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ORDER ON THE HOMOLOGY GROUPS OF SMALE SPACES

MASSOUD AMINI, IAN F. PUTNAM AND SARAH SAEIDI GHOLIKANDI

Smale spaces were defined by D. Ruelle to describe the properties of the
basic sets of an Axiom A system for topological dynamics. One motivation
for this was that the basic sets of an Axiom A system are merely topological
spaces and not submanifolds. One of the most important classes of Smale
spaces is shifts of finite type. For such systems, W. Krieger introduced a
pair of invariants, the past and future dimension groups. These are abelian
groups, but are also with an order which is an important part of their struc-
ture. The second author showed that Krieger’s invariants could be extended
to a homology theory for Smale spaces. In this paper, we show that the
homology groups on Smale spaces (in degree zero) have a canonical order
structure. This extends that of Krieger’s groups for shifts of finite type.

1. Introduction

The original notion of a Smale space is due to David Ruelle, based on the observation
that the basic sets of Smale’s Axiom A systems do not form submanifolds of the
ambient manifold [Ruelle 1978; Smale 1967; Aoki and Hiraide 1994; Fried 1987;
Fisher 2013; Bowen 1978]. In fact, Smale spaces are the topological dynamical
systems that admit a hyperbolic structure in terms of canonical coordinates of
contracting and expanding (or stable and unstable) directions. Hyperbolic toral auto-
morphisms, one-dimensional generalized solenoids as described by R. F. Williams
and shifts of finite type are all examples of Smale spaces. In fact, any totally discon-
nected (irreducible) Smale space is conjugate to a shift of finite type. W. Krieger
[1980] defined two abelian groups for shift of finite type, called the past and future
dimension groups, in terms of clopen sets of the stable and unstable sets. One of
their most important features is a natural order structure.

The second author [Putnam 2014] defined a homology for Smale spaces which
extends the dimension groups for shifts of finite type. However, the homology
groups as defined in that paper are not given any order structure. In this paper, we

MSC2010: primary 37D20, 55N35; secondary 37B10, 06F15.
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prove that the homology groups of Smale spaces in degree zero have a canonical
order structure.

The paper is organized as follows. In Section 2, we introduce the basic concepts
and notations (based on [Putnam 2014]) and state the main results of this paper,
which are proved in Sections 4 and 5. The shifts of finite type which play an
important role in the homology of Smale spaces are reviewed in Section 3 and their
dimension groups are discussed as ordered groups.

2. Preliminaries

2A. Smale spaces. A pair (X, ϕ) is called a dynamical system if X is a topological
space and ϕ is a homeomorphism of X . A dynamical system (X, ϕ) is called
irreducible if for every ordered pair of nonempty open sets U, V in X , there is a non-
negative integer n such that ϕn(U )∩V is nonempty. It is called mixing if for every
ordered pair of nonempty open sets U, V in X , there is a nonnegative integer N such
that ϕn(U )∩V is nonempty for any n ≥ N [Aoki and Hiraide 1994; Putnam 2014].

Definition 2.1 [Ruelle 1978; Putnam 2014, Definition 2.1.6]. For a compact metric
space X , the dynamical system (X, ϕ) is called a Smale space if there exist constants
εX and 0< λ < 1 and a continuous map from

4εX = {(x, y) ∈ X × X | d(x, y)≤ εX }

to X (denoted by [ · , · ]) such that, for every x, y, z ∈ X ,

(B1) [x, x] = x ,

(B2) [x, [y, z]] = [x, z],

(B3) [[x, y], z] = [x, z],

(B4) [ϕ(x), ϕ(y)] = ϕ([x, y])

whenever both sides of the above equations are defined, and

(C1) d(ϕ(x), ϕ(y))≤ λ d(x, y) whenever [x, y] = y,

(C2) d(ϕ−1(x), ϕ−1(y)≤ λ d(x, y) whenever [x, y] = x .

In a Smale space (X, ϕ), the local stable and unstable sets are defined, for x in X
and εX ≥ ε > 0, by

X s(x, ε)={y ∈ X | d(x, y)≤ ε, [x, y] = y},

Xu(x, ε)={y ∈ X | d(x, y)≤ ε, [y, x] = y}.

It is simple to show that, for any ε sufficiently small, [ · , · ] : Xu(x, ε)×X s(x, ε)→ X
is a homeomorphism to its image, which is a neighbourhood of x in X . The inverse
is obtained by mapping y to ([x, y], [y, x]).
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Let (X, ϕ) be a Smale space. Two points x, y ∈ X are stably equivalent if

lim
n→+∞

d(ϕn(x), ϕn(y))= 0

and unstably equivalent if

lim
n→+∞

d(ϕ−n(x), ϕ−n(y))= 0.

We denote the stable and unstable equivalence classes of x by X s(x) and Xu(x),
respectively [Putnam 2014].

Examples of Smale spaces include Anosov diffeomorphisms, the basic sets from
Smale’s Axiom A systems, various solenoids and certain substitution tiling spaces
[Katok and Hasselblatt 1995; Smale 1967; Bowen 1970; 1978; Williams 1967;
1970; 1974; Wieler 2014; Yi 2001]. Key examples are the shifts of finite type,
namely the doubly infinite path space of a finite directed graph. We provide a more
complete description in the next section. In this case, the underlying space is totally
disconnected [Lind and Marcus 1995; Putnam 2014]. Conