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SOME CLOSURE RESULTS FOR C-APPROXIMABLE GROUPS

DEREK F. HOLT AND SARAH REES

We investigate closure results for C-approximable groups, for certain classes
C, of groups with invariant length functions. In particular we prove, each
time for certain (but not necessarily the same) classes C that: (i) the di-
rect product of two C-approximable groups is C-approximable; (ii) the re-
stricted standard wreath product G o H is C-approximable when G is C-
approximable and H is residually finite; and (iii) a group G with normal
subgroup N is C-approximable when N is C-approximable and G/N is
amenable. Our direct product result is valid for LEF, weakly sofic and
hyperlinear groups, as well as for all groups that are approximable by finite
groups equipped with commutator-contractive invariant length functions
(considered by A. Thom). Our wreath product result is valid for weakly
sofic groups, and we prove it separately for sofic groups. This last result has
recently been generalised by Hayes and Sale, who proved that the restricted
standard wreath product of any two sofic groups is sofic. Our result on
extensions by amenable groups is valid for weakly sofic groups, and was
proved by Elek and Szabó (2006) for sofic groups N .

1. Introduction

Our interest in C-approximable groups stems from the fact that, by making an
appropriate choice of the class C, the definition of a C-approximable group equates
to that of one of a variety of classes of groups currently of interest, including
sofic groups, hyperlinear groups, weakly sofic groups, linear sofic groups, and
LEF groups. Hence techniques that apply to one such class can often be applied
to another. In this article we develop some general techniques to establish some
closure properties for many of these classes, specifically for direct products, for
wreath products with residually finite groups, and for extensions by amenable
groups. We shall refer to closure results in the literature, mostly for specific classes
of C-approximable groups; in some cases our proofs have been inspired by the
proofs of those. We are grateful to the anonymous referee of the paper for a careful
reading and several helpful comments and corrections.

MSC2010: primary 20F65; secondary 20E22.
Keywords: C-approximable group, sofic, hyperlinear, weakly sofic, linear sofic.

393

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2017.287-2
http://dx.doi.org/10.2140/pjm.2017.287.393
http://dx.doi.org/10.1515/jgt.2011.102
http://arxiv.org/abs/1601.03286
http://dx.doi.org/10.1515/JGT.2006.011


394 DEREK F. HOLT AND SARAH REES

Our definition of a C-approximable group is taken from [Thom 2012, Defini-
tion 1.6] and specialises to the definitions of sofic and hyperlinear groups in [Capraro
and Lupini 2015]; we shall discuss some of the alternative definitions later on in
this section. Our definition requires the concept of an invariant length function on
a group K ; that is, a map ` : K → [0, 1] such that, for all x, y ∈ K :

`(x)= 0⇐⇒ x = 1, `(x−1)= `(x),

`(xy)≤ `(x)+ `(y), `(xyx−1)= `(y).

Every group admits the trivial length function `0 defined by `0(x) = 1 if x 6= 1,
`0(1)= 0, and may admit many others. The Hamming norm, which computes the
proportion of points moved by a permutation of a finite set, gives an invariant length
function for finite symmetric groups.

In the following definition C is understood to be a set of pairs, each pair consisting
of a group K together with an invariant length function `K on K ; so the same group
may occur in C with more than one length function. For a group K , the statement
K ∈ C means that K is the group in at least one such pair.

Definition 1.1. (1) For a group G, a map δ :G→R (for which we write δg rather
than δ(g)) is a weight function for G if δ1 = 0 and δg > 0 for all 1 6= g ∈ G.

(2) Let G be a group with weight function δ, let K be a group with invariant
length function `K , let ε > 0, and let F be a finite subset of G. Then the map
φ : G→ K is an (F, ε, δ, `K )-quasihomomorphism if
• φ(1)= 1,
• ∀g, h ∈ F , `K (φ(gh)φ(h)−1φ(g)−1)≤ ε, and
• ∀g ∈ F \ {1}, `K (φ(g))≥ δg.

(3) Let C be a class of groups with associated invariant length functions. Then
a group G is C-approximable if it has a weight function δ, such that, for
each ε > 0 and for each finite subset F of G, there exists an (F, ε, δ, `K )-
quasihomomorphism φ : G→ K for some (K , `K ) ∈ C.

Since these conditions cannot possibly be satisfied if δg > 1 for some g ∈ G, we
shall always assume that δg ≤ 1.

In particular, sofic groups are precisely those groups that are C-approximable
with respect to the class C of finite symmetric groups with length function defined by
the Hamming norms, and with weight functions of the form δg = c for all 1 6= g ∈G,
for some fixed constant c > 0; see [Pestov and Kwiatkowska 2009, Theorem 5.2].

