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ORDER ON THE HOMOLOGY GROUPS OF SMALE SPACES

MASSOUD AMINI, IAN F. PUTNAM AND SARAH SAEIDI GHOLIKANDI

Smale spaces were defined by D. Ruelle to describe the properties of the
basic sets of an Axiom A system for topological dynamics. One motivation
for this was that the basic sets of an Axiom A system are merely topological
spaces and not submanifolds. One of the most important classes of Smale
spaces is shifts of finite type. For such systems, W. Krieger introduced a
pair of invariants, the past and future dimension groups. These are abelian
groups, but are also with an order which is an important part of their struc-
ture. The second author showed that Krieger’s invariants could be extended
to a homology theory for Smale spaces. In this paper, we show that the
homology groups on Smale spaces (in degree zero) have a canonical order
structure. This extends that of Krieger’s groups for shifts of finite type.

1. Introduction

The original notion of a Smale space is due to David Ruelle, based on the observation
that the basic sets of Smale’s Axiom A systems do not form submanifolds of the
ambient manifold [Ruelle 1978; Smale 1967; Aoki and Hiraide 1994; Fried 1987;
Fisher 2013; Bowen 1978]. In fact, Smale spaces are the topological dynamical
systems that admit a hyperbolic structure in terms of canonical coordinates of
contracting and expanding (or stable and unstable) directions. Hyperbolic toral auto-
morphisms, one-dimensional generalized solenoids as described by R. F. Williams
and shifts of finite type are all examples of Smale spaces. In fact, any totally discon-
nected (irreducible) Smale space is conjugate to a shift of finite type. W. Krieger
[1980] defined two abelian groups for shift of finite type, called the past and future
dimension groups, in terms of clopen sets of the stable and unstable sets. One of
their most important features is a natural order structure.

The second author [Putnam 2014] defined a homology for Smale spaces which
extends the dimension groups for shifts of finite type. However, the homology
groups as defined in that paper are not given any order structure. In this paper, we
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prove that the homology groups of Smale spaces in degree zero have a canonical
order structure.

The paper is organized as follows. In Section 2, we introduce the basic concepts
and notations (based on [Putnam 2014]) and state the main results of this paper,
which are proved in Sections 4 and 5. The shifts of finite type which play an
important role in the homology of Smale spaces are reviewed in Section 3 and their
dimension groups are discussed as ordered groups.

2. Preliminaries

2A. Smale spaces. A pair (X, ϕ) is called a dynamical system if X is a topological
space and ϕ is a homeomorphism of X . A dynamical system (X, ϕ) is called
irreducible if for every ordered pair of nonempty open sets U, V in X , there is a non-
negative integer n such that ϕn(U )∩V is nonempty. It is called mixing if for every
ordered pair of nonempty open sets U, V in X , there is a nonnegative integer N such
that ϕn(U )∩V is nonempty for any n ≥ N [Aoki and Hiraide 1994; Putnam 2014].

Definition 2.1 [Ruelle 1978; Putnam 2014, Definition 2.1.6]. For a compact metric
space X , the dynamical system (X, ϕ) is called a Smale space if there exist constants
εX and 0< λ < 1 and a continuous map from

4εX = {(x, y) ∈ X × X | d(x, y)≤ εX }

to X (denoted by [ · , · ]) such that, for every x, y, z ∈ X ,

(B1) [x, x] = x ,

(B2) [x, [y, z]] = [x, z],

(B3) [[x, y], z] = [x, z],

(B4) [ϕ(x), ϕ(y)] = ϕ([x, y])

whenever both sides of the above equations are defined, and

(C1) d(ϕ(x), ϕ(y))≤ λ d(x, y) whenever [x, y] = y,

(C2) d(ϕ−1(x), ϕ−1(y)≤ λ d(x, y) whenever [x, y] = x .

In a Smale space (X, ϕ), the local stable and unstable sets are defined, for x in X
and εX ≥ ε > 0, by

X s(x, ε)={y ∈ X | d(x, y)≤ ε, [x, y] = y},

Xu(x, ε)={y ∈ X | d(x, y)≤ ε, [y, x] = y}.

It is simple to show that, for any ε sufficiently small, [ · , · ] : Xu(x, ε)×X s(x, ε)→ X
is a homeomorphism to its image, which is a neighbourhood of x in X . The inverse
is obtained by mapping y to ([x, y], [y, x]).
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Let (X, ϕ) be a Smale space. Two points x, y ∈ X are stably equivalent if

lim
n→+∞

d(ϕn(x), ϕn(y))= 0

and unstably equivalent if

lim
n→+∞

d(ϕ−n(x), ϕ−n(y))= 0.

We denote the stable and unstable equivalence classes of x by X s(x) and Xu(x),
respectively [Putnam 2014].

Examples of Smale spaces include Anosov diffeomorphisms, the basic sets from
Smale’s Axiom A systems, various solenoids and certain substitution tiling spaces
[Katok and Hasselblatt 1995; Smale 1967; Bowen 1970; 1978; Williams 1967;
1970; 1974; Wieler 2014; Yi 2001]. Key examples are the shifts of finite type,
namely the doubly infinite path space of a finite directed graph. We provide a more
complete description in the next section. In this case, the underlying space is totally
disconnected [Lind and Marcus 1995; Putnam 2014]. Conversely, any irreducible
Smale space which is totally disconnected is topologically conjugate to a shift of
finite type.

A factor map π between dynamical systems (Y, ψ) and (X, ϕ) is a continuous,
surjective map π : Y → X satisfying ϕ ◦π = π ◦ψ . A factor map π is finite-to-one
if there is an upper bound on the cardinality of the sets π−1

{x}, as x runs over X
[Putnam 2014]. It is almost one-to-one if #π−1

{x} = 1 for each x in some dense
Gδ subset of X .

A map π : (Y, ψ)→ (X, ϕ) between Smale spaces is called s-bijective (resp.
u-bijective) if the restriction of π to Y s(y) (resp. Y u(y)) is a bijection to X s(π(y))
(resp. Xu(π(y))) for any y ∈ Y . Every s-bijective (or u-bijective) map is finite-to-
one [Putnam 2014].

Definition 2.2 [Putnam 2014, Definition 2.6.2]. Let (X, ϕ) be a Smale space. Then

π = (Y, ψ, πs, Z , ζ, πu)

is an s/u-bijective pair for (X, ϕ) if

• (Y,ψ) and (Z ,ζ ) are Smale spaces,

• πs : (Y,ψ)→(X,ϕ) is s-bijective and Xu(y) is totally disconnected for every y∈Y,

• πu : (Z ,ζ )→(X,ϕ) is u-bijective and X s(y) is totally disconnected for every z∈Z .

Theorem 2.3 [Putnam 2014, Theorem 2.6.3]. Every irreducible Smale space (X, ϕ)
admits an s/u-bijective pair.

This result plays a crucial role in [Putnam 2014]. The homology is defined and
computed from such an object. While there may be many such s/u-bijective pairs
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for a given (X, ϕ), it is shown in Theorem 5.5.1 of that paper that the homology is
independent of the choice.

Our first contribution here is to improve this situation by proving the existence of
s/u-bijective pairs with certain advantageous extra features. These will be important
for our proofs later, but presumably, will have many other applications.

Theorem 2.4. Every irreducible Smale space (X, ϕ) admits an s/u-bijective pair
π = (Y, ψ, πs, Z , ζ, πu) such that the Smale spaces (Y, ψ), (Z , ζ ) are irreducible
and both maps πs and πu are almost one-to-one.

The proof is based on [Putnam 2005] and will be given in Section 4A.

Definition 2.5. For any Smale space (X, ϕ), we say that an s/u-bijective pair
(Y, ψ, πs, Z , ζ, πu) is irreducible if both (Y, ψ) and (Z , ζ ) are irreducible and both
maps πs and πu are almost one-to-one.

For a Smale space (X, ϕ) and s/u-bijective pair π = (Y, ψ, πs, Z , ζ, πu), for
each L ,M ≥ 0 we define

6L ,M(π)=
{
(y0, y1, . . . , yL , z0, z1, . . . , zM) ∈ Y L+1

× Z M+1
|

πs(yl)= πu(zm) for all 0≤ l ≤ L , 0≤ m ≤ M
}
.

If we let σ be the obvious map on 6L ,M(π) induced by ψ and ζ , (6L ,M(π), σ )

is a dynamical system. Indeed, it is also a Smale space with totally disconnected
stable and unstable sets, and so is a shift of finite type. In the special case that
L = M = 0, this is usually called the fibred product of (Y, ψ) and (Z , ζ ). On the
other hand, (6L ,M(π), σ ) has an obvious action of the group SL+1× SM+1, where
SN+1 denotes the permutation group of {0, 1, . . . , N } [Putnam 2014].

If the s/u-bijective pair is irreducible in the sense above, then the fibred product
is irreducible. By this we mean the shift of finite type 60,0(π), σ ) is irreducible.
The other 6L ,M(π), σ ) will not be, in general. The proof of this result is long and
will be given in Section 4B.

Theorem 2.6. Suppose (X, ϕ), (Y, ψ) and (Z , ζ ) are irreducible Smale spaces,

πs : (Y, ψ)→ (X, ϕ)

is an almost one-to-one, s-bijective factor map and

πu : (Z , ζ )→ (X, ϕ)

is an almost one-to-one, u-bijective factor map. Then the fibred product

Y ×X Z = {(y, z) ∈ Y × Z | πs(y)= πu(z)}

of maps πs and πu with ψ × ζ is an irreducible Smale space. In addition, if (X, ϕ)
is mixing then so is (Y×X Z , ψ×ζ ).
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Of course, one application of the theorem is to an irreducible s/u-bijective pair
for (X, ϕ), but the result is more general, since it makes no assumptions that the
local stable sets of Z or the local unstable sets of Y are totally disconnected.

For a shift of finite type, (6, σ ), Krieger introduced the dimension group in-
variants, denoted here by Ds(6, σ ) and Du(6, σ ). These are countable abelian
groups and, if the shift of finite type is presented as the edge shift of a finite directed
graph G, they may be computed directly as inductive limits from the adjacency
matrix of G. We discuss this more thoroughly in the next section.

