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WELL-POSEDNESS OF SECOND-ORDER DEGENERATE
DIFFERENTIAL EQUATIONS WITH FINITE DELAY

IN VECTOR-VALUED FUNCTION SPACES

SHANGQUAN BU AND GANG CAI

We give necessary and sufficient conditions of the L p-well-posedness (re-
spectively, Bs

p,q-well-posedness) for the second-order degenerate differential
equation with finite delay: (Mu′)′(t)+αu′(t)= Au(t)+ Gu′t + Fut + f (t),
(t ∈ [0, 2π]) with periodic boundary conditions u(0) = u(2π), (Mu′)(0) =
(Mu′)(2π), where A and M are closed linear operators on a Banach space
X satisfying D(A) ⊂ D(M), and F and G are bounded linear operators
from L p([−2π, 0]; X) (respectively, Bs

p,q([−2π, 0]; X)) into X.

1. Introduction

The purpose of this paper is to study the well-posedness of the following second-
order degenerate differential equations with finite delays:

(P2)
{
(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t) (t ∈ T)

u(0)= u(2π), (Mu′)(0)= (Mu′)(2π),

where T := [0, 2π ], A and M are closed linear operators on a Banach space X
satisfying D(A)⊂ D(M), α ∈ C is fixed, F and G are bounded linear operators
from L p([−2π, 0]; X) (resp. Bs

p,q([−2π, 0]; X)) into X, ut and u′t are defined on
[−2π, 0] by ut(s)= u(t + s), u′t(s)= u′(t + s) when t ∈ T.

Let 1≤ p<∞. We say that (P2) is L p-well-posed, if for all f ∈ L p(T; X), there
exists a unique u∈W 1,p

per (T; X)∩L p(T; D(A)), such that u′∈ L p(T; D(M)), Mu′∈
W 1,p

per (T; X), and (P2) is satisfied a.e. on T. Here D(A) and D(M) are equipped
with their graph norms so that they become Banach spaces, and W 1,p

per (T; X) is
the X -valued periodic Sobolev space of order 1. Our main result in this paper
gives a necessary and sufficient condition for (P2) to be L p-well-posed. Precisely,
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we show that when the underlying Banach space X is a UMD Banach space and
1< p <∞, if the set {k(Gk+1−Gk) : k ∈ Z} is Rademacher bounded, then (P2) is
L p-well-posed if and only if ρp(P2)=Z, and the sets {k2 M Nk : k ∈Z}, {k Nk : k ∈Z}

are Rademacher bounded, where

(1-1) Nk = (k2 M − iαk+ ikGk + Fk + A)−1, (k ∈ Z),

Fk,Gk ∈L(X) are defined by Fk x = F(ek x), Gk x =G(ek x) with ek(t)= eikt (see
Theorem 2.4). We also study the well-posedness of (P2) in periodic Besov spaces
Bs

p,q(T; X), and a necessary and sufficient condition for (P2) to be Bs
p,q -well-posed

is also given (see Theorem 3.3).
The main tools we will use are operator-valued Fourier multipliers on L p(T; X)

and Bs
p,q(T; X). Indeed, we will transform the well-posedness of (P2) to an operator-

valued Fourier multiplier problem in the corresponding vector-valued function
spaces. Thus the operator-valued Fourier multipliers theorems obtained by Arendt
and Bu [2002; 2004] on L p(T; X) and Bs

p,q(T; X) are fundamental for us.
The results obtained in this paper recover the known results presented in Bu and

Fang [2010] in the nondegenerate case when M = IX and α = 0. Thus our results
may be also regarded as generalizations of the previous known results when M = IX

and F = G = 0 in the L p-well-posedness and the Bs
p,q-well-posedness obtained

in [Arendt and Bu 2002; 2004]. Our results also generalize the previous known
results obtained by Bu [2013] in the simpler case when F = G = 0 and α = 0.

A large number of partial differential equations arising in physics and applied
sciences, such as in the flow of fluid through fissured rocks, thermodynamics and
shear in second-order fluids or in the theory of control of dynamical systems, can
be expressed by the model in the form of (P2). See [Lizama 2006; Bu and Fang
2009; 2010; Lizama and Ponce 2011; 2013; Poblete and Pozo 2013; 2014] for the
study of vector-valued degenerate equations with delays. See the monographs by
Favini and Yagi [1999] and by Sviridyuk and Fedorov [2003] for detailed studies
of abstract degenerate type differential equations.

At the end of this paper, we give concrete examples to which our abstract results
may be applied. Let � be a bounded domain in Rn with smooth boundary ∂�,
1 < p < ∞ and m be a nonnegative bounded measurable function defined on
�; let X = H−1(�), F,G : L p([−2π, 0]; X)→ X be bounded linear operators.
If M is the multiplication operator by m on H−1(�) with domain of definition
D(M) and A = 1 is the Laplacian on X with Dirichlet boundary condition and
we assume that D(A) ⊂ D(M), then under suitable assumptions on F and G
we obtain the L p-well-posedness for the corresponding second-order degenerate
differential equations with finite delays (see Example 4.1). Our abstract results
can also be applied in the following situation: let H be a complex Hilbert space,
1< p<∞ and F,G ∈L(L p([−2π, 0]; H), H) be delay operators, P be a densely
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defined positive selfadjoint operator on H with P ≥ δ > 0. If M = P − ε with
ε < δ, and A =

∑k
i=0 ai P i with ai ≥ 0, ak > 0. If we assume that 0 ∈ ρ(M), then

we obtain the L p-well-posedness of the corresponding second-order degenerate
differential equations with finite delays under suitable assumptions on F and G
(see Example 4.2).

This work is organized as follows. In Section 2, we study the well-posedness of
(P2) in L p(T; X). In Section 3, we consider the well-posedness of (P2) in periodic
Besov spaces Bs

p,q(T; X). In Section 4, we give examples of degenerate differential
equations with finite delays to which our abstract results may be applied.

2. Well-posedness in Lebesgue–Bochner spaces

Let X and Y be Banach spaces. We denote by L(X, Y ) the set of all bounded linear
operators from X to Y. If X = Y, we will denote it simply by L(X). Let 1≤ p<∞.
We denote by L p(T; X) the space of all X -valued measurable functions f defined
on T satisfying

‖ f ‖L p :=

(∫ 2π

0
‖ f (t)‖p dt

2π

)1/p

<∞.

If f ∈ L1(T; X), we define

f̂ (k) := 1
2π

∫ 2π

0
e−k(t) f (t) dt,

the k-th Fourier coefficient of f , where k ∈ Z and ek(t) := eikt for t ∈ T.

Definition. Let X and Y be Banach spaces. A set T ⊂ L(X, Y ) is said to be
Rademacher bounded (R-bounded, in short), if there exists C > 0 such that∑

εj=±1

∥∥∥∥ n∑
j=1

εj Tj x j

∥∥∥∥≤ C
∑
εj=±1

∥∥∥∥ n∑
j=1

εj x j

∥∥∥∥
for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N.

