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WEIGHTED SOBOLEV REGULARITY
OF THE BERGMAN PROJECTION

ON THE HARTOGS TRIANGLE

LIWEI CHEN

We prove a weighted Sobolev estimate of the Bergman projection on the
Hartogs triangle, where the weight is some power of the distance to the
singularity at the boundary. This method also applies to the n-dimensional
generalization of the Hartogs triangle.

1. Introduction

Setup and background. Let� be a domain in Cn. The set of square integrable holo-
morphic functions on �, denoted by A2(�), forms a closed subspace of the Hilbert
space L2(�). The Bergman projection associated to � is the orthogonal projection

B : L2(�)→ A2(�),

which has an integral representation

(1-1) B( f )(z)=
∫
�

B(z, ζ ) f (ζ ) d(ζ ),

for all f ∈ L2(�) and z ∈ �. Here the function B(z, ζ ) defined on �×� is the
Bergman kernel, and d(ζ )= dV (ζ ) is the usual Euclidean volume form.

The regularity of the Bergman projection B associated to � in L p(�), W k,p(�),
and Hölder spaces are of particular interest. When � is bounded, smooth, and pseu-
doconvex with additional geometric condition on the boundary (e.g., strongly pseu-
doconvex), the regularity of B in these spaces has been intensively studied in the liter-
ature. See, for example, [Lanzani and Stein 2012] and references therein for details.

When � is nonsmooth, there are relatively few results in regard to the regularity
of the Bergman projection. Even in L p(�), we cannot expect the regularity to hold
for all p ∈ (1,∞). If � is a simply connected planar domain, then the interval
of p for B to be L p-bounded highly depends on the geometry of the boundary; see
[Lanzani and Stein 2004]. If � is a nonsmooth worm domain, then the interval of p
depends on the winding of the domain; see [Krantz and Peloso 2008]. If � is an
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inflation of the unit disc by the norm square of a nonvanishing holomorphic function,
then the interval of p depends on the boundary behavior of the holomorphic function
on the unit disc; see [Zeytuncu 2013].

Results. In this article, we consider the Sobolev regularity of the Bergman projec-
tion B on the Hartogs triangle H, where the Hartogs triangle is defined as

H= {(z1, z2) ∈ C2
| |z1|< |z2|< 1}.

The Hartogs triangle is a classical nonsmooth domain in C2. It is well known
that the boundary at (0, 0) is not even Lipschitz, and the topological closure of H

does not possess a Stein neighborhood basis. In [Chen 2017a], the L p regularity
of B on H was studied: the Bergman projection B is L p-bounded if and only if
p ∈

( 4
3 , 4

)
. On the other hand, we have z2 ∈W k,p(H) for all nonnegative integers k

and all p ∈ [1,∞], but B(z2)= c/z2 /∈W 1,p(H) for p≥ 2, where c is some nonzero
constant. So we cannot expect to obtain regularity in the ordinary Sobolev spaces,
nor for all p ∈ (1,∞).

A natural way to control the boundary behavior of singularities is the use of
weights which measure the distance from the points near the boundary to the
singularity at the boundary. Since on the Hartogs triangle we have |z2| < |z| <√

2|z2|, where z = (z1, z2) ∈ H, it is reasonable to consider a weight of the form
|z2|

s , for some s ∈ R. On the other hand, based on the L p mapping property of the
Bergman projection on H (see [Chakrabarti and Zeytuncu 2016]) and the Sobolev
regularity of the weighted canonical solution operator of the ∂-equation on H (see
[Chakrabarti and Shaw 2013]), it is also reasonable to put a weight of the form |z2|

s

on the target space. Therefore, we consider the following weighted Sobolev spaces:

Definition 1.1. On the Hartogs triangle H, for each k ∈ Z+ ∪ {0}, s ∈ R, and
p ∈ (1,∞), we define the weighted Sobolev space by

W k,p(H, δs)= { f ∈ L1
loc(H) | ‖ f ‖k,p,s <∞},

where δ(z)= |z2| ≈ |z|, and the norm is defined as

‖ f ‖k,p,s =
(∫

H

∑
|α|≤k

|Dα
z,z( f )(z)|p|z2|

s dz
)1/p

.

