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OF LEGENDRIAN LINKS IN #k.S 1 � S 2/

CAITLIN LEVERSON

Given a Legendrian link in #k
.S 1 � S 2/, we extend the definition of a nor-

mal ruling from J 1.S 1/ given by Lavrov and Rutherford and show that
the existence of an augmentation to any field of the Chekanov–Eliashberg
differential graded algebra over ZŒt; t�1� is equivalent to the existence of a
normal ruling of the front diagram. For Legendrian knots, we also show
that any even graded augmentation must send t to �1. We use the cor-
respondence to give nonvanishing results for the symplectic homology of
certain Weinstein 4-manifolds. We show a similar correspondence for the
related case of Legendrian links in J 1.S 1/, the solid torus.

1. Introduction

Augmentations and normal rulings are important tools in the study of Legendrian
knot theory, especially in the study of Legendrian knots in R3. Here, augmenta-
tions are augmentations of the Chekanov–Eliashberg differential graded algebra
introduced by Chekanov [2002] and Eliashberg [1998]. Chekanov describes the
noncommutative differential graded algebra (DGA) over Z=2 associated to a La-
grangian diagram of a Legendrian link in .R3; �std/ combinatorially: The DGA
is generated by crossings of the link; the differential is determined by a count of
immersed polygons whose corners lie at crossings of the link and whose edges lie
on the link. This is called the Chekanov–Eliashberg DGA and Chekanov showed
that the homology of this DGA is invariant under Legendrian isotopy. Etnyre, Ng,
and Sabloff [Etnyre et al. 2002] defined a lift of the Chekanov–Eliashberg DGA
to a DGA over ZŒt; t�1� in. Following ideas introduced by Eliashberg [1987] and
motivated by generating families (functions whose critical values generate front
diagrams of Legendrian knots), Fuchs [2003] and Chekanov and Pushkar [2005]
gave invariants of Legendrian knots in R3. Fuchs looked at decompositions of these
generating families, generally called “normal rulings.”

These two invariants are very closely related; Fuchs [2003], Fuchs and Ishkhanov
[2004], and Sabloff [2005] showed that the existence of a normal ruling is equivalent
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to the existence of an augmentation to Z=2 of the Chekanov–Eliashberg DGA A for
Legendrian knots in R3. Here, given a unital ring S, an augmentation of A is a ring
map � WA!S such that �ı@D0 and �.1/D1. One of the main results of [Leverson
2016] is that the equivalence remains true when one looks at augmentations to a
field of the lift of the Chekanov–Eliashberg DGA from [Etnyre et al. 2002] to the
DGA over ZŒt; t�1� for Legendrian knots in R3. We extend the result to Legendrian
links in R3 to prove the main result of this paper.

Theorem 1.1. Letƒ be an s-component Legendrian link in R3. Given a field F, the
Chekanov–Eliashberg DGA .A; @/ over ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmenta-
tion � W A! F if and only if a front diagram of ƒ has a �-graded normal ruling.
Furthermore, if � is even, then �.t1 � � � ts/D .�1/s.

The final statement tells us that for all even graded augmentations � W A! F,
�.t1 � � � ts/D .�1/s. In particular, if ƒ is a knot, then any even graded augmentation
sends t to �1.

For k � 0, an analogous correspondence can be shown for Legendrian links
in #k.S1 � S2/. A Legendrian link in #k.S1 � S2/ with the standard contact
structure is an embedding ƒ W

`
s S1! #k.S1�S2/ which is everywhere tangent

to the contact planes. We will think of them as Gompf [1998] does. For an
example, see Figure 2. In this paper, we extend the definition of normal ruling of a
Legendrian link in R3 to a Legendrian link in #k.S1 �S2/. We then define the
ruling polynomial for a Legendrian link in #k.S1 �S2/ and show that the ruling
polynomial is invariant under Legendrian isotopy. Note that Lavrov and Rutherford
[2013] did this previously in the case where k D 1.

Theorem 1.2. The �-graded ruling polynomial R
�
.ƒ;m/ with respect to the Maslov

potential m (which changes under Legendrian isotopy) is a Legendrian isotopy
invariant.

Ekholm and Ng [2015] extend the definition of the Chekanov–Eliashberg DGA
over ZŒt; t�1� to Legendrian links in #k.S1 � S2/. The main result of this pa-
per uses Theorem 1.1 to extend the correspondence between normal rulings and
augmentations to a correspondence for Legendrian links in #k.S1 �S2/.

Theorem 1.3. Let ƒ be an s-component Legendrian link in #k.S1 � S2/ for
some k � 0. Given a field F, the Chekanov–Eliashberg DGA .A.ƒ/; @/ over
ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmentation � WA.ƒ/! F if and only if a front
diagram of ƒ has a �-graded normal ruling. Furthermore, if � is even, then
�.t1 � � � ts/D .�1/s.

Notice that one can consider Legendrian links in R3 as being Legendrian links
in #0.S1 �S2/. In this way, this result is a generalization of the correspondence
in [Leverson 2016] and Theorem 1.1. An immediate corollary is the following:
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Corollary 1.4. If ƒ is a Legendrian link in #k.S1 �S2/ and there exists ` such
that N` is odd, then there does not exist a �-graded augmentation of the DGA A.ƒ/
for any �.

In other words, if ƒ has a 1-handle with an odd number of strands going through
it, then there does not exist a �-graded augmentation of the DGA A.ƒ/ for any �.
This follows from the fact that every involution of a set with an odd number of
elements has a fixed-point.

Along with the work of Bourgeois, Ekholm, and Eliashberg [Bourgeois et al.
2012], Theorem 1.3 gives nonvanishing results for Weinstein (Stein) 4-manifolds.
(Note that proofs of the results in [loc. cit.] have not appeared yet.) In particular:

Corollary 1.5. If X is the Weinstein 4-manifold obtained from attaching 2-handles
along a Legendrian linkƒ to #k.S1�S2/ andƒ has a graded normal ruling, then
the full symplectic homology SH.X / is nonzero.

This follows from Theorem 1.3 as the existence of a normal ruling implies the
existence of an augmentation to Q, which, by [Bourgeois et al. 2012], is a sufficient
condition for the full symplectic homology to be nonzero.

We show a correspondence for Legendrian links in the 1-jet space of the circle
J1.S1/. Ng and Traynor [2004] extend the definition of the Chekanov–Eliashberg
DGA to Legendrian links in J1.S1/. Lavrov and Rutherford [2012] extend the
definition of normal ruling to a “generalized normal ruling” of Legendrian links in
J1.S1/ and show that the existence of a generalized normal ruling is equivalent to the
existence of an augmentation to Z=2 of the Chekanov–Eliashberg DGA over Z=2 of a
Legendrian link in J1.S1/. In Section 6, we show that this correspondence holds for
augmentations to any field of the Chekanov–Eliashberg DGA over ZŒt˙1

1
; : : : ; t˙1

s �.

Theorem 1.6. Suppose that ƒ is a Legendrian link in J1.S1/. Given a field F, the
Chekanov–Eliashberg DGA .A; @/ over ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmen-
tation � W A! F if and only if a front diagram of ƒ has a �-graded generalized
normal ruling.

1A. Outline of the article. In Section 2, we recall background on Legendrian links
in #k.S1�S2/ and R3. We give definitions of the Chekanov–Eliashberg DGA over
ZŒt; t�1�, with sign conventions, and augmentations of the DGA in both #k.S1�S2/

and R3. We also define normal rulings for links in #k.S1 � S2/ and show that
the ruling polynomial is invariant under Legendrian isotopy, proving Theorem 1.2.
In Section 3, we prove Theorem 1.1. In Section 4, given an augmentation, we
construct a normal ruling proving one direction of Theorem 1.3. In Section 5, given
a normal ruling, we construct an augmentation, finishing the proof of Theorem 1.3.
In Section 6, we prove Theorem 1.6. In the Appendix, we give the nonvanishing
symplectic homology result.
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2. Background material

2A. Legendrian links in #k.S 1 � S 2/. In this section we will briefly discuss
necessary concepts of Legendrian links in #k.S1 � S2/. We will follow the
notation in [Ekholm and Ng 2015].

Definition 2.1. Let A;M > 0 be fixed. A tangle in Œ0;A�� Œ�M;M �� Œ�M;M �

is Legendrian if it is everywhere tangent to the standard contact structure dz�ydx.
Informally, a Legendrian tangle T in Œ0;A�� Œ�M;M �� Œ�M;M � is in normal
form if

� T meets xD 0 and xDA in k groups of strands, where the groups are of size
N1; : : : ;Nk , from top to bottom in both the xy- and xz-projections,

� and within the `-th group, we label the strands by 1; : : : ;N` from top to bottom
at x D 0 in both the xy- and xz-projections and x DA in the xz-projection,
and from bottom to top at x DA in the xy-projection.

Every Legendrian tangle in normal form gives a Legendrian link in #k.S1�S2/

by attaching k 1-handles which join parts of the xz projection of the tangle at xD 0

to the parts at x DA. In particular, the `-th 1-handle joins the `-th group at x D 0

to the `-th group at x D A and connects the strands in this group with the same
label at x D 0 and x DA through the 1-handle. See Figure 2.

Every Legendrian link in #k.S1 � S2/ has an xz-diagram of the form given
by Gompf [1998], which we will call Gompf standard form. The left diagram of
Figure 2 is an example of a link in Gompf standard form. Any link in Gompf
standard form can be isotoped to a link whose xy-projection is obtained from the
xz-diagram by resolution. The resolution of an xz-diagram of a link is obtained by
the replacements given in Figure 1. For an example, see Figure 2. By [Ekholm and
Ng 2015], an xy-diagram obtained by the resolution of an xz-diagram of a link in
Gompf standard form is in normal form. Thus, we can assume that the xy-diagram
of any Legendrian link is in normal form.

1
2
3
4

4
3
2
1

b34

b24

b14

b23

b13

b12

Figure 1. Resolutions of an xz-diagram in Gompf standard form.
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Figure 2. A Legendrian xz-diagram of a link in #2.S1 �S2/ in
Gompf standard form (top), and the resolution of the Legendrian
link to an xy-diagram of a Legendrian isotopic link (bottom).

2B. Definition of the DGA and augmentations in #k.S 1 � S 2/. This section
contains an overview of the differential graded algebra over the ring ZŒt˙1

1
; : : : ; t˙1

s �

presented by Ekholm and Ng [2015]. Let ƒDƒ1 t � � � tƒn be a Legendrian link
in #k.S1 �S2/ in normal form, where the ƒi denote the components of ƒ and
n� s. On each link component ƒi , label a point by �i (corresponding to ti) within
the tangle (away from crossings). We will discuss the case where there is more than
one basepoint on a given component in Section 2K. Let Ni � 1 be the number of
strands of ƒ which go through the i -th 1-handle with N D

P
Ni the total number

of strands at x D 0.

2C. Internal DGA. We will define the internal DGA for a Legendrian link in
S1�S2, but one can easily extend the definition to the internal DGA for a Legendrian
link in #k.S1 �S2/ by defining the internal DGA as follows for each 1-handle
separately.
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Let .r1; : : : ; rn/ 2 Zn be the n-tuple where ri is the rotation number of the i-th
component ƒi , let r D gcd.r1; : : : ; rn/, and let .m.1/; : : : ;m.N // 2 .Z=2r/N be
the N -tuple of a choice of Maslov potential for each strand passing through the
1-handle (see Section 2E).

Let .AN ; @N / denote the DGA defined as follows. Let A be the tensor algebra
over RDZŒt˙1

1
; : : : ; t˙1

s � generated by c0
ij for 1� i<j �N and c

p
ij for 1� i; j �N

and p � 1. Set jti j D �2ri , jt�1
i j D 2ri , and

jc
p
ij j D 2p� 1Cm.i/�m.j /

for all i; j ;p. Define the differential @N on the generators by

@N .c
0
ij /D

j�1X
`DiC1

.�1/jc
0
i`
jC1c0

i`c
0
j̀ ;

@N .c
1
ij /D ıij C

NX
`DiC1

.�1/jc
0
i`
jC1c0

i`c
1
j̀ C

j�1X
`D1

.�1/jc
1
i`
jC1c1

i`c
0
j̀ ;

@N .c
p
ij /D

pX
`D0

NX
mD1

.�1/jc
`
im
jC1c`imc

p�`
mj ;

where p � 2, ıij is the Kronecker delta function, and we set c0
ij D 0 for i � j.

