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C1-UMBILICS WITH ARBITRARILY HIGH INDICES

NAOYA ANDO, TOSHIFUMI FUJIYAMA AND MASAAKI UMEHARA

We show that C1-umbilics with arbitrarily high indices exist. This implies
that more than C1-regularity is required to prove Loewner’s conjecture.

1. Introduction

The index of an isolated umbilic on a given regular surface is the index of the
curvature line flow of the surface at that point, which takes values in the set of
half-integers. Loewner’s conjecture asserts that any isolated umbilic on an immersed
surface must have index at most 1. Carathéodory’s conjecture asserts the existence
of at least two umbilics on an immersed sphere in R3, which follows immediately
from Loewner’s conjecture. Although this problem was investigated mainly on real-
analytic surfaces after Hamburger’s work [1940; 1941a; 1941b], several geometers
recently became interested in nonanalytic cases; see [Ando 2003; Bates 2001;
Ghomi and Howard 2012; Gutierrez et al. 1996; Smyth and Xavier 1992]. In
particular, Smyth and Xavier [1992] observed that Enneper’s minimal surface is
inverted to a branched sphere such that the index of the curvature line flow at the
branch point is equal to two. Bates [2001] found that the graph of the function

(1-1) B(x, y) := 2+
xy√

1+ x2
√

1+ y2

has no umbilics on R2 and inversion of it gives a genus zero surface without self-
intersections, which is differentiable at the image of infinity under that inversion.
Ghomi and Howard [2012] gave similar examples of genus zero surfaces using
inversion. Moreover, they showed that Carathéodory’s conjecture for closed convex
surfaces can be reduced to the problem of existence of umbilics of certain entire
graphs over R2. A brief history of Carathéodory’s conjecture and recent devel-
opments are written also in [Ghomi and Howard 2012]. Recently, Guilfoyle and
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Klingenberg [2008; 2012] gave an approach to proving the Carathéodory and the
Loewner conjectures in the smooth case.

Let P :U→R3 be a C1-immersion defined on an open subset U of R2 such that
P is C∞-differentiable on U \ {q} and not C2-differentiable at q. Then the point
q ∈ U is called a C1-umbilic if the umbilics of P on U \ {q} do not accumulate
to q . At that point q , we can compute the index of the curvature line flow of P. In
this paper, we prove the following assertion:

Theorem 1.1. Let U1⊂R2 be the unit disk centered at the origin. For each positive
integer m, there exists a C1-function f :U1→R satisfying the following properties:

(1) f is real-analytic on U∗1 :=U1 \ {(0, 0)},

(2) (0, 0, f (0, 0)) is a C1-umbilic of the graph of f with index 1+ (m/2).

It should be remarked that the inversion of the graph of Bates’ function B(x, y)
has a differentiable umbilic of index 2 although not of class C1 (see Example 2.3). It
was classically known that curvature line flows are closely related to the eigenflows
of the Hessian matrices of functions (see Appendix A). As an application of the
above result, we can show the following:

Corollary 1.2. For each m ≥ 1, there exists a C1-function λ :U1→ R satisfying

(1) λ is real-analytic on U∗1 , and

(2) the eigenflow of the Hessian matrix of λ has an isolated singular point (0, 0)
with index 1+ (m/2).

When we consider the eigenflow of the Hessian matrix of f , it is well known
that the index of the flow at an isolated singular point is equal to half of the index
of the vector field

(1-2) d f := 2 fxy
∂
∂x + ( fyy − fxx)

∂
∂y .

In addition, if o := (0, 0) is an isolated singular point of the eigenflow of the Hessian
matrix of f , then its index is equal to 1+ indo(δ f )/2 (see Appendix B), where
indo(δ f ) is the index of the vector field

(1-3) δ f := 2(r frθ − fθ ) ∂∂x + (−r2 frr + r fr + fθθ ) ∂∂y

at o, and x = r cos θ , y= r sin θ . In order to prove the above theorem, we introduce
vector fields D f and 1 f analogous to d f and δ f , respectively (see Propositions 3.3
and 4.2), and prove the theorem by computing the index of 1 f at infinity for each
of the functions (see Section 5)

(1-4) f = fm(r, θ) := 1+ tanh(ra cos mθ), 0< a < 1/4, m = 1, 2, . . . .

We also give an alternative proof of Theorem 1.1 without use of inversion, by an ex-
plicit example of λ, see (6-1), satisfying (1) and (2) of Corollary 1.2 (see Section 6).
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2. The regularity of the inversion

Let R be a positive number. Consider a function f : R2
\�R→ R, where

(2-1) �R :=
{
(x, y) ∈ R2

;

√
x2
+ y2
≤ R

}
.

Then F = (x, y, f (x, y)) gives a parametrization of the graph of f . The inversion
of F is given by F/(F · F), where the dot denotes the inner product on R3. We
consider the following coordinate change:

(2-2) x = u
u2+v2 , y = v

u2+v2 .

Then

(2-3) 9 f :=
1

ρ2 f̂ 2+ 1
(u, v, ρ2 f̂ ), f̂ (u, v) := f

(
u
ρ2 ,

v

ρ2

)
gives a parametrization of the inversion, where ρ :=

√
u2
+ v2. The map 9 f is

defined on the domain

(2-4) U∗1/R :=U1/R \ {o},
(

U1/R :=

{
(u, v) ∈ R2

;

√
u2+ v2 < 1

R

})
,

where o := (0, 0). If we set

(2-5) x = r cos θ, y = r sin θ,

where r > 0, then (2-2) yields

(2-6) ρ = 1
r , u = ρ cos θ, v = ρ sin θ.

In particular, the angular parameter is common in the xy-plane and the uv-plane.

Proposition 2.1. Let f : R2
\�R→ R be a C∞-function such that f/r is bounded.

Then the inversion 9 f : U∗1/R → R3 can be continuously extended to (0, 0), and
moreover, if

(2-7)
∣∣∣∣ f 2
− 2r f fr

r2

∣∣∣∣< 1, r > R,

then the image of 9 f = (X, Y, Z) can be locally expressed as the graph of a
function Z = Z f (X, Y ) on a neighborhood of (0, 0) in the XY -plane. Under the
assumption (2-7), the function Z f (X, Y ) is differentiable if and only if

lim
r→∞

f
r
= 0.

Proof. We can write

(2-8) 9 f (u, v)=
1

1+ϕ(u, v)2

(
u, v, ϕ(u, v)

√
u2+ v2

)
,
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where

(2-9) ϕ(u, v)=
√

u2+ v2 f̂ (u, v)=
f (x, y)

r .

