ut(x, t)= 0,

where S−0 = supx∈M S−(x, 0) and the metric is fixed at t0. Then following the
same process as in [Zhang 2007]; we see the fundamental solution p(x, T ; y) is
contractive and satisfies the estimates

p(x, T ; y)≤
C1

tn/2 for t > 0,

where C1 is a constant depending on n, A0, (1+t0)B0 and S−0 Then from Lemma 3.1,
we conclude that the Sobolev inequality (1-3) at t = t0 holds with constants A(t0)
and B(t0) (depending only on n, A0, (1+ t0)B0 and S−0 ). Thus the theorem is true
by the arbitrariness of t0. �

Since (M, g0) is a closed Riemannian manifold, the Sobolev inequality holds as
described in Section 4.1 in [Zhang 2011]. That is, for any v ∈W 1,2(M), there exist
positive constants A0 and B0 depending only on n and the initial metric g0 such
that

(3-4)
(∫

M
v2n/(n−2) dµg0

)(n−2)/n

≤ A0

∫
M
|∇v|2 dµg0 + B0

∫
M
v2 dµg0 .
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Recall that λ0 is the first eigenvalue of F entropy as characterized in (2-2), that is,

(3-5) λ0 = inf
‖v‖2=1

∫
M
(4|∇v|2+ Sv2) dµg0 .

This eigenvalue has been studied widely and is a very powerful tool for understand-
ing Riemannian manifolds [Li 2007].

Note that∫
M
|∇v|2 dµg0 ≤

∫
M

(
|∇v|2+

S
4
v2
)

dµg0 +
S−0
4

∫
M
v2 dµg0 .

Then if λ0>0, we conclude from the inequality (3-4) that the assumption of Sobolev
inequality in Theorem 1.1 holds initially as follows:(∫

M
v2n/(n−2) dµg0

)(n−2)/n

≤

[
A0+

(
S−0
4
+ B0

)
4
λ0

] ∫
M

(
|∇v|2+ 1

4 Sv2) dµg0 .

That is, the log-Sobolev inequality (3-1) in Lemma 3.2 holds with constant B0 = 0.
Therefore we conclude

Corollary 3.3. Let (M, g, φ) be a solution of the system (1-1). Assume further that
λ0 > 0. Then for all v ∈W 1,2(M, g(t)), t ∈ [0, T0), it holds that(∫

M
v2n/(n−2) dµg(t)

)(n−2)/n

≤ Ã0

∫
M

(
|∇v|2+ 1

4 Sv2) dµg(t),

where Ã0 depends on initial Sobolev constants A0 and B0, and λ0 and S−0 are
independent of t .

4. Proof of Theorem 1.2

In this section, we prove a Gaussian-type upper bound for fundamental solutions
of the conjugate heat equation. The Gaussian upper bound in Ricci flow was
proven in [Zhang 2006] with the assumption on the lower bound of injectivity, via
Sobolev inequality by Heybey [1996]. Here using the uniform Sobolev inequality
in Corollary 3.3, we derive a similar Gaussian upper bound without the assumption
on the lower bound of injectivity. To prove the theorem, we need the following
interpolation theorem.

Theorem 4.1. Let (M, g, φ) be a solution of (1-1) and u(x, t) be a positive solution
to heat equation

(4-1) 1u− ∂t u = 0
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for t ∈ [0, T ]. Then it holds that

(4-2) |∇u(x, t)|
u(x, t)

≤

√
1
t

√
ln A

u(x, t)

for (x, t) ∈ M ×[0, T ]. Here A = supM×[0,T ] u.
Moreover, for each δ > 0, x, y ∈ M and 0< t < T , the following interpolation

inequality holds:

(4-3) u(y, t)≤ Aδ/(1+δ)u1/(1+δ)(x, t) exp
(d2(x, y, t)

4tδ

)
.

Proof. The proof is based on maximum principles, see also [Li and Yau 1986; Ni
2006; Zhu 2013]. Using (4-1), we compute

(4-4) (1− ∂t)
(

u ln A
u

)
=1u ln A

u
+ u1

(
ln A

u

)
+ 2∇u∇ ln A

u

−∂t u ln A
u
− u∂t

(
ln A

u

)
=1u ln A

u
+u
(
−
1u
u
+
|∇u|2

u2

)
−2 |∇u|2

u
−1u ln A

u
+∂t u

=−
|∇u|2

u
,

(4-5) 1
(
|∇u|2

u

)
=
1|∇u|2

u
+1

(1
u

)
|∇u|2+ 2∇|∇u|2∇

(1
u

)
=
1|∇u|2

u
+

(2|∇u|2

u3 −
1u
u2

)
|∇u|2− 4

ui u j ui j

u2 ,

and

(4-6) ∂t

(
|∇u|2

u

)
=
∂t |∇u|2

u
−
|∇u|2

u2 ∂t u =
2〈∇u,∇1u〉+ 2Si j ui u j

u
−
|∇u|2

u2 1u.

Putting (4-5) and (4-6) together, we get

(4-7) (1− ∂t)

(
|∇u|2

u

)
=
1|∇u|2

u
+

2|∇u|4

u3 − 4
ui u j ui j

u2 −
2〈∇u,∇1u〉+ 2Si j ui u j

u

=
2u2

i j + 4ui u jφiφ j

u
+

2|∇u|4

u3 − 4
ui u j ui j

u2

=
4
u
|dφ(∇u)|2+ 2

u

∣∣∣ui j −
ui u j

u

∣∣∣2.
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Combining (4-4) and (4-7), we have

(4-8) (1− ∂t)

(
t |∇u|2

u
− u ln A

u

)
=−
|∇u|2

u
+

4
u
|dφ(∇u)|2+ 2

u

∣∣∣ui j −
ui u j

u

∣∣∣2+ |∇u|2

u

=
4
u
|dφ(∇u)|2+ 2

u

∣∣∣ui j −
ui u j

u

∣∣∣2 ≥ 0.

By A = supM×[0,T ] u, we know at t = 0

t |∇u|2

u
− u ln A

u
=−u ln A

u
≤ 0.

Then from (4-8), the maximum principle implies that

t |∇u|2

u
− u ln A

u
≤ 0,

giving (4-2).
Set `(x, t)= ln(A/u(x, t)). Then inequality (4-2) yields

|∇

√
`(x, t)| = 1

2

∣∣∣ ∇u
u
√
`

∣∣∣≤ 1
√

4t
.

For each x, y ∈ M , integrating the above inequality along a minimizing geodesic
joining x and y yields√

ln A
u(x, t)

≤

√
ln A

u(y, t)
+

d(x, y, t)
√

4t
.

Then for any δ > 0 it follows

ln A
u(x, t)

≤ ln A
u(y, t)

+
d2(x, y, t)

4t
+

√
ln A

u(y, t)
d(x, y, t)
√

t

≤ ln A
u(y, t)

+
d2(x, y, t)

4t
+ δ ln A

u(y, t)
+

d2(x, y, t)
4tδ

,

proving (4-3). �

Now we turn to proving Theorem 1.2. With the uniform Sobolev inequality in
Corollary 3.3 and the interpolation theorem, we establish a mean value inequality
via Moser iteration, and a weighted estimate in the spirit of Davies [1989], and then
give the full proof of Theorem 1.2.

Proof of Theorem 1.2. We divide the proof into two steps.

Step 1. Using Morse iteration, we prove a mean value inequality for the positive
solution u of the conjugate equation (1-2).
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For p ≥ 1, it follows that

(4-9) 1u p
− pSu p

+ ∂t u p
≥ 0.

Define

Qσr := {(y, s) | y ∈ M, t ≤ s ≤ t + (σr)2, d(x, y, s)≤ σr},

with r > 0, 1<σ ≤ 2. Let ϕ(ρ) : [0,+∞)→[0, 1] be a smooth function satisfying:

|ϕ′| ≤
2

(σ − 1)r
,

ϕ′ ≤ 0, ϕ ≥ 0, ϕ(ρ) = 1 when 0 ≤ ρ ≤ r , and ϕ(ρ) = 0 when ρ ≥ σr . Let
η(s) : [0,+∞)→ [0, 1] be a smooth function satisfying:

|η′| ≤
2

(σ − 1)2r2 ,

η′ ≤ 0, η ≥ 0, η(s) = 1 when s ≤ t + r2, and η(s) = 0 when t + (σr)2 ≤ s ≤ T .
Define a cutoff function ψ(y, s) by

ψ(y, s)= ϕ(d(y, x, s))η(s).

Writing ω = u p, multiplying ωψ2 to (4-9) and integrating by parts yield

(4-10)
∫

Qσr

∇(ωψ2)∇ω dg(y, s) ds+ p
∫

Qσr

Sω2ψ2 dg(y, s) ds

≤

∫
Qσr

(∂sω)ωψ
2 dg(y, s) ds.

Integrating by parts, the right-hand side of (4-10) gives∫
Qσr

(∂sω)ωψ
2 dg(y, s) ds

=−

∫
Qσr

ω2ψ∂sψ dg(y, s) ds+ 1
2

∫
Qσr

(ψω)2S dg(y, s) ds− 1
2

∫
Bσr (t)

(ψω)2 dg(y, t).

By the nonnegativity of Sy and the identity (see [Chow et al. 2006; List 2008])

∂sd(x, y, s)=−
∫ d(x,y,s)

0
Sy(γ ′(τ ), γ ′(τ )) dτ ≤ 0,

we have

∂sψ = η(s)ϕ′(d(y, x, s))∂sd(x, y, s)+ϕ(d(y, x, s))η′(s)≥ ϕ(d(y, x, s))η′(s).
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Hence

(4-11)
∫

Qσr

(∂sω)ωψ
2 dg(y, s) ds ≤

∫
Qσr

ω2ψϕ(d(y, x, s))|η′(s)| dg(y, s) ds

+
1
2

∫
Qσr

(ψω)2S dg(y, s) ds− 1
2

∫
Bσr (t)

(ψω)2 dg(y, t).

Also, note that

(4-12)
∫

Qσr

∇(ωψ2)∇ω dg(y, s) ds

=

∫
Qσr

|∇(ωψ)|2 dg(y, s) ds−
∫

Qσr

|∇ψ |2ω2 dg(y, s) ds.

Then from (4-10), (4-11) and (4-12), we deduce

(4-13)
∫

Qσr

|∇(ωψ)|2 dg(y, s) ds+1
2

∫
Qσr

S(ωψ)2 dg(y, s) ds+1
2

∫
Bσr (t)

(ψω)2 dg(y, t)

≤

∫
Qσr

ω2ψϕ(d(y, x, s))|η′(s)| dg(y, s) ds+
∫

Qσr

|∇ψ |2ω2 dg(y, s) ds

≤
c

(σ−1)2r2

∫
Qσr

ω2 dg(y, t).

