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EFFECTIVE LOWER BOUNDS FOR L(1, χ)
VIA EISENSTEIN SERIES

PETER HUMPHRIES

We give effective lower bounds for L(1, χ) via Eisenstein series on 00(q)\ H.
The proof uses the Maass–Selberg relation for truncated Eisenstein series
and sieve theory in the form of the Brun–Titchmarsh inequality. The method
follows closely the work of Sarnak in using Eisenstein series to find effective
lower bounds for ζ(1 + i t).

1. Introduction

Let q be a positive integer, let χ be a Dirichlet character modulo q, and let

L(s, χ) :=
∞∑

n=1

χ(n)
ns

be the associated Dirichlet L-function, which converges absolutely for <(s)> 1 and
extends holomorphically to the entire complex plane except when χ is principal, in
which case there is a simple pole at s = 1. It is well known that Dirichlet’s theorem
on the infinitude of primes in arithmetic progressions is equivalent to showing
that L(1, χ) 6= 0 for every Dirichlet character χ modulo q. Of further interest is
obtaining lower bounds for L(1, χ) in terms of q. By complex analytic means
[Montgomery and Vaughan 2007, Theorems 11.4 and 11.11], one can show that if
χ is complex, then

|L(1, χ)| � 1
log q

,

while
L(1, χ)� 1

√
q

if χ is quadratic. In both cases, the implicit constants are effective. For quadratic
characters, the Landau–Siegel theorem states that

L(1, χ)�ε q−ε
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for all ε > 0 [Montgomery and Vaughan 2007, Theorem 11.14], though this estimate
is ineffective due to the possible existence of a Landau–Siegel zero of L(s, χ).

In this article, we give a novel proof of effective lower bounds for L(1, χ), albeit
in slightly weaker forms.

Theorem 1.1. Let q ≥ 2 be a positive integer, and let χ be a primitive character
modulo q. If χ is complex, then

|L(1, χ)| � 1
(log q)3

,

while

L(1, χ)� 1
√

q(log q)2

if χ is quadratic. In both cases, the implicit constants are effective.

Our proof of Theorem 1.1 makes use of the fact that L(s, χ) appears in the
Fourier expansion of an Eisenstein series associated to χ on 00(q) \H, together
with sieve theory — specifically the Brun–Titchmarsh inequality — to find these
lower bounds. As is well-known, improving the constant in the Brun–Titchmarsh
inequality is essentially equivalent the nonexistence of Landau–Siegel zeroes; it is
for this same reason that the lower bounds in Theorem 1.1 are weak for quadratic
characters, as we discuss in Remark 4.7.

That one can use Eisenstein series to prove nonvanishing of L-functions is well
known, first appearing in unpublished work of Selberg, but such methods were not
shown to give good effective lower bounds for L-functions on the line <(s) = 1
until the work of Sarnak [2004]. He showed that

|ζ(1+ i t)| � 1
(log |t |)3

for |t |> 1 by exploiting the inhomogeneous form of the Maass–Selberg relation
for the Eisenstein series E(z, s) for the group SL2(Z).

More precisely, for t > 1, Sarnak studied the integral

I :=
∫
∞

1/t

∫ 1

0
|ζ(1+ 2i t)|2

∣∣∣∣3t
(

z,
1
2
+ i t

)∣∣∣∣2 dx dy
y2 ,

involving a truncated Eisenstein series 3T E(z, s) and found an upper bound up to
a scalar multiple for this integral of the form

t (log t)2|ζ(1+ 2i t)|
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via the Maass–Selberg relation, and a lower bound up to a scalar multiple of the
form

1
t

∑
t2

8 ≤m≤ t2

4

|σ−2i t(m)|2

via Parseval’s identity, where

σ−2i t(m) :=
∑
d|m

d−2i t .

By restricting the summation over m to primes, Sarnak was able to use sieve theory
to show that ∑

t2

8 ≤p≤ t2

4

|σ−2i t(p)|2�
t2

log t
,

from which the result follows. Indeed, the use of sieve theory to prove lower bounds
for ζ(1+ i t) (and also L(1+ i t, χ)) has its roots in work of Balasubramanian and
Ramachandra [1976].

The chief novelty of Sarnak’s work is to use the Maass–Selberg relation to
obtain effective lower bounds for ζ(1+ i t); more precisely, it is the inhomogeneous
nature of the Fourier expansion of the Eisenstein series E(z, s), whose constant
term involves ζ(2s− 1)/ζ(2s) and whose nonconstant terms involve 1/ζ(2s). This
method has been generalized by Gelbart and Lapid [2006] to determine effective
lower bounds on the line <(s) = 1 for L-functions associated to automorphic
representations on arbitrary reductive groups over number fields, albeit with the
lower bound being in the weaker form C |t |−n for some constants C , n depending on
the L-function, for Gelbart and Lapid make no use of sieve theory in this generalized
setting. More recently, Goldfeld and Li [2016] have succeeded in generalizing
Sarnak’s method to show that

|L(1+ i t, π × π̃)| �π
1

(log |t |)3

for any cuspidal automorphic representation π of GLn(AQ) that is unramified and
tempered at every place, with the implicit constant in the lower bound dependent
on π .