Extend @N to AN by the Leibniz rule

@N .xy/D .@N x/yC .�1/jxjx.@N y/:

From [Ekholm and Ng 2015], we know @N has degree �1, @2
N
D 0, and .A

N
; @

N
/

is infinitely generated as an algebra, but is a filtered DGA, where c
p
ij is a generator

of the `-th component of the filtration if p � `.
Given a Legendrian link ƒ� #k.S1�S2/, we can associate a DGA .ANi

; @Ni
/

to each of the 1-handles. We then call the DGA generated by the collection of
generators of Ai for 1� i � k with differential induced by @Ni

, the internal DGA
of ƒ.

2D. Algebra. Suppose we have a Legendrian linkƒDƒ1t� � �tƒn�#k.S1�S2/

in normal form with exactly one point labeled �i within the tangle (away from
crossings) on each link component ƒi of ƒ (corresponding to ti). We will discuss
the case where there is more than one basepoint on a given component in Section 2K.

Notation 2.2. Let Qa1; : : : ; Qam denote the crossings of the xy tangle diagram in
normal form. Label the k 1-handles in the diagram by 1; : : : ; k from top to bottom.
Recall that Ni denotes the number of strands of the tangle going through the i-th
1-handle. For each i , label the strands going through the i-th 1-handle on the left
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side of the diagram 1; : : : ;Ni from top to bottom and from bottom to top on the
right side, as in Figure 2.

Let A.ƒ/ be the tensor algebra over RD ZŒt˙1
1
; : : : ; t˙1

s � generated by

� Qa1; : : : ; Qam;

� c0
ij I`

for 1� `� k and 1� i < j �N`;

� c
p

ij I`
for 1� `� k, p � 1, and 1� i; j �N`.

(In general, we will drop the index ` when the 1-handle is clear.)

2E. Grading. The following are a few preliminary definitions which will allow us
to define the grading on the generators of A.ƒ/.

Definition 2.3. A path in �xy.ƒ/ is a path that traverses part (or all) of �xy.ƒ/

which is connected except for where it enters a 1-handle, meaning, where it ap-
proaches x D 0 (respectively x DA) along a labeled strand and exits the 1-handle
along the strand with the same label from x DA (respectively x D 0). Note that
the tangent vector in R2 to the path varies continuously as we traverse a path as the
strands entering and exiting 1-handles are horizontal.

The rotation number r.
 / of a path 
 is the number of counterclockwise revo-
lutions around S1 made by the tangent vector 
 0.t/=j
 0.t/j to 
 as we traverse 
 .
Generally this will be a real number, but will be an integer if and only if 
 is smooth
and closed.

Thus, the rotation number ri D r.ƒi/ is the rotation number of the path in
�xy.ƒ/ which begins at the basepoint �i on the link component ƒi and traverses
the link component, following the orientation of the component. In the case where
ƒ is a link with components ƒ1; : : : ; ƒn, we define

r.ƒ/D gcd.r1; : : : ; rn/:

Define

jti j D �2r.ƒi/:

If �xy.ƒ/ is the resolution of an xz-diagram of an n-component link in Gompf
standard form, then the method assigning gradings follows: Choose a Maslov
potential m that associates an integer modulo 2r.ƒ/ to each strand in the tangle T

associated to ƒ, minus cusps and basepoints, such that the following conditions
hold:

(1) For all 1 � ` � k and all 1 � i �N`, the strand labeled i going through the
`-th 1-handle at x D 0 and the x DA must have the same Maslov potential.
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(2) If a strand is oriented to the right, meaning it enters the 1-handle at x DA and
exits at xD 0, then the Maslov potential of the strand must be even. Otherwise
the Maslov potential of the strand must be odd.

(3) At a cusp, the upper strand (strand with higher z-coordinate) has Maslov
potential one more than the lower strand.

The Maslov potential is well-defined up to an overall shift by an even integer for
knots. (Ekholm and Ng [2015] give another method for defining the gradings using
the rotation numbers of specified paths.)

Set jti j D �2r.ƒi/ and jcp
ij I`j D 2p� 1Cm.i/�m.j /, where m.i/ means the

Maslov potential of the strand with label i going through the `-th 1-handle. It
remains to define the grading on crossings in the tangle, crossings resulting from
resolving right cusps, and crossings from the half-twists in the resolution. If a is a
crossing in the tangle T, then define

jaj Dm.So/�m.Su/;

where So is the strand which crosses over the strand Su at a in the xy-projection
of ƒ. If a is a right cusp, define jaj D 1 (assuming there is not a basepoint in the
loop). If a is a crossing in one of the half-twists in the resolution where strand i

crosses over strand j (i < j ), then

jaj Dm.i/�m.j /:

2F. Differential. It suffices to define the differential @ on generators and extend
by the Leibniz rule. Define @.ZŒt˙1

1
; : : : ; t˙1

s �/ D 0. Set @ D @N`
on AN`

as in
Section 2C.

In [Ekholm and Ng 2015], the DGA on crossings ai is defined by looking for
immersed disks in the xy-diagrams of Legendrian links, (see the left diagram in
Figure 3). However, Ekholm and Ng note that it is equivalent to look for immersed
disks in dip versions of the diagram, (see the right diagram in Figure 3). See
Figure 4 for the labeling of the crossings in Figure 3.

Definition 2.4. Let a; b1; : : : ; b` be generators. Define �.aI b1; : : : ; b`/ to be the
set of orientation-preserving maps

f WD2
! R2

(up to smooth reparametrization) that map @D2 to the dip version of ƒ such that

(1) f is a smooth immersion except at a; b1; : : : ; b`,

(2) a; b1; : : : ; b` are encountered as one traverses f .@D2/ counterclockwise,

(3) near a; b1; : : : ; b`, f .D2/ covers exactly one quadrant, specifically, a quadrant
with positive Reeb sign near a and a quadrant with negative Reeb sign near
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Figure 3. A Legendrian xy-diagram of a link in #2.S1 � S2/

which has resulted from the resolution of a link in Gompf standard
form (top) and the dipped version of the link where the half of a
dip on the left side of the dipped version is identified with the right
half of the dip on the right side. See Figure 4 for the labeling of
the crossings in the dips (bottom).

4

3

2

1

b14

b13

b12

b24

b23

b34 c0
14

c0
13

c0
12

c0
24

c0
23

c0
34

Figure 4. This is the dip at the right of the bottom figure in Figure 3
with strands and crossings labeled. The labels of the partial dip at
the left of the bottom figure in Figure 3 are the same as the right
half of the dip depicted.
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�

�

CC
C

C

�

�

Figure 5. The signs in the figure give the Reeb signs of the quad-
rants around the crossings. The orientation signs are C1 for all
quadrants of crossings of odd degree. For crossings of even degree,
we use the convention indicated in the left figure if the crossing
comes from the xz-projection and the convention in the right figure
if the crossing is in a dip, which will be discussed in Section 2J,
where the shaded quadrants have orientation sign �1 and the other
quadrants have orientation sign C1.

b1; : : : ; b`, where the Reeb sign of a quadrant near a crossing is defined as in
Figure 5.

To each immersed disk, we can assign a word in A.ƒ/ by starting with the
first corner where the quadrant covered has negative Reeb sign, b1, and listing the
crossing labels of all negative corners as encountered while following the boundary
of the immersed polygon counterclockwise, b1 � � � b`. We associate an orientation
sign ıQ;a to each quadrant Q in the neighborhood of a crossing a, defined in
Figure 5, and use these to define the sign of a disk f .D2/ to be the product of the
orientation signs over all the corners of the disk. We denote this sign by ı.f /. In
many cases there is a unique disk with positive corner at a (with respect to Reeb
sign) and negative corners at b1; : : : ; b` and in these we define ı.aI b1; : : : ; b`/ to
be the sign of the unique disk. (In exceptional cases there may be more than one
disk with positive corner at a and negative corners at b1; : : : ; b`.)

Define n�i
.f / or n�i

.aI b1; : : : ; b`/ to be the signed count of the number of times
one encounters the basepoint �i while following f .@D2/ counterclockwise, where
the sign is positive if we encounter the basepoint while following the orientation of
the link component and negative if we encounter the basepoint while going against
the orientation.

We define

@.ai/D
X
`�0

X
.b1;:::;b`/

X
f 2�.ai Ib1;:::;b`/

ı.f / t
n�1

.f /

1
� � � t

n�s.f /
s b1 � � � b`

and extend to A.ƒ/ by the Leibniz rule.
Ekholm and Ng [2015] prove that the map @ has degree �1 and is a differential,

i.e., @2 D 0.
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a7

a8

a9

Figure 6. A Legendrian xz-diagram in #2.S1 �S2/ in Gompf
standard form (top) and the dip form of the normal form (bottom).
Recall the labels on the crossings in the dips from Figure 4 for the
top 1-handle and label the left crossing b12 and the right c12 in the
dip of the bottom 1-handle.

Example 2.5. The following is the definition of the DGA .A.ƒ/; @/ for the Leg-
endrian link ƒ in Figure 6. Here A.ƒ/ is generated by a1; : : : ; a9; bij ; c

p
ij over

ZŒt˙1
1
; t˙1

2
; t˙1

3
�. We set jti jD 2r.ƒi/D 0 for i D 1; 2; 3. Define a Maslov potential

m on the strands near x D 0 by

i 1 2 3 4 1 2

m.i/ 2 1 0 �1 0 �1

Then we have the following gradings:

ja1j D ja2j D ja3j D ja7j D ja8j D 0; ja4j D ja5j D ja9j D 1; ja6j D �1;
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ij 12 13 14 23 24 34 12

jbij j 1 2 3 2 2 1 1

jc0
ij j 0 1 2 0 1 0 0

j

jc1
ij j 1 2 3 4

i

1 1 2 3 4

2 0 1 2 3

3 �1 0 1 2

4 �2 �1 0 1

j

jc2
ij j 1 2 3 4

i

1 3 4 5 6

2 2 3 4 5

3 1 2 3 4

4 0 1 2 3

where 12 is the crossing of the strands in the bottom 1-handle. Since jcp
ij j D

2p� 1Cm.i/�m.j /, we know jcp
ij j> 0 for p > 2.

For ease of notation, we will use c
p
12

to denote c
p

12
. We then have the following

differentials:

@a1 D @a2 D @a3 D @a6 D 0

@a4 D .1C a2a1/a3� t�1
1 a2c0

12

@a5 D 1� a1a3C t�1
1 c0

12

@a7 D t�1
2 t�1

3 c0
34a6

@a8 D a6c0
12

@a9 D t�1
2 t�1

3 c0
34a8� a7c0

12

@b12 D 1C a2a1� c0
12

@b13 D .1C a2a1/b23C a4.t2c0
23a7C t�1

3 c0
24a6/

� t�1
1 a2.t2c0

13a7C t�1
3 c0

14a6/� c0
13C b12c0

23

@b14 D .1C a2a1/b24

�
�
a4.t2c0

23a7C t�1
3 c0

24a6/� t�1
1 a2.t2c0

13a7C t�1
3 c0

14a6/
�
b34

C .a4c0
23� t�1

1 a2c0
13/t2a9C .a4c0

24� t�1
1 a2c0

14/t
�1
3 a8

� c0
14C b12c0

24� b13c0
34

@b23 D�a3.t2c0
23a7C t�1

3 c0
24a6/� c0

23

@b24 D�a3.t2c0
23a7C t�1

3 c0
24a6/b34� t�1

3 a3c0
24a8

� c0
24C b23c0

34� t2a3c0
23a9

@b34 D c0
12� c0

34
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@b12 D t�1
2 t�1

3 c0
34� c0

12

@c
p
ij D ıijı1pC

pX
`D0

4X
mD1

.�1/jc
`
im
jC1 c`im c

p�`
mj

@c
p
ij D ıijı1pC

pX
`D0

2X
mD1

.�1/jc
`
im
jC1 c`im c

p�`
mj

Definition 2.6. Let .A; @/ be a semifree DGA over R generated by fai ji 2 Ig.
Let J be a countable (possibly finite) index set. A stabilization of .A; @/ is the
semifree DGA .S.A/; @/, where S.A/ is the tensor algebra over R generated by
fai j i 2 Ig [ f j̨ j j 2 J g [ f ǰ jj 2 J g and the grading on ai is inherited from
A and j j̨ j D j ǰ j C 1 for all j 2 J. Let the differential on S.A/ agree with the
differential on A� S.A/, define

@. j̨ /D ǰ and @. ǰ /D 0

for all j 2 J, and extend by the Leibniz rule.

