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ON CUSP SOLUTIONS TO A
PRESCRIBED MEAN CURVATURE EQUATION

ALEXANDRA K. ECHART AND KIRK E. LANCASTER

The nonexistence of “cusp solutions” of prescribed mean curvature bound-
ary value problems in � × R when � is a domain in R2 is proven in certain
cases and an application to radial limits at a corner is mentioned.

1. Introduction

Let � be a domain in R2 with locally Lipschitz boundary and O = (0, 0) ∈ ∂� and
H ∈C1,β(�×R), for some β ∈ (0, 1). Let polar coordinates relative to O be denoted
by r and θ and let Bδ(O) be the open ball in R2 of radius δ about O. We shall
assume there exist a δ∗ > 0 and α ∈ (0, π) such that ∂�∩ Bδ∗(O) consists of two
smooth arcs ∂+�∗ and ∂−�∗, whose tangent lines approach the lines L+ : θ =α and
L− : θ =−α, respectively, as the point O is approached and for each θ ∈ (−α, α),
there exists an r(θ) > 0 such that {(r cos θ, r sin θ) : 0 < r < r(θ)} ⊂ �. Set
�∗ =�∩ Bδ∗(O).

Consider a solution f ∈ C2(�) of the prescribed mean curvature equation

(1) div(T f )(x, y)= 2H(x, y, f (x, y)) for (x, y) ∈�∗,

which satisfies the conditions

(2) sup
(x,y)∈�∗

| f (x, y)|<∞ and sup
(x,y)∈�∗

|H(x, y, f (x, y))|<∞,

where T f =∇ f/
√

1+ |∇ f |2; examples of such functions might arise as solutions
of a Dirichlet or contact angle boundary value problem for (1). We are interested in
the radial limits of f :

(3) R f (θ)=def lim
r↓0

f (r cos θ, r sin θ), −α < θ < α.

When lim∂+�∗3(x,y)→O f (x, y) exists, we define R f (α) to be this limit and when
lim∂−�∗3(x,y)→O f (x, y) exists, we define R f (−α) to be this limit.
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Figure 1. The domain �∗.

There are examples in which the radial limits do not exist for any θ ∈ (−α, α)
[Lancaster 1989; Lancaster and Siegel 1996b]. For solutions of boundary value
problems which satisfy appropriate conditions, R f (θ) can be proven to exist for
θ ∈ [−α, α] \ J, where J is a countable subset of (−α, α); see, e.g., [Entekhabi and
Lancaster 2016; 2017; Lancaster 1988; 1991; 2012; Lancaster and Siegel 1996a;
1996b]. We know of no examples in which J 6= ∅ and we ask if J = ∅ always
holds; this is related to the existence of cusp solutions.

A cusp solution for (1) is a domain 3⊂ R2 and a solution f of (1) in 3 such
that ∂3 \ {O, A, B} = 01 ∪02 ∪03, where A, B,O are distinct points on ∂3, and
01, 02 and 03 are disjoint, smooth (open) arcs with endpoints {A,O}, {B,O} and
{A, B}, respectively; where 01 and 02 are tangent at O

(
so 3 has an “outward”

cusp at O, such as in Figure 2, which has a cusp at (0, 0)
)
; and where f (x, y)= c j

when (x, y) ∈ 0 j ( j = 1, 2), c1 < c2, and, for each c ∈ (c1, c2), the level curves
{(x, y) ∈3 : f (x, y)= c} are tangent at O; see, e.g., [Lancaster and Siegel 1996b,
Section 5]. (Capillary surfaces in cusp regions were studied in [Aoki and Siegel
2012; Scholz 2004].) In cases where cusp solutions do not exist, we know J =∅.

In [Lancaster and Siegel 1996a; 1996b], the nonexistence of cusp solutions is
proven when (a) H ∈ C1,δ(�×R), δ ∈ (0, 1), and H(x, y, z) is strictly increasing
in z for each (x, y)∈� or (b) H is real-analytic. The proof in [Lancaster and Siegel
1996b] for case (a) involves a “local” argument while that for (b) involves a “global”
argument which shows (2) is violated. Using a “local” argument, we shall prove:

Theorem 1. Suppose � is a domain in R2 with locally Lipschitz boundary, O =
(0, 0) ∈ ∂� and H ∈ C1,β(�∗×R) for some β ∈ (0, 1). Let f ∈ C2(�∗) satisfy (1)
and (2). Suppose H(x, y, z) is weakly increasing in z for (x, y) in a neighborhood
of (0, 0). Then f cannot have a cusp solution (i.e., there is no “cusp region”3⊂�
such that (3, f ) is a cusp solution).

We can exclude cusp solutions when H vanishes in the “cusp direction,” which
we may assume is the direction of the positive x-axis (see Figure 2).
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Figure 2. The cusp domain 3.