The (normalised) Hilbert–Schmidt norm on the set of n× n complex matrices
A = (ai j ) is defined by

‖(ai j )‖HSn :=

√
1
n

∑
i, j |ai j |

2 =

√
1
n Tr(A∗A).
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The hyperlinear groups are precisely those groups that are C-approximable with re-
spect to the class C of finite-dimensional unitary groups with length function defined
by `(g)= 1

2‖g− In‖HSn , and with the same weight functions as for sofic groups; see
[Pestov and Kwiatkowska 2009, Theorem 4.2]. Furthermore, weakly sofic groups,
linear sofic groups and LEF groups can all be defined as C-approximable groups,
where the classes C are (respectively) the class F of all finite groups equipped with
all associated invariant length functions, the groups GLn(C) equipped with the
norm `(g)= 1

n rk(In − g) [Arzhantseva and Păunescu 2017], and the finite groups
equipped with the trivial length function. We refer the reader to [Arzhantseva and
Gal 2013; Ciobanu et al. 2014; Elek and Szabó 2006; 2011; Păunescu 2011; Stolz
2013] for a number of closure results involving various of these classes of groups.

Following [Thom 2012] we say that an invariant length function ` : K → [0, 1]
is commutator-contractive if it satisfies the condition

`([x, y])≤ 4`(x)`(y) ∀x, y ∈ K .

Note that the trivial length function is commutator-contractive. Let FC be the
class of all finite groups, each equipped with all commutator-contractive length
functions. The main result of [Thom 2012] is that Higman’s group [1951] is not
FC -approximable. This group is widely seen as a candidate for a first example of a
nonsofic group.

There are many variations in the literature of the definition of a C-approximable
group, not all of which are believed to be equivalent in general to our basic definition,
although the paucity of known examples of groups that are not C-approximable
makes it difficult to prove their inequivalence.

Some definitions, such as [Glebsky 2015, Definition 2] and [Stolz 2013, §2]
allow invariant length functions to take values in [0,∞) rather than in [0, 1]. This
does not affect the classes of sofic, hyperlinear, linear sofic and LEF groups, since
the length functions used in these classes all have range [0, 1]. It is also easily seen
that the class of weakly sofic groups is not changed by this variant since, if a group
is weakly sofic using length functions with range [0,∞), and `K is such a length
function on a finite group K , then simply by replacing `K (g) by the new length
function max(`K (g), 1), we can show that G is weakly sofic using length functions
with range [0, 1]. So this variation in the range of permissible length functions does
not appear to us to be significant.

The more substantial variants involve the condition

∀g ∈ F, `K (φ(g))≥ δg

in the definition of C-approximability. These are discussed in Section 2 of [Stolz
2013]. The group G is said to have the discrete C-approximation property if the
weight function for G can be chosen to be constant on all nonidentity elements. It
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is said to have the strong discrete C-approximation property if the condition above
is replaced by

∀g ∈ F, `K (φ(g))≥ diam(K )− ε,

where diam(K ) is defined to be sup{`K (x) : x ∈ K }, and ε is as in Definition 1.1(3).
By choosing the weight function δg = diam(G)/2 for all g ∈ G \ {1}, we see
immediately that the strong discrete C-approximation property implies the discrete
C-approximation property, which clearly implies that G is C-approximable using
our definition. But the converse implications are not clear, and may not hold in
general.

The definition given for sofic groups in [Elek and Szabó 2006] enforces the
strong discrete approximation property. But it is shown in [Capraro and Lupini
2015, Exercise II.1.8] that, for this class, any C-approximable group has the strong
discrete C-approximation property.

It is proved in [Arzhantseva and Păunescu 2017, Proposition 5.13] that lin-
early sofic groups have the discrete C-approximation property, but it appears to be
unknown whether they have the strong discrete C-approximation property.

Hyperlinear groups do not have the strong C-approximation property, and we are
grateful to the referee for pointing this out to us. The diameter of the unitary group
U(n) with length function defined as above by `(g)= 1

2‖g− In‖HSn is 1. By using
the identity

‖g− h‖2HSn
+‖g+ h‖2HSn

= 4

for g, h ∈ U(n) and putting h = In , we see that, if 1− `(g) is small, then g is close
to −In with respect to the Hilbert–Schmidt metric. So if 1− `(g1) and 1− `(g2)

are both small, then g1g2 is close to In and hence `(g1g2) is close to 0. It follows
that a hyperlinear group with the strong discrete C-approximation property must be
finite with order at most 2.

For hyperlinear groups, it is true that, for any finite F ⊆G and ε > 0, there exists
an approximately multiplicative map φ : G→ U(n) for which |Tr(φ(g))/n| < ε
for all g ∈ F \ {1}. This was first proved in [Elek and Szabó 2005] using ideas
introduced in [Rădulescu 2008].

It is not difficult to show that the classes of F-approximable (i.e., weakly sofic)
and FC -approximable groups both have the strong discrete C-approximation prop-
erty. For a finite subset F of a group G in one of these two classes, and ε > 0, let
c =min{δg : g ∈ F}, and let φ : G→ K be an (F, cε, δ, `K )-quasihomomorphism.
Then, by replacing `K by the length function `′K (x) := min(`K (x)/c, 1), which
is commutator-contractive if `K is, we see that φ is an (F, ε, δ, `′K )-quasihomo-
morphism for which `′K (φ(g)) = 1 for all g ∈ F , so G has the strong discrete
C-approximation property.
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We prove our closure results for direct products, wreath products, and extensions
by amenable groups in Sections 2, 3 and 4, and 5, respectively. To prove the last of
these, on extensions of C-approximable groups N by amenable groups, we need to
assume that the group N has the discrete C-approximation property. For each of our
closure results, it is straightforward to show that, if the groups that are assumed to be
C-approximable have the discrete or the strong discrete C-approximation property,
then so does the group G that is proved to be C-approximable.