Definition 2.7 [Ekholm and Ng 2015]. Two semifree DGAs .A; @/ and .A0; @0/ are
stable tame isomorphic if some stabilization of .A; @/ is tamely isomorphic to some
stabilization of .A0; @0/.

Theorem 2.8 [op. cit., Theorem 2.18]. Let ƒ and ƒ0 be Legendrian isotopic Leg-
endrian links in #k.S1 � S2/ in normal form. Let .A.ƒ/; @/ and .A.ƒ0/; @0/ be
the semifree DGAs over RD ZŒt˙1

1
; : : : ; t˙1

s � associated to the diagrams �xy.ƒ/

and �xy.ƒ
0/, which are in normal form. Then .A.ƒ/; @/ and .A.ƒ0/; @0/ are stable

tame isomorphic.

Definition 2.9. Let F be a field. An augmentation of .A.ƒ/; @/ to F is a ring map
� W A.ƒ/! F such that � ı @D 0 and �.1/D 1. If � j 2r.ƒ/ and � is supported
on generators of degree divisible by �, then � is �-graded. In particular, if �D 0,
we say it is graded and if � D 1, we say if is ungraded. We call a generator a

augmented if �.a/¤ 0.

Example 2.10. Recalling the DGA associated with the Legendrian link in Figure 6
of Example 2.5, given a field F, one can check that any graded augmentation �
to F satisfies: �.t1/D�1, �.t3/D �.t2/�1 where �.t2/¤ 0, �.bij /D �.b12/D 0,
and for a; b; c; d; e; f 2 F such that 1C ab; d; e ¤ 0,

i 1 2 3 4 5 6 7 8 9

�.ai/ a b �b 0 0 0 c c 0

ij 12 13 14 23 24 34 12

�.c0
ij / 1C ab 0 0 0 0 d d
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j

jc1
ij j 1 2 3 4

i

1 0 0 0 0

2 e 0 0 0

3 0 f 0 0

4 0 0 .1C ab/d�1e 0

j

jc2
ij j 1 2 3 4

i

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 �.1C ab/d�1f 0 0 0

Note that any augmentation of a stabilization S.A/ restricts to an augmentation
of the smaller algebra A and any augmentation of the algebra A extends to an
augmentation of the stabilization S.A/ where the augmentation sends ǰ to 0 and

j̨ to an arbitrary element of F if � divides j j̨ j and 0 otherwise for all j 2 J.

2G. Normal rulings in #k.S 1 � S 2/. In this section, we extend the definition of
a normal ruling from Legendrian links in R3 to Legendrian links in #k.S1 �S2/.
We formulate the definition similarly to how Lavrov and Rutherford [2012] define
normal rulings in the case of Legendrian links in the solid torus.

Consider the tangle portion of the �xz.ƒ/ diagram in normal form of a Leg-
endrian link ƒ � #k.S1 � S2/. A normal ruling can be viewed locally as a
decomposition of �xz.ƒ/ into pairs of paths.

Let C � S1 be the set of x-coordinates of crossings and cusps of �xz.ƒ/ where
S1 D Œ0;A�=f0DAg. We can write

S1
nC D

Ma
`D1

I`

where I` is an open interval (or all of S1) for each `. We use the convention that
I0DIM and the I` are ordered I0; : : : ; IM from xD0 to xDA (from left to right in
the xz-diagram) so that I`�1 appears to the left of (has lower x-coordinates than) I`.
Note that .I` � Œ�M;M �/\�xz.ƒ/ consists of some number of nonintersecting
components which project homeomorphically onto I`. We call these components
strands of �xz.ƒ/ and number them from top to bottom by 1; : : : ;N.`/. For each `,
choose a point x` 2 I`.

Definition 2.11. A normal ruling of �xz.ƒ/ is a sequence of involutions � D
.�1; : : : ; �M /,

�m W f1; : : : ;N.m/g ! f1; : : : ;N.m/g; .�m/
2
D id;

satisfying:

(1) Each �m is fixed-point-free.
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(2) If the strands above Im labeled ` and `C 1 meet at a left cusp in the interval
.xm�1;xm/, then

�m.i/D

8<:
`C 1 if i D `;

J.�m�1.i// if i < `;

J.�m�1.i � 2// if i > `C 1;

where

J.i/D

�
i; i < `;

i C 2; i � `;

and a similar condition at right cusps.

(3) If strands above Im labeled ` and `C 1 meet at a crossing on the interval
.xm�1;xm/, then �m�1.`/¤ `C 1 and either
� �m D .` `C 1/ ı �m�1 ı .` `C 1/, where .` `C 1/ denotes transposition

or
� �m D �m�1.

When the second case occurs, we call the crossing switched.

(4) (Normality condition) If there is a switched crossing on the interval .xm�1;xm/,
then one of the following holds:
� �m.`C 1/ < �m.`/ < ` < `C 1,
� �m.`/ < ` < `C 1< �m.`/,
� ` < `C 1< �m.`C 1/ < �m.`/.

(5) Near x D 0 and x DA, both the strand with label ` and the strand with label
�0.`/ must go through the same 1-handle; in other words, there exists p such
that

Pp�1
iD1

Ni < `; �0.`/�
Pp

iD1
Ni .

The final condition is the only condition which is different from how normal
rulings are defined in [Lavrov and Rutherford 2012] for the case of solid torus knots.
This condition ensures the ruling “behaves well” with the 1-handles.

Remark 2.12. As in [loc. cit.], one can equivalently see normal rulings as pairings
of strands in the xz-diagram with certain conditions. Here we think of strands i

and j being paired for xm�1 � x � xm if �m.i/D j. In this way, we can cover the
xz-diagram with pairs of paths which have monotonically increasing x-coordinate.
Note that if a path goes all the way from x D 0 to x D A, it may end up on a
different strand than it started, but strand i is paired with strand j at x D 0 if
and only if they are paired at x D A. Condition (5) also specifies that the paired
strands must go through the same 1-handle. The conditions mentioned above are as
follows: Paired paths can only meet at a cusp. This also means that at a crossing,
the crossings strands must be paired with other strands. These companion strands
can either lie above or below the crossing. Conditions (3) and (4) specify that near
a crossing the pairings must be one of those depicted in Figure 7.
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.a/ .b/ .c/

.d/ .e/ .f /

Figure 7. These configurations, along with vertical reflections of
(d), (e), and (f), are all possible configurations of a normal ruling
near a crossing. The top row contains all possible configurations
for switched crossings in a normal ruling. (This figure is taken
from [Leverson 2016].)

Figure 8. These are the two normal rulings of the Legendrian link
of Example 2.5 seen in Figure 6.

Example 2.13. Figure 8 gives the normal rulings of the Legendrian link from
Example 2.5.

Definition 2.14. Given � such that � j 2r.ƒ/ and an Z=�-valued Maslov potential
on ƒ, a normal ruling is �-graded with respect to the Z=�-valued Maslov potential
if whenever two strands are paired by one of the �m, the upper strand (strand with
lower label) has Maslov potential one higher than the lower strand (strand with
higher label).

Remark 2.15. Note that the condition for being a �-graded normal ruling of a
Legendrian link in #k.S1�S2/ implies that �

ˇ̌
jcj if the normal ruling is switched

at a crossing c. Further, any Legendrian link in R3 is also a Legendrian link in
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4 W ƒ ƒ

5 W ƒ ƒ

6 W ƒ ƒ

Figure 9. Gompf moves 4, 5, and 6.

#k.S1 �S2/ for any k (no strands of this link go through any of the 1-handles).
We then see that the definition of a �-graded normal ruling for the Legendrian link
in #k.S1 �S2/ is equivalent to the definition of a �-graded normal ruling for the
Legendrian link in R3.

Similarly to R3, we can define a �-graded ruling polynomial.

Definition 2.16. If m is a Z=�-valued Maslov potential for a Legendrian link ƒ,
then the �-graded ruling polynomial of ƒ with respect to m is

R
�
.ƒ;m/ D

X
�

zj.�/;

where the sum is over all �-graded normal rulings of ƒ and

j .�/D # switches� # right cusps:

Note that in the case where ƒ is a knot, the ruling polynomial does not depend
on the Maslov potential. Restated from the introduction:

Theorem 1.2. The �-graded ruling polynomial R
�
.ƒ;m/ with respect to the Maslov

potential m (which changes under Legendrian isotopy) is a Legendrian isotopy
invariant.

Proof. By Gompf [1998], any Legendrian link in #k.S1 �S2/ can be represented
by an xz-diagram in Gompf standard form and two such xz-diagrams represent
links that are Legendrian isotopic if and only if they are related by a sequence
of Legendrian Reidemeister moves of the xz-diagram of the tangle inside the
rectangle Œ0;A�� Œ�M;M � and three additional moves, which we will, following
the nomenclature of [Ekholm and Ng 2015], call Gompf moves 4, 5, and 6 (see
Figure 9). By [Pushkar and Chekanov 2005], we know the ruling polynomial is
invariant under Legendrian isotopy of the tangle, so we need only show it is invariant
under Gompf moves 4, 5, and 6.
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Gompf moves 4 and 5 clearly do not change the ruling polynomial. For Gompf
move 6, note that any normal ruling cannot pair a strand going through the 1-handle
with one of the strands incident to the cusp. Instead, the ruling must pair the two
strands incident to the left cusp and not have any switches in the portion of the
diagram depicted in Figure 9, thus the ruling polynomial does not change. �

Example 2.17. The normal rulings for the Legendrian link from Example 2.5 are
given in Figure 8. Thus the ruling polynomial is

Rƒ D z�1
C z:

2H. Legendrian links in R3. The classical invariants for Legendrian isotopy classes
of knots in R3 are: topological knot type, Thurston–Bennequin number, and rotation
number; see [Etnyre 2005]. The Thurston–Bennequin number of a knot measures
the self-linking of a Legendrian knot ƒ. Given a push off ƒ0 of ƒ in a direction
tangent to the contact structure, then tb.ƒ/ is the linking number of ƒ and ƒ0.
Given the xz-projection of ƒ,

tb.ƒ/D writhe.ƒ/� 1
2
.# cusps/:

The rotation number r.ƒ/ of an oriented Legendrian knot ƒ is the rotation of
its tangent vector field with respect to any global trivialization. (This definition
agrees with the definition of the rotation number of a path given earlier.) Given the
xz-projection of ƒ,

r.ƒ/D 1
2
.# down cusps� # up cusps/:

Given a Legendrian linkƒDƒ1t� � �tƒn, we define tbi D tb.ƒi/ and ri D r.ƒi/

for 1� i � n, and define

r.ƒ/D gcd.r1; : : : ; rn/:

2I. Satellites, the DGA, and augmentations in R3. This section gives the results
and notation for Legendrian links in R3 necessary to prove Theorem 1.3.

We will first extend the idea of satelliting a knot in J1.S1/ to an unknot (see
[Ng and Rutherford 2013]) to satelliting each 1-handle of a knot in #k.S1 �S2/

around a twice stabilized unknot.

Definition 2.18. Given the xy- or xz-diagram for a Legendrian link ƒ in #k.S1�

S2/, satellitedƒ is denoted S.ƒ/, the xy-diagram of which is depicted in Figure 10
and the xz-diagram of a Legendrian isotopic link of which is depicted in Figure 12
for the Legendrian link from Figure 6. Label the crossings as indicated, where
i � j and label the basepoints in S.ƒ/ as they are labeled in ƒ. Note that the xy-
or xz-diagram of ƒ defines S.ƒ/ up to Legendrian isotopy.
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1
2
3
4

1
2

1
2
3
4

1
2

t1

t2

t3

a1 a2

a3

a4

a5

a6
a7
a8

a9 bij cij

b12
c12

dji

eij

fjigij

hji

qij

Ndji

Ne12

NfjiNg12

Nhji

Nq12

Figure 10. The xy-projection of the satellited link S.ƒ/. The
crossings in the cij -, bij -, cij , and bij -lattices are labeled as in
Figure 4. The crossings in the d; e; f;g; h; q-lattices are labeled
according to Figure 11.