Theorem 2. Suppose 3 is a cusp domain in R2, ∂3 is tangent to Ei at O, H ∈
C1,β(3×R) for some β ∈ (0, 1), f ∈ C2(3) satisfies (1) and (2) and there exists
a δ > 0 such that

H(x, 0, z)= 0 for (x, z) ∈ [0, δ]× [ lim inf
33(x,y)→O

f (x, y), lim sup
33(x,y)→O

f (x, y)].

Then (3, f ) cannot be a cusp solution.

What can we say when H(x, y, z) is strictly decreasing in z? Unfortunately, as
the following example illustrates, we cannot exclude cusp solutions in this case,
even when H is real-analytic; a “global” argument (like in [Lancaster and Siegel
1996b, page 176]) is required to exclude cusp solutions when H is real-analytic.
Thus, for example, the reasoning in [Aoki and Siegel 2012, 3B] cannot be used
when κ < 0.

Example 3. Consider the cone C =
{

X (θ, t) : 0≤ θ ≤ π
2 , 0< t <∞

}
, where

X (θ, t)= t (cos θ, sin θ − 1, 1).

Set 3=
{
t (cos θ, sin θ − 1) : 0< θ < π

2 , 1< t < 2
}

and S = C ∩
(
R2
×[1, 2]

)
. A

straightforward computation shows that the mean curvature (with respect to the
upward normal) is

H(θ, t)= 3−2 sin θ
2t (1+(1−sin θ)2)3/2

;

that is, H(x, y, z) = (z2
− 2yz)/

(
2(y2
+ z2)3/2

)
. Now y/z = sin θ − 1 ∈ [−1, 0]

and x = 0 if and only if θ = π/2; another calculation yields

2∂H
∂z
(x, y, z)=− z3

(y2+z2)5/2

(
1− 4

( y
z
)
− 2

( y
z
)2
+ 2

( y
z
)3 )

< 0.

Finally observe that S is the graph of a cusp solution and satisfies (2) in 3.

The hypotheses of [Entekhabi and Lancaster 2016] include the assumption that
H satisfies one of the conditions which guarantees that cusp solutions do not exist;
the following corollary is a consequence of Theorem 1 and that paper. (A second
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corollary, similar to Corollary 4, follows by applying Theorem 1 to [Entekhabi and
Lancaster 2017, Theorems 1 and 2].)

Corollary 4 [Entekhabi and Lancaster 2016]. Suppose �, f and H satisfy the
hypotheses of Theorem 1 and either

(i) α ∈
(
π
2 , π

)
or

(ii) α ∈
(
0, π2

]
and one of R f (α) or R f (−α) exists.

Then R f (θ) exists for each θ ∈ (−α, α) and R f ∈ C0
(
(−α, α)

)
. If R f (α) exists,

then R f ∈ C0
(
(−α, α]

)
. If R f (−α) exists, then R f ∈ C0

(
[−α, α)

)
.

2. Proof of Theorem 1

Suppose (3, f ) is a cusp solution and 3 ⊂ {(x, y) ∈ R2
: 0 < x < a, |y| < x},

c1 < c2 and the c-level curves of f in 3 are tangent to the positive x-axis at O for
c1≤ c≤ c2, for some a> 0 (see Figure 2). Since H ∈C1,β(�×R), the solution f is
an element of C3(�) and, as in [Lancaster and Siegel 1996a; 1996b], there exist an
(open) rectangle R0= (0, a)× (c1, c2) and g ∈C3(R), where R = R0, such that the
graph of f over 3, G, is the set

{
(x, g(x, z), z) : (x, z) ∈ R0

} (
i.e., z = f (x, y) if

and only if y= g(x, z) for (x, z)∈ R0 and (x, y)∈3
)

and g(0, z)=∂g(0, z)/∂x=0
for c1 ≤ z ≤ c2. We may assume that |∇g(x, z)| ≤ 1 for (x, z) ∈ R.

The (upward) unit normal to the graph of f , G, is

EN (x, y, z)=
(− fx(x, y),− fy(x, y), 1)√

1+ f 2
x (x, y)+ f 2

y (x, y)

and div(T f )(x, y) = 2 EH(x, y, z) · EN (x, y, z) for (x, y, z) ∈ G, where 2 EH is the
mean curvature vector of G. Then

sgn(gz(x, z)) EN (x, y, z)=
(gx(x, z),−1, gz(x, z))√

1+ g2
x(x, z)+ g2

z (x, z)
.

Since div(T g)= 2 EH · (−gx , 1,−gz)/
√

1+ g2
x + g2

z , we see that

div(T g)(x, z)= 2 EH(x, y, z) ·
(
−sgn(gz(x, z))

)
EN (x, y, z) for (x, y, z) ∈ G.