All three of these results give lower bounds for L-functions on the line <(s)= 1
in the height aspect, namely in terms of t . In this article, we give the first example
of Sarnak’s method being used to give lower bounds for L-functions on the line
<(s)= 1 in the level aspect, namely in terms of q.
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2. Eisenstein series

We introduce Eisenstein series for the group 00(q) associated to a primitive Dirichlet
character χ modulo q . Standard references for this material are [Deshouillers and
Iwaniec 1982], [Duke et al. 2002], and [Iwaniec 2002].

Cusps. Let H be the upper half plane, upon which SL2(R) acts via Möbius trans-
formations γ z = (az+ b)/(cz+ d) for γ =

(a
c

b
d

)
∈ SL2(R) and z ∈ H. Let q be a

positive integer, and let a be a cusp of 00(q) \H, where

00(q) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod q)

}
,

and we denote the stabilizer of a by 0a := {γ ∈ 00(q) : γ a= a}. This subgroup of
00(q) is generated by two parabolic elements ±γa, where

γa := σa

(
1 1
0 1

)
σ−1
a ,

and the scaling matrix σa ∈ SL2(R) is such that

σa∞= a, σ−1
a 0∞σa = 0∞,

where

0∞ :=

{
±

(
1 n
0 1

)
∈ 00(q) : n ∈ Z

}
is the stabilizer of the cusp at infinity. The scaling matrix is unique up to translation
on the right.

Let χ be a primitive character modulo q. A cusp a of 00(q) \H is said to be
singular with respect to χ if χ(γa)= 1, where χ(γ ) := χ(d) for γ =

(a
c

b
d

)
∈ 00(q).

As χ is primitive, any singular cusp is equivalent to 1/v for a single unique divisor
v of q satisfying vw = q and (v,w)= 1, where w is the width of the cusp; when
v = q , this cusp is equivalent to the cusp at infinity, while when v = 1, the cusp is
equivalent to the cusp at zero. Note that if q = 1, so that χ is the trivial character,
there is merely a single equivalence class of cusps, namely the cusp at infinity.

The scaling matrix σa ∈ SL2(R) for a singular cusp a ∼ 1/v, v 6= q, can be
chosen to be

σa :=

( √
w 0

v
√
w 1/

√
w

)
,

while for the cusp at infinity, we simply take σ∞ to be the identity.
The Bruhat decomposition for σ−1

a 00(q)σb [Iwaniec 2002, Theorem 2.7] states
that

σ−1
a 00(q)σb = δab�∞ t

⊔
c>0

⊔
d (mod c)

�d/c,
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where δab = 1 if a∼ b and 0 otherwise, and

�∞ := 0∞ω∞, ω∞ =

(
1 ∗
0 1

)
∈ σ−1

a 00(q)σb,

�d/c := 0∞ωd/c0∞, ωd/c =

(
∗ ∗

c d

)
∈ σ−1

a 00(q)σb with c > 0,

and c, d run over all real numbers such that σ−1
a 00(q)σb contains

(
∗

c
∗

d

)
. In particular,

for the cusp at infinity we have the Bruhat decomposition

σ−1
∞
00(q)σ∞ = 0∞ t

∞⊔
c=1

c≡0 (mod q)

⊔
d (mod c)
(c,d)=1

0∞

(
∗ ∗

c d

)
0∞.

For a∼∞ and b∼ 1/v a nonequivalent singular cusp with 1≤ v < q , v dividing q ,
vw = q , and (v,w)= 1, and for any γ =

(a
c

b
d

)
∈ 00(q), we have that

σ−1
∞
γ σb =

(
(a+ bv)

√
w b/

√
w

(c+ dv)
√
w d/

√
w

)
,

and so

(2.1) σ−1
∞
00(q)σb =

{(
a
√
w b/

√
w

c
√
w d/

√
w

)
∈ SL2(R) :

(
a b
c d

)
∈ SL2(Z),

c ≡ 0 (mod v), d ≡ c/v (mod w), (c, d)= 1, (c, w)= 1

}
.

So the Bruhat decomposition in this case can be explicitly written in the form

(2.2) σ−1
∞
00(q)σb =

∞⊔
c=1

(c,w)=1
c≡0 (mod v)

⊔
d (mod cw)
(cw,d)=1

d≡c/v (mod w)

0∞

(
∗ ∗

c
√
w d/

√
w

)
0∞.

Eisenstein series. Given a primitive Dirichlet character χ modulo q and a singular
cusp a of 00(q) \ H, we define the Eisenstein series Ea(z, s, χ) for z ∈ H and
<(s) > 1 by

Ea(z, s, χ) :=
∑

γ∈0a\00(q)

χ(γ ) jσ−1
a γ (z)

−κ
=(σ−1

a γ z)s,

where κ ∈ {0, 1} is such that χ(−1)= (−1)κ, and for γ =
(a

c
b
d

)
∈ SL2(R),

jγ (z) :=
cz+d
|cz+d|

= ei arg(cz+d).
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The Eisenstein series associated to a singular cusp a is independent of the choice
of representative of a and of the scaling matrix σa. For fixed z ∈ H, the Eisenstein
series Ea(z, s, χ) converges absolutely for <(s) > 1 and extends meromorphically
to the entire complex plane with no poles on the closed right half-plane <(s)≥ 1

2
except at s = 1 when q = 1, so that χ is the trivial character.

