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THE RICCI–BOURGUIGNON FLOW

GIOVANNI CATINO, LAURA CREMASCHI, ZINDINE DJADLI,
CARLO MANTEGAZZA AND LORENZO MAZZIERI

We present some results on a family of geometric flows introduced by J. P.
Bourguignon in 1981 that generalize the Ricci flow. For suitable values of
the scalar parameter involved in these flows, we prove short time existence
and provide curvature estimates. We also state some results on the associ-
ated solitons.

1. Introduction

In this paper we consider an n-dimensional, compact, smooth, Riemannian manifold
M (without boundary) whose metric g = g(t) is evolving according to the flow
equation

(1-1) ∂

∂t
g =−2Ric+ 2ρRg =−2(Ric− ρRg)

where Ric is the Ricci tensor of the manifold, R its scalar curvature and ρ is a real
constant. This family of geometric flows contains, as a special case, the Ricci flow,
setting ρ = 0. Moreover, by a suitable rescaling in time, when ρ is nonpositive,
they can be seen as an interpolation between the Ricci flow and the Yamabe flow
(see [Brendle 2005; Schwetlick and Struwe 2003; Ye 1994], for instance), obtained
as a limit when ρ→−∞.

It should be noticed that for special values of the constant ρ the tensor Ric−ρRg
appearing on the right-hand side of the evolution equation is of special interest. In
particular,

• ρ = 1/2, the Einstein tensor Ric− R
2 g,

• ρ = 1/n, the traceless Ricci tensor Ric− R
n g,

• ρ = 1/2(n− 1), the Schouten tensor Ric− R
2(n−1)g,

• ρ = 0, the Ricci tensor Ric.
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In dimension two, the first three tensors are zero, hence the flow is static, and in
higher dimension the values of ρ are strictly ordered as above, in descending order.

Apart from these special values of ρ, for which we will call the associated flows
by the name of the corresponding tensor, in general we will refer to the evolution
equation defined by the PDE system (1-1) as the Ricci–Bourguignon flow (or shortly
RB flow).

The study of these flows was proposed by Jean-Pierre Bourguignon [1981,
Question 3.24], building on some unpublished work of Lichnerowicz in the sixties
and a paper of Aubin [1970]. In 2003, Fischer [2004] studied a conformal version of
this problem where the scalar curvature is constrained along the flow. In 2011, Lu,
Qing and Zheng [Lu et al. 2014] also proved some results on the conformal Ricci–
Bourguignon flow. Some results concerning solitons of the Ricci–Bourguignon
flow (called gradient ρ-Einstein solitons) can be found in [Catino and Mazzieri
2016; Catino et al. 2015b].

We will see in the next section that when ρ is larger than 1/2(n−1) the principal
symbol of the operator in the right hand side of the second order quasilinear parabolic
PDE (1-1) has negative eigenvalues, not allowing even a short time existence result
for the flow for general initial data (manifold M and initial metric g0). On the
contrary, the main task of Section 2 will be to show that for any ρ<1/2(n−1), every
initial compact Riemannian manifold (M, g0) has a unique smooth solution g(t)
solving the flow equation (1-1), with g(0)= g0, at least in a positive time interval.

However, the problem of knowing whether the “critical” Schouten flow

(1-2)

{
∂

∂t
g =−2Ric+ R

n−1
g,

g(0)= g0,

when ρ=1/2(n−1), admits or not a short time solution for general initial manifolds
and metrics remains open, when n ≥ 3.

We will see that if ρ ≤ 1/2(n− 1), the principal symbol of the elliptic operator
is nonnegative definite and it actually contains some zero eigenvalues due to the
diffeomorphism invariance of the geometric flow. When ρ < 1/2(n−1), these zero
eigenvalues are the only ones, while all the others are actually positive, hence, they
can be dealt with (as is customary by now) by means of the so-called DeTurck’s
trick [1983; 2003]. In the case of the Schouten flow ρ = 1/2(n − 1) instead,
the principal symbol contains an extra zero eigenvalue besides the ones due to
the diffeomorphism invariance, preventing this argument from being sufficient to
conclude and to give a general short time existence result.

We mention that the presence of this extra zero eigenvalue should be expected,
as the Cotton tensor, which is obtained from the Schouten tensor A by

Ci jk =∇kAi j −∇j Aik =∇kRi j −∇j Rik −
1

2(n−1)
(∇kRgi j −∇j Rgik),
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satisfies the following invariance under the conformal change of metric g̃ = e2ug,

e3uC̃i jk = Ci jk + (n− 2)Wi jkl∇
lu;

see [Catino et al. 2016, equation 3.35]. Recently, Delay [2014], following the work
of Fischer and Marsden, gave some evidence on the fact that DeTurck’s trick should
fail for the Schouten tensor.

In Section 3, we will compute the evolution equations for the curvature.
In Section 4, by means of the maximum principle, we derive, from the evolution of

the curvature, some conditions on the curvature which are preserved by the RB flow.
In particular, we show that the Hamilton–Ivey estimate in dimension three holds.

In Section 5, we establish some a priori estimates on the Riemann tensor and
prove that, if a compact solution of the flow exists up to a finite maximal time T,
then the Riemann tensor is unbounded when approaching T.

Finally, in the last section we discuss the structure and the classification of the
solitons of the RB flow.

1A. Notation and preliminaries. The Riemann curvature operator of a Riemann-
ian manifold (M, g) of dimension n is defined as in [Gallot et al. 1990] by

Riem(X, Y )Z =∇Y∇X Z −∇X∇Y Z +∇[X,Y ]Z ,

and we will denote by dµg the canonical volume measure associated to the metric g.
In a local coordinate system, the components of the (3, 1)-Riemann curvature

tensor are given by Rl
i jk(∂/∂x l) = Riem(∂/∂x i , ∂/∂x j )∂/∂xk , and we denote by

Ri jkl = glmRm
ijk its (4, 0)-version.

With this choice, for the sphere Sn we have Riem(v,w,v,w)=Ri jklv
iw jvkwl>0.

The Ricci tensor is obtained as the contraction Rik = g jlRi jkl , and R= gikRik

will denote the scalar curvature.
The so-called Weyl tensor is then defined by the decomposition formula (see

[Gallot et al. 1990, Chapter 3, Section K]) of the Riemann tensor in dimension
n ≥ 3,

(1-3) Wi jkl = Ri jkl +
R

(n−1)(n−2)
(gik gjl − gil gjk)

−
1

n−2
(Rik gjl −Ril gjk +R jl gik −R jk gil).

The tensor W satisfies all the symmetries of the curvature tensor and all its traces
with the metric are zero, as can be easily seen from the above formula.

In dimension three, W is identically zero for every Riemannian manifold (M, g),
and it becomes relevant when n ≥ 4 since it vanishes if and only if (M, g) is
locally conformally flat. This latter condition means that around every point p ∈ M
there is a conformal deformation g̃i j = e f gi j of the original metric g, such that the



340 G. CATINO, L. CREMASCHI, Z. DJADLI, C. MANTEGAZZA AND L. MAZZIERI

new metric is flat, namely, the Riemann tensor associated to g̃ is zero in Up (here
f :Up→ R is a smooth function defined in a open neighborhood Up of p).

2. Short time existence

Theorem 2.1. Let ρ < 1/2(n − 1). Then, the evolution equation (1-1) has a
unique solution for a positive time interval on any smooth, n-dimensional, compact
Riemannian manifold M (without boundary) for any initial metric g0.

Proof. We first compute the linearized operator DLg0 of the operator L =−2(Ric−
ρRg) at a metric g0. The Ricci tensor and the scalar curvature have the following
linearizations (see [Besse 1987, Theorem 1.174] or [Topping 2006]), where we use
the metric g0 to lower and raise indices and to take traces:

DRicg0(h)ik =
1
2(−1hik −∇i∇k tr(h)+∇i∇

t htk +∇k∇
t hi t)+LOT,

DRg0(h)=−1(tr h)+∇s
∇

t hst +LOT.

Here LOT stands for lower order terms.
Then, the linearization of L at g0 is given by

DLg0(h)ik =−2(DRicg0(h)ik − ρDRg0(h)(g0)ik)+ 2ρRg0hik

=1hik +∇i∇k tr(h)−∇i∇
t htk −∇k∇

t hi t

− 2ρ(1(tr h)−∇s
∇

t hst)(g0)ik +LOT,

for every bilinear form h ∈0(S2 M). Now, we obtain the principal symbol of the lin-
earized operator in the direction of an arbitrary cotangent vector ξ by replacing each
covariant derivative ∇α appearing in the higher order terms with the corresponding
component ξα:

σξ (DLg0)(h)ik = ξ
tξt hik + ξiξk trg0(h)− ξiξ

t hkt − ξkξ
t hi t

−2ρξ tξt trg0(h)(g0)ik + 2ρξ tξ shts(g0)ik .

As usual, since the symbol is homogeneous we can assume that |ξ |g0 = 1 and we
perform all the computations in an orthonormal basis {ei }i=1,...,n of Tp M such that
ξ = g0(e1, · ), that is, ξi = 0 for i 6= 1.

Hence we obtain

σξ (DLg0)(h)ik = hik + δi1δk1 trg0(h)− δi1hk1− δk1hi1− 2ρ trg0(h)δik + 2ρh11δik,

which can be represented in the coordinate system

(h11, h22, . . . , hnn, h12, . . . , h1n, h23, h24, . . . , hn−1,n)
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for any h ∈ 0(S2 M), by the following matrix

σξ (DLg0)=



0 1− 2ρ · · · 1− 2ρ
... A[n− 1]
0

0 0

0 0 0

0 0 Id(n−1)(n−2)/2


,

where A[n− 1] is the (n− 1)× (n− 1) matrix given by

A[n− 1] =


1− 2ρ −2ρ · · · −2ρ
−2ρ 1− 2ρ · · · −2ρ
...

...
. . .

...

