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PARABOLIC MINIMAL SURFACES IN M2×R

VANDERSON LIMA

Let M2 be a complete noncompact orientable surface of nonnegative curva-
ture. We prove some theorems involving parabolicity of minimal surfaces in
M2×R. First, using a characterization of δ-parabolicity we prove that under
additional conditions on M, an embedded minimal surface with bounded
Gaussian curvature is proper. The second theorem states that under some
conditions on M, if 6 is a properly immersed minimal surface with finite
topology and one end in M×R, which is transverse to a slice M×{t} except
at a finite number of points, and such that 6 ∩ (M× {t}) contains a finite
number of components, then 6 is parabolic. In the last result, we assume
some conditions on M and prove that if a minimal surface in M × R has
height controlled by a logarithmic function, then it is parabolic and has a
finite number of ends.

1. Introduction

Let M2 be a complete noncompact orientable surface with nonnegative curvature.
Under these conditions M×R is complete and has nonnegative sectional curvature,
in particular nonnegative Ricci curvature. Recently, using some of the results of
[Schoen and Yau 1982], G. Liu classified complete noncompact 3-manifolds with
nonnegative Ricci curvature.

Theorem [Liu 2013]. Let N be a complete noncompact 3-manifold with nonnega-
tive Ricci curvature. Then either N is diffeomorphic to R3 or its universal cover Ñ
is isometric to a Riemannian product M×R, where M is a complete surface with
nonnegative sectional curvature.

In particular it follows from the proof of this result that if N is not flat or does
not have positive Ricci curvature then its universal cover splits as a product M×R.
So the spaces M× R are in fact general examples of a very important class of
3-manifolds.

We are interested in minimal surfaces in M × R, where M is as above. In
particular we want information about the topology and the conformal structure. It is
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important to study under which hypotheses we can guarantee that a minimal surface
is proper. Concerning the topology, we know that there is no compact minimal
surface in these spaces. So, one can study the genus and the number of ends of
such minimal surfaces. Concerning the conformal structure, one important property
is parabolicity. Our results are inspired by analogous results in R3.

First we study the problem of properness. Bessa, Jorge and Oliveira-Filho studied
this problem for manifolds with nonnegative Ricci curvature and obtained some
partial results in R3.

Theorem [Bessa et al. 2001]. Let N 3 be a complete Riemannian 3-manifold of
bounded geometry and positive Ricci curvature. Let f : 62

→ N 3 be a complete
injective minimal immersion, where 6 is a complete oriented surface with bounded
curvature.

(1) If N is compact, then 6 is compact.

(2) If N is not compact, then f is proper.

A major breakthrough was the work of Colding and Minicozzi [2008], where
it was proved that a complete minimal surface of finite topology embedded in R3

is proper. After this, Meeks and Rosenberg [2006] proved that if 6 is a complete
embedded minimal surface in R3 which has positive injectivity radius, then 6 is
proper. Finally, Meeks and Rosenberg [2008] proved that if f : 6 → R3 is an
injective minimal immersion, with 6 complete and of bounded curvature, then f is
proper. We extend the last result to the case of a product M×R:

Theorem A. Let M be a complete simply connected orientable noncompact surface
such that 0≤ KM ≤ κ . Let f :6→M×R be an injective minimal immersion of a
complete, connected Riemannian surface of bounded curvature. Then the map f is
proper.

Next we focus on surfaces with finite topology and one end. The results in [Cold-
ing and Minicozzi 2008; Meeks and Rosenberg 2005] imply that every complete,
embedded minimal surface in R3 of finite genus and one end is properly embedded
and intersects some plane transversely in a single component, and so, is parabolic.
Meeks and Rosenberg [2008] gave an independent proof that the surface is parabolic
without the additional assumption that it is embedded. Namely, they proved:

Theorem [Meeks and Rosenberg 2008]. Let 6 be a surface of finite topology and
one end, and let f : 6→ R3 be a proper minimal immersion. Suppose that f is
transverse to a plane P except at a finite number of points, and f −1(P) contains a
finite number of components. Then 6 is parabolic.

The half-space theorem of Hoffman and Meeks [1990] states that a properly
immersed minimal surface in R3 which is above a plane is a parallel plane. Thus
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the condition that a minimal surface be transverse to a plane is natural. Rosenberg
proved the following half-space theorem for product spaces:

Theorem [Rosenberg 2002]. Let M be a complete noncompact surface satisfying
the following conditions:

(1) KM ≥ 0.

(2) There is a point p ∈ M such that the geodesic curvatures of all geodesic circles
with center p and radius r ≥ 1 are uniformly bounded.