It is clear from the definition that if S,T ⊂ L(X) are R-bounded, then ST :=
{ST : S ∈ S, T ∈ T} and S+ T := {S + T : S ∈ S, T ∈ T} are still R-bounded.
It is also clear that each R-bounded set is norm bounded. It is known that each
norm bounded subset of L(X) is R-bounded if and only if X is isomorphic to a
Hilbert space [Arendt and Bu 2002, Proposition 1.13]. The main tool in the study
of L p-well-posedness of (P2) is the operator-valued L p-Fourier multipliers.

Definition. Let X, Y be Banach space and 1≤ p<∞. We say (Mk)k∈Z⊂L(X, Y )
is an L p-Fourier multiplier, if for each f ∈ L p(T; X), there exists a unique
u ∈ L p(T; Y ) such that û(k)= Mk f̂ (k) for all k ∈ Z.
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It follows easily from the closed graph theorem that when (Mk)k∈Z ⊂ L(X, Y )
is an L p-Fourier multiplier, then there exists a unique T ∈ L(L p(T; X), L p(T; Y )),
such that T̂ f (k)= Mk f̂ (k) when f ∈ L p(T; X) and k ∈ Z. The following results
were established in [Arendt and Bu 2002]:

Proposition 2.1. Let X , Y be Banach spaces and assume that (Mk)k∈Z ⊂ L(X, Y )
is an L p-Fourier multiplier. Then the set {Mk : k ∈ Z} is R-bounded.

Theorem 2.2. Let X , Y be UMD spaces and (Mk)k∈Z ⊂ L(X, Y ). If the sets
{Mk : k ∈ Z} and {k(Mk+1−Mk) : k ∈ Z} are R-bounded, then (Mk)k∈Z defines an
L p-Fourier multiplier whenever 1< p <∞.

In this section, we study the following second-order degenerate differential
equation with finite delays:

(P2)
{
(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t), (t ∈ T)

u(0)= u(2π), (Mu′)(0)= (Mu′)(2π),

where A, M are closed linear operators on a Banach space X satisfying D(A)⊂
D(M), α ∈ C is fixed, and F,G : L p([−2π, 0]; X)→ X are fixed bounded linear
operators. Moreover, for fixed t ∈ T, ut and u′t are elements of L p([−2π, 0]; X)
defined by ut(s)= u(t + s), u′t(s)= u′(t + s) for −2π ≤ s ≤ 0. Here we identify
a function u on T with its natural 2π -periodic extension on R.

To give the definition of the solution space for (P2), we need to introduce vector-
valued periodic Sobolev space of order 1. For 1≤ p <∞, we define the periodic
“Sobolev” space of order 1 [Arendt and Bu 2002] by:

W 1,p
per (T; X) := {u ∈ L p(T; X) : there exists v ∈ L p(T; X)

such that v̂(k)= ikû(k) for all k ∈ Z}.

Let u ∈ L p(T; X). Then u ∈W 1,p
per (T; X) if and only if u is differentiable a.e. on T

and u′ ∈ L p(T; X); in this case, u is actually continuous and u(0)= u(2π) [Arendt
and Bu 2002, Lemma 2.1].

Let 1≤ p<∞. We define the solution space of the L p-well-posedness for (P2) by

Sp(A,M) := {u ∈ L p(T;D(A))∩W 1,p
per (T;X) : u′∈ L p(T;D(M)),Mu′∈W 1,p

per (T;X)},

here we consider D(A) and D(M) as Banach spaces equipped with their graph
norms. When u ∈ Sp(A,M), then Fu•,Gu′• ∈ L p(T; X) as ‖Fut‖ ≤ ‖F‖‖u‖p

and ‖Fu′t‖ ≤ ‖F‖‖u
′
‖p when t ∈ T. Thus all terms appearing in (P2) belong to

L p(T; X). Moreover Sp(A,M) is a Banach space with the norm

‖u‖Sp(A,M) := ‖u‖L p +‖u′‖L p +‖Au‖L p +‖Mu′‖L p +‖(Mu′)′‖L p .

By [Arendt and Bu 2002, Lemma 2.1], if u ∈ Sp(A,M), then u and Mu′ are
X -valued continuous on T, and u(0)= u(2π), (Mu′)(0)= (Mu′)(2π).
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Definition. Let 1 ≤ p <∞ and f ∈ L p(T; X); u ∈ Sp(A,M) is called a strong
L p-solution of (P2) if (P2) is satisfied a.e. on T. We say that (P2) is L p-well-posed,
if for each f ∈ L p(T; X), there exists a unique strong L p-solution of (P2).

If (P2) is L p-well-posed, there exists a constant C > 0 such that for each
f ∈ L p(T; X), if u ∈ Sp(A,M) is the unique strong L p-solution of (P2), then

(2-1) ‖u‖Sp(A,M) ≤ C‖ f ‖L p .

This is an easy consequence of the closed graph theorem by the closedness of A
and M.

Let F,G ∈ L(L p(−2π, 0); X), X) and k ∈ Z. We define the linear operators
Fk,Gk on X by

(2-2) Fk x := F(ek x) and Gk x := G(ek x), (x ∈ X).

It is clear that Fk,Gk ∈L(X), ‖Fk‖≤‖F‖ and ‖Gk‖≤‖G‖ as ‖ek‖p=1. Moreover
when u ∈ L p(T; X),

(2-3) F̂u•(k)= Fk û(k) and Ĝu•(k)= Gk û(k), (k ∈ Z).

This implies that (Fk)k∈Z and (Gk)k∈Z are L p-Fourier multipliers as

‖Fut‖ ≤ ‖F‖‖u•‖p = ‖F‖‖u‖p, (t ∈ T)

and thus Fu•,Gu• ∈ L p(T; X). We define the resolvent set of (P2) in the L p-well-
posedness setting by

ρp(P2) := {k ∈ Z : k2 M− iαk+ ikGk + Fk + A is invertible from D(A) onto X

and (k2 M − iαk+ ikGk + Fk + A)−1
∈ L(X)}.

If k ∈ ρp(P2), then M(k2 M− iαk+ ikGk+ Fk+ A)−1 and A(k2 M− iαk+ ikGk+

Fk + A)−1 make sense as D(A)⊂ D(M) by assumption, and they belong to L(X)
by the closed graph theorem. We need the following preparation.

Proposition 2.3. Let A and M be closed linear operators defined on a UMD space
X satisfying D(A) ⊂ D(M), 1 < p < ∞. Let F,G ∈ L(L p([−2π, 0]; X), X).
Assume that ρp(P2) = Z and that the sets {k2 M Nk : k ∈ Z}, {k Nk : k ∈ Z} and
{k(Gk+1−Gk) : k ∈Z} are R-bounded, where Nk = (k2 M−iαk+ikGk+Fk+A)−1,
Fk and Gk are defined by (2-2) when k ∈ Z. Then (k2 M Nk)k∈Z, (Nk)k∈Z, (k Nk)k∈Z

and (k M Nk)k∈Z are L p-Fourier multipliers.

