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THE FABER-KRAHN INEQUALITY FOR THE FIRST
EIGENVALUE OF THE FRACTIONAL DIRICHLET
p-LAPLACIAN FOR TRIANGLES AND QUADRILATERALS

FRANCO OLIVARES CONTADOR

We prove the Faber-Krahn inequality for the first eigenvalue of the frac-
tional Dirichlet p-Laplacian for triangles and quadrilaterals of a given
area. The proof is based on a nonlocal Pélya-Szegé inequality under
Steiner symmetrization and the continuity of the first eigenvalue of the
fractional Dirichlet p-Laplacian with respect to the convergence, in the
Hausdorff distance, of convex domains.

1. Introduction and main result

The classical isoperimetric problem reads as follows: “among all domains in R" of
a given volume with rectifiable boundary, the sphere has the minimum perimeter.”

In line with this, various isoperimetric problems have been studied (see [Os-
serman 1978]). For example, the Faber—Krahn inequality, originally conjectured
in [Rayleigh 1894, 339-340], can be stated as follows: “among all open sets of
a given volume in Euclidean space the ball minimizes the first eigenvalue of the
Dirichlet Laplacian.”

The Faber—Krahn inequality for variants of the Laplacian or by restriction to
special classes of domains have generated interest in recent years. In fact, inspired
by the Faber—Krahn inequality, P6lya and Szegd [1951] conjectured that among
all polygons with n sides of fixed area, the regular n-polygon of the same area
minimizes the first eigenvalue of the Dirichlet Laplacian. This conjecture is known
to hold for n = 3 and n = 4, but for n-gons with n > 5 it still remains a conjecture.
On the other hand, the Faber—Krahn inequality has been generalized, for example,
to the case of the Dirichlet p-Laplacian [Bhattacharya 1999; Ly 2005; Chorwadwala
et al. 2015; Toledo Oiate 2012].
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Recently, partial differential equations involving nonlocal versions of the Lapla-
cian and in particular eigenvalue problems involving such operators have generated
a lot of interest and have been studied (see [Di Nezza et al. 2012; Lindgren and
Lindqvist 2014; Frank et al. 2008; Brasco et al. 2014]).

The first eigenvalue of fractional Dirichlet p-Laplacian is defined as follows:

Definition. Letn > 1, 0 <s <1 and 1 < p < co. Given an open and bounded set
Q C R" we define

lu()—u()|?
{ Jar Jpo ey dx dy

S [ GO dx

where Wg’p (€2) is the closure of C§°(£2) with respect to the norm

(I-1) 2] (@)= tueWy’(Q) and u;‘éO},

(1-2) u > [ulws.p@n + llullp
where [u]ys.p g is defined in (2-1).

Inspired by the nonlocal Faber—Krahn inequality proved in [Brasco et al. 2014]
for the fractional Dirichlet p-Laplacian and the Pélya—Szegd conjecture for the
usual Laplacian for polygonal domains, we prove a Faber—Krahn inequality for
the fractional Dirichlet p-Laplacian in the class of polygonal domains. This is our
main result.

Theorem 1.1. The equilateral triangle has the least first eigenvalue for the frac-
tional Dirichlet p-Laplacian among all triangles of given area. The square has the
least first eigenvalue for the fractional Dirichlet p-Laplacian among all quadrilater-
als of given area. Moreover, the equilateral triangle and the square are the unique
minimizers in the above problems.

For proving this result we shall study the effect of Steiner symmetrization in
nonlocal functionals and the continuity properties of the first eigenvalue of the
fractional Dirichlet p-Laplacian with respect to the Hausdorff convergence of convex
domains. In particular we will prove the following two results which will be used
in the proof of Theorem 1.1:

Proposition 1.2 (nonlocal Pélya—Szeg6 inequality). Letn>1,0<s <1, 1<p <
n/sandu € Wg’p(Q). Then

o —uw ol () —u()|”
an [ [ Ry < [ [ MO day

where u* is the Steiner symmetrization of u with respect to a given hyperplane. If

p > 1, then equality holds if and only if u is proportional to a translate of a function
which is symmetric with respect to the hyperplane.
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Proposition 1.3. Let B be a fixed compact set in R* and 2, be a family of convex
open subsets of B which converges, for the Hausdorff distance, to a set Q2. Further-
more, assume that there exist r > 0 such that B(0,r) C 2, and B(0,r) C Q. Then

3 (@) =limy o2, (20).

The basic definitions, notions and results which will be used in this paper are to
be given in the next section.