If 6 is a properly immersed minimal surface in a half-space M×[t0,+∞), then 6
is a slice M×{s} for some s > t0.

Based on these results we prove the following:

Theorem B. Suppose M satisfies the conditions of the previous theorem. Let 6 be
a surface of finite topology and one end and let f :6→M×R be a proper minimal
immersion. Suppose that f is transverse to a slice M×{t0} except at a finite number
of points and that f −1(M×{t0}) contains a finite number of components. Then 6
is parabolic.

Next we focus on surfaces with more than one end. A major breakthrough was
the proof of the generalized Nitsche conjecture in R3:

Theorem [Collin 1997]. Let 6 be a properly embedded minimal surface in R3 with
at least two ends. Then an annular end of 6 is asymptotic to a plane or to the end
of a catenoid.

Let 6 be as in the last theorem. The set E6 of all the ends of 6 has a natural
topology that makes it a compact Hausdorff space. The limit points in E6 are called
the limit ends of 6, and an end which is not a limit end is called a simple end. To
6 is associated a unique plane P passing through the origin in R3 called the limit
tangent plane at infinity of 6 [Callahan et al. 1990]. The ends of 6 are linearly
ordered by their relative heights over P and this linear ordering, up to reversing it,
depends only on the proper ambient isotopy class of 6 in R3 [Frohman and Meeks
1997]. Since E6 is compact and the ordering is linear, there exists a unique top end
which is the highest end and a unique bottom end which is lowest in the associated
ordering. The ends of 6 that are neither top nor bottom ends are called middle
ends. In the proof of the ordering theorem, one shows that every middle end of 6 is
contained between two catenoids in the following sense: if E is an end of6 there are
c1 > 0 and r1 > 0 such that E ⊂ {(x1, x2, x3) : |x3| ≤ c1 log r, r2

= x2
1+ x2

2 , r ≥ r1}.
Collin, Kusner, Meeks and Rosenberg [Collin et al. 2004] proved that if 6

is a properly immersed minimal surface with compact boundary in R3 which is
contained between two catenoids, then 6 has quadratic area growth. Furthermore,
6 has a finite number of ends. As a consequence the middle ends of a properly
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embedded minimal surface in R3 are never limit ends. We explain what it means
for a properly immersed minimal surface of M×R to be contained between two
catenoids and generalize the result above:

Theorem C. Let M be a complete noncompact surface satisfying the following
conditions:

(1) 0≤ KM ≤ κ .

(2) M has a pole p.

(3) The geodesic curvatures of all geodesic circles with center p and radius r ≥ 1
are uniformly bounded.

Let 6 be a properly immersed minimal surface inside the region of M×R defined
by |h|≤ c2 log r for some constant c2> 0 and r ≥ 1. Then6 is parabolic. Moreover,
if 6 has compact boundary, then 6 has quadratic area growth and a finite number
of ends.

The paper is organized as follows. In Section 2 we present some results about the
geometry of the space M×R and its minimal surfaces. In Sections 3 and 4 we give
some well-known definitions and enunciate some results involving parabolicity and
laminations. In Section 5 we prove Theorem A. In Section 6 we prove Theorems B
and C.

2. The geometry of M2×R

Some of the results of this section are well known, but we prove them here for
completeness.

Lemma 1. Let M be a complete noncompact orientable surface with nonnegative
sectional curvature. Then M is homeomorphic to R2 or isometric to a flat cylinder
S1
×R.

Proof. Since K−M ≡ 0, by Huber’s theorem M has finite topology and

0≤
∫

M

KM dµ≤ 2π(2− 2g− n),

where g is the genus of M and n its number of ends; see [White 1987]. Since M is
noncompact and n ≥ 1, we have

1≤ n+ 2g ≤ 2.

But n+ 2g is an integer; thus the only possibility is g = 0, n = 1, 2.
If n = 1, M is homeomorphic to R2. If n = 2, M has the topology of S1

×R and∫
M

KM dµ= 0,

thus KM ≡ 0 and M is isometric to S1
×R endowed with a flat metric. �
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Lemma 2. Let M be a complete noncompact surface with sectional curvature
satisfying 0 ≤ KM ≤ κ . Then M has positive injectivity radius; in particular the
same holds for M×R.

Proof. By the previous lemma either M is a flat cylinder, which has positive
injectivity radius, or M is homeomorphic to R2. Suppose in the last case that
injM = 0. Since KM ≤ κ , the exponential map expq : Bπ/√κ(0)→M has no critical
points for each q ∈M. Then for each positive integer j sufficiently large there is a
point p j such that expp j

is not injective in the geodesic ball B1/j (p j ), which implies
there are two geodesics γ j , σ j : [0, l]→M beginning in p j which meet at the same
endpoint q j in the boundary of B1/j (p j ) with angle equal to π (q j realizes the
distance from p j to Cut(p j ); see [do Carmo 1988, Chapter 13, Proposition 2.12]).
This gives us a geodesic loop α j with one angular vertex at p j which has exterior
angle θ j ≤ π . Since M is simply connected, α j bounds a disc D j in M. By the
Gauss–Bonnet theorem

2π =
∫

D j

KM dµ+ θ j ≤ κ|D j | +π.

However, for j sufficiently large, |D j | is small and κ|D j | +π < 2π , which is a
contradiction. Therefore injM > 0. �

Lemma 3 [Espinar and Rosenberg 2009]. Let M be a complete connected nonflat
surface. Let 6 be a complete totally geodesic surface in M×R. Then 6 is of the
form α×R, where α is a geodesic of M , or 6 =M×{t} for some t ∈ R.

Proof. Let 5 be the projection of M×R to M. Let η be a unit normal to 6 and
define ν = 〈η, ∂t 〉. Since 6 is totally geodesic we have

K6(p)= KM(5(p))ν(p) ∀p ∈6,(1)

X〈η, ∂t 〉 = 〈∇Xη, ∂t 〉 ≡ 0 ∀X ∈ T6,(2)

where (1) is just the Gauss equation. So ν is constant, and we can suppose ν ≥ 0.
If ν = 0, then 6 is of the form α×R. If ν = 1, then 6 is a slice.

Suppose 0< ν < 1. We know that

16ν+ (Ric(η, η)+ |A|2)ν = 0,

and by equation (2), 16ν = 0. Thus 0 = Ric(η, η) = KM(5(p))(1− ν2), which
implies KM(5(p))= 0. It follows from equation (1) that 6 is flat. Then there is a
δ > 0 such that for any p ∈6 a neighborhood of p in 6 is a graph (in exponential
coordinates) over the disc Dδ ⊂ Tp6 of radius δ, centered at the origin of Tp6.
This graph, denoted by Gp, has bounded geometry. The number δ is independent
of p, and the bound on the geometry of Gp is uniform as well.



176 VANDERSON LIMA

We claim that 5(6)=M. Suppose the contrary. Then there exists a bounded
open set �⊂5(6) and q0 ∈ ∂� such that, for some point p ∈5−1(�), a neigh-
borhood of p in 6 is a vertical graph of a function f defined over � and this graph
does not extend to a minimal graph over any neighborhood of q0.

We can identify � with �×{0}. Let {qn} ⊂� be a sequence converging to q0

and pn = (qn, f (qn)). Let 6n denote the image of Gpn under the vertical translation
taking pn to qn . There is a subsequence of {qn} (which we also denote by {qn}) such
that the tangent planes Tqn (6n) converge to some vertical plane P ⊂ Tq0(M×R). In
fact, if this were not true, for qn close enough to q0, the graph of bounded geometry
Gpn would extend to a vertical graph beyond q0. Hence f would extend beyond
q0, a contradiction. So Tpn6 must become almost vertical at pn for n sufficiently
large, which means that η(pn) must become horizontal. But ν is a constant different
from 0, a contradiction.

Then 5(6)=M. Since KM ◦5≡ 0, it follows that M is a complete flat surface,
which contradicts our assumption. �

Lemma 4 [Rosenberg 2002]. Let 6 be a minimal surface of M× R. Then the
height function h :M×R→ R, h(q, t)= t , is harmonic on 6.

Proof. Let E1, E2, η be an orthonormal frame in a neighborhood of a point of 6,
where η is normal to 6. Since ∂t is a Killing vector field on M×R, we have

div ∂t = 0= 〈∇η∂t , η〉.

Write ∂t =∇h = X +∇6h, where X is normal to 6. Then

0=1h =
∑

i

[〈∇Ei∇6h, Ei 〉+ 〈∇Ei X, Ei 〉]

=16h−
∑

i

〈X,∇Ei Ei 〉 =16h−〈X, EH〉 =16h. �

Lemma 5 [Rosenberg 2002]. Suppose that M has nonnegative sectional curva-
ture and that there exists a point p ∈M such that the geodesic curvatures of all
geodesic circles with center p and radius r ≥ 1 are uniformly bounded. Define
f :M \

(
{p} ∪Cut(p)

)
×R→ R, f (q, t) = log(r(q)), where r is the distance in

M to the point p. Let 6 be a minimal surface of M×R. Then

16 f ≤
c1

r
|∇6h|2

for some constant c1 > 0 and r ≥ 1.

Proof. Denote by ∇ f , 1 f and Hess f respectively the gradient, the Laplacian and
the Hessian of f in M×R. Since M has nonnegative curvature, by the Laplacian
comparison theorem we have

1Mr ≤ 1
r
.
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But f does not depend on the height, so

1 f =1M f =
1Mr

r
−
|∇Mr |2

r2 ≤ 0.

Let E1, E2, η be an orthonormal frame in a neighborhood of a point of 6, where
η is normal to 6. Write ∇ f =∇6 f +〈∇ f, η〉η. Since 6 is minimal we have

1 f =
2∑

i=1

〈∇Ei∇ f, Ei 〉+ 〈∇η∇ f, η〉

=

2∑
i=1

〈∇Ei∇6 f, Ei 〉+

2∑
i=1

〈∇ f, η〉〈∇Eiη, Ei 〉+ 〈∇η∇ f, η〉

=16 f +〈∇ f, η〉H +Hess f (η, η)

=16 f +Hess f (η, η).

Now, let V be tangent to M, ξ = ∂/∂t and 5 be the projection of M×R to M.
Again, since f does not depend on the height, we have

Hess f (ξ, ξ)= 0,

Hess f (V, V )= HessM f (V, V ).

Then

Hess f (η, η)= Hess f (5(η),5(η))= HessM f (5(η),5(η)).

But 1 f ≤ 0, so

(3) 16 f ≤−Hess fM(5(η),5(η))≤ |HessM f ||5(η)|2.

A simple calculation shows that

(4) |5(η)| = |∇6h|.

Let q ∈M, r(q)= d(q, p) and v be a unit tangent vector to M at q. Thus

HessM f (v, v)=
〈
∇v

(
∇Mr

r

)
, v

〉
=

1
r
〈∇v∇Mr, v〉+ v

(
1
r

)
〈∇Mr, v〉.

When v =∇Mr ,

HessM f (v, v)=−
1
r2 |∇Mr |2.

When v = T , the unit tangent vector to the geodesic circle of radius r through the
point q,

HessM f (v, v)=
1
r
〈∇T∇Mr, T 〉 =

1
r

kg(q),
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where kg(q) is the geodesic curvature of the geodesic circle of radius r centered at
the point q . By the hypothesis about the geodesic circles of M,

|HessM f |2 =
1
r4 +

1
r2 k2

g ≤
C
r2 .

Using equations (3) and (4), the lemma follows. �

3. Laminations

Definition 6. Let 6 be a complete, embedded surface in a 3-manifold N. A point
p ∈ N is a limit point of 6 if there exists a sequence {pn} ⊂6 which diverges to
infinity in 6 with respect to the intrinsic Riemannian topology on 6, but converges
in N to p as n→∞. Let L(6) denote the set of all limit points of 6 in N ; we
call this set the limit set of 6. In particular, L(6) is a closed subset of N and
6 \6 ⊂ L(6), where 6 denotes the closure of 6.

Definition 7. A codimension-1 lamination of a Riemannian n-manifold N is the
union of a collection of pairwise disjoint, connected, injectively immersed hyper-
surfaces, with a certain local product structure. More precisely, it is a pair (L,A)
satisfying the following conditions:

(1) L is a closed subset of N.

(2) A= {ϕβ :D× (0, 1)→Uβ}β is an atlas of coordinate charts of N, where D is
the open unit ball in Rn−1 and Uβ is an open subset of N.

(3) For each β, there is a closed subset Cβ of (0, 1) such that ϕ−1
β (Uβ∩L)=D×Cβ .

If all the leaves are minimal hypersurfaces, (L,A) is called a minimal lamination.

4. Parabolic manifolds

Definition 8. Given a point p on a Riemannian manifold N with boundary, one can
define the hitting, or harmonic, measure µp of an interval I ⊂ ∂N as the probability
that a Brownian path beginning at p reaches the boundary for the first time at a
point in I .

Proposition 9. Let N be a Riemannian manifold with nonempty boundary. The
following are equivalent:

(1) Any bounded harmonic function on N is determined by its boundary values.

(2) For some p ∈ Int N, the measure µp is full on ∂N, i.e,
∫
∂N µp = 1.

(3) If h : N → R is a bounded harmonic function, then h(p)=
∫
∂N h(x)µp.

If N satisfies any of the conditions above, then it is called parabolic.
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An important property is that a proper subdomain of a parabolic manifold is par-
abolic; hence removing the interior of a compact domain does not alter parabolicity.
Moreover, if there exists a proper nonnegative superharmonic function on N, then
N is parabolic. For equivalent definitions and properties of parabolic manifolds see
[Grigor’yan 1999].

Definition 10. Let N be a Riemannian manifold with nonempty boundary. For
R > 0, let N (R) = {p ∈ N : d(p, ∂N ) < R}. We say that N is δ-parabolic if for
every δ > 0, Ñ = N \ N (δ) is parabolic.

The following theorem gives a sufficient condition for a surface to be δ-parabolic.

Theorem 11 [Meeks and Rosenberg 2008]. Let N be a complete surface with
nonempty boundary and curvature function K : N→[0,∞]. Suppose that for each
R > 0, the restricted function K |N (R) is bounded. Then N is δ-parabolic.

5. Proper minimal immersions

Proposition 12. Let N be a 3-manifold with nonnegative Ricci curvature and
sectional curvature bounded above by κ > 0. Suppose 6 is a complete, orientable
minimal surface with boundary in N, with a Jacobi function u. If u ≥ ε for some
ε > 0, then 6 is δ-parabolic.

Proof. First note that a Riemannian surface W is δ-parabolic if and only if for all
δ′ > 0, the surface W \W (δ′) is also δ-parabolic. Thus, without loss of generality,
we may assume that 6 has the form W \W (δ′) for some δ′> 0, where W is a stable
minimal surface with a positive Jacobi function u ≥ ε, which exists by [Fischer-
Colbrie and Schoen 1980]. By curvature estimates for stable, orientable minimal
surfaces [Schoen 1983; Rosenberg et al. 2010], we may assume that 6 has bounded
Gaussian curvature. Consider the new Riemannian manifold 6̃, which is 6 with
the metric g̃ = u〈 · , · 〉 on 6, where 〈 · , · 〉 is the Riemannian metric on 6. Since
u ≥ ε the metric g̃ is complete. Moreover, 1g̃ f = u−11 f for any function on 6
which has second derivative. Thus 6 is δ-parabolic if and only if 6̃ is δ-parabolic.
Let E1, E2, η be an orthonormal frame in a neighborhood of a point of 6, where η
is normal to 6. By the Gauss equation,

Ric(η, η)+ |A6|2 = Ric(E1, E1)+Ric(E2, E2)− 2K6.

Then, as u is a Jacobi function,

16u+
(
Ric(E1, E1)+Ric(E2, E2)− 2K6

)
u = 0.

So,

K6̃ =
K6 −

1
216 log u
u

=
1
2

Ric(E1, E1)+Ric(E2, E2)

u
+

1
2
|∇6u|2

u3 ,
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which implies

0≤ K6̃ ≤ 2
κ

ε
+

1
2ε
|∇6u|2

u2 .

Choose δ > 0 and let �̃= 6̃ \ 6̃(δ). Let � be the corresponding submanifold
on 6. By the Harnack inequality (see [Moser 1961]), |∇6u|/u is bounded, and so
one has that K6̃ is nonnegative and bounded on �. It follows from Theorem 11
in Section 4 that �̃ is parabolic, and hence � is parabolic. Since δ was chosen
arbitrarily, we conclude that 6 is δ-parabolic. �

Theorem A. Let M be a complete simply connected orientable noncompact surface
such that 0≤ KM ≤ κ . Let f :6→M×R be an injective minimal immersion of a
complete, connected Riemannian surface of bounded curvature. Then the map f is
proper.

Proof. Since the curvature of f (6) is bounded, there exists an ε > 0 such that
for any point p ∈M×R, every component of f −1(Bε(p)), when pushed forward
by f , is a compact disc and a graph over a domain in the tangent plane of any
point on it, with a uniform bound on the area. It follows that if p is a limit point
of f (6) coming from distinct components of f −1(Bε(p)), then there is a minimal
disc D(p) passing through p that is a graph over its tangent plane at p, and D(p)
is a limit of components in f −1(Bε(p)). Let D′(p) be any other such limit disc.
Since f is an embedding the unique possibility is that the discs are tangent at p;
then the maximum principle implies that the two discs agree near p. This implies
that the closure L( f (6)) of f (6) has the structure of a minimal lamination.

The immersion f is proper if and only if L( f (6)) has no limit leaves. Suppose
L( f (6)) has a limit leaf L . Denote by L̃ the universal cover of L . It was proved
in [Meeks et al. 2008] that L̃ is stable. So, by [Fischer-Colbrie and Schoen 1980]
L̃ is totally geodesic; hence L is totally geodesic. Suppose M is not flat (the case
where M is flat was proved in [Meeks and Rosenberg 2008]). By Lemma 3 a totally
geodesic surface in M×R is a slice M×{t} or is of the form α×R, where α is a
geodesic of M .