−2ρ −2ρ · · · 1− 2ρ

.
We can see that there are at least n null eigenvalues, as would be expected by the
diffeomorphism invariance of the operator L , and (n − 1)(n − 2)/2 eigenvalues
equal to 1. The remaining n − 1 eigenvalues can be computed by the following
lemma which is easily proved by induction on the dimension of A.

Lemma 2.2. Let A[m] be the m×m matrix

(2-1) A[m] =


1− 2ρ −2ρ · · · −2ρ
−2ρ 1− 2ρ · · · −2ρ
...

...
. . .

...

−2ρ −2ρ · · · 1− 2ρ

 .
Then we have

det(A[m] − λIdm)= (1− λ)(m−1)(1− 2mρ− λ).

Using this lemma, we conclude that the eigenvalues of the principal symbol of
DLg0 are 0 with multiplicity n, 1 with multiplicity 1

2(n+1)(n−2) and 1−2(n−1)ρ
with multiplicity 1.

Now we apply the so-called DeTurck’s trick [1983; 2003] to show that the RB
flow is equivalent to a Cauchy problem for a strictly parabolic operator, modulo
the action of the diffeomorphism group of M. Let V : 0(S2 M) → 0(TM) be
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“DeTurck’s” vector field defined by

(2-2) V j(g)=−g jk
0 g pq
∇p
( 1

2 trg(g0)gqk − (g0)qk
)

=−
1
2 g jk

0 g pq(∇k(g0)pq −∇p(g0)qk −∇q(g0)pk),

where g0 is a fixed Riemannian metric on M and g jk
0 are the components of the

inverse matrix of g0.
DeTurck’s trick (see [DeTurck 1983, 2003] for details) states that in order to

show the smooth existence part of the theorem, we only need to check that the
operator D(L −LV )g0 is strongly elliptic, where LV is the Lie derivative operator
in the direction of V.

The principal symbol of this latter operator, with the same notation used above,
is well known and is given by

σξ (DLV )g0(h)ik = δi1δk1 trg0(h)− δi1hk1− δk1hi1.

Then we can easily see that the linearized DeTurck–Ricci–Bourguignon operator
has principal symbol in the direction ξ , with respect to an orthonormal basis
{ξ [, e2, . . . , en}, given by

σξ ((D(L −LV )g0)=



1 −2ρ · · · −2ρ
... A[n− 1]
0

0 0

0 Id(n−1) 0

0 0 Id(n−1)(n−2)/2


,

expressed in the coordinate system

(h11, h22, . . . , hnn, h12, h13, . . . , h1n, h23, h24, . . . , hn−1,n)

for any h ∈ 0(S2 M).
Using Lemma 2.2 again, this matrix has 1

2 n(n+ 1)− 1 eigenvalues equal to 1
and 1 eigenvalue equal to 1−2(n−1)ρ. Therefore, by DeTurck’s trick, a sufficient
condition for the existence of a solution is that ρ < 1/(2(n− 1)).

The uniqueness part of the theorem is proven in the same way as for the Ricci
flow (see [Hamilton 1995]). The RB flow is equivalent, via the one parameter
group of diffeomorphisms generated by DeTurck’s vector field, to the DeTurck–RB
flow which is strictly parabolic. On the other hand, the one parameter group of
diffeomorphisms satisfies the harmonic map flow introduced by Eells and Sampson
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[1964], which is also parabolic. These two facts imply the uniqueness of the
solution for the RB flow (see [Chow and Knopf 2004, Chapter 3, Section 4] for
more details). �

3. Evolution of the curvature

3A. The evolution of curvature. As the metric tensor evolves by

∂

∂t
gi j =−2(Ri j − ρRgi j ),

it is easy to see, differentiating the identity gi j g jl
= δl

i , that

(3-1) ∂

∂t
g jl
= 2(Ric jl

− ρRg jl).

It follows that the canonical volume measure µ satisfies

dµ
dt
=
∂

∂t
√

det gi j L
n
=

√
det gi j gi j ∂

∂t gi j

2
Ln
= (nρ−1)R

√
det gi j L

n
= (nρ−1)Rµ.

Computing in a normal coordinate system, the evolution equation for the Christof-
fel symbols is given by

∂

∂t
0i

jk =
1
2

gil
{
∂

∂xj

(
∂

∂t
gkl

)
+

∂

∂xk

(
∂

∂t
gjl

)
−

∂

∂xl

(
∂

∂t
gjk

)}
+

1
2
∂

∂t
gil
{
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}
=

1
2

gil
{
∇j

(
∂

∂t
gkl

)
+∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}
=− gil

{∇j (Rkl − ρRgkl)+∇k(R jl − ρRgjl)−∇l(R jk − ρRgjk)}

=−∇j Ri
k −∇kRi

j −∇
i R jk + ρ(∇j Rδi

k +∇kRδi
j +∇

i Rgjk).

Proposition 3.1. Along the RB flow on a n-dimensional Riemannian manifold
(M, g), the curvature tensor, the Ricci tensor and the scalar curvature satisfy the
following evolution equations:

(3-2) ∂

∂t
Ri jkl =1Ri jkl + 2(Bi jkl −Bi jlk −Bil jk +Bik jl)

− g pq(RpjklRqi +Ri pklRq j +Ri jplRqk +Ri jkpRql)

− ρ(∇i∇kRgjl −∇i∇lRgjk −∇j∇kRgil +∇j∇lRgik)+ 2ρRRi jkl,
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where the tensor B is defined as Bi jkl = g pq grsRi pjr Rkqls ,

∂

∂t
Rik =1Rik + 2g pqgrsRpirkRqs − 2g pqRpi Rqk(3-3)

− (n− 2)ρ∇i∇kR− ρ1Rgik,

∂

∂t
R= (1− 2(n− 1)ρ)1R+ 2|Ric|2− 2ρR2.(3-4)

Proof. The following computation is analogous to the one for the Ricci flow
performed by Hamilton [1982].

By the first variation formula for the (4, 0)-Riemann tensor (see [Besse 1987,
Theorem 1.174] or [Topping 2006]), we have in general

∂

∂t
Riem(X,Y,W,Z)= 1

2(h(Riem(X,Y )W,Z)− h(Riem(X,Y )Z,W ))

−
1
2(−∇

2
Y,W h(X,Z)−∇2

X,Z h(Y,W )+∇2
X,W h(Y,Z)+∇2

Y,Z h(X,W )),

where X, Y,W, Z ∈ 0(TM) are vector fields and h = (∂/∂t)g. Along the RB flow
h =−2(Ric− ρRg), and therefore

∂

∂t
Riem(X, Y,W, Z)

=−Ric(Riem(X, Y )W, Z)+Ric(Riem(X, Y )Z ,W )

−∇
2
Y,W Ric(X, Z)−∇2

X,Z Ric(Y,W )+∇2
X,W Ric(Y, Z)+∇2

Y,Z Ric(X,W )

−ρ(−∇2
Y,W Rg(X, Z)−∇2

X,Z Rg(Y,W )+∇2
X,W Rg(Y, Z)+∇2

Y,Z Rg(X,W ))

+ 2ρRRiem(X, Y,W, Z).

Using the second Bianchi identity and the commutation formula for second covariant
derivatives, we get the following equation for the Laplacian of the Riemann tensor:

1Riem(X, Y,W, Z)

=−∇
2
Y,W Ric(X, Z)−∇2

X,Z Ric(Y,W )+∇2
X,W Ric(Y, Z)+∇2

Y,Z Ric(X,W )

−Ric(Riem(W, Z)Y, X)+Ric(Riem(W, Z)X, Y )− 2(B(X, Y,W, Z)

−B(X, Y, Z ,W )+B(X,W, Y, Z)−B(X, Z , Y,W )).

Plugging it into the evolution equation, we obtain

∂

∂t
Riem(X,Y,W, Z)

=1Riem(X,Y,W, Z)− ρ(∇2R 7 g)(X,Y,W, Z)

+ 2(B(X,Y,W, Z)−B(X,Y, Z,W )+B(X,W,Y, Z)−B(X, Z,Y,W ))

−Ric(Riem(X,Y )W, Z)+Ric(Riem(X,Y )Z,W )−Ric(Riem(W, Z)X,Y )

+Ric(Riem(W, Z)Y, X)+ 2ρRRiem(X,Y,W, Z),
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which is formula (3-2) once written in coordinates. Here the symbol 7 denotes the
Kulkarni–Nomizu product of two symmetric bilinear forms p and q , defined by

(p 7 q)(X, Y, Z , T )

= p(X, Z)q(Y, T )+ p(Y, T )q(X, Z)− p(X, T )q(Y, Z)− p(Y, Z)q(X, T ),

for every tangent vector fields X, Y, Z , T ∈ 0(TM).
Taking into account the evolution equation for the inverse of the metric (3-1),

contracting equation (3-2) and using again the second Bianchi identity, formula
(3-3) follows (see [Hamilton 1982] for details). Contracting again one gets the
evolution equation (3-4) for the scalar curvature. �

3B. Uhlenbeck’s trick and the evolution of the curvature operator. In this sub-
section we want to study the evolution equation of the curvature operator, as was
done for the Ricci flow by Hamilton [1986].

First of all, we simplify the expression of the reaction term in equation (3-2) by
means of the so-called Uhlenbeck’s trick [Hamilton 1986]. Briefly, we will relate
the curvature tensor of the evolving metric to an evolving tensor of an abstract
bundle with the same symmetries of the curvature (see Proposition 3.4) and a nicer
evolution equation; afterwards we will find a suitable orthonormal moving frame
of (TM, g(t)) and write the evolution equation of the coordinates of the Riemann
tensor with respect to this frame. The result will be a system of scalar evolution
equations and no more a tensorial equation (see [Chow and Knopf 2004] for more
details on this method in the case of Ricci flow).