For any z ∈ H and γ1, γ2 ∈ SL2(R), the j-factor satisfies the cocycle relation

(2.3) jγ1γ2(z)= jγ2(z) jγ1(γ2z),

while the Eisenstein series satisfies the automorphy condition

(2.4) Ea(γ z, s, χ)= χ(γ ) jγ (z)κEa(z, s, χ)

for any γ ∈ 00(q).
For any singular cusps a, b of 00(q), one can show using the Bruhat decomposi-

tion that there exists a function ϕab(s, χ) such that the constant term in the Fourier
expansion for the function jσb(z)

−κEa(σbz, s, χ) is

cab(z, s, χ) :=
∫ 1

0
jσb(z)

−κEa(σbz, s, χ) dx = δabys
+ϕab(s, χ)y1−s .

The functions ϕab(s, χ) are the entries of the scattering matrix associated to χ . We
will calculate ϕab(s, χ) when a ∼∞ for each nonsingular cusp b of 00(q) with
respect to χ , and also find the rest of the Fourier coefficients of E∞(z, s, χ).

Fourier expansion of E∞(z, s, χ).

Lemma 2.5. Let χ be a primitive character modulo q. For m 6= 0 and c ≡ 0
(mod q),∑

d (mod c)
(c,d)=1

χ(d)e
(md

c

)
= χ(sgn(m))τ (χ)

∑
d|
(
|m|, c

q
) dχ

(
|m|
d

)
χ
( c

dq

)
µ
( c

dq

)
.

Here, as usual, we define e(x) := e2π i x for x ∈ R.

Proof. For m positive, this is [Miyake 1989, Lemma 3.1.3]. The result for m negative
follows by replacing m with |m| and χ with χ , then taking complex conjugates of
both sides and using the fact that τ(χ)= χ(−1)τ (χ). �

Proposition 2.6 (cf. [Iwaniec 2002, Theorem 3.4]). The Eisenstein series associated
to the cusp at infinity has the Fourier expansion

E∞(z,s,χ)= ys
+ ϕ∞∞(s,χ)y1−s

+

∞∑
m=−∞

m 6=0

ρ∞(m,s,χ)Wsgn(m) κ2 ,s−
1
2
(4π |m|y)e(mx),
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where Wα,ν(y) is the Whittaker function,

ϕ∞∞(s, χ)=


√
π
0
(
s− 1

2

)
0(s)

ζ(2s− 1)
ζ(2s)

if q = 1,

0 if q ≥ 2,

and for m 6= 0,

ρ∞(m, s, χ)=
χ(sgn(m))i−κτ(χ)π s

|m|s−1

q2s0
(
s+ sgn(m) κ2

)
L(2s, χ)

σ1−2s(|m|, χ),

where τ(χ) is the Gauss sum of χ and

σs(m, χ) :=
∑
d|m

dsχ
(m

d

)
.

Note in particular that if κ = 0, so that χ is even, the Whittaker function is simply

W0,s−1
2
(4π |m|y)=

√
4|m|yKs− 1

2
(2π |m|y),

where Kν(y) is the K -Bessel function. On the other hand, if κ = 1, so that χ is
odd, and we set s = 1

2 , then

Wsgn(m) κ2 ,0
(4π |m|y)=

{√
4π |m|ye−2π |m|y if m > 0,
√

4π |m|ye2π |m|y
∫
∞

4π |m|y e−u/u du if m < 0.

Proof. Via the Bruhat decomposition (2.2), E∞(z, s, χ) is equal to

ys
+

∞∑
c=1

c≡0 (mod q)

∑
d (mod c)
(c,d)=1

χ(d)
∞∑

n=−∞

(
c(z+ n)+ d
|c(z+ n)+ d|

)−κ ys

|c(z+ n)+ d|2s .

So if m = 0, the zeroth Fourier coefficient of E∞(z, s, χ) is

ys
+

∞∑
c=1

c≡0 (mod q)

∑
d (mod c)
(c,d)=1

χ(d)
∫
∞

−∞

(
cz+ d
|cz+ d|

)−κ ys

|cz+ d|2s dx

= ys
+ y1−s

∫
∞

−∞

(
t + i
|t + i |

)−κ 1
|t + i |2s dt

∞∑
c=1

c≡0 (mod q)

1
c2s

∑
d (mod c)
(c,d)=1

χ(d)

by the change of variables x 7→ yt − d/c. From [Gradshteyn and Ryzhik 2007,
(8.381.1)], we have that∫

∞

−∞

(
t + i
|t + i |

)−κ 1
|t + i |2s dt = i−κ

√
π
0
(1

2(2s− 1+ κ)
)

0
( 1

2(2s+ κ)
) ,
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while for c ≡ 0 (mod q), the fact that χ is primitive implies that

∞∑
c=1

c≡0 (mod q)

1
c2s

∑
d (mod c)
(c,d)=1

χ(d)=


∞∑

c=1

ϕ(c)
c2s =

ζ(2s− 1)
ζ(2s)

if q = 1,

0 if q ≥ 2.