Proof. Let Mk=k2 M Nk, Sk=k Nk and Tk=k M Nk when k ∈Z. The sets {Gk :k ∈Z}

and {Fk : k ∈ Z} are R-bounded by [Lizama 2006, Proposition 3.2]. It follows from
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the R-boundedness of the set {IX/k : k ∈ Z\ {0}} that {Nk : k ∈ Z} is R-bounded, as
the product of R-bounded sets is still R-bounded. Moreover, by the definition of Nk ,

(2-4) Nk+1−Nk = Nk+1(N−1
k − N−1

k+1)Nk

= Nk+1[−(2k+1)M+ iα+ ikGk− i(k+1)Gk+1+Fk−Fk+1]Nk

=−(2k+ 1)Nk+1 M Nk + iαNk+1 Nk − ik Nk+1(Gk+1−Gk)Nk

− i Nk+1Gk+1 Nk − Nk+1(Fk+1− Fk)Nk .

It follows that

(2-5) Mk+1−Mk = (k+ 1)2 M Nk+1− k2 M Nk

= k2 M(Nk+1− Nk)+ (2k+ 1)M Nk+1

=−k2(2k+ 1)M Nk+1 M Nk + iαk2 M Nk+1 Nk

−ik3 M Nk+1(Gk+1−Gk)Nk − ik2 M Nk+1Gk+1 Nk

−k2 M Nk+1(Fk+1− Fk)Nk + (2k+ 1)M Nk+1,

(2-6) Sk+1− Sk = k(Nk+1− Nk))+ Nk+1

=−k(2k+ 1)Nk+1MNk + iαk Nk+1Nk − ik2Nk+1(Gk+1−Gk)Nk

−ik Nk+1Gk+1Nk − k Nk+1(Fk+1− Fk)Nk + Nk+1,

and

(2-7) Tk+1− Tk= M(Sk+1− Sk)

=−k(2k+1)MNk+1MNk+ iαkMNk+1Nk− ik2MNk+1(Gk+1−Gk)Nk

− ik MNk+1Gk+1Nk − k MNk+1(Fk+1− Fk)Nk +MNk+1.

This implies that the sets {k(Nk+1 − Nk) : k ∈ Z}, {k(Mk+1 − Mk) : k ∈ Z},
{k(Sk+1−Sk) :k∈Z} and {k(Tk+1−Tk) :k∈Z} are R-bounded by the R-boundedness
of the sets {k2 M Nk : k ∈ Z}, {k Nk : k ∈ Z}, {k(Gk+1−Gk) : k ∈ Z}, {Fk : k ∈ Z} and
{Gk : k ∈ Z}. It follows that (Nk)k∈Z, (Mk)k∈Z, (Sk)k∈Z and (Tk)k∈Z are L p-Fourier
multipliers by Theorem 2.2. This completes the proof. �

Our next result gives a necessary and sufficient condition for the L p-well-
posedness of (P2) when X is a UMD space and 1< p <∞.

Theorem 2.4. Let X be a UMD space, 1< p <∞ and let A,M be closed linear
operators on X satisfying D(A) ⊂ D(M). Let F,G ∈ L(L p([−2π, 0]; X), X) be
such that the set {k(Gk+1−Gk) : k ∈Z} is R-bounded. Then the following assertions
are equivalent.



WELL-POSEDNESS OF SECOND-ORDER DEGENERATE DIFFERENTIAL EQUATIONS 33

(i) (P2) is L p-well-posed.

(ii) ρp(P2) = Z and the sets {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} are R-bounded,
where Nk = (k2 M − iαk+ ikGk + Fk + A)−1.

Proof. (i)⇒ (i i): Assume that (P2) is L p-well-posed. Let k ∈ Z and y ∈ X. Define
f (t)= eikt y (t ∈ T). Then f ∈ L p(T; X), f̂ (k)= y and f̂ (n)= 0 for n 6= k. Since

(P2) is L p-well-posed, there exists u ∈ Sp(A,M) such that

(2-8) (Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t) a.e. on T.

We have û(n) ∈ D(A) when n ∈ Z by [Arendt and Bu 2002, Lemma 3.1] as
u ∈ L p(T; D(A)). Taking Fourier transforms on both sides of (2-8), we obtain

(2-9) −(k2 M − iαk+ ikGk + Fk + A)û(k)= y,

and−(n2 M−iαn+inGn+Fn+A)û(n)= 0 when n 6= k. This implies in particular
that k2 M − iαk+ ikGk + Fk + A is surjective. We are going to show that it is also
injective. Let x ∈ D(A) be such that

(k2 M − iαk+ ikGk + Fk + A)x = 0,

and let u(t)= eikt x when t ∈ T. Then u ∈ Sp(A,M) and (P2) holds a.e. on T when
taking f = 0. Consequently u is a strong L p-solution of (P2) when f = 0. We
obtain u = 0 by the uniqueness assumption and thus x = 0. We have shown that
k2 M− iαk+ ikGk+Fk+ A is also injective. Therefore k2 M− iαk+ ikGk+Fk+ A
is a bijection from D(A) onto X.

Now we show the boundedness of (k2 M − iαk+ ikGk + Fk + A)−1. For f (t)=
eikt y, we let u ∈ Sp(A,M) be the strong L p-solution of (P2). Then

û(n)=
{

0, n 6= k,
−(k2 M − iαk+ ikGk + Fk + A)−1 y, n = k,

by (2-9). This means that u(t)=−eikt(k2 M− iαk+ ikGk+ Fk+ A)−1 y. By (2-1),
there exists a constant C > 0 independent from y and k satisfying

‖u‖L p +‖u′‖L p +‖Au‖L p +‖Mu′‖L p +‖(Mu′)′‖L p ≤ C‖ f ‖L p .

In particular ‖u‖L p ≤ C‖ f ‖L p . This implies that ‖(k2 M − iαk + ikGk + Fk +

A)−1 y‖ ≤ C‖y‖ for all y ∈ X. Thus

‖(k2 M − iαk+ ikGk + Fk + A)−1
‖ ≤ C.

We have shown that k ∈ ρp(P2). Hence ρp(P2)= Z.
Let Mk = k2 M(k2 M − iαk + ikGk + Fk + A)−1 and Sk = ik(k2 M − iαk +

ikGk+ Fk+ A)−1 when k ∈ Z. We are going to show that (Mk)k∈Z and (Sk)k∈Z are
L p-Fourier multipliers. Let f ∈ L p(T; X) be fixed. Then there exists u ∈ Sp(A,M)
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strong L p-solution of (P2) by assumption. Taking Fourier transforms on both sides
of (P2), we get that û(k) ∈ D(A) by [Arendt and Bu 2002, Lemma 3.1] and

−(k2 M − iαk+ ikGk + Fk + A)û(k)= f̂ (k)

when k ∈ Z. Since k2 M − iαk+ ikGk + Fk + A is invertible, we have

û(k)=−(k2 M − iαk+ ikGk + Fk + A)−1 f̂ (k)

when k ∈ Z. We have û′(k)= ikû(k) and (̂Mu′)′(k)=−k2 Mû(k) by [Arendt and
Bu 2002, Lemma 3.1]. Consequently