Using Hölder’s inequality one finds

(4-14)
∫
(ψω)2(1+2/n) dg ≤

(∫
(ψω)2n/(n−2) dg

)(n−2)/n(∫
(ψω)2 dg

)2/n
,

and using Corollary 3.3, we see that for each t ∈ (0, T )

(4-15)
(∫

(ψω)2n/(n−2) dg(s)
)(n−2)/n

≤ A0

∫ (
|∇(ψω)|2+ S(ψω)2

)
dg(s),

where A0 depends only on the dimension n, λ0 and the initial metric g0.
By (4-14) and (4-15), we obtain∫

Bσr (s)
(ψω)2(1+2/n) dg(s)≤ A0

(∫
Bσr (s)

(
|∇(ψω)|2+S(ψω)2

)
dg
)(∫

Bσr (s)
(ψω)2 dg

)2/n
.

Setting θ=1+2/n, integrating the above inequality with respect to s on [t, t+(σr)2]
and using (4-13), we reach∫

Qσr

(ψω)2θ dg(y, s) ds ≤ A0

( 1
(σ−1)2r2

∫
Qσr (x,t)

ω2 dg(y, s) ds
)θ
,

which implies

(4-16)
∫

Qr

ω2θ dg(y, s) ds ≤ A0

( 1
(σ−1)2r2

∫
Qσr (x,t)

ω2 dg(y, s) ds
)θ
.
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Now we choose the sequences of σi and pi as σ0 = 2, σi = 2−
∑i

j=1 2− j, pi = θ
i.

Then inequality (4-16) gives that

‖u2
‖Lθ i+1

(σi+1r) ≤ A1/θ i+1

0

( σ 2
i+1

(σi − σi+1)2r2

)1/θ i

‖u2
‖Lθ i

(σi r)
,

which gives an L2 mean value inequality

(4-17) sup
Qr/2(x,t)

u2
≤

c
r2+n

∫
Qr (x,t)

u2 dg(y, s) ds,

where c depends on the dimension n, λ0 and the initial metric g0. Then by a generic
trick of Li and Schoen (see [Li 2012, Section 32]) we arrive at an L1 mean value
inequality: for r > 0,

(4-18) sup
Qr/2(x,t)

u ≤ c
r2+n

∫
Qr (x,t)

u dg(y, s) ds.

For y ∈ M and s > t , applying (4-18) on u = G( · , · : y, T ) with r =
√

1
2(T − t)

and from the fact
∫

M u(z, τ ) dg(z, τ ) dτ = 1, we conclude

(4-19) G(x, t; y, T )≤ c
(T−t)n/2

.

Step 2. Using methods of the exponential weight due to Davies [1989], we prove
the bound with the exponential term.

It is clear that we only have to deal with the case d(x0, y0, T )≥ 2
√

T − t . Other-
wise, by (4-19) the Gaussian-type upper bound (1-4) holds obviously. Pick a point
x0 ∈ M , a number λ< 0 which is determined later and a function f ∈ L2(M, g(T )).
Consider the functions u(x, t) and H(x, t) defined by

u(x, t)=
∫

M
G(x, t; y, T )e−λd(y,x0,T ) f (y) dg(y, T ),

H(x, t)= eλd(x,x0,t)u(x, t).

It is clear that u is a solution of (1-2) with initial data

u(x, T )= e−λd(x,x0,T ) f (x).
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Direct calculation shows

∂t

∫
M

H 2(x, t) dg(x, t)= ∂t

∫
M

e2λd(x .x0,t)u2(x, t) dg(x, t)

= 2λ
∫

M
e2λd(x .x0,t)∂t d(x, x0, t)u2(x, t) dg(x, t)

−

∫
M

e2λd(x .x0,t)u2(x, t)S(x, t) dg(x, t)

− 2
∫

M
e2λd(x .x0,t)u(x, t)(1u− Su) dg(x, t)

≥−2
∫

M
e2λd(x .x0,t)u(x, t)1u dg(x, t),

where the last inequality holds due to Sy ≥ 0, λ < 0, and ∂t d(x, x0, t)≤ 0.
By integration by parts, we obtain

∂t

∫
M

H 2(x, t) dg(x, t)≥ 4λ
∫

M
e2λd(x .x0,t)u(x, t)〈∇u,∇d(x, x0, t)〉 dg(x, t)

+ 2
∫

M
e2λd(x .x0,t)|∇u|2 dg(x, t),

and also∫
M
|∇H(x, t)|2 dg(x, t)

=

∫
M
|∇(u(x, t)eλd(x .x0,t))|2 dg(x, t)

=

∫
M

e2λd(x .x0,t)|∇u|2 dg(x, t)+ 2λ
∫

M
e2λd(x .x0,t)u(x, t)〈∇u,∇d(x, x0, t)〉 dg(x, t)

+ λ2
∫

M
e2λd(x .x0,t)|∇d|2u2 dg(x, t).

Combining the above two expressions, we conclude

∂t

∫
M

H 2(x, t) dg(x, t)≥ 2
∫

M
|∇H(x, t)|2 dg(x, t)− 2λ2

∫
M

e2λd(x .x0,t)u2 dg(x, t),

which implies

∂t

∫
M

H 2(x, t) dg(x, t)≥−2λ2
∫

M
H 2(x, t) dg(x, t).
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Integrating on [t, T ], we arrive at the L2 estimate

(4-20)
∫

M
H 2(x, t) dg(x, t)≤ e2λ2(T−t)

∫
M

H 2(x, T ) dg(x, T )

= e2λ2(T−t)
∫

M
f 2(x) dg(x, T ).

Therefore, by the mean value inequality (4-17) with r =
√

1
2(T − t), it holds that

u2(x, t)≤ c
(T−t)1+n/2

∫ (T+t)/2

t

∫
B(x,
√
(T−t)/2,τ )

u2(z, τ ) dg(z, τ ) dτ

≤
c

(T−t)1+n/2

∫ (T+t)/2

t

∫
B(x,
√
(T−t)/2,τ )

e−2λd(z,x0,τ )H 2(z, τ ) dg(z, τ ) dτ.

Particularly, at x = x0, we get

u2(x0, t)≤ ce−2λ
√
(T−t)/2

(T−t)1+n/2

∫ (T+t)/2

t

∫
B(x0,

√
(T−t)/2,τ )

H 2(z, τ ) dg(z, τ ) dτ.

From (4-20), it follows that

u2(x0, t)≤ ce2λ2(T−t)−2λ
√
(T−t)/2

(T−t)n/2

∫
M

f 2(y) dg(y, T ),

i.e.,

(4-21)
(∫

M
G(x0, t; z, T )e−λd(z,x0,T ) f (z) dg(z, T )

)2

≤
ce2λ2(T−t)−2λ

√
(T−t)/2

(T−t)n/2

∫
M

f 2(y) dg(y, T ).

Now we fix y0 such that d(y0, x0, T )2 ≥ 4(T − t). Then it follows from the triangle
inequality that

−λd(z, x0, T )≥− 1
2λd(x0, y0, T ),

provided by d(z, y0, T )≤
√

T − t . Then (4-21) implies(∫
B(y0,

√
T−t,T )

G(x0, t; z, T ) f (z) dg(T )
)2

≤
ceλd(x0,y0,T )+2λ2(T−t)−2λ

√
(T−t)/2

(T−t)n/2

∫
M

f 2(y) dg(T ).

Note that by the Cauchy–Schwartz inequality

2λ2(T − t)− 2λ
√

1
2(T − t)≤ 3λ2(T − t)+ 1

2 ,
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and letting λ=−d(x0, y0, T )/(b(T − t)), we obtain(∫
B(y0,

√
T−t,T )

G(x0, t; z, T ) f (z) dg(z, T )
)2

≤
ce−

c1d2(x0,y0,T )
T−t

(T−t)n/2

∫
M

f 2(y) dg(y, T )

with b>0 sufficiently large, and c1 is an absolute constant. Then by the arbitrariness
of f , we derive∫

B(y0,
√

T−t,T )
G2(x0, t; z, T ) dg(z, T )≤ ce−c1

d2(x0,y0,T )
T−t

(T−t)n/2
.

Hence, there exists z0 ∈ B(y0,
√

T − t, T ) such that

(4-22) G2(x0, t; z0, T )≤ ce−c1
d2(x0,y0,T )

T−t

(T−t)n/2|B(y0,
√

T−t, T )|T
.

Let us recall that in [Guenther 2002] the adjoint property of the G(x0, t : · , · ) is
obtained, thus

1zG(x, t; z, τ )− ∂τG(x, t; z, τ )= 0

along Ricci-harmonic flow (1-1).
Choosing δ = 1 in Theorem 4.1 and z0 ∈ B(y0,

√
T − t, T ), it then follows that

(4-23) G(x0, t; y0, T )≤
√

G(x0, t; z0, T )
√

Aed2(y0,z0,T )/4(T−t)

≤ e1/4
√

G(x0, t; z0, T )
√

A,

where A = supM×[(t+T )/2,T ] G(x0, t; · , · ).
Since (4-19) implies

A ≤ c
(T−t)n/2

,

then combining with (4-22) and (4-23) we have

G(x0, t; y0, T )2 ≤ c
(T−t)n/2

1
(T−t)n/4

√

|B(y0,
√

T−t, T )|T
e−

c1d2(x0,y0,T )
T−t .

Therefore by the Cauchy–Schwartz inequality, we get

G(x0, t; y0, T )≤ c
(

1
(T−t)n/2

+
1

|B(y0,
√

T−t, T )|T

)
e−

c1d2(x0,y0,T )
T−t

≤
c

|B(y0,
√

T−t, T )|T
e−

c1d2(x0,y0,T )
T−t ,

where c depends on the dimension n, λ0 and the initial metric g0, and c1 depends
only on dimension n. In the last inequality, we used the volume comparison theorem
with the nonnegative Ricci curvature. By the arbitrariness of x0 and y0, we complete
the proof. �
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APPROXIMATION TO AN EXTREMAL NUMBER,
ITS SQUARE AND ITS CUBE

JOHANNES SCHLEISCHITZ

We study rational approximation properties for successive powers of ex-
tremal numbers defined by Roy. For n ∈ {1, 2}, the classic approximation
constants λn(ζ ), λ̂n(ζ ),wn(ζ ), ŵn(ζ ) connected to an extremal number ζ
have been established and in fact much more is known. However, so far
almost nothing had been known for n ≥ 3. In this paper we determine all
classic approximation constants as above for n= 3. Our methods will more
generally provide detailed information on the combined graph defined by
Schmidt and Summerer assigned to an extremal number, its square and
its cube. We provide some results for n = 4 as well. In the course of the
proofs of the main results we establish a very general connection between
Khintchine’s transference inequalities and uniform approximation.