Let (M, g(t))t∈[0,T ) be the solution of the RB flow with initial data g0 and
consider on the tangent bundle TM the family of endomorphisms {ϕ(t)}t∈[0,T )
defined by the evolution equation

(3-5)
{ ∂
∂t ϕ(t)= Ric#

g(t) ◦ϕ(t)− ρRg(t)ϕ(t),
ϕ(0)= IdTM ,

where Ric#
g(t) is the endomorphism of the tangent bundle canonically associated to

the Ricci tensor by raising an index.
For every point p of the manifold M, the evolution equation (3-5) represents a

system of linear ODEs on the fiber Tp M; therefore a unique solution exists as long as
the RB flow exists. Moreover, if we let (h(t))t∈[0,T ) be the family of bundle metrics
defined by h(t)= ϕ(t)∗(g(t)), where ϕ(t) satisfies system (3-5), then h(t)= g0 for
every t ∈ [0, T ). As

for all t ∈ [0, T ), ϕ(t) : (TM, g0)→ (TM, g(t))

is a bundle isometry, the pullback via ϕ(t) of the Levi-Civita connection associated
to g(t) is a connection on TM compatible with the metric g0. In the following, we



346 G. CATINO, L. CREMASCHI, Z. DJADLI, C. MANTEGAZZA AND L. MAZZIERI

will denote by (V, h) the vector bundle (TM, g0) in order to stress the fact that we
are not considering the Levi-Civita connection associated to g0, but the family of
time-dependent connections D(t) defined via the bundle isometries ϕ(t).

The following lemma states some basic properties of these pullback connections:

Lemma 3.2 (see [Chow and Knopf 2004, Chapter 6, Section 2]). Let D(t) :
0(TM)×0(V )→ 0(V ) be the pullback connection defined by

D(t)Xζ = ϕ(t)∗(∇
g(t)
X (ϕ(t)(ζ ))),

for all t ∈ [0, T ), for all X ∈ 0(TM), for all ζ ∈ 0(V ), where ∇g(t) is the Levi-
Civita connection of g(t).

Let again D(t) be the canonical extension to the tensor powers of V and T be a
covariant tensor on M. Then, for every t ∈ [0, T ) and X ∈ 0(TM) we have

D(t)X (ϕ(t)∗(T ))= ϕ(t)∗(∇
g(t)
X T ).

In particular, D(t)X h = ϕ∗(∇g(t)
X g(t))= 0, so every connection of the family D(t)

is compatible with the bundle metric h on V.
Let D2

: 0(TM)×0(TM)×0(V )→ 0(V ) be the second covariant derivative
defined by

D2
X,Y (ζ )= DX (DY ζ )− D

∇
g(t)
X Y ζ, for all X, Y ∈ 0(TM), for all ζ ∈ 0(V ),

and the rough Laplacian defined by1D = trg(D2). Then, for every covariant tensor
T on M, we have

D2
X,Y (ϕ

∗(T ))= ϕ∗(∇2
X,Y T ) for all X, Y ∈ 0(TM),(3-6)

1D(ϕ
∗(T ))= ϕ∗(1gT ).(3-7)

Remark 3.3. Let R ∈ End(32 M) be the Riemann curvature operator defined by

(3-8) 〈R(X ∧ Y ),W ∧ Z〉 = Riem(X, Y,W, Z),

where 〈 · , · 〉 is the linear extension of g to the exterior powers of TM.
In the following, we use a convention on the Lie algebra structure of 32 M which

is different from the original one chosen by Hamilton [1986]. More precisely, with
his convention, the eigenvalues of the curvature operator are twice the sectional
curvatures, whereas with our convention the curvature operator has the sectional cur-
vatures as eigenvalues. In particular, every formula differs from the corresponding
one in the usual theory of the Ricci flow by a factor of 2 (see also [Chow and Knopf
2004, Chapter 6, Section 3] for the details). We recall that R can be considered as
an element of 0(S2(32 M)), and the following equations hold:

R= 2
∑
i<k

R(ik)
(ik), (R2)i jkl = Bi jkl −Bi jlk, (R#R)i jkl = Bik jl −Bil jk,
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where B is defined as in Proposition 3.1. For more details on the structure of the
curvature operator we refer the reader again to [Chow and Knopf 2004, Chapter 6,
Section 3].

We now consider the pullback of the Riemann curvature tensor and the curvature
operator.

Proposition 3.4. Let Piem be the pullback of the Riemann curvature tensor via the
family of bundle isometries {ϕ(t)}t∈[0,T ). The following statements hold true:

(1) Piem has the same symmetry properties as Riem, i.e., it can be seen as an
element of 0(S2(32V )) and it satisfies the first Bianchi identity;

(2) For every p ∈ M and t ∈ [0, T ) the algebraic curvature operator P(p, t) ∈
End(32Vp) (see Remark 3.7), defined by ϕ◦P=R◦ϕ has the same eigenvalues
as R(p, t). In particular, P is positive (nonnegative) definite if and only if R
is positive (nonnegative) definite;

(3) Pic(t)= trh(Piem(t))= ϕ(t)∗(Ricg(t));

(4) P= trh(Pic(t))= Rg(t);

(5) B(Piem)=ϕ∗(B(Riem)), where B is defined the same way as in Proposition 3.1
for a generic element of S2(32V ∗).

Finally, we can compute the evolution of Piem and P .

Proposition 3.5. The tensors Piem and P satisfy respectively the following evolu-
tion equations

(3-9) ∂

∂t
(Piem)abcd =1D(Piem)abcd− ρ(ϕ

∗(∇2R)7 h)abcd

+ 2(B(Piem)abcd−B(Piem)abdc+B(Piem)acbd−B(Piem)adbc)

− 2ρPPiemabcd ,

(3-10) ∂

∂t
P =1DP − 2ρϕ∗(∇2 trh(P))7 h+ 2P2

+ 2P#
− 4ρ trh(P)P,

where trh(P(t))= trg(t)(R(t))= 1
2 R(t).

Remark 3.6. On the right-hand side of (3-9) the term ϕ∗(∇2R) appears (i.e., the
pullback of the Hessian of the scalar curvature, seen as a symmetric 2-form on the
tangent bundle) and it cannot be expressed in terms of the connection D(t).
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Proof. Let ζ1, . . . , ζ4 be sections of V ; then combining the evolution equations of
the Riemann tensor (3-2) and of the bundle isometry ϕ (3-5), we obtain

∂

∂t
(Piem)(ζ1,ζ2,ζ3,ζ4)

= ϕ∗
( ∂
∂t

Riem
)
(ζ1,ζ2,ζ3,ζ4)+Riem

(∂ϕ
∂t
(ζ1),ϕ(ζ2),ϕ(ζ3),ϕ(ζ4)

)
+Riem

(
ϕ(ζ1),

∂ϕ

∂t
(ζ2),ϕ(ζ3),ϕ(ζ4)

)
+Riem

(
ϕ(ζ1),ϕ(ζ2),

∂ϕ

∂t
(ζ3),ϕ(ζ4)

)
+Riem

(
ϕ(ζ1),ϕ(ζ2),ϕ(ζ3),

∂ϕ

∂t
(ζ4)

)
= ϕ∗(1gRiem)(ζ1,ζ2,ζ3,ζ4)− ρϕ

∗(∇2R 7 g)(ζ1,ζ2,ζ3,ζ4)

+ 2ϕ∗(B(Riem)(ζ1,ζ2,ζ3,ζ4)−B(Riem)(ζ1,ζ2,ζ4,ζ3)−B(Riem)(ζ1,ζ4,ζ2,ζ3)

+B(Riem)(ζ1,ζ3,ζ2,ζ4))+ 2ρRϕ∗(Riem)(ζ1,ζ2,ζ3,ζ4)

−Riem(Ric#
◦ϕ(ζ1),ϕ(ζ2),ϕ(ζ3),ϕ(ζ4))−Riem(ϕ(ζ1),Ric#

◦ϕ(ζ2),ϕ(ζ3),ϕ(ζ4))

−Riem(ϕ(ζ1),ϕ(ζ2),Ric#
◦ϕ(ζ3),ϕ(ζ4))−Riem(ϕ(ζ1),ϕ(ζ2),ϕ(ζ3),Ric#

◦ϕ(ζ4))

+Riem((Ric#
◦ϕ− ρRϕ)(ζ1),ϕ(ζ2),ϕ(ζ3),ϕ(ζ4))

+Riem(ϕ(ζ1), (Ric#
◦ϕ− ρRϕ)(ζ2),ϕ(ζ3),ϕ(ζ4))

+Riem(ϕ(ζ1),ϕ(ζ2), (Ric#
◦ϕ− ρRϕ)(ζ3),ϕ(ζ4))

+Riem(ϕ(ζ1),ϕ(ζ2),ϕ(ζ3), (Ric#
◦ϕ− ρRϕ)(ζ4))

=1D(Piem)(ζ1,ζ2,ζ3,ζ4)− ρ(ϕ
∗(∇2R)7 h)(ζ1,ζ2,ζ3,ζ4)

+ 2ϕ∗(B(Piem)(ζ1,ζ2,ζ3,ζ4)−B(Piem)(ζ1,ζ2,ζ4,ζ3)−B(Piem)(ζ1,ζ4,ζ2,ζ3)

+B(Piem)(ζ1,ζ3,ζ2,ζ4))− 2ρPPiem(ζ1,ζ2,ζ3,ζ4),

where we used several identities stated above. For ζ1, . . . , ζ4 belonging to a local
frame we get the desired equation (3-9).

Combining the evolution equation for Piem with the formulas in Remark 3.3,
we find the evolution equation of P . �

Remark 3.7. It must be noticed that, even though for every p∈M and t ∈[0, T ), the
tensor P(p, t) belongs to the set of algebraic curvature operators Cb(Vp), in general it
does not coincide with the curvature operator of the pullback connection D(t). In the
present literature the pullback tensor is always denoted by Riem and this abuse of no-
tation is somehow misleading, suggesting wrongly that Piem(t)=ϕ(t)∗(Riemg(t)) is
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equal to Riemϕ(t)∗(g(t))=Riemh , but this is no longer true for general isomorphisms
of the tangent bundle (however it is true for ϕ ∈ Diff(M)).

By Uhlenbeck’s trick, the evolution equation (3-10) for P allows a simpler use
of the maximum principle for tensors as the reaction term is nicer and the metric
on S2(32V ) is independent of time. Moreover, the subsets of S2(32V ) preserved
by such PDE correspond to curvature conditions preserved under the RB flow.