1 2 3 4

1234

1234

1 2 3 4

e12

e13

e14e23

e24

e34

d11

d21

d31

d41

d22

d32

d42 d33

d43

d44

Figure 11. The labels for the crossings in the e- and d -lattices of
the satellited link S.ƒ/ as seen in Figure 10. The f - and h-lattices
are analogous to the d -lattice. The g- and q-lattices are analogous
to the e-lattice.
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123
4

10
20

123
4

10
20

a1
a2

a3

a4 a5

a6
a7
a8

a9

dji

eij

fjigij

hji

qij

d 0ji

e0ij

f 0ji
g0ij

h0ji

q0ij

Figure 12. The xz-projection of a link which is Legendrian iso-
topic to the satellited link S.ƒ/.

Remark 2.19. The Chekanov–Eliashberg DGA was originally defined on Legen-
drian links in .R3; dz�ydx/; see [Chekanov 2002; Sabloff 2005]. Note that the
same DGA results from defining the DGA as we did in #k.S1�S2/ where k D 0.

2J. Dips. Dips will be defined analogously to those defined in [Leverson 2016].
Given a diagram �xy.ƒ/ in normal form which is the result of resolution, we

construct a dip in the vertical slice of the diagram between two crossings, a crossing
and a cusp, or two cusps, by a sequence of Reidemeister II moves, as seen in
Figure 13 in the xz-projection and xy-projection. From the xz-projection, it is
clear that the diagram with the dip is Legendrian isotopic to the original diagram.
To construct a dip, number the N strands from top to bottom. Using a type II
Reidemeister move, push strand N �1 over strand N, then strand N �2 over strand
N � 1, then strand N � 2 over strand N, and so on. In this way, strand i is pushed
over strand j in antilexicographic order.

Given an xy-diagram for a link ƒ�R3 in normal form, where all crossings and
resolutions of left cusps having distinct x-coordinates, the dipped diagram D.ƒ/

is the result of adding a dip between each pair of crossings or resolution of a cusp
and crossing. For each Reidemeister II move, we have two new generators. Call
the left crossing bij and the right crossing cij if strands i < j cross. One can check
that jbij j Dm.j /�m.i/ and since @ lowers degree by 1, we know jcij j D jbij j�1.

While dipped diagrams have many more crossings than the original link diagram,
the differential @ on A.D.ƒ// is generally much simpler. In fact, a totally augmented
disk (a disk from the definition of the differential of the DGA where all crossings
at corners are augmented), cannot “go through” or “span” more than one dip.
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4

3

2

1

b14

b13

b12

b24

b23

b34 c14

c13

c12

c24

c23

c34

Figure 13. The modification of the xz-diagram when creating a
dip (left) and the modification of the xy-diagram (right). (This
figure is taken from [Leverson 2016].)

2K. Augmentations before and after basepoints and type II moves. In certain
cases, we will find that adding basepoints will simplify the signs. For Legendrian
links in R3, Ng and Rutherford [2013] give the DGA homomorphisms induced by
adding a basepoint to a diagram and by moving a basepoint around a link. One can
easily extend their results to #k.S1 �S2/.

The following theorem is the analog of [op. cit, Theorem 2.21]:

Theorem 2.20. Let �1; : : : ;�k and �0
1
; : : : ;�0

k
denote two collections of base-

points on the Lagrangian resolution of the front diagram of a Legendrian knot ƒ,
each of which is cyclically ordered along ƒ, and let .A.ƒ;�1; : : : ;�k/; @/ and
A.ƒ;�0

1
; : : : ;�0

k
/; @0/ denote the corresponding multipointed DGAs. Then there is

a DGA isomorphism ‰ W .A.ƒ;�1; : : : ;�k/; @/! .A.ƒ;�0
1
; : : : ;�0

k
/; @0/ such that

‰.ti/D ti for all i .

In the proof of the theorem, ‰ is defined so that ‰.c/ D c if no basepoint
is moved over or under the crossing c. However, if the basepoint �i is moved
over the crossing c, then ‰.c/ D t˙1

i c, where the sign depends on whether the
basepoint is moved along the knot following the orientation of the knot or against
the orientation of the knot. If, instead, the basepoint is moved under the crossing c,
then ‰.c/D ct˙1

i , where the sign, again, depends on the orientation of the knot.
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Thus, If �0 is an augmentation of the DGA of the diagram after moving the
basepoint �i over the crossing c, then �D �0 ı‰ is an augmentation of the DGA of
the diagram before moving the basepoint.

The following theorem is the analog of [Ng and Rutherford 2013, Theorem 2.22]:

Theorem 2.21. Let �1; : : : ;�k be a cyclically ordered collection of basepoints
alongƒ, and let � be a single basepoint onƒ. Then there is a DGA homomorphism
� W .A.ƒ;�/; @/! .A.ƒ;�1; : : : ;�k/; @/ such that �ı@D @ı� and �.t/D t1 � � � tk .

Remark 2.22. In summary, if we have an augmentation � WA!F with �.ti/D�1,
then moving the basepoint �i through a crossing c only changes the augmentation
by changing the sign of the augmentation on the crossing c. Suppose we have a
diagram with a basepoint � corresponding to t and the same diagram with basepoints
�1; : : : ;�s associated to t1; : : : ; ts on the same component of the link and we move
all of the basepoints �1; : : : ;�s to the location of �. By the above results, if � is an
augmentation to F of the multiple basepoint diagram, there exists an augmentation
�0 to F of the single basepoint diagram such that for all crossings c there exists
xc 2 F such that �0.c/D xc�.c/ and

�0.t/D �.t1 � � � ts/D

sY
iD1

�.ti/:

Etnyre, Ng, and Sabloff [Etnyre et al. 2002] give a DGA isomorphism relating
the DGA of a diagram of a Legendrian knot in R3 before and after a Reidemeister II
move. One can easily extend this to a similar result for #k.S1�S2/, which gives a
way to extend an augmentation of the diagram before a Reidemeister II move to an
augmentation of the diagram after the move; see [Leverson 2016] for the analogous
result in R3.

3. Correspondence between augmentations
and normal rulings for links in R3

We have the following result for knots in R3:

Theorem 3.1 [Leverson 2016, Theorem 1.1]. Let ƒ be a Legendrian knot in R3.
Given a field F, .A; @/ has a �-graded augmentation � WA! F if and only if any
front diagram of ƒ has a �-graded normal ruling. Furthermore, if � is even, then
�.t/D�1.

This result is proven by construction. Using the same method we can prove an
analogous result for links in R3. Restating from the introduction:

Theorem 1.1. Letƒ be an n-component Legendrian link in R3 with s basepoints (at
least one basepoint on each component). Given a field F, the Chekanov–Eliashberg
DGA .A; @/ over ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmentation � W A! F if and
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only if a front diagram of ƒ has a �-graded normal ruling. Furthermore, if � is
even, then �.t1 � � � ts/D .�1/s.

The following result will be necessary for the proof of Theorem 1.1. Analogous to
the knot case in R3, we have the following extension of [Leverson 2016, Lemma 3.2]:

Lemma 3.2. If c gives the number of right cusps, sw is the number of switches in
the ruling, a� is the number of �(a) crossings, and n is the number of components,
then

cC swC a� � n mod 2:

Proof. As in the knot case, one can easily show each of the following statements:
nX

iD1

tbi C

nX
iD1

ri � n mod 2(1)

nX
iD1

tbi � cC cr mod 2(2)

cr � sw mod 2(3)
nX

iD1

ri � a� mod 2(4)

where ri is the rotation number of ƒi and cr is the number of crossings. Note that
if we add these four equations together, we get that

cC swC a� � n mod 2

as desired. �
Proof of Theorem 1.1. After a series of Legendrian isotopies, we can assume
the front diagram of ƒ has the following form where from left to right (lowest
x-coordinate to highest x-coordinate) we have: all left cusps have the same x-
coordinate, no two crossings of ƒ have the same x-coordinate, and all right cusps
have the same x-coordinate (in [Leverson 2016], this is called plat position). Label
the crossings in the right cusps by q1; : : : ; qm from top to bottom and label the
other crossings by c1; : : : ; c` from left to right.

Augmentation to ruling: Beginning with a �-graded augmentation of the Chekanov–
Eliashberg DGA of the resolution of �xz.ƒ/ to a Lagrangian diagram, define a
�-graded normal ruling of �xz.ƒ/ by simultaneously defining a �-graded augmen-
tation of the dipped diagram D.ƒ/ as in the knot case, using Figure 14.

Ruling to augmentation: Given a �-graded normal ruling of �xz.ƒ/, define a
�-graded augmentation of the dipped diagram D.ƒ/with basepoints where specified
in Figure 14 and at each right cusps as in the knot case, using Figure 14.
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Using Lemma 3.2 and the methods in the proof of [Leverson 2016, Theorem 3.1],
one can show the final statement of Theorem 1.1. Given a �-graded augmentation
� WA! F, consider the associated �-graded normal ruling. If � is even, then the
ruling is only switched at crossings ck with �

ˇ̌
jck j and so 2

ˇ̌
jck j. Thus, any

strands paired by the ruling must have opposite orientation. As in the case of knots,
this implies that near a crossing where the ruling is switched the crossing must be a
positive crossing. Thus each ruling path is an oriented unknot.

If we consider the dipped diagram of the link, by induction we can show thatY
�.bk

ij /
˙1
D 1;

where the product is taken over all paired strands i and j in the ruling between ck

and ckC1 and the sign is determined by the orientation of the paired strands as in
[op. cit.]. By considering @qk , we see that

�.t1 � � � ts/D .�1/s�m
mY

kD1

�
��.b`2k;2k�1/

˙1
�

D .�1/s
Y

i<j paired

�.b`ij /
˙1
D .�1/s D .�1/n

by Lemma 3.2 and the fact that the number of basepoints s� cCswCa� mod 2. �

4. Augmentation to ruling

In this section, we will show that a quotient of the DGA of the satellited version
of any Legendrian link ƒ in #k.S1 � S2/ is a subalgebra of the DGA of ƒ in
#k.S1 �S2/ and use the construction from Theorem 1.1 to construct a ruling of
the satellited link in R3 to then give a normal ruling of ƒ in #k.S1 �S2/. This
shows the forward direction of Theorem 1.3.

Given an xy-diagram for the Legendrian link ƒ in #k.S1 �S2/ which results
from the resolution of an xz-diagram in normal form with basepoints indicated. We
can construct an xy-diagram for S.ƒ/, satellitedƒ, (see Figure 10) with basepoints
in the same location as they were for ƒ.

We will use the notation for Legendrian links in #k.S1 �S2/ with tildes added
for the Legendrian link ƒ in #k.S1 �S2/:

A.ƒ/D ZŒQt˙1
1 ; : : : ; Qt˙1

s �h Qai ;
Qbij I`; Qc

p
ij I`i

with differential Q@, where 1� `� k, i < j for all Qbij I` and i < j for Qcp
ij I` if p D 1.

We will use the notation for Legendrian links from Figure 10 for S.ƒ/:

A.S.ƒ//D ZŒt˙1
1 ; : : : ; t˙1

s �hai ; bij I`; cij I`; djiI`; eij I`; fjiI`;gij I`; hjiI`; qij I`i
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with differential @, where 1� `� k, 1� i �m for ai , i < j for bij I`, cij I`, eij I`,
gij I`, and qij I`, and i � j for djiI`, fjiI`, and hjiI`.

Suppose we have a Legendrian link ƒ in #k.S1 �S2/ with associated DGA
.A.ƒ/; @/. If .A.S.ƒ//; @/ is the DGA associated to satellited ƒ, then let � W
A.S.ƒ//!A.S.ƒ//=B be the quotient algebra homomorphism where B is the
ideal in A.S.ƒ// generated by

fcij I` �gij I`; cij I` � qij I`; cij I` � .�1/jeij I`jC1eij I`;

hjiI` � .�1/jfj iI`jC1fjiI`; hjiI` � .�1/jdj iI`jC1djiI`g:

Define 
 WA.S.ƒ//=B!A.ƒ/ by


 W A.S.ƒ//=B �! A.ƒ/

Œai � 7�! Qai

Œbij I`� 7�! Qbij I`

Œcij I`� 7�! Qc0
ij I`

ŒhjiI`� 7�! Qc1
jiI`

Œti � 7�! Qti

Proposition 4.1. If �D 
 ı� , then � is a graded algebra homomorphism such that
Q@�.c/D˙�@.c/ for all c 2 fai ; bij I`; cij I`; djiI`; eij I`; fjiI`;gij I`; hjiI`; qij I`g.