1. Approximation constants and extremal numbers

Let ζ be a real transcendental number and n ≥ 1 be an integer. For 1≤ j ≤ n+ 1
we define the approximation constants λn, j (ζ ) as the supremum of η ∈ R such that
the system

(1) |x | ≤ X, max
1≤i≤n

|ζ i x − yi | ≤ X−η

has (at least) j linearly independent solutions (x, y1, y2, . . . , yn) ∈ Zn+1 for arbi-
trarily large values of X . Moreover, let λ̂n, j (ζ ) be the supremum of η such that
(1) has (at least) j linearly independent solutions for all sufficiently large X . In
the case of j = 1 we also only write λn(ζ ) and λ̂n(ζ ) respectively, which are just
the classical approximation constants defined by Bugeaud and Laurent [2005]. By
Dirichlet’s theorem for all transcendental real ζ and n ≥ 1 these exponents satisfy
the estimate

(2) λn(ζ )≥ λ̂n(ζ )≥
1
n
.
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Moreover from the definition we see that

λ1(ζ )≥ λ2(ζ )≥ · · · and λ̂1(ζ )≥ λ̂2(ζ )≥ · · · .

Similarly, let wn, j (ζ ) and ŵn, j (ζ ) be the supremum of η∈R such that the system

(3) H(P)≤ X, 0< |P(ζ )| ≤ X−η

has (at least) j linearly independent polynomial solutions
∑n

i=0 ai T i of degree at
most n with integers a j for arbitrarily large X and all large X respectively, where
H(P) = max0≤ j≤n |a j |. Again for j = 1 we also write wn(ζ ) and ŵn(ζ ) which
coincide with classical exponents. Again by Dirichlet’s theorem we have

(4) wn(ζ )≥ ŵn(ζ )≥ n.

Moreover it is obvious that

w1(ζ )≤ w2(ζ )≤ · · · and ŵ1(ζ )≤ ŵ2(ζ )≤ · · · .

The exponents defined above are connected via Khintchine’s [1926] transference
inequalities.

(5)
wn(ζ )

(n− 1)wn(ζ )+ n
≤ λn(ζ )≤

wn(ζ )− n+ 1
n

.

Similarly thanks to German [2012] we know that the uniform exponents are con-
nected via

(6)
ŵn(ζ )− 1
(n− 1)ŵn(ζ )

≤ λ̂n(ζ )≤
ŵn(ζ )− n+ 1

ŵn(ζ )
.

We point out that the estimates (5) and (6) hold more generally for the analogue
exponents concerning vectors ζ ∈Rn whose coordinates are Q-linearly independent
together with {1}; see for example [Schmidt and Summerer 2009]. This will be of
some importance in Remark 3.2. Moreover in this case all estimates in (5) and (6)
are known to be optimal.

It is known due to Davenport and Schmidt [1969] that ŵ2(ζ ) ≤
3+
√

5
2 for all

real transcendental ζ . Roy [2004a] proved that there exist countably many real
transcendental numbers for which equality holds, and called such numbers extremal
numbers. Their approximation properties have been intensely studied in dimensions
n ∈ {1, 2}. We gather below some of the known facts which will be of importance
for this paper. Throughout the paper let

ρ = 2+
√

5, τ =
3+
√

5
2

, ν =
1+
√

5
2

and γ =

√
5−1
2

.
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These values are linked via τ = ν2, ρ = ν3 and γ = ν−1. Moreover τ = ν+ 1 and
ν2
− ν− 1= 0. It is known that for ζ an extremal number, the identities

(7) w1(ζ )= λ1(ζ )= λ2(ζ )= 1, λ̂2(ζ )= γ, w2(ζ )= ρ, ŵ2(ζ )= τ

hold. Concerning the higher successive minima functions it is immediate by Roy’s
results that any extremal number satisfies

w2,2(ζ )= τ, w2,3(ζ )= ν, λ2,2(ζ )= γ, λ2,3(ζ )= γ
2,(8)

ŵ2,2(ζ )= ν, ŵ2,3(ζ )= 1, λ̂2,2(ζ )= γ
2, λ̂2,3(ζ )= γ

3.(9)

In fact even more detailed approximation properties are known for n = 2. There
is concise information on the integral approximation vectors inducing very good
approximations in (1) such as for the polynomials inducing very good approxima-
tions in (3). We will concretely utilize the following consequence of Roy’s results,
which is part of the claim of [Roy 2004b, Theorem 7.2]. See also [Roy 2004a,
Proposition 8.1, Theorem 8.2]. As usual a � b means both a� b and b� a are
satisfied everywhere it occurs in the sequel.

Theorem 1.1 (Roy). For any extremal number ζ there exists a sequence of irre-
ducible polynomials (Pk)k≥1 ∈ Z[T ] of degree precisely two such that

H(Pk+1)� H(Pk)
ν and |Pk(ζ )| � H(Pk)

−ρ .

Moreover we have

(10) |P ′k(ζ )| � H(Pk).

All the implied constants depend on ζ only.

For the irreducibility and (10), see [Roy 2004a, Proposition 8.1, Theorem 8.2].
The other claims are part of the claims of [Roy 2004b, Theorem 7.2]. In fact
the irreducibility is easily deduced from λ1(ζ )= 1 in (7) and (42) below. Indeed
these relations imply that Pk in the theorem cannot have a rational root at least for
large k and are thus indeed irreducible. In context of (8), (9) we finally mention
that for n = 2, extremal numbers induce the regular graph defined by Schmidt and
Summerer [2013b].

This paper aims to provide a better understanding of the classic approximation
constants for extremal numbers in higher dimension n > 2. More generally we
will provide a description of the behavior of the approximation functions L j (q)
and L∗j (q) defined by Schmidt and Summerer [2009] in the course of their study
of parametric geometry of numbers, for n = 3 and partially for n = 4. We recall
basic facts on parametric geometry of numbers at the start of Section 3. Our results
will arise as a combination of the known results on extremal numbers for n ∈ {1, 2}
recalled above with estimates from parametric geometry of numbers. So far only a
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few nontrivial quantitative results on classical approximation constants for extremal
numbers in dimension n > 2 exist. The estimates

wn(ζ )≤ exp{c(ζ ) · (log(3n))2(log log(3n))2}

for all n ≥ 1 and some constant c(ζ ) > 0 are due to Adamczewski and Bugeaud
[2010]. It was recently proved [Bugeaud and Schleischitz 2016] that ŵ3(ζ ) ≤ 4
for extremal numbers ζ , which improves the upper bound 3+

√
2 valid for all

transcendental real ζ from the same paper (which in turn improved the bound 2n−
1= 5 of Davenport and Schmidt [1969, Theorem 2b]). However, we will determine
the precise value of ŵ3(ζ ) in Theorem 2.1. Besides approximation to extremal
numbers by cubic algebraic integers has been investigated. Roy [2004a] showed
that for extremal number ζ and any algebraic integer α of degree three we have

|ζ −α| � H(α)−τ−1.

Moreover in [Roy 2003, Theorem 1.1] he showed that for some extremal numbers
the exponent −1− τ can be replaced by −τ . The exponent −τ is optimal since

|ζ −α| � H(α)−τ

has solutions in algebraic integers α of degree at most three and arbitrarily large
height H(α) for any given real number ζ , as shown by Davenport and Schmidt
[1969]. It follows that for any real ζ there are monic polynomials of degree at most
three and arbitrarily large height H(P) such that

|P(ζ )| � H(P)−ν .

It follows from [Roy 2004a] that the exponent ν is optimal as well, since again the
reverse inequality holds at least for some class of extremal numbers and arbitrarily
large H(P).

2. New results

The case n= 3. The first major result of the paper is the following.

Theorem 2.1. Let ζ be an extremal number. Then we have

(11) w3(ζ )= w2(ζ )= ρ, λ3(ζ )=
1
√

5
,

and

(12) ŵ3(ζ )= 3, λ̂3(ζ )=
1
3 .

See the comments subsequent to Lemma 3.3 below for additional information
on the dynamic behavior of the successive minima as parametric functions. This
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dynamical point of view will also enable us to derive the following Theorem 2.2
from Theorem 2.1. As usual for an algebraic number α we write H(α) = H(P)
where P ∈Z[T ] is the irreducible minimal polynomial of α over Z[T ] with coprime
coefficients.

Theorem 2.2. Let ζ be an extremal number and ε > 0. Then the estimate

(13) |Q(ζ )| ≤ H(Q)−3−ε

has only finitely many irreducible solutions Q ∈ Z[T ] of degree precisely three. In
particular

(14) |ζ −α| ≤ H(α)−4−ε

has only finitely many algebraic solutions α of degree precisely three. On the other
hand the estimates

(15) |Q(ζ )| ≤ H(Q)−3+ε and |ζ −α| ≤ H(α)−4+ε

have solutions in irreducible polynomials Q of degree precisely three and algebraic
α of degree precisely three of arbitrarily large heights H(Q) and H(α). Moreover
there are arbitrarily large X such that

(16) H(Q)≤ X, |Q(ζ )| ≤ X−
√

5−ε

has no irreducible solution Q ∈ Z[T ] of degree precisely three. In particular for
arbitrarily large X the system

(17) H(α)≤ X, |ζ −α| ≤ H(α)−1 X−
√

5−ε

has no algebraic solution α of degree precisely three.

We strongly expect that the exponents in (16) and (17) are optimal as well. See
the comments below the proof of Theorem 2.2 for a heuristic argument that supports
this belief. Compare Theorem 2.2 with the estimates concerning approximation by
algebraic integers α at the end of Section 1.

The case n= 4. We want to establish a lower bound for the exponent λ4(ζ ). Our
result, based on parametric geometry of numbers, is the following.

Theorem 2.3. Let ζ be an extremal number. Then

(18) λ4(ζ )≥
γ

2
=

√
5− 1
4

.

If w4(ζ )= w2(ζ )= ρ, then there is equality in (18) and moreover

(19) ŵ4(ζ )= 4, λ̂4(ζ )=
1
4 .
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Observe that ρ ≈ 4.2361> 4, so the assumption of the conditioned results are
natural and thus we believe that there is actually equality in (18) and that (19) holds.
Theorems 2.1 and 2.2 also support this belief. On the other hand (4) prohibits
wn(ζ ) = ρ for n ≥ 5, which in general prohibits the methods of the paper from
working for n ≥ 5.

The constant in (18) is approximately γ /2≈ 0.3090. Observe that this improves
the lower bound derived from w4(ζ )≥w2(ζ )= ρ in combination with Khintchine’s
transference inequalities (5), which turns out to be 2+

√
5

10+3
√

5
≈ 0.2535, only slightly

larger than the trivial bound 1
4 from (2).