Since f/r is bounded, the function ϕ is bounded on U∗1/R . Thus, using (2-8), we can
prove limρ→09 f = (0, 0, 0), i.e., 9 f (u, v) can be continuously extended to (0, 0).
We denote by 5 : R3

3 (x, y, z) 7→ (x, y) ∈ R2 the orthogonal projection. Setting

ψ(ρ, θ) :=
ρ

1+ϕ(ρ cos θ, ρ sin θ)2
,

it holds that

(2-10) 5 ◦9 f (u, v)=
(
ψ(ρ, θ) cos θ, ψ(ρ, θ) sin θ

)
.

Since f̂ ( ρ cos θ, ρ sin θ)= f (cos θ/ρ, sin θ/ρ), we have

ϕρ = f − r fr .

In particular, it holds that

ψρ =
1− ( f 2

− 2r f fr )/r2

(1+ f 2/r2)2
.

By (2-7), there exists ε>0 such that ρ 7→ψ(ρ, θ), |ρ|≤ε, is a monotone increasing
function for each θ . Thus, by (2-10), we can conclude that 5◦9 f :U ε→R2 is an
injection. Since a continuous bijection from a compact space to a Hausdorff space
is a homeomorphism, the inverse map G : �→ Uε of 5 ◦9 f |Uε

is continuous,
where � is a neighborhood of the origin of the XY -plane in R3. Then the graph of

(2-11) Z f

(
=

ρϕ

1+ϕ2

)
=
ϕ(G(X, Y ))ρ(G(X, Y ))

1+ϕ(G(X, Y ))2

coincides with the image of 9 f = (X, Y, Z) around (0, 0, 0). Then

X = u
1+ϕ2 , Y = v

1+ϕ2 , Z =
ρϕ

1+ϕ2 .

Since ρ→ 0 as (X, Y )→ (0, 0), we obtain

(2-12) lim
(X,Y )→(0,0)

Z f (X, Y )√
X2
+ Y 2

= lim
(X,Y )→(0,0)

ϕρ√
u2
+ v2

= lim
ρ→0

ϕ = lim
r→∞

f
r
. �

Corollary 2.2. Suppose that f :R2
\�R→R is a bounded C∞-function satisfying

(2-13) lim
r→∞

fr

r
= 0.

Then the inversion 9 f : U∗1/R → R3 can be continuously extended to (0, 0), and
moreover, the image of 9 f is locally a graph which is differentiable at (0, 0).
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Example 2.3. Bates’ example mentioned in the introduction is differentiable. In
fact, B(x, y) in (1-1) is bounded and Br/r converges to zero as r→∞. However,
the inversion of (x, y, B(x, y)) is not C1. In fact, the unit normal vector field of
the graph of B is not continuously extended to the point at infinity. Since the
inversion preserves the angle, the unit normal vector field of its inversion cannot be
continuously extended to (0, 0, 0).

Example 2.4. Ghomi and Howard [2012] gave an example:

(2-14) fGH = 1+ λ
1+ x + y2√
1+ (x + y2)2

, (λ > 0).

The graph of fGH is umbilic-free (see Example 3.5 in Section 3). The function fGH

is bounded. In addition, since ( fGH)r is bounded, (2-13) is obvious. Therefore,
as pointed out in [Ghomi and Howard 2012], the inversion of (x, y, fGH(x, y)) is
differentiable. However, it is not a C1-map. In fact, the limit of the unit normal
vector field along y = 0 of the graph of fGH is not equal to that along x+ y2

= 0 at
the point at infinity.

Next, we give a condition for 9 f to be extendable as a C1-map to (0, 0).

Proposition 2.5. Suppose that f :R2
\�R→R is a bounded C∞-function satisfying

(a) limr→∞ fr = 0,

(b) limr→∞ fθ/r = 0.

Then 9 f = (X, Y, Z) can be extended to (0, 0) as a C1-map. Moreover, the map
(u, v) 7→ (X (u, v), Y (u, v)) is a C1-diffeomorphism from a neighborhood of the
origin in the uv-plane onto a neighborhood of the origin in the XY -plane.

To prove this, we prepare the following lemma.

Lemma 2.6. The conditions (a) and (b) in Proposition 2.5 are equivalent to the
following two conditions, respectively:

(1) limρ→0 ρ
2 f̂ρ = 0,

(2) limρ→0 ρ f̂θ = 0.

Proof. The equivalency of (2) and (b) is obvious. The equivalency of (1) and (a)
follows from the identity f̂ρ =− fr/ρ

2. �

Proof of Proposition 2.5. We see by Corollary 2.2 that 9 f can be extended to
(0, 0) as a differentiable map and that the map (u, v) 7→ (X (u, v), Y (u, v)) is a
homeomorphism from a neighborhood of (0, 0) onto a neighborhood of (0, 0).
We set

(2-15) h := ρ2 f̂ (= ρϕ), k := (ρ f̂ )2(= ϕ2).
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By (2-3), we can write

(2-16) 9 f = (X, Y, Z)= 1
k+ 1

(u, v, h).

To show that 9 f is a C1-map at (0, 0), it is sufficient to show that h and k are
C1-functions. Since h and k are C∞-functions on U∗1/R , they satisfy

(2-17)
hu = ρ

(
(2 f̂ + ρ f̂ρ) cos θ − f̂θ sin θ

)
,

hv = ρ
(
(2 f̂ + ρ f̂ρ) sin θ + f̂θ cos θ

)
,

(2-18)
ku = 2 f̂ ρ

(
cos θ( f̂ + ρ f̂ρ)− f̂θ sin θ

)
,

kv = 2 f̂ ρ
(
sin θ( f̂ + ρ f̂ρ)+ f̂θ cos θ

)
,

on U∗1/R . Using (1), (2) in Lemma 2.6, (2-17) and (2-18), one can easily see that

(2-19) lim
ρ→0

hu = lim
ρ→0

hv = lim
ρ→0

ku = lim
ρ→0

kv = 0,

which shows that 9 f extends to (0, 0) as a C1-map. By (2-16) and (2-19), we have

Xu(0, 0)= 1, Xv(0, 0)= 0, Yu(0, 0)= 0, Yv(0, 0)= 1.

Thus the second assertion follows from the inverse mapping theorem, because the
Jacobi matrix of the map (u, v) 7→ (X (u, v), Y (u, v)) is regular at (0, 0). �

In Section 5, we need the following:

Proposition 2.7. Let f : R2
\ �R → R be a bounded C∞-function satisfying

conditions (a) and (b) of Proposition 2.5. If there exists a constant 0 ≤ c < 1
2

such that
r1−c/2 fr , r−c/2 fθ , r2−c frr , r1−c frθ , r−c fθθ

are bounded on R2
\�R , then the map (u, v) 7→ (X (u, v), Y (u, v)) is a C2-map

at (0, 0), where 9 f = (X, Y, Z).

We prepare the following lemmas:

Lemma 2.8. The boundedness of the five functions in Proposition 2.7 is equivalent
to the boundedness of the functions

(2-20) ρ1+c/2 f̂ρ, ρc/2 f̂θ , ρ2+c f̂ρρ, ρ1+c f̂ρθ , ρc f̂θθ

on U \ {(0, 0)}, where U is a sufficiently small neighborhood of (0, 0).