Assume L is a slice. Since 6 is not proper, it is not equal to a slice. We can
suppose L=M×{0} and H+ is a smallest half-space containing f (6). Since6 has
bounded curvature, there is an ε > 0 such that for every component C of f (6) in the
slab between L and Lε = {t = ε}, the Jacobi function u = 〈ν, ∂t 〉 satisfies u ≥ λ> 0,
where ν is the unit normal to C. Choose 0< δ < ε such that C(δ)= {p ∈C : h ≤ δ}
is not empty, where h is the height function. By Proposition 12, C(δ) is parabolic.
But h|C(δ) is a bounded harmonic function with the same boundary values as the
constant function δ. Hence h|C(δ) is constant, which is a contradiction because C(δ)
is not contained in a slice.
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Now, suppose L = α×R. Consider a one-sided closed ε-normal interval bundle
Nε(L) that submerses to M× R, with the induced metric. Observe that Nε(L)
is diffeomorphic to (α × R)× [0, δ], with L = (α × R)× {0} as a flat minimal
submanifold, and L(δ) = (α × R)× {δ} having mean curvature vector pointing
out of Nε(L). For ε sufficiently small, we may assume that each component of
f (6)∩ Nε(L) is a normal graph of bounded gradient over the zero section L . Let
C be such a component which is a graph over a connected domain � of L and let
LC(δ) be the part of Lδ which is also a normal graph over �. Consider the surface
Wδ = L(δ)\ LC(δ). Under normal projection to L , Wδ ∪C is quasi-isometric to
the flat plane L . It follows that C is a parabolic Riemann surface with boundary.
But the function d := dist( · , L) is superharmonic, and has constant value δ on the
boundary of C . Then C is contained in L(δ), which contradicts the fact that L is a
limit leaf of L( f (6)). �

6. Parabolicity of minimal surfaces

Theorem B. Let M be a complete noncompact surface satisfying the following
conditions:

(1) KM ≥ 0.

(2) There is a point p ∈ M such that the geodesic curvatures of all geodesic circles
with center p and radius r ≥ 1 are uniformly bounded.

Let 6 be a surface of finite topology and one end and let f : 6 → M×R be a
proper minimal immersion. Suppose that f is transverse to a slice M×{t0} except
at a finite number of points and that f −1(M× {t0}) contains a finite number of
components. Then 6 is parabolic.

Proof. We know from [Rosenberg 2002] that the conditions on M imply that the
surfaces

6(+) := {(p, t) ∈6 : t ≥ t0},

6(−) := {(p, t) ∈6 : t ≤ t0}

are parabolic. Suppose that E is an annular end representative which does not
have conformal representative which is a punctured disc. Then this end has a
representative which is conformally diffeomorphic to {z ∈C : ε ≤ |z|< 1} for some
positive ε < 1. In this conformal parametrization, the unit circle corresponds to
points at infinity on E . After choosing a larger ε, we may assume that f |E intersects
M×{t0} transversely in a finite positive number of arcs and that each noncompact arc
of the intersection has one endpoint on the compact boundary circle {z ∈C : |z| = ε}.

We claim that it suffices to prove that each of the finite number of noncompact
arcs α1, . . . , αn in M×{t0} has a well-defined limit on the unit circle S1 of points
at infinity. In fact, assume the claim is true; then there is an open arc γ ⊂ S1
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αi+1
αi+2

αi

|z| = 1

|z| = ε

U
γ

Figure 1. The disc U.

which does not contain limit points of α1, . . . , αn . Hence, there would be an open
half-disc U ⊂ E centered at a point in γ , such that U ∩ ( f −1(M×{t0}))=∅; see
Figure 1. But U is a proper domain which is contained in one of the parabolic
surfaces 6(+) or 6(−), so is parabolic. However, U does not have full harmonic
measure, which is a contradiction.

Suppose αk has two limit points q1, q2 in S1. We first prove that at least one of
the two interval components I1, I2 of S1

\ {q1, q2} consists of limit points of αk .
Suppose not and let x1 ∈ I1, x2 ∈ I2 be points which are not limit points. Since they
are not limit points, there exists a δ > 0 such that the radial arcs β1 and β2 in E
of length δ and orthogonal to S1 at x1, x2 respectively, are disjoint from αk . Since
αk is proper and disjoint from β1 ∪β2, the parametrized arc αk(s) must eventually
be in one of the two components of {z ∈ E \ (β1 ∪β2) : |z| ≥ 1− δ}; see Figure 2.
Thus, αk cannot have both q1 and q2 as limit points, a contradiction. Now, suppose

x1

β1

q1
|z| = 1− δ

αk

q2

β2 x2

Figure 2. The arc trapped in one component.
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I1

∂∞D

D

α1

Eδ

Figure 3. The arc α1 accumulates in I1.

one of the intervals, say I2, contains one point z which is not a limit point of αk ;
then by the previous argument the interval I1 cannot contain any point which is not
a limit point. So one of the intervals consists of limit points of αk .