Here α = (α1, α2, α3, α4) is the multi-index running over all |α| ≤ k, and

Dα
z,z =

∂ |α|

∂zα1
1 ∂zα2

2 ∂zα3
1 ∂zα4

2
.
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We also denote the usual norm in the (unweighted) Sobolev space W k,p(H) by

‖ f ‖k,p =
(∫

H

∑
|α|≤k

|Dα
z,z( f )(z)|p dz

)1/p

.

With the definition above, we can state our main result:

Theorem 1.2. The Bergman projection B on the Hartogs triangle H maps continu-
ously from W k,p(H) to W k,p(H, δkp) for p ∈

( 4
3 , 4

)
.

That is, for each k ∈ Z+ ∪ {0} and p ∈
( 4

3 , 4
)
, there exists a constant Ck,p > 0,

such that
‖B( f )‖k,p,kp ≤ Ck,p‖ f ‖k,p for any f ∈W k,p(H).

Remark 1.3. It is clear that B doesn’t lose any derivatives away from the singular
point of the Hartogs triangle. If we put a suitable power of the weight δ around
the singularity on the target space, then there is no loss of differentiability of B( f )
around the singular point (see also the result in [Chakrabarti and Shaw 2013]).

Remark 1.4. Note that we have B(z2)= c/z2 /∈W k,p(H, δkp) for p ≥ 4, where c
is some nonzero constant. So we cannot obtain regularity for p ≥ 4, unless we use
more weights on the target space. Conversely, we can only obtain regularity for
fewer values of p, if we use less weights on the target space.

Organization and outline. The idea of the proof of the main result is the following.
In Section 2, we start with an idea from [Chakrabarti and Shaw 2013] to transfer H to
the product model D×D∗, as well as to transfer the differential operators Dα to the
ones in new variables. From this, we focus on the integration over the punctured disc
D∗ in Section 3. We then use an idea from [Straube 1986] to convert Dα acting on
the Bergman kernel in the holomorphic component to the ones acting on the kernel
in the antiholomorphic part. The resulting differential operators can be written as
a combination of tangential operators, and therefore, integration by parts applies to
the smooth functions. Finally, in Section 4, we apply the weighted L p estimates in
[Chen 2017b] to our integral, and the resulting integral is majorized by the weighted
L p norm of Dα( f ). To complete the proof, we approximate the weighted Sobolev
functions by smooth functions and transfer the product model back to H.

2. Transfer to the product model

Transfer H to D × D∗. In view of Definition 1.1, we adopt the following notation.

Definition 2.1. Let β = (β1, β2) be a multi-index, we use the notations below to
denote the differential operators

Dβ
z =

∂ |β|

∂zβ1
1 ∂zβ2

2

and Dβ

z j ,z j
=

∂ |β|

∂zβ1
j ∂zβ2

j

for j = 1, 2.
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From the result in [Chen 2017a], we see that B( f ) ∈ Ap(H) (the set of L p

functions that are holomorphic), whenever p ∈
( 4

3 , 4
)

and f ∈ L p(H). So we can
rewrite the weighted L p Sobolev norm of B( f ) as

(2-1) ‖B( f )‖p
k,p,kp =

∑
|β|≤k

∫
H

∣∣Dβ
z (B( f ))(z)

∣∣p
|z2|

kp dz,

where β and Dβ
z are as in Definition 2.1.

In order to transfer H to the product model, we first recall the transformation
formula for the Bergman kernels.

Proposition 2.2. Let �j be a domain in Cn and Bj be its Bergman kernel on
�j ×�j , j = 1, 2. Suppose 9 :�1→�2 is a biholomorphism, then for (w, η) ∈
�1×�1 we have

det JC9(w)B2(9(w),9(η)) det JC9(η)= B1(w, η).