4. Preserved curvature conditions

In this section we will use the maximum principle in various formulations in order
to find curvature conditions which are preserved by the RB flow.

4A. The scalar curvature. We begin by considering the evolution equation for the
scalar curvature (3-4), which behaves as under the Ricci flow.

Proposition 4.1. Let (M, g(t))t∈[0,T ) be a compact maximal solution of the RB flow
(1-1). If ρ ≤ 1/(2(n− 1)), the minimum of the scalar curvature is nondecreasing
along the flow. In particular if Rg(0) ≥ α, for some α ∈ R, then Rg(t) ≥ α for every
t ∈ [0, T ). Moreover if α > 0 then T ≤ n/(2(1− nρ)α).

Proof. As ρ ≤ 1/(2(n− 1))≤ 1/n, for any n > 1, it follows that

∂

∂t
R= (1− 2(n− 1)ρ)1R+ 2|Ric|2− 2ρR2

≥ (1− 2(n− 1)ρ)1R+ 2R2/n− 2ρR2

≥ (1− 2(n− 1)ρ)1R,

hence, by the maximum principle, the minimum of the scalar curvature is nonde-
creasing along the RB flow on a compact manifold. In particular, for every α ∈ R,
the condition R≥ α is preserved.

Finally, integrating the inequality

∂

∂t
Rmin ≥ 2

(1
n
− ρ

)
R2

min,

that holds almost everywhere for t ∈ [0, T ) (by Hamilton’s trick (see [Hamilton
1997], [Mantegazza 2011, Lemma 2.1.3])), we obtain

(4-1) Rmin(t)≥
nα

n−2(1−nρ)αt
,

which, for α > 0, gives the estimate on the maximal time of existence. �

Remark 4.2. In the special case of the Schouten flow (when ρ = 1/2(n− 1)), we
actually have

∂

∂t
R≥ n−2

n(n−1)
R2,
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at every point of the manifold, which implies that the scalar curvature is pointwise
nondecreasing and diverges in finite time.

Remark 4.3. By means of the strong maximum principle, it follows that if the
initial manifold has nonnegative scalar curvature, then either the manifold is Einstein
(Ric = 0) or the scalar curvature becomes positive for every positive time under
any RB flow with ρ ≤ 1/(2(n− 1)).

Proposition 4.4. Let (M, g(t))t∈(−∞,0] be a compact, n-dimensional, ancient so-
lution of the RB flow (1-1). If ρ ≤ 1/(2(n− 1)) then, either R > 0 or Ric ≡ 0 on
M × (−∞, 0].

Proof. As g(t) is an ancient solution, for every t0 < t1 ≤ 0, we can define g̃(s)=
g(s + t0), which is a solution of the RB flow for s ∈ [0, t1 − t0]. Then we have
R̃min(0)= Rmin(t0), hence, from formula (4-1)

R̃min(s)≥
n

nR̃−1
min(0)− 2(1− nρ)s

,

for every s ∈ (0, t1− t0]. In particular, we have

Rmin(t1)= R̃min(t1− t0)≥
n

nR−1
min(t0)− 2(1− nρ)(t1− t0)

.

If Rmin(t0)≥ 0, by Proposition 4.1, it follows that Rmin(t1)≥ 0, so we can assume
that Rmin(t0) < 0, hence

Rmin(t1)≥
n

nR−1
min(t0)− 2(1− nρ)(t1− t0)

>−
n

2(1− nρ)(t1− t0)
,

for every t1 < t0, and sending t0 to −∞, we still conclude that Rmin(t1)≥ 0. Since
this holds for every t1 ≤ 0 the previous remark implies the result. �

4B. Maximum principle for uniformly elliptic operators. Let M be a smooth
compact manifold, g(t), t ∈ [0, T ), a family of Riemannian metrics on M and
(E, h(t)) t ∈ [0, T ), be a real vector bundle on M, endowed with a (possibly time-
dependent) bundle metric. Let D(t) : 0(TM)×0(E)→ 0(E) be a family of linear
connections on E , compatible at each time with the bundle metric h(t). We have
already seen in Section 3B how to define the second covariant derivative, using also
the Levi-Civita connections ∇g(t) associated to the Riemannian metrics on M.

Definition 4.5. We consider a second order linear operator L on 0(E) that lacks a
0-th order term, and hence can be written in a local frame field {ei }i=1,...,n of TM

(4-2) L= ai j D2
ei ej
− bi Dei

where a = ai j ei ⊗ ej ∈ 0(S2(TM)) is a symmetric (0, 2)-tensor and b = bi ei is a
smooth vector field. We say L is uniformly elliptic if a is uniformly positive definite.
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Remark 4.6. In the previous definition, both the coefficients and the connections
are in general time-dependent and we say that L is uniformly elliptic if it is so for
every t ∈ [0, T ) uniformly in time.

Weinberger [1975] proved the maximum principle for systems of solutions of
a time-dependent heat equation in Euclidean space; Hamilton [1986] treated the
general case of a vector bundle over an evolving Riemannian manifold. Here we
present a slight generalization of Hamilton’s theorem for parabolic equations with
uniformly elliptic operator (Savas-Halilaj and Smoczyk [2014, Theorem 2.2] proved
a “static” version). As before, (M, g(t)) is a smooth compact manifold equipped
with a family of Riemannian metrics; we consider a real vector bundle E over M,
equipped with a fixed bundle metric h and a family of time-dependent connections
D(t) compatible at every time with h.

Definition 4.7. Let S ⊂ E be a subbundle and denote Sp = S∩ Ep for every p ∈ M.
We say that S is invariant under parallel translation with respect to D, if for every
curve γ : [0, l] → M and vector v ∈ Sγ (0), the unique parallel (with respect to D)
section v(s) ∈ Eγ (s) along γ (s) with v(0)= v is contained in S.

Theorem 4.8 (vectorial maximum principle). Let u : [0, T )→ 0(E) be a smooth
solution of the following parabolic equation

(4-3)
∂

∂t
u = Lu+ F(u, t),

where L is a uniformly elliptic operator as defined in (4-2) and F : E×[0, T )→ E
is a continuous map, locally Lipschitz in the E factor, which is also fiber-preserving,
i.e., F(v, t) ∈ Ep for every p ∈ M, v ∈ Ep, t ∈ [0, T ).

Let K ⊂ E be a closed subbundle (for the metric h), invariant under parallel
translation with respect to D(t), for every t ∈ [0, T ), and convex in the fibers, i.e.,
Kp = K ∩ Ep is convex for every p ∈ M.

Suppose that K is preserved by the ODE associated to (4-3), i.e., for every p ∈M
and U0 ∈ Kp, the solution U (t) of

(4-4)
{dU

dt = Fp(U (t), t),
U (0) =U0.

remains in Kp. Then, if u is contained in K at time 0, u remains in K, i.e.,
u(p, t) ∈ Kp for every p ∈ M, t ∈ [0, T ).

Proof. (Sketch) We can follow exactly the detailed proof written in [Chow et al.
2008, Chapter 10, Section 3], provided that we generalize their Lemma 10.34 to the
analogue one for uniformly elliptic operator (see again [Savas-Halilaj and Smoczyk
2014, Lemma 2.2]): if K ⊂ E satisfies all the hypotheses of Theorem 4.8 and



352 G. CATINO, L. CREMASCHI, Z. DJADLI, C. MANTEGAZZA AND L. MAZZIERI

u ∈ 0(E) is a smooth section of E , then

u(p) ∈ Kp for all p ∈ M H⇒ L(u)p ∈ Cu(p)Kp for all p ∈ M,

where Cu(p)Kp is the tangent cone of the convex set Kp at u(p). �

There is a further generalization of this maximum principle which allows the
subset K to be time-dependent.

Theorem 4.9 (vectorial maximum principle, time-dependent set). Let u : [0, T )→
0(E) be a smooth solution of the parabolic equation (4-3), with the notations of the
previous theorem. For every t ∈ [0, T ), let K (t)⊂ E be a closed subbundle (for the
metric h), invariant under parallel translation with respect to D(t), convex in the
fibers and such that the spacetime track

T = {(v, t) ∈ E ×R : v ∈ K (t), t ∈ [0, T )}

is closed in E × [0, T ). Suppose that, for every t0 ∈ [0, T ), K (t0) is preserved by
the ODE associated, i.e., for any p ∈ M, any solution U (t) of the ODE that starts
in K (t0)p remains in K (t)p, as long as it exists. Then, if u(0) is contained in K (0),
u(p, t) ∈ K (t)p for ever p ∈ M, t ∈ [0, T ).

The proof of this theorem, when K depends continuously on time and F does not
depend on time is due to Bohm and Wilking [2007, Theorem 1.1]. In the general
case the proof can be found in [Chow et al. 2008, Chapter 10, Section 5], with the
usual adaptation to the uniformly elliptic case.

As remarked before, the evolution equation (3-2) of the Riemann tensor has
some mixed products of type Riem ∗Ric which makes it difficult to understand the
behavior of the reaction term. On the other hand, if we perform Uhlenbeck’s trick,
the evolution equation (3-9) becomes a little nicer and can be used to understand
how the RB flow affects the geometry.

More precisely, we use the evolution equation (3-10) for the algebraic curvature
operator P ∈0(S2(32V ∗)) to prove that the cone of nonnegative curvature operators
is preserved by the RB flow.

Proposition 4.10. Let (M, g(t))t∈[0,T ) be a compact solution of the RB flow (1-1)
with ρ < 1/(2(n− 1)) and such that the initial data g0 has nonnegative curvature
operator. Then Rg(t) ≥ 0 for every t ∈ [0, T ).