Proof. Grading: We will first show that � and 
 (and thus �) are graded algebra
homomorphisms. First, let m be the Maslov potential used to assign the gradings
of the crossings of ƒ in #k.S1 �S2/. We will use m to define a Maslov potential
� on S.ƒ/ in R3 as follows: Define � on T � S.ƒ/ the same as m is defined on
T �ƒ and extend � to the rest of S.ƒ/. Notice that there is only one way to do
this which keeps � of the upper strand (higher z-coordinate) entering a cusp one
higher than � of the lower strand (lower z-coordinate) entering a cusp. The fact
that @ has degree �1 and properties of the Maslov potential immediately give us
that in the p-th 1-handle:

j Qc1
ji j D jdji j D jfji j D jhji j; i � j(5)

j Qc0
ij j D jcij j D jeij j D jgij j D jqij j; i < j

�jdji j D jeij j; i < j

jbij j D jcij jC 1; i < j

Thus, � and 
 are graded algebra homomorphisms and so � is as well.
Q@�.c/D˙�@.c/: From the definition of their gradings, in the p-th 1-handle:

(6) j Qc0
ij j � j Qc

0
i`jC j Qc

0
j̀ j mod 2 and j Qc1

ji j � j Qc
1
j`jC j Qc

1
`i j mod 2
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With (5), we have analogous statements for bij ; cij ; dji ; eij ; fji ; gij ; hji , and qij .
By considering the disks which contribute terms to @ai and Q@ Qai (and analogously

@bij and Q@ Qbij in the p-th 1-handle for i < j ), it is clear that

Q@�.ai/Q@. Qai/D �@.ai/ and Q@�.bij /Q@. Qbij /D �@.bij /:

Given 1� p � k and 1� i < j �Np. In the p-th 1-handle:

Q@�cij D
Q@ Qc0

ij

D

X
i<`<j

.�1/jQc
0
i`
jC1
Qc0
i` Qc

0
j̀

D �

 X
i<`<j

.�1/jcij jC1ci`c j̀

!
by (5)

D �@cij ;

Q@�dii D @.�1/jdi i jC1
Qc1
ii

D .�1/jdi i jC1

 
1C

X
i<`�Np

.�1/jQc
0
i`
jC1
Qc0
i` Qc

1
`i C

X
1�`<i

.�1/jQc
1
i`
jC1
Qc1
i` Qc

0
`i

!

D 1C
X

i<`�Np

.�1/jQc
0
i`
jCjd`i j�.ci`d`i/

C

X
1�`<i

.�1/jQc
1
i`
jCjdi`jCje`i jC1�.di`e`i/ since jdii j D 1

D 1C
X

i<`�Np

�.ci`d`i/C
X

1�`<i

.�1/jdi`jC1�.di`e`i/ by (5)

D �@dii ;

Q@�dji D
Q@.�1/jdji jC1

Qc1
ji

D .�1/jdji jC1

 
0C

X
j<`�Np

.�1/jQc
0
j `
jC1
Qc0
j` Qc

1
`i C

X
1�`<i

.�1/jQc
1
j `
jC1
Qc1
j`c

0
`i

!

D �

 
.�1/jdji jC1

 
0C

X
j<`�Np

.�1/jQc
0
j `
jCjd`i jcj`d`i

C

X
1�`<i

.�1/jQc
1
j `
jCjdj `jCje`i jC1dj`e`i

!!
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D �

 
.�1/jdji jC1

 
0C .�1/jdji j

X
j<`�Np

cj`d`i

C .�1/jdji j
X

1�`<i

.�1/jdj `jC1dj`e`i

!!
by (5) and (6)

D��

 
0C

X
j<`�Np

cj`d`i C

X
1�`<i

.�1/jdj `jC1dj`e`i

!
D��@dji

One can similarly show that for i < j

Q@�eij D �@eij ;

Q@�fii D �@fii ; Q@�fji D��@fji ;

Q@�gij D �@gij ; Q@�hii D �@hii ;

Q@�hji D �@hji ;

Q@�qij D �@qij : �

Given a field F and a �-graded augmentation Q� WA.ƒ/! F, we will construct a
�-graded augmentation � WA.S.ƒ//!F. Define �D Q�ı�. Thus, on the generators
of A.S.ƒ// in the p-th 1-handle,

�.c/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Q�. Qai/ if c D ai

Q�. Qbij / if c D bij

Q�. Qc0
ij / if c 2 fcij ;gij ; qij g

.�1/jQc
0
ij
jC1
Q�. Qc0

ij / if c D eij

Q�. Qc1
ji/ if c D hji

.�1/jQc
1
ji
jC1
Q�. Qc1

ji/ if c 2 fdji ; fjig

Q�.Qti/ if c D ti :

We see that � is an augmentation because on any generator c of A.S.ƒ//,

�@.c/D Q��@.c/

D˙Q� Q@�.c/ by Proposition 4.1

D 0;

since �0 is an augmentation. And, since �0 is a �-graded augmentation and � is a
graded algebra homomorphism, � is a �-graded augmentation.

Thus an augmentation Q� WA.ƒ/!F of the DGA of ƒ in #k.S1�S2/ gives an
augmentation � W A.S.ƒ//! F of the DGA of S.ƒ/ in R3. By [Leverson 2016,
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Theorem 1.1], the augmentation � gives an augmentation of the DGA of S.ƒ/ with
dips in R3, which gives a normal ruling of S.ƒ/ with no dips in R3. We must check
that if two strands are paired in this normal ruling, then they go through the same
1-handle. Clearly this normal ruling must be thin, meaning outside of the tangle T

associated to ƒ the ruling only has switches at crossings where the crossing strands
go through the same 1-handle. By restricting the �-graded normal ruling of S.ƒ/

in R3 to a �-graded normal ruling of T, we get a �-graded normal ruling of ƒ in
#k.S1 �S2/.

5. Ruling to augmentation

Let F be a field. We will now prove the existence of a �-graded normal ruling implies
the existence of a �-graded augmentation, the backward direction of Theorem 1.3,
by constructing a �-graded augmentation � W A.D.ƒ// ! F given a �-graded
normal ruling of ƒ in #k.S1 �S2/.

Given an xz-diagram of a Legendrian link ƒ in #k.S1 �S2/ in normal form,
we will consider the resolution to an xy-diagram of a Legendrian isotopic link.
Using Legendrian isotopy, we can ensure all crossings, left cusps, and right cusps
have different x coordinates and all right cusps occur “above” (have higher y or z

coordinate than) the remaining strands of the tangle at that x coordinate. Place a
basepoint on every strand at xD 0 and one in every loop coming from the resolution
of a right cusp.

Define the augmentation � WA.D.ƒ//! F of the DGA for the dipped diagram
D.ƒ/ on generators as follows: If the ruling is switched at a crossing a`, then
set �.a`/ D 1. If not, set �.a`/ D 0. (Note that we can augment the switched
crossings to any nonzero element of F and still get an augmentation. But in the case
where ƒ is a knot, by augmenting the switched crossing to 1, we will be able to
ensure �.t/D�1.) Add basepoints and augment the crossings in the dips following
Figure 14. On the remaining generators, set

�.c`ij /D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1 if `D 0 and strands i < j are paired in the normal ruling
and go through the p-th 1-handle

.�1/jc
`
ij
j if `D 1; i > j, and strands i; j are paired in the normal

ruling and go through the p-th 1-handle
0 otherwise:

Augment all basepoints to �1.
By considering Figure 14, it is involved but straightforward to check that � is an

augmentation on the a` and the crossings in the dips.

Notation 5.1. c`fijg D c`min.i;j/;max.i;j/
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�.a/

a1

a2

a

a�1

aa1

aa2

C.a/

a1

a2

a

a�1

aa1

aa2

�.b/

a1

a2

a

a�1a
1
a�1

2

a�1

a�1a1

aa2

C.b/

a1

a2

a

a�1a
1
a�1

2

a�1

a�1a1

aa2

�.c/, product of signs of a
j�1

Li
and a

j�1

iC1;K
isC1

C.c/, product of signs of a
j�1

Li
and a

j�1

iC1;K
is �1

a1

a2

a

a�1a
1
a�1

2

a�1

a�1a1

aa2

�.c/, product of signs of a
j�1

Li
and a

j�1

iC1;K
is �1

C.c/, product of signs of a
j�1

Li
and a

j�1

iC1;K
isC1

a1

a2

a

a�1a
1
a�1

2

a�1

a�1a1

aa2

Figure 14. In the diagrams, � denotes a basepoint. A dot denotes
the specified crossing is augmented and the augmentation sends
the crossing to the labeled value. For example, in the left dip of
the �.a/ configuration, �.c12/ D a1 and �.c34/ D a2. All other
crossings are sent to 0 by the augmentation. Here �=C.a/ denotes
a negative/positive crossing where the ruling has configuration .a/
and the rest are defined analogously. See Figure 15 for config-
urations .d/, .e/, and .f/. (This figure is taken from [Leverson
2016].)

We will now check that � is an augmentation on the c`ij generators from the p-th
1-handle.

�@c0
ij D 0: For any ruling, at the left end of the diagram, each strand is paired

with another strand going through the same 1-handle. So for each strand i going
through the p-th 1-handle, there exists a strand j ¤ i such that strand i and j are
paired and 1 � i; j � Np. So if i < j, then �.c0

ij /D 1, �.c0
fi`g/D 0 for all `¤ j,

and �.c0
fj`g/D 0 for all `¤ i . Suppose i < r < `. Then �.c0

ir /D 0 if r ¤ j and
�.c0

r`/D 0 if r D j. Thus �.c0
ir c0

r`/D 0 for all i < r < ` and so for i < `,

�@c0
i` D

X
i<r<`

.�1/jc
0
ir jC1�.c0

ir c0
r`/D 0:
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.d/

a1

a2

a

a1

a2

�.e/

a1

a2

a

aa�1
1

a
2

a2

a1

C.e/

a1

a2

a

aa�1
1

a
2

a2

a1

�.f/, product of signs of a
j�1

L;iC1
and a

j�1

iK
isC1

C.f/, product of signs of a
j�1

L;iC1
and a

j�1

iK
is �1

a1

a2

a

aa
1
a�1

2

a1

a2

�.f/, product of signs of a
j�1

L;iC1
and a

j�1

iK
is �1

C.f/, product of signs of a
j�1

L;iC1
and a

j�1

iK
isC1

a1

a2

a

aa
1
a�1

2

a1

a2

Figure 15. A continuation of Figure 14. (This figure is taken from
[Leverson 2016].)