The second author developed a homology theory for Smale spaces in [Putnam
2014]. Let us briefly review the construction here. First, one considers the dimension
groups Ds(6L ,M(π), σ ) of the system, over all L ,M ≥ 0. At each index, a quotient
of a certain subgroup is taken, denoted by Ds

Q,A(6L ,M(π), σ ), which takes into
account the action of the permutation groups [Putnam 2014, Section 5.1]. These
groups are assembled into a double complex, Cs

Q,A(π)L ,M = Ds
Q,A(6L ,M(π), σ ),

L ,M ≥ 0, whose homology is denoted by H s
∗
(π). There is an analogous con-

struction of H u
∗
(π), using the unstable dimension groups Du. In [Putnam 2014],

it is shown that the result is independent of the choice of π , and so is written as
H s
∗
(X, ϕ) or H u

∗
(X, ϕ) [Putnam 2014, Theorem 5.5.1].

For the remainder of this paper, we will concentrate on H s(X, ϕ). Analogous
results hold for H u(X, ϕ).

The above construction is analogous to computing the Čech cohomology of a
compact manifold by considering a ‘nice’, finite, open cover and the homology of its
nerve. Here, the s/u-bijective pair replaces the open cover. The shifts (6L ,M(π), σ )

evidently play the role of the nerve of the cover, keeping track of the multiplicities
of the cover. Finally, Krieger’s dimension group invariant replaces the homology of
the open balls in the ‘nice’ cover.

One of the most important features of Krieger’s invariant for a shift of finite type
is that it also carries a natural order structure. Moreover, this is also easily computed
from the corresponding directed graph. The aim of this paper is to define a natural
and canonical order structure on the homology groups H s

0 (X, ϕ) and H u
0 (X, ϕ).

Let us begin with the definition of an ordered abelian group.

Definition 2.7 [Blyth 2005]. A pair (G,G+) is called an ordered abelian group if
G is an abelian group with a positive cone G+, which is a subset of G satisfying

(1) G++G+ ⊆ G+,

(2) G+−G+ = G,

(3) G+ ∩−G+ = {0}.

The elements of G+ are called positive elements of G, and for g1, g2 in G we
write g1 ≥ g2 (or g2 ≤ g1) when g1− g2 ∈ G+.
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A homomorphism 0 :G→H of ordered groups is called positive if 0(G+)⊆H+.
An isomorphism 0 : G→ H of ordered groups is an order isomorphism if both 0
and 0−1 are positive homomorphisms (equivalently, if 0(G+)= H+). We remark
that the inverse of a positive isomorphism is not positive in general. For example,
consider the ordered group Z2 with the positive cone {(m, n) | m, n ≥ 0}. The
map α(m, n)= (m+ n, n) is a positive automorphism of Z2 whose inverse is not
positive.

The groups Ds(6L ,M(π)), L ,M ≥ 0, all carry canonical orders. Unfortunately,
these do not induce orders on the groups Ds

Q,A(6L ,M(π)) in our double complex,
except in the special case when L=M=0, where Ds

Q,A(60,0(π)) and Ds(60,0(π))

are equal. We intend to lift this order to the degree-zero group in our double complex,
namely on

⊕
L−M=0 C

s
Q,A(π)L ,M , by setting the positive cone to be those elements

whose entries in the summand L = M = 0 are strictly positive, together with the
zero element. In particular, the entries in the position L = M > 0 do not affect
positivity. The positive cone H s

0 (π)
+ in H s

0 (π) is then defined as those elements
which are represented by a positive cocycle in

⊕
L−M=0 C

s
Q,A(π)L ,M . The difficulty

is to show that this gives a well-defined and well-behaved order on the homology.

Definition 2.8. Let π = (Y, ψ, πs, Z , ζ, πu) be an s/u-bijective pair for the Smale
space (X, ϕ). Let (Cs

Q,A(π), ds
Q,A(π)) be the double complex associated with π

and H s
∗
(π) be the homology of this double complex. We define the corresponding

cones as follows:(⊕
L−M=0 C

s
Q,A(π)L ,M

)+
= {0} ∪ {a | 0 6= a0,0 ∈ Cs

Q,A(π)
+

0,0},

and

H s(π)+ =
{

a+ Im
(⊕

L−M=1 ds
Q,A(π)L ,M

) ∣∣
a ∈ Ker

(⊕
L−M=0 ds

Q,A(π)L ,M
)
∩
(⊕

L−M=0 C
s
Q,A(π)L ,M

)+}
.

Of course, both definitions are the obvious ones. The issue is now to show
that this provides good order structures, at least for irreducible Smale spaces. The
strategy is simple: we first assume that our s/u-bijective pair is irreducible. We
reduce to the case that the shift of finite type, (60,0(π), σ ), is mixing. It follows
that the order structure on its dimension group is completely determined by the state
which arises from its unique measure of maximal entropy, or the Parry measure;
see Theorem 3.4.

To take homology, we first pass to a subgroup (the cocycles) and then take a
quotient (by the coboundaries). The following rather elementary result summarizes
our task.

Theorem 2.9 [Blyth 2005]. Let (G,G+) be an ordered abelian group and let
H ⊆ G be a subgroup.
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(i) If G+ ∩ H = {0}, then with

(G/H)+ = {a+ H | a ∈ G+},

(G/H, (G/H)+) is an ordered abelian group.

(ii) If G+∩H generates H, that is, (G+∩H)−(G+∩H)= H , then (H,G+∩H)
is an ordered abelian group.

The conditions for the subgroup and quotient in the above theorem are com-
plementary and could not hold at the same time (except for trivial cases), but one
should note that these conditions are going to be applied to two separate cases with
distinct subgroups (the subgroup condition is applied to a “kernel” in the complex,
whereas the quotient condition is used for the preceding “image”).

Our first task is to show that

G = Ker
(⊕

L−M=0 ds
Q,A(π)L ,M

)
and H = Im

(⊕
L−M=1 ds

Q,A(π)L ,M
)

satisfy the hypotheses of the first part of Theorem 2.9.

Theorem 2.10. Let π = (Y, ψ, πs, Z , ζ, πu) be an irreducible s/u-bijective pair
for the irreducible Smale space (X, ϕ). We have(⊕

L−M=0 C
s
Q,A(π)L ,M

)+
∩ Im

(⊕
L−M=1 ds

Q,A(π)L ,M
)
= {0}.

Our second task is to show that

G =
⊕

L−M=0 C
s
Q,A(π)L ,M and H = Ker

(⊕
L−M=0 ds

Q,A(π)L ,M
)

satisfy the hypotheses of the second part of Theorem 2.9.

Theorem 2.11. Let π = (Y, ψ, πs, Z , ζ, πu) be an irreducible s/u-bijective pair
for the irreducible Smale space (X, ϕ). The subgroup generated by(⊕

L−M=0 C
s
Q,A(π)L ,M

)+
∩ Ker

(⊕
L−M=0 ds

Q,A(π)L ,M
)

is Ker
(⊕

L−M=0 ds
Q,A(π)L ,M

)
.

As an immediate consequence of Theorems 2.9, 2.10 and 2.11, we get our main
result as follows.

Theorem 2.12. If (X, ϕ) is an irreducible Smale space and π=(Y, ψ, πs, Z , ζ, πu)

is an irreducible s/u-bijective pair for (X, ϕ), then H s
0 (π) is an ordered abelian

group with the positive cone defined in Definition 2.8.

The next issue is to see that the resulting order is independent of the choice of π ,
in a suitable sense.
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Theorem 2.13. Suppose (X, ϕ) is an irreducible Smale space and

π = (Y, ψ, πs, Z , ζ, πu), π̃ = (Ỹ , ψ̃, π̃s, Z̃ , ζ̃, π̃u)

are s/u-bijective pairs for (X, ϕ). Assume that π is irreducible. Then

(1) H s
0(π̃) is an ordered abelian group with the positive cone given in Definition 2.8;

(2) there is an order isomorphism H from H s
0 (π) to H s

0 (π̃).

We also want to show that our order structure behaves well as a functor. Already
in [Putnam 2014], the functoriality for the groups alone is somewhat subtle; H s is
covariant for s-bijective factor maps and contravariant for u-bijective factor maps.
We will show that the maps induced at the level of groups from s-bijective factor
maps and u-bijective factor maps between the dynamical systems are positive group
homomorphisms.

Theorem 2.14. Suppose (X, ϕ) and (X ′, ϕ′) are irreducible Smale spaces.

(1) If ρ : (X, ϕ)→ (X ′, ϕ′) is an s-bijective factor map, then the group homomor-
phism ρs

0 : H
s
0 (X, ϕ)→ H s

0 (X
′, ϕ′) of [Putnam 2014] is positive; that is,

ρs
0(H

s
0 (X, ϕ)

+)⊆ H s
0 (X

′, ϕ′)+.

(2) If ρ : (X, ϕ)→ (X ′, ϕ′) is a u-bijective factor map, then the group homomor-
phism ρs∗

0 : H
s
0 (X

′, ϕ′)→ H s
0 (X, ϕ) of [Putnam 2014] is positive; that is,

ρs∗
0 (H

s
0 (X

′, ϕ′)+)⊆ H s
0 (X, ϕ)

+.

A couple of remarks are in order. All of our results are stated for irreducible Smale
spaces. They extend easily to Smale spaces in which every point is nonwandering,
since any such Smale space is the disjoint union of a finite number of irreducible
subsystems.

The ordered groups introduced by Krieger have a number of special features.
They are unperforated: if, for any element a, na is positive for some n ≥ 1, then
a itself is positive. They also satisfy the Riesz interpolation property (see [Effros
1981] for details). At this point, it is not clear exactly which nice properties our
ordered groups H s

0 (X, ϕ) may have. However, one may observe, using [Amini
et al. 2013], that they may have elements of finite order, which means that they
are not unperforated in general. It may be reasonable to expect them to be weakly
unperforated: if na > 0 for some n ≥ 1, then a > 0.

3. Dimension groups and the Perron–Frobenius theorem

3A. Shifts of finite type. Shifts of finite type are usually defined in terms of the
alphabets and (forbidden) words, but here we use an equivalent formulation in terms
of graphs, which is more suitable for our purposes.
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A graph G consists of finite sets G0 and G1, consisting of vertices and edges,
respectively, and maps i, t : G1

→ G0, marking the initial and terminal points. The
graph is drawn by depicting each vertex as a dot and each edge e as an arrow from
i(e) to t (e).