If m 6= 0, on the other hand, then the m-th Fourier coefficient is

∞∑
c=1

c≡0 (mod q)

∑
d (mod c)
(c,d)=1

χ(d)
∫
∞

−∞

(
cz+ d
|cz+ d|

)−κ ys

|cz+ d|2s e(−mx) dx

= y1−s
∫
∞

−∞

(
t + i
|t + i |

)−κ e(−myt)
|t + i |2s dt

∞∑
c=1

c≡0 (mod q)

1
c2s

∑
d (mod c)
(c,d)=1

χ(d)e
(

md
c

)

again by the change of variables x 7→ yt−d/c. Moreover, [Gradshteyn and Ryzhik
2007, (3.384.9)] implies that∫

∞

−∞

(
t + i
|t + i |

)−κ e(−myt)
|t + i |2s dt =

i−κπ s
|m|s−1 ys−1

0
(
s+ sgn(m) κ2

) Wsgn(m) κ2 ,s−
1
2
(4π |m|y),

and via Lemma 2.5,

∞∑
c=1

c≡0 (mod q)

1
c2s

∑
d (mod c)
(c,d)=1

χ(d)e
(md

c

)

= χ(sgn(m))τ (χ)
∑
d||m|

dχ
(
|m|
d

) ∞∑
c=1

c≡0 (mod dq)

χ
( c

dq

)
µ
( c

dq

)
c2s

= χ(sgn(m))
τ (χ)

q2s

∑
d||m|

d1−2sχ
(
|m|
d

) ∞∑
n=1

χ(n)µ(n)
n2s

= χ(sgn(m))
τ (χ)

q2s L(2s, χ)
σ1−2s(|m|, χ)

where we have let c = dqn. We thereby obtain the desired identity. �

Proposition 2.7. Suppose that q ≥ 2. Then ϕ∞b(s, χ) vanishes unless b ∼ 1, in
which case

(2.8) ϕ∞1(s, χ)=
τ(χ)

qs

3(2− 2s, χ)
3(2s, χ)

,
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where

(2.9) 3(s, χ) :=
(
π

q

)− s+κ
2
0
(s+κ

2

)
L(s, χ),

is the completed Dirichlet L-function. In particular,

(2.10)
∣∣ϕ∞1

(1
2 + i t, χ

)∣∣= 1.

Proof. The fact that ϕ∞b(s, χ) = 0 when b is the cusp at infinity follows from
Proposition 2.6. For the entries of the scattering matrix at other cusps, we use (2.3)
to write

Ea(σbz, s, χ)= jσb(z)
κ

∑
γ∈0∞\σ

−1
a 00(q)σb

χ(σaγ σ
−1
b ) jγ (z)−κ=(γ z)s .

The singular cusp b is equivalent to 1/v for some divisor v of q with v < q , vw= q ,
and (v,w)= 1. Given a matrix

γ =

(
a
√
w b/

√
w

c
√
w d/

√
w

)
in σ−1
∞
00(q)σb as in (2.1), we have that

σ∞γ σ
−1
b =

(
a− bv b
c− dv d

)
,

and so as d ≡ c/v (mod w),

χ(σ∞γ σ
−1
b )= χv(d)χw

( c
v

)
,

where we have decomposed the primitive character χ modulo q into the product of
primitive characters χv modulo v and χw modulo w. From this and (2.2), we see
that jσb(z)

−κE∞(σbz, s, χ) is equal to

∞∑
c=1

(c,w)=1
c≡0 (mod v)

χw

( c
v

) ∑
d (mod cw)
(cw,d)=1

d≡c/v (mod w)

χv(d)

×

∞∑
n=−∞

(
c(z+ n)

√
w+ d/

√
w

|c(z+ n)
√
w+ d/

√
w|

)−κ ys

|c(z+ n)
√
w+ d/

√
w|2s

,
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and so integrating from 0 to 1 with respect to x , making the change of variables
x 7→ yt − d/(cw), and dividing by y1−s yields

ϕ∞b(s, χ)=
1
ws

∫
∞

−∞

(
t + i
|t + i |

)−κ 1
|t + i |2s dt

∞∑
c=1

(c,w)=1
c≡0 (mod v)

χw(c/v)
c2s

∑
d (mod cw)
(cw,d)=1

d≡c/v (mod w)

χv(d).

From [Gradshteyn and Ryzhik 2007, (8.381.1)], the integral is equal to

i−κ
√
π
0
( 1

2(2s− 1+ κ)
)

0
( 1

2(2s+ κ)
) .

To evaluate the sum over d, we write d = vc+wd ′, where vv ≡ 1 (mod w) and
(d ′, c)= 1. This allows us to replace the sum over d with a sum over d ′ modulo c
with (c, d ′)= 1, so that ∑

d (mod cw)
(cw,d)=1

d≡c/v (mod w)

χv(d)= χv(w)
∑

d ′ (mod c)
(c,d ′)=1

χv(d ′)

by the fact that c ≡ 0 (mod v).
If χv is nonprincipal, this sum vanishes, and as χ is a primitive character, χv can

only be the principal character if v = 1; consequently, ϕ∞b(s, χ) vanishes if b is
inequivalent to the cusp at 1.

If b∼ 1, so that v = 1 and w = q , then this sum over d ′ is merely ϕ(c), and so

∞∑
c=1

(c,w)=1
c≡0 (mod v)

χw(c/v)
c2s

∑
d (mod cw)
(cw,d)=1

d≡c/v (mod w)

χv(d)=
∞∑

c=1

ϕ(c)χ(c)
c2s =

L(2s− 1, χ)
L(2s, χ)

.

Using the definition of the completed Dirichlet L-function together with the fact
that it satisfies the functional equation

3(s, χ)=
τ(χ)

iκ
√

q
3(1− s, χ),

we see that we may write

ϕ∞1(s, χ)=
i−κ

qs− 1
2

3(2s− 1, χ)
3(2s, χ)

=
τ(χ)

qs

3(2− 2s, χ)
3(2s, χ)

.