Concerning free products, we note that it is proved in [Elek and Szabó 2006,
Theorem 1], [Stolz 2013, Theorem 5.6] and [Popa 1995; Voiculescu 1998], re-
spectively, that the classes of sofic, linear sofic, and hyperlinear groups are closed
under free products; further it is proved in [Brown et al. 2008] that free products
of hyperlinear groups amalgamated over amenable subgroups are hyperlinear. We
thank the referee for bringing to our attention the results for hyperlinear groups. We
are unaware of any corresponding results for weakly sofic groups, and our efforts
to prove such a result have so far been unsuccessful.

2. The direct product result

In order to state and prove our closure result for direct products of C-approximable
groups, we must construct an appropriate invariant length function for the direct
product of two groups in C. Suppose that (J, `J ), (K,`K )∈C. Then, for p∈N∪{∞},
we define the functions L p

`J ,`K
: J × K → [0, 1] by

L p
`J ,`K

(x, y) := p
√

1
2(`J (x)p + `K (y)p), p ∈ N,

and L∞`J ,`K
(x, y) :=max(`J (x), `K (y)). We write just L p(x, y) when there is no

ambiguity.
Note that L p(x, y)≤ L∞(x, y)≤ 1 for all p ≥ 1.
It follows immediately from Minkowski’s inequality (basically the triangle in-

equality for the L p norm) that L p satisfies the rule

L p(x1x2, y1 y2)≤ L p(x1, y1)+ L p(x2, y2),

and hence is an invariant length function on J × K. As we shall see below, we can
use L p (for some choice of p) to deduce the closure of C-approximable groups
under direct products provided that (J × K , L p) ∈ C.

Theorem 2.1. Let C be a class of groups with associated invariant length functions
and suppose that, for some fixed p ∈ N∪ {∞}, and for any groups J, K ∈ C,

(J, `J ), (K , `K ) ∈ C⇒ (J × K , L p) ∈ C.

Then the direct product G × H of two C-approximable groups G and H is also
C-approximable.
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Proof. Suppose that C, p satisfy the conditions of the theorem.
Let G and H be C-approximable with associated weight functions δG and δH .

We define the weight function δG×H by

δG×H (g, h) := p
√

1
2(δ

G(g)p + δH (h)p).

Now suppose that ε > 0 is given, and let F be a finite subset of G × H. Then
we can find finite subsets FG ⊆ G, FH ⊆ H such that F ⊆ FG × FH , pairs
(J, `J ), (K , `K ) ∈ C, an (FG, ε, δ

G, `J )-quasihomomorphism φG : G→ J , and an
(FH , ε, δ

H , `K )-quasihomomorphism φH : H → K.
We define φ : G × H → M := J × K by φ(g, h) := (φG(g), φH (h)) and

`M(x, y) := L p(x, y).
We verify easily that, for (g1, h1), (g2, h2) ∈ F , and hence g1, g2 ∈ FG and

g2, h2 ∈ FH ,

`M(φ(g1g2, h1h2)φ(g2, h2)
−1φ(g1, h1)

−1)

= L p(φG(g1g2)φG(g2)
−1φG(g1)

−1, φH (h1h2)φH (h2)
−1φH (h1)

−1)≤ ε,

and the other conditions are similarly verified. �

We can apply the result to deduce closure under direct products for the classes
of weakly sofic groups, LEF groups, hyperlinear groups, linear sofic groups and
Thom’s class [2012] of FC -approximable groups.

For weakly sofic groups, the condition holds for any p, and for LEF groups it
holds for p =∞.

When `J , `K are Hilbert–Schmidt norms in the same dimension n, the function
L2 matches the Hilbert–Schmidt norm in dimension 2n; observing that whenever G
maps by a quasihomomorphism to a linear group in dimension m it also maps to a
linear group in dimension rm, for any r , via a quasihomomorphism with the same
parameters (the composite of the original quasihomomorphism and a diagonal map),
we see that in essence the theorem applies with p = 2 to prove closure under direct
products for the class of hyperlinear groups. Similarly it applies when p = 1 to
prove closure under direct products for the class of linear sofic groups.

But for Hamming norms `J , `K , the function L p
`J ,`K

is not a Hamming norm,
and hence we cannot deduce the closure of the class of sofic groups under direct
products from this result.

Of course all of these specific closure results are already known, and the corre-
sponding result for sofic groups is proved in [Elek and Szabó 2006].

The following lemma together with Theorem 2.1 shows that the class of FC -
approximable groups is closed under direct products.
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Lemma 2.2. Suppose that the groups J, K have commutator-contractive length
functions `J : J → [0, 1], `K : K → [0, 1]. Then L∞, as defined above, is a
commutator-contractive length function for their direct product.

Proof. Let (g1, h1), (g2, h2) ∈ G× H. Then

L∞([(g1, h1), (g2, h2)])= L∞([g1, g2], [h1, h2])

=max(lJ ([g1, g2]), lK ([h1, h2]))

≤max(4lJ (g1)lJ (g2), 4lK (h1)lK (h2))

≤ 4 max(lJ (g1), lK (h1))max(lJ (g2), lK (h2))

= 4L∞(g1, h1)L∞(g2, h2). �

This result does not hold in general for L p with p ∈ [1,∞).