A path of length k in G is a sequence (e1, . . . , ek), with ei ∈ G1 for 1 ≤ i ≤ k,
such that t (ei )= i(ei+1) for 1≤ i < k. Let Gk denote the set of all paths of length k.
For each k, Gk is a graph with vertices Gk−1 and edges Gk, and the initial and
terminal maps

i(e1, . . . , ek)= (e1, . . . , ek−1), t (e1, . . . , ek)= (e2, . . . , ek)

for (e1, . . . , ek) in Gk. To any graph G, a pair (6G, σ ) is associated, where

6G = {(en)n∈Z | en ∈ G1, t (en)= i(en+1), n ∈ Z},

σ :6G→6G, σ (e)n = en+1.

This is a dynamical system with the metric

d(e, f )= inf{1, 2−K−1
| K ≥ 0, e[1−K ,K ] = f[1−K ,K ]}

on the 6G , where e[K ,L] = (eK , eK+1, . . . , eL) for K ≤ L , and e[K+1,K ] = t (eK )=

i(eK+1). It is easy to see that (6G, σ ) is a Smale space with constants εX =λ=
1
2 and

[e, f ]k =
{

fk if k ≤ 0,
ek if k ≥ 1.

The system (6G, σ ) is called the shift of finite type associated to the graph G.

3B. Dimension groups. Krieger [1980] defined two ordered groups in terms of
the clopen sets for the shift of finite type, called the past and future dimension
groups.

Suppose (6, σ ) is a shift of finite type and 6s(e) is the stable equivalence class
of e ∈6. By Proposition 2.1.12 in [Putnam 2014], the set 6s(e) admits a topology
that is second countable and locally compact. This may be different from the
relative topology of 6. Let CO(6, σ ) be the set of nonempty, open and compact
subsets of 6s(e), over all e in 6, and ∼ be the smallest equivalence relation on
CO(6, σ ) such that E ∼ F if [E, F] = E and [F, E] = F and E ∼ F if and only
if σ(E)∼ σ(F), and let [E] denote the equivalence class of E .

Let Ds(6, σ ) be the free abelian group on ∼-equivalence classes of COs(6, σ )

and H be the subgroup generated by [E ∪ F]− [E]− [F], where E , F and E ∪ F
are in COs(6, σ ) and E and F are disjoint. The group Ds(6, σ ) is defined to be
Ds(6, σ )/H .
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The order is obtained by defining

Ds(6, σ )+ = {[E] | E ∈ COs(6, σ )},

and then
Ds(6, σ )+ = {a+ H | a ∈ Ds(6, σ )+}.

The ordered abelian group Du(6, σ ) is defined in a similar way, by replacing the
unstable equivalence classes 6u(e) by 6s(e). Krieger showed how this ordered
group could be computed from the underlying graph of the shift of finite type.

Before going into more detail, we need some notation. If A is a finite set, then the
free abelian group generated by A, ZA, is an ordered abelian group with the positive
cone {z1a1 + · · · + znan | z1, . . . , zn ∈ Z+ ∪ {0}, a1, . . . , an ∈ A, n ∈ N}. In our
notation, A is considered as a subset of ZA. If A, B are finite sets and τ : A→ B
is any function, then there is a unique positive homomorphism 0 : ZA → ZB
extending τ . For the finite set A, the integer-valued bilinear form 〈 , 〉 is defined on
ZA×ZA which is additive in each variable, and for each a, b ∈ A,

〈a, b〉 =
{

1 if a = b,
0 if a 6= b.

For two finite sets A, B and a homomorphism h : ZA→ ZB, there is a unique
homomorphism h∗ : ZB→ ZA such that

〈h(a), b〉 = 〈a, h∗(b)〉

for all a in ZA and b in ZB.
Let A = {a1, . . . , am} and B = {b1, . . . , bn}. We associate a matrix [hi j ]n×m to

the homomorphism h such that the entry hi j is equal to the coefficient bj in h(ai )

when h(ai ) is written in terms of the generating set B. We have

〈h(a), b〉 = 〈a, h∗(b)〉

for a in ZA and b in ZB, that is, [h∗i j ]m×n = ([hi j ]n×m)
T, where MT denotes the

transpose of a matrix M.
Now we compute the dimension group in terms of the underlying graph of the

shift of finite type. Let (G0,G1, i, t) be a graph and (6G, σ ) be the associated shift
of finite type. Suppose ZG0 is the free abelian group on the generating set G0, and
consider the homomorphism

γ s
G : ZG0

→ ZG0, γ s
G(v)=

∑
t (e)=v

i(v) (v ∈ G0).

The past dimension group Ds(G) is defined as the inductive limit of the system

ZG0 γ s
G−−→ZG0 γ s

G−−→· · · .
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Since ZG0 is an ordered group and γ s
G is a positive homomorphism, Ds(G) inherits

an order structure in a natural way. Let us give a brief and simple description of the
elements of Ds(G). Two points (a,m) and (b, n) in ZG0

×N are equivalent, denoted
(a,m)∼s (b, n), if there exists l ∈N∪{0} such that (γ s

G)
n+l(a)= (γ s

G)
m+l(b). The

equivalence class of (a,m) is denoted by [a,m]s and Ds(G) is the set of all
equivalence classes. The positive cone in this group consists of those elements
[a,m]s with (γ s

G)
l(a) ∈ (ZG0)+ for some l ∈ N.

The future dimension group for the graph (G0,G1, i, t) is defined in a similar
way, by replacing the homomorphism γ s

G : ZG0
→ ZG0 by γ u

G , where

γ u
G(v)=

∑
i(e)=v

t (v)

for all v in G0. Note that γ u
G = (γ

s
G)
∗.

It is worth noting that in some places in the computation of the homology, it is
necessary to use the graph Gk instead of G, which does not affect the answer. This
can be viewed as a consequence of the next theorem. The next two results appear
as Theorems 3.3.3 and 3.5.5 in [Putnam 2014], but without the order structure.

Theorem 3.1. Suppose G is a graph, (6G, σ ) is the associated shift of finite type
and k ≥ 1. The homomorphism 9 from Ds(6G, σ ) to Ds(Gk), defined on the
generating elements by 9([6s

G(e, 2− j )])= [e[1− j,k− j−1], j−k+1], e ∈6G , j ≥ k,
is an order isomorphism.

We recall some notation from Section 3.1 of [Putnam 2014], that if B is any
subset of A, Sum(B)=

∑
b∈B b ∈ ZA.

Theorem 3.2. Let G and H be graphs with a graph homomorphism π : H→G and
suppose that the associated map π : (6H , σ )→ (6G, σ ) is s-bijective, k≥ 1, and K
satisfies the conclusion of Lemma 2.7.1 in [Putnam 2014] for π . The induced map
π s
[a, j] = [π s,K (a), j] from Ds(H k) to Ds(Gk+K ) is a positive homomorphism,

where a ∈ ZH k−1, j ≥ 1 and π s,K (q)= Sum{π(q ′) | q ′ ∈ H k+K, t K (q ′)= q}.

3C. The Perron–Frobenius theorem. Let G be a finite directed graph. The ad-
jacency matrix, AG , is #G0

× #G0 and has entries that are the number of edges
between the different vertices of G. The shift of finite type (6G, σ ) is irreducible
if and only if the graph G is irreducible, in the sense that, for each ordered pair of
vertices u and v in G, there exists a path p in G starting at u and terminating at v.
This is also equivalent to the adjacency matrix being irreducible, in the sense that
for each ordered pair of indices i, j , there is some nonnegative integer n such that
(AG)

n
i, j > 0.

The shift of finite type (6G, σ ) is mixing if and only if there is a positive integer
n such that for every ordered pair of vertices u and v in G, there exists a path
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of length n in G starting at u and terminating at v. This is also equivalent to the
adjacency matrix being primitive; that is, there is some positive integer n such that
(AG)

n
i, j > 0 for all 1≤ i, j ≤ m. If this holds for some fixed n, it also holds for all

higher values of n [Lind and Marcus 1995].
Let us recall the Perron–Frobenius theorem [Lind and Marcus 1995, Theo-

rem 4.2.3]. If A is a nonnegative irreducible square matrix, then it has a positive
eigenvalue λA and a right positive eigenvector vA associated to λA, called the Perron
eigenvalue and the Perron eigenvector, respectively, such that |µ| ≤ λA for every
eigenvalue µ of A, and the corresponding eigenspace of λA is both geometrically
and algebraically simple.

Given our presentation using homomorphisms rather than matrices, we state this
in the following fashion. We apply this to both the adjacency matrix for the graph
and its transpose, but these share the same Perron eigenvalue. Assuming that the
graph G is irreducible, there are λG > 0 and vectors vs

G, v
u
G in R+G0 such that

γ s
G(v

s
G)= λGv

s
G, γ

u
G(v

u
G)= λGv

u
G .

We have extended the definition of γ s
G, γ

u
G in the obvious way. We remark that if

we replace G by Gk, for some k ≥ 1, we obtain a higher block presentation of the
shift (see Definition 1.4.1 of [Lind and Marcus 1995]). The Perron eigenvectors are
changed, but not the eigenvalue: λGk = λG .

The Perron eigenvalue in the above result is related to the notion of entropy as
the below result shows. This could be defined for a general dynamical system, but
here we only deal with the shifts of finite type. Let G be a graph and (6G, σ ) be
the corresponding shift of finite type. The entropy of (6G, σ ) is defined [Lind and
Marcus 1995, Definition 4.1.1] by

h(6G, σ )= lim
n→∞

1
n

log #Gn,

where #Gn is the number of paths of length n in G.

Theorem 3.3 [Lind and Marcus 1995, Theorem 4.4.4]. If G is a graph, then we
have h(6G, σ )= log λG .

The Perron–Frobenius theorem also has a nice application for the computation
of the order structure of Ds(6G, σ ), particularly in the mixing case. This follows
from Corollary 4.2 and Theorem 6.1 of [Effros 1981].