3. Preparatory results

Parametric geometry of numbers. For the proofs of the new results we introduce
some concepts of the parametric geometry of numbers following Schmidt and
Summerer [2009, 2013a], where we develop the theory only as far as it is needed
for our purposes and slightly deviate from their notation. In particular we restrict to
the case of successive powers. Some more specific properties will be carried out in
Section 4 for immediate application to preliminary results. Let ζ ∈ R be given and
Q > 1 a parameter. For n ≥ 1 and 1≤ j ≤ n+ 1, define ψn, j (Q) as the minimum
of η ∈ R such that

|x | ≤ Q1+η, max
1≤ j≤n

|ζ j x − yj | ≤ Q−(1/n)+η

has (at least) j linearly independent solutions (x, y1, . . . , yn)∈Zn+1. The functions
ψn, j (Q) can be equivalently defined via a lattice point problem, see [Schmidt and
Summerer 2009]. They have the properties

−1≤ ψn, j (Q)≤
1
n

and Q > 1, 1≤ j ≤ n+ 1.

Let
ψn, j = lim inf

Q→∞
ψn, j (Q) and ψn, j = lim sup

Q→∞
ψn, j (Q).

These values clearly all lie in the interval [−1, 1/n]. From Dirichlet’s theorem it
follows that ψn,1(Q)≤ 0 for all Q > 1 and hence ψn,1 ≤ 0. For our purposes, even
more important will be the functions ψ∗n, j (Q) from [Schmidt and Summerer 2009].
For 1≤ j ≤ n+1 and a parameter Q > 1, define the value ψ∗n, j (Q) as the minimum
of η ∈ R such that

|H(P)| ≤ Q(1/n)+η, |P(ζ )| ≤ Q−1+η

has (at least) j linearly independent solutions in polynomials P ∈ Z[T ] of degree
at most n. See the same work for the connection of the functions ψ∗n, j to a related
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lattice point problem, similarly as for simultaneous approximation. Again put

ψ∗n, j = lim inf
Q→∞

ψ∗n, j (Q) and ψ∗n, j = lim sup
Q→∞

ψ∗n, j (Q).

For transcendental ζ Schmidt and Summerer [2013a, (1.11)] established the in-
equalities

jψn, j + (n+ 1− j)ψn,n+1 ≥ 0 and jψn, j + (n+ 1− j)ψn,n+1 ≥ 0,

for 1≤ j ≤ n+ 1. The dual inequalities

(20) jψ∗n, j + (n+ 1− j)ψ∗n,n+1 ≥ 0 and jψ∗n, j + (n+ 1− j)ψ∗n,n+1 ≥ 0,

hold as well for the same reason. As pointed out in [Schmidt and Summerer 2009]
Mahler’s inequality implies

(21) |ψn, j (Q)+ψ∗n,n+2− j (Q)| �
1

log Q
for 1≤ j ≤ n+ 1.

In particular we have

(22) ψn, j =−ψ
∗

n,n+2− j and ψn, j =−ψ
∗

n,n+2− j for 1≤ j ≤ n+ 1.

In particular all values ψ∗n, j , ψ
∗

n, j lie in the interval [−1/n, 1], and ψ∗n,1≤ 0 follows
again from Dirichlet’s theorem. The constants ψn, j , ψn, j , ψ∗n, j , ψ

∗

n, j relate to the
classical approximation constants λn, j = λn, j (ζ ), wn, j =wn, j (ζ ) assigned to real ζ
via

(23) (1+ λn, j )(1+ψn, j )= (1+ λ̂n, j )(1+ψn, j )=
n+1

n
for 1≤ j ≤ n+ 1,

and

(24) (1+wn, j )
(1

n
+ψ∗n, j

)
= (1+ŵn, j )

(1
n
+ψ∗n, j

)
=

n+1
n

for 1≤ j ≤ n+1.

See [Schmidt and Summerer 2009, Theorem 1.4] for a proof of j = 1 which can be
readily extended to the case of arbitrary 1≤ j ≤ n+ 1 as noticed in [Schleischitz
2013]. From repeated application of (22), (23) and (24) one can deduce

(25) λn, j (ζ )=
1

ŵn,n+2− j (ζ )
and λ̂n, j (ζ )=

1
wn,n+2− j (ζ )

,

for 1≤ j ≤ n+ 1, already noticed in [Schleischitz 2014]. For q > 0 we also define
the functions

(26) Ln, j (q)= qψn, j (Q) and L∗n, j (q)= qψ∗n, j (Q),
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where Q = eq. They are piecewise linear with slopes among {−1, 1/n} and
{−1/n, 1} respectively. More precisely locally any Ln, j coincides with some

(27) L x(q)=max
{

log |x | − q, max
1≤ j≤n

log |ζ j x − yj | +
q
n

}
where x = (x, y1, . . . , yn) ∈ Zn+1 for yj the closest integer to ζ j x , see [Schmidt
and Summerer 2009, page 75]. Similarly any L∗n, j coincides locally with

(28) L∗P(q)=max
{

log H(P)−
q
n
, log |P(ζ )| + q

}
for some P ∈Z[T ] of degree at most n. Observe that for fixed P the left expression
in (28) decays with slope −1/n whereas the right expression rises with slope 1 in
the parameter q. Consequently, at a local maximum of some L∗n, j, the rising right
expression of some L∗P(q) meets the falling left expression of some L∗Q(q) with
H(Q) > H(P), and similarly for local maxima of Ln, j . On the other hand, at any
local minimum q of some L∗n, j there is either equality in the expressions in (28)
for some P, or the rising phase of some L∗P meets the falling phase of some L∗Q for
some Q with H(Q) > H(P). In the first case, which always applies for j = 1, the
function L∗n, j coincides with L∗P in a neighborhood of q . The situation is again very
similar for Ln, j . The identity (24) has a parametric version in the sense that for any
(Q, ψ∗n, j (Q)) in the graph of some function ψ∗n, j there exist j linearly independent
polynomials P1, . . . , Pj ∈ Z[T ] of degree at most n such that

(29) (1+w( j)
n )

(1
n
+ψ∗n, j (Q)

)
=

n+1
n
+ o(1), Q→∞,

holds where

w( j)
n :=

min1≤i≤ j (− log |Pi (ζ )|)

max1≤i≤ j log H(Pi )
,

and vice versa. Very similarly a dual parametric version of (23) for the functions
ψn, j (Q) can be obtained. Both versions are basically inherited from the proof
of [Schmidt and Summerer 2009, Theorem 1.4]. A crucial observation for the
parametric geometry of numbers developed in [Schmidt and Summerer 2009, 2013a]
is that Minkowski’s second lattice point theorem translates into

(30)
∣∣∣∣n+1∑

j=1

Ln, j (q)
∣∣∣∣� 1 and

∣∣∣∣n+1∑
j=1

L∗n, j (q)
∣∣∣∣� 1.

This implies that in any interval I = (q1, q2), the sum of the differences Ln, j (q2)−

Ln, j (q1) and L∗n, j (q2)− L∗n, j (q1) over 1≤ j ≤ n+1 are bounded in absolute value
as well by a fixed constant independent of I. We will implicitly use this fact in the
proof of Theorem 2.1. This argument is widely used in [Schmidt and Summerer
2013a].
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Two technical lemmas. For the conditioned result (19) we need parts of Lemma 3.1
below, which is of some interest on its own. For its proof we will use that every
local maximum of Ln,1 is a local minimum of Ln,2 (note: the analogue is in general
false for Ln, j , Ln, j+1 when j > 1). This follows from the elementary fact that for
any vector x = (x, y1, . . . , yn) ∈ Zn+1 clearly any integral multiple N x cannot lead
to a smaller value in (1). Hence if two functions L x1, L x2 as in (27) induce two
(successive) falling slopes −1 of Ln,1, with some rising phase of Ln,1 of slope 1/n
in between, then the corresponding vectors x1, x2 are linearly independent, and the
claim follows. Moreover we use Ln,1(q) < 0 for all q > 0, which is equivalent to
Dirichlet’s theorem.

Lemma 3.1. Let n≥1 be an integer and ζ be a real transcendental number. Assume
there is equality in either inequality of (5), that is, either

(31) nλn(ζ )+ n− 1= wn(ζ )

or

(32) λn(ζ )=
wn(ζ )

(n− 1)wn(ζ )+ n

holds. Then λ̂n(ζ )= 1/n and ŵn(ζ )= n.

Proof. Assume there is equality in the right inequality, that is nλn(ζ )+n−1=wn(ζ ).
In case of λn(ζ )=∞ we have λ̂n(ζ )= 1/n and ŵn(ζ )= n anyway by [Schleischitz
2016, Theorem 1.12 and Theorem 5.1]. Hence we can assume λn(ζ ) <∞, which
will simplify the estimates. It suffices to show λ̂n(ζ )= 1/n since the two claims are
well known to be equivalent, which follows for example from (6). It was shown by
Schmidt and Summerer [2009, remark on page 80, after the proof of Theorem 1.4]
that the right inequality in (5) is equivalent to ψn,1+nψn,n+1≥ 0. It follows directly
from their deduction of the mentioned remark that more generally the identity (31)
implies that for any ε > 0 there exist arbitrarily large parametersQ such that

|ψn,1(Q)+ nψn, j (Q)|< ε for 2≤ j ≤ n+ 1,

where Q can be chosen so that simultaneously ψn,1(Q) is arbitrarily close to ψn,1

and ψn, j (Q) is arbitrarily close to ψn, j for 2≤ j ≤ n+1. In particular, the identity
(31) implies

(33) ψn,1 =−nψn,2 =−nψn,3 = · · · = −nψn,n+1

and that for any ε > 0 and the (arbitrarily large) parameters Q as above the estimate

(34) 0<ψn,n+1(Q)−ψn,2(Q) < ε

is satisfied. Moreover, since ψn,1(Q) is close to ψn,1, we may assume that at such
Q the function ψn,1 has a local minimum, or equivalently Ln,1 has a local minimum
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at log Q (otherwise we get a contradiction to the definition of ψ1 either for some
Q̃< Q or some Q̃> Q dependent on whether ψn,1 rises in some interval (Q−δ, Q)
or decays in some interval (Q, Q+ δ)). Let ε > 0 and Q1 be any fixed large value
as above that in particular satisfies (34). Further let q1 = log Q1. The estimate (34)
can be written in terms of the functions Ln,. as

(35) 0< Ln,n+1(q1)− Ln,2(q1) < ε · q1.

From (30) we know that Ln,1(q1) approximately equals −
∑n+1

j=2 Ln, j (q1) up to
addition of some constant, that is∣∣∣∣Ln,1(q1)+

n+1∑
j=2

Ln, j (q1)

∣∣∣∣≤ C.