3. The wreath product result

By definition, the restricted standard wreath product W =G oH of two groups G, H
is a semidirect product HnB. The base group B of W is the direct product of copies
of G, one for each h ∈ H , and is viewed as the set of all functions b : H→ G with
finite support (that is, with b(h) trivial for all but finitely many h ∈ H ). Elements
of B are multiplied componentwise; that is, b1b2(h)= b1(h)b2(h) for b1, b2 ∈ B,
h ∈ H. For b ∈ B, we denote by b−1 the function in B defined by b−1(h)= b(h)−1.
The (right) action of H on B is defined by the rule bh(h′) = b(h′h−1); we often
abbreviate (bh)−1

= (b−1)h as b−h . So the elements of W have the form hb with
h ∈ H , b ∈ B, and (h1b1)(h2b2)= h1h2bh2

1 b2, while (h, b)−1
= (h−1, b−h−1

).
To let us state and prove our closure result for wreath products of C-approximable

groups, we need to construct an appropriate invariant length function for the wreath
product J o X of a group J ∈ C by a finite group X .

Where B ′ is the base group of J o X , we define `X
J : J o X → [0, 1] as follows.

For b′ ∈ B ′, we put
`X

L (b
′)=max

x∈X
`J (b′(x)),

and then, for x 6= 1, put
`X

J (xb′)= 1.

It is straightforward to verify that `X
J is an invariant length function.

Theorem 3.1. Let C be a class of groups with associated invariant length functions
and suppose that, for all (J, `J ) ∈ C and all finite groups X , the wreath product
(J o X, `X

J ) is in C. Suppose the group G is C-approximable and the group H is resid-
ually finite. Then the restricted standard wreath product G o H is C-approximable.
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Proof. Suppose that G is C-approximable with associated weight function δ, and
that H is residually finite, and let W = G o H be the restricted standard wreath
product. Let B be the base group.

We define the weight function β :W → R as follows:

βhb =

{
1 if h 6= 1,
maxk∈H δb(k) otherwise.

Let ε > 0 be given, and let F = {hi bi : 1 ≤ i ≤ r} be a finite subset of W. Our
aim is to find (K , `K ) ∈ C and an (F, ε, βW , `K )-quasihomomorphism ψ :W → K.

Let E be a finite subset of H that contains

(i) hi for 1≤ i ≤ r ;

(ii) all h ∈ H with bj (h) 6= 1 for some j with 1≤ j ≤ r ; and

(iii) all h ∈ H with bj (hh−1
i ) 6= 1 for some i, j with 1≤ i ≤ r , 1≤ j ≤ r .

Choose N E H with H/N finite such that the images in H/N of the elements
of E are all distinct and the images of E \ {1} are nontrivial.

Let D = {bj (h) : 1 ≤ j ≤ r, h ∈ H}. Then D is a finite subset of G so, by our
definition of C-approximability, for a given ε > 0, there exists (J, `J ) ∈ C, and a
(D, ε, δ, `J )-quasihomomorphism φ : G→ J.

We will approximate W by K := J o (H/N ), and let `K be the length function
`

H/N
J defined above. Let B ′ be the base group of K , that is, the group of finitely

supported functions from H/N to J.
We define ψ : W → K as follows. Suppose that b ∈ B, and h, k ∈ H. Note

that our choice of N ensures that E ∩ k N is either empty or consists of a single
element k ′ ∈ k N . We let ψ(hb) := hb̂, where we write h for hN and b̂ : H/N→ J
is defined by the rule

b̂(k N )=
{

1 when E ∩ k N =∅,
φ(b(k ′)) when E ∩ k N = {k ′}.

We claim that ψ has the appropriate properties. Certainly ψ(1)= 1.
We first verify the required lower bound on `K (ψ(hb)) for elements hb ∈ F. If

h 6= 1 then our choice of N ensures that h 6= 1, and so `K (ψ(hb))= 1= βhb.
If h = 1, then (where the maximum of an empty set of numbers in [0, 1] is

defined to be 0),

`K (ψ(hb))= `K (ψ(b))= `K (b̂)

= max
k N∈H/N : {k′}:=k N∩E 6=∅

`J (φ(b(k ′)))

=max
k′∈E

`J (φ(b(k ′)))

≥max
k′∈E

δb(k′) =max
k′∈H

δb(k′) = βb.
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The equality of the two maxima in the final line follows from the definition of E ,
which ensures that b(k)= 1 for any k ∈ H \ E and hence that, for such k, δb(k) = 0.

It remains to show that, for hi bi , h j bj ∈ F ,

lK (ψ(hi bi h j bj )(ψ(hi bi )ψ(h j bj ))
−1)≤ ε.

We have
ψ(hi bi h j bj )= ψ(hi h j bh j

i bj )= hi h j b̂ h j
i bj ,

and
ψ(hi bi )ψ(h j bj )= (hi b̂i )(h j b̂j )= hi h j b̂ h j

i b̂j .