Proof. See, for example, [Krantz 1992, Proposition 1.4.12]. �

Now let us consider the biholomorphism 8 : H → D × D∗ with its inverse
9 : D×D∗→ H, where

8(z1, z2)=
( z1

z2
, z2

)
and 9(w1, w2)= (w1w2, w2).

A simple computation shows det JC9(w) = w2, for w = (w1, w2) ∈ D × D∗.
Therefore, by the proposition above, we have

(2-2) B(9(w),9(η))=
1

w2η2
·

1
(1−w1η1)2

·
1

(1−w2η2)2
,

where B is the Bergman kernel on H×H as in (1-1) and (w, η) ∈D×D∗×D×D∗.

Transfer the differential operators. We next need to transfer the differential oper-
ators Dβ

z to the ones in the new variable w. We need a lemma.

Lemma 2.3. Under the biholomorphism 8(z)= w, for each β let m = |β|. Then

(2-3) Dβ
z =

∑
a+b≤m

pa,b,β(w1)

wm−b
2

·
∂a+b

∂wa
1∂w

b
2
,

where pa,b,β(w1) is a polynomial of degree at most m in variable w1. In addition,
if |β| ≤ k for some k ∈ Z+ ∪ {0}, then |pa,b,β(w1)| ≤ Ck on D uniformly in β, a,
and b, for some constant Ck > 0 depending only on k.

Proof. We prove (2-3) by induction on m = |β|. The case m = 0 is trivial. When
m = 1, a direct computation shows

∂

∂z1
=

1
w2
·
∂

∂w1
and ∂

∂z2
=−

w1
w2
·
∂

∂w1
+

∂

∂w2
.
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So both ∂/∂z1 and ∂/∂z2 are of the form in (2-3).
Suppose for all β with |β| = m, the Dβ

z are of the form in (2-3). We now check
the case |β ′| = m + 1. Note that Dβ ′

z = (∂/∂z1) ◦ Dβ
z or Dβ ′

z = (∂/∂z2) ◦ Dβ
z for

some β. By the inductive assumption, we have

∂

∂z1
◦ Dβ

z =
1
w2
·
∂

∂w1
◦

∑
a+b≤m

pa,b,β(w1)

wm−b
2

·
∂a+b

∂wa
1∂w

b
2

=

∑
a+b≤m

p′a,b,β(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
+

pa,b,β(w1)

wm+1−b
2

·
∂a+b+1

∂wa+1
1 ∂wb

2

=

∑
a+b≤m+1

pa,b,β ′(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
,

and

∂

∂z2
◦ Dβ

z =

(
−
w1

w2
·
∂

∂w1
+

∂

∂w2

)
◦

∑
a+b≤m

pa,b,β(w1)

wm−b
2

·
∂a+b

∂wa
1∂w

b
2

=

∑
a+b≤m

−w1 p′a,b,β(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
+
−w1 pa,b,β(w1)

wm+1−b
2

·
∂a+b+1

∂wa+1
1 ∂wb

2

+
(b−m)pa,b,β(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
+

pa,b,β(w1)

wm−b
2

·
∂a+b+1

∂wa
1∂w

b+1
2

=

∑
a+b≤m+1

pa,b,β ′(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
.

We see that pa,b,β ′(w1) is a polynomial of degree at most m+ 1 and Dβ ′

z has the
form in (2-3).