Since all Ln,2(q1), . . . , Ln,n+1(q1) are roughly equal by (35), we further deduce

|Ln,1(q1)+ nLn,2(q1)| =

∣∣∣∣(Ln,1(q1)+

n+1∑
j=2

Ln, j (q1)

)
+

n+1∑
j=2

(Ln,2(q1)− Ln, j (q1))

∣∣∣∣
≤ C + nεq1,

and hence in particular

(36) Ln,2(q1)≥−
Ln,1(q1)

n
− εq1− C̃,

where C̃ = C/n is another constant. Now let q0 be the largest value smaller than
q1 at which the function Ln,1(q) has a local maximum. Then by the assumption
that q1 is a local minimum of Ln,1 justified above, the function Ln,1 decays in the
interval [q0, q1] with slope −1 so that

(37) Ln,1(q1)− Ln,1(q0)= q0− q1.

On the other hand

(38) Ln,2(q1)− Ln,2(q0)≤
q1− q0

n
,

since the function Ln,2(q) has slope at most 1/n. Moreover, since any local
maximum of Ln,1(q) is a local minimum of Ln,2(q), we have

Ln,1(q0)= Ln,2(q0).

Combining this with (37) and (38) yields

Ln,2(q1)− Ln,1(q1)≤
(

1+ 1
n

)
(q1− q0).
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Together with (36) we obtain

Ln,1(q1)≥ Ln,2(q1)−
(

1+ 1
n

)
(q1−q0)≥−

Ln,1(q1)

n
−εq1−C̃−

(
1+ 1

n

)
(q1−q0),

which yields
Ln,1(q1)≥−

nε
n+1

q1− C̃ − (q1− q0).

Together with (37) we infer

Ln,1(q0)≥−
nε

n+1
q1− C̃ .

Now the assumption λn(ζ ) <∞ implies with (23) that ψn,1 >−1 and from this
it is not hard to see that q1� q0 for all q0, q1 as above with a constant depending
only on λn(ζ ) or equivalently ψn,1. Hence, for q0 > 1, we have

0> Ln,1(q0)�−εq0.

Since by the transcendence of ζ the values q0 induced from q1 as above clearly
tend to infinity as q1 does, we infer ψn,1 = 0 as we may choose ε arbitrarily small.
By (23) this is again equivalent to λ̂n(ζ )= 1/n. The proof in case of equality in
the right inequality is finished.

We only sketch the deduction of the dual result. Assume the identity (32) holds.
The dual characterization ψ∗n,1+ nψ∗n,n+1 ≥ 0 from [Schmidt and Summerer 2009]
for the related left inequality in (5) yields the dual characterization for the equality
(32) for the same reasons. Proceeding as above yields very similarly as above
0 < ψ∗n,n+1(Q)−ψ

∗

n,2(Q) < ε for large Q for which log Q are local minima of
L∗n,1 and such that ψ∗n,1(Q) is close to ψ∗n,1, dual to (34). For such Q we now look
at the smallest local maximum of L∗n,1 greater than log Q. Since all L∗n, j have slope
within {−1/n, 1}, the claim ŵn(ζ ) = n follows very similarly incorporating that
any local maximum of L∗n,1 is a local minimum of L∗n,2 again. �

Remark 3.2. We point out that the proof of Lemma 3.1 does not require that the
point lies on the Veronese curve defined as {(t, t2, . . . , tk) : t ∈ R}. The only point
where we used the special form of successive powers was for λn(ζ )=∞, and in
this case more concise estimates show the claim as well. Hence the claim extends
naturally to the analogue exponents assigned to ζ ∈ Rk whose coordinates are
linearly independent together with {1}.

It will be convenient to utilize the following Lemma 3.3 for the proof of
Theorem 2.1. Roughly speaking, it shows that multiplication of a polynomial
P with a polynomial Q for which |Q(ζ )| ≈ H(Q)−1 holds induces an increase
of the corresponding function L∗3,. by 1

3 in some interval. For fixed real ζ we will
say a polynomial P ∈ Z[T ] of degree at most 3 induces a point (q, L∗P(q)) in the
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3-dimensional Schmidt–Summerer diagram if (q, L∗P(q)) is the local minimum of
L∗P implicitly defined via H(P), P(ζ ) by

(39) L∗P(q)= log H(P)−
q
3
= log |P(ζ )| + q,

consistent with (28). Recall that any local minimum of some successive minimum
function L∗3,. is obtained as in (39) for some P ∈ Z[T ].

Lemma 3.3. Let P, Q, R ∈ Z[T ] be of large heights and such that R = P Q and R
has degree at most three. Assume P induces the point (q1, L∗P(q1)) and R induces
the point (q2, L∗R(q2)) in the 3-dimensional Schmidt–Summerer diagram. Further
assume

(40) |Q(ζ )| = H(Q)−1+δ

for δ of small absolute value, and that (log H(Q))−1
= O(δ). Then

(41)
L∗R(q2)− L∗P(q1)

q2− q1
=

1
3
+ O(δ).

Proof. From (39) we calculate

q1 =
3
4 · (log H(P)− log |P(ζ )|) and L∗P(q1)=

3
4 · log H(P)+ 1

4 · log |P(ζ )|.

Similarly, we infer

q2 =
3
4 · (log H(R)− log |R(ζ)|)

=
3
4 · (log H(P)+ log H(Q)+1− (log |P(ζ)| + log |Q(ζ)|)),

and

L∗R(q2)=
3
4 · (log H(P)+ log H(Q)+1)+ 1

4 · (log |P(ζ )| + log |Q(ζ )|),

where 1 is bounded by virtue of (42) below. Inserting yields

L∗R(q2)− L∗P(q1)

q2− q1
=

3
4 log H(Q)+ 1

4 log |Q(ζ )| + 3
41

3
4 log H(Q)− 3

4 log |Q(ζ )| + 3
41
,

and with the assumption (40) further

L∗R(q2)− L∗P(q1)

q2− q1
=

( 1
2 +

1
4δ
)

log H(Q)+ 3
41(3

2 −
3
4δ
)

log H(Q)+ 3
41
.

The claim follows by simply rearranging and assuming (log H(Q))−1
= O(δ). �

Conversely (41) implies that log |Q(ζ )|/ log H(Q)+1 is small by a very similar
argument, but we will not use this. Again the proposition did not use the fact that we
deal with successive powers of a number, and can be generalized to any dimension.
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4. Proofs of Theorems 2.1, 2.2 and 2.3

Apart from Theorem 1.1 and the concepts of the parametric geometry of numbers
discussed on pages 490–492, we will use that for any polynomials Q1, Q2 with
integral coefficients of degree bounded by n we have

(42) H(Q1 Q2)�n H(Q1)H(Q2).

See [Wirsing 1961, Hilfssatz 3]. As in our applications the dimensions n are
fixed we can assume absolute constants in (42). We will sometimes implicitly
use the consequence that if Q = Q1 Q2 then |Q(ζ )| ≤ H(Q)−z implies that either
|Q1(ζ )| � H(Q1)

−z or |Q2(ζ )| � H(Q2)
−z must be satisfied, which was essen-

tially used by Wirsing [1961]. We start with the proof of Theorem 2.3 since it is
the least technical one.

Proof of Theorem 2.3. We will prove that any extremal number ζ satisfies

(43) w4,4(ζ )≥ ρ.

Assume we have already shown (43). Then the unconditional claim (18) follows
from iterated use of results from parametric geometry of numbers. Indeed, from
(43) applying (24) with n = j = 4 we first obtain

(44) ψ∗4,4 ≤
2−
√

5
4(3+

√
5)
.

In view of (22) and (20) applied with n = j = 4, we obtain

(45) ψ4,1 =−ψ
∗

4,5 ≤ 4 ·ψ∗4,4 ≤
2−
√

5
3+
√

5
.

Eventually computing the corresponding value of λ4 by applying (23) with n = 4,
j = 1 leads precisely to the lower bound γ /2 in the theorem.

We are left to prove (43). For this we use the characterization of the polynomials
Pk ∈ Z[T ] of degree 2 for n = 2 from Theorem 1.1. Consider for fixed large k three
successive polynomials Pk−2, Pk−1, Pk . Then we know from Theorem 1.1 that

(46) |Pj (ζ )| � H(Pj )
−ρ for j ∈ {k− 2, k− 1, k}.

Applied with j = k it is obvious that the polynomials Rk(T )= T Pk(T ) and Sk(T )=
T 2 Pk(T ) have degrees 3 and 4, heights H(Pk)= H(Rk)= H(Sk), and satisfy

|Pk(ζ )| �ζ |Rk(ζ )| �ζ |Sk(ζ )| �ζ H(Pk)
−ρ

as well. The polynomials Pk, Rk, Sk are obviously linearly independent and hence
w4,3(ζ ) ≥ ρ. As the fourth polynomial Tk we take the product of Pk−1 and
Pk−2. First we show that {Pk, Rk, Sk, Tk} are linearly independent. Otherwise
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Tk = Pk−1 Pk−2 would lie in the 3-dimensional space spanned by Pk, Rk, Sk , which
by the special form of Rk, Sk means Tk = Pk Z for some polynomial Z(T ) ∈Q[T ]
of degree 2. However we know from Theorem 1.1 that the best approximating
polynomials Pj are irreducible over Z[T ] for all large j . Hence by the unique
factorization in Z[T ] the polynomial Pk must equal (up to sign) either Pk−1 or Pk−2,
which is clearly false, so we have a contradiction.

Moreover from (46) and the characterization in Theorem 1.1 it is known that
H(Pk−2)

ν2
�H(Pk−1)

ν
�H(Pk). Since ν−1

+ν−2
=1 and H(Tk)�H(Pk−1)H(Pk−2)

by (42), we deduce H(Tk)� H(Pk). Together with property (46) for j = k− 1 and
j = k− 2 we infer

|Tk(ζ)|=|Pk−1(ζ)Pk−2(ζ)|�ζH(Pk−1)
−ρH(Pk−2)

−ρ
�H(Pk−1Pk−2)

−ρ
�H(Pk)

−ρ.

Summing up, we have found four linearly independent polynomials Pk, Rk, Sk, Tk

with the properties

H(Pk)� H(Rk)� H(Sk)� H(Tk)

and
|Pk(ζ )| �ζ |Rk(ζ )| �ζ |Sk(ζ )| �ζ |Tk(ζ )| �ζ H(Pk)

−ρ .