Theorem 3.4. Let G be a finite directed graph whose associated shift of finite type
is mixing. For any n ≥ 1 and a in ZG0, the element [a, n] is in Ds(G)+−{0} if and
only if 〈a, vu

G〉 is positive.

We end this section with a result which gives a sufficient condition for the
surjectivity of maps between shifts of finite type.
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Theorem 3.5 [Lind and Marcus 1995, Corollary 4.4.9]. Suppose G and H are
graphs and π : (6G, σ ) → (6H , σ ) is a finite-to-one map. If the graph H is
irreducible and h(6G, σ )= h(6H , σ ), then π is onto.

4. Irreducible s/u-bijective pairs and fibred products

4A. Irreducible bijective pairs. The proof of the existence of s/u-bijective pairs
comes from [Putnam 2005]. Our proof of the existence of irreducible ones must go
back to the same starting point to see how the results of that paper can be improved.

Suppose (X, ϕ) and (Y, ψ) are irreducible Smale spaces and π : (X, ϕ)→ (Y, ψ)
is an almost one-to-one map. In [Putnam 2005], it was shown that there exist
irreducible Smale spaces (X̃ , ϕ̃), (Ỹ , ψ̃) and factor maps α, β, π̃ such that the
following diagram is commutative:

(4-1)

(X̃ , ϕ̃) π̃
//

α

��

(Ỹ , ψ̃)

β

��

(X, ϕ) π
// (Y, ψ)

Moreover, the maps α, β are u-bijective and the map π̃ is s-bijective. Regrettably,
it was not shown that α, β, π̃ are almost one-to-one, which is what we undertake
now. In fact, it will be enough to consider β. (The space (X, ϕ) is appearing in a
somewhat unfortunate position as the domain, but we follow [Putnam 2005] for the
moment.)

The proof involves finding a periodic point y0 in Y with π−1
{y0} = {x0}, a

single point in X. Then W is the unstable set of the orbit of x0 and it is shown
that π(W ) is the unstable set of the orbit of y0. Let dX , dY be the metrics on X
and Y , respectively. We view X and Y as the completions of the spaces (W, dX )

and (π(W ), dY ). The proof of [Putnam 2005] involves introducing new metrics on
W and π(W ), δX and δY , respectively, so that X̃ and Ỹ are their completions. As
these new metrics are greater than or equal to the old ones, the factor maps α, β
appear automatically.

Here, we claim that β−1
{y0} = {x0}. (The references here will all be to [Putnam

2005].) To see this, it suffices to consider a sequence yn in π(W ) which is Cauchy
in δY and converges to y0 in dY and prove that it converges to y0 in δY . For n
sufficiently large, [y0, yn] is defined, and using part 4 of Lemma 2.18, we have

δY (y0, yn)≤ δY (y0, [y0, yn])+ δY ([y0, yn], yn)

≤ δY (y0, [y0, yn])+ (1− rλ)−1dY ([y0, yn], yn).

It suffices for us to show that [y0, yn] converges to y0 in δY . By replacing yn by
[y0, yn], we may assume that yn is in V s(y0, εY ). By part 2 of Proposition 2.12,
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we may assume that yn and y0 are ρ-compatible and then by Lemma 2.10, for all
k ≥ 0 there is Nk ≥ 1 such that g−k(y0) and g−k(yn) are ρ-compatible for n ≥ Nk .

Let ε>0 be given. From the definition of δ0
Y in Definition 2.14, it is bounded by D.

We may find K ≥ 1 such that
∑

k>K r k D < ε/2. Find N ≥max{Nk | 1≤ k ≤ K }
so that for n ≥ N and 0≤ k ≤ K we have

dY (g−k(y0), g−k(yn) <
ε

2(K + 1)
.

It follows from Definition 2.17 and part 4 of Lemma 2.15 that for such n,

δY (y0, yn)=

∞∑
k=0

r kδ0
Y (g
−k(y0), g−k(yn))

≤

K∑
k=0

dY (g−k(y0), g−k(yn)) +

∞∑
k=K+1

r k D

<

K∑
k=0

ε

2(K + 1)
+
ε

2

= ε.

Exactly as in [Putnam 2005], we apply this result as follows. We begin with our
irreducible Smale space (X, ϕ) and find an irreducible shift of finite type (6, σ )
and an almost one-to-one factor map π : (6, σ )→ (X, ϕ). The system which is
called (Ỹ , g̃) above, we denote by (Z , ζ ) and the map β by πu . The fact that Z
has totally disconnected stable sets follows from the facts that 6̃ is also a shift
of finite type and π̃ is s-bijective. Now, we also know that there is x0 in X with
#π−1

u {x0} = 1.
We next want to show that if there is a single point x with #π−1

{x} = 1, this
will also hold for all points with dense forward or backward orbit if we also assume
that π is s-bijective or u-bijective. Recall that the forward orbit of a point x is
{ϕn(x) | n ≥ 0}, while the backward orbit is {ϕn(x) | n ≤ 0}.

Lemma 4.1. Let (Y, ψ) and (X, ϕ) be Smale spaces and π : (Y, ψ) → (X, ϕ)
be an s-bijective (or u-bijective) factor map. Assume there is x0 in X such that
π−1
{x0} = 1. Then for any point x in X with a dense forward (backward) orbit, we

have #π−1
{x} = 1.

Proof. We prove the result in the case that π is s-bijective. List π−1
{x} =

{y1, . . . , yI }. Since the orbit of x is dense, we may find an increasing sequence of
positive integers nk such that ϕnk (x) converges to x0. Passing to a subsequence, we
may assume that for each 1≤ i ≤ I , the sequence ψnk (yi ) converges to some point
of Y , and by continuity, these points must all lie in π−1(x0). It remains to show
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that no two such sequences can have the same limit. If there is 1≤ i 6= j ≤ I , then
d(ψnk (yi ), ψ

nk (yj )) tends to zero as k goes to infinity. Then we have

π(ψnk (yi ))= ϕ
nk (π(yi ))= ϕ

nk (x)= ϕnk (π(yj ))= π(ψ
nk (yi )).

Using the fact that π is s-bijective, Proposition 2.5.2 in [Putnam 2014] implies that,
for k sufficiently large,

ψnk (yi ) ∈ Y u(ψnk (yj ), επ ),

which implies that

yi ∈ Y u(yj , λ
nkεπ ).

Since this is true for all k, we conclude yi = yj , and we are done. �

The set of points with a dense forward orbit is rather large in an irreducible system.
The following result is standard; see, for example, Theorem 5.9 of [Walters 1982].

Proposition 4.2. Let (X, ϕ) be a dynamical system, with X a compact metric space.
If (X, ϕ) is irreducible, then the set of all points x with dense forward orbit is a
dense Gδ subset of X.

It is probably worth noting that Lemma 4.1 and Proposition 4.2 together prove
the following.

Corollary 4.3. Let (Y, ψ) and (X, ϕ) be Smale spaces and π : (Y, ψ)→ (X, ϕ) be
an s-bijective (or u-bijective) factor map. Then π is almost one-to-one if and only
if there is a point x0 in X such that #π−1

{x0} = 1.

We have also now proved Theorem 2.3, that every irreducible Smale space has
an irreducible s/u-bijective pair.

4B. The fibred product of maps. Let π1 : (Y, ψ)→ (X, ϕ) and π2 : (Z , ζ )→
(X, ϕ) be maps between Smale spaces and

Y ×X Z = {(y, z) ∈ Y × Z | π1(y)= π2(z)}

be the fibred product of π1, π2, with the relative topology of Y × Z . By Theorem
2.4.2 in [Putnam 2014], Y×X Z is a Smale space, withψ×ζ(y, z)= (ψ(y), ζ(z)) for
(y, z)∈ Y×X Z . We note that there are natural maps ρ2 : (Y×X Z , ψ×ζ )→ (Z , ζ )
defined by ρ2(y, z)= z and ρ1 : (Y ×X Z , ψ×ζ )→ (Y, ψ) defined by ρ1(y, z)= y.
We also note that if π1 is s-bijective (or u-bijective), then so is ρ2.

The drawback is that the fibred product of maps on irreducible Smale spaces is
not irreducible in general. In this section, we prove the irreducibility of the fibred
product (Y×X Z , ψ×ζ ) under certain natural conditions.



272 MASSOUD AMINI, IAN F. PUTNAM AND SARAH SAEIDI GHOLIKANDI

Proposition 4.4. Let π1 : (Y, ψ)→ (X, ϕ) and π2 : (Z , ζ )→ (X, ϕ) be either
s-bijective or u-bijective, almost one-to-one factor maps between irreducible Smale
spaces. Then the natural maps ρ1 and ρ2 from the fibred product to Y and Z ,
respectively, are also almost one-to-one.

Proof. The set of x in X with #π−1
1 {x} = 1 is a dense Gδ, as is the set of x

with #π−1
2 {x} = 1. It follows that their intersection is nonempty. If x is in this

intersection and π1(y)= x, π2(z)= x , it is a simple matter to see that

ρ−1
2 {z} = {(y, z)} = ρ−1

1 {y}.

We complete the proof by noting that ρ1 and ρ2 are also either s-bijective or
u-bijective and by recalling Corollary 4.3 �

We will need two technical results for the proof of Theorem 2.6. The first is a
characterization of irreducibility.

Lemma 4.5. Let (X, ϕ) be a Smale space. If there exists a point x in X whose
forward orbit clusters on every periodic point of X , then (X, ϕ) is irreducible.