As 3(s, χ)=3(s, χ) and |τ(χ)| =
√

q , the result follows. �



EFFECTIVE LOWER BOUNDS FOR L(1, χ) VIA EISENSTEIN SERIES 365

3. Maass–Selberg relation

For z ∈ H and T ≥ 1, we define the truncated Eisenstein series

(3.1) 3TEa(z,s,χ):=Ea(z,s,χ)−
∑
c

∑
γ∈0c\00(q)
=(σ−1

c γ z)>T

χ(γ ) jσ−1
c γ(z)

−κcac(σ−1
c γ z,s,χ),

where the summation over c is over all singular cusps of 00(q)\H. It is not difficult
to see that 3T Ea(z, s, χ) satisfies the automorphy condition

(3.2) 3T Ea(γ z, s, χ)= χ(γ ) jγ (z)κ3T Ea(z, s, χ)

for any γ ∈00(q). We will show that, unlike Ea(z, s, χ), the function3T Ea(z, s, χ)
is square-integrable on 00(q) \H, and give an explicit expression for the resulting
integral.

Lemma 3.3. Let b and c be singular cusps of 00(q) \H, and let γ ∈ σ−1
c 00(q)σb.

Then for any z= x+ iy ∈H, we have that =(z)=(γ z)≤ 1 if b and c are inequivalent
or if b and c are equivalent but γ /∈0∞ω∞. If b and c are equivalent and γ ∈0∞ω∞,
then =(γ z)= =(z).

Proof. We deal with the cases where neither b nor c are equivalent to the cusp at
infinity; when b∼∞ or c∼∞, the proof is similar but simpler. Let b∼ 1/v and
c ∼ 1/v′, 1 ≤ v, v′ < q, with w, w′ such that vw = v′w′ = q. For

(a
c

b
d

)
∈ 00(q),

we have that

σ−1
c

(
a b
c d

)
σb =

(
(a+ bv)

√
w/w′ b/

√
w′w

(c− av′+ dv− bv′v)
√
w′w (d − bv′)

√
w′/w

)
.

So for

γ =

(
∗ ∗

C
√
w′w D

√
w′/w

)
∈ σ−1

c 00(q)σb,

where C = c− av′+ dv− bv′v and D = d − bv′ are integers, we have that

=(γ z)=
1
w′w

y
(Cx + Dw−1)2+C2 y2 .

By the Bruhat decomposition, if b and c are inequivalent, then C
√
w′w must be

nonzero, and so C2
≥ 1. In particular, if b and c are inequivalent, then

=(z)=(γ z)≤ 1
w′w
≤ 1.

If b and c are equivalent and γ /∈ 0∞ω∞, then again C
√
w′w 6= 0, and the same

result holds. Finally, if b and c are equivalent and γ ∈ 0∞ω∞, then it is clear that
=(γ z)= =(z). �



366 PETER HUMPHRIES

Corollary 3.4. If =(z) > T ≥ 1, then for any singular cusp b, we have that

3T Ea(σbz, s, χ)= Ea(σbz, s, χ)− jσb(z)
κcab(z, s, χ).

Proof. From the definition of 3T Ea(z, s, χ) and (2.3), we must show that for any
singular cusp c and γ ∈0c\00(q) that the inequalities=(z)>T and=(σ−1

c γ σbz)>T
are simultaneously satisfied only when c ∼ b and γ = ω∞. This is equivalent to
showing that if γ ∈ 0∞ \ σ−1

c 00(q)σb is such that =(z) > T and =(γ z) > T, then
c∼ b and γ = ω∞, which follows immediately from Lemma 3.3. �

With these results in hand, we can prove the following Maass–Selberg relation.

Proposition 3.5. For any two singular cusps a, b, T ≥ 1, and s 6= r , s+ r 6= 1,∫
00(q)\H

3T Ea(z, s, χ)3T Eb(z, r, χ) dµ(z)

= ϕba(r, χ)
T s−r

s−r
+ϕab(s, χ)

T r−s

r−s
+ δab

T s+r−1

s+r−1

+

∑
c

ϕac(s, χ)ϕbc(r, χ)
T 1−s−r

1−s−r
,

where the sum is over singular cusps c. Here dµ(z) = dx dy/y2 is the SL2(R)-
invariant measure on H.

Proof. We initially assume that <(s),<(r) > 1 with <(s)−<(r) > 1; the identity
then extends to all s, r ∈ C with s 6= r and s+ r 6= 1 by analytic continuation.

We first show that∫
00(q)\H

3T Ea(z, s, χ)
(
3T Eb(z, r, χ)− Eb(z, r, χ)

)
dµ(z)= 0.

Indeed, the left-hand side is equal to∑
c

∫
00(q)\H

3T Ea(z, s, χ)
∑

γ∈0c\00(q)
=(σ−1

c γ z)>T

χ(γ ) jσ−1
c γ (z)

−κcbc(σ−1
c γ z, r, χ) dµ(z),

which, by (2.3) and (3.2), is equal to

−

∑
c

∫
00(q)\H

∑
γ∈0c\00(q)
=(σ−1

c γ z)>T

cbc(σ−1
c γ z, r, χ) jσc(σ

−1
c γ z)−κ3T Ea(γ z, s, χ) dµ(z),

and this integral can be unfolded to yield

−

∑
c

∫
∞

T

∫ 1

0
cbc(z, r, χ) jσc(z)

−κ3T Ea(σcz, s, χ)
dx dy

y2 .
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But cbc(z, r, χ) is independent of x , while for =(z) > T ≥ 1, the zeroth Fourier
coefficient of the function jσc(z)

−κ3T Ea(σcz, s, χ) vanishes via Corollary 3.4, and
so this vanishes. Consequently,∫
00(q)\H

3T Ea(z,s,χ)3T Eb(z,r,χ)dµ(z)=
∫
00(q)\H

3T Ea(z,s,χ)Eb(z,r,χ)dµ(z).