Proof. Differentiating f̂ = f̂ (ρ cos θ, ρ sin θ) by ρ, we get ρ f̂ρ = −r fr and
ρ2 f̂ ρρ = 2r fr + r2 frr , which can be used to check the assertion. �
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Lemma 2.9. Suppose that the five functions in (2-20) are bounded on U \ {(0, 0)}.
Then ρ2ckuu, ρ

2ckuv and ρ2ckvv are also bounded on U \ {(0, 0)}, where k is the
function given in (2-15).

Proof. In fact, each of kuu, kuv, kvv is written as a linear combination of

1, ρ f̂ρ, f̂θ , (ρ f̂ρ)2, ρ f̂ρ f̂θ , f̂ 2
θ , ρ2 f̂ρρ, ρ f̂ρθ , f̂θθ ,

with coefficients that are bounded functions. For example,

kuv = sin2θ
(
ρ2 f̂ 2

ρ+ f̂ (ρ2 f̂ρρ+3ρ f̂ρ− f̂θθ )− f̂ 2
θ

)
+2cos2θ

(
f̂θ (ρ f̂ρ+ f̂ )+ρ f̂ f̂ρθ

)
.

Thus, we get the assertion. �

Proof of Proposition 2.7. By Lemmas 2.8 and 2.9, the fact that 2c < 1 yields that

(2-21) lim
ρ→0

ρkuu = lim
ρ→0

ρkuv = lim
ρ→0

ρkvv = 0.

Since

Xuu =
2uk2

u − 2(k+ 1)ku − u(k+ 1)kuu

(k+ 1)3
,

Xuv =−
kv(−2uku + k+ 1)+ u(k+ 1)kuv

(k+ 1)3
,

Xvv =−
u
(
(k+ 1)kvv − 2k2

v

)
(k+ 1)3

,

we have that Xuu, Xuv, Xvv tend to 0 as ρ → 0. This implies that Xu, Xv are
C1-functions. Similarly, Yu, Yv are also C1-functions. �

3. The pair of identifiers for umbilics

Let U be a domain on R2. Consider a flow (i.e., a 1-dimensional foliation) F
defined on U \ {p1, . . . , pn}, where p1, . . . , pn are distinct points in U. We are
interested in the case where F is

• the curvature line flow of an immersion P :U → R3,

• the eigenflow of a matrix-valued function on U, or

• the flow induced by a vector field on U.

We fix a simple closed smooth curve γ :T 1
→U\{p1, . . . , pn}, where T 1

:=R/2πZ.
We set

∂x :=
∂
∂x , ∂y :=

∂
∂y .

Then one can take a smooth vector field

V (t) := a(t)∂x + b(t)∂y
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along the curve γ (t) such that V (t) is a nonzero tangent vector of R2 at γ (t) which
points in the direction of the flow F. Then the map

(3-1) V̌ : T 1
3 t 7→

(a(t), b(t))√
a(t)2+ b(t)2

∈ S1
:= {x ∈ R2

; |x| = 1}

is called the Gauss map of F with respect to the curve γ . The mapping degree of the
map V̌ is called the rotation index of F with respect to γ and denoted by ind(F, γ ),
which is a half-integer, in general. If γ surrounds only p j , then ind(F, γ ) is
independent of the choice of such a curve γ . So we call it the (rotation) index of
the flow F at p j , and it is denoted by indp j (F). If the flow F is generated by a
vector field V defined on U \ {p1, . . . , pn}, then indp j (F) is an integer, and we
denote it by indp j (V ).

We denote by S2(R) the set of real symmetric 2-matrices. Let U be a domain
in R2, and

A =
(

a11(x, y) a12(x, y)
a12(x, y) a22(x, y)

)
:U → S2(R),

a C∞-map. A point p ∈ U is called an equidiagonal point of A if a11 = a22 and
a12= 0 at p. We now suppose that p is an isolated equidiagonal point. Without loss
of generality, we may assume that A has no equidiagonal points on U \ {p}. Since
two eigenflows of A are mutually orthogonal, the indices of the two eigenflows of the
S2(R)-valued function A are the same half-integer at p. We denote it by indp(A).

It is well known that for an S2(R)-valued function A, the formula

(3-2) indp(A)= 1
2 indp(vA)

holds, where vA is the vector field on U given by

(3-3) vA := (a11− a22)∂x + a12∂y .

We shall apply these facts to the computation of the indices of isolated umbilics
on regular surfaces in R3 as follows. Let f : U → R be a C∞-function. The
symmetric matrices associated with the first and the second fundamental forms of
the graph of f are given by

(3-4) I :=
(

1+ f 2
x fx fy

fx fy 1+ f 2
y

)
, II :=

(
fxx fxy

fxy fyy

)
.

We consider a GL(2,R)-valued function

(3-5) P :=

 0
√

1+ f 2
x

−

√
(1+ f 2

x + f 2
y )/(1+ f 2

x ) fx fy/
√

1+ f 2
x

,
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which satisfies the identity P PT
= I, where PT is the transpose of P. Then

A f := P−1II(PT )−1
= PT (I−1II)(PT )−1

is an S2(R)-valued function. The umbilics of the graph of f correspond to the
equidiagonal points of A f . We show the following:

Proposition 3.1. The symmetric matrix A f (p) is proportional to the identity matrix
at p ∈ U if and only if p gives an umbilic of the graph of f . Moreover, if p is an
isolated umbilic, then indp(A f ) coincides with the index of the umbilic p.

Proof. The first assertion follows from the definition of A f . Without loss of
generality, we may assume that p coincides with the origin o := (0, 0), and the
graph of f has no umbilics other than o on U. Take a sufficiently small positive
number ε > 0 so that the circle

γ (t)= ε(cos t, sin t), 0≤ t ≤ 2π,

is null-homotopic in U.
We denote by (a1(t), b1(t))T and (a2(t), b2(t))T , eigenvectors of I−1II and A f

at γ (t), respectively. We may suppose

(a1(t), b1(t))P(γ (t))= (a2(t), b2(t)), 0≤ t ≤ 2π.

We set
wi (t) := ai (t)∂x + bi (t)∂y, i = 1, 2.

Then w1 points in one of the principal directions of the graph of f . The matrix
P(γ (t)) takes values in the set

(3-6) T :=
{(

0 x
−y z

)
; x, y > 0, z ∈ R

}
.

Since the set T is null-homotopic, the mapping degree of w̌1(t) with respect to
the origin is equal to that of w̌2(t). Since the degree of w̌2(t) with respect to o
coincides with indo(A f ), we get the second assertion. �

By a straightforward calculation, one can get the following identity:

Ã f := hk3 A f =

(
fx fy( fx fy fxx − 2h fxy)+ h2 fyy lk

lk k2 fxx

)
,

where

h := 1+ f 2
x , k :=

√
1+ f 2

x + f 2
y , l := −h fxy + fx fy fxx .