Since this holds for any large k we have established (43).
Finally we show the conditioned results. The equality λ4(ζ ) = γ /2 follows

immediately from Khintchine’s inequalities (5) since the upper bound for λ4(ζ )

that arises from n = 4, w4(ζ )= ρ, coincides with the lower bound γ /2 established
above (the argument essentially used the characterization (33), (34) for equality
(31) from [Schmidt and Summerer 2009] used in the proof of Lemma 3.1). Finally
(19) follows from Lemma 3.1 since we have just shown that w4(ζ )= ρ implies the
identity (31) for any extremal number ζ and n = 4. �

Remark 4.1. It was essentially shown in the proof of [Bugeaud 2010, Theorem 2]
that the condition

(47) w1(ζ )= w2(ζ )= · · · = wn(ζ )

implies (31). If the hypothesisw4(ζ )=ρ of Theorem 2.3 holds then its assertion and
(7) show that extremal numbers provide counterexamples for the reverse implication
for n = 4. In this context note that if λn(ζ ) > 1 the claims (47) and (31) are indeed
equivalent by [Schleischitz 2016, Theorem 5.4]. Note also that from Lemma 3.1
and the above implication we could deduce that (47) implies λ̂n(ζ ) = 1/n and
ŵn(ζ )= n. However, the weaker condition w1(ζ )≥ n already implies λ̂n(ζ )= 1/n
and ŵn(ζ )= n as established in [Schleischitz 2016, Theorem 5.1].

The proof of Theorem 2.3 in fact provides upper bounds for the frequency of
good simultaneous rational approximations to (ζ, ζ 2, ζ 3, ζ 4). More precisely the
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proof shows that there exists a sequence (xk)k≥1 of positive integers that satisfy

xk+1� xνk and max
1≤ j≤4

‖xkζ
j
‖� x−γ /2k .

In case of the conjectured equality in (18) we even have

(48) xk+1 � xνk and max
1≤ j≤4

‖xkζ
j
‖ � x−γ /2k .

Here as usual ‖ · ‖ denotes the distance to the nearest integer. We briefly sketch
how to deduce these facts from the proof above. The polynomials Pk, Rk, Sk, Tk

in the proof which induce the bound for the value ψ∗4,4 in (44) appear with fre-
quency H(Pk+1)� H(Pk)

ν (and very similarly for Rk, Sk, Tk). The last minimum
ψ∗4,5(Q) at the corresponding positions Q in the Schmidt–Summerer diagram is
asymptotically bounded below as in (45) and the corresponding polynomials appear
with the same logarithmic asymptotic height frequency ν. We now flip the diagram
along the horizontal axis according to (21) to obtain (roughly) the dual problem
of simultaneous approximation. Thereby with simple geometric considerations
involving (27) and reinterpreting to classical exponents λ4,. we see that the first
coordinates of best approximations related to the bound for ψ4,1 in (45) appear with
frequency xk+1� xνk as well (with a technical proof it possible to show that a single
xk cannot induce the good approximations for two consecutive values of Q obtained
this way). In case of equality in (18) the functions ψ4,1(Q) must have a local
minimum at such places Q and (48) follows. It is tempting to further conjecture
that for the corresponding approximation vectors (xk, yk,1, . . . , yk,4)k≥1, where xk

is as in (48) and yk, j is the closest integer to ζ j xk , similar general recursive patterns
as for n = 2 noticed in [Roy 2004a] exist. However, we do not further investigate
this topic here.

We turn to the case n = 3. For a real number ζ we define the sequence
of 1-dimensional best approximation polynomials (El)l≥1 attached to ζ . They
are given by linear polynomials El(T ) = al T + bl with al, bl ∈ Z defined by
E1(T )= T −bζc and El+1 is recursively defined via El as the linear polynomial
of least height for which 0 < |El+1(ζ )| < |El(ζ )|. These polynomials obviously
satisfy H(E1) < H(E2) < · · · and

El(ζ )=min{|Q(ζ )| : Q ∈ Z[T ], deg(Q)= 1, 1≤ H(Q)≤ H(El)}.

It follows from the theory of continued fractions that the rational numbers bl/al

are precisely the convergents to ζ . Moreover by Dirichlet’s theorem the best
approximating polynomials satisfy

(49) |El(ζ )| �ζ H(El)
−1 for l ≥ 1.
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Furthermore it is well known and follows from elementary results on the theory of
continued fractions that |El(ζ )| �ζ H(El+1)

−1 for all irrational ζ , which readily
implies

(50) 1≤ lim inf
l→∞

log H(El+1)

log H(El)
≤ lim sup

l→∞

log H(El+1)

log H(El)
= λ1(ζ ).

In view of the rather technical proof of (11), for the convenience of the reader
we give a brief outline of some facts we will show in the course of the proof. We
will establish a rather precise description of the functions L∗3,1(q), . . . , L∗3,4(q) on
q ∈ (0,∞) induced by an extremal number, its square and its cube. Denote by |I |
the length of an interval I. We will show there exists a partition of the positive real
numbers in successive intervals I1, J1, I2, J2, . . . with the following properties:

• limk→∞ |Ik |/|Jk | = 1.

• limk→∞ |Ik+1|/|Ik | = limk→∞ |Jk+1|/|Jk | = ν.

• At the beginning of every Ik all L∗3,i (q) are all small (more precisely o(q) as
q→∞) by absolute value. Then in Ik the functions L∗3,1(q), L∗3,2(q) basically
decay with slope −1/3, whereas L∗3,3(q), L∗3,4(q) basically rise with slope 1

3
in any not too short subinterval of Ik (clearly not in too short intervals, since
the L∗3,. have slope within

{
−

1
3 , 1

}
).

• At the end of Ik and beginning of Jk the opposite behavior appears; that is,
L∗3,1(q), L∗3,2(q) basically rise with slope 1

3 on any not too short subinterval of
Jk , whereas L∗3,3(q), L∗3,4(q) basically decay with slope −1

3 until the functions
L∗3,1, . . . , L∗3,4 asymptotically meet again at the end of Jk which is the beginning
of Ik+1.

• The functions |L∗3,1(q)− L∗3,2(q)| such as |L∗3,3(q)− L∗3,4(q)| are bounded
uniformly in q .

All above is basically true for the simultaneous approximation functions L3, j (q) as
well by (22). Observe that by the last point above in particular

w3,1(ζ)= w3,2(ζ), w3,3(ζ)= w3,4(ζ), ŵ3,1(ζ)= ŵ3,2(ζ), ŵ3,3(ζ)= ŵ3,4(ζ),(51)

λ3,1(ζ)= λ3,2(ζ), λ3,3(ζ)= λ3,4(ζ), λ̂3,1(ζ)= λ̂3,2(ζ), λ̂3,3(ζ)= λ̂3,4(ζ),(52)

which extends the claim of Theorem 2.1. See also Remark 4.2 below. We point out
that roughly speaking the decay phases of L∗3,. are induced by the polynomials Pk

from Theorem 1.1. The rising phases are induced by products Pk El for fixed Pk

and suitable successive best approximating polynomials El defined above, which
indeed lead to asymptotic increase by 1

3 as stated in the description above, basically
in view of Lemma 3.3.
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Proof of Theorem 2.1. First we prove (12). We show that

(53) w3,4(ζ )≥ 3.

Provided this is true it follows immediately that w4,3(ζ ) = ŵ3(ζ ) = 3, since
w3,4(ζ )= λ̂3(ζ )

−1
≤ 3 by (25) and (2). This argument in fact utilizes parametric

geometry of numbers. Actually it is well known and follows, for example, from (6)
that both claims in (12) are equivalent.

For (12) it remains to be shown that (53) holds. Let k be fixed large and consider
the polynomials Pk, Pk+1, . . . from Theorem 1.1, and let R j (T )= T Pj (T ) for j ≥ k.
Further let X = H(Pk+1). Then obviously Pk+1(T ) and Rk+1(T )= T Pk+1 satisfy

(54) H(Pk+1)= H(Rk+1)= X and |Pk+1(ζ )| �ζ |Rk+1(ζ )| �ζ X−ρ < X−3.

Let ε > 0. We shall construct polynomial multiples

(55) Qk,1 = Rk,1 · Pk and Qk,2 = Rk,2 · Pk

of Pk with Rk,i ∈ Z[T ] polynomials of degree one such that {Rk,1, Rk,2} and hence
also {Qk,1, Qk,2} are linearly independent and satisfy

(56) H(Qk,i )� X and |Qk,i (ζ )| � X−3+ε for i ∈ {1, 2}.

One readily verifies that {Qk,1, Qk,2} span the same space as {Pk, T Pk} regardless
of which linear polynomials Rk,i we choose. Observe that the space spanned by
{Pk+1, Rk+1, Qk,1, Qk,2} consequently has dimension 4. Indeed, otherwise the poly-
nomial identity Pk(T )Y1(T )= Pk+1(T )Y2(T ) would have linear integer polynomial
solutions Y1, Y2, which is a contradiction since Pk, Pk+1 have degree two and are
irreducible and not proportional and Z[T ] has unique factorization. Hence from (54)
and (56) indeed the claim (53) follows by considering {Pk+1, Rk+1, Qk,1, Qk,2} as
ε can be chosen arbitrarily small. To finally prove (56), for the given X = H(Pk+1)

we let Rk,1= El and Rk,2= El+1 be two successive best approximating polynomials
in dimension n = 1 as introduced before the proof with l chosen largest possible
such that still H(Rk,i )H(Pk)≤ X for i ∈ {1, 2}. It follows from (42) and (55) that

(57) H(Qk,i )� X for i ∈ {1, 2}.

On the other hand, since extremal numbers satisfy λ1(ζ )= 1 as mentioned in (7),
by (50) the sequence (El(T ))l≥1 of best approximating polynomials in dimension 1
satisfies

(58) lim
l→∞

log H(El+1)

log H(El)
= 1 and lim

l→∞
−

log |El(ζ )|

H(El)
= 1.

Since Rk,1 = El , Rk,2 = El+1 and by our maximal choice of l, it is easy to see that

H(Qk,i )≥ X1−ε for i ∈ {1, 2}.
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It further follows from (42) and the fact that H(Pk+1)� H(Pk)
ν , or equivalently

H(Pk)� H(Pk+1)
γ in view of Theorem 1.1, that we have

H(Rk,i )� H(Qk,i )H(Pk)
−1
� X1−εH(Pk)

−1
� X1−γ−ε for i ∈ {1, 2}.

Together with (49) this leads to

|Rk,i (ζ )| �ζ X−1+γ+ε for i ∈ {1, 2}.

Hence

|Qk,i (ζ )| = |Pk(ζ )| · |Rk,i (ζ )| �ζ X−ργ · X−1+γ+ε
= X−3+ε for i ∈ {1, 2},

where we used ργ + 1− γ = 3, which can be readily checked. Thus recalling (57)
we have proved (56) and hence together with (54) finally (12).