û′(k)=−Sk f̂ (k), and (̂Mu′)′(k)=−Mk f̂ (k)

when k ∈ Z. We conclude that (Mk)k∈Z and (Sk)k∈Z are L p-Fourier multipliers as
u′, (Mu′)′ ∈ L p(T; X) by assumption. It follows from Proposition 2.1 that the sets
{Mk : k ∈ Z} and {Sk : k ∈ Z} are R-bounded.
(i i)⇒ (i): Assume that ρp(P2)=Z and the sets {k2 M Nk :k∈Z} and {k Nk :k∈Z}

are R-bounded. Define Mk = k2 M Nk , Sk = ik Nk and Tk = ik M Nk when k ∈ Z. It
follows from Proposition 2.3 that (Mk)k∈Z, (Nk)k∈Z, (Sk)k∈Z and (Tk)k∈Z are L p-
Fourier multipliers. Then for all f ∈ L p(T; X), there exists u, v, w, g ∈ L p(T; X)
satisfying

(2-10)
û(k)=−Mk f̂ (k), v̂(k)= Sk f̂ (k),

ŵ(k)= Nk f̂ (k), ĝ(k)= Tk f̂ (k), (k ∈ Z).

Consequently v̂(k) = ikŵ(k) when k ∈ Z. This implies that w ∈ W 1,p
per (T; X)

[Arendt and Bu 2002, Lemma 2.1] and w′ = v. We note that (Gk)k∈Z and (Fk)k∈Z

are L p-Fourier multipliers by (2-3). Thus (ikGk Nk)k∈Z and (Fk Nk)k∈Z are L p-
Fourier multipliers as the product of L p-Fourier multipliers is still an L p-Fourier
multiplier. We have

ANk = IX −Mk + iαk Nk − ikGk Nk − Fk Nk, (k ∈ Z).

It follows that (ANk)k∈Z is also an L p-Fourier multiplier as the sum of L p-Fourier
multipliers is still an L p-Fourier multiplier. This together with the fact that (Nk)k∈Z

defines an L p-Fourier multiplier implies that Nk ∈ L(X, D(A)). Here we consider
D(A) as a Banach space equipped with its graph norm. We have shown that
w ∈ L p(T; D(A)).

Noticing the facts that (Sk)k∈Z and (Tk)k∈Z are L p-Fourier multipliers, we have
that Sk ∈ L(X, D(M)). Since v̂(k)= Sk f̂ (k) when k ∈ Z by (2-10), we deduce that
v = w′ ∈ L p(T; D(M)). Again by (2-10),

û(k)=−k2 M Nk f̂ (k)= ik M̂w′(k)
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when k ∈Z. Thus we have Mw′∈W 1,p
per (T; X) by [Arendt and Bu 2002, Lemma 2.1].

We have shown that w ∈ Sp(A,M).
By (2-10), we have

̂(Mw′)′(k)+ iαkŵ(k)= Aŵ(k)+ ikGkŵ(k)+ Fkŵ(k)+ f̂ (k)

when k ∈Z. This together with the facts F̂w•(k)= Fkŵ(k) and Ĝw′
•
(k)= ikGkŵ(k)

implies that

(Mw′)′(t)+αu′(t)= Aw(t)+Gw′t + Fwt + f (t) a.e. on T

by the uniqueness theorem [Arendt and Bu 2002, page 314]. Thus w is a strong
L p-solution of (P2). This shows the existence.

To show the uniqueness, we let u ∈ Sp(A,M) satisfying

(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut a.e. on T.

Taking the Fourier transforms on both sides, we have

(k2 M − iαk+ ikGk + Fk + A)û(k)= 0, (k ∈ Z).

Since ρp(P2)= Z, this implies that û(k)= 0 for all k ∈ Z and thus u = 0. So (P2)
is L p-well-posed. This completes the proof. �

Theorem 2.4 recovers the known results presented in Bu and Fang [2010] in
the nondegenerate case when M = IX and α = 0. Thus it may be also regarded as
generalizations of the previous known results when M = IX, α = 0 and F = G = 0
in the L p-well-posedness obtained in [Arendt and Bu 2002]. Our results also
generalize the previous known results obtained by Bu [2013] in the simpler case
when F = G = 0 and α = 0.

3. Well-posedness in periodic Besov spaces

In this section we study the Bs
p,q -well-posedness of (P2). Firstly, we briefly recall

the definition of periodic Besov spaces in the vector-valued case introduced in
[Arendt and Bu 2004]. Let S(R) be the Schwartz space of all rapidly decreasing
smooth functions on R. Let D(T) be the space of all infinitely differentiable
functions on T equipped with the locally convex topology given by the seminorms
‖ f ‖α = supx∈T| f

(α)(x)| for α ∈ N0 := N∪ {0}. Let D′(T, X) := L(D(T), X) be
the space of all continuous linear operators from D(T) to X. In order to define
periodic Besov spaces, we consider the dyadic-like subsets of R:

I0 = {t ∈ R : |t | ≤ 2}, Ik = {t ∈ R : 2k−1 < |t | ≤ 2k+1
}
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for k ∈ N. Let φ(R) be the set of all systems φ = (φk)k∈N0 ⊂ S(R) satisfying
supp(φk)⊂ Ik for each k ∈ N0,∑

k∈N0

φk(x)= 1 for x ∈ R,

and for each α ∈ N0,
sup

x∈R, k∈N0

2kα
|φ
(α)
k (x)|<∞.

Let φ= (φk)k∈N0 ⊂φ(R) be fixed. For 1≤ p, q ≤∞, s ∈R, the X -valued periodic
Besov space is defined by

Bs
p,q(T; X) :=

{
f ∈D′(T, X) : ‖ f ‖Bs

p,q
:=

(∑
j≥0

2s jq
∥∥∥∥∑

k∈Z

ek⊗φj(k) f̂ (k)
∥∥∥∥q

p

)1/q

<∞

}
with the usual modification if q =∞. The space Bs

p,q(T; X) is independent from
the choice of φ and different choices of φ lead to equivalent norms ‖ · ‖Bs

p,q
on

Bs
p,q(T; X). Equipping Bs

p,q(T; X) with the norm ‖·‖Bs
p,q

gives a Banach space. See
[Arendt and Bu 2004, Section 2] for more information about the space Bs

p,q(T; X).
We know that if s2 ≤ s1, then Bs1

p,q(T; X) ⊂ Bs2
p,q(T; X) and the embedding is

continuous [Arendt and Bu 2004]. When s > 0, it is shown in the same work that
Bs

p,q(T; X)⊂ L p(T; X), f ∈ Bs+1
p,q (T; X) if and only if f is differentiable a.e. on

T and f ′ ∈ Bs
p,q(T; X). This implies that if u ∈ Bs

p,q(T; X) is such that there exists
v ∈ Bs

p,q(T; X) satisfying v̂(k) = ikû(k) when k ∈ Z, then u ∈ Bs+1
p,q (T; X) and

u′ = v [Arendt and Bu 2004, Lemma 2.1].
The main tool in the study of Bs

p,q -well-posedness of (P2) is the operator-valued
Bs

p,q -Fourier multiplier theory established in [Arendt and Bu 2004].