Since the height function is harmonic on E and the generator of the homology of
E is a boundary in 6, by Cauchy’s theorem there is a conjugate harmonic function
to h, which we denote by h∗. Consider the holomorphic function g=h+ih∗ :E→C.
As the slice M×{t0} is transverse to E , we have 〈∇h, η〉2 6= 1 for all points in an
arc αk and h = 0 in this arc, where η is a unit normal to 6. Moreover, as g is
holomorphic we have

|∇6h∗(p)|2 = |∇6h(p)|2 = 1−〈∇h, η〉2(p) > 0 ∀p ∈ αk,

so h∗|αk is strictly monotone. Thus g restricted to any of the finite number of
components in ( f −1(M×{t0}))∩ E monotonically parametrizes an interval on the
imaginary axis R(i)⊂ C. Choose a closed half-disc D ⊂ E = E ∪S1, centered at
a point p ∈ I1, where I1, as discussed above, consists entirely of limit points of α1,
and suppose that D is chosen sufficiently small so that ∂∞D := ∂D∩S1

⊂ I1. Since
g|αk is injective we can take a compact interval J ⊂ g

(⋃n
k=1 αk

)
⊂ R(i) which is

disjoint from the endpoints of g|αk for all k, and choose D sufficiently small such
that D ∩ (g−1(J ))=∅.

Observe that g maps D into C\ J , so by the Riemann mapping theorem, the func-
tion g|D is essentially bounded in the sense that it maps D into a domain that is con-
formally equivalent to an open subset of the unit disc. It follows from Fatou’s theo-
rem that the holomorphic function g|D has radial limits almost everywhere, i.e., D is
conformally the unit disc, so radial limits are with respect to the radii of the unit disc.

Consider the radial arc β orthogonal to S1 at the point p (the center of I1).
The arc β divides I1 into two intervals I−1 and I+1 and separates D into two
regions D− and D+. Choose δ > 0 small. We can suppose D is inside the region
Eδ := {z ∈ E : |z| ≥ 1−δ}. Since α1 is proper, this arc will eventually be inside of Eδ .
As I1 is composed of accumulation points of α1 and ∂∞D is not equal to I1, the arc
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∂∞D− ∂∞D+

Figure 4. Infinitely many arcs in D− and D+.

α1 leaves D and returns to it an infinite number of times, and it does this crossing the
boundaries of D− and D+ infinitely many times, in each step getting closer to ∂∞D−

and ∂∞D+ respectively; see Figure 3. Then there exists an infinite number of arcs
in α1 ∩ D− (respectively α1 ∩ D+) converging to ∂∞D− (respectively ∂∞D+); see
Figure 4. Thus the points of ∂∞D with radial limits for g have a constant value which
corresponds to the limiting endpoint of the curve g ◦α1 in R(i)∪{∞}. However, by
Privalov’s theorem, a nonconstant meromorphic function on the unit disc cannot have
a constant radial limit on a set of ∂∞D with positive measure, a contradiction. �

Theorem C. Let M be a complete noncompact surface satisfying the following
conditions:

(1) 0≤ KM ≤ κ .

(2) M has a pole p.

(3) The geodesic curvatures of all geodesic circles with center p and radius r ≥ 1
are uniformly bounded.

Let 6 be a properly immersed minimal surface inside the region of M×R defined
by |h|≤ c2 log r for some constant c2> 0 and r ≥ 1. Then6 is parabolic. Moreover,
if 6 has compact boundary, then 6 has quadratic area growth and a finite number
of ends.

Proof. Let p be the pole of M. Since the map expp : TpM→M is a diffeomor-
phism, we have that φ : TpM×R→M×R, defined by φ(v, s)= (expp v, s), is a
diffeomorphism and defines a coordinate system.

Let r be the distance to p on M extended to M×R in the natural way and h be
the height function on M×R. Let CR = {(q, s) ∈M×R : r(q)= R} be the vertical
cylinder of radius R and let 6R be the part of 6 inside CR . Let BR((p, 0)) be the
ball of M×R of center (p, 0) and radius R. Since M×R has the product metric
and p is a pole in M, the point (p, 0) is a pole in M×R. Thus 6 ∩ BR((p, 0))
is inside the interior of CR . Then it suffices to prove that 6R has quadratic area
growth as a function of r .
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Using these coordinates we can define a horizontal vector field X that is orthog-
onal to ∇r and ∇h and has norm 1, so (∇r,∇h, X) is an orthonormal basis at each
point of M×R. Let η be a unit normal to 6, so

〈η,∇r〉2+〈η,∇h〉2+〈η, X〉2 = 1,

|∇6r |2 = 1−〈η,∇r〉2,

and

|∇6h|2 = 1−〈η,∇h〉2.