The right-hand side can be written as∫
00(q)\H

( ∑
γ∈0a\00(q)

χ(γ ) jσ−1
a γ (z)

−κ
=(σ−1

a γ z)s Eb(z,r,χ)

−

∑
c

∑
γ∈0c\00(q)
=(σ−1

c γ z)>T

χ(γ ) jσ−1
c γ (z)

−κcac(σ−1
c γ z,s,χ)Eb(z,r,χ)

)
dµ(z)

=

∫
00(q)\H

∑
γ∈0a\00(q)
=(σ−1

a γ z)≤T

χ(γ ) jσ−1
a γ (z)

−κ
=(σ−1

a γ z)s Eb(z,r,χ)dµ(z)

+

∫
00(q)\H

∑
γ∈0a\00(q)
=(σ−1

a γ z)>T

χ(γ ) jσ−1
a γ (z)

−κϕaa(s,χ)=(σ−1
a γ z)1−s Eb(z,r,χ)dµ(z)

−

∑
c6=a

∫
00(q)\H

∑
γ∈0c\00(q)
=(σ−1

c γ z)>T

χ(γ ) jσ−1
c γ (z)

−κcac(σ−1
c γ z,s,χ)Eb(z,r,χ)dµ(z).

By (2.3) and (2.4), the first term is∫
00(q)\H

∑
γ∈0a\00(q)
=(σ−1

a γ z)≤T

=(σ−1
a γ z)s jσa(σ

−1
a γ z)−κEb(γ z, r, χ) dµ(z),

and upon unfolding the integral, this becomes∫ T

0

∫ 1

0
ys jσa(z)−κEb(σaz, r, χ)

dx dy
y2 =

∫ T

0
yscba(z, r, χ)

dy
y2

= δab
T s+r−1

s+ r − 1
+ϕba(r, χ)

T s−r

s− r
.

Similarly, the second term is∫
∞

T
ϕaa(s,χ)y1−scba(z,s,χ)

dy
y2 =δabϕab(s,χ)

T r−s

r − s
+ϕaa(s,χ)ϕba(r,χ)

T 1−s−r

1− s− r
,
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and the third term is

−

∑
c6=a

∫
∞

T
cac(z, s, χ)cbc(z, r, χ)

dy
y2

= (1− δab)ϕab(s, χ)
T r−s

r − s
+

∑
c6=a

ϕac(s, χ)ϕbc(r, χ)
T 1−s−r

1− s− r
.

Combining these identities yields the result. �

Corollary 3.6. For T ≥ 1 and t ∈ R, we have that∫
00(q)\H

∣∣3T E∞
(
z, 1

2 + i t, χ
)∣∣2 dµ(z)= 2 log T −<

(
ϕ′
∞1

ϕ∞1

(
1
2
+ i t, χ

))
.

Proof. We take a∼ b∼∞ and s = r = 1
2 + i t+ ε with ε > 0 in the Maass–Selberg

relation to obtain∫
00(q)\H

∣∣∣3T E∞
(

z, 1
2
+ i t + ε, χ

)∣∣∣2 dµ(z)= T 2ε

2ε
−

∣∣∣ϕ∞1

(1
2
+ i t + ε, χ

)∣∣∣2 T−2ε

2ε
.

The result then follows by taking the limit as ε tends to zero and using the Taylor
expansions

T 2ε
= 1+ 2ε log T + O(ε2),

ϕ∞1
( 1

2 + i t + ε, χ
)
= ϕ∞1

( 1
2 + i t, χ

)
+ εϕ′

∞1
( 1

2 + i t, χ
)
+ O(ε2).

together with (2.10). �

Remark 3.7. This proof of the Maass–Selberg relation is via unfolding as in
Section 4 of [Arthur 1980], and makes use of the Arthur truncation 3T Ea(z, s, χ)
of the Eisenstein series Ea(z, s, χ) given by (3.1); compare Section 1 of the same
work. One can instead prove the Maass–Selberg relation without recourse to the
automorphy of the truncated Eisenstein series by only defining3T Ea(z, s, χ) within
a fundamental domain of 00(q) \H. Let

F ⊃ {z ∈ H : 0< <(z) < 1, =(z)≥ 1}

be the usual fundamental domain of 00(q) \H, and for each singular cusp a, we
define the cuspidal zone

Fa(T ) := {z ∈ F : 0< <(σ−1
a z) < 1, =(σ−1

a z)≥ T }

for T ≥ 1; note that any two cuspidal zones will be disjoint provided that T is
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sufficiently large. Then from Lemma 3.3, we have that for T ≥ 1,

3TEa(z,s,χ)

=


Ea(z,s,χ) if z∈F \

⋃
c
Fc(T ),

Ea(z,s,χ)
−
∑
c∈A

jσ−1
c
(z)−κ(δac=(σ−1

c z)s+ϕac(s,χ)=(σ−1
c z)1−s) if z∈

⋂
c∈A

Fc(T ),

where A is any subset of the set of singular cusps. The Maass–Selberg relation may
then be proved using Green’s theorem along the same lines as the proof of [Iwaniec
2002, Proposition 6.8].