When |β| ≤ k, all the possible combinations of derivatives in Dβ
z are finite. So

there are finitely many different coefficients in all of the pa,b,β(w1). Since |w1| ≤ 1
on D and a, b ≤ m ≤ k, we obtain |pa,b,β(w1)| ≤ Ck on D as desired. �

Now we can transfer H to the product model D×D∗ by the biholomorphism 8.
Combining (2-2) and (2-3), we see that the right hand side of (2-1) becomes

(2-4)
∑
|β|≤k

∫
D×D∗

∣∣∣∣ ∑
a+b≤|β|

∫
D×D∗

Ka,b,β(w, η) f (9(η))|η2|
2 dη

∣∣∣∣p

|w2|
kp+2 dw,

where

Ka,b,β(w, η)=
pa,b,β(w1)

w
|β|−b
2

·
∂a

∂wa
1

(
1

(1−w1η1)2

)
·
∂b

∂wb
2

(
1

w2η2
·

1
(1−w2η2)2

)
.
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3. Convert the differential operators on D∗

Convert to the antiholomorphic part. Since D∗ is a Reinhardt domain, by using
the idea in [Straube 1986], we can convert the differential operators as follows.

Lemma 3.1. As in (2-4), for the last factor in Ka,b,β(w, η), we have

(3-1)
∂b

∂wb
2

(
1

w2η2
·

1
(1−w2η2)2

)
=
ηb

2

wb
2
·
∂b

∂ηb
2

(
1

w2η2
·

1
(1−w2η2)2

)
.

Proof. The kernel in (3-1) is the weighted Bergman kernel associated to D∗ with
the weight |z|2; see [Chen 2017b]. It has the expansion

1
w2η2

·
1

(1−w2η2)2
=

∞∑
j=0

( j + 1)(w2η2)
j−1,

which converges uniformly on every compact subset K×K ⊂D∗×D∗. Differentiate
the series term by term, and we see that

wb
2 ·

∂b

∂wb
2

(
1

w2η2
·

1
(1−w2η2)2

)
=

∞∑
j=0

( j + 1)wb
2 ·

∂b

∂wb
2
(w2η2)

j−1

=

∞∑
j=0

( j + 1)ηb
2 ·

∂b

∂ηb
2
(w2η2)

j−1

= ηb
2 ·

∂b

∂ηb
2

(
1

w2η2
·

1
(1−w2η2)2

)
. �

Integration by parts. Now we focus on the integration over D∗ in (2-4). We first
define a “tangential” operator.

Definition 3.2. Let Sw =w(∂/∂w) be the complex normal differential operator on
a neighborhood of ∂D. We define the tangential operator by

Tw = =(Sw)=
1
2i

(
w
∂

∂w
−w

∂

∂w

)
.

Remark 3.3. Indeed, Tw is well defined on a neighborhood of D. Moreover, for
any disc Dρ = {|w|< ρ} of radius ρ < 1 with defining function rρ(w)= |w|2− ρ2,
we have

(3-2) Tw(rρ)= 0

on ∂Dρ . That is, Tw is tangential on ∂Dρ for all ρ < 1.

In order to make use of integration by parts, we need the following lemma:
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Lemma 3.4. Let Tw be as above. For b ∈ Z+ ∪ {0}, we have

(3-3) T b
w ≡

b∑
j=0

cjw
j ∂

j

∂w j

(
mod

∂

∂w

)
,

where the cj are constants, cb 6= 0, and T b
w is the composition of b copies of Tw.

Proof. We prove (3-3) by induction on b. The case b = 0 is trivial. When b = 1, it
is easy to see that

Tw ≡−
1
2i
w
∂

∂w

(
mod ∂

∂w

)
.

Suppose (3-3) holds for some b. Then we see that

T b
w =

b∑
j=0

cjw
j ∂

j

∂w j + A ◦ ∂

∂w
,

for some operator A. So for the case b+ 1, we have

Tw ◦ T b
w =

1
2i

(
w
∂

∂w
−w

∂

∂w

)
◦

( b∑
j=0

cjw
j ∂

j

∂w j + A ◦ ∂

∂w

)