Proof. Let y be an accumulation point of the backward orbit of x . It is clearly
nonwandering and so it is in the closure of the periodic points. It follows that y
is also a limit point of the forward orbit of x . By patching the forward orbit of x
that gets close to y with part of the backward orbit of x that begins close to y, we
can form pseudo-orbits from x to itself and conclude that x is in the nonwandering
set. The orbit of x will remain in the same irreducible component of the nonwan-
dering set. Hence all periodic points are in the same irreducible component. This
implies that there is only one irreducible component. If X contained a wandering
point, its forward orbit and backward orbits would limit on two distinct irreducible
components. As this is not possible, X has no wandering points. �

Lemma 4.6. Let πs : (Y, ψ)→ (X, ϕ) be an s-bijective almost one-to-one factor
map between irreducible Smale spaces. Let x0 be a periodic point of X with
π−1
{x0} = {y1, y2, . . . , yI }. For δ, ε > 0, put U = [Xu(x0, δ), X s(x0, δ)] and, for

1≤ i ≤ I , let

Vi = {x ∈U | π−1
{[x, x0]} ⊆ Y (yi , ε)},

where Y (yi , ε) denotes the open ball at yi of radius ε. Then there exist arbitrarily
small positive pairs δ, ε such that

(i) Vi is open,

(ii) Vi is nonempty,

(iii) [Vi ,U ] ⊂ Vi .
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Proof. First choose ε to be smaller than επ and also smaller than half of the distance
between yi and yj , over all 1≤ i 6= j ≤ I . Then choose δ > 0 so that Lemma 2.5.11
of [Putnam 2014] holds. It follows easily from the continuity of the bracket and
Lemma 2.5.9 of [Putnam 2014] that Vi is open for all i . Let us next fix i and prove
that Vi is nonempty. By hypothesis, there exists a point x ′ with dense forward orbit
and #π−1

{x ′} = 1. Notice that any point in the orbit of x ′ also has these properties,
as does any point stably equivalent to a point in the orbit of x ′. Let y′ in Y be the
unique point with π(y′) = x ′. Since (Y, ψ) is irreducible, the stable equivalence
class of the orbit of y′ is dense. So there exists y′′ stably equivalent to some point
in the orbit of y′ in Y u(yi , ε). Let us check that π(y′′) is in Vi . As ε < επ , we know
[π(y′′), x0]=π([y′′, yi ])=π(y′′) and hence π−1

{[π(y′′), x0]= {y′′}} is in Y (yi , ε).
Finally, we verify the last condition. Suppose that x is in Vi and x1 is in Xu(x0, δ)

and x2 in Xu(x0, δ). Since [x, [x1, x2]] = [x, x2] is in Vi , [[x, x2], x0] = [x, x0] and
the conclusion follows. �

We have most of the ingredients for the proof of Theorem 2.6, but for the last
statement, we need some convenient characterizations of mixing.

Lemma 4.7. Suppose (X, ϕ) is an irreducible Smale space. The following are
equivalent.

(1) (X, ϕ) is mixing.

(2) For any periodic point x in X , we have X s(x)∩ Xu(ϕ(x)) 6=∅ and Xu(x)∩
X s(ϕ(x)) 6=∅.

(3) For some periodic point x in X , we have X s(x)∩ Xu(ϕ(x)) 6=∅ and Xu(x)∩
X s(ϕ(x)) 6=∅.

Proof. This is a consequence of Smale’s spectral decomposition. Let∼ be the equiv-
alence relation on the periodic points of (X, ϕ) in Smale’s spectral decomposition,
that is, for two periodic points x, y ∈ X , x ∼ y if and only if X s(x)∩ Xu(y) 6=∅
and Xu(x)∩ X s(y) 6=∅. Then there are pairwise disjoint clopen sets X1, . . . , X N

whose union is X , ϕ(X i )= ϕ(X i+1) for 1≤ i ≤ N −1, ϕ(X N )= X1 and (X i , ϕ
N )

is a mixing Smale space, for every 1≤ i ≤ N . Moreover each X i is the closure of
an equivalence class of ∼ and these sets are unique up to relabeling.

If we assume that (X, ϕ) is mixing, then N above must equal 1 and the second
condition holds. The second part obviously implies the third. Finally, if x is a
periodic point, so is ϕ(x). Suppose x ∈ X i for some 1 ≤ i ≤ N − 1, X s(x) ∩
Xu(ϕ(x)) 6=∅ and Xu(x)∩ X s(ϕ(x)) 6=∅. Then x ∼ ϕ(x), thus ϕ(x) ∈ X i ∩ X i+1.
Since the X i are pairwise disjoint, X i = X i+1. The same argument shows that
X i = X i+1 = · · · = X N . Similarly, if x ∈ X N , then X N = X1 = · · · = X N−1.
Therefore, N = 1, hence X = X i and (X, ϕ) is a mixing space. �
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Proposition 4.8. If π : (Y, ψ)→ (X, ϕ) is an almost one-to-one factor map between
Smale spaces, (Y, ψ) is irreducible and (X, ϕ) is mixing, then (Y, ψ) is mixing also.

Proof. We will verify the condition of the last lemma. Suppose y is in Y and x is
in X such that π−1

{x} = {y}. Since (X, ϕ) is mixing, it is irreducible and hence
by Proposition 2.3 in [Putnam 2005], we can find a periodic point x0 ∈ X with
#π−1

{x0}=1. Let y0∈Y with π(y0)= x0. Since x0 is periodic and π is finite-to-one,
y0 is a periodic point. By the argument of the proof of Lemma 2.4 in [Putnam 2005],
π−1(X s(x0))=Y s(y0), π−1(X s(ϕ(x0)))=Y s(ψ(y0)), π−1(Xu(x0))=Y u(y0) and
π−1(Xu(ϕ(x0)))= Y u(ψ(y0)). Since (X, ϕ) is a mixing Smale space, we have

X s(x0)∩ Xu(ϕ(x0)) 6=∅, Xu(x0)∩ X s(ϕ(x0)) 6=∅,
which implies

Y s(y0)∩ Y u(ψ(y0))= π
−1(X s(x0))∩π

−1(Xu(ϕ(x0)))

= π−1(X s(x0)∩ Xu(ϕ(x0))
)
6=∅,

Y u(y0)∩ Y s(ψ(y0))= π
−1(Xu(x0))∩π

−1(X s(ϕ(x0)))

= π−1(Xu(x0)∩ X s(ϕ(x0))
)
6=∅.

Therefore, by Lemma 4.7, (Y, ψ) is mixing. �

Proof of Theorem 2.6. The sets of points of X with dense forward and backward
orbits are both dense Gδ’s and so their intersection is nonempty. Let x be a point
in X with a dense forward orbit and a dense backward orbit. Let y and z be its
unique preimages under πs and πu , respectively. By Lemma 4.5, it suffices to
prove that the forward orbit of (y, z) clusters on every periodic point. Let (y1, z1)

be a periodic point in the fibred product. Let x1 = πs(y1) = πu(z1). Enumerate
π−1

s {x1} = {y1, . . . , yI } and π−1
u {x1} = {z1, . . . , z J }.

For small δ, ε, let Vi , 1 ≤ i ≤ I , and Wj , 1 ≤ j ≤ J , be the result of applying
Lemma 4.6 to the maps πs and πu , respectively. Observe that since πu is u-bijective,
the last condition on Wj is [U,Wj ] ⊆Wj . We have

V1 ∩W1 ⊇ [V1,U ] ∩ [U,W1] ⊇ [V1,W1],

which is clearly nonempty. Also V1∩W1 is open. It follows that there is n ≥ 1 with
ϕn(x) ∈ V1 ∩W1. This implies that ψn(y) ∈ Y (y1, ε) and ζ n(z) ∈ Z(z1, ε). Since
ε was arbitrary, this completes the proof of the first part. The mixing case follows
from two applications of Proposition 4.8. �

5. Homology

In this section, we prove the main results on the homology of Smale spaces, stated
in the first section. If (X, ϕ) is a Smale space, then so is (X, ϕn), for any positive
integer n, and if π = (Y, ψ, πs, Z , ζ, πu) is an s/u-bijective pair for (X, ϕ), then



ORDER ON THE HOMOLOGY GROUPS OF SMALE SPACES 275

πn = (Y, ψn, πs, Z , ζ n, πu) is an s/u-bijective pair for (X, ϕn). The results in
Chapters 4 and 5 of [Putnam 2014] show that (CQ,A(6(π)), dQ,A(6(π))) and
(CQ,A(6(πn)), dQ,A(6(πn))) admit the same cocycle and coboundaries. On the
other hand, by Smale’s spectral decomposition, for every irreducible Smale space
(X, ϕ), X can be written as a union of pairwise disjoint clopen subsets X1, . . . , X L

such that ϕL(X i ) = X i for each 1 ≤ i ≤ L , and the (X i , ϕ
L) are mixing Smale

spaces [Smale 1967]. Hence

H s
N (X, ϕ)∼= H s

N (X, ϕ
L)∼=

L⊕
i=1

H s
N (X i , ϕ

L)

for any positive integer N, and this along with Theorem 2.13 allows us to replace
an irreducible Smale space by a mixing one.

Under the assumption that (X, ϕ) is mixing, we find π , an irreducible s/u-
bijective pair for (X, ϕ). It follows at once from Propositions 4.8 and 4.4 and
from Theorem 2.6 that (60,0(π), σ )= (Y×X Z , ψ×ζ ) is mixing and ρs and ρu are
almost one-to-one.

We start with two lemmas that are simpler versions of Theorems 2.10 and 2.11.
Both of these consider the following situation: a shift of finite type (6, σ ), a Smale
space (Y, ψ) and a factor map ρ : (6, σ )→ (Y, ψ) which is either s-bijective or
u-bijective. In Chapter 4 of [Putnam 2014], a complex is formed from such a map.
It is a simpler object than the double complex associated to an s/u-bijective pair,
but its importance lies in the fact that the individual rows and columns of the double
complex all arise in this fashion. Applying this to our map ρs : (60,0(π), σ )→

(Y, ψ) yields the bottom row of our double complex. Similarly, applying this to
our map ρu : (60,0(π), σ )→ (Z , ζ ) yields the left column of our double complex.

To a factor map ρ as above, we let

6N (ρ)= {(x0, . . . , xN ) ∈6
N+1
| ρ(x0)= · · · = ρ(xN )} for all N ≥ 0.

There are obvious maps δn :6N (ρ)→6N−1(ρ) for 0≤ n ≤ N and N ≥ 1.

Lemma 5.1. Let (6, σ ) be a mixing shift of finite type, (Y, ψ) be a mixing Smale
space and ρs : (6, σ )→ (Y, ψ) be an s-bijective, almost one-to-one factor map.
Then Im(δs

0− δ
s
1)∩ Ds(60(ρs))

+
= {0}.