Since lK is invariant under conjugation, the length we need is that of the element

b′ := b̂ h j
i bj b̂−1

j

(
b̂ h j

i
)−1

of B ′. By definition, `K (b′)=maxk N∈H/N `J (b′(k N )). So choose a coset k N . We
want to bound `J (b′(k N )) for each such choice. We have

b′(k N )= b̂h j
i bj (k N )(b̂j (k N ))−1(b̂h j

i (k N ))−1

= b̂h j
i bj (k N )(b̂j (k N ))−1(b̂i (kh−1

j N ))−1

=

{
(b̂i (kh−1

j N ))−1 if k N∩E=∅, (1)

φ(bi (k ′h−1
j )bj (k ′))(φ(bj (k ′)))−1(b̂i (kh−1

j N ))−1 if k N∩E={k ′}, (2)

since in case (1) we have b̂ h j
i bj (k N ) = b̂j (k N ) = 1, and in case (2), we have

b̂ h j
i bj (k N )= φ((bh j

i bj )(k ′))= φ(bi (k ′h−1
j )bj (k ′)), and b̂j (k N )= φ(bj (k ′)).

When E ∩ kh−1
j N =∅, we have b̂i (kh−1

j N )= 1. In that case, by the definition
of E , we also have bi (k ′h−1

j )= 1 and so, in both case (1) and case (2), we deduce
that b′(k N )= 1 and `J (b′(k N ))= 0.

Otherwise E ∩ kh−1
j N is nonempty, and its single element is equal to k ′′h−1

j , for
some k ′′∈ k N .

Suppose first that bi (k ′′h−1
j )= 1, and hence again we have b̂i (kh−1

j N )= 1. If we
are in case (2) then we must also have bi (k ′h−1

j )= 1, since if bi (k ′h−1
j ) 6= 1, then

condition (ii) of the definition of E gives k ′h−1
j ∈ E , and so k ′ = k ′′, contradicting

bi (k ′′h−1
j )= 1. Then, just as above, we see that in both cases (1) and (2) we again

get b′(k N )= 1 and `J (b′(k N ))= 0.
Otherwise bi (k ′′h−1

j ) 6= 1 and condition (iii) of the definition of E gives k ′′ ∈ E
and hence we are in case (2) with k ′ = k ′′. Then

b′(k N )= φ(bi (k ′h−1
j )bj (k ′))φ(bj (k ′))−1φ(bi (k ′h−1

j ))−1.

Since φ was assumed to be a (D, ε, δ, `J )-quasihomomorphism, `J (b′(k N ))≤ ε
and, since this is true for all k N ∈ H/N , we get `K (b′)≤ ε as required. �
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The conditions of the theorem clearly hold for the class F , as well as for finite
groups equipped with the trivial length function, and hence the classes of weakly
sofic and LEF groups are both closed under restricted wreath products with residually
finite groups. The following lemma together with Theorem 2.1 shows that the class
of FC -approximable groups is also closed under restricted wreath products with
residually finite groups.

Lemma 3.2. Let J be a group equipped with an invariant function `J . If `J is
commutator-contractive, then so is `X

J , for any finite group X.

Proof. We consider the commutator of two elements x1b1 and x2b2 in J.
First suppose that x1 and x2 are both nontrivial. Then `X

J (x1b1)= `
X
J (x2b2)= 1,

and so the inequality holds trivially.
Now suppose that x1 = x2 = 1. Then

`X
J ([b1, b2])=maxx∈X `J ([b1, b2](x))

=maxx∈X `J ([b1(x), b2(x)])

≤ 4 maxx∈X `J (b1(x))`J (b2(x))

≤ 4 maxx∈X `J (b1(x))maxy∈X `J (b2(y))

= 4`X
J (b1)`

X
J (b2).

Finally suppose that x1 = 1, x2 6= 1 (the other case is very similar). Then

`X
J ([b1, x2b2])= `

X
J (b
−1
1 b−1

2 x−1
2 b1x2b2)

= `X
J (b
−1
1 b−1

2 bx2
1 b2)

=maxx∈X `J (b1(x)−1b2(x)−1bx2
1 (x)b2(x))

=maxx∈X `J (b1(x)−1b2(x)−1b1(xx−1
2 )b2(x))

≤maxx∈X (`J (b1(x)−1)+ `J (b2(x)−1b1(xx−1
2 )b2(x)))

=maxx∈X (`J (b1(x)−1)+ `J (b1(xx−1
2 )))

≤maxx∈X (`J (b1(x)−1))+maxy∈X (`J (b1(y)))

≤ 2 maxx∈X (`J (b1(x)−1)= 2`X
J (b1). �

4. The wreath product result for sofic groups

We prove now the corresponding result for sofic groups. For this, we are not free
to choose our own norm function on the wreath product, but we must use the
Hamming distance norm. The proof is nevertheless very similar in structure to that
of Theorem 3.1. We use the definition of sofic groups given in [Elek and Szabó
2006] where, rather than having a weight function on the group G, we require
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that, for finite F ⊆ G, the proportion of moved points of elements of F \ {1} in an
(F, ε)-quasiaction of G on a finite set is at least 1− ε.

We note that this result has recently been generalised by Hayes and Sale [2016],
who proved that the restricted standard wreath product of any two sofic groups
is sofic.