Then the coefficients of the vector field

v Ã f
= v1∂x + v2∂y
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defined as in (3-3) for A = Ã f are given by

v1 = ã11− ã22 = (−1+ f 2
x ) f 2

y fxx − h fxx − 2h fx fxy fy + h2 fyy,

v2 = ã12 =−k(h fxy − fx fy fxx),

where Ã f = (ãi j )i, j=1,2. Hence, we get the following identity:

v1 =
2 fx fy

k
v2+ h

(
− fxx(1+ f 2

y )+ (1+ f 2
x ) fyy

)
.

Consequently, we get the following fact (see [Ghomi and Howard 2012, (10)]):

Fact 3.2. The graph of the function z = f (x, y) defined on U has an umbilic at
p ∈U if and only if the functions

d1(x, y) := (1+ f 2
x ) fxy− fx fy fxx , and d2(x, y) := (1+ f 2

x ) fyy− fxx(1+ f 2
y )

both vanish at p.

We consider the vector field

D f := d1∂x + d2∂y

defined on the domain U in the xy-plane. Suppose that p is a zero of D f . The
following assertion holds:

Proposition 3.3. If p gives an isolated umbilic of the graph of f , then half of the
index of the vector field D f at p coincides with the index of the umbilic p.

Proof. The half of the index of the vector field

X := −v Â f
= (2 fx fyd1− hd2)∂x + kd1∂y

at p is equal to indp( Ã f ). We now set

Xs := (∂x , ∂y)

 2s fx fy −1− s f 2
x√

1+ s( f 2
x + f 2

y ) 0

(d1

d2

)
, 0≤ s ≤ 1.

Then X = X1 and X0 =−d2∂x + d1∂y , and the rotation index of Xs at p does not
depend on s ∈ [0, 1]. Since the rotation index of D f = (d1, d2) at p coincides with
that of X0, we can conclude that X has the same rotation index as D f at p. �

We call d1, d2 the Cartesian umbilic identifiers of the function f .

Example 3.4. For a function f (x, y) := Re(z3) = x3
− 3xy2 (z = x + iy), the

Cartesian umbilic identifiers are given by d1 =−6yϕ1, d2 =−6xϕ2, where

ϕ1 := −9x4
+ 9y4

+ 1, ϕ2 := 9x4
+ 18x2 y2

+ 9y4
+ 2.
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Since ϕi , i = 1, 2, are positive at the origin (0, 0), the vector field D f can be
continuously deformed into the vector field −y∂x − x∂y preserving the property
that the origin is an isolated zero. Thus D f is of index −1, and the graph of the
function f has an isolated umbilic of index −1

2 at the origin.

Example 3.5. Bates’ function B(x, y) has no umbilics since d1 > 0 on R2. On the
other hand, the identifier d1 with respect to Ghomi and Howard’s function fGH(x, y)
in (2-14) vanishes if and only if y = 0 or x = −y2. Since d2 never vanishes on
these two sets, the graph of fGH also has no umbilics on R2.

4. The pair of polar identifiers for umbilics

Let U be a domain in the xy-plane, and f :U → R a C∞-function. Let (r, θ) be
the polar coordinate system associated to (x, y) as in (2-5). Then

F(r, θ) := (r cos θ, r sin θ, f (r cos θ, r sin θ))

gives a parametrization of the graph of f with the unit normal vector

ν :=
1√

f 2
θ + r2

(
1+ f 2

r
)( fθ sin θ − r fr cos θ,−r fr sin θ − fθ cos θ, r

)
.

Then

Î :=

(
1+ f 2

r fr fθ
fr fθ r2

+ f 2
θ

)
is the symmetric matrix consisting of the coefficients of the first fundamental form
of F. If we set

Q =

 0
√

1+ f 2
r

−

√
f 2
θ + r2

(
1+ f 2

r
)
/
√

1+ f 2
r fr fθ/

√
1+ f 2

r

,
then Q QT

= Î. The symmetric matrix consisting of the coefficients of the second
fundamental form is given by

ÎI :=
1√

f 2
θ + r2

(
1+ f 2

r
)( r frr r frθ − fθ

r frθ − fθ r( fθθ + r fr )

)
.

Then the symmetric matrix

B f = Q−1ÎI(Q−1)T = QT (Î−1ÎI)(QT )−1

satisfies

B̃ f = ĥk̂3 B f =

(
r f 2

r f 2
θ frr + ĥ fr

(
−2r fθ frθ + 2 f 2

θ + r2ĥ
)
+ r ĥ2 fθθ l̂ k̂

l̂ k̂ r k̂2 frr

)
,
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where

ĥ := 1+ f 2
r , k̂ :=

√
f 2
θ + r2(1+ f 2

r
)
, l̂ := fθ (ĥ+ r fr frr )− r ĥ frθ .

The following holds:

Proposition 4.1. The symmetric matrix B̃ f (p) is proportional to the identity matrix
at p ∈ U \ {o} if and only if p gives an umbilic of the graph of f . Moreover, if o
is an isolated umbilic of the graph of f , then the index of the umbilic at o is equal
to 1+ indo(B̃ f ).

Proof. The first assertion follows from the above discussions. So we now prove
the second assertion. Suppose o is an isolated umbilic. We take a simple closed
smooth curve γ (t) in the xy-plane, where 0≤ t ≤ 2π , which surrounds the origin o
anticlockwisely, and does not surround any other umbilics. Let w1 : [0, 2π ] → R2

be a vector field along γ such that w1(t) is an eigenvector of the matrix I−1II at
γ (t) for each t ∈ [0, 2π ]. Since

∂r = cos θ∂x + sin θ∂y,

∂θ =−r sin θ∂x + r cos θ∂y,

we have that

(∂r , ∂θ )= (∂x , ∂y)T0, T0 :=

(
cos θ −r sin θ
sin θ r cos θ

)
.

Then, it holds that
Î−1ÎI = (T0)

−1(I−1II)T0.

In particular,
w2(t) := T0(γ (t))−1w1(t), 0≤ t ≤ 2π,

gives an eigenvector of the matrix Î−1ÎI at γ (t). Let Ts :U→GL(2,R), 0≤ s ≤ 1,
be a map defined by

Ts :=

(
cos θ −(r(1− s)+ s) sin θ
sin θ (r(1− s)+ s) cos θ

)
, 0≤ s ≤ 1.