=
1
2i

( b∑
j=0

cjww
j ∂

j

∂w j
∂

∂w
− jcjw

j ∂
j

∂w j − cjw
j+1 ∂

j+1

∂w j+1

)
+ Tw ◦ A ◦ ∂

∂w

=

b+1∑
j=0

c′jw
j ∂

j

∂w j + A′ ◦ ∂

∂w
,

for some constants c′j with c′b+1 =−(1/2i)cb 6= 0 and some operator A′. Therefore,
(3-3) holds for T b+1

w . �

Combine (3-1) and (3-3). Since the kernel in (3-1) is antiholomorphic in η2, the
inside integration over D∗ with regard to variable η2 in (2-4) denoted by I becomes

I =
∫

D∗

∂b

∂wb
2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2

=

∫
D∗

ηb
2

wb
2
·
∂b

∂ηb
2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2

=
1
wb

2

∫
D∗

b∑
j=0

cj T j
η2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2

=
1
wb

2

b∑
j=0

cj lim
ε→0+

∫
D−Dε

T j
η2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2.
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Let us assume in addition for a moment that f (9(η)) belongs to C∞(D−{0})
in variable η2. Then by (3-2) we obtain

(3-4) I = 1
wb

2

b∑
j=0

cj lim
ε→0+

∫
D−Dε

T j
η2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2

=
1
wb

2

b∑
j=0

cj (−1) j lim
ε→0+

∫
D−Dε

1
w2η2

·
1

(1−w2η2)2
T j
η2

(
f (9(η))|η2|

2) dη2

=
1
wb

2

b∑
j=0

(−1) j cj

∫
D∗

1
w2η2

·
1

(1−w2η2)2
T j
η2

(
f (9(η))

)
|η2|

2 dη2,

where the last line follows from the fact that Tη2(|η2|
2)= 0.

Definition 3.5. We use the following notation:

Fj (η)=T j
η2

(
f (9(η))

)
·η2 and B1,a(g)(w1)=

∫
D

∂a

∂wa
1

(
1

(1−w1η1)2

)
g(η1) dη1,

for any g whenever the integral is well defined, and

B2(h)(w2)=

∫
D∗

h(η2)

(1−w2η2)2
dη2,

for any h whenever the integral is well defined.

By (3-4) and the notation above (Definition 3.5), we see that (2-4) becomes

(3-5)
∑
|β|≤k

∫
D×D∗

∣∣∣∣ ∑
a+b≤|β|

pa,b,β(w1)

w
|β|+1
2

b∑
j=0

(−1) j cjB1,a
(
B2(Fj )

)
(w)

∣∣∣∣p

|w2|
kp+2 dw.

4. Proof of the main theorem

L p boundedness. To finish the proof, we first need two lemmas.

Lemma 4.1. The operator B1,a defined as in Definition 3.5 is bounded from
W a,p(D) to L p(D) for p ∈ (1,∞).

Proof. This follows from the well-known result that the Bergman projection on D

is bounded from W k,p(D) to itself for p ∈ (1,∞) and all k ∈ Z+ ∪ {0}. �

Lemma 4.2. The integral operator B2 defined as in Definition 3.5 is bounded from
L p
(
D∗, |w|2−p

)
to itself for p ∈

( 4
3 , 4

)
, where L p

(
D∗, |w|2−p

)
is the weighted L p

space with w ∈ D∗.

Proof. This is equivalent to the statement that the weighted Bergman projection
associated to D∗ with the weight |w|2 is bounded from L p

(
D∗, |w|2

)
to itself for

p ∈
( 4

3 , 4
)
. For a proof, see [Chen 2017b]. �
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Proof under the additional assumption. With Lemma 4.1 and Lemma 4.2, we can
prove Theorem 1.2 under the additional assumption f (9(η)) ∈ C∞(D− {0}) in
variable η2.

Proof of Theorem 1.2 under the additional assumption. By (2-1), (2-4), (3-5) and
Lemma 2.3, we obtain

‖B( f )‖p
k,p,kp ≤

∑
|β|≤k

∑
a+b≤|β|

b∑
j=0

Ck,p

∫
D×D∗
|B1,a(B2(Fj ))(w)|

p
|w2|

kp+2−p(|β|+1) dw

≤ Ck,p

∑
a+b≤k

∫
D×D∗
|B1,a(B2(Fb))(w)|

p
|w2|

2−p dw.