�@c1
ij D 0: Recall that in the p-th 1-handle

@c1
ij D ıij C

X
i<`�Np

.�1/jc
0
i`
jC1c0

i`c
1
j̀ C

X
1�`<j

.�1/jc
1
i`
jC1c1

i`c
0
j̀ :

If i ¤ j, then �.c0
i`c

1
j̀ /D 0 and �.c1

i`c
0
j̀ /D 0 for all ` since it is not possible for

strand i to be paired with strand ` and for strand ` to be paired with strand j when
i ¤ j. Thus

�@c1
ij D

X
i<`�Np

.�1/jc
0
i`
jC1�.c0

i`c
1
j̀ /C

X
1�`<j

.�1/jc
1
i`
jC1�.c1

i`c
0
j̀ /D 0:

To show �@c1
ii D 0, suppose strand i is paired with strand ` through the p-th

1-handle. Then by (5),

�@c1
ii D

�
1C .�1/jc

0
i`
jC1�.c0

i`
c1
`i
/; i < `;

1C .�1/jc
1
i`
jC1�.c1

i`
c0
`i
/; i > `;

D

�
1C .�1/jc

0
i`
jC1.�1/jc

1
`i
j; i < `;

1C .�1/jc
1
i`
jC1.�1/jc

1
i`
j; i > `;

D 0:
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�@c`ij D 0 for 1< `: Recall

@c`ij D
X̀
rD0

NpX
sD1

.�1/jc
r
is
jC1cr

isc`�r
sj

for 1< `, 1� p � k, and 1� i; j �Np. We will show that

�.cr
isc`�r

sj /D 0;

which implies that �@c`ij D 0. If ` > 2, then for all 0 � r � `, either r > 1 or
` � r > 1, so �.cr

isc`�r
sj / D 0 for all i; j ; s. If ` D 2, then r > 1, ` � r > 1, or

r D 1D `� r . The first and second case clearly imply �.cr
isc`�r

sj /D 0. In the final
case, this is also clearly true, unless i D j and strands i and s are paired in the
ruling. In this case, either i < s or s < i D j, so either �.c1

is/D 0 or �.c1
sj /D 0. So

�@c`ii D

X̀
rD0

NpX
sD1

.�1/jc
r
is
jC1�.cr

isc`�r
si /D 0

for all 1� p � k, 1� i �Np, and ` > 1. So for 1< `

�@c`ij D 0:

Grading: From the definition, ai is augmented only if the �-graded normal ruling
is switched at ai and thus �

ˇ̌
jai j. Since jai j D j Qai j, we have �

ˇ̌
jai j. By definition,

if c`ij Ip is augmented, then either `D 0, i < j, and strands i and j are paired by
the normal ruling and go through the p-th 1-handle or `D 1, i > j, and strands i

and j are paired in the normal ruling and go through the p-th 1-handle. In the first
case, �.i/� �.j /C 1 mod � and so

jc0
ij Ipj D 2.0/� 1C�.i/��.j /� 0 mod �:

In the second case, �.j /� �.i/C 1 mod � and so

jc1
ij Ipj D 2.1/� 1C�.i/��.j /� 0 mod �:

Following arguments similar to those in [Leverson 2016], one can also check that
if a crossing c in a dip is augmented then �

ˇ̌
jcj.

Proposition 5.2. If ƒ � #k.S1 �S2/ is an n-component link, � j 2r.ƒ/ is even,
andƒ has a �-graded normal ruling, then the �-graded augmentation � WA.ƒ/!F

constructed above sends t1 � � � ts to .�1/n.

Proof. Given a �-graded ruling of ƒ in #k.S1 � S2/, there is a unique way to
extend it to a normal ruling of S.ƒ/ by switching at dji ; eij ; fji ; gij ; hji ; qij if and
only if strands i < j are paired in the ruling ofƒ. Let Q� WA.ƒ/!F be the �-graded
augmentation resulting from the �-graded normal ruling and let � WA.S.ƒ//! F
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be the �-graded augmentation resulting from the �-graded normal ruling of S.ƒ/

as constructed in [Leverson 2016] in R3. Note that

�.t1 � � � ts/

Q�.Qt1 � � � Qtr /
D

 Y
1�p�k

.�1/3Np

! Y
i;j paired

.�1/6:

If strands i < j are paired near x D 0 in the ruling of ƒ, then the ruling of S.ƒ/

must be switched at dji ; eij ; fji ; gij ; hji , and qij with configuration C(a) since the
ruling is �-graded and � is even. So there is one additional basepoint augmented
to �1 per crossing. Thus, there are six additional basepoints augmented to �1 for
each pair of strands. Each right cusp contributes one extra basepoint augmented
to �1 and there are three additional right cusps for each strand. However, Np is
even for all 1� p � k by Corollary 1.4 and �.t1 � � � ts/D .�1/n by Theorem 1.1, so

.�1/n

Q�.Qt1 � � � Qtr /
D 1

and so Q�.Qt1 � � � Qtr /D .�1/n. �
All that remains to be proven is the final statement of Theorem 1.3, which says:

Proposition 5.3. Given a field F, if ƒ is an n component link in #k.S1 � S2/,
�.t/D .�1/n for all even-graded augmentations � WA.ƒ/! F.

Proof. Suppose that Q� W A.ƒ/ ! F is an even-graded augmentation (�-graded
augmentation where 2 j �). As in Section 4, we construct a �-graded augmentation
� WA.S.�//! F. By definition, �.ti/D Q�.Qti/ for all 1� i � s and so

Q�.Qt1 � � � Qts/D �.t1 � � � ts/D .�1/n;

where the final equality follows from Theorem 1.1. �

6. Correspondence for links in J1.S1/

Recall that the 1-jet space of the circle, J1.S1/, is diffeomorphic to the solid torus
S1

x � R2
y;z with contact structure given by � D ker.dz � ydx/. As in [Ng and

Traynor 2004], by viewing S1 as a quotient of the unit interval, S1D Œ0; 1�=.0� 1/,
we can see Legendrian links in J1.S1/ as quotients of arcs in I �R2 with boundary
conditions which are everywhere tangent to the contact planes. Given a Legendrian
link ƒ� J1.S1/ we will use the methods of Lavrov and Rutherford [2012] to show
the following theorem, restated from the introduction:

Theorem 1.6. Suppose ƒ is a Legendrian link in J1.S1/. Given a field F, the
Chekanov–Eliashberg DGA .A; @/ over ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmen-
tation � W A!F if and only if a front diagram of ƒ has a �-graded generalized
normal ruling.
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.g/ .h/

Figure 16. These figures give the configuration of a generalized
normal ruling near a switched crossing involving exactly one self-
paired strand. With the top row of configurations in Figure 7, these
are all possible configurations of a generalized normal ruling near
a switched crossing.

We recall the definition of generalized normal ruling.

Definition 6.1 [Lavrov and Rutherford 2012]. A generalized normal ruling is a
sequence of involutions � D .�1; : : : ; �M / as in Definition 2.11 with the following
differences:

(1) Remove the requirement that �m is fixed-point-free and the condition about
1-handles.

(2) If strands ` and `C 1 cross in the interval .xm�1;xm/ above Im�1, where
exactly one of the crossing strands is a fixed point of �m, then the crossing is
a switch if �m satisfies the conditions in (3) of Definition 2.11. If crossing is a
switch, then we require an additional normality condition:

�m.`/D ` < `C 1< �m.`C 1/ or �m.`/ < ` < `C 1D �m.`C 1/:

A strictly generalized normal ruling is a generalized normal ruling which is not
a normal ruling, in other words, a generalized normal ruling with at least one fixed
point.

Thus, near a crossing, a generalized normal ruling looks like the crossings in
Figure 7 or Figure 16.

Remark 6.2. (1) If a crossing involving strands ` and `C 1 occurs in the interval
.xm�1;xm/ and both crossing strands are fixed by the ruling, self-paired, in
other words, �m�1.`/D ` and �m�1.`C 1/D `C 1, then �m D .` `C 1/ ı

�m�1 ı .` `C 1/ and so we will not consider such crossings to be switched.

(2) Note that the number of generalized normal rulings of a Legendrian link is not
invariant under Legendrian isotopy.

The definition of the Chekanov–Eliashberg DGA of a Legendrian link in R3 can
be extended to Legendrian links in J1.S1/. (One can find the full definition of the
Chekanov–Eliashberg DGA of a Legendrian link in J1.S1/ in [Ng and Traynor
2004].) Note that given an augmentation of the Chekanov–Eliashberg DGA over
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ZŒt; t�1� of a Legendrian link in S1 �S2, one can define an augmentation of the
DGA of the analogous link (where if a strand goes through the 1-handle with yDy0

at x D 0, then it is paired with the strand going through the 1-handle with y D y0

at x DA) in J1.S1/ and similarly for normal rulings. (The resulting normal ruling
of the link in J1.S1/ will not have any self-paired strands.) However, there is no
reason to think the converse is true.

6A. Matrix definition of the DGA in J1.S1/. Ng and Traynor [2004] define a
version of the Chekanov–Eliashberg DGA A over R D ZŒt; t�1� in. For ease of
definition, note that we can assume all left and right cusps involve the two strands
with lowest z-coordinate (and thus highest labels) and that there is one basepoint at
x D 0 on each strand with the basepoint on strand i corresponding to ti , and one
basepoint in each loop resulting from the resolution of a right cusp. We give the
definition of the DGA for the dipped versionƒ, D.ƒ/ as in [Lavrov and Rutherford
2012] with an extra dip immediately to the right of the basepoints at x D 0. Label
the dips as in Figure 13 with bm

ij and cm
ij in the dip at xm. Place these generators in

upper triangular matrices

Bm D .b
m
ij / and Cm D .c

m
ij /:

Note that since the x-coordinate is S1-valued, we need to add the convention that
B0 D BM and C0 D CM . We then see that

@Cm D .†mCm/
2;

@B1 D T C0T �1.I CB1/�†1.I CB1/†1C1;

@Bm D
zCm�1.I CBm/�†m.I CBm/†mCm;

where †m is the diagonal matrix with .�1/�m.i/ the i -th entry on the diagonal for
Maslov potential �m at x D xm, T is the diagonal matrix with t

o1.i/
i the i -th entry

on the diagonal where

om.i/D

�
�1 if strand i is oriented to the right at x D xm;

1 otherwise;

and I is the appropriately sized identity matrix. The form of zCm will depend on
the tangle appearing in the interval .xm�1;xm/.

If .xm�1;xm/ contains a crossing am of strands k and kC 1, then

@am D cm�1
k;kC1;

zCm�1 D Uk;kC1
yCm�1Vk;kC1;
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where Uk;kC1 and Vk;kC1 are the identity matrix with the 2� 2 block in rows k

and kC 1 and columns k and kC 1 replaced with�
0 1

1 .�1/jamjC1am

�
for Uk;kC1 and �

am 1

1 0

�
for Vk;kC1, and yCm�1 is Cm�1 with 0 replacing the entry cm�1

k;kC1
.

If .xm�1;xm/ contains a left cusp, by assumption strands N.m/� 1 and N.m/

are incident to the cusp. In this case,

zCm�1 D JCm�1J T
CW ;

where J is the N.m�1/�N.m�1/ identity matrix with two rows of zeroes added
to the bottom and W is N.m/�N.m/ matrix where the .N.m/� 1;N.m//-entry
is 1 and all other entries are zero.

Finally, if .xm�1;xm/ contains a right cusp am with basepoint �˛ corresponding
to t˛ in the loop, by assumption strands N.m/� 1 and N.m/ are incident to the
cusp. In this case

@am D tom�1.N.m�1/�1/
˛ C cm�1

N.m�1/�1;N.m�1/;

zCm�1 DKCm�1KT;

where K is the N.m� 1/�N.m� 1/ identity matrix with two columns of zeroes
added to the right.

6B. Proof of correspondence. We will use the methods of [Lavrov and Rutherford
2012] to prove Theorem 1.3. Given an involution � of f1; : : : ;N g, �2 D id, we
define A� D .aij / the N �N matrix with entries

aij D

�
1 if i < �.i/D j ;

0 otherwise:

Ruling to augmentation: Given a generalized normal ruling � D .�1; : : : ; �M /, we
will define a �-graded augmentation � WA.D.ƒ//! F satisfying Property (R) (as
in [Sabloff 2005]) by defining � on the crossings in the dip involving crossings
b0

ij and c0
ij and extending to the right.

Property (R): In any dip, the generator cm
rs is augmented (to 1)

if and only if �m.r/D s:
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.g/

c

a

a�1

ac
1 2

.h/

c

a

a�1

ac

Figure 17. In the diagrams, �i denotes the basepoint associated
to ti . A dot denotes the specified crossing is augmented and the
augmentation sends the crossing to the label. In configuration .g/,
�.t1/D .�1/jajC1 and �.t2/D .�1/jci;iC1jC1. In configuration .h/,
�.t/D�1.

Add a basepoint to the loop in each resolution of a right cusp. Augment all
basepoints to �1. Given a crossing a, set

�.a/D

(
1 if the ruling is switched at a;

0 otherwise:

Define �.B0/D 0 and �.C0/DA�0
. We will now extend � to the right. Suppose

� is defined on all crossings in the interval .0;xm�1/. If .xm�1;xm/ contains a
crossing, define � on crossings bm

ij and cm
ij and add basepoints as in Figure 14 and

Figure 17. If .xm�1;xm/ contains a left cusp, set

�.Bm/D J�.Bm�1/J
T
CW:

If .xm�1;xm/ contains a right cusp, set

�.Bm/DK�.Bm�1/K
T:

It is easy to check that by our definition the augmentation satisfies Property (R),
which tells us �.B0/ D �.BM / and �.C0/ D �.CM /, and our augmentation is a
�-graded augmentation.