Proof. We begin by finding a graph G whose associated shift (6G, σ ) is conjugate
to (6, σ ). (We suppress the conjugacy in our notation.) From Theorem 4.2.8 in
[Putnam 2014], this G may be chosen so that the map ρs is regular. (The definition
of regular is given in Definition 2.3.3 of [Putnam 2014]. We will not really need it
here, but we will indicate where it is used shortly.)

If (x0, x1) is in 61(ρs), then x0 and x1 are bi-infinite paths in G and if we take
their 0-th entries we obtain a pair in G1

×G1. We let G1
1 be the set of all such pairs
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over all (x0, x1) in 61(ρs) and G0
1 be the image of this set under t× t . Then G1 is a

graph with obvious i, t maps. The significance of our choice that ρs is regular is that

6G1 =61(ρs).

(The elements of the set on the left are infinite sequences of pairs of edges of G,
while those on the right are pairs of infinite sequences of edges of G, but we feel
no confusion will arise from equating the two.)

It is clear from letting x0 = x1 that Gi
1 contains all pairs (a, a) where a is

in Gi. We denote this subgraph by G1
1 . As ρs is s-bijective, any edge in G1 which

terminates in G1
1 must actually be in G1

1 .
Let G ′1 consist of those vertices not in G1

1 and all edges whose initial vertex is
not in G1

1 . This is a graph and its infinite path space 6G ′1 maps to 6G by δ0. If this
map is surjective, then every point of Y has at least two distinct preimages under ρs ,
contrary to our hypothesis. Using Theorem 3.5, we conclude that

log λG ′1 = h(6G ′1, σ )= h(δ0(6G ′1, σ )) < h(6G, σ )= log λG .

It follows that there is a constant C such that #(G ′1)
j
≤ C(λG ′1)

j for all j ≥ 1.
Following the discussion prior to Theorem 4.2.13 of [Putnam 2014], for k ≥ 0

we choose Bk
1 to be a subset of Gk

1 which contains no paths of the form (p0, p1) if
p0= p1 and for p0 6= p1, it contains exactly one of (p0, p1) and (p1, p0). Following
Theorem 4.2.13 of [Putnam 2014], for any k ≥ 0, j ≥ 1, p in Bk

1 , we let

t∗A(p, j)= {(q, α) ∈ Gk+ j
1 × S2 | t j (q)= p, i j (q) ·α ∈ Bk

1 }.

The point here is that any path q with i j (q) = p ∈ Bk
1 ⊆ (G

′

1)
k must lie entirely

in G ′1. It is then clear that #t∗A(p, j) ≤ C(λG ′1)
j+k . The map γ s

Bk
1
: ZBk

1 → ZBk
1

is defined just before Theorem 4.2.13 of [Putnam 2014]. We conclude from the
first part of Theorem 4.2.13 of [Putnam 2014] that if η : ZBk−1

1 → R is any group
homomorphism and a is in ZBk−1

1 , then there is a constant D (depending on a)
such that η((γ s

B1
) j (a)) < D(λG ′1)

j for all j ≥ 1.
Consider the diagram

ZBk
1

γ s
Bk

1
//

Q
��

ZBk
1

Q
��

Q(Gk
1, S2)

γ s
Gk

1
//

δ
s,K
0 −δ

s,K
1
��

Q(Gk
1, S2)

δ
s,K
0 −δ

s,K
1

��

ZGk+K
γ s

Gk+K
// ZGk+K
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The second part of Theorem 4.2.13 of [Putnam 2014] tells us that the top square com-
mutes and that the vertical maps are isomorphisms. The bottom square commutes
by Theorem 4.2.3, Definition 4.2.4 and Theorem 4.2.5 of [Putnam 2014].

We consider η( · ) = 〈(δs,K
0 − δ

s,K
1 ) ◦ Q( · ), vu

Gk+K 〉, where vu
Gk+K is the Perron

eigenvector for γ u
Gk+K . It follows that for any a in ZBk

1 , there is a D such that

D(λG ′1)
j
≥ η((γ s

Bk
1
) j (a))

= 〈(δ
s,K
0 − δ

s,K
1 ) ◦ Q((γ s

Bk
1
) j (a)), vu

Gk+K 〉

= 〈(γ s
Gk+K )

j (δ
s,K
0 − δ

s,K
1 ) ◦ Q(a), vu

Gk+K 〉

= 〈(δ
s,K
0 − δ

s,K
1 ) ◦ Q(a), (γ u

Gk+K )
j (vu

Gk+K )〉

= λ
j
G〈(δ

s,K
0 − δ

s,K
1 ) ◦ Q(a), vu

Gk+K 〉.

As 0<λG ′1 <λG , we conclude that 〈(δs,K
0 −δ

s,K
1 )◦Q(a), vu

Gk+K 〉 is not positive. This
implies that (δs,K

0 −δ
s,K
1 )◦Q(a) is not in Ds(Gk)+−{0}. This holds for every a in

ZBk
1 , but as Q is an isomorphism, we also see that Im(δs,K

0 −δ
s,K
1 )∩Ds(Gk)+={0}.

The conclusion follows. �

Lemma 5.2. Let (6, σ ) be a mixing shift of finite type, (Z , ζ ) be a mixing Smale
space and ρu : (6, σ )→ (Z , ζ ) be a u-bijective, almost one-to-one factor map.
Then the subgroup generated by Ker(δs∗

0 − δ
s∗
1 )∩ Ds(60(ρu))

+ is Ker(δs∗
0 − δ

s∗
1 ).

Proof. First, suppose that we have a strictly positive element a in (ZGk+K )+ such
that (δs∗,K

0 −δ
s∗,K
1 )(a)= 0. Then [a, j] ∈Ker(δs∗

0 −δ
s∗
1 ) for every j in N. It follows

that every [b, j] in Ker(δs∗
0 − δ

s∗
1 ) can be written as the difference

[b, j] = [b+ na, j] − [na, j],

in which n ∈ N. It is a simple consequence of Theorem 3.4 that we may choose n
large enough that b+ na ∈ (ZGk+K

0,0 )+. This means Ker(δs∗
0 − δ

s∗
1 )∩ Ds(60(ρu))

+

generates Ker(δs∗
0 − δ

s∗
1 ).

In order to obtain the element a as above, let us return to the proof of Lemma 5.1,
using ρu and replacing s with u throughout. We now consider the diagram

ZBk
1

γ u
Bk

1
//

J
��

ZBk
1

J
��

A(Gk
1, S2)

γ u
Gk

1
//

δ
u,K
0 −δ

u,K
1
��

A(Gk
1, S2)

δ
u,K
0 −δ

u,K
1

��

ZGk+K
γ u

Gk+K
// ZGk+K
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The third part of Theorem 4.2.13 of [Putnam 2014] tells us that the top square com-
mutes and that the vertical maps are isomorphisms. The bottom square commutes
by Theorem 4.2.3, Definition 4.2.4 and Theorem 4.2.5 of [Putnam 2014].

The same argument as given earlier shows that 〈(δu,K
0 − δ

u,K
1 )(a), vs

Gk+K 〉 is not
positive, for every a in A(Gk

1, S2). But this also applies to −a and it follows that

0= 〈(δu,K
0 − δ

u,K
1 )(a), vs

Gk+K 〉

for every a. Then by Lemma 3.5.6 of [Putnam 2014] (where there is a typo,
switching s∗ and u∗), we get

0= 〈a, (δs∗,K
0 − δ

s∗,K
1 )(vs

Gk+K )〉

for every a. It follows that (δs∗,K
0 − δ

s∗,K
1 )(vs

Gk+K )= 0. If vs
Gk+K had integer entries,

we would be done.
If we view (δ

s∗,K
0 − δ

s∗,K
1 ) as a linear map, the condition above means that

it has a nontrivial kernel. That kernel has a basis and since the transformation
has matrix with integer entries, we can obtain a basis for the kernel consisting of
rational vectors. We know that vs

Gk+K is a positive vector and it also must be a linear
combination of the rational basis for the kernel. If we carefully choose rational
scalars, we may find a rational vector, also in the kernel, and sufficiently close to
vs

Gk+K that all its entries are positive. If we then multiply by a suitable integer, we
find a positive integer vector a ∈ ZGk+K in the kernel of (δs∗,K

0 − δ
s∗,K
1 ). �

Proof of Theorems 2.11 and 2.10. Consider the fibred product 60,0(π) of maps πs

and πu , and let G be a presentation of π . Since (X, ϕ) is mixing, so is 60,0(π), by
Theorem 2.6. From Theorem 5.1.4 of [Putnam 2014], the bottom row in our double
complex is the same as the complex for the map ρs while the first column is the
same as the complex for the map ρu . Now the two theorems follow from Lemmas
5.1 and 5.2, respectively. �

Suppose π and π̃ are the s/u-bijective pairs given in Theorem 2.13. It was
shown in [Putnam 2014] that the homology of Smale spaces is independent of the
corresponding s/u-bijective pair. This was done in Section 4.5 of that paper, where
an isomorphism was found between the homology of the rows of the complexes(⊕

L−M=N C s
Q,A(π)L ,M ,

⊕
L−M=N ds

Q,A(π)L ,M
)

and (⊕
L−M=N C s

Q,A(π̃)L ,M ,
⊕

L−M=N ds
Q,A(π̃)L ,M

)
,

and then using Theorem 3.9 of [McCleary 2001], it was extended to an isomorphism
between the homologies of the complexes(⊕

L−M=N C s
Q,A(π)L ,M ,

⊕
L−M=N ds

Q,A(π)L ,M
)



ORDER ON THE HOMOLOGY GROUPS OF SMALE SPACES 279

and (⊕
L−M=N C s

Q,A(π̃)L ,M ,
⊕

L−M=N ds
Q,A(π̃)L ,M

)
.

We use these isomorphisms to show that H s
0 (π̃) is an ordered group with the

positive cone defined in Definition 2.8, and that these are indeed ordered isomor-
phisms.

Let us first remind the reader that there is a minor mistake in the statement of
Theorem 3.5.11 in [Putnam 2014], used to prove the independence and functorial
properties of the homology for Smale spaces (see Sections 5.4 and 5.5 in that paper).
Deeley and coauthors proved that the surjectivity condition in this theorem must be
replaced by the conjugacy condition [Deeley et al. 2016]. It follows that we also
need the conjugacy condition in Theorem 5.4.1 in [Putnam 2014]. Here we state
the correct versions of these results from [Deeley et al. 2016].