Definition. Let X, Y be Banach spaces, 1≤ p, q ≤∞, s ∈ R and let (Mk)k∈Z ⊂

L(X, Y ). We say (Mk)k∈Z is a Bs
p,q -Fourier multiplier, if for each f ∈ Bs

p,q(T; X),
there exists a unique u ∈ Bs

p,q(T; Y ), such that û(k)= Mk f̂ (k) for all k ∈ Z.

The following result, obtained in [Arendt and Bu 2004], gives a sufficient condi-
tion for an operator-valued sequence to be a Bs

p,q -Fourier multiplier.

Theorem 3.1. Let X, Y be Banach spaces and (Mk)k∈Z ⊂ L(X, Y ). We assume

sup
k∈Z

(‖Mk‖+‖k(Mk+1−Mk)‖) <∞,(3-1)

sup
k∈Z

‖k2(Mk+2− 2Mk+1+Mk)‖<∞.(3-2)

Then for 1 ≤ p, q ≤ ∞, s ∈ R, (Mk)k∈Z is a Bs
p,q-Fourier multiplier. If X is

B-convex, then condition (3-1) is already sufficient for (Mk)k∈Z to be a Bs
p,q -Fourier

multiplier.
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Recall that a Banach space X is B-convex if it does not contain ln
1 uniformly. This

is equivalent to saying that X has Fourier type 1< p≤ 2, i.e., the Fourier transform
is a bounded linear operator from L p(R; X) to lq(Z; X), where 1/p+1/q = 1. It is
well known that when 1< p<∞, then L p(µ) has Fourier type min{p, p/(p−1)}.

Let 1 ≤ p, q ≤ ∞, s > 0 be fixed. We consider the following second-order
degenerate differential equation with finite delays:

(P2)
{
(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t), (t ∈ T)

u(0)= u(2π), (Mu′)(0)= (Mu′)(2π),

where A, M are closed linear operators on a Banach space X satisfying D(A)⊂
D(M), α ∈ C is fixed, and F,G : Bs

p,q([−2π, 0]; X)→ X are bounded linear
operators. Moreover, for fixed t ∈ T, ut and u′t are elements of Bs

p,q([−2π, 0]; X)
defined by ut(s)= u(t + s), u′t(s)= u′(t + s) for −2π ≤ s ≤ 0. Here we identify
a function u on T with its natural 2π -periodic extension on R.

Let F,G ∈ L(Bs
p,q(−2π, 0); X), X) and k ∈ Z. We define the linear operators

Fk,Gk ∈ L(X) by Fk x := F(ek ⊗ x), Gk x := G(ek ⊗ x) for all x ∈ X. It is clear
that there exists a constant C > 0 such that ‖ek⊗ x‖Bs

p,q
≤C‖x‖ for all k ∈ Z. Thus

(3-3) ‖Fk‖ ≤ C‖F‖, and ‖Gk‖ ≤ C‖G‖, (k ∈ Z).

It is easy to verify that when u ∈ Bs
p,q(T; X), then

F̂u•(k)= Fk û(k), and Ĝu•(k)= Gk û(k), (k ∈ Z).

We define the resolvent set of (P2) in the Bs
p,q -well-posedness setting by

ρp,q,s(P2) := {k ∈Z : k2 M−ikα+ikGk+Fk+A is a bijection from D(A) onto X,

and (k2 M − ikα+ ikGk + Fk + A)−1
∈ L(X)}.

If k ∈ ρp,q,s(P2), then M(k2 M + ikGk + Fk + A)−1, A(k2 M + ikGk + Fk + A)−1

make sense as D(A)⊂ D(M) by assumption, and they are in L(X) by the closed
graph theorem.

Let 1≤ p, q≤∞, s>0. We notice that the functions Fu• and Gu′• are uniformly
bounded on T, but they are not necessarily in Bs

p,q(T; X). We define the solution
space of the Bs

p,q -well-posedness for (P2) by

Sp,q,s(A,M) := {u ∈ Bs
p,q(T; D(A))∩ B1+s

p,q (T; X) : u′ ∈ Bs
p,q(T; D(M)),

Mu′ ∈ Bs+1
p,q (T; X) and Fu•,Gu′• ∈ Bs

p,q(T; X)}.

Here again we consider D(A) and D(M) as Banach spaces equipped with their
graph norms. Sp,q,s(A,M) is a Banach space with the norm

‖u‖Sp,q,s(A,M) :=‖u‖B1+s
p,q
+‖Au‖Bs

p,q
+‖u′‖Bs

p,q
+‖Mu′‖B1+s

p,q
+‖Fu•‖Bs

p,q
+‖Gu′•‖Bs

p,q
.
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From [Arendt and Bu 2002, Lemma 2.1], if u ∈ Sp,q,s(A,M), then u and Mu′

are X -valued continuous on T, and u(0)= u(2π), (Mu′)(0)= (Mu′)(2π).

Definition. Let 1 ≤ p, q ≤ ∞, s > 0 and f ∈ Bs
p,q(T; X). u ∈ Sp,q,s(A,M) is

called a strong Bs
p,q-solution of (P2), if (P2) is satisfied a.e. on T. We say that

(P2) is Bs
p,q-well-posed, if for each f ∈ Bs

p,q(T; X), there exists a unique strong
Bs

p,q -solution of (P2).

If (P2) is Bs
p,q-well-posed, there exists a constant C > 0 such that for each

f ∈ Bs
p,q(T; X), if u ∈ Sp,q,s(A,M) is the unique strong Bs

p,q -solution of (P2), then

(3-4) ‖u‖Sp,q,s(A,M) ≤ C‖ f ‖Bs
p,q
.

This can be easily obtained by the closedness of the operators A and M and the
closed graph theorem. We need the following preparation:

Proposition 3.2. Let A and M be closed linear operators defined on a Banach space
X satisfying D(A)⊂ D(M) and let F,G ∈ L(Bs

p,q([−2π, 0]; X), X). Assume that
ρp,q,s(P2) = Z and the sets {k(Fk+2 − 2Fk+1 + Fk) : k ∈ Z}, {k(Gk+1 −Gk) : k ∈
Z}, {k2(Gk+2 − 2Gk+1 + Gk) : k ∈ Z}, {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} are
norm bounded, where Nk = (k2 M − ikα+ ikGk + Fk + A)−1 when k ∈ Z. Then
(k2 M Nk)k∈Z, (Nk)k∈Z, (k Nk)k∈Z, (k M Nk)k∈Z, (Fk Nk)k∈Z and (kGk Nk)k∈Z are Bs

p,q -
Fourier multipliers whenever 1≤ p, q ≤∞, s ∈ R.