Theorem 4.1. The restricted standard wreath product G oH of a sofic group G and
a residually finite group H is sofic.

Proof. Assume that G is sofic and H is residually finite, and let W = G o H be the
restricted standard wreath product. So, as in the proof of Theorem 3.1, W is the
semidirect product of its base group B by H.

Let F = {hi bi : 1≤ i ≤ r} be a finite subset of W. Then, for a given ε > 0, we
need to find an (F, ε)-quasiaction of W on some finite set Y.

We define the finite subset E of H , the normal subgroup N of H , and the finite
subset D of G exactly as in the proof of Theorem 3.1. So, in particular, for any k∈H ,
E ∩ k N is either empty or consists of a single element k ′∈ k N . Let m = |H/N |.

Then, by [Elek and Szabó 2006, Lemma 2.1], for a given ε > 0, there is a
(D, ε/m)-quasiaction φ : G→ Sym(X) of G on some finite set X , and we may
assume that φ(1)= 1. Since we can choose both m and X to be arbitrarily large
for given D and ε, we may assume that |X |−m/2 < ε.

Let Y = X H/N be the set of functions δ : H/N → X . So |Y | = |X |m . We define
ψ :W → Sym(Y ) as follows. (The image of ψ is contained in the primitive wreath
product of Sym(X) and H/N , as defined in [Dixon and Mortimer 1996, §2.6].)

For b ∈ B, h, k ∈ H , let δψ(hb)(k N ) := δ(kh−1 N )τ(b,k), where

τ(b, k) :=

{
1 when E ∩ k N =∅,
φ(b(k ′)) when E ∩ k N = {k ′}.

We claim that ψ is an (F, ε)-quasiaction of W on Y. Observe first that ψ(1)= 1.
We check next that, for each hi bi ∈ F \ {1}, ψ(hi bi ) is (1−ε)-different from 1.

If hi 6= 1 then, by assumption, hi 6∈ N , so kh−1
i N 6= k N for all k N ∈ H/N . So, if

δ ∈ Y is a fixed point of ψ(hi bi ), then the value of δ(k N ) is uniquely determined
by that of δ(kh−1

i N ) for each k N ∈ H/N , so the proportion of fixed points is at
most |X |m/2/|X |m = |X |−m/2, which we assumed to be less than ε.

If, on the other hand, hi = 1 and bi 6= 1, then there exists h ∈ E with bi (h) 6= 1.
Now an element δ ∈ Y is fixed by ψ(hi bi )=ψ(bi ) if and only if δ(k N ) is fixed by
τ(b, k) for all k N ∈H/N . Hence, in particular, for a fixed point δ, we have δ(hN )=
δ(hN )τ(bi ,h), and so δ(hN ) is a fixed point of τ(bi , h)= φ(bi (h)). Since the pro-
portion of such points in X is, by assumption, at most ε, the same is true for ψ(bi ).



404 DEREK F. HOLT AND SARAH REES

Finally we need to verify that ψ(hi bi )ψ(h j bj ) is ε-similar to ψ(hi h j bh j
i bj ) for

each i, j with 1 ≤ i, j ≤ r ; that is, that the two permutations agree on at least a
proportion 1− ε of the points.

Now

δψ(hi bi )ψ(h j bj )(k N )= (δψ(hi bi )(kh−1
j N ))τ(bj ,k) = δ(kh−1

j h−1
i N )τ(bi ,kh−1

j )τ (bj ,k),

and
δψ(hi h j bhj

i bj )(k N )= δ(kh−1
j h−1

i N )τ(b
hj
i bj ,k),

so we need to compare τ(bi , kh−1
j )τ (bj , k) with τ(bh j

i bj , k).
The argument is very similar to that in the analogous part of the proof of

Theorem 3.1. We are in one of two cases. Either

(1) E ∩ k N =∅, in which case τ(bj , k)= τ(bh j
i bj , k)= 1, or

(2) E∩k N ={k ′}, for some k ′ ∈ K , and so τ(bj , k)=φ(bj (k ′)), and τ(bh j
i bj , k)=

φ((bh j
i bj )(k ′))= φ(bi (k ′h−1

j )bj (k ′)).

When E ∩ kh−1
j N = ∅, then bi (k ′h−1

j ) = 1 and, in both case (1) and case (2),
τ(bi , kh−1

j )τ (bj , k)= τ(bh j
i bj , k).

Otherwise, E ∩ kh−1
j N = {k ′′h−1

j } for some k ′′∈ k N .
Suppose first that bi (k ′′h−1

j )= 1. If we are in case (2) then bi (k ′h−1
j )= 1, since

otherwise, just as in the proof of Theorem 3.1, condition (ii) of the definition of
E gives k ′h−1

j ∈ E , and so k ′ = k ′′, and we have a contradiction. Hence, in both
case (1) and case (2) we again have τ(bi , kh−1

j )τ (bj , k)= τ(bh j
i bj , k).

Otherwise bi (k ′′h−1
j ) 6= 1, and then, again just as in the proof of Theorem 3.1,

condition (iii) of the definition of E gives k ′′ ∈ E . Hence we are in case (2)
and k ′ = k ′′. Then

τ(bi , gh−1
j )τ (bj , g)= φ(bi (k ′h−1

j ))φ(bj (k ′))

and
τ(bh j

i bj , g)= φ(bi (k ′h−1
j )bj (k ′)).