Hence,

|∇6r |2+ |∇6h|2 = 1+〈η, X〉2 ≥ 1.

Thus, ∫
6R

dµ≤
∫
6R

(|∇6r |2+ |∇6h|2) dµ.

Consider the function f :6→ R, f =−h arctan(h)+ 1
2 log(h2

+ 1), where h
is the height function on M×R. Since h is harmonic on 6,

16 f =− arctan(h)16h−
|∇6h|2

h2+ 1
=−
|∇6h|2

h2+ 1
.

Consider now the function g = log r + f . After rescaling the metric of 6 and
removing a compact subset of 6 we may assume that |h| ≤ 1

2 log r . By Lemma 5,
g satisfies

16g ≤ c1
|∇6h|2

r
−
|∇6h|2

h2+ 1
≤ 0.

Since log r is proper in
{
(q, t)∈M×R : |h|≤ 1

2 log r, r ≥1
}

and6 is proper, log r
is proper in 6. Moreover g ≥ 3π

4 log r , so g is a nonnegative proper superharmonic
function on 6. This proves that 6 is parabolic.

Suppose ∂6 is compact. There exists a > 0 such that g(∂6) ⊂ [0, a]. Let
t2 > t1 ≥ a. Since g is proper, g−1([t1, t2]) is compact; then we can apply the
divergence theorem and use the fact that g is superharmonic to obtain

(5) 0≥
∫

g−1([t1,t2])
16g dµ=−

∫
g−1(t1)

|∇6g| d L +
∫

g−1(t2)
|∇6g| d L .

It follows that the function t 7→
∫

g−1(t) |∇6g| d L is monotonically decreasing and
bounded, so

(6) lim
t→∞

∫
g−1(t)
|∇6g| d L <∞.
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Since 6 = g−1([0,∞)) it follows from (5) and (6) that 16g ∈ L1(6). Further-
more, 16g ≥ 1

2 |16 f | for r large; thus 16 f ∈ L1(6). Hence,∫
6R

16 f dµ=
∫
6R

|∇6h|2

h2+ 1
dµ≤

∫
6

|∇6h|2

h2+ 1
dµ= c3

for some positive constant c3. Then, for R ≥ 1,∫
6R

|∇6h|2 dµ≤
∫
6R

(
(log R)2+ 1

h2+ 1

)
|∇6h|2 dµ≤ ((log R)2+ 1)c3 ≤ c3 R2.

Since 16 f ∈ L1(6) and |16 f | ≥ c4|16 log r | (c4 > 0 a constant), we have
16(log r) ∈ L1(6). Again by the divergence theorem,∫

6R

16 log r dµ=
∫
∂6

1
r
〈∇6r, ν〉 d L +

∫
CR∩6

|∇6r |
R

d L

= c5+
1
R

∫
CR∩6

|∇6r | d L ,

where ν is the outward conormal to the boundary of 6. Thus

lim
R→∞

1
R

∫
CR∩6

|∇6r | d L <∞,

which implies there is a constant c6 > 0 such that∫
CR∩6

|∇6r | d L ≤ c6 R.

By the coarea formula∫
6R

|∇6r |2 dµ≤
∫ R

1

∫
Cρ∩6
|∇6r | d L dρ ≤ c6

∫ R

1
ρ dρ ≤ 1

2 c6 R2.

Therefore 6 has quadratic area growth.
Now, suppose 6 has an infinite number of ends. Let E be an end of 6. Choose

0<δ <min{injM×R, 1/
√
κ} such that for each positive integer j , there is a distance

ball Bδ(q j ) of M× R inside the region R j between C j and C j+1, with q j ∈ E .
By the monotonicity formula for minimal surfaces (see Chapter 7 of [Colding and
Minicozzi 2011]),

|E ∩ Bδ(q j )| ≥
cδ2

e2
√
κδ
=: c7,

where c > 0 is a constant and κ = sup KM×R. Write En = E ∩Cn . Since in each
region R j , j < n, we have a portion of E of area at least c7 it follows that

|En|> c7n.
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Then in the cylinder Cn2 we have

c7n2
≤ |En2 | ≤ c8n2.

Since this holds for each end, choosing n ends we obtain that the area of 6 inside
Cn2 satisfies

c9n3
≤ |6n2 | ≤ c10n2,

but for n sufficiently large this leads to a contradiction. Hence, 6 has a finite
number of ends. �
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