Theorem 5.3. Suppose that

(6, σ )
η1
//

η2
��

(61, σ )

π1
��

(62, σ )
π2
// (60, σ )

is a commutative diagram of nonwandering shifts of finite type, in which η1 and π2

are s-bijective factor maps, and η2 and π1 are u-bijective factor maps. If

η2× η1 : (6, σ )→ (62, σ ) π2×π1 (61, σ )

is a conjugacy, then

(5-1) ηs
1 ◦ η

s∗
2 = π

s∗
1 ◦π

s
2 : D

s(62, σ )→ Ds(61, σ ).

Theorem 5.4. Let π = (Y, ψ, πs, Z , ζ, πu) and π ′ = (Y ′, ψ ′, π ′s, Z ′, ζ ′, π ′u) be s/u-
bijective pairs for the Smale spaces (X, ϕ) and (X ′, ϕ′), respectively, and η =
(ηY , ηX , ηZ ) be a triple of factor maps such that the following diagram commutes:

(Y, ψ)
πs
//

ηY
��

(X, ϕ)

ηX
��

(Z , ζ )
πu
oo

ηZ
��

(Y ′, ψ ′)
π ′s
// (X ′, ϕ′) (Z ′, ζ ′)

π ′u
oo

(i) If η is a triple of s-bijective maps and

πu × ηZ : (Z , ζ )→ (X, ϕ) ηX
×π ′u (Z

′, ζ ′)
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is a conjugacy, then for L ≥ 0,M ≥ 1,

(6L ,M(π))
ηL ,M

//

δ,m

��

(6L ,M(π
′))

δ′,m
��

(6L ,M−1(π))
ηL ,M−1

// (6L ,M−1(π
′))

and for L ≥ 1,M ≥ 0,

(6L ,M(π))
ηL ,M

//

δl,

��

(6L ,M(π
′))

δ′l,
��

(6L−1,M(π))
ηL−1,M

// (6L−1,M(π
′))

are commutative diagrams and

ηL ,M × δ,m : (6L ,M(π))→ (6L ,M(π
′)) δ′,m×ηL ,M−1

(6L ,M−1(π))

is a conjugacy. Moreover, η induces chain maps between the complexes C s
Q,A(π)

and C s
Q,A(π

′), and hence group homomorphisms ηs∗
: H s

N (π)→ H s
N (π

′) for every
integer N.

(ii) If η is a triple of u-bijective maps and

πs × ηY : (Y, ψ)→ (X, ϕ) ηX
×π ′s (Y

′, ψ ′)

is a conjugacy, then for L ≥ 0,M ≥ 1,

(6L ,M(π))
ηL ,M

//

δ,m

��

(6L ,M(π
′))

δ′,m
��

(6L ,M−1(π))
ηL ,M−1

// (6L ,M−1(π
′))

and for L ≥ 1,M ≥ 0,

(6L ,M(π))
ηL ,M

//

δl,

��

(6L ,M(π
′))

δ′l,
��

(6L−1,M(π))
ηL−1,M

// (6L−1,M(π
′))

are commutative diagrams and

ηL ,M × δl, : (6L ,M(π))→ (6L ,M(π
′)) δ′l,×ηL−1,M

(6L−1,M(π))
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is a conjugacy. Moreover, η induces chain maps between the complexes C s
Q,A(π

′)

and C s
Q,A(π), and hence group homomorphisms ηs∗

: H s
N (π

′)→ H s
N (π) for every

integer N.

We remark that the results obtained in [Putnam 2014] (the independence and
functorial properties) are all correct, because the diagrams constructed there satisfy
the conjugacy condition.

By Theorem 3.2, both maps ηs
1 ◦η

s∗
2 and π s∗

1 ◦π
s
2 in (5-1) are positive homomor-

phisms.

Theorem 5.5. For graphs G, H , suppose θ : H → G is a left-covering graph
homomorphism, (X, ϕ) is a Smale space and ρ : (6G, σ )→ (X, ϕ) is a regular
s-bijective factor map. The map θ induces an isomorphism between the homologies
of the chain complexes (Ds(6∗(ρ ◦ θ)), ds(ρ ◦ θ)) and (Ds(6∗(ρ), ds(ρ)).

In fact, the map θ induces homomorphisms θ s
∗

at all levels of the complexes with
the commutative diagram

Ds(H k
N )

ds(ρ◦θ)N
//

θ s
N
��

Ds(H k+K
N−1 )

θ s
N−1
��

Ds(Gk
N )

ds(ρ)N
// Ds(Gk+K

N−1)

for each N ≥ 1 and k ≥ 0, where K ≥ 1 satisfies the conclusion of Lemma 2.7.2 in
[Putnam 2014] for the map ρ.

To show that the induced homomorphism on the homology of the above com-
plexes by θ s

∗
is an isomorphism, one could choose a lifting map λ : G0

→ H 0 with
θ ◦ λ= IdG0 . Then Lemma 4.5.4 in [Putnam 2014] shows that, for each N ≥ 0,

(5-2) ds,K (ρ ◦ θ)N ◦ λ= λ ◦ ds,K (ρ)N .

We claim that

θ s(Ker(ds(θ ◦ ρ)N )∩ (Ds(H k
N ))
+
)
= Ker(ds(ρ)N )∩ (Ds(Gk

N ))
+,

θ s(Im(ds(θ ◦ ρ)N+1)∩ (Ds(H k+K
N ))+

)
= Im(ds(ρ)N+1)∩ (Ds(Gk+K

N ))+.

By Theorem 3.2,

θ s(Ker(ds(θ ◦ ρ)N )∩ (Ds(H k
N ))
+
)
⊆ Ker(ds(ρ)N )∩ (Ds(Gk

N ))
+

and

θ s(Im(ds(θ ◦ ρ)N+1)∩ (Ds(H k+K
N ))+

)
⊆ Im(ds(ρ)N+1)∩ (Ds(Gk+K

N ))+.
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Suppose that b ∈ ZGk
N+1 and j ≥ 0, with ds(ρ)N+1([b, j]) in Ds(Gk+K

N )+. By
Theorem 4.2.3 in [Putnam 2014],

ds(ρ)N+1([b, j])= [ds,K (ρ)N+1(b), j] ∈ Ds(Gk+K
N )+,

which implies that, for some j ′ ≥ 0,

(γ s
G N
) j ′(ds,K (ρ)N+1(b)) ∈ (ZGk+K

N )+.

By Theorem 4.2.3 in [Putnam 2014],

(γ s
G N
) j ′(ds,K (ρ)N+1(b))= ds,K (ρ)N+1((γ

s
G N
) j ′(b)) ∈ (ZGk+K

N )+.

Let b1 = (γ
s
G N
) j ′(b) and j1 = j ′+ j . Then

[ds,K (ρ)N+1(b), j] = [ds,K (ρ)N+1(b1), j1],

and since λ((ZGk
N+1)

+)⊆ (ZH k
N+1)

+, it follows from (5-2) that

ds,K (ρ ◦ θ)N+1 ◦ λ(b1)= λ ◦ ds,K (ρ)N+1(b1) ∈ (ZH k+K
N )+.

Let a1 = λ(b1). Applying θ s,0
= θ to both sides of the above equality,

θ s,0(ds,K (ρ ◦ θ)N+1(a1))= θ
s,0(λ ◦ ds,K (ρ)N+1(b1))= ds,K (ρ)N+1(b1),

hence

[θ s,0(ds,K (ρ ◦ θ)N+1(a1)), j1] = [ds,K (ρ)N+1(b1), j1] = [ds,K (ρ)N+1(b), j],

and so

θ s(ds(ρ)N+1[a1, j1])= ds(ρ)N+1([b, j]).

Since b is an arbitrary element in ZGk
N+1 with

ds(ρ)N+1([b, j]) ∈ Ds(Gk+K
N )+,

the last equality implies

Im(ds(ρ)N+1)∩ (Ds(Gk+K ))+ ⊆ θ s(Im(ds(θ ◦ ρ)N+1)∩ (Ds(H k+K ))+
)
.

A similar argument shows that

Ker(ds(ρ)N )∩ (Ds(Gk))+ ⊆ θ s(Ker(ds(θ) ◦ ρ)N ∩ (Ds(H k))+
)
.

Combining Theorems 3.1 and 5.5 with Theorem 4.5.3 in [Putnam 2014], we get
the following result.
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Theorem 5.6. Suppose (X, ϕ) is a Smale space and (6, σ ), (6′, σ ) are shifts of
finite type with s-bijective maps ρ : (6, σ )→ (X, ϕ) and ρ ′ : (6′, σ )→ (X, ϕ).
Let (Y ′′, ψ ′′) be the fibred product of maps ρ : (6, σ )→ (X, ϕ) and ρ ′ : (6′, σ )→
(X, ϕ), and η, η′ be the natural s-bijective maps from (Y ′′, ψ ′′) to (Y, ψ) and
(Y ′, ψ ′), respectively. Then

(i) a chain map ηs from
(
Ds(6N (ρ ◦ η)), ds(ρ ◦ η)N

)
to
(
Ds(6N (ρ)), ds(ρ)N

)
exists such that

ηs(Ker(ds(ρ ◦ η)N )∩ Ds(6N (ρ ◦ η))
+
)
= Ker

(
ds(ρ)N ∩ Ds(6N (ρ))

+
)
,

ηs(Im(ds(ρ ◦ η)N )∩ Ds(6N (ρ ◦ η))
+
)
= Im

(
ds(ρ)N ∩ Ds(6N (ρ))

+
)
;

(ii) a chain map C ′ from
(
Ds(6N (ρ

′
◦η′)), ds(ρ ′◦η′)N

)
to
(
Ds(6N (ρ

′)), ds(ρ ′)N
)

exists such that

η′
s(Ker(ds(ρ ′ ◦ η′)N )∩ Ds(6N (ρ

′
◦ η′))+

)
= Ker

(
ds(ρ ′)N ∩ Ds(6N (ρ

′))+
)
,

η′
s(Im(ds(ρ ′ ◦ η′)N )∩ Ds(6N (ρ

′
◦ η′))+

)
= Im

(
ds(ρ ′)N ∩ Ds(6N (ρ

′))+
)
;

(iii) ηs and η′s induce isomorphisms at the level of the associated homologies of
the chain complexes.