Since bi (k ′h−1
j ), bj (k ′) ∈ D, the fact that φ is a (D, ε/m)-quasiaction implies that

the proportion of the points of X on which the permutations φ(bi (k ′h−1
j )bj (k ′))

and φ(bi (k ′h−1
j ))φ(bj (k ′)) have the same image is at least 1− ε/m.

It follows that the proportion of elements δ ∈ Y with

δψ(hi bi )ψ(h j bj )(k N )= δψ(hi h j b
hj
i bj )(k N )

is at least 1− ε/m. But δψ(hi bi )ψ(h j bj ) = δψ(hi h j b
hj
i bj ) if and only if they take the

same values on all k N ∈ H/N , and the proportion of δ ∈ Y for which this is true
is at least 1− ε. �
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5. Extensions by amenable groups

In Section 3 we defined the restricted standard wreath product G oH of groups G, H.
In this section, we shall need wreath products by permutation groups. For a group
K and a finite set A, we define the permutation wreath product W = K oSym(A) as
W = Sym(A)n B where the base group is now the set of all functions b : A→ K.
As before, we define b1b2(a) := b1(a)b2(a) for b1, b2 ∈ B, a ∈ A, and we define
the action of Sym(A) on B by the rule bα(a) = b(aα

−1
), for α ∈ Sym(A), a ∈ A.

Much as before, elements of the wreath product are represented as pairs (α, b)
with α ∈ Sym(A) and b ∈ B, multiplied according to the rule (α1, b1)(α2, b2) =

(α1α2, bα2
1 b2), and with (α, b)−1

= (α−1, b−α
−1
).

In general the length function for finite wreath products that we used in the proof
of Theorem 3.1 is not suitable for the proof of Theorem 5.1 below. So we need to
define a different one.

Given an invariant length function `K on K , we can define an invariant length
function ˆ̀AK on W by

ˆ̀A
K (α, b)= 1

|A|

( ∑
a∈A : aα=a

`K (b(a))+
∑

a∈A : aα 6=a

1
)
.

Most of the conditions for ˆ̀AK to be an invariant length function are straightforward
consequences of the conditions on `K . The verification of

ˆ̀A
K (α1α2, bα2

1 b2)≤ ˆ̀
A
K (α1, b1)+ ˆ̀

A
K (α2, b2)

may require a little more thought. For this, we consider the terms corresponding
to the various a ∈ A in the three sums that make up ˆ̀AK (α1α2, bα2

1 b2), ˆ̀AK (α1, b1),
and ˆ̀AK (α2, b2). We see that, for each a ∈ A with aα1 6= a or aα2 6= a, the term in
ˆ̀A
K (α1α2, bα2

1 b2) is at most 1/|A|, but at least one of the two nonnegative terms
in ˆ̀AK (α1, b1) and ˆ̀AK (α2, b2) is equal to 1/|A|. On the other hand, for a ∈ A with
aα1 = a and aα2 = a, the term corresponding to a in ˆ̀AK (α1α2, bα2

1 b2) is

1
|A|

`K (b
α2
1 (a)b2(a))=

1
|A|

`K (b1(a)b2(a))≤
1
|A|

(`K (b1(a))+ `K (b2(a)),

which is the corresponding term in ˆ̀AK (α1, b1)+ ˆ̀
A
K (α2, b2).

Theorem 5.1. Let C be a class of groups with associated invariant length functions
and suppose that, for all (K , `K ) ∈ C and all finite sets A, the wreath product
(K oSym(A), ˆ̀AK ) is in C. Suppose that the group G has a normal subgroup N with
the discrete C-approximation property (as defined in Section 1) such that G/N is
amenable. Then G has the discrete C-approximation property.

This result has already been proved for sofic groups [Elek and Szabó 2006,
Theorem 1 (3)] and linear sofic groups [Stolz 2013, Theorem 5.3]. However, in
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order to avoid confusion we should comment that, while the above result considers
extensions G of C-approximable normal subgroups N with G/N amenable, by
contrast, [Arzhantseva and Gal 2013, Theorem 7] considers extensions G of finitely
generated residually finite normal subgroups N for which G/N is in a selected
class R of groups (including groups that are residually amenable groups, LEF, LEA,
sofic or surjunctive).

Proof. The proof is based on the corresponding proof in [Elek and Szabó 2006,
Theorem 1 (3)] for sofic groups N.

By assumption, the normal subgroup N of G is C-approximable using a weight
function δ that takes a constant value c on all elements of N \ {1}. Since we can
reduce the value of c without affecting the C-approximability of N , we may assume
that c < 1. If N 6= {1} then we define the weight function β of G by βg = c for
all g 6= 1, and if N = {1}, then we define β by βg =

1
2 for all g 6= 1.

For g ∈ G, let g be the homomorphic image of g in G/N and let σ : G/N → G
be a section (so σ(h) = h for all h ∈ G/N ), where σ(1) = 1. We can lift σ to a
map from G to G for which the image of g ∈ G is σ(g); we shall abuse notation
and call that map σ as well.