(Of course, if gz(x, z)= 0 for some (x, z) ∈ R with x > 0, then G has a horizontal
unit normal at an interior point of �, which contradicts our hypothesis f ∈ C2(�);
hence gz(x, z) 6= 0 when (x, z) ∈ R with x > 0.)

Let us assume sgn(gz(x, z))= sgn
(

fy(x, g(x, z))
)
=+1 for (x, z)∈ R with x>0;

the opposite choice will lead to the same (eventual) conclusion that cusp solutions
do not exist. Then

Mg(x, z)=−2H(x, g(x, z), z),
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where Mg =∇ · T g = div(T g). Suppose there exist a δ1 > 0 such that H(x, y, z)
is weakly increasing in z for each (x, y) ∈3 and z ∈ [c1, c2] when x2

+ y2
≤ δ2

1 .
We may assume a ≤ δ1.

Fix ε ∈
(
0, 1

2(c2−c1)
)

and set c̃1= c1+ε and c̃2= c2−ε; notice that c̃2> c̃1. Set

(4) g j (x, z) := g(x, z+ c̃ j ) for 0≤ x ≤ a, −ε ≤ z ≤ ε, j = 1, 2,

and define h = g1− g2.
If h(x0, z0) = 0 for some (x0, z0) ∈ (0, a] × [−ε, ε], then the graph of f fails

the vertical line test since (x0, y0, z0 + c̃1) and (x0, y0, z0 + c̃2) are both points
on the graph of f , where y0 = g1(x0, z0) = g2(x0, z0). Thus h(x, z) 6= 0 for all
0< x ≤ a, −ε≤ z≤ ε. Since sgn(gz(x, z))=+1 when (x, z)∈ (0, a]×[−ε, ε], we
see that h(x, z)< 0 for all (x, z)∈ (0, a]×[−ε, ε]. (This is essentially the argument
at the bottom of page 175 in [Lancaster and Siegel 1996b] since h(0, z) > 0 is the
only option available there.)

Define
K (x, y)= 2H(x, y, c̃1+ ε), 0≤ x ≤ a, (x, y) ∈3,

and d(x, z)=2H(x, g(x, z), c̃1+ε)−2H(x, g(x, z), z). Notice that d(x, z+c̃1)≥0
and d(x, z+ c̃2)≤ 0 when (x, z) ∈ [0, a]× [−ε, ε]. Now, for each j = 1, 2, g j is
a solution of the Cauchy problem

Mg j (x, z)=− K (x, g j (x, z))+ d(x, z+ c̃ j ) for (x, z) ∈ [0, a]× [−ε, ε],

g j (0, z)=
∂g j

∂x
(0, z)= 0 for z ∈ [−ε, ε].

Then, as in [Gilbarg and Trudinger 1983, pages 263–264], we have

0= Mg1(x, z)−Mg2(x, z)+ 2H(x, g1(x, z), z+ c̃1)− 2H(x, g2(x, z), z+ c̃2)

= Lh(x, z)− d(x, z+ c̃1)+ d(x, z+ c̃2),

where, setting D1 := ∂/∂x and D2 := ∂/∂z,

(5) Lh =
2∑

i, j=1

ai, j Di j h+
2∑

i=1

bi Di h+ ch;

here

(6) ai, j (x, z)= ei, j (Dg1(x, z)) for i, j = 1, 2,

with
e1,1(p, q)= (1+ q2)W−3 e1,2(p, q)= e2,1(p, q)=−pqW−3,

e2,2(p, q)= (1+ p2)W−3 W =W (p, q)=
√

1+ p2
+ q2,
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b1(x, z)=
2∑

i, j=1

Di j g2(x, z)∂ei, j

∂p
(ξ1, (g1)z(x, z)),(7)

b2(x, z)=
2∑

i, j=1

Di j g2(x, z)∂ei, j

∂q
((g2)x(x, z), ξ2)(8)

and c(x, z)= ∂K (x, ξ)/∂y = 2∂H(x, ξ, c̃1+ ε)/∂y, for some ξ between g1(x, z)
and g2(x, z), ξ1 between (g1)x(x, z) and (g2)x(x, z) and ξ2 between (g1)z(x, z)
and (g2)z(x, z).

Notice that ai, j
∈ C1(R) for i, j ∈ {1, 2}, bi

∈ L∞(R) for i ∈ {1, 2} and
c ∈ L∞(R). Now h(0, z)= ∂h(0, z)/∂x = 0 for |z| ≤ ε and

(9) Lh(x, z)= d(x, z+ c̃1)− d(x, z+ c̃2)≥ 0, (x, z) ∈ [0, a]× [−ε, ε].