Now we prove the more technical identities (11). In the proof of (12) above
we have shown that for any large k, with X = H(Pk+1) we have four linearly
independent polynomials {T1, . . . , T4}= {Pk+1, Rk+1, Qk,1, Qk,2} with H(Ti )� X
and |Ti (ζ )| ≤ X−3+ε. Following the proof of (24), this means that for arbitrarily
small ε > 0, any large k induces qk > 0 such that all

(59) |L∗3,i (qk)| ≤ εqk for 1≤ i ≤ 4,

where limk→∞ qk/ log H(Pk+1) = 3 in view of (28). Since by Theorem 1.1 any
polynomial Pk+1 induces an approximation of quality

−
log |Pk+1(ζ )|

log H(Pk+1)
= ρ+ o(1) > 3, k→∞,

and so does Rk+1(T ) = T Pk+1(T ), it follows that L∗3,1 and L∗3,2 decay with as-
ymptotic slope −1/3 in some interval (qk, bk) and (qk, ck) respectively, for bk and
ck local minima of L∗3,1 and L∗3,2 respectively. More precisely, the local minima
(dk, L∗Pk+1

(dk)) and (ek, L∗Rk+1
(ek)) of the functions L∗Pk+1

and L∗Rk+1
as in (28),

almost coincide with local minima (bk, L∗3,1(bk)) and (ck, L∗3,2(ck)), respectively.
By this more precisely we mean that all differences

|bk − dk |, |bk − ek |, |ck − dk |, |ck − ek |

as well as the corresponding differences of the L∗ evaluations

|L∗3,1(bk)− L∗Pk+1
(dk)|, |L∗3,1(bk)− L∗Rk+1

(ek)|,

|L∗3,2(ck)− L∗Pk+1
(dk)|, |L∗3,2(ck)− L∗Rk+1

(ek)|,

at these points are bounded by a fixed constant for all k. Very similarly it is obvious
from the fact that Pk+1(ζ ) and Rk+1(ζ ) differ only by the factor ζ that bk and ck

are asymptotically equal, by which we mean their ratio bk/ck tends to one (in fact
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their difference |bk − ck | is again bounded) as k→∞. Hence with the parametric
formula (29) for the parameter w(1)3 = w

(2)
3 = ρ, with

Qk := ebk for k ≥ 1,

(not to confuse with the polynomials Qk,i ) we calculate

(60) lim
k→∞

ψ∗3,1(Qk)= lim
k→∞

ψ∗3,2(Qk)=
1−
√

5
3(3+

√
5)
.

Since L∗3,1 and L∗3,2 both decay with asymptotic slope − 1
3 in intervals Ik := (qk, bk),

that is,

L∗3,1(bk)− L∗3,1(qk)= (bk−qk)
(
−

1
3+ ε

)
and L∗3,2(bk)− L∗3,2(qk)= (bk−qk)

(
−

1
3+ ε

)
,

it follows from (30) that the sum L∗3,3+ L∗3,4 asymptotically increases with constant
slope 2

3 in Ik , that is,

L∗3,3(bk)+ L∗3,4(bk)− L∗3,3(qk)− L∗3,4(qk)= (bk − qk)
( 2

3 + ε
)
.

Consequently, if we can show that both L∗3,3 and L∗3,4 increase at most by 1
3 in any

large subinterval of Ik , that is, for any qk ≤ a < b ≤ bk , we have

(61) L∗3,3(b)−L∗3,3(a)≤ (b−a)
( 1

3+ε
)

and L∗3,4(b)−L∗3,4(a)≤ (b−a)
(1

3+ε
)
,

then both must have asymptotically constant increase by precisely 1
3 in the entire

interval Ik , i.e., equality in (61). We more precisely show the following claims:

Claim A: For any parameter X̃ ∈ (H(Pk),∞), let

Uk,X̃ = Pk · Et and Vk,X̃ = Pk · Et+1,

with t= t (k, X̃) chosen as the largest integer such that max{H(Uk,X̃ ), H(Vk,X̃ )}≤ X̃ .
Then the functions L∗3,.(q) arising from the succession (equals the pointwise mini-
mum) of the L∗Uk,X̃

, L∗Vk,X̃
as X̃ runs through (H(Pk),∞) via (28) have asymptotically

constant slope 1
3 in (bk−1,∞). By this more precisely we mean that for any

bk−1 ≤ X̃ < Ỹ if (a, LUk,X̃
(a)) or (a, LVk,X̃

(a)) lies in the graph of LUk,X̃
or LVk,X̃

,
respectively, and similarly for (b, LUk,X̃

(b)) or (b, LVk,X̃
(b)), then we have

L∗Uk,Ỹ
(b)−L∗Uk,X̃

(a)= (b−a)
( 1

3+ε
)

and L∗Vk,Ỹ
(b)−L∗Vk,X̃

(a)= (b−a)
(1

3+ε
)
.

Claim B: Moreover if we restrict to X̃ ∈ (H(Pk+1), H(Pk+2)), then the functions
L∗Uk,X̃

and L∗Vk,X̃
induce L∗3,3 and L∗3,4 on Ik , respectively (remark: as we will see later

on they induce L∗3,1 and L∗3,2 in intervals (bk−1, qk) if we let X̃ ∈ (H(Pk), H(Pk+1))).
First recall that at the beginning qk of the interval Ik the successive minima are

induced basically by {Pk, T Pk, Pk+1, T Pk+1}. Claim A follows basically directly
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from Lemma 3.3, where Et and Et+1 respectively play the role of Q and Pk the
role of P. Note also that δ from Lemma 3.3 tends to 0 in our context in view of
(58), which also implies that the minima (in fact the entire functions) of consecutive
functions of the form L∗Uk,X̃

or L∗Vk,X̃
do not differ much. Finally, it should be pointed

out that the condition that 1/ log H(Q)= O(δ) does not cause problems since for
any fixed δ > 0 and smaller heights H(Q) only minor changes of the function
L∗3,.(q) can appear in intervals (bk−1, bk−1+ O(1)), so that the global behavior of
the function is not affected. For Claim B further observe that {Uk,X̃ , Vk,X̃ } span the
same space as {Pk, T Pk} for all X̃ ∈ (H(Pk),∞), and we have already noticed that
polynomials in the space {Pk+1, T Pk+1} induce the first two successive minima in
Ik and {Pk, T Pk, Pk+1, T Pk+1} are linearly independent. Hence L∗3,3 and L∗3,4 are
bounded above by L∗Uk,X̃

and L∗Vk,X̃
in Ik respectively, and thus each increase at most

by 1
3 . As noticed above, we may conclude L∗3,3 and L∗3,4 must actually coincide

with the functions induced by L∗Uk,X̃
and L∗Vk,X̃

, respectively.
Thus together with (60) we have proved

(62) lim
k→∞

ψ∗3,1(Qk)= lim
k→∞

ψ∗3,2(Qk)

= lim
k→∞
−ψ∗3,3(Qk)= lim

k→∞
−ψ∗3,4(Qk)=

1−
√

5
3(3+

√
5)
.

We show next that in the interval Jk := (bk, qk+1) the functions L∗3,1, L∗3,2 have
slope − 1

3 whereas the functions L∗3,3, L∗3,4 have (asymptotic) slope 1
3 until they all

meet (asymptotically) at qk+1. More precisely

L∗3,1(qk+1)− L∗3,1(bk)= (qk+1− bk)
(
−

1
3 + ε

)
,

L∗3,2(qk+1)− L∗3,2(bk)= (qk+1− bk)
(
−

1
3 + ε

)
whereas

L∗3,3(qk+1)− L∗3,3(bk)= (qk+1− bk)
( 1

3 + ε
)
,

L∗3,4(qk+1)− L∗3,4(bk)= (qk+1− bk)
( 1

3 + ε
)

and

L∗3,4(qk+1)− L∗3,1(qk+1)≤ εqk+1.

Again by (59) with index shift k to k+ 1 we know that for arbitrarily small ε and
all large k ≥ k0(ε) we indeed have

(63) |L∗3,i (qk+1)| ≤ εqk+1 for 1≤ i ≤ 4.

Since we have shown that L∗3,1 and L∗3,2 decay in Ik with slope − 1
3 and (62)

holds it suffices to show that Jk has asymptotically equal length to Ik , that is,
limk→∞ |Jk |/|Ik | = 1, to conclude that L∗3,3 and L∗3,4 must decay with the minimum
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possible slope −1
3 in the entire interval Jk and more precisely

(64)

lim
k→∞
−

L∗3,1(bk)

qk+1− bk
= lim

k→∞
−

L∗3,2(bk)

qk+1− bk
= lim

k→∞

L∗3,3(bk)

qk+1− bk
= lim

k→∞

L∗3,4(bk)

qk+1− bk
=

1
3
.

We show the claim that Ik and Jk have asymptotically equal length, that is, |Ik |/|Jk |=

1 + o(1) as k → ∞. By construction this is equivalent to bk being asymp-
totically equal to (qk + qk+1)/2, that is, bk = (qk + qk+1)/2 + o(qk). Since
limk→∞ log H(Pk+1)/ log H(Pk)=ν and L∗3,.(qk)=o(qk) and L∗3,.(qk+1)=o(qk+1)

as k→∞. Further notice that L∗3,1, L∗3,2 decay in (qk, bk) induced by Pk+1, T Pk+1

and thus by (28) we have L∗3, j (qi )= log H(Pi+1)−qi/3+O(1) for 1≤ j ≤ 4 and
all i ≥ 1. Putting all this together leads to

(65) lim
k→∞

qk+1

qk
= ν.

Thus the claimed asymptotic relation bk = (qk + qk+1)/2+ o(qk) is equivalent to
bk = qk · (1+ ν)/2+ o(qk). We know that at Qk = ebk . We have asymptotically

(66) ψ∗3,3(Qk)=
bk − qk

3
+ o(qk), k→∞,

since L∗3,3 and L∗3,3 are small at qk by (59) and rise with slope 1
3 in Ik . We remark

that the asymptotic (66) holds for ψ∗3,4(Qk) as well. On the other hand (62) provides
an asymptotic formula for ψ∗3,3(Qk) and ψ∗3,4(Qk). It follows directly from the
definition of L∗3, j via ψ∗3, j in (26) that ψ∗3,3(Qk) is the slope from the origin to
(bk, L∗3,3(bk)) of L∗3,3 in the Schmidt–Summerer diagram (and similarly for L∗3,4).
Hence asymptotically

(67) ψ∗3,3(Qk)= ψ
∗

3,4(Qk)=

√
5−1

3(3+
√

5)
bk + o(bk), k→∞.

Again the asymptotic (67) holds for ψ∗3,4(Qk) as well. Comparing the two expres-
sions for ψ∗3,3(Qk) in (66) and (67), with a short computation, indeed we verify
bk = qk · (1+ ν)/2+ o(qk), so we have proved that Ik and Jk have asymptotically
equal length.