Augmentation to ruling: This direction of the proof follows that of the Z=2 case
in [Lavrov and Rutherford 2012] and is based on canonical form results from linear
algebra due to Barannikov [1994].

Definition 6.3. An M-complex .V;B; d/ is a vector space V over a field F with
an ordered basis B D fv1; : : : ; vN g and a differential d W V ! V of the form
dvi D

PN
jDiC1 aijvj satisfying d2 D 0.

The following two propositions are essentially in [Lavrov and Rutherford 2012,
Propositions 5.4 and 5.6] and [Barannikov 1994, Lemmas 2 and 4].

Proposition 6.4. Suppose that .V;B; d/ is an M -complex, then there exists a
triangular change of basis f Qv1; : : : ; QvN g with Qvi D

PN
jDi aijvj and an involution
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� W f1; : : : ;N g ! f1; : : : ;N g such that

d Qvi D

�
Qvj ; if i < �.i/D j;

0; otherwise:

Moreover, the involution � is unique.

Remark 6.5. We have the following properties of the involution:

(1) If the basis elements vi have been assigned degrees jvi j 2 Z=� such that V is
Z=�-graded and d has degree �1, then it can be assumed that the change of
basis preserves degree. Thus, if i < �.i/D j, then jvi j D jvj jC 1.

(2) The set fŒ Qvi � W �.i/D ig forms a basis for the homology H.V ; d/.

(3) In matrix formulation, according to Proposition 6.4, there is a unique function
D 7! �.D/ which assigns an involution � D �.D/ to each strictly upper triangu-
lar matrix D with D2D0 and there is an invertible upper triangular matrix P so
that PDP�1DA� . The uniqueness statement tells us that �.QDQ�1/D �.D/

if Q is a nonsingular upper triangular matrix.

Proposition 6.6. Suppose .V;B; d/ is an M-complex and k 2 f1; : : : ;N g such that
dvkD

PN
jDkC2 akjvj so the triple .V ;B0; d/ with B0Dfv1; : : : ; vkC1; vk ; : : : ; vN g

is also an M-complex. Then the associated involutions � and � 0 from Proposition 6.4
are related as follows:

(1) If

�.kC 1/ < �.k/ < k < kC 1;

�.k/ < k < kC 1< �.kC 1/;

k < kC 1< �.kC 1/ < �.k/;

�.k/ < k < kC 1D �.kC 1/;

�.k/D k < kC 1< �.kC 1/;

then either � 0 D � or � 0 D .k kC 1/ ı � ı .k kC 1/.

(2) Otherwise � 0 D .k kC 1/ ı � ı .k kC 1/.

Augmentation to ruling: This part of the proof is the same as the analogous state-
ment in [Lavrov and Rutherford 2012] with †m�1�.Cm�1/ replacing �.Ym�1/.

Suppose � WA.D.ƒ//! F is a �-graded augmentation. Then for all m, �.Cm/

is an N.m/�N.m/ strictly upper triangular matrix such that

0D �@Cm D .†m�.Cm//
2:

As in Remark 6.5, we can set �m D �.†mCm/ and obtain the sequence � D
f�0; : : : ; �M g of involutions where �m is an involution of f1; : : : ;N.m/g. We



418 CAITLIN LEVERSON

will show that � satisfies the requirements of a generalized normal ruling (see
Definition 6.1).

We also have N.m/ �N.m/ strictly upper triangular matrices �.Bm/ which
satisfy

0D �@B1 D T�.C0/T
�1.I C �.B1//�†1.I C �.B1//†1�.C1/;

0D �@Bm D �. zCm�1/.I C �.Bm//�†m.I C �.Bm//†m�.Cm/:

In the case where mD 1, this tells us

†1�.C1/D .I C �.B1//
�1†1T�.C0/T

�1.I C �.B1//

D .I C �.B1//
�1T†1�.C0/T

�1.I C �.B1//

since T and †1 are diagonal matrices. So Remark 6.5 tells us

�1 D �.†1�.C1//D �..I C �.B1//
�1T†1�.C0/T

�1.I C �.B1///

D �.†1�.C0//D �.†0�.C0//D �0

since †1D†0 and T �1.IC�.B1// is a nonsingular upper triangular matrix. Thus
�1 satisfies the definition of generalized normal ruling since �0 does.

More generally, for m> 1, we have

†m�.Cm/D .I C �.Bm//
�1†m�. zCm�1/.I C �.Bm//:

So Remark 6.5 tells us

�m D �.†m�.Cm//D �.†m�. zCm�1//:

Recall that zCm�1 depends on whether the interval .xm�1;xm/ contains a left cusp,
right cusp, or crossing.

Crossing: In the case where the interval .xm�1;xm/ contains a crossing am of
strands k and kC 1, recall that 0D �@.am/D �.c

m�1
k;kC1/. In this case,

zCm�1 D Uk;kC1
yCm�1Vk;kC1;

where yCm�1 is Cm�1 with 0 replacing the entry cm�1
k;kC1. Thus �. yCm�1/D �.Cm�1/.

So �. zCm�1/ D �.Uk;kC1Cm�1Vk;kC1/. Note that �m�1.k/ D �m.k C 1/ and
�m�1.kC 1/D �m.k/, so †m�1 D Pk;kC1†mPk;kC1. We also see that

†mUk;kC1 D†mPk;kC1.I C .�1/jamjC1�.am/Ek;kC1/

D Pk;kC1.I � �.am/Ek;kC1/Pk;kC1†mPk;kC1

D Pk;kC1.I � �.am/Ek;kC1/†m�1;

Vk;kC1 D .I C �.am/Ek;kC1/Pk;kC1;
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where Ek;kC1 is a matrix with a single nonzero entry of 1 in the .k; kC1/ position.
Thus

†m�. zCm�1/

D Pk;kC1.I � �.am/Ek;kC1/†m�1�.Cm�1/.I C �.am/Ek;kC1/Pk;kC1:

Since the .k; kC1/-entry of .I��.am/Ek;kC1/†m�1�.Cm�1/.IC�.am/Ek;kC1/

is 0 no matter the value of �.am/, the matrix†m�. zCm�1/ is strictly upper triangular.
Therefore

�m D �.†m�.Cm//D �.†m�. zCm�1//

and

�..I � �.am/Ek;kC1/†m�1�.Cm�1/.I C �.am/Ek;kC1//

D �.†m�1�.Cm�1//D �m�1

are related as in Proposition 6.6. So, as �m�1 satisfies the conditions of a generalized
normal ruling, so does �m. The left and right cusp cases follow similarly.

As in Remark 6.5, †m�.Cm/ denotes the matrix of an M-complex with basis
v1; : : : ; vN.m/ corresponding to the strands of ƒ at xm. If � is �-graded with
respect to �, then we can assign the gradings jvi j D �m.i/ and the differential
will have degree �1. So .1/ of Remark 6.5 tells us that the resulting involution
�m D �.†m�.Cm// is �-graded and thus � is �-graded.

6C. Corollary. The following proposition uses certain techniques from the proof
of Theorem 1.6 to show that

Aug�.ƒ/D Fn0

for any field F and any � if ƒ has a strictly generalized normal ruling.

Proposition 6.7. Given a field F and a Legendrian link ƒ� J1.S1/ with n com-
ponents and a strictly generalized normal ruling, for all 0¤ x 2 F there exists an
augmentation � WA! F such that

�.t1 � � � ts/D x:

Proof. Fix 0¤ x 2 F. Given a generalized normal ruling � D .�1; : : : ; �M / for ƒ
with a self-paired strand, we will construct an augmentation � W A.D.ƒ//! F

such that �.t1 � � � ts/D x.
Suppose k is the label at x D 0 of a self-paired strand of the generalized normal

ruling �, in other words, �0.k/D k. We can assume that D.ƒ/ has one basepoint
corresponding to ti on strand i at x D 0 and one basepoint in the loop in the
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resolution of each right cusp, and no other basepoints. Define

�.ti/D

�
.�1/NCc�1x if i D k;

�1 otherwise;

where c is the number of right cusps and N is the number of strands at x D 0.
Define � on all crossings as in the proof of ruling to augmentation in Theorem 1.6.

Note that tk does not appear on the boundary of any totally augmented disks and
so � is still an augmentation, but now

�.t1 � � � ts/D x

as desired. �

Remark 6.8. For any link ƒ � J1.S1/, one can consider the analogous link
ƒ0 � S1 � S2. Note that A.ƒ/! A.ƒ0/ where the map is inclusion. Thus, any
augmentation �0 Wƒ0! F gives an augmentation � Wƒ! F. As one would expect
from Theorems 1.3 and 1.6, it is also clear that any normal ruling of ƒ0 � S1 �S2

gives a generalized normal ruling of ƒ� J1.S1/.

Appendix

The appendix will address Corollary 1.5 which follows from

(1) Theorem 1.3 over Q, and

(2) the result that if a graded augmentation to the rationals exists then the full
symplectic homology is nonzero.

The second result is known to experts; assumes the results of [Bourgeois et al.
2012]. We will outline the proof here for completeness. Statement (2) is a straight
forward consequence of work of Bourgeois, Ekholm, and Eliashberg [Bourgeois
et al. 2012] and has previously been observed in [Lidman and Sivek 2016].

Every connected Weinstein (Stein) 4-manifold X can be decomposed into 1- and
2-handle attachments to D4 along @D4D S3. Thus, for each such 4-manifold there
exists a Legendrian link ƒ in #k.S1 �S2/ so that attaching 2-handles along ƒ to
#k.S1 �S2/ results in X.

Results of Bourgeois, Ekholm, and Eliashberg (using their notation) tell us the
following:

Proposition A.1 [Bourgeois et al. 2012, Corollary 5.7].

SH.X /DLHHo.ƒ/;

where LHHo.ƒ/ is the homology of the Hochschild complex associated to the
Chekanov–Eliashberg differential graded algebra over Q.
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Therefore, if the DGA for ƒ has a graded augmentation to Q, then SH.X / is
nonzero. By Theorem 1.3, we know that the DGA for ƒ has a graded augmen-
tation to Q if and only if ƒ has a graded normal ruling. Thus, restated from the
introduction:

Corollary 1.5. If X is the Weinstein 4-manifold that results from attaching 2-
handles along a Legendrian link ƒ to #k.S1 �S2/ and ƒ has a graded normal
ruling, then the full symplectic homology SH.X / is nonzero.

For completeness, we give an outline of the proof of statement (2). Recall that
full symplectic homology is a symplectic invariant of Weinstein 4-manifolds which
coincides with the Floer–Hofer symplectic homology.

We will show that given a graded augmentation �0 of the Chekanov–Eliashberg
DGA of a Legendrian link ƒ over ZŒt; t�1� to Q, one can define a graded augmen-
tation � WLH Ho.ƒ/!Q, where the homology of LH Ho.ƒ/ is LHHo.ƒ/. Recall
that

LH Ho.ƒ/DRLHOC.ƒ/˚Qh�1; : : : ; �ni˚
2LHOC.ƒ/

is generated by elements of the form Lw, �i , and Ov, wherew; v2LHO.ƒ/�LHA.ƒ/
and n is the number of components of the link. Define

� WLH Ho.ƒ/!Q

by Lw 7! �0.w/; �i 7! 1; Ov 7! 0: Let us check that this gives an augmentation. It
suffices to check the generators. Clearly � ı dHo.�i/D 0 for all i . If dLHOC.w/DPr

jD1wj , then we recall that

dHo. Lw/D dHoC. Lw/C ıHo. Lw/D LdLHOC. Lw/C ıHo. Lw/:

Let w be a chord in LHOC.ƒ/. Then, there exists i such that w 2 Ci and

dHo. Lw/D

rX
jD1

Lwj C˛wi�i ;

where ˛wi is the algebraic number of components of the 1-dimensional moduli
space of holomorphic disks with one positive and no negative boundary punctures.
Thus

� ı dHo. Lw/D

rX
jD1

�0.wj /C

nX
iD1

˛wi D �
0
ı dLHO.w/D 0;

since ˛wi is exactly the constant term of dLHA.w/, �0 is an augmentation of LHA.ƒ/,
LHO.ƒ/ � LHA.ƒ/, and dLHO D dLHAjLHO. If w 2 LHOC.ƒ/ is a linearly
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composable monomial which is not a chord, then

dHo. Lw/D

rX
jD1

Lwj

and so

� ı dHo. Lw/D

rX
jD1

�0.wj /D �
0
ı dLHO.w/D 0

since dLHO.w/ does not have a constant term.
If v D c1 � � � c` 2 LHOC.ƒ/, then we recall that

dHo. Ov/D dHoC. Ov/C ıHo. Ov/D dM HoC. Ov/C
OdLHOC. Ov/C 0

D Lc1c2 � � � c` � c1 � � � c`�1 Lc`C OdLHOC. Ov/

D Lc1c2 � � � c` � .�1/jc`j.jc1jC���Cjc`�1j/ Lc`c1 � � � c`�1C
OdLHOC. Ov/:

Thus

� ı dHo. Ov/

D �0.c1 � � � c`/� .�1/jc`j.jc1jC���Cjc`�1j/�0.c`c1 � � � c`�1/C �
0
ı OdLHOC. Ov/

D �0.c1 � � � c`/� .�1/jc`j.jc1jC���Cjc`�1j/�0.c`c1 � � � c`�1/C 0

D 0

since �0 is a graded augmentation of LHA.ƒ/ so if �.c1 � � � c`/¤ 0, then �.ci/¤ 0

for all i and thus jci j D 0 for all i .