Proof. Define Mk = k2 M Nk , Sk = k Nk , Tk = k M Nk , Pk = Fk Nk and Qk = kGk Nk

when k ∈Z. We know (Gk)k∈Z and (Fk)k∈Z are norm bounded by (3-3). This implies
that the sequences (Mk)k∈Z, (Nk)k∈Z, (Sk)k∈Z, (Tk)k∈Z, (Pk)k∈Z and (Qk)k∈Z are
norm bounded by assumption. Using the same argument used in the proof of
Proposition 2.3, we obtain

sup
k∈Z

‖k(Mk+1−Mk)‖<∞, sup
k∈Z

‖k(Nk+1− Nk)‖<∞,

sup
k∈Z

‖k(Sk+1− Sk)‖<∞ and sup
k∈Z

‖k(Tk+1− Tk)‖<∞.

Moreover, it is easy to see that one has the stronger estimations

sup
k∈Z

‖k2(Nk+1− Nk)‖<∞,(3-5)

sup
k∈Z

‖k3 M(Nk+1− Nk)‖<∞,(3-6)

by using the norm boundedness of {k(Gk+−Gk) : k ∈ Z}. For Pk and Qk , when
k ∈ Z, we have

Pk+1− Pk = Fk+1(Nk+1− Nk)+ (Fk+1− Fk)Nk,(3-7)

Qk+1− Qk = Gk+1 Nk+1+ k(Gk+1−Gk)Nk + kGk(Nk+1− Nk).(3-8)
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We deduce that

sup
k∈Z

‖k(Pk+1− Pk)‖<∞ and sup
k∈Z

‖k(Qk+1− Qk)‖<∞

by (3-5) and the boundedness of (Fk)k∈Z, (Gk)k∈Z and (k(Gk+1−Gk))k∈Z.
By (2-3) we have

Nk+1− Nk = I (1)k + I (2)k + I (3)k + I (4)k + I (5)k ,

where

I (1)k := −(2k+ 1)Nk+1 M Nk,

I (2)k := iαNk+1 Nk,

I (3)k := −ik Nk+1(Gk+1−Gk)Nk,

I (4)k := −i Nk+1Gk+1 Nk,

I (5)k := −Nk+1(Fk+1− Fk)Nk .

We have

(3-9) I (1)k+1− I (1)k =−(2k+ 3)Nk+2 M Nk+1+ (2k+ 1)Nk+1 M Nk

=−2Nk+2 M Nk+1− (2k+ 1)(Nk+2− Nk+1)M Nk+1

−(2k+ 1)Nk+1 M(Nk+1− Nk).

This implies that

sup
k∈Z

‖k3(I (1)k+1− I (1)k )‖<∞ and sup
k∈Z

‖k4 M(I (1)k+1− I (1)k )‖<∞

using (3-5) and (3-6). A similar argument shows that

sup
k∈Z

‖k3(I (i)k+1− I (i)k )‖<∞ and sup
k∈Z

‖k4 M(I (i)k+1− I (i)k )‖<∞

when i = 2, 3, 4, 5 using inequalities (3-5), (3-6) and the norm boundedness of
{k(Fk+2−2Fk+1+Fk) : k ∈Z}, {k(Gk+1−Gk) : k ∈Z} and {k2(Gk+2−2Gk+1+Gk) :

k ∈ Z}. We have shown that

(3-10) sup
k∈Z

‖k3(Nk+2−2Nk+1+Nk)‖<∞, sup
k∈Z

‖k4M(Nk+2−2Nk+1+Nk)‖<∞.

In particular,

sup
k∈Z

‖k2(Nk+2− 2Nk+1+ Nk)‖<∞.
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By (2-4), (2-5), (3-7), (3-8) and (3-10), and using similar argument used in the
proof of (3-10), we show that

sup
k∈Z

‖k2(Mk+2− 2Mk+1+Mk)‖<∞, sup
k∈Z

‖k2(Sk+2− 2Sk+1+ Sk)‖ <∞,

sup
k∈Z

‖k2(Tk+2− 2Tk+1+ Tk)‖<∞, sup
k∈Z

‖k2(Pk+2− 2Pk+1+ Pk)‖<∞,

sup
k∈Z

‖k2(Qk+2− 2Qk+1+ Qk)‖<∞.

Thus (Nk)k∈Z, (Mk)k∈Z, (Sk)k∈Z, (Tk)k∈Z, (Pk)k∈Z and (Qk)k∈Z are Bs
p,q-Fourier

multipliers by Theorem 3.1. �

Now we give a necessary and sufficient condition for (P2) to be Bs
p,q -well-posed.

Theorem 3.3. Let X be a Banach space, 1 ≤ p, q ≤ ∞, s > 0 and let A
and M be closed linear operators on X satisfying D(A) ⊂ D(M). Let F,G ∈
L(Bs

p,q([−2π, 0]; X), X). We assume that the sets {k(Fk+2− 2Fk+1+ Fk) : k ∈ Z},
{k(Gk+1−Gk) : k ∈ Z} and {k2(Gk+2− 2Gk+1+Gk) : k ∈ Z} are norm bounded.
Then the following assertions are equivalent:

(i) (P2) is Bs
p,q -well-posed.

(ii) ρp,q,s(P2) = Z and the sets {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} are norm
bounded, where Nk = (k2 M − ikα+ ikGk + Fk + A)−1.

Proof. (i)⇒ (i i): Assume that (P2) is Bs
p,q-well-posed. Let k ∈ Z and y ∈ X

be fixed, we define f (t) = eikt y when t ∈ T. Then f ∈ Bs
p,q(T; X), f̂ (k) = y

and f̂ (n) = 0 for n 6= k. Since (P2) is Bs
p,q-well-posed, there exists a unique

u ∈ Sp,q,s(A,M) satisfying

(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t), a.e. on T.

We have û(n) ∈ D(A) when n ∈ Z by [Arendt and Bu 2002, Lemma 3.1] as
u ∈ Bs

p,q(T; D(A)). Taking Fourier transforms on both sides, we obtain

(3-11) −(k2 M − ikα+ ikGk + Fk + A)û(k)= y

and −(k2 M + ikGk + Fk + A)û(n)= 0 when n 6= k. This implies that the operator
k2 M − ikα+ ikGk + Fk + A is surjective as the vector y ∈ X is arbitrary. To show
that k2 M − ikα+ ikGk + Fk + A is also injective, we let x ∈ D(A) satisfying

(k2 M − ikα+ ikGk + Fk + A)x = 0.

Let u(t)= eikt x when t ∈ T. Then u ∈ Sp,q,s(A,M) and (P2) holds a.e. on T when
f = 0. Thus u is a strong Bs

p,q-solution of (P2) when f = 0. We obtain x = 0 by
the uniqueness assumption. We have shown that k2 M − ikα+ ikGk + Fk + A is
injective. Thus it is bijective from D(A) onto X.
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Next we show that (k2 M − ikα + ikGk + Fk + A)−1
∈ L(X). For y ∈ X and

f (t) = eikt y, we let u ∈ Sp,q,s(A,M) be the unique strong Bs
p,q-solution of (P2).

Then taking Fourier coefficients on both sides of (P2), we obtain by (3-11)

û(n)=
{

0, n 6= k,
−(k2 M − ikα+ ikGk + Fk + A)−1 y, n = k.