By Lemma 4.1, for p ∈ (1,∞) we have

‖B( f )‖p
k,p,kp ≤ Ck,p

∑
a+b≤k

∫
D∗

(∫
D

∑
|β|≤a

|Dβ

w1,w1
(B2(Fb))(w)|

p dw1

)
|w2|

2−p dw2

≤ Ck,p

∑
|β|+b≤k

∫
D

(∫
D∗
|B2(D

β

w1,w1
(Fb))(w)|

p
|w2|

2−p dw2

)
dw1.

Similarly, by Lemma 4.2, for p ∈
( 4

3 , 4
)

we have

(4-1) ‖B( f )‖p
k,p,kp ≤ Ck,p

∑
|β|+b≤k

∫
D

(∫
D∗

∣∣Dβ

w1,w1
(Fb)(w)

∣∣p
|w2|

2−p dw2

)
dw1

= Ck,p

∑
|β|+b≤k

∫
D×D∗

∣∣Dβ

w1,w1
T b
w2

(
f (9(w))

)
·w2

∣∣p
|w2|

2−p dw

= Ck,p

∑
|β|+b≤k

∫
D×D∗

∣∣Dβ

w1,w1
T b
w2

(
f (9(w))

)∣∣p
|w2|

2 dw

≤ Ck,p

∑
|β|+|β ′|≤k

∫
D×D∗

∣∣Dβ

w1,w1
Dβ ′

w2,w2

(
f (9(w))

)∣∣p
|w2|

2 dw,

where the last line follows from Tw2 = (1/2i)(w2(∂/∂w2)−w2(∂/∂w2)), |w2|< 1
for w2 ∈ D∗, and a similar equation as (3-3).

By the biholomorphism 9(w)= z defined in Section 2, we have

∂

∂w1
= w2

∂

∂z1
and ∂

∂w1
= w2

∂

∂z1
,

and also
∂

∂w2
= w1

∂

∂z1
+

∂

∂z2
and ∂

∂w2
= w1

∂

∂z1
+

∂

∂z2
.
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Again, since (w1, w2) ∈ D×D∗, we have |w1|, |w2|< 1. Therefore, by (4-1) and
transferring D×D∗ back to H, we finally arrive at

‖B( f )‖p
k,p,kp ≤ Ck,p

∑
|α|≤k

∫
H

|Dα
z,z( f )(z)|p dz. �

Remove the additional assumption. To remove the additional assumption that
f (9(η)) ∈ C∞(D−{0}) in variable η2, we need the following lemma.

Lemma 4.3. The subspace C∞(D−{0})
⋂

W k,p(D∗,|w|2) is dense in W k,p(D∗,|w|2)

with regard to the weighted norm in W k,p(D∗,|w|2).

Proof. The argument is based on [Evans 1998, §5.3 Theorem 2 and Theorem 3].
Given any g ∈W k,p(D∗, |w|2), fix ε > 0. On V0 =D−D1/2, the weighted norm

W k,p(V0, |w|
2) is equivalent to the unweighted norm W k,p(V0). Arguing as in the

proof of [Evans 1998, §5.3 Theorem 3], we see that there is a g0 ∈C∞(V0) such that

‖g0− g‖W k,p(V0,|w|2) < ε.

Define Uj = Dρ−1/j −D1/j for some 1 > ρ > 1
2 and for j ∈ Z+ (U1 = ∅). Let

Vj = Uj+3 −Uj+1, then we see
⋃
∞

j=1Vj = Dρ − {0}. Arguing as in the proof of
[Evans 1998, §5.3 Theorem 2], we can find a smooth partition of unity {ψj }

∞

j=1
subordinate to {Vj }

∞

j=1, so that
∑
∞

j=1 ψj = 1 on Dρ − {0}. Moreover, for each j ,
the support of ψj g lies in Vj (so |w|> 1/( j+3)), and hence ψj g ∈W k,p(Dρ−{0}).
Therefore, we can find a smooth function g j with support in Uj+4−Uj such that