2. Tools

Fractional Sobolev spaces and the first eigenvalue. Let p €[1, 00) and s € (0, 1).
Then

— P 1/p
(2-1) [u W&p(R,,)_</n / |M|S)_y|lfz(+yp)v| dxdy>

denotes the (s, p)-Gagliardo seminorm in R” of a measurable function u. The
Gagliardo seminorm satisfies the following Poincaré-type inequality:

Proposition 2.1 (Poincaré-type inequality). Let 1 < p <ooys € (0,1), Q CR"
be an open and bounded set. There then exists a constant Cy s ,, depending only on
n,s, p and 2, so that, for every function u € C3°(S2) we have

lullh < Cos.p (DN p g,
Proof. See Lemma 2.4, [Brasco et al. 2014]. U
Proposition 2.1 shows that for an open and bounded set 2 C R" the space

WS 'P(Q) can be equivalently defined as the closure of C°(L2) with respect to the
Gagliardo seminorm. The space W(‘; "P(Q) is a reflexive Banach space for 1 < p < oo.

Theorem 2.2 (Rellich—-Kondrachov theorem). Let p € [1,00) and s € (0, 1),
Q C R" be a open and bounded set. Let {u,};> , C WS "P(Q) be a bounded sequence.
Then there exists a subsequence {u,, }32 | of {u,},2, which converges strongly in
L?(R2) to a function u. Moreover, if p > 1 thenu € Wg’p(Q).

Proof. See Theorem 2.7, [Brasco et al. 2014]. O

Remark 1. Following Theorem 2.2, it can be shown that the infimum in (1-1) is a
minimum and by the homogeneity of the Rayleigh quotient, the expression (1-1)
can be written as

(2-2) M (@) = min{llulify o cu e Wol (@), ful, =1},

Observe also that A] p(Q) equals the inverse of the best constant in the Poincaré
inequality (Proposition 2.1).
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The minimizer in (1-1) satisfies the following Euler-Lagrange equation

Ju(x) —u()P 2 @x) —u()) (@) — $() dx dy

R JRe |x — y|rtrs

(2-3)

= /\i,p(m/R lu ()P 2u(x)p (x) dx,

for all ¢ € W(; "7 () (see Theorem 5, [Lindgren and Lindqvist 2014]).
One can easily check that the following properties hold:

Proposition 2.3. Let 2 C R" be an open and bounded set.
(1) (Homothety law) )»‘i’p(tSZ) = f”’)fi,p(ﬂ) fort > 0.
(2) (Translation invariance) Ai’p(Q) = )\i’p(Q + x) for all x € R™

(3) (Unvariance under orthonormal transformations) Xi p(Q) = )»i p(T(Q)) for
every orthonormal transformation T.

(4) (Domain monotony) If A C B are open sets, then )ci, p(B) < )vi’ p(A).

Steiner symmetrizations of sets and functions. Let n > 2 and Q2 C R" be a mea-
surable set. We denote by Q' the projection of €2 in the x,-direction:

Q' :={x' e R"!: there exists x, such that (x', x,,) € &},
and, for x’ € R"~!, we denote by Q (x’) the section of  in x':
Q) ={x,eR:(x,x,) e}, x' e Q.
Definition. Let 2 C R” be a measurable set. The set
(2-4) Q= {x =, x) : —3QU)| < x, < FIQE)], X" € '}
is the Steiner symmetrization of €2 with respect to the hyperplane x,, = 0. In the

above, |2(x")| denotes the one-dimensional Lebesgue measure of € (x”).

The Steiner symmetrization of a convex set with respect to a given hyperplane
can be similarly defined.

A convex body is a compact convex set. For a convex body A in R”, the inradius
r(A) is the maximum of the radii of balls contained in A and the circumradius
R(A) is the minimum of the radii of balls containing A.

The Steiner symmetrization of sets has the following properties:

Proposition 2.4. Let A, B be convex bodies. Then

(1) A*C B* for AC B.

(2) r(A) =r(A%).

(3) R(A*) < R(A).

4) V(A) = V(A*) where V (A) denotes the volume of A.
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Proof. See Proposition 9.1, page 169-171 of [Gruber 2007]. U

Definition. Let f be a nonnegative measurable function defined on €2, which van-
ishes on 2. The Steiner symmetrization of f is the function f* defined on Q* by

(2-5) [rx)=sup{c:xe{yeQ: f(y) =c}}.
The Steiner symmetrization of functions has the following properties.

Proposition 2.5. (1) The definitions of A* and f* are consistent, i.e.,
xar=(xa)" and {x:f)>t}"={x: f"(x)>1}.