Consequently, u(t)=−eikt(k2 M− ikα+ ikGk+ Fk+ A)−1 y when t ∈ T. By (3-4)
there exists a constant C > 0 independent from y and k, such that

‖u‖B1+s
p,q
+‖Au‖Bs

p,q
+‖u′‖Bs

p,q
+‖Mu′‖B1+s

p,q
+‖Fu•‖Bs

p,q
+‖Gu′•‖Bs

p,q
≤ C‖ f ‖Bs

p,q
.

The estimation

‖u′‖Bs
p,q
≤ C‖ f ‖Bs

p,q

implies that ‖k(k2 M− ikα+ ikGk+ Fk+ A)−1 y‖ ≤C‖y‖ for all y ∈ X. Therefore

‖k(k2 M − ikα+ ikGk + Fk + A)−1
‖ ≤ C.

We have shown that k ∈ ρp,q,s(P2) for all k ∈ Z. Thus ρp,q,s(P2)= Z.
Next we show that (Mk)k∈Z and (k Nk)k∈Z are norm bounded, where Mk=k2 M Nk

and Nk = (k2 M − ikα+ ikGk + Fk + A)−1 when k ∈ Z. For this it will suffice to
show that (Mk)k∈Z and (k Nk)k∈Z define Bs

p,q -Fourier multipliers by [Arendt and Bu
2004]. Let f ∈ Bs

p,q(T; X). Then there exists u ∈ Sp,q,s(A,M) which is a strong
Bs

p,q-solution of (P2) by assumption. Taking Fourier coefficients on both sides of
(P2), we get that û(k) ∈ D(A) and

−(k2 M − ikα+ ikGk + Fk + A)û(k)= f̂ (k),

or equivalently,

û(k)=−(k2 M − ikα+ ikGk + Fk + A)−1 f̂ (k), (k ∈ Z).

It follows from u ∈ Sp,q,s(A,M) that (̂Mu′)′(k)=−k2 Mû(k) and û′(k)= ikû(k).
We obtain

(̂Mu′)′(k)=−k2 Mû(k)=−Mk f̂ (k), and û′(k)=−ik Nk f̂ (k), (k ∈ Z).

We conclude that (Mk)k∈Z and (k Nk)k∈Z define Bs
p,q -Fourier multipliers as (Mu′)′,

u′ ∈ Bs
p,q(T; X).

(i i)⇒ (i): Let ρp,q,s(P2)= Z and the sets {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} be
norm bounded, where Nk = (k2 M− ikα+ ikGk+Fk+ A)−1. Define Mk = k2 M Nk ,
Sk = ik Nk , Tk = k M Nk , Pk = Fk Nk and Qk = ikGk Nk when k ∈ Z. It follows
from Proposition 3.2 that (Mk)k∈Z, (Nk)k∈Z, (Sk)k∈Z, (Tk)k∈Z, (Pk)k∈Z and (Qk)k∈Z



42 SHANGQUAN BU AND GANG CAI

are Bs
p,q-Fourier multipliers. Then for all f ∈ Bs

p,q(T; X), there exists u, v, w ∈
Bs

p,q(T; X) satisfying

(3-12) û(k)=−k2MNk f̂ (k), v̂(k)= ikNk f̂ (k) and ŵ(k)= Nk f̂ (k),

when k ∈ Z. We deduce from the facts that (Pk)k∈Z and (Qk)k∈Z are Bs
p,q-Fourier

multipliers that Fw•,Gw′• ∈ Bs
p,q(T; X) as

F̂w•(k)= Fkŵ(k)= Fk Nk f̂ (k)= Pk f̂ (k), (k ∈ Z)

and

Ĝw′
•
(k)= Gkŵ′(k)= ikGkŵ(k)= ikGk Nk f̂ (k)= Qk f̂ (k), (k ∈ Z).

On the other hand, v̂(k)= ikŵ(k) when k ∈ Z by (3-12). Therefore w is differen-
tiable a.e. on T and w′ = v. This implies that w ∈ B1+s

p,q (T; X) as v ∈ Bs
p,q(T; X)

[Arendt and Bu 2002, Lemma 2.1].
We note that

ANk = Mk +αSk − Pk − Qk + IX , (k ∈ Z).

It follows that (ANk)k∈Z is also a Bs
p,q-Fourier multiplier. Therefore there exists

g ∈ Bs
p,q(T; X) satisfying

(3-13) ĝ(k)= ANk f̂ (k), (k ∈ Z).

Thus ĝ(k)= Aŵ(k) when k ∈ Z. This implies w ∈ Bs
p,q(T; D(A)) by [Arendt and

Bu 2002, Lemma 3.1].
Since (Tk)k∈Z is a Bs

p,q -Fourier multiplier, there exists h ∈ Bs
p,q(T; X) such that

ĥ(k)= ik M Nk f̂ (k)= Mŵ′(k), (k ∈ Z).

Thus w′ ∈ Bs
p,q(T; D(M)) by [Arendt and Bu 2002, Lemma 3.1]. In view of (3-12),

we obtain

û(k)=−k2 M Nk f̂ (k)=−k2 Mŵ(k)= ik M̂w′(k), (k ∈ Z)

which implies that Mw′ ∈ Bs+1
p,q (T; X) by [Arendt and Bu 2002, Lemma 2.1]. We

have shown that u ∈ Sp,q,s(A,M).
By (3-12), we have

̂(Mw′)′(k)+αŵ′(k)= Aŵ(k)+ ikGkŵ(k)+ Fkŵ(k)+ f̂ (k), (k ∈ Z).

It follows that (Mw′)′(t)+ αw′(t) = Aw(t)+ Gw′t + Fwt + f (t) a.e. on T by
the uniqueness theorem [Arendt and Bu 2002, page 314]. Thus w is a strong
Bs

p,q -solution of (P2). This shows the existence.
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To show the uniqueness, we let u ∈ Sp,q,s(A,M) satisfy

(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut

a.e. on T. Taking the Fourier coefficients on both sides, we have

−(k2 M −αSk + ikGk + Fk + A)û(k)= 0

for all k ∈ Z. Since ρp,q,s(P2)= Z, this implies that û(k)= 0 for all k ∈ Z and thus
u = 0. So (P2) is Bs

p,q -well-posed. This finishes the proof. �

By the proof of Theorem 2.4 and using Theorem 3.1, one can obtain the following
result.

Theorem 3.4. Let X be a B-convex Banach space, 1 ≤ p, q ≤ ∞, s > 0 and
let A,M be closed linear operators on X satisfying D(A) ⊂ D(M). Let F,G ∈
L(Bs

p,q([−2π, 0]; X), X). We assume that {k(Gk+1−Gk) : k ∈ Z} is norm bounded.
Then the following assertions are equivalent:

(i) (P2) is Bs
p,q -well-posed.

(ii) ρp,q,s(P2) = Z and the sets {k2 M Nk : k ∈ Z} and {k Nk : k ∈ Z} are norm
bounded, where Nk = (k2 M − ikα+ ikGk + Fk + A)−1.

4. Applications

In the last section, we give some examples to which our abstract results (Theorem 2.4
and Theorem 3.3) may be applied.