Since consequently L∗3,3 and L∗3,4 both asymptotically decay with slope − 1
3 in Jk ,

from (30) again we deduce that the sum L∗3,1+ L∗3,2 must asymptotically increase
by 2

3 in Jk . Now recall in Claim A we showed that L∗Uk,X̃
, L∗Vk,X̃

asymptotically
induce an increase with slope at most 1

3 in the entire interval (bk−1,∞) if we let X̃
run through (H(Pk),∞). Hence if we restrict to X̃ ∈ (H(Pk), H(Pk+1)), by a very
similar argument as in Claim B, in the interval (bk−1, qk) they induce L∗3,1 and L∗3,2
such that they both asymptotically increase precisely with slope 1

3 . By index shift the
analogous claim is clearly also true for (bk, qk+1)= Jk . Hence indeed both L∗3,1 and
L∗3,2 must asymptotically increase with slope precisely 1

3 in the entire interval Jk .
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Observe that the end of Jk is the beginning of Ik+1, so that we have basically
established a complete description of all functions L∗3,1, . . . , L∗3,4 on (0,∞). The
characterizations of the graphs of L∗3,i (q) established above show that asymptotically
at the values q = bk both the smallest local minima of L∗3,1(q), L∗3,2(q) (in the
sense of minimal values of ψ∗3,1(Q), ψ

∗

3,2(Q)) and the largest local maxima of
L∗3,3(q), L∗3,4(q) (in the sense of maximal values of ψ∗3,3(Q), ψ

∗

3,4(Q)) are attained.
Moreover both |L∗3,1(bk)− L∗3,2(bk)| and |L∗3,3(bk)− L∗3,4(bk)| are bounded uni-
formly in k, in fact more generally |L∗3,1(q)− L∗3,2(q)| and |L∗3,3(q)− L∗3,4(q)| are
uniformly bounded for q ∈ (0,∞). Thus with (62) we have

ψ∗3,1 = ψ
∗

3,2 =
1−
√

5
3(3+

√
5)

and ψ∗3,3 = ψ
∗

3,4 =

√
5−1

3(3+
√

5)
.

With (22), (23) and (24) we derive

(68) w3(ζ )= w3,2(ζ )= ρ and λ3(ζ )= λ3,2(ζ )=
1
√

5
.

This contains in particular the claims in (11). �

Remark 4.2. We can also determine the remaining constants w3,i , λ3,i , ŵ3,i , λ̂3,i

for extremal numbers. From (25) and (68) we deduce

(69) ŵ3,3(ζ )= ŵ3,4(ζ )=
√

5, λ̂3,3(ζ )= λ̂3,4(ζ )=
1
ρ
.

Moreover the above characterizations of the functions L∗3,i imply

ψ∗3,1 = ψ
∗

3,2 = ψ
∗

3,1 = ψ
∗

3,2 = 0.

With (24) and (25) this is equivalent to

(70)
w3,3(ζ )= w3,4(ζ )= ŵ3(ζ )= ŵ3,2(ζ )= 3,

λ3,3(ζ )= λ3,4(ζ ) = λ̂3(ζ )= λ̂3,2(ζ )=
1
3 .

The description of the combined graph of the functions L∗3, j (q) and the in-
formation on the structure of the polynomials inducing them from the proof of
Theorem 2.1 allows one to estimate the approximation to an extremal number by
algebraic numbers of degree precisely three.

Proof of Theorem 2.2. It follows from the proof of Theorem 2.1 and the description
above that the first two successive minima functions of the linear form problem
related to ψ∗3,1, ψ∗3,2 are induced by polynomial multiples of Pk from Theorem 1.1,
and for each k these multiples span the same space as {Pk, T Pk}. Since Pk have
degree two, there is no irreducible polynomial of degree three which lies in the
space spanned by {Pk, T Pk} for some k. Thus the optimal exponent in (13) is not
larger than w3,3(ζ ). On the other hand it was shown in the proof of Theorem 2.1
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that w3,3(ζ ) = 3, see (70). Thus, combining these facts, we see that indeed (13)
has only finitely many solutions in Q ∈ Z[T ] an irreducible polynomial of degree
precisely three. From (13) we infer (14) by a standard argument. Indeed if R is
the minimal polynomial of some α then |R(ζ )| = |R(ζ )− R(α)| = |ζ −α| · R′(z)
for some z between α and ζ by the intermediate theorem of differentiation. On the
other hand |R′(z)| � H(R) for bounded z is easy to see, and the claim (14) follows
from (13).

Next we show (16) and (17). By essentially the argument from the proof of (13)
again ŵ3,3(ζ ) is an upper bound for the exponent in (16) for some large X . On the
other hand we have noticed in (69) that ŵ3,3(ζ )= ŵ3,4(ζ )=

√
5. Combining these

yields (16) and we deduce (17) from it very similarly as (14) from (13).
For (15) recall that in the proof of Theorem 2.1 we showed that for any large k

there exists a linear polynomial El such that, with X := H(Pk+1) and Qk,1 := Pk El ,
we have

(71)
H(Qk,1)� H(Pk+1)= X,

|Qk,1(ζ )| ≤ X−3+ε, |Pk+1(ζ )| ≤ X−3+ε .

Since Qk,1 is not irreducible by construction and Pk+1 has degree only 2, we
consider the polynomials Sk, j (T ) := Qk,1(T )+ jT · Pk+1(T ) for j ∈ {1, 2}. We
show that at least one of these two polynomials has the desired properties (in fact
we need the distinction only for the right hand side of (15); the left follows for both
j = 1 and j = 2). The polynomials Sk, j (T ) obviously have degree three and height
H(Sk, j )� X . Moreover with (71) we infer

(72) |Sk, j (ζ )| = |Qk,1(ζ )+ jζ Pk+1(ζ )| ≤ |Qk,1(ζ )|+ j |ζ | · |Pk+1(ζ )|�ζ X−3+ε,

for 1 ≤ j ≤ 2. Next we check that Sk, j are irreducible for large k and 1 ≤ j ≤ 2.
Consider j fixed and suppose Sk, j is reducible. Then we may write Sk, j (T ) =
M(T )N (T ) for M, N ∈ Z[T ] each of degree one or two. Then |Sk, j (ζ )| = |M(ζ )| ·
|N (ζ )| and it follows from (42) and (72) that at least one of the inequalities

|M(ζ )| ≤ H(M)−3+2ε or |N (ζ )| ≤ H(N )−3+2ε

must be satisfied; see also the remark subsequent to (42). Without loss of generality
say this holds for M. However, since w2,2(ζ )≤ τ < 3, see (8), and M has degree
at most two, it follows from Theorem 1.1 that the inequality can only be satisfied
if M is some Pl from Theorem 1.1. However, by construction of Sk, j we clearly
cannot have Pk |Sk, j or Pk+1|Sk, j . Thus M = Pl for some l ≤ k− 1. Theorem 1.1
further implies

H(M)� H(Pk−1)� H(Pk+1) ·
H(Pk−1)

H(Pk+1)
= X ·

H(Pk−1)

H(Pk+1)
� X1/ν2

= X1/τ
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and it follows further that

(73) |M(ζ )| � H(M)−ρ � X−ρ/τ = X−ν .

Since M = Pl has degree two and Sk, j degree three, the polynomial N must have
degree one such that by λ1(ζ )= 1 from (7) we have

(74) |N (ζ )| � H(N )−1−ε
� X−1−ε .

Combining (73) and (74) yields

|Sk, j (ζ )| = |M(ζ )| · |N (ζ )| � X−ν−1−ε
= X−τ−ε .

Again from τ <3 we obtain a contradiction to (72) for small ε. Hence the assumption
was wrong and indeed Sk, j must be irreducible for j ∈ {1, 2}, and in view of (72)
we have finished the proof of the left-hand side of (15).

For the right-hand side of (15) suppose we have already shown that for all large
k and some j = j (k) ∈ {1, 2} we have

(75) |S′k, j (ζ )| � X1−ε .

Then the claim follows together with (72) from the left-hand side for α some root
of the corresponding Sk, j by a similar standard argument as in the deduction of
(14) from (13). Indeed it is well known that any polynomial U ∈ Z[T ] has a root
β that satisfies |β − ζ | � |U (ζ )|/H(U ), see for example [Roy 2004a]. The claim
follows with U = Sk, j . It remains to be checked that (75) holds, for which we use
(10). First note that the derivative of Sk, j can be written

(76) |S′k, j (ζ )| = |Q
′

k,1(ζ )+ jPk+1(ζ )+ jζ P ′k+1(ζ )|, 1≤ j ≤ 2.

Obviously the term jPk+1(ζ ) in the sum is negligible since it is very small. Hence
(76) can be small only if Q′k,1(ζ ) is of the same order (and reverse sign) as
jζ P ′k+1(ζ ). On the other hand (10) implies for all large k the estimate

| jζ P ′k+1(ζ )| ≥ j |ζ |H(Pk+1)
1−ε
�ζ X1−ε for j ∈ {1, 2},

and very similarly the difference between the right-hand sides in (76) for j = 2
and j = 1 is at least of order X1−ε as well. It follows that (75) can be violated for
at most one index j ∈ {1, 2}, and for the other index (75) must be satisfied. This
finishes the proof of (15). �

We finish by giving a heuristic argument why the exponents in (16) and (17)
should be optimal as well. For any X̃ we can again consider linear combina-
tions Sk, j (T )= jT Pk+1(T )+ Pk(T )Et(T ) for k = k(X̃) largest possible such that
H(Pk+1)≤ X̃ and some Et of degree one from the proof of Theorem 2.1 such that
(16) is satisfied for Q(T ) = Qk,1(T ) = Pk(T )Et(T ). Given the irreducibility of
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Sk, j for all large k and j rather small, we can again basically proceed as in the proof
of (15). However, the method from the proof of (15) to guarantee the irreducibility
of some of the arising Sk, j (T ) does not work here.
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Ioan Mărcut, with Pedro Frejlich 371

Lorenzo Mazzieri with Giovanni Catino, Laura Cremaschi, Zindine Djadli and
Carlo Mantegazza 337

Juan P. Pinasco with Pablo Blanc and Julio D. Rossi 257

Mauro Porta: Comparison results for derived Deligne–Mumford stacks 177

Sarah Rees with Derek F. Holt 393

Julio D. Rossi with Pablo Blanc and Juan P. Pinasco 257

Masahico Saito with Scott Carter, Atsushi Ishii and Kokoro Tanaka 19

Parameswaran Sankaran with Daciberg Lima Gonçalves and Ralph Strebel 101

Joedson Santos with Geraldo Botelho and Jamilson R. Campos 1

Manuel Saorín: On locally coherent hearts 199

Johannes Schleischitz: Approximation to an extremal number, its square and its cube 485

Ralph Strebel with Daciberg Lima Gonçalves and Parameswaran Sankaran 101

Kokoro Tanaka with Scott Carter, Atsushi Ishii and Masahico Saito 19

Jacques Thévenaz with Caroline Lassueur 423

Pascal J. Thomas with Łukasz Kosiński and Włodzimierz Zwonek 411
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