Proof. We recall the evolution equation (3-10) for P = ϕ−1
◦R ◦ϕ,

∂

∂t
P =1DP − 2ρϕ∗(∇2 trh(P))7 h+ 2P2

+ 2P#
− 4ρ trh(P)P,

where trh(P(t)) = 1/2R(t) is half of the scalar curvature of the metric g(t). By
Proposition 3.4, it suffices to show that the nonnegativity of P is preserved by
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equation (3-10). We want to apply the vectorial maximum principle Theorem 4.8,
and therefore we must show that

L(Q)=1D Q− 2ρϕ∗(∇2 trh(Q))7 h

is a uniformly elliptic operator on the bundle (0(S2(32V ∗)), h, D(t)).
As L is a linear second order operator, we compute as usual its principal symbol

in the arbitrary direction ξ . In order to simplify the computations, we choose
opportune frames at every point p ∈ M and time t ∈ [0, T ). Then let {ei }i=1,...,n be
an orthonormal basis of (Vp, hp) such that ξ = hp(e1, · ). According to Uhlenbeck’s
trick (Section 3B) and the convention on algebraic curvature operators (Section 3B)
we have that { fi = ϕ(t)p(ei )}i1,...,n is an orthonormal basis of Tp M with respect to
g(t)p, the components of ϕ(t)p with these choices are ϕa

i = δ
a
i , and {ei ∧ ej }i< j

is an orthonormal basis of 32Vp. Hence, the principal symbol of the operator L
written in these frames is

σξ (LQ)(i j)(kl) = ξ
pξp Q(i j)(kl)− 2ρδa

i δ
b
j δ

c
kδ

d
l trh(Q)(ξ ⊗ ξ 7 h)(ab)(cd)

= |ξ |2 Q(i j)(kl)− 2ρ trh(Q)(ξ ⊗ ξ 7 h)(i j)(kl)

= Q(i j)(kl)− 2ρ
(∑

p<q

Q(pq)(pq)

)
δ1

i δ
1
kδjl,

where we used that |ξ | = 1, i < j and k < l in the last step. Now it is easy to see
that the matrix representing the symbol has the following form:

σξ (L)=



A[n− 1]

−2ρ · · · 2ρ
...

. . .
...

−2ρ · · · −2ρ

0

0 Id(n−1)(n−2)/2 0

0 0 IdN (N−1)/2


,

where we have ordered the components as follows: first the n− 1 ones of the form
(1 j)(1 j) with j > 1, then the (n − 1)(n − 2)/2 ones of the form (i j)(i j) with
1< i < j, and last the N (N − 1)/2 “nondiagonal” ones, with N = n(n− 1)/2 and
A is the matrix defined in (2-1).

By Lemma 2.2 the eigenvalues of the symbol are 1 with multiplicity 1
2 N (N+1)−1

and 1−2(n−1)ρ with multiplicity 1, since ρ<1/2(n−1) the operator L is uniformly
elliptic.
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We next consider the reaction term F(Q)= 2(Q2
+ Q#

− 2ρ trh(Q)Q). Clearly
F is continuous, locally Lipschitz and fiber-preserving. Let � ⊂ 0(S2(32V ∗))
be the set of nonnegative algebraic curvature operators, where we have identified
S2(32V ∗)'EndS A(3

2V ) via the metric h. We observe that�={Q : λN (Qp)≥ 0},
where N = n(n− 1)/2 and λN is the least eigenvalue of Qp. Hence � is clearly
closed, by [Chow et al. 2008, Lemma 10.11] it is invariant under parallel translation
with respect to every connection D(t) and it is convex, provided that the function
Q 7→ λN (Qp) is concave. We can rewrite

λN (Qp)= inf
{v∈32Vp :|v|h=1}

h(Qp(v), v),

so it is easy to conclude, by the bilinearity of the metric h and the concavity of
inf, that the function defining � is actually concave and so its superlevels are
convex. In order to finish the proof we have to show that the ODE dQ/dt = F(Q)
preserves �. Now, by standard facts in convex analysis, we only need to prove that
Fp(Qp) ∈ TQp�p for every p ∈ M such that Qp ∈ ∂�p, where ∂�p is the set of
Qp ∈�p where there is v ∈32Vp such that Qp(v, v)= 0 and the tangent cone is

TQp�p={Sp ∈ S2(32V ∗p ) : Sp(v, v)≥0 for every v∈32Vp such that Qp(v, v)=0}

Let v ∈32Vp and {θα} be respectively a null eigenvector of Qp and an orthonormal
basis of 32Vp that diagonalizes Qp. Clearly v = vαθα and (Qp)αβ = λαδαβ . with
λα ≥ 0. Then (Q2

p)αβ = λ
2
αδαβ and (Q#

p)αβ =
1
2(c

γ ν
α )

2λγλνδαβ and

Fp(Qp)(v, v)= λ
2
α(v

α)2+ 1
2(c

γ ν
α )

2λγλν(v
α)2 ≥ 0. �

4C. The evolution of the Weyl tensor. By means of the evolution equations found
for the curvatures, we are also able to write the equation satisfied by the Weyl tensor
along the RB flow (1-1). In [Catino and Mantegazza 2011] the authors compute the
evolution equation of the Weyl tensor during the Ricci flow (see [Catino et al. 2015a]
for a significant application of this formula) and we use most of their computations.

Proposition 4.11. During the RB flow of an n-dimensional Riemannian manifold
(M, g) the Weyl tensor satisfies the following evolution equation:

∂

∂t
Wi jkl =1Wi jkl + 2(B(W)i jkl −B(W)i jlk −B(W)il jk +B(W)ik jl)

+ 2ρRWi jkl − g pq(WpjklRqi +Wi pklRq j +Wi jplRqk +Wi jkpRql)

+
2

(n−2)2
(Ric2 7 g)i jkl +

1
(n−2)

(Ric 7 Ric)i jkl

−
2R

(n−2)2
(Ric 7 g)i jkl +

R2
−|Ric|2

(n−1)(n−2)2
(g 7 g)i jkl,

where B(W )i jkl = g pq grsWi pjr Wkqls .
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Proof. By recalling the decomposition formula for the Weyl tensor (1-3) we have

∂

∂t
W= ∂

∂t
Riem+ 1

2(n−1)(n−2)

(
∂

∂t
Rg 7 g+ 2 ∂

∂t
g 7 g

)
−

1
n−2

(
∂

∂t
Ric 7 g+Ric 7 ∂

∂t
g
)

= LII +L0,

where LII is the second order term in the curvatures and L the 0-th one. We deal
first with the higher order term; plugging in the evolution equations of Riem,Ric
and R (Proposition 3.1) we get

LII =1Riem− ρ(∇2R 7 g)+
1− 2(n− 1)ρ

2(n− 1)(n− 2)
1Rg 7 g

−
1

n− 2
(1Ric 7 g− (n− 2)ρ∇2R 7 g− ρ1Rg 7 g)

=1Riem+
1− 2(n− 1)ρ+ 2(n− 1)ρ

2(n− 1)(n− 2)
1Rg 7 g−

1
n− 2

1Ric 7 g

=1W.

Then we consider the lower order terms

(L0)i jkl = 2(B(Riem)i jkl − B(Riem)i jlk − B(Riem)il jk + B(Riem)ik jl)

− g pq(RpjklRqi +Ri pklRq j +Ri jplRqk +Ri jkpRql)

+ 2ρR
(

W− 1
2(n−1)(n−2)

Rg7g+ 1
n−2

Ric7g
)

i jkl

+
1

2(n−1)(n−2)
(2|Ric|2g7g−2ρR2g7g−4RRic7g+4ρR2g7g)i jkl

−
1

n−2
[2(Riem ∗Ric)7g− 2Ric2 7g− 2Ric7Ric+ 2ρRRic7g]i jkl

= 2(B(Riem)i jkl − B(Riem)i jlk − B(Riem)il jk + B(Riem)ik jl)

− g pq(RpjklRqi +Ri pklRq j +Ri jplRqk +Ri jkpRql)+ 2ρRWi jkl

−
2

n−2
[(Riem ∗Ric)7g−Ric2 7g−Ric7Ric]i jkl

−
2R

(n−1)(n−2)
(Ric7g)i jkl +

|Ric|2

(n−1)(n−2)
(g 7g)i jkl,

where (Riem ∗Ric)ab = RapbqRst g ps gqt and (Ric2)ab = RapRbq g pq .
Now we deal separately with every term containing the full curvature Riem,

using its decomposition formula, expanding the Kulkarni–Nomizu products and
then contracting again. We have that

[(g7g)∗Ric]ab=2[Rg−Ric]ab, [(Ric7g)∗Ric]ab=[−2Ric2
+RRic+|Ric|2g]ab.
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Hence

(4-5) (Riem ∗Ric)7 g = (W ∗Ric)7 g−
2

n− 2
Ric2 7 g

+
nR

(n− 1)(n− 2)
Ric 7 g+

(n− 1)|Ric|2−R2

(n− 1)(n− 2)
g 7 g.

Then

Rqi Rpjkl g pq
= Rqi

(
Wpjkl −

R
(n−1)(n−2)

(gpk gjl − gpl gjk)
)

g pq

+
1

n−2
Rqi (Rpk gjl +R jl gpk −Rpl gjk −R jk gpl)g pq

= Rqi Wpjkl g pq
−

R
(n−1)(n−2)

(Rik gjl −Ril gjk)

+
1

n−2
(R2

ik gjl −R2
il gjk +RikR jl −RilR jk).

Interchanging the index and using the symmetry properties we get

(4-6) g pq(RpjklRqi +Ri pklRq j +Ri jplRqk +Ri jkpRql)

= g pq(WpjklRqi +Wi pklRq j +Wi jplRqk +Wi jkpRql)

+
2

n−2
(Ric2 7 g)i jkl +

2
n−2

(Ric 7 Ric)i jkl −
2R

(n−1)(n−2)
(Ric 7 g)i jkl .