(2) Let f and g be two nonnegative measurable functions such that f(x) < g(x).
Then f*(x) < g*(x).
(3) Let ® : RT — R™ be a nondecreasing function. Then (® o f)* = ®o f*

(4) Let f be a nonnegative measurable function defined on Q2 vanishing on 0S2.
Let F : Rt — R be a measurable function. Then,

/ F(f () dx = / F(f* () d.
Q Q*

(5) Let f, g and h be nonnegative measurable functions on R*. Then with
I(f. 8. h) = Jgu Jgu F(X)g(x — y)h(y) dx dy, we have

(2-6) I(f.g.h) <I(f*, g ).

Moreover, if g is strictly symmetric decreasing, then there is equality in (2-6)
ifonly if f(x) = f*(x —y) and h(x) = h*(x — y) almost everywhere for some
yeR"

Proof. The proof of (1)—(4) is straightforward. For the proof of (5), we refer to
Theorem 3.7, page 87 and Theorem 3.9, page 93 of [Lieb and Loss 2001] and
[Brascamp et al. 1974] . U

For J a nonnegative, convex function on R with J(0) = 0 and k a nonnegative

measurable function on R”, we let

Elul = / f J () — u()k(x — y) dx dy.

Following the same ideas given in Lemma A.2. of [Frank and Seiringer 2008],
using principally part (5) of Proposition 2.5 for Steiner symmetrization instead of
symmetric decreasing rearrangement, we get the following lemma:

Lemma 2.6. Let J be a nonnegative, convex function on R with J(0) = 0 and let
k € L1(R") be a nonnegative function which is symmetric and decreasing. Then for
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all nonnegative measurable u with E[u] and |{u > t}| finite for all T > 0 one has
Efu] > E[u*],

with u* the Steiner symmetrization of u with respect a hyperplane. If , in addition, J
is strictly convex and k is strictly decreasing, then equality holds if and only if u is
a translate of a function which is symmetric with respect to the hyperplane.

Hausdorff distance.

Definition. Let K| and K> be two nonempty compact sets in R”. Taking d (x, K3) :=
inf{|ly — x| : y € K} for x € R", we set

p(Ky, Kr) :=sup{d(x, K7) : x € K1}.

Let C" be the family of compact subsets of R". It is a metric space when equipped
with the Hausdorff distance

2-7) d" (K1, K2) :=max(p(K1, K2), p(K2, K1)).

For open sets inside a fixed compact set, we define the Hausdorff distance through
their complement.

Definition. Let O, O, be two open sets of a compact set B. Then their Hausdorff
distance is defined by

(2-8) dy(01, 02) =d"(B\ 01, B\ 02).

The Minkowski addition and Minkowski difference.
Definition. The Minkowski addition of two sets A, B C R" can be defined by

(2-9) AeB:=|J@A+b).

beB
Definition. The Minkowski difference of two sets A, B C R” can be defined by
(2-10) ASB:=()(A-b).

beB

Clearly, we may also writte A© B :={x e R": B+ x C A}. If B= —B, then
AOB = ﬂ(A—I—b).
beB
The following proposition can be obtained without much difficulty using the above

definition:

Proposition 2.7. Let A, B and C be subsets of R" such that B=—B, A C C and
B C C. Then
ASBCC\((C\A)®B).
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Recall that, K & B(0, €) is the inner parallel body of K at distance €. The main
tool in the proof of Proposition 1.2 is the following lemma, which states that a
suitable contraction of a convex body is contained in the inner parallel body of the
convex body.

Lemma 2.8. Let K be a convex body in R", with B(0,r) C K C B(0, R) for some
numbersr > 0and R > 0. If 0 < € < r?/4R, then

(2-11) (1-4%)1{ C Ko B(0,¢) CK.
Proof. See Lemma 2.3.6, page 93 of [Schneider 2014]. ]
3. Proofs

The proof of Proposition 1.2 is given in Theorem A.1 of [Frank and Seiringer 2008]
for the symmetric decreasing rearrangement. We sketch the proof of the adaptation
to the case of Steiner symmetrization for the sake of completeness.

Proof of Proposition 1.2. Since u*(x) is nonnegative and ||u(x)| — |u(y)|| <
lu(x) — u(y)|, it suffices to prove the theorem for nonnegative functions. By
definition of the Gamma function and following a change of variables we obtain

1 o ntps 1
(3’1) S ontps< / o 2 le—alx—y|2 da = —_—.
rete) Jo jx — y|rees

Using (3-1) and Tonelli’s theorem for nonnegative integrands and we have

_ p © ntps
L —
n n x _y n n

= f I[u]oc 2 _1da
0
with
1
Iy[u] := u(x) —u(y)|Pe™ " dxdy and C=——.
= [ o) —uio) y i

The function J : R — R, x — |x|? is strictly convex and nonnegative with J(0) =

The function k : R" — R, x > e~ ¥ *is a strictly decreasing symmetric function
and k € L1(R"). Applying Lemma 2.6 to the functional I, we obtain the desired
result. (]