As in Section 5.5 of [Putnam 2014], we prove Theorem 2.13 in the case Z = Z̃ ,
ζ = ζ̃ and πu = π̃u . The case Y = Ỹ , ψ = ψ̃ and πs = π̃s is proved in a similar
way, and the general result follows from these two special cases.

Let (Y ′, ψ ′) denote the fibred product of the maps πs : (Y, ψ)→ (X, ϕ) and
π̃s : (Ỹ , ψ̃)→ (X, ϕ), and η′, η̃′ denote the natural s-bijective maps from (Y ′, ψ ′)
to (Y, ψ) and (Ỹ , ψ̃), respectively. Then π ′ = (Y ′, ψ ′, πs ◦ η

′, Z , ζ, πu) is an s/u-
bijective pair for the Smale space (X, ϕ), and the following diagram is commutative:

(5-3)

(Y ′, ψ ′)
πs◦η

//

η′

��

(X, ϕ)

IdX
��

(Z , ζ )
πu
oo

IdZ
��

(Y, ψ)
πs
// (X, ϕ) (Z , ζ )

πu
oo

This diagram satisfies the conditions of the first part of Theorem 5.4, and the triple
of s-bijective η = (η′, IdX , IdZ ) induces a chain map on the double complexes
used to define H s

N (π
′) and H s

N (π), N ∈ Z. Since Ds
Q,A(6(π), σ )= Ds(6(π), σ ),

Ds
Q,A(6(π

′), σ ) = Ds(6(π ′), σ ), and ηs
L ,M , η

u∗
L ,M are positive homomorphisms,

by Theorem 3.2, we have

(5-4)
ηs

0,0
(
Ker(ds(π)0,0)∩ Ds(6(π), σ )+

)
⊆ Ker(ds(π ′)0,0)∩ Ds(6(π ′), σ )+

ηs
0,0
(
Im(ds(π)1,0)∩ Ds(6(π))+

)
⊆ Im(ds(π ′)1,0)∩ Ds(6(π ′), σ )+
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Let HN (η) be the induced homomorphism by the chain map ηs
∗,∗ at the level

of homologies from HN (π
′) to H s

N (π). This is known to be an isomorphism. We
claim that this is an ordered isomorphism after proving that HN (π

′) is an ordered
group. To prove that HN (π

′) is an ordered group, it suffices to show that the
inclusions in (5-4) are indeed equalities.

To prove that HN (η) is an isomorphism, for N ∈ Z, one needs to consider the
filtrations F pC s

Q,(π
′) and F pC s

Q,(π) for the differential graded abelian groups
(H s(π ′), ds

Q,A(π
′)) and (H s(π), ds

Q,A(π)), respectively, as in Section 5.5 of [Put-
nam 2014]. These filtrations satisfy the conditions of Theorem 3.9 in [McCleary
2001]. According to this theorem, every isomorphism 81 between E∗,∗1 terms of
the associated spectral sequences (of these filtration differential graded modules)
induces an isomorphism8∞ between E∞ terms of the associated spectral sequences
(roughly, 8∞(a)=81(a), when we regard a as an element of the associated E∗,∗1
term). The isomorphism HN (η) is then constructed using the isomorphisms between
the E∞ terms, for N ∈ N. The E∗,∗1 terms for each of these filtrations are the
homologies of the rows of the corresponding complexes, that is,

E p,q
1 (π)= Ker(d̃s(ρ,M)L)/ Im(d̂s(ρ,M)L+1),

and the same for π ′, where

d̃s(ρ,M)L = ds(ρ,M)L |
⊕

L≥2p+q,M=p Cs
Q,(π)

and
d̂s(ρ,M)L+1 = ds(ρ,M)L+1|

⊕
L≥2p+q+1,M=p Cs

Q,(π)
.

Since θ and ρu in6(π ′) θ
−→6(π)

ρu
−→(Z , ζ ) are s-bijective maps, where θ((y, ỹ), z)

= (y, z), by Theorem 5.6, we have a chain map θ s from (C s(π ′)∗,M , ds((ρu◦θ),M)∗)

to (C s(π)∗,M , ds((ρu),M)∗) that induces an isomorphism Hθ at the level of homolo-
gies of the complexes for fixed M ≥ 0, so that

θ s(Ker(ds(ρ,M)L)∩ (C s(π ′)L ,M)
+
)
= Ker(ds(ρ,M)L)∩ (C s(π)L ,M)

+

and

θ s(Im(ds(ρ,M)L+1)∩ (C s(π ′)L ,M)
+
)
= Im(ds(ρ,M)L+1)∩ (C s(π)L ,M)

+

for each L ≥ 0 and fixed M ≥ 0.
If one lifts Hθ at the level of homologies of the complexes

(C s
Q,(π

′)∗,M , ds
Q,((ρu ◦ θ),M)∗), (C s

Q,(π)∗,M , ds
Q,((ρu),M)∗),

by the first part of Theorem 4.3.1 in [Putnam 2014], for fixed M ≥ 0, since

C s
Q,(π

′)0,0 = C s(π ′)0,0 = Ds(60,0(π
′), σ )
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and
C s
Q,(π0)0,0 = C s(π)0,0 = Ds(60,0(π), σ ),

for
K s(π) := Ker(ds(ρ,0)0)∩ (Ds(60,0(π

′), σ ))+

and
I s(π) := Im(ds(ρ,0)0)∩ (Ds(60,0(π

′), σ ))+

we have
Cθ (K s(π ′))= K s(π), Cθ (I s(π ′))= I s(π ′).

In fact, Hθ is an isomorphism between the terms E∗,∗1 (π ′) and E∗,∗1 (π). Therefore,
Theorem 3.9 in [McCleary 2001] implies that there is an isomorphism Hθ at the level
of homologies of the complexes (C s

Q,(π
′), ds

Q,(π
′)) and (C s

Q,(π), ds
Q,(π)), which

is constructed by the induced isomorphism H∞ on E∗,∗
∞

terms with Hθ (roughly,
H∞(a) = Hθ (a) when we regard a ∈ E∗,∗

∞
as an element of E∗,∗1 ). Since the

isomorphism Hθ is directly defined by H∞ (or Hθ ), it is the same as the induced ho-
momorphism by the chain map ηs

Q,, where η= (η′, IdX , IdZ ) is the triple s-bijective
map in the diagram (5-3) and ηs

Q, exactly behaves like θ s, when θ s is considered as a
map on the domain of ηs

Q,. On the other hand, since the maps u and ū in the proof of
Theorem 3.9 in [McCleary 2001] are natural and Ds

Q,(60,0, σ )= Ds(60,0, σ ), for

K s
Q, (π) := Ker(ds

Q,(π
′)0,0)∩ (Ds(60,0(π

′), σ ))+

and
I s
Q, (π) := Im(ds

Q,(π
′)1,0)∩ (Ds(60,0(π

′), σ ))+

we have

(5-5) ηs
Q,(K

s
Q, (π

′))= K s
Q, (π), ηs

Q,(I
s
Q, (π

′))= I s
Q, (π).

Let J (π ′) and J (π) be the isomorphisms induced by the chain maps JQ(π ′)
and JQ(π), as in Theorem 5.3.2 in [Putnam 2014], respectively. Then H0(η) =

J (π) ◦Hθ ◦J (π ′)−1 and it is an isomorphism from H s
N (π

′) to H s
N (π), and since

Ds
Q,A(60,0, σ )= Ds(60,0, σ ), for

K s
Q,A(π) := Ker(ds

Q,A(π)0,0)∩ (D
s(60,0(π), σ ))

+

and
I s
Q,A(π) := Im(ds

Q,A(π)1,0)∩ (D
s(60,0(π), σ ))

+

we have

(5-6) JQ(π)(K s
Q,A(π

′))= K s
Q,(π), JQ(π)(I s

Q,A(π
′))= I s

Q,(π).

The equalities (5-5) and (5-6) show that Ker(ds
Q,A(π

′)0,0) contains positive elements
if and only if Ker(ds

Q,A(π)0,0) does so (and the same holds for Im(ds
Q,A(π

′)1,0) and
Im(ds

Q,A(π)1,0)). Since Im(ds
Q,A(π)1,0) does not contain any positive element, and
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Ker(ds
Q,A(π)0,0) contains at least one positive element, Im(ds

Q,A(π
′)1,0) could not

contain any positive element and Ker(ds
Q,A(π

′)0,0) contains at least one positive ele-
ment, and these imply that H s

0 (π
′) is an ordered group with the positive cone defined

as above. Also by (5-5) and (5-6), H(η) is an order isomorphism. Replacing (Ỹ , ψ̃)
by (Y, ψ) in (5-3), we get that H s

0 (π̃) is an ordered group with the positive cone
defined as in Definition 2.8 and H(η̃)= H s

N (π
′)→ H s

N (π̃) is an order isomorphism.
Finally, H0(η̃) ◦ H0(η)

−1 is an order isomorphism from H s
0 (π) to H s

0 (π̃).

Proof of Theorem 2.14. We only prove the first part. The other is proved in a
similar way. By Theorem 4.2 in [Deeley et al. 2016], we can find s/u-bijective pairs
π = (Y, ψ, πs, Z , ζ, πu) and π ′ = (Y ′, ψ ′, π ′s, Z ′, ζ ′, π ′u) for Smale spaces (X, ϕ)
and (X ′, ϕ′), respectively, and s-bijective maps ηY and ηZ , such that the diagram

(Y, ψ)
πs
//

ηY
��

(X, ϕ)

ρ

��

(Z , ζ )
πu
oo

ηZ
��

(Y ′, ψ ′)
π ′s
// (X ′, ϕ′) (Z ′, ζ ′)

π ′u
oo

commutes and πu×ηZ : (Z , ζ )→ (X, ϕ) ρ×π ′u (Z
′, ζ ′) is a conjugacy. Therefore, ρ

induces a positive homomorphism ρs
0 : H

s
0 (X, ϕ)→ H s

0 (X
′, ϕ′), by Theorems 5.4,

3.2 and 2.13, and the order structure is independent of the s/u-bijective pair. �
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