4. Upper bounds and lower bounds for the integral I

For η ≤ 1, we consider the integral

I = I(χ, η, T ) :=
∫
∞

η

∫ 1

0

∣∣∣∣3T E∞

(
z,

1
2
, χ

)∣∣∣∣2 dx dy
y2 .

Our goal is to find upper and lower bounds for this integral: upper bounds via
the Maass–Selberg relation and lower bounds via Parseval’s identity and the Brun–
Titchmarsh inequality. Combining these bounds will yield lower bounds for L(1, χ).

Upper bounds for I .

Proposition 4.1. For η� 1/q and T ≥ 1, we have that

I�
log q log qT
qη|L(1, χ)|

.

Proof. By folding the integral, one can write

I =
∫
00(q)\H

Nq(z, η)
∣∣3T E∞

(
z, 1

2 , χ
)∣∣2 dµ(z),

where for η ≤ 1,

Nq(z, η) := #{γ ∈ 0∞ \00(q) : =(γ z) > η}.

The Maass–Selberg relation then implies the upper bound

I ≤ sup
z∈00(q)\H

Nq(z, η)
(

2 log T −<
(
ϕ′
∞1

ϕ∞1

(
1
2
, χ

)))
.

From [Iwaniec 2002, Lemma 2.10], we have the bound

Nq(z, η) < 1+
10
qη
.
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By taking logarithmic derivatives of (2.8),

ϕ′
∞1

ϕ∞1
(s, χ)=− log q − 2

3′

3
(2− 2s, χ)− 2

3′

3
(2s, χ).

Taking logarithmic derivatives of (2.9) and letting s = 1
2 then shows that

ϕ′
∞1

ϕ∞1

(1
2
, χ
)
=−4<

(L ′

L
(1, χ)

)
− 2 log q + log 8π + γ0+ (−1)κ π

2
,

where γ0 denotes the Euler–Mascheroni constant, and we have used the fact that

0′

0

(1+κ
2

)
=− log 8− γ0− (−1)κ π

2
.

So if η� 1/q ,

I�
(|L(1, χ)| log qT + |L ′(1, χ)|)

qη|L(1, χ)|
.

The desired upper bound then follows from the bounds

|L(1, χ)| � log q, |L ′(1, χ)| � (log q)2,

which are both easily shown via partial summation. See, for example, [Montgomery
and Vaughan 2007, Lemma 10.15] for the former estimate; the latter follows by a
similar argument. �

Lower bounds for I .

Proposition 4.2. If T ≥ 1 and η = 1/T, we have the lower bound

I� 1
q|L(1, χ)|2

∑
T≤m≤2T

|σ0(m, χ)|2.

Proof. If η = 1/T, then Lemma 3.3 implies that

3T E∞(z, s, χ)=
{

E∞(z, s, χ) if 1/T < =(z)≤ T,
E∞(z, s, χ)− c∞∞(z, s, χ) if =(z) > T .

It follows that the nonzero Fourier coefficients of 3T E∞(z, s, χ) coincide with
those of E∞(z, s, χ) for =(z) > 1/T. So by Parseval’s identity, using the fact that
|τ(χ)| =

√
q, and making the change of variables y 7→ y/|m| in the integral, we

have that

I�


1

q|L(1, χ)|2

∞∑
m=1

|σ0(m, χ)|2
∫
∞

m/T
|K0(2πy)|2

dy
y

if κ = 0,

1
q|L(1, χ)|2

∞∑
m=1

|σ0(m, χ)|2
∫
∞

m/T
e−4πy dy

y
if κ = 1.
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If we simply consider the contribution of the positive integers m for which m/T � 1
— say T ≤ m ≤ 2T — then we find that

I� 1
q|L(1, χ)|2

∑
T≤m≤2T

|σ0(m, χ)|2,

as desired. �

Combining the upper and lower bounds for I, we derive the following inequality
for L(1, χ):

Corollary 4.3. For all T ≥ q , we have that

|L(1, χ)| � 1
T (log T )2

∑
T≤m≤2T

|σ0(m, χ)|2.

So to obtain lower bounds for |L(1, χ)|, we must find lower bounds for

(4.4)
∑

T≤m≤2T

|σ0(m, χ)|2.

Sieve methods. For quadratic characters, lower bounds for (4.4) follow by restrict-
ing the sum to perfect squares.

Lemma 4.5. If χ is a quadratic character, then∑
T≤m≤2T

|σ0(m, χ)|2 ≥ (
√

2− 1)
√

T .

Proof. We restrict the sum over m to perfect squares and use the fact that σ0(m, χ)≥1
whenever m is a perfect square in order to find that∑

T≤m≤2T

|σ0(m, χ)|2 ≥
∑

T≤m2≤2T

|σ0(m2, χ)|2 ≥ (
√

2− 1)
√

T . �

For complex characters, we instead restrict the sum in (4.4) to primes and use
the Brun–Titchmarsh inequality to show that there are sufficiently many primes
for which χ(p) is not close to −1, so that |σ0(p, χ)|2 is not small. This is a result
of Balasubramanian and Ramachandra [1976, Lemma 4], who combine it with an
identity of Ramanujan together with a complex analytic argument to obtain lower
bounds for L(1+ i t, χ), and consequently derive zero-free regions for L(s, χ). We
reproduce a proof of this result here for the sake of completeness.