Finally the “B”-terms:

B(Riem)abcd

=

(
W− R

2(n−1)(n−2)
g 7 g+ 1

n−2
Ric 7 g

)
apbq(

W− R
2(n−1)(n−2)

g 7 g+ 1
n−2

Ric 7 g
)

csdt
g ps gqt

(Wapbq(g 7 g)csdt + (g 7 g)apbqWcsdt)g ps gqt
=−2Wadbc− 2Wcbda

(Wapbq(Ric 7 g)csdt + (Ric 7 g)apbqWcsdt)g ps gqt

= (W ∗Ric)abgcd + (W ∗Ric)cd gab

−(WcbdpRaq +WcpdaRbq +WadbpRcq +WapbdRdq)g pq

(g 7 g)apbd(g 7 g)csdt g ps gqt

=4((n−2)gabgcd+gacgbd)((Ric7g)apbq(g7g)csdt+(Ric7g)csdt(g7g)apbq)g psgqt

= 2((n− 4)Rabgcd + (n− 4)Rcd gab+ 2Racgbd + 2Rbd gac)

(Ric 7 g)abpq(Ric 7 g)csdt g psgqt

=−2R2
abgcd − 2R2

cd gab+R2
acgbd +R2

bd gac

+ (n− 4)RabRcd + 2RacRbd +R(Rabgcd +Rcd gab)+ |Ric|2gabgcd
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Now, adding the same type quantities for the different index permutations and using
the symmetry properties of W we obtain

(4-7) B(Riem)i jkl − B(Riem)i jlk − B(Riem)il jk + B(Riem)ik jl

= B(W)i jkl − B(W)i jlk − B(W)il jk + B(W)ik jl

+
1

n−2
((W∗Ric)7g)i jkl−

1
(n−2)2

(Ric2 7g)i jkl+
1

2(n−2)
(Ric7Ric)i jkl

+
R

(n−1)(n−2)2
(Ric7 g)i jkl +

(
|Ric|2

2(n−2)2
−

R2

2(n−1)(n−2)2
)
(g 7 g)i jkl .

We are ready to complete the computation of the 0-th order term in the evolution
equation, using the previous formulas (4-5), (4-6), (4-7):

(L0)i jkl = 2(B(W)i jkl − B(W)i jlk − B(W)il jk + B(W)ik jl)+ 2ρRWi jkl

− g pq(WpjklRqi +Wi pklRq j +Wi jplRqk +Wi jkpRql)

+
2

(n−2)2
(Ric2 7 g)i jkl +

1
(n−2)

(Ric 7 Ric)i jkl

−
2R

(n−2)2
(Ric 7 g)i jkl +

R2
−|Ric|2

(n−1)(n−2)2
(g 7 g)i jkl �

4D. Conditions preserved in dimension three. In general dimension, it is very
hard to find other curvature conditions preserved by the flow, and this is due
principally to the complex structure of the reaction terms; for example in the
evolution equation satisfied by the Ricci tensor (3-3), the reaction terms involve
the full curvature tensor. Therefore it is easier to restrict our attention to the three
dimensional case, in which the Weyl part of the Riemann tensor vanishes and all
the geometric information is encoded in the Ricci tensor.

In the special case of dimension three, we can also use the evolution equation
(3-10) of the pullback of the curvature operator to obtain more refined conditions
preserved, because we can rewrite the ODE associated to the evolution of P as a
system of ODEs in the eigenvalues of P that, by Proposition 3.4, are nothing but
the sectional curvatures of R. This point of view was introduced for the Ricci flow
by Hamilton [1997] and can be easily generalized to the RB flow as follows:

Lemma 4.12. If n = 3, then Pp has 3 eigenvalues, λ, µ, ν, and the ODE fiberwise
associated to equation (3-10) can be written as the following system:

(4-8)


dλ
dt = 2λ2

+ 2µν− 4ρλ(λ+µ+ ν),
dµ
dt = 2µ2

+ 2λν− 4ρµ(λ+µ+ ν),
dν
dt = 2ν2

+ 2λµ− 4ρν(λ+µ+ ν).

In particular, if we assume λ(0)≥ µ(0)≥ ν(0), then λ(t)≥ µ(t)≥ ν(t) as long as
the solution of the system exists.
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Proof. We can pointwise identify Vp with an orthonormal frame of R3 with the
standard basis. Then 32Vp ' so(3) with the standard structure constants and if an
algebraic operator Qp is diagonal, both Q2

p and Q#
p are diagonal with respect to

the same basis (for the detailed computation of this fact, see [Chow and Knopf
2004, Chapter 6.4]). Hence the ODE (d/dt)Qp = Fp(Qp), associated fiberwise
to equation (3-10), preserves the eigenvalues of Qp, that is, if Qp(0) is diagonal
with respect to an orthonormal basis, Qp(t) stays diagonal with respect to the same
basis and the ODE can be rewritten as the system (4-8) in the eigenvalues.

To prove the last statement, we observe that

d
dt
(λ−µ)= 2(λ−µ)((1− 2ρ)(λ+µ)− (1+ 2ρ)ν),

d
dt
(µ− ν)= 2(µ− ν)((1− 2ρ)(µ+ ν)− (1+ 2ρ)λ). �

Remark 4.13. We already proved that the differential operator in the evolution
equation of P is uniformly elliptic if ρ < 1/2(n− 1), that is, ρ < 1

4 in dimension
three. Therefore any geometric condition expressed in terms of the eigenvalues
is preserved along the RB flow if the cone identified by the condition is closed,
convex and preserved by the system (4-8).

By using this method, we can prove:

Proposition 4.14. Let (M, g(t))t∈[0,T ) be a compact, three dimensional solution of
the RB flow (1-1). If ρ < 1

4 , then

(i) nonnegative Ricci curvature is preserved along the flow;

(ii) nonnegative sectional curvature is preserved along the flow;

(iii) the pinching inequality Ric≥ εRg is preserved along the flow for any ε ≤ 1
3 .

Proof.

(i) If Ric(g(0))≥ 0, then Ricg(t) ≥ 0. The eigenvalues of Ric are the pairwise sums
of the sectional curvatures. Hence the condition is identified by the cone

Kp = {Qp : (µ+ ν)(Qp)≥ 0}.

The closedness is obvious; in order to see that Kp is convex, we observe that the
greatest eigenvalue can be characterized by λ(Qp)=max{Qp(v, v) :v∈Vp|v|h=1}.
Hence Kp is convex. Then the function Qp 7→µ(Qp)+ν(Qp)= tr(Qp)−λ(Qp) is
concave and this implies that its superlevels are convex. By system (4-8) we obtain

d
dt
(µ+ ν)= 2µ2

+ 2ν2
+ 2λ(µ+ ν)− 4ρ(µ+ ν) tr(Qp).

There is the stationary solution corresponding to µ(0) = 0 = ν(0). Otherwise,
whenever µ(t0)+ ν(t0) = 0 with µ(t0) 6= 0 and ν(t0) 6= 0, (d/dt)(µ+ ν)(t0) =
2(µ2
+ ν2)(t0) > 0, then K is preserved.



THE RICCI–BOURGUIGNON FLOW 359

(ii) If Sec(g(0)) ≥ 0, then Secg(t) ≥ 0. This condition is the nonnegativity of P ,
already proved in general dimension in Proposition 4.10, identified by the cone
Kp = {Qp : ν(Qp)≥ 0}, which is convex as a superlevel of a concave function. We
suppose that ν(t0)= 0. Then

d
dt
ν(t0)= 2λ(t0)µ(t0)≥ 0,

since the order between the eigenvalues is preserved and therefore λ(t0)≥µ(t0)≥ 0.

(iii) For every ε∈
(
0, 1

3

]
, if Ric(g(0))−εR(g(0))g(0)≥0, then Ricg(t)−εRg(t)g(t)≥

0. Translating in terms of eigenvalues of P , the condition means µ(Qp)+ν(Qp)−

2ε tr(Qp) ≥ 0; that is, λ(Qp) ≤ (1− 2ε)/(2ε)(µ(Qp)+ ν(Qp)). Then the right
cone is

Kp = {Qp : λ(Qp)−C(ε)(µ(Qp)+ ν(Qp))≤ 0},

where C(ε)= (1− 2ε)/(2ε) ∈
[1

2 ,+∞
)
. The defining function is the sum of two

convex functions, hence its sublevels are convex. Now, for C = 1
2 , that corresponds

to ε = 1
3 , and we have λ(0) = µ(0) = ν(0) at each point of M; that is, the initial

metric g(0) has constant sectional curvature and this condition is preserved along
the flow.

For C > 1
2 , we suppose λ(t0)= C(µ(t0)+ ν(t0)), then

d
dt
(λ−C(µ+ ν))(t0)

= 2[λ2
+µν−C(µ2

+ ν2
+ λ(µ+ ν))− 2ρ tr(Qp)(λ−C(µ+ ν))](t0)

= 2[C2(µ(t0)+ ν(t0))2+µ(t0)ν(t0)−C(µ(t0)2+ ν(t0)2)−C2(µ(t0)+ ν(t0))2]

≤ (1− 2C)(µ(t0)2+ ν(t0)2)≤ 0,

which completes the proof. �

4E. Hamilton–Ivey estimate. A remarkable property of the three dimensional
Ricci flow is the pinching estimate, independently proved by Hamilton [1995]
and Ivey [1993], which says that positive sectional curvature dominates negative
sectional curvature during the Ricci flow, that is, if the initial metric g0 has a
negative sectional curvature somewhere, the Ricci flow starting at g0 evolves the
scalar curvature towards the positive semiaxis in future times, which means that
there will be a greater (in absolute value) positive sectional curvature.

We have generalized the pinching estimate and some consequences for positive
values of the parameter ρ. In the same notation used before, let λ≥ µ≥ ν be the
ordered eigenvalues of the curvature operator.
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Theorem 4.15 (Hamilton–Ivey estimate). Let (M, g(t)) be a solution of the RB
on a compact three-manifold such that the initial metric satisfies the normalizing
assumption minp∈M νp(0) ≥ −1. If ρ ∈

[
0, 1

6

)
, then at any point (p, t) where

νp(t) < 0, the scalar curvature satisfies

(4-9) R≥ |ν|(log |ν| + log(1+ 2(1− 6ρ)t)− 3).