Then it gives a continuous deformation of T0 to the rotation matrix T1. Since
the winding number of the curve γ (t) with respect to the origin o is equal to 1,
the difference between the rotation indices of w1 and w2 is equal to 1. Since the
eigenflow of the symmetric matrix B̃ f is associated with that of the matrix Î−1ÎI by
Q, the fact that Q takes values in the set T in Section 3 yields that the index of the
umbilic o is equal to 1+ indo(B̃ f ). �

We now set

δ1 := −b̃12/k̂ =− fθ (1+ f 2
r + r fr frr )+ r

(
1+ f 2

r
)

frθ ,
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where B̃ f = (b̃i j )i, j=1,2. Then we have

b̃11− b̃22 =−2 fr fθδ1+ r
(
1+ f 2

r
)
δ2,

where
δ2 :=

(
1+ f 2

r
)
(r fr + fθθ )− frr

(
r2
+ f 2

θ

)
.

Thus, as in the proof of Proposition 3.3, we get the following assertion:

Proposition 4.2. Let U be a neighborhood of the origin o := (0, 0). Let f :U→R

be a C∞-function. Then the graph of f has an umbilic at p∈U \{o} if and only if the
two functions δ1(r, θ), δ2(r, θ) both vanish at p, where x = r cos θ and y = r sin θ .
Further, if o is an isolated umbilic, then half of the index of the vector field

1 f := δ1∂x + δ2∂y

at o equals −1+ I f (o), where I f (o) is the index of the umbilic o.

We call δ1, δ2 the polar umbilic identifiers of the function f .

Example 4.3. Consider the function (where z = x + iy)

f (x, y) := Re(z2z)= x3
+ xy2

= r3 cos θ.

By straightforward calculations, we have

δ1 =−2r3 sin θ, δ2 =−2r3(2− 3r4
− 6r4 cos 2θ) cos θ.

Since 2−3r4
−6r4 cos 2θ is positive for sufficiently small r > 0, the vector field1 f

can be continuously deformed into the vector field − sin θ∂r − cos θ∂θ preserving
the property that the origin is an isolated zero. Thus the rotation index of 1 f at o
is equal to −1, and I f (o)= 1− 1

2 =
1
2 .

We give a generalization of Proposition 4.2 for the computation of the index of
the curvature line flow of a surface along an arbitrarily given simple closed curve
surrounding several umbilics as follows. Let z = f (x, y) be a C∞-function defined
on R2 admitting only isolated umbilics. Suppose that γ : R→ R2 is a C∞-map
satisfying γ (t + 2π) = γ (t) which gives a simple closed curve in the xy-plane
such that it surrounds a bounded domain containing the origin o anticlockwisely.
Moreover, we assume that γ (t) does not pass through any points corresponding to
umbilics of the graph of f . We denote by I f (γ ) (resp. indγ (1 f )) the rotation index
of the curvature line flow (resp. of the vector field 1 f ) along the simple closed
curve γ . Then the formula

(4-1) I f (γ )= 1+
indγ (1 f )

2
can be proved by modifying the proof of Proposition 4.2. Suppose that there exist
at most finitely many points t = t1, . . . , tk ∈ [0, 2π ] such that δ1(γ (t)) vanishes
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9 f (0, 0)

Figure 1. The inversion of the graph f5 for a = 1
5 (left) and its

enlarged view (right). In these two figures, the z-axis points toward
the downward direction.

at t = t j . We now assume that δ′1(γ (t)) := dδ1(γ (t))/dt does not vanish at t = t j ,
for j = 1, . . . , k. We set

ε(t j )=


0 for δ2(γ (t j )) < 0,
1 for δ′1(γ (t j )) > 0 and δ2(γ (t j )) > 0,
−1 for δ′1(γ (t j )) < 0 and δ2(γ (t j )) > 0.

Then, it holds that

(4-2) indγ (1 f )=−

k∑
j=1

ε(t j ).

5. Proof of the main theorem

In this section, using the function f = fm (m = 1, 2, 3, . . .) given in (1-4), we prove
Theorem 1.1 and Corollary 1.2 in the introduction. More generally, we consider
the function

(5-1) g = gm(r, θ) := 1+ F(ra cos mθ), 0< a < 1/4, m = 1, 2, 3, . . . ,

which is defined on {(r, θ) ; r > R}, where R is an arbitrarily fixed positive number,
and F : R→ R is a bounded C∞-function satisfying the following conditions:

(i) F(x) is an odd function, that is, it satisfies F(−x)=−F(x),

(ii) the derivative F ′(x) of F is a positive-valued bounded function on R,

(iii) the second derivative F ′′(x) is a bounded function on R such that F ′′(x) < 0
for x > 0,
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(iv) there exist three constants α, β and γ (β 6= 0, γ > 0) such that

lim
x→∞

eγ x F ′(x)= α, lim
x→∞

eγ x F ′′(x)= β.

One can easily construct a bounded C∞-function F(x) satisfying properties (i–iv).
For example, one can construct an odd C∞-function satisfying (ii) and (iii) so that

F(x)= 1− e−x , x ∈ [M,∞),

for a positive number M. Then it satisfies (iv) also. However, to prove Theorem 1.1,
we must choose the function F(x) to be real-analytic, and

F(x) := tanh x

satisfies all of the properties required. In this case, gm = fm holds. From now on,
we shall prove Theorem 1.1 and Corollary 1.2 using only the above four properties
of F(x).

The function g can be considered as a C∞-function on R2
\�R in the xy-plane

for any R > 0. The graph of g lies between two parallel planes orthogonal to the
z-axis, and is symmetric under rotation by the angle 2π/m with respect to the z-axis
(the entire figure of the inversion of the graph of f5 is given in the left-hand side of
Figure 1). The partial derivatives of the function g are given by

gr = ara−1cm F ′(racm),

gθ =−mrasm F ′(racm),

grr = ara−2cm
(
aracm F ′′(racm)+ (a− 1)F ′(racm)

)
,(5-2)

grθ =−amra−1sm
(
racm F ′′(racm)+ F ′(racm)

)
,

gθθ = m2ra(ras2
m F ′′(racm)− cm F ′(racm)

)
,

where

(5-3) cm := cos mθ, sm := sin mθ.

Since F(x) is a bounded function, g is bounded and satisfies (2-13), since a < 2.
Therefore, the inversion 9g can be expressed as a graph near (0, 0, 0). Since
0<a<1, the function g satisfies (a) and (b) of Proposition 2.5. Then Z = Z f (X, Y )
as in (2-11), where f := g is a C1-function at (0, 0). The graph of Zg for g = f5

near (0, 0, 0) is indicated in the right-hand side of Figure 1. To prove Theorem 1.1,
it is sufficient to show that (0, 0, 0) is a C1-umbilic of the graph of Zg(X, Y ) with
index 1+ (m/2). In the following discussions, we would like to show that there
exists a positive number R such that the graph of g has no umbilics if r > R. We
then compute the index Ig(0) with respect to the circle

(5-4) 0(θ) := (r cos θ, r sin θ), 0≤ θ ≤ 2π, r > R,
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using (4-1) and (4-2), which does not depend on the choice of r > R, as follows.
We set

(5-5) δ̌ j (θ) := δ j (0(θ)), j = 1, 2.