Example 4.1. Let � be a bounded domain in Rn with smooth boundary ∂� and m
be a nonnegative bounded measurable function defined on �. Let f be a given
function on [0, 2π ] ×� and X = H−1(�). We consider the following periodic
degenerate differential equations with finite delay:

(P)


∂2

∂t2(m(x)u(t,x))+α ∂∂t u(t,x)+1u = Fut+Gu′t+ f (t,x), (t,x)∈ [0,2π]×�,
u(t,x)= 0, (t,x)∈ [0,2π]×∂�,
u(0,x)= u(2π,x), x ∈�,
∂u(t,x)
∂t |t=0 =

∂u(t,x)
∂t |t=2π , x ∈�,

where α ∈ C is fixed, ut(s, x) := u(t + s, x), u′t(s, x) := u′(t + s, x) when s ∈
[−2π, 0] and x ∈�, the delay operators F,G : L p([−2π, 0]; X)→ X are bounded
linear operators for some fixed 1< p <∞.

Let M be the multiplication operator by m on H−1(�) with domain D(M).
Then it follows from [Favini and Yagi 1999, Section 3.7] that if we consider the
Laplacian operator 1 on X with Dirichlet boundary condition, then there exists a
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constant C > 0 such that

‖M(zM −1)−1
‖ ≤

C
1+|z|

,

when Re(z)≥−β(1+ |Im(z)|) for some positive constant β depending only on m,
which implies that

(4-1) ‖M(k2 M −1)−1
‖ ≤

C
1+|k|2

, (k ∈ Z).

If we assume that m−1 is regular enough so that the multiplication operator by the
function m−1 is bounded on H−1(�), then there exists a constant C1 such that

(4-2) ‖(k2 M −1)−1
‖ ≤

C1

1+ |k|2
, (k ∈ Z).

Assume that D(1)⊂ D(M), that the set {k(Gk+1−Gk) : k ∈ Z} is norm bounded,
and that ρp(P)=Z, so that for all k ∈Z the operator −k2 M+ iαk+1−Fk− ikGk

is a bijection from D(1) onto X, and (−k2 M + iαk+1− Fk − ikGk)
−1
∈ L(X).

We observe that

−k2 M+iαk+1−Fk−ikGk= (I−(Fk+ikGk−iαk)(−k2 M+1)−1)(−k2 M+1)

for k ∈ Z. From (4-2) we get limk→∞ ‖(Fk + ikGk − iαk)(−k2 M +1)−1
‖ = 0

using the norm boundedness of (Fk)k∈Z and (Gk)k∈Z. This implies that the operator
I − (−k2 M +1)−1(Fk + ikGk − iαk) is invertible when |k| is big enough. For
such k we have

(−k2M + iαk+1− Fk − ikGk)
−1

= (−k2M +1)−1(I − (Fk + ikGk − iαk)(−k2M +1)−1)−1.

It follows from (4-1) and (4-2) that

sup
k∈Z

‖k(−k2 M + iαk+1− Fk − ikGk)
−1
‖<∞,

and
sup
k∈Z

‖k2 M(−k2 M + iαk+1− Fk − ikGk)
−1
‖<∞.

As a consequence, the sets {k(−k2 M + iαk + 1 − Fk − ikGk)
−1
: k ∈ Z} and

{k2 M(−k2 M+ iαk+1− Fk− ikGk)
−1
: k ∈ Z} are R-bounded. Here we used the

fact that when the underlying Banach space X is a Hilbert space, then each norm
bounded subset of L(X) is R-bounded [Arendt and Bu 2002, Proposition 1.13].
We deduce from Theorem 2.4 that (P) is L p-well-posed when X = H−1(�).

If we consider F,G ∈L(Bs
p,q([−2π, 0]; X), X), we may also apply Theorem 3.3

and Theorem 3.4 to obtain the Bs
p,q-well-posedness of (P) under suitable assump-

tions on F and G.
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Example 4.2. Let H be a complex Hilbert space, let 1 < p <∞ and let F,G ∈
L(L p([−2π, 0]; H), H) be delay operators. Let P be a densely defined positive
self-adjoint operator on H with P ≥ δ > 0. Let M = P − ε with ε < δ, and let
A =

∑k
i=0 ai P i with ai ≥ 0, ak > 0. Then there exists a constant C > 0, such that

‖M(zM + A)−1
‖ ≤

C
1+|z|

whenever Re z ≥−β(1+ | Im z|) for some positive constant β depending only on
A and M by [Favini and Yagi 1999, page 73]. This implies in particular that

sup
k∈Z

‖k2 M(k2 M + A)−1
‖<∞.

If we assume 0 ∈ ρ(M), then

sup
k∈Z

‖k2(k2 M + A)−1
‖<∞.

Furthermore we assume that the set {k(Gk+1−Gk : k ∈ Z)} is norm bounded. Then
the argument used in the example on page 43 our first example shows that the
degenerate differential equations with finite delay

(P ′)
{
(Mu′)′(t)+αu′(t)= Au(t)+Gu′t + Fut + f (t), (t ∈ T)

u(0)= u(2π), (Mu′)(0)= (Mu′)(2π)

is L p-well-posed when ρp(P ′)= Z. Under suitable assumptions on F, G, we may
also apply Theorem 3.3 to (P ′) to obtain the Bs

p,q-well-posedness of (P ′) for all
1≤ p, q ≤∞, s > 0.

We can also give a concrete example of (P ′). We consider the following problem:
∂2

∂t2

(
1− ∂2

∂x2

)
u(t, x)+α ∂

∂t u(t, x)=
∂4

∂x4 u(t, x)+Fut( · , x)+G
(
∂u
∂t

)
t( · , x)+ f (t, x),

u(t, 0)= u(t, 1)= ∂2

∂x2 u(t, 0)= ∂2

∂x2 u(t, 1)= 0,
u(0, x)= u(2π, x),

(
1− ∂2

∂x2

)
u(0, x)=

(
1− ∂2

∂x2

)
u(2π, x),

∂
∂t

(
1− ∂2

∂x2

)
u(0, x)= ∂

∂t

(
1− ∂2

∂x2

)
u(2π, x),

where x ∈ �, t ∈ (0, 2π) in the first equation, and t ∈ [0, 2π ] in the second
equation. Here,�= (0, 1), F,G∈L(L p([−2π, 0]; L2(�)), L2(�)) and ut(s, x) :=
u(t+s, x) when t ∈ [0, 2π ] and s ∈ [−2π, 0]. Let X = L2(�) and let P =−∂2/∂x2

with domain D(P) = H 2(�) ∩ H 1
0 (�), i.e., P is the Laplacian on L2(�) with

Dirichlet boundary conditions. Then P is positive self adjoint on X. Let M= P+ IX

and A = P2. It is clear that −P generates an contraction semigroup on L2(�)

[Arendt et al. 2001, Example 3.4.7], hence 1∈ ρ(−P), or equivalently M = IX+ P
has a bounded inverse, i.e., 0 ∈ ρ(M). Then the abstract results obtained above for
the problem (P ′) may be applied.
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