Proof of Proposition 1.3. Since by hypothesis the sequence of sets {£2,}7°, con-
verges in the Hausdorff distance to €2, then for any € > O there exist n such that

(3-2) B\Q,Cc(B\Q)®B(O,e) forall n=>n,
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and
(3-3) B\QC (B\Q,)®B(0,¢) forall n=>n.
By Proposition 2.7, we have
(3-4) Qo B(0,¢) S B\ ((B\Q)® B(0,¢)).
It is clear that
(3-5) QO B(0,6) =Q6 B(0,€).
By using (3-2) (after taking the complement), (3-4), and (3-5) we obtain
(3-6) Qo B(0,6) CB\ ((B\Q)® B(0,¢)) CQ,.
Using Lemma 2.8 and (3-6) we get
3-7) (1-4%)9c(1—4%)5‘2c§‘293(0, €) C Q.
Then applying parts (1) and (4) of Proposition 2.3 to (3-7) we obtain:
Re P
(3-8) (1 - 4r—§) 1, (@) <A (Q).
Taking the upper limit in (3-8) gives:
R Sp -
(3-9) (1 —4r—§) Tim 25,2 <47 ,(9).
Now, taking the limit as € goes to 0 in (3-9) we get
(3-10) Tim 23, (Q20) <45, ().

Similarly, applying (3-4) and (3-5) in (3-3), and arguing as above, we can get

(3-11) X, (@) < lim A ,(R).
n—oo
The result follows immediately from (3-10) and (3-11). O

Proof of Theorem 1.1. Since )»j » is translation and rotation invariant (see parts (2)
and (3) of Proposition 2.3), to prove Theorem 1.1 for triangles, it is sufficient to
find one equilateral triangle 7’ such that A p(T’) <A p(T).

Let T} be an arbitrary triangle. We define recursively 7,11 to be the Steiner
symmetrization of 7, with respect to the perpendicular bisector of one side (a side
with respect to which there is no symmetry). Let u, be a normalized function for
the fractional Dirichlet p-Laplacian on 7,,. Then, by Proposition 1.2 we have,

Ki,p(Tn)=/ / |un (x) —un(y)|” dxdyz/ / |, () — up, ()17 dx dy.

|x_y|n+ps |x_y|n+ps
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and by part (4) of Proposition 2.5 we have |lu,||, = |lu} |, = 1. Therefore, using
the definition on page 426, we obtain

(3-12) )ﬁ,p(TnH)f)Li’p(Tn) for each n.

Now, recall the fact that the sequence of Steiner symmetrizations 7;, of the arbi-
trary initial triangle 77 converges to an equilateral triangle 7 with respect to the
Hausdorff distance (see page 158 of [Pdélya and Szeg6 1951]). Then, using part
(2) of Proposition 2.4, and if necessary a translation, we can show that there is a
fixed ball contained in all the triangles T;,. Using part (3) of Proposition 2.4 we
also conclude that all the triangles 7,, are contained in a fixed ball. This allows us
to apply Proposition 1.3, and we get

1D = lim A3 (T) <47 ,(Th).

In the case of quadrilaterals, a similar argument can be used. In fact, a sequence
of Steiner symmetrizations of a given quadrilateral, done alternatingly, with respect
to the perpendicular bisector of a side and the diagonal, converges in the Hausdorff
distance to a square (see page 158-159 of [Pélya and Szegd 1951]). This fact
together with a reasoning as in the case of triangles leads to the Faber—Krahn
inequality for quadrilaterals.

We now turn to the question of uniqueness. Suppose that 7 is any triangle for
which the minimum is attained in the Faber—Krahn inequality. We can assume
without loss of generality that T is not an equilateral triangle. Then 7 is not
symmetric respect to the perpendicular bisector L to at least one side /. Let 7* the
Steiner symmetrization of T respect to L. Let u# be a normalized eigenfunction of
A'i’p(T)- Applying Proposition 1.2 and [lu||, = ||u*||, =1, we get

e [ [N gy [ [ BN g
’ n RV! n n ’

|x_y|n+ps |x_y|n+ps

Since, )ﬁ, p(T) is minimum, we obtain )Li’ p(T*) = )\i, p(T). This means that there
is equality in the nonlocal Pélya—Szegd inequality and so, by the uniqueness part
of Proposition 1.2, we get that u is a translate of u*. This is possible only if the
triangles T and T* are translates of each other. However, T* is symmetric with
respect to the L and 7 and T* being translates of each other, 7 would have to be
symmetric with respect to L. This gives a contradiction. So, the only minimizers
are equilateral triangles.

The uniqueness in the case of quadrilaterals is completely analogous to case of
the triangles. U
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