The first polar identifier is given by

(5-6) δ1 =−mrasm
(
aracm F ′′(racm)+ (a− 1)F ′(racm)

)
.

Since 0< a < 1, condition (ii) yields that

(5-7) (a− 1)F ′(racm) < 0.

On the other hand, by (i) and (iii), it holds that

(5-8) x F ′′(x)≤ 0, x := racm .

By (5-7) and (5-8), we can conclude that δ̌1(θ) changes sign only at the zeros of
the function sin mθ . Since the function g is symmetric with respect to rotation by
angle 2π/m, to compute the rotation index of 1g along 0, it is sufficient to check
the sign changes of δ̌i (θ), i = 1, 2, for θ = 0 and θ = π/m. By (5-6), (5-7) and
(5-8), we get the following:

(5-9)
d δ̌1

dθ

∣∣∣∣
θ=0

> 0,
d δ̌1

dθ

∣∣∣∣
θ=π/m

< 0.

The second polar identifier δ2 is given by

r2−3aδ2 =− r2−a(a2c2
m −m2s2

m)F
′′(cmra)+ acm(a2c2

m − am2
+m2s2

m)F
′(cmra)3

− cmr2−2a(a2
− 2a+m2)F ′(cmra).

We need the sign of δ̌2(θ) at θ ∈ (π/m)Z. In this case, sm = 0 and cm = ±1.
Substituting these relations and using the fact that F ′ (resp. F ′′) is an even function
(resp. an odd function), we have

r2−3aδ2 =∓r2−aa2 F ′′(ra)± a2(a−m2)F ′(ra)3∓ r2−2a(a2
− 2a+m2)F ′(ra).

Since F ′ is bounded, the middle term is bounded. Hence, by (iv) and by the fact that
0< a < 1, there exists a positive number R such that the sign of δ2 is determined
by the sign of the first term ∓r2−aa2 F ′′(ra) whenever r > R. Then, we have

(5-10) −δ̌2(π/m)= δ̌2(0) > 0.

In particular, the image of the graph of g has no umbilics when r > R. By the
2π/m-symmetry of g, (4-2), (5-9), and (5-10), the index ind0(1g) is equal to −m.
Then the index of the curvature line flow along 0 is equal to Ig(0) = 1−m/2
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by (4-1). Then after inversion, the Poincaré–Hopf index formula yields that the
index I0 of the umbilic of 9g at the origin is

I0 = 2− Ig(0)= 1+m/2.

If we choose F(x) := tanh x , then the function Zg(X, Y ) satisfies the properties of
Theorem 1.1.

We next prove the corollary. We set

(5-11) λ :=
Z
√

1+ Z2
X + Z2

Y

1+
√

1+ Z2
X + Z2

Y

,

where Z := Zg is the function given in (2-11). Suppose that λ and λν are a
C1-function and a C1-vector field defined on a sufficiently small neighborhood of
(0, 0) in the XY -plane, respectively, where ν is a unit normal vector field of the
graph of Zg. Then the map

8 : (X, Y ) 7→ (ξ(X, Y ), η(X, Y ))

given by (A-4) for f = Z fm is a local C1-diffeomorphism, and is real-analytic
on U \ {(0, 0)}. Then the proof of Fact A.1 in Appendix A is valid in our situation,
and we can conclude that the eigenflow of the Hessian matrix of λ(ξ, η) is equal
to the curvature line flow of the map P(ξ, η) given by (A-8). Since the image of
P(ξ, η) coincides with that of 9 fm (u, v), we get the proof of the corollary in the
introduction.

Thus, it is sufficient to show that λ and λν are C1 at (X, Y )= (0, 0). By (5-11),
we have the following expression

(5-12) λν =
(Z Z X , Z ZY ,−Z)

1+
√

1+ Z2
X + Z2

Y

.

By (5-11) and (5-12), we can say that λ(X, Y ) and λ(X, Y )ν(X, Y ) are C1 at (0, 0) if

(5-13) lim
(X,Y )→(0,0)

Z Z X X = lim
(X,Y )→(0,0)

Z Z XY = lim
(X,Y )→(0,0)

Z ZY Y = 0

hold. So to prove the corollary, it is sufficient to show (5-13). It can be eas-
ily seen that all of r1−agr , r−agθ , r2−2agrr , r1−2agrθ and r−2agθθ are bounded
functions on R2

\ �R . Since 0 < a < 1
4 , Proposition 2.7 yields that the map

(u, v) 7→ (X, Y )=5 ◦9g(u, v) is a C2-map. Then (5-13) is equivalent to

(5-14) lim
(u,v)→(0,0)

Z Zuu = lim
(u,v)→(0,0)

Z Zuv = lim
(u,v)→(0,0)

Z Zvv = 0.

Since Z = h/(k+ 1), (5-14) follows from (2-19), (2-21) and the fact that

lim
ρ→0

ρhuu = lim
ρ→0

ρhuv = lim
ρ→0

ρhvv = 0.
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6. An alternative proof of the main theorem

In the previous section, we have proved Corollary 1.2. However, it is natural to
expect that one can give an explicit description of the function with the desired
properties. The function λ given in (5-11) does not have a simple expression. On
the other hand, we will see that functions

(6-1) 3= 3m := r2 tanh(r−a cos mθ), m = 1, 2, 3, . . . ,

satisfy (1) and (2) of Corollary 1.2 if 0< a < 1. We set

(λ :=) λm := r2 F(r−a cos mθ),

where ξ = r cos θ, η= r sin θ , and F :R→R is a function satisfying the properties
(i–iv) given in the beginning of Section 5. Then 3m is a special case of λm for
F(x) := tanh x . It holds that

λr = r
(
2F(r−acm)− acmr−a F ′(r−acm)

)
,

λθ =−mr2−asm F ′(r−acm),

λrr = 2F(r−acm)+ ar−2acm
(
(a− 3)ra F ′(r−acm)+ acm F ′′(r−acm)

)
,

λrθ =msmr1−2a((a− 2)ra F ′(r−acm)+ acm F ′′(r−acm)
)
,

λθθ =−m2r2−2a(racm F ′(r−acm)− s2
m F ′′(r−acm)

)
,

where cm and sm are defined in (5-3). We set

ζ1 := 2(rλrθ − λθ ), ζ2 := −r2λrr + rλr + λθθ .

Then each component of the vector field δλ := ζ1∂x + ζ2∂y is an identifier for the
eigenflow of the Hessian matrix of λ at the origin given in the introduction; see (1-3).
By a direct calculation, we have

ζ1 = 2mr2−2asm
(
acm F ′′(r−acm)+ (a− 1)ra F ′(r−acm)

)
,

ζ2 =−r2−2a(a2c2
m −m2s2

m)F
′′(r−acm)− (a2

− 2a+m2)r2−acm F ′(r−acm).