Acknowledgements

The author thanks Lenhard Ng and Dan Rutherford for many helpful discussions
and the referee for many valuable comments. This work was partially supported by
NSF grants DMS-0846346 and DMS-1406371.

References

[Barannikov 1994] S. A. Barannikov, “The framed Morse complex and its invariants”, pp. 93–115 in
Singularities and bifurcations, edited by V. I. Arnol’d, Adv. Soviet Math. 21, American Mathematical
Society, Providence, RI, 1994. MR Zbl

[Bourgeois et al. 2012] F. Bourgeois, T. Ekholm, and Y. Eliashberg, “Effect of Legendrian surgery”,
Geom. Topol. 16:1 (2012), 301–389. MR Zbl

[Chekanov 2002] Y. Chekanov, “Differential algebra of Legendrian links”, Invent. Math. 150:3 (2002),
441–483. MR Zbl

[Ekholm and Ng 2015] T. Ekholm and L. Ng, “Legendrian contact homology in the boundary of a
subcritical Weinstein 4-manifold”, J. Differential Geom. 101:1 (2015), 67–157. MR Zbl

http://msp.org/idx/mr/1310596
http://msp.org/idx/zbl/0996.57514
http://dx.doi.org/10.2140/gt.2012.16.301
http://msp.org/idx/mr/2916289
http://msp.org/idx/zbl/1322.53080
http://dx.doi.org/10.1007/s002220200212
http://msp.org/idx/mr/1946550
http://msp.org/idx/zbl/1029.57011
http://projecteuclid.org/euclid.jdg/1433975484
http://projecteuclid.org/euclid.jdg/1433975484
http://msp.org/idx/mr/3356070
http://msp.org/idx/zbl/1333.57038


AUGMENTATIONS AND RULINGS OF LEGENDRIAN LINKS IN #k.S1 �S2/ 423

[Eliashberg 1987] Y. M. Eliashberg, “A theorem on the structure of wave fronts and its application in
symplectic topology”, Funktsional. Anal. i Prilozhen. 21:3 (1987), 65–72. MR

[Eliashberg 1998] Y. Eliashberg, “Invariants in contact topology”, pp. 327–338 in Proceedings of
the International Congress of Mathematicians (Berlin, 1998), vol. 2, extra volume of Documenta
Mathematica, Deutsche Mathematiker-Vereinigung, Bielefeld, 1998. MR Zbl

[Etnyre 2005] J. B. Etnyre, “Legendrian and transversal knots”, pp. 105–185 in Handbook of knot
theory, edited by W. Menasco and M. Thistlethwaite, Elsevier, Amsterdam, 2005. MR Zbl

[Etnyre et al. 2002] J. B. Etnyre, L. L. Ng, and J. M. Sabloff, “Invariants of Legendrian knots and
coherent orientations”, J. Symplectic Geom. 1:2 (2002), 321–367. MR Zbl

[Fuchs 2003] D. Fuchs, “Chekanov–Eliashberg invariant of Legendrian knots: existence of augmen-
tations”, J. Geom. Phys. 47:1 (2003), 43–65. MR Zbl

[Fuchs and Ishkhanov 2004] D. Fuchs and T. Ishkhanov, “Invariants of Legendrian knots and decom-
positions of front diagrams”, Mosc. Math. J. 4:3 (2004), 707–717. MR Zbl

[Gompf 1998] R. E. Gompf, “Handlebody construction of Stein surfaces”, Ann. of Math. .2/ 148:2
(1998), 619–693. MR Zbl

[Lavrov and Rutherford 2012] M. Lavrov and D. Rutherford, “Generalized normal rulings and
invariants of Legendrian solid torus links”, Pacific J. Math. 258:2 (2012), 393–420. MR Zbl

[Lavrov and Rutherford 2013] M. Lavrov and D. Rutherford, “On the S1�S2 HOMFLY-PT invariant
and Legendrian links”, J. Knot Theory Ramifications 22:8 (2013), art. id. 1350040, 21 pp. MR

[Leverson 2016] C. Leverson, “Augmentations and rulings of Legendrian knots”, J. Symplectic Geom.
14:4 (2016), 1089–1143. MR

[Lidman and Sivek 2016] T. Lidman and S. Sivek, “Contact structures and reducible surgeries”,
Compos. Math. 152:1 (2016), 152–186. MR Zbl

[Ng and Rutherford 2013] L. Ng and D. Rutherford, “Satellites of Legendrian knots and represen-
tations of the Chekanov–Eliashberg algebra”, Algebr. Geom. Topol. 13:5 (2013), 3047–3097. MR
Zbl

[Ng and Traynor 2004] L. Ng and L. Traynor, “Legendrian solid-torus links”, J. Symplectic Geom.
2:3 (2004), 411–443. MR Zbl

[Pushkar and Chekanov 2005] P. E. Pushkar’ and Y. V. Chekanov, “Combinatorics of fronts of
Legendrian links and the Arnol’d 4-conjectures”, Uspekhi Mat. Nauk 60:1(361) (2005), 99–154. In
Russian; translated in Russian Math. Surveys 60:1 (2005), 95–149. MR Zbl

[Sabloff 2005] J. M. Sabloff, “Augmentations and rulings of Legendrian knots”, Int. Math. Res. Not.
2005:19 (2005), 1157–1180. MR Zbl

Received November 10, 2015. Revised September 2, 2016.

CAITLIN LEVERSON

SCHOOL OF MATHEMATICS

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF MATHEMATICS

686 CHERRY STREET

ATLANTA, GA 30332
UNITED STATES

leverson@math.gatech.edu

http://msp.org/idx/mr/911776
http://msp.org/idx/mr/1648083
http://msp.org/idx/zbl/0913.53010
http://dx.doi.org/10.1016/B978-044451452-3/50004-6
http://msp.org/idx/mr/2179261
http://msp.org/idx/zbl/1095.57006
http://projecteuclid.org/euclid.jsg/1092316653
http://projecteuclid.org/euclid.jsg/1092316653
http://msp.org/idx/mr/1959585
http://msp.org/idx/zbl/1024.57014
http://dx.doi.org/10.1016/S0393-0440(01)00013-4
http://dx.doi.org/10.1016/S0393-0440(01)00013-4
http://msp.org/idx/mr/1985483
http://msp.org/idx/zbl/1028.57005
http://msp.org/idx/mr/2119145
http://msp.org/idx/zbl/1073.53106
http://dx.doi.org/10.2307/121005
http://msp.org/idx/mr/1668563
http://msp.org/idx/zbl/0919.57012
http://dx.doi.org/10.2140/pjm.2012.258.393
http://dx.doi.org/10.2140/pjm.2012.258.393
http://msp.org/idx/mr/2981960
http://msp.org/idx/zbl/1280.57018
http://dx.doi.org/10.1142/S0218216513500405
http://dx.doi.org/10.1142/S0218216513500405
http://msp.org/idx/mr/3092502
http://msp.org/idx/mr/3601885
http://dx.doi.org/10.1112/S0010437X15007599
http://msp.org/idx/mr/3453391
http://msp.org/idx/zbl/1342.57008
http://dx.doi.org/10.2140/agt.2013.13.3047
http://dx.doi.org/10.2140/agt.2013.13.3047
http://msp.org/idx/mr/3116313
http://msp.org/idx/zbl/1280.57019
http://dx.doi.org/10.4310/JSG.2004.v2.n3.a6
http://msp.org/idx/mr/2131643
http://msp.org/idx/zbl/1097.57014
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=1390&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=1390&option_lang=eng
http://www.turpion.org/php/paper.phtml?journal_id=rm&paper_id=808
http://msp.org/idx/mr/2145660
http://msp.org/idx/zbl/1085.57008
http://dx.doi.org/10.1155/IMRN.2005.1157
http://msp.org/idx/mr/2147057
http://msp.org/idx/zbl/1082.57020
mailto:leverson@math.gatech.edu




PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Igor Pak
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pak.pjm@gmail.com

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2017 is US $450/year for the electronic version, and $625/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:pak.pjm@gmail.com
mailto:yang@math.princeton.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 288 No. 2 June 2017

257Order on the homology groups of Smale spaces
MASSOUD AMINI, IAN F. PUTNAM and SARAH SAEIDI GHOLIKANDI

289Characterizations of immersed gradient almost Ricci solitons
CÍCERO P. AQUINO, HENRIQUE F. DE LIMA and JOSÉ N. V. GOMES

307Weighted Sobolev regularity of the Bergman projection on the Hartogs triangle
LIWEI CHEN

319Knots of tunnel number one and meridional tori
MARIO EUDAVE-MUÑOZ and GRISSEL SANTIAGO-GONZÁLEZ

343On bisectional nonpositively curved compact Kähler–Einstein surfaces
DANIEL GUAN

355Effective lower bounds for L(1, χ) via Eisenstein series
PETER HUMPHRIES

377Asymptotic order-of-vanishing functions on the pseudoeffective cone
SHIN-YAO JOW

381Augmentations and rulings of Legendrian links in #k(S1
× S2)

CAITLIN LEVERSON

425The Faber–Krahn inequality for the first eigenvalue of the fractional Dirichlet
p-Laplacian for triangles and quadrilaterals

FRANCO OLIVARES CONTADOR

435Topological invariance of quantum quaternion spheres
BIPUL SAURABH

453Gap theorems for complete λ-hypersurfaces
HUIJUAN WANG, HONGWEI XU and ENTAO ZHAO

475Bach-flat h-almost gradient Ricci solitons
GABJIN YUN, JINSEOK CO and SEUNGSU HWANG

489A sharp height estimate for the spacelike constant mean curvature graph in the
Lorentz–Minkowski space

JINGYONG ZHU

0030-8730(201706)288:2;1-R

Pacific
JournalofM

athem
atics

2017
Vol.288,N

o.2


	1. Introduction
	1A. Outline of the article

	2. Background material
	2A. Legendrian links in =-.45ex[3]# -.25ex[2]1mu#1mu -.3ex[2]1.5mu#1mu -.2ex[2]1.5mu#1mu k`(S1 S2)
	2B. Definition of the DGA and augmentations in =-.45ex[3]# -.25ex[2]1mu#1mu -.3ex[2]1.5mu#1mu -.2ex[2]1.5mu#1mu k`(S1 S2)
	2C. Internal DGA
	2D. Algebra
	2E. Grading
	2F. Differential
	2G. Normal rulings in =-.45ex[3]# -.25ex[2]1mu#1mu -.3ex[2]1.5mu#1mu -.2ex[2]1.5mu#1mu k`(S1 S2)
	2H. Legendrian links in R3
	2I. Satellites, the DGA, and augmentations in R3
	2J. Dips
	2K. Augmentations before and after basepoints and type II moves

	3. Correspondence between augmentations and normal rulings for links in R3
	4. Augmentation to ruling
	5. Ruling to augmentation
	6. Correspondence for links in J`1`(S`1)
	6A. Matrix definition of the DGA in J`1`(S`1)
	6B. Proof of correspondence
	6C. Corollary

	Appendix
	Acknowledgements
	References
	
	