Proof. We would like to apply the maximum principle for time-dependent sets
in Theorem 4.9. Hence we need to express condition (4-9) in terms of a family
of closed, convex, invariant subsets of S2(32V ∗), where (V, h(t), D(t)) is the
usual bundle isomorphism of the tangent bundle defined via Uhlenbeck’s trick
(Section 3B). Moreover, by [Chow et al. 2008, Lemma 10.11], we already know
that, for any t ∈ [0, T ), the set

Kp(t)=
{

Qp : tr(Qp)≥−
3

1+2(1−6ρ)t and if ν(Qp)≤−
1

1+2(1−6ρ)t ,

then tr(Qp)≥ |ν(Qp)|(log |ν(Qp)| + log(1+ 2(1− 6ρ)t)− 3)

}
defines a closed invariant subset of S2(32V ∗). Since, for ρ ∈

[
0, 1

6

)
, K (t) depends

continuously on time, the spacetime track of K (t) is closed in S2(32V ∗).
Now we show that Kp(t) is convex for every p ∈ M and t ∈ [0, T ). Following

[Chow and Knopf 2004, Lemma 9.5], we consider the map

8 : S2(32V ∗p )→ R2, 8(Qp)= (|ν(Qp)|, tr(Qp))

Clearly, we have that Qp ∈ Kp(t) if and only if 8(Qp) ∈ A(t), where

A(t)=
{
(x, y) ∈ R2

: y ≥− 3
1+2(1−6ρ)t ; y ≥−3x;

if x ≥ 1
1+2(1−6ρ)t , then y ≥ x(log x + log(1+ 2(1− 6ρ)t)− 3)

}
is a convex subset of R2. Then in order to show that Kp(t) is convex it is sufficient
to show that the segment between any two algebraic operators in Kp(t) is sent
by the map 8 into A(t). Therefore let Qp, Q′p ∈ Kp(t), s ∈ [0, 1] and Qp(s) =
s Qp + (1− s)Q′p. About the first defining condition for A(t), the trace is a linear
functional, hence it is obviously fulfilled by Qp(s), while the second condition is
satisfied by any algebraic operator.

The third condition is a bit tricky. If ν(Qp), ν(Q′p)>−1/(1+(1−6ρ)t), then the
condition is empty for every point of the segment because ν is a concave function.
By continuity we can assume that ν(Qp(s)) ≤ −1/(1+ (1− 6ρ)t) without loss
of generality for every s ∈ [0, 1], and hence x(Qp(s)) = −ν(Qp(s)) is a convex
function and x(Qp(s)) ≤ sx(Qp)+ (1− s)x(Q′p). On the other hand the second
condition implies that x(Qp(s)) ≥ −y(Qp(s))/3 = − 1

3(sy(Qp)+ (1− s)y(Q′p)).
Then 8(Qp(s)) belongs to the trapezium of vertices

8(Qp),
(
−

1
3 y(Qp), y(Qp)

)
,8(Q′p),

(
−

1
3 y(Q′p), y(Q′p)

)
,
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which is contained in A(t), as its vertices are, and A(t) is convex.
Now we prove that K (t) is preserved by the system (4-8). By taking the sum of

the three equations in the system (see also Remark 4.13) we get

d
dt

tr(Qp)≥
4
3
(1− 3ρ) tr(Qp)

2.

By hypothesis, ν(Qp)(0) ≥ −1, hence tr(Qp)(0) ≥ −3 for every p ∈ M and by
integrating the previous inequality,

tr(Qp)(t)≥−
3

1+4(1−3ρ)t
≥−

3
1+2(1−6ρ)t

,

which holds for any ρ ∈
[
0, 1

6

)
.

In order to prove that the second inequality is preserved, too, we consider, for
every p ∈ M such that ν(Qp)(0) < 0, the function

(4-10) f (t)=
tr(Qp)

−ν(Qp)
− log(−ν(Qp))− log(1+ 2(1− 6ρ)t),

and we compute its derivative along the flow:

d
dt

f = 1
ν2 [(−2ν)(λ2

+µ2
+ ν2
+ λµ+ λν+µν− 2ρ(λ+µ+ ν)2)

+ 2(λ+µ+ ν)(ν2
+ λµ− 2ρν(λ+µ+ ν))]

−
2
ν
(ν2
+ λµ− 2ρν(λ+µ+ ν))− 2(1−6ρ)

1+2(1−6ρ)t

=
2
ν2 [−ν(λ

2
+µ2
+ λµ)+ λµ(λ+µ)− ν3

+ 2ρν2(λ+µ+ ν)] −
2(1−6ρ)

1+2(1−6ρ)t
.

As in the case of the Ricci flow, it is easy to see that the quantity−ν(λ2
+µ2
+λµ)+

λµ(λ+µ) is always nonnegative if ν < 0. In fact, if µ > 0 it is obvious, whereas
if µ≤ 0 one has

−ν(λ2
+µ2

+ λµ)+ λµ(λ+µ)= (µ− ν)(λ2
+µ2

+ λµ)−µ3
≥ 0.

Hence we get

(4-11) d
dt

f (t)≥−2ν+ 4ρ(λ+µ+ ν)− 2(1−6ρ)
1+2(1−6ρ)t

.

If ρ ≥ 0, since λ+µ+ ν ≥ 3ν, we obtain

d
dt

f ≥−2(1− 6ρ)
(
ν+

1
1+2(1−6ρ)t

)
≥ 0

whenever ν ≤−1/(1+ 2(1− 6ρ)t) and ρ ≤ 1
6 .

Hence, if (λ, µ, ν) is a solution of system (4-8) in [0, T )with (λ(0), µ(0), ν(0))∈
Kp(0), we suppose that there is t1> 0 such that ν(t1) <−1/(1+2(1−6ρ)t1). Then
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either ν(t) <−1/(1+2(1−6ρ)t) for any t ∈ [0, t1], or there exists t0 < t1 such that
ν(t0)=−1/(1+2(1−6ρ)t0) and ν(t)<−1/(1+2(1−6ρ)t) for any t ∈ (t0, t1]. In the
first case, by hypothesis we obtain f (0)≥−3 and (d/dt) f (t)≥ 0 for any t ∈ [0, t1],
therefore f (t1)≥−3; in the second case f (t0)= (λ+µ+ν)(t0)/−ν(t0)≥−3 and
(d/dt) f (t)≥ 0 for any t ∈ [t0, t1], therefore again f (t1)≥−3, which is equivalent
to the second inequality. �

Remark 4.16. The extra term 4ρ(λ+µ+ ν) on the key equation (4-11) requires
strong assumptions on the parameter ρ since we have no information on the sign
of the trace. However, combining equation (4-11) with Proposition 4.4, we can
enlarge the range of ρ to

[
0, 1

4

)
, simply by dropping the extra term, nonnegative for

ancient solutions and therefore conclude that an ancient solution to the RB flow on
a compact three-manifold with bounded scalar curvature has nonnegative sectional
curvature for any value of ρ ∈

[
0, 1

4

)
(see [Chow and Knopf 2004, Corollary 9.8]).

Proposition 4.17. Let (M, g(t))t∈(−∞,0] be a compact, three dimensional, ancient
solution of the RB flow (1-1) with uniformly bounded scalar curvature. If ρ ∈

[
0, 1

4

)
then the sectional curvature is nonnegative.

5. Curvature estimates

5A. Technical lemmas. Before proving the curvature estimates for the RB flow,
we need some technical results, the first being the following proposition:

Proposition 5.1. Let k ∈N, p ∈ [1,+∞] and q ∈ [1,+∞). There exists a constant
C(n, k, p, q) such that for all 0≤ j ≤ k and all tensors T

‖∇
j T ‖rj ≤ C‖T ‖1− j/k

p ‖∇
k T ‖ j/k

q ,

where 1/rj = (1− j/k)/p+ j/k/q.

To prove this proposition, we need several lemmas.

Lemma 5.2. Let p ∈ [1,+∞], q ∈ [1,+∞) and r ∈ [2,+∞) such that 2/r =
1/p+ 1/q. There exists a constant C(n, r) such that for all tensors T,

‖∇T ‖2r ≤ C‖T ‖p‖∇
2T ‖q .
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Proof.

‖∇T ‖rr =
∫

M
〈∇T, |∇T |r−2

∇T 〉 dµg

=−

∫
M
〈T,∇

(
|∇T |r−2

∇T
)
〉 dµg

=−

∫
M
〈T, (r − 2)∇2T |∇T |r−3

∇T 〉 dµg −

∫
M
〈T, |∇T |r−2

∇
2T 〉 dµg

≤ C
∫

M
|T ||∇2T ||∇T |r−2 dµg

≤ C‖T ‖p‖∇
2T ‖q‖∇T ‖r−2

r ,

using Hölder’s inequality with (r − 2)/r + 1/p+ 1/q = 1. This ends the proof of
this lemma. �

Lemma 5.3 [Hamilton 1982, Corollary 12.5]. Let k ∈ N. If f : {0, . . . , k} → R

satisfies for all 0< j < k

f ( j)≤ C f ( j − 1)
1
2 f ( j + 1)

1
2 ,

where C is a positive constant, then for all 0≤ j ≤ k,

f ( j)≤ C j (k− j) f (0)1− j/k f (k) j/k .

Proof of Proposition 5.1. We apply Lemma 5.3 with f ( j) = ‖∇ j T ‖rj . Since
2/rj = 1/rj−1+ 1/rj+1, Lemma 5.2 shows that there exists C(n, k, p, q) such that

f ( j)≤ C f ( j − 1)
1
2 f ( j + 1)

1
2 ,

and then Lemma 5.3 gives Proposition 5.1, since r0 = p a rk = q . �

Lemma 5.4. For all tensors of the form S ∗ T, there exists C depending on the
dimension and the coefficients in the expression such that

|S ∗ T | ≤ C |S||T |.

Proof. By the Cauchy–Schwarz inequality, (trgT )2= (gαβTαβ)2≤nTαβT αβ
=n|T |2.

Then

|S ∗ T | ≤ C(n)|S⊗ T ⊗ g⊗ j
⊗ (g−1)⊗k

≤ C(n)n
j+k
2 |S||T |. �

Let k ∈ N, and set, for a tensor T, Fg(T )=
∑

j+l=k; j,l≥0 ∇
j T ∗∇l T ∗∇k T.