By the property (ii) of F, (a − 1)ra F ′(r−acm) is negative, and by (ii) and (iii),
cm F ′′(r−acm) is also negative. So ζ1 is positively proportional to −sm(=− sin mθ).
In particular, ζ1 vanishes only when sm = 0. Moreover, for fixed r , it holds that
dζ1/dθ < 0 (resp. dζ1/dθ > 0) if cm = 1 (resp. cm =−1).

On the other hand, if sm = 0 and r tends to zero, then cm =±1 and F ′(±r−a)

and F ′′(±r−a) tend to zero with exponential order (see condition (iv) for F(x)).
Therefore, the leading term of ζ2 for small r is −r2−2a(a2c2

m −m2s2
m)F

′′(r−acm).
Hence, for a fixed sufficiently small r , the function ζ2 is positive (resp. negative)
if cm = 1 (resp. cm =−1). Summarizing these facts, one can easily show that the
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Figure 2. The image of P
(
r ≤ 1

2

)
for m = 2 and a = 1

2 .

index of the vector field δλ at o := (0, 0) is equal to m. So the index of the eigenflow
of the Hessian matrix of λ at o is equal to 1+m/2 (see Appendix B). One can
easily check that λ is a C1-function at o and the function λ satisfies (1) and (2) of
Corollary 1.2. Since 3 is a special case of λ, we proved that 3 satisfies the desired
properties.

To give an alternative proof of Theorem 1.1, we consider the real analytic map
P : R2

\ {o} → R3 defined (see (A-8)) by

P(ξ, η) := (ξ, η,3(ξ, η))−3(ξ, η)ν(ξ, η),

where

(6-2) ν :=
1

32
ξ +3

2
η+ 1

(23ξ , 23η,32
ξ +3

2
η− 1).

One can easily verify that

3ξ = r1−a((ms1sm − ac1cm) sech2(r−acm)+ 2rac1 tanh(r−acm)
)
,

3η = r1−a(2ras1 tanh(r−acm)− (as1cm +mc1sm) sech2(r−acm)
)
,

where c1 = cos θ and s1 = sin θ . Using them, one can get the expressions

(6-3) 3ξξ =
1

r2a h1(r, θ), 3ξη =
1

r2a h2(r, θ), 3ηη =
1

r2a h3(r, θ),

where hi (r, θ), i = 1, 2, 3, are continuous functions defined on R2. Using (6-2),
(6-3) and the fact limr→03/r2a

= 0, we have

(6-4) lim
r→0

3νξ = lim
r→0

3

r2a (r
2aνξ )= 0,

and also

(6-5) lim
r→0

3νη = 0.
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Using (6-4), (6-5) and the fact

d(3ν)= (d3)ν+3dν,

we can conclude that 3ν can be extended as a C1-function at o. Thus P(ξ, η) can
also be extended as a C1-differentiable map at o. One can also easily check that

Pξ (0, 0)= (1, 0, 0), Pη(0, 0)= (0, 1, 0).

Hence P is an immersion at o, and

8 : (ξ, η) 7→ (X (ξ, η), Y (ξ, η))

is a local C1-diffeomorphism, where P = (X, Y, Z). In particular,

Z3 := Z(8−1(X, Y ))

gives a function defined on a neighborhood of (X, Y ) = (0, 0). By Fact A.1 in
Appendix A, the index of the curvature line flow at (0, 0) of the graph of Z3 is
equal to the index of the eigenflow of the Hessian matrix of 3, which implies
Theorem 1.1. The image of P for m = 3 and a = 1

2 is given in Figure 2.

7. The duality of indices

At the end of this paper, we consider the index at infinity for eigenflows of Hessian
matrices. Let

f : R2
\�R→ R, g :U1/R \ {o} → R

be C2-functions, where �R and U1/R are disks defined in Section 2. Let H f

(resp. Hg) be the eigenflow of the Hessian matrix of f (resp. g). If the Hessian
matrix of f has no equidiagonal points, then we can consider the index ind(H f , 0)

with respect to the circle 0 given in (5-4) and it is independent of the choice
of r > R. So we denote it by ind∞(H f ). Similarly, if the Hessian matrix of g has
no equidiagonal points, then we can consider the index ind(Hg, 0

′) with respect to
the circle 0′(θ) := (ρ cos θ, ρ sin θ), 0≤ θ ≤ 2π , ρ < 1/R. Since it is independent
of the choice of ρ < 1/R, we denote it by indo(Hg). Consider the plane-inversion

ι : R2
∈ (u, v) 7→ 1

u2+ v2 (u, v) ∈ R2.

Then the following assertion holds:

Proposition 7.1 (duality of indices). Let f : R2
\�R→ R be a C2-function whose

Hessian matrix has no equidiagonal points. Then the function g :�R→R defined by

g(x, y) := (u2
+ v2) f ◦ ι(u, v)
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(called the dual of f ) satisfies

indo(Hg)+ ind∞(H f )= 2.

Proof. Using the identification of (u, v) and z = u+ iv, it holds that u = (z+ z)/2
and v = (z− z)/(2i). In particular, f can be considered as a function of variables
z and z, and can be denoted by f = f (z, z). Since ι(z)= 1/z, we can write

g(z, z) := zz f (1/z, 1/z).

Then

gzz(z, z)=
z fzz(1/z, 1/z)

z3

holds, where

∂
∂z :=

1
2

(
∂
∂u − i ∂

∂v

)
, ∂

∂z :=
1
2

(
∂
∂u + i ∂

∂v

)
.

Since 0(θ)= reiθ , we have that

gzz(0(θ))=
fzz(ι ◦0(θ))

r2e4iθ .

Thus, it holds that

indo(gzz, 0)=−4+ indo( fzz, ι ◦0).

By (B-1), we have

indo(gzz, 0)=−2 indo(Hg),

indo( fzz, ι ◦0)=− indo( fzz, ι ◦0)= 2 ind∞(H f ).

Thus we get the assertion. �

Applying Proposition 7.1 for the function g=3m , see (6-1), we get the following:

Corollary 7.2. For each m ≥ 1, there exists a C1-function f : R2
\ �R → R

satisfying

(1) f is real-analytic on R2
\�R ,

(2) the eigenflow of the Hessian matrix of f has no singular points, and

(3) the index at infinity of the eigenflow of H f is equal to 1−m/2.

The function 3m used in the second proof of Theorem 1.1 coincides with the
dual of the function fm − 1 given in (1-4).
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Appendix A: The classical reduction

In this appendix we show the existence of a special coordinate system (ξ, η) of the
graph of a function f (x, y) which reduces the curvature line flow to the Hessian of
a certain function, called Ribaucour’s parametrization (Umehara learned this from
Konrad Voss at the conference of Thessaloniki 1997). Although, the existence of
such a coordinate system was classically known, and a proof is in the appendix of
[Scherbel 1993], the authors will give the proof here for the sake of convenience.
We set P = (x, y, f (x, y)), and suppose that f (0, 0) = fx(0, 0) = fy(0, 0) = 0.
Consider a sphere which is tangent to the graph of f at P and also tangent to the
xy-plane at a point Q. Then, it holds that

(A-1) Q+ λe3 = P + λν,

where e3 = (0, 0, 1) and ν = ( fx , fy,−1)/
√

1+ f 2
x + f 2

y . Taking the third compo-
nent of (A-1), we get

(A-2) λ=
f
√

1+ f 2
x + f 2

y

1+
√

1+ f 2
x + f 2

y

.