Lemma 4.6 [Balasubramanian and Ramachandra 1976, Lemma 4]. There exists a
large constant K ≥ 2 such that for all complex characters χ modulo q with q ≥ 2
and for T = q K, ∑

T≤m≤2T

|σ0(m, χ)|2�K
T

log T
.
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Proof. We restrict the sum over m to primes p in order to find that∑
T≤m≤2T

|σ0(m, χ)|2 ≥
∑

T≤p≤2T

|1+χ(p)|2

= 2
∑

a∈(Z/qZ)×

(1+<(χ(a)))(π(2T ; q, a)−π(T ; q, a)),

where π(x; q, a) := #{p ≤ x : p ≡ a (mod q)}.
Let Q be the order of the Dirichlet character χ ; this divides ϕ(q), and as χ is

complex, Q ≥ 3. For any integer M between 0 and bQ/2c, we have that∑
T≤m≤2T

|σ0(m, χ)|2 ≥ 2
(

1+ cos 2πM
Q

)
(π(2T )−π(T ))

−2
(

1+ cos 2πM
Q

) ∑
a∈(Z/qZ)×

<(χ(a))<cos 2πM
Q

(π(2T ; q, a)−π(T ; q, a)).

For the former sum, we have that for fixed δ > 0 to be chosen,

π(2T )−π(T )≥ (1− δ) T
log T

for all sufficiently large T dependent on δ. See, for example, [Diamond and Erdős
1980]; in particular, this does not require the full strength of the prime number
theorem.

For the latter sum, we first observe that there are ϕ(q)/Q reduced residue
classes a modulo Q for which χ(a) = e2π im/Q for each integer m between 0
and Q − 1, and so the number of reduced residue classes modulo q for which
<(χ(a)) < cos(2πM/Q) is

ϕ(q)
Q

#{M < m < Q−M} = ϕ(q)
Q− 2M − 1

Q
.

To find an upper bound for π(2T ; q, a)−π(T ; q, a), we use the Brun–Titchmarsh
inequality, which states that for (q, a)= 1, x ≥ 2, and y ≥ 2q ,

π(x + y; q, a)−π(x; q, a)≤
2y

ϕ(q) log y/q

(
1+

8
log y/q

)
.

We take x = y = T, assuming that T ≥ 2q, in order to obtain∑
a∈(Z/qZ)×

<(χ(a))<cos 2πM
Q

(π(2T ;q,a)−π(T ;q,a))≤
2(Q− 2M − 1)

Q
T

logT/q

(
1+

8
logT/q

)
.
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We take T = q K with K ≥ 2 sufficiently large and dependent on δ but not on q,
such that

1
log T/q

(
1+ 8

log T/q

)
≤ (1+ δ) 1

log T
.

Combined, these estimates imply that for T = q K with K ≥ 2 a sufficiently large
constant,∑

T≤m≤2T

|σ0(m, χ)|2 ≥ 2(1− cosπX)
(

1− δ− 2(1+ δ)X + 2(1+δ)
Q

) T
log T

for X = (Q− 2M)/Q.
For Q ≥ 3, we may choose

δ =
1
10
, M =

⌊ 1+4δ
2(1+δ)

Q
2
+

1
2

⌋
,

so that
X = 1−2δ

2(1+δ)
−

1
Q
+

2
Q

{ 1+4δ
2(1+δ)

Q
2
+

1
2

}
,

and hence

1− δ− 2(1+ δ)X + 2(1+δ)
Q

= δ+
4(1+δ)

Q

(
1−

{ 1+4δ
2(1+δ)

Q
2
+

1
2

})
≥ δ.

Moreover, the fact that δ = 1
10 and Q ≥ 3 implies that 1 ≤ M ≤ bQ/2c and

1
33 ≤ X ≤ 23

33 . So ∑
T≤m≤2T

|σ0(m, χ)|2�K
T

log T
. �

Remark 4.7. If χ is quadratic, so that the order of χ is Q = 2, then∑
T≤m≤2T

|σ0(m, χ)|2 ≥ 2(π(2T )−π(T ))− 2
∑

a∈(Z/qZ)×

χ(a)=−1

(π(2T ; q, a)−π(T ; q, a)).

The Brun–Titchmarsh inequality is insufficient to show that the first term on the right-
hand side dominates the second term; in its place, we would require a strengthening
of the Brun–Titchmarsh inequality of the form

(4.8) π(x + y; q, a)−π(x; q, a)≤
(2− δ)y

ϕ(q) log y/q
(1+ o(1))

for some δ > 0. With this in hand, we would then be able to show that∑
T≤m≤2T

|σ0(m, χ)|2�
T

log T
,

so that
L(1, χ)� 1

(log q)3
,
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which would imply the nonexistence of a Landau–Siegel zero for L(1, χ). Of
course, the fact that the strengthened Brun–Titchmarsh inequality (4.8) implies (and
is in fact equivalent to) the nonexistence of Landau–Siegel zeroes is well known.

5. Proof of Theorem 1.1

With these upper and lower bounds established, we are in a position to prove
Theorem 1.1.

Proof of Theorem 1.1. If χ is quadratic, we have via Corollary 4.3 and Lemma 4.5
that for T ≥ q ,

L(1, χ)� 1
√

T (log T )2
,

and so taking T = q yields the desired lower bound.
If χ is complex, we have via Corollary 4.3 and Lemma 4.6 that for T = q K,

|L(1, χ)| �K
1

(log T )3
�K

1
(log q)3

. �
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