Lemma 5.5. Let k ∈N. Let p ∈ [2,+∞] and q ∈ [2,+∞) such that 1/p+2/q = 1.
There exists C(n, k, p, q, F) such that for all tensors T,∫

M
|Fg(T )| dµg ≤ C‖T ‖p‖∇

k T ‖2q .
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Proof. Let us consider one term in Fg(T ) that can be written ∇ j T ∗ ∇l T ∗ ∇k T,
j, l ≥ 0. We set

1
rj
=

1− j
k

p
+

j
k

q
and

1
rl
=

1− l
k

p
+

l
k

q
.

Since 1/rj + 1/rj + 1/q = 1, by Lemma 5.4 and Hölder’s inequality we have∫
M
|∇

j T ∗∇l T ∗∇k T | dµg ≤ C ′
∫

M
|∇

j T ||∇l T ||∇k T | dµg

≤ C ′‖∇ j T ‖rj‖∇
l T ‖rl‖∇

k T ‖q ,

Then, by applying Proposition 5.1 to the first two factors, we get∫
M
|∇

j T ∗∇l T ∗∇k T | dµg ≤ C‖T ‖p‖∇
k T ‖2q .

The result follows since Fg(T ) is a linear combination of such terms. �

5B. Curvature estimates.

Theorem 5.6. Assume ρ < 1/(2(n− 1)). If g(t) is a compact solution of the RB
flow for t ∈ [0, T ) such that

sup
(x,t)∈M×[0,T )

|Riem(x, t)| ≤ K ,

then for all k ∈N there exists a constant C(n, ρ, k, K , T ) such that for all t ∈ (0, T ]

‖∇
kRiemg(t)‖

2
2 ≤

C
tk sup

t∈[0,T )
‖Riemg(t)‖

2
2.

Proof. A direct computation gives

∂

∂t
|Riem|2 =1(|Riem|2)− 2|∇Riem|2− 8ρRi j∇

i
∇

j R+Riem ∗Riem ∗Riem

∂

∂t
R2
= (1− 2(n− 1)ρ)1(R2)− 2(1− 2(n− 1)ρ)|∇R|2+ 4R|Ric|2− 4ρR3.

It follows that

d
dt

∫
M
|Riem|2 dµg =−2

∫
M
|∇Riem|2 dµg − 8ρ

∫
M

Ri j∇
i
∇

j R dµg

+

∫
M

Riem ∗Riem ∗Riem dµg

d
dt

∫
M

R2dµg =−2(1− 2(n− 1)ρ)
∫

M
|∇R|2dµg +

∫
M

Riem ∗Riem ∗Riem dµg.
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Now we want to compute
∫

M Ri j∇
i
∇

j R dµg. Using the Bianchi identity we have∫
M

Ri j∇
i
∇

j R dµg =−
1
2

∫
M
|∇R|2 dµg .

We conclude that

d
dt

∫
M
|Riem|2 dµg =−2

∫
M
|∇Riem|2 dµg + 4ρ

∫
M
|∇R|2 dµg

+

∫
M

Riem ∗Riem ∗Riem dµg

and

d
dt

∫
M

R2 dµg =−2(1− 2(n− 1)ρ)
∫

M
|∇R|2 dµg +

∫
M

Riem ∗Riem ∗Riem dµg.

As we did before, a straightforward computation gives:

d
dt

∫
M
|∇

kRiem|2 dµg =−2
∫

M
|∇

k+1Riem|2 dµg + 4ρ
∫

M
|∇

k+1R|2 dµg

+

∑
j+l=k; j,l≥0

∫
M
∇

j Riem ∗∇lRiem ∗∇kRiem dµg

d
dt

∫
M
|∇

kR|2 dµg =−2(1− 2(n− 1)ρ)
∫

M
|∇

k+1R|2 dµg

+

∑
j+l=k; j,l≥0

∫
M
∇

j Riem ∗∇lRiem ∗∇kRiem dµg.

Consider

Ak :=

∫
M
|∇

kRiem|2 dµg +
4|ρ|

(1−2(n−1)ρ)

∫
M
|∇

kR|2 dµg,

and set fk(t) :=
∑k

j=0(β
j t j/j !)A j, where β :=min(1, 1− 2(n− 1)ρ). We have

(5-1) f ′k(t)=
k−1∑
j=0

β j t j

j !
(A′j +βA j+1)+

βk tk

k!
A′k .

We have by a direct computation, for any j :

A′j +βA j+1 = (−2+β)‖∇ j+1Riem‖22+
(

4ρ−8|ρ|+
4β|ρ|

1− 2(n− 1)ρ

)
‖∇

j+1R‖22

+

∑
i+l= j,i,l≥0

∫
M
∇

i Riem ∗∇lRiem ∗∇ j Riem dµg.
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We need to estimate∑
i+l= j,i,l≥0

∫
M
∇

i Riem ∗∇lRiem ∗∇ j Riem dµg.

For this we use Lemma 5.5 with p =+∞ and q = 2:∑
i+l= j,i,l≥0

∫
M
∇

i Riem ∗∇lRiem ∗∇ j Riem dµg ≤ C‖Riem‖∞‖∇ j Riem‖22.

Using Proposition 5.1, with k = j + 1 we get∑
i+l=k

∫
M
∇

iRiem ∗∇lRiem ∗∇ jRiem dµg ≤ C‖Riem‖∞(‖Riem‖22)
1

j+1(‖∇ j+1Riem‖22)
j

j+1,

where i, l ≥ 0. Now we apply Young’s inequality ab ≤ a p/p+ bq/q , where

a = C‖Riem‖∞(‖Riem‖22)
1

j+1 , b = (‖∇ j+1Riem‖22)
j

j+1

and p = j + 1, q = ( j + 1)/j . We use the hypothesis on the boundedness of
‖Riem‖∞ and we obtain∑
i+l= j

∫
M
∇

iRiem∗∇lRiem∗∇ jRiem dµg≤C ′(n, ρ, j, K )‖Riem‖22+‖∇
j+1Riem‖22,

where i, l ≥ 0. Putting this last inequality in the previous computation, we obtain

A′j +βAj+1 ≤ (−1+β)‖∇ j+1Riem‖22 +
(
4ρ− 8|ρ| +

4β|ρ|
1− 2(n− 1)ρ

)
‖∇

j+1R‖22

+C ′(n, ρ, j, K )‖Riem‖22
≤ C ′(n, ρ, j, K )‖Riem‖22,

where we use the facts that −1+β ≤ 0 and 4ρ−8|ρ|+4|ρ|β/(1− 2(n− 1)ρ)≤ 0.
The same estimates holds for the last term in equation (5-1), since

A′k ≤A′k +βAk+1 ≤ C ′(n, ρ, k, K )‖Riem‖22

Therefore

f ′k(t)≤
k∑

j=0

β j t j

j !
C ′(n, ρ, j, K )‖Riem‖22

≤ C(n, ρ, k, K )‖Riem‖22(e
βt
− 1)≤ C̃(n, ρ, k, K , T )‖Riem‖22.
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Since fk(0) = A0 ≤ C(ρ, n)‖Riem‖22, by integrating the previous inequality we
finally get

‖∇
kRiem‖22 ≤Ak ≤

k!
βk tk fk(t)≤

Ĉ
tk

[
fk(0)+ C̃t‖Riem‖22

]
≤

Ĉ[C(ρ, n)+ C̃t]
tk ‖Riem‖22 ≤

C
tk ‖Riem‖22,

which concludes the proof of the theorem. �

5C. Long time existence. In this section we will prove the following result.

Theorem 5.7. Assume ρ < 1/(2(n− 1)). If g(t) is a compact solution of the RB
flow on a maximal time interval [0, T ), T <+∞, then

lim sup
t→T

max
M
|Riem( · , t)| = +∞.

Proof. This proof follows exactly the one given by Hamilton for the Ricci flow
(see [Hamilton 1982, Section 14]). First of all we observe that, if the Riemann
tensor is uniformly bounded as t → T and T < +∞, then also its L2-norm is
uniformly bounded, because from the previous computations, for A0 = ‖Riem‖22+
4|ρ|/(1− 2(n− 1)ρ)‖R‖22, so we have A′0 ≤ CA0.

Then, by Theorem 5.6, we get, for any j ∈ N

‖∇
j Riem‖22 ≤ C j .

Now, by using the interpolation inequalities in Proposition 5.1 with p =∞, q = 2,
we immediately get the estimates

‖∇
j Riem‖2k

j
≤ C j,k,

for all j ∈ N and k ≥ j. Therefore, by interpolation the same result holds for a
generic exponent r , with a constant that depends on j and r .

Now, let E j := |∇
j Riem|2. Then, for all r <+∞ we have∫

M
(|E j |

r
+ |∇E j |

r ) dµg ≤ C ′j,r .

Thus, by the Sobolev inequality, if r > j, one has

max
M
|E j |

r
≤ Ct

∫
M
(|E j |

r
+ |∇E j |

r ) dµg.

Notice that the constant Ct depends on the metric g(t), but it does not depend on the
derivatives of g(t). Moreover, from [Hamilton 1982, Lemma 14.2], it follows that
the metrics are all equivalent. Hence, the constant Ct is uniformly bounded as t→ T
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and, from the previous estimates, it follows that, if |Riem| ≤ C on M ×[0, T )], for
every j ∈ N one has

max
M
|∇

j Riem| ≤ C j ,

where the constant C j depends only on the initial value of the metric and the
constant C .

Arguing now as in [Hamilton 1982, Section 14], it follows that the metrics g(t)
converge to some limit metric g(T ) in the C∞ topology (with all their time/space
ordinary partial derivatives, once written in local coordinates), hence, we can restart
the flow with this initial metric g(T ), obtaining a smooth flow in some larger time
interval [0, T + δ), in contradiction with the fact that T was the maximal time of
smooth existence. This completes the proof of Theorem 5.7. �
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