In particular, λ(0, 0)= 0. Since fx(0, 0)= fy(0, 0)= 0, we have that

(A-3) dλ(0, 0)= d f (0, 0)= 0.

Taking the exterior derivative of (A-1), and using (A-3) and λ(0, 0)= 0, we have
d P(0, 0)= d Q(0, 0). So, if we set Q = (ξ(x, y), η(x, y), 0), then it holds that

(ξx(0, 0)dx + ξy(0, 0)dy, ηx(0, 0)dx + ηy(0, 0)dy, 0)= d Q

= d P = (dx, dy, fx(0, 0)dx + fy(0, 0)dy)= (dx, dy, 0),

which implies that the Jacobi matrix of the map

(A-4) 8 : (x, y) 7→ (ξ(x, y), η(x, y))

is the identity matrix at (0, 0). So we can take (ξ, η) as a new local coordinate
system. Differentiating (A-1) by ξ and η, we get the following two identities:

Qξ + λξ e3 = Pξ + λξν+ λνξ , Qη+ ληe3 = Pη+ λην+ λνη.

Taking the inner products of them and ν, these two equations yield

(A-5) Qξ · ν+ λξν3 = λξ , Qη · ν+ λην3 = λη,

where we set ν = (ν1, ν2, ν3). Since Q = (ξ, η, 0), we have that Qξ = (1, 0, 0) and
Qη = (0, 1, 0). So Qξ ·ν = ν1 and Qη ·ν = ν2. Substituting this into (A-5), we have

(A-6) λξ =
ν1

1−ν3
, λη =

ν2
1−ν3

.
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This implies that (λξ , λη) is the image of ν via the stereographic projection, and

(A-7) ν =
1

1+λ2
ξ+λ

2
η

(2λξ , 2λη, λ2
ξ + λ

2
η− 1).

By (A-1), we have

(A-8) P = (ξ, η, 0)− λν+ (0, 0, λ).

We prove the following:

Fact A.1. The curvature line flow of the graph z = f (x, y) coincides with the
eigenflow of the Hessian of the function λ(ξ, η) given by (A-2).

Proof. Noticing (A-8), we set

1(ξ,η) := det

 ν

d P
dν

= det

 ν

dξ, dη, dλ
dν

.
Then this gives a map 1(ξ,η) : T(ξ,η)R2

→ R such that

1(ξ,η)

(
a ∂
∂ξ
+ b ∂

∂η

)
= det

(
ν, a Pξ (ξ, η)+ bPη(ξ, η), aνξ (ξ, η)+ bνη(ξ, η)

)
∈ R.

It is well known that w ∈ T(ξ,η)R2 points in a principal direction of P at (ξ, η) if
and only if 1(ξ,η)(w)= 0. Since (ν1)

2
+ (ν2)

2
+ (ν3)

2
= 1, (A-6) yields that

λξν1+ λην2 =
(ν1)

2
+ (ν2)

2

1− ν3
=

1− (ν3)
2

1− ν3
= 1+ ν3,

which implies ν3=λξν1+λην2−1.We now set µ= 2/(1+λ2
ξ+λ

2
η). Differentiating

(A-7), we have

dν =
dµ
µ
ν+µ(dλξ , dλη, λξdλξ + ληdλη).

The first term of the right-hand side of the above equation is proportional to ν and
does not affect the computation of 1(ξ,η). So we have that

1(ξ,η) = µ

∣∣∣∣∣∣∣
ν1 ν2 λξν1+ λην2− 1
dξ dη λξdξ + ληdη
dλξ dλη λξdλξ + ληdλη

∣∣∣∣∣∣∣
= µ

∣∣∣∣∣∣
ν1 ν2 −1
dξ dη 0
dλξ dλη 0

∣∣∣∣∣∣=−µ
∣∣∣∣ dξ dη
dλξ dλη

∣∣∣∣
= µ

(
(λξξ − ληη)dξdη− λξη(dξ 2

− dη2)
)
.

Fact A.1 follows from this representation of 1(ξ,η). �
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Appendix B: Indices of eigenflows of Hessian matrices

Let g : �R \ {o} → R be a C2-function, where �R is the closed disk of radius R
centered at the origin o := (0, 0); see (2-1). The Hessian matrix of g is given by

Hg :=

(
gxx gxy

gyx gyy

)
.

We denote by Hg the eigenflow of Hg. A point p∈�R\{o} is called an equidiagonal
point of Hg if Hg(p) is proportional to the identity matrix. Consider the circle

0(θ) := r(cos θ, sin θ), 0≤ θ < 2π, r < R.

If there are no equidiagonal points on �R \ {o}, then we can define the index
ind(Hg, 0) of the eigenflow Hg with respect to 0, which does not depend on the
choice of r . We call it the index of Hg at the origin and denote it by indo(Hg).
Consider the vector field

dg := 2gxy
∂
∂x + (gyy − gxx)

∂
∂y .

It is well known that the mapping degree of the Gauss map, see (3-1),

ďg : T 1
:= R/2πZ 3 θ 7→

dg(0(θ))

|dg(0(θ))|
∈ S1
:= {(x, y) ∈ R2

; x2
+ y2
= 1}

is equal to 2 indo(Hg). Using the correspondence (x, y) 7→ x + iy, we identify R2

with C, where i =
√
−1. Then

gz =
1
2(gx − igy),

gzz =
1
4((gxx − gyy)− 2igxy),

where gz := ∂g/∂z, gzz := ∂
2g/∂z2 and

∂
∂z :=

1
2

(
∂
∂x − i ∂

∂y

)
.

Thus, dg can be identified with the right-angle rotation of gzz . In particular,

(B-1) indo(Hg)=−
1
2 indo(gzz).

Here gzz is considered as a vector field and indo(gzz) is its index at the origin. Let
(r, θ) be as in (2-5). Then z = reiθ and

gz =
e−iθ

2r
(rgr − igθ ),

gzz =
e−2iθ

4r2

(
(r2grr − rgr − gθθ )+ 2i(gθ − rgrθ )

)
.
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We consider the vector field defined by

(B-2) δg := 2(rgrθ − gθ ) ∂∂x + (−r2grr + rgr + gθθ ) ∂∂y .

Since, from [Klotz 1959, (18)],

indo( gzz )= 2+ indo(δg),

we obtain the following:

Lemma B.1. The identity indo(Hg)= 1+ indo(δg)/2 holds.
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