From (9) and the Hopf boundary point lemma (see, e.g., [Gilbarg and Trudinger
1983, Lemma 3.4]), we have

∂h
∂x
(0, z) < 0 for each z ∈ (−ε, ε)

and this contradicts the fact that hx(0, z)= 0 if z ∈ [−ε, ε]. Thus we have proven
Theorem 1. �

Remark 5. The assumption that H is weakly increasing in z is equivalent to
one in the (weak) comparison principle (see, e.g., [Gilbarg and Trudinger 1983,
Theorem 10.1] or [Finn 1986, Theorem 5.1]), which plays a critical role here.

3. Proof of Theorem 2

Suppose (3, f ) is a cusp solution and 3 ⊂ {(x, y) ∈ R2
: 0 < x < a, |y| < x},

c1 < c2 and the c-level curves of f in 3 are tangent to the positive x-axis at O for
c1≤ c≤ c2, for some a> 0 (see Figure 2). As before, there exist an (open) rectangle
R0 = (0, a)× (c1, c2) and g ∈ C3(R) such that the graph of f over 3, G, is the set{
(x, g(x, z), z) : (x, z) ∈ R0

}
and g(0, z) = ∂g(0, z)/∂x = 0 for c1 ≤ z ≤ c2. We

shall assume that |∇g(x, z)| ≤ 1 for (x, z) ∈ R.
Let us assume there exist δ ∈ (0, a] and d1, d2 ∈ [c1, c2] with d1 < d2 such that

H(x, 0, z) = 0 for 0 ≤ x ≤ δ, d1 ≤ z ≤ d2. Now gxx(0, z) = 0 for all z ∈ [c1, c2](
since 4g(0, z)= Mg(0, z)=−2H(0, 0, z)= 0

)
and

H(x, g(x, z), z)= H(x, 0, z)+ ∂H
∂y
(x, ξ, z)g(x, z)= ∂H

∂y
(x, ξ, z)g(x, z)

for some ξ between 0 and g(x, z). We may extend g as an even function in x by
setting g(x, z)= g(−x, z) for −a ≤ x < 0, c1 ≤ z ≤ c2, so that g ∈ C2(R ∪ R−),
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where R− = {(−x, z) : (x, z) ∈ R}. Then

0= Mg(x, z)+ 2H(x, g(x, z), z)= L̃g(x, z),
where

a1,1(x, z)=
1+ g2

z (x, z)
W 3 , a1,2(x, z)=−

gx(x, z)gz(x, z)
W 3 ,

a2,2(x, z)=
1+ g2

x(x, z)
W 3 , W (x, z)=

√
1+ g2

x(x, z)+ g2
z (x, z),

a1,2
= a2,1, c̃(x, z)= 2Hy(x, ξ, z)

and
L̃u =

2∑
i, j=1

ai, j Di j u+ c̃u.

Since |∇g(x, z)| ≤ 1 for (x, z) ∈ R, L̃ is uniformly elliptic in R. Notice that
ai, j
∈ C1(R) for i, j = 1, 2 and c̃ ∈ C0(R). Since g ∈ C2(R ∪ R−), Theorems 1∗

and 2∗ of [Hartman and Wintner 1953] imply that for each z ∈ (d1, d2), there exist
a natural number n and real constants e1 and e2, not both zero, such that

gx(ρ cos θ, z+ ρ sin θ)= ρn(e1 cos(nθ)+ e2 sin(nθ))+ o(ρn)

and
gz(ρ cos θ, z+ ρ sin θ)= ρn(e2 cos(nθ)− e1 sin(nθ))+ o(ρn)

as ρ→ 0. Since gx(0, z)= 0 and gz(0, z)= 0 for z ∈ [c1, c2], we see that

e1 cos(nπ/2)+ e2 sin(nπ/2)= 0, e2 cos(nπ/2)− e1 sin(nπ/2)= 0

and so e1 = e2 = 0. This contradicts the fact that at least one of e1 or e2 is nonzero.
Thus we have proven Theorem 2. �

4. Radial limits

When radial limits for (1) exist, they behave in a different manner than do radial
limits of, for example, Laplace’s equation; see, e.g., [Bear and Hile 1983]. In
particular, if f is a solution of (1) and the radial limits R f (θ) exist for θ ∈ (−α, α),
then they behave in one of the following ways:

(i) R f : (−α, α)→R is a constant function (i.e., f has a nontangential limit at O).

(ii) There exist α1 and α2 so that−α≤α1<α2≤α and R f is constant on (−α, α1]

and [α2, α) and strictly increasing or strictly decreasing on (α1, α2).

(iii) There exist α1, αL , αR, α2 so that −α≤ α1 <αL <αR <α2≤ α, αR = αL+π ,
and R f is constant on (−α, α1], [αL , αR], and [α2, α) and is either strictly
increasing on (α1, αL ] and strictly decreasing on [αR, α2) or strictly decreasing
on (α1, αL ] and strictly increasing on [αR, α2).
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