‖g j −ψj g‖W k,p(Dρ−{0}) ≤
ε

2 j ;

see [Evans 1998, §5.3 Theorem 2] for details. Write g̃0 =
∑
∞

j=1 g j . It is easy to
see that g̃0 ∈ C∞(Dρ −{0}) and

‖g̃0− g‖W k,p(Dρ−{0},|w|2) ≤ ‖g̃0− g‖W k,p(Dρ−{0}) ≤ ε,

since |w|< 1 on Dρ −{0}.
Let V ′0 be an open set such that ∂D ⊂ V ′0 and V ′0

⋂
D = V0, then V ′0

⋃
Dρ

cover D. Take a smooth partition of unity {ψ̃1, ψ̃2} on D subordinate to {V ′0,Dρ}.
Then h = ψ̃1g0+ ψ̃2g̃0 belongs to C∞(D−{0}), and

‖h− g‖W k,p(D∗,|w|2) ≤ C
(
‖g0− g‖W k,p(V0,|w|2)+‖g̃0− g‖W k,p(Dρ−{0},|w|2)

)
< 2Cε

as desired �

Now we are ready to remove the extra assumption and prove our main result.

Proof of Theorem 1.2.
For any f ∈W k,p(H), we have f (9(w))∈W k,p(D∗, |w2|

2) in variable w2. Then
by Lemma 4.3, we can find a sequence {h j (w)} ⊂C∞(D−{0}) tending to f (9(w))
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in variable w2 with regard to the norm in W k,p(D∗, |w2|
2). We have already seen

that (4-1) holds for each h j (w) replacing f (9(w)). Indeed, if we focus on the
integration over D∗, by comparing with (2-4), we see that (4-1) is just the following:
for each b = 0, 1, . . . , k

(4-2)
∫

D∗

∣∣∣∣wb
2
∂b

∂wb
2
(B3(h j ))

∣∣∣∣p

|w2|
2 dw2 ≤ Ck,p‖h j‖W k,p(D∗,|w2|2),

where B3 is the weighted Bergman projection associated to D∗ with the weight |w2|
2.

Now letting j→∞, in view of the boundedness of B3 (Lemma 4.2), we see that
wb

2(∂
b/∂wb

2)(B3(h j )) indeed tends to wb
2(∂

b/∂wb
2)(B3( f (9))) in L p(D∗,|w2|

2) for
each b=0, 1, . . . , k. Therefore, (4-2) is valid for general f (9(w))∈W k,p(D∗,|w2|

2),
which completes the proof for any general f ∈W k,p(H). �

Remark 4.4. The method also applies to the n-dimensional generalization of the
Hartogs triangle, see [Chen 2017a]. To be precise, for j = 1, . . . , l, let �j be a
bounded smooth domain in Cm j with a biholomorphic mapping φj : �j → Bm j

between �j and the unit ball Bm j in Cm j. We use the notation z̃ j to denote the j-th
m j -tuple in z ∈ Cm1+···+ml, that is, z = (z̃1, . . . , z̃l). Let n = m1 + · · · +ml + n′,
n− n′ ≥ 1, and n′ ≥ 1, we define the n-dimensional Hartogs triangle by

Hn
φj
=

{
(z, z′) ∈ Cm1+···+ml+n′ | max

1≤ j≤l
|φj (z̃ j )|< |z′1|< |z

′

2|< · · ·< |z
′

n′ |< 1
}
.

Following the same idea, we see that the Bergman projection B on Hn
φj

is bounded
from W k,p(Hn

φj
) to W k,p(Hn

φj
, |z′1|

kp) for p ∈ (2n/(n+ 1), 2n/(n− 1)). However,
the weight |z′1| is no longer comparable to |(z, z′)|, the distance from points near
the boundary to the singularity at the boundary.
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