To verify the C-approximability condition on G, let F be a finite subset of G
and let ε > 0. We may assume that ε <min

( 1
2 , 1− c

)
.

The amenability of G/N ensures the existence of a finite subset A of G/N con-
taining the identity element such that |Ag\A|≤ε|A| for all g ∈ F ∪F−1

∪F2
∪F−2.

Let A= σ(A); note that all points of A are fixed by the map σ :G→G. We define
a map φ : G→ Sym(A) as follows:

for g ∈ G, a ∈ A, aφ(g) :=
{
σ(ag) if ag ∈ A,
any choice with φ(g) ∈ Sym(A) otherwise.

Let E = N ∩ (A · F · A−1). The C-approximability of N ensures the existence of an
(E, ε, δ, `K )-quasihomomorphism ψ : N → K with (K , `K ) ∈ C.

Now we let W = K o Sym(A) = Sym(A) n B and define 8 : G → W by
8(g)= (φ(g), b) where, for a ∈ A, b(a) := ψ(σ(ag−1)ga−1).

We show first that ˆ̀AK (8(g))≥ βg for g ∈ F. If g 6∈ N then, since φ(g) moves
all points a ∈ A for which ag ∈ A, we have

ˆ̀A
K (8(g))≥ 1− ε > 1

2 = δg.

If g ∈ N \ {1} then ag−1 = a, so σ(ag−1)= a for all a ∈ A, and ˆ̀AK (8(g)) is the
average over a ∈ A of `K (ψ(aga−1)). But since each aga−1

∈ E \ {1}, these all
exceed δg.

Now let g, h ∈ F. We aim to show that

ˆ̀A
K (8(gh)8(h)−18(g)−1)≤ 5ε.
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For a ∈ A, we have

8(g)= (φ(g), b), where b(a)= ψ(σ(ag−1)ga−1),

8(h)= (φ(h), c), where c(a)= ψ(σ(ah−1)ha−1),

8(gh)= (φ(gh), d), where d(a)= ψ(σ(ah−1g−1)gha−1),

8(g)8(h)= (φ(g)φ(h), bφ(h)c),

where (bφ(h)c)(a)= bφ(h)(a)c(a)= b(aφ(h)
−1
)c(a)

= ψ(σ(aφ(h)
−1

g−1)ga−φ(h)
−1
)ψ(σ(ah−1)ha−1)

(where, for a, k ∈ G, we write a−k as shorthand for (a−1)k = (ak)−1). Then

8(gh)(8(g)8(h))−1
= (φ(gh), d)(φ(g)φ(h), bφ(h)c)−1

= (φ(gh), d)((φ(g)φ(h))−1, (bφ(h)c)−(φ(g)φ(h))
−1
)

= (φ(gh)(φ(g)φ(h))−1, (d(bφ(h)c)−1)(φ(g)φ(h))
−1
).

Now, for a proportion of at least 1 − 2ε of the points a ∈ A, we have both
ah−1 ∈ A and ah−1g−1 ∈ A. For those points a, we have aφ(h)

−1
= σ(ah−1) and

so the final expression for (bφ(h)c)(a) above becomes

ψ(σ(ah−1g−1)gσ(ah−1)−1)×ψ(σ(ah−1)ha−1),

and we see that the image of a under the second component of8(gh)(8(g)8(h))−1

is equal to a conjugate of

ψ(xy)ψ(y)−1ψ(x)−1,

where x = σ(ah−1g−1)gσ(ah−1)−1 and y = σ(ah−1)ha−1. The elements x, y are
both in the finite subset E of G, and hence, since ψ is a quasihomomorphism,
`K (ψ(xy)ψ(y)−1ψ(x)−1) < ε, and we deduce that

`K ((d(bφ(h)c)−1)(φ(g)φ(h))
−1
)(a)) < ε,

for at least a proportion 1− 2ε of the points of A.
Our choice of A ensures also that φ(gh)(φ(g)φ(h))−1(a) = a for at least a

proportion 1− 2ε of the points a of A.
Now, for at least a proportion 1− 4ε of the points of A, the conditions of both

of the last two paragraphs hold, and so we can deduce

ˆ̀A
K (8(gh)8(h)−18(g)−1) < ε(1− 4ε)+ 4ε < 5ε. �

In particular, by taking C=F with each K ∈F associated with all possible length
functions, we see that the class of weakly sofic groups is closed under extension by
amenable groups.
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In general, `K commutator-contractive does not imply that ˆ̀AK is commutator-
contractive. But if, instead, we define `A

K as we did in Section 3 (that is, for b ∈ B,
`A

K (b) = maxa∈A `K (b(a)), and `A
K (αb) = 1 when 1 6= α ∈ Sym(A)) then, as we

proved in Lemma 3.2, `A
K is commutator-contractive.

Our proof of Theorem 5.1 does not always work with this commutator-contractive
norm, but it does work if φ : G/N → A is a homomorphism. In particular, when
G/N ∼= (Z,+), we can choose A to be {x ∈ Z : −m ≤ x ≤ m} for some m and
define φ to be addition modulo 2m+ 1. So, by applying this repeatedly, we have:

Proposition 5.2. The class of Fc-approximable groups is closed under extension
by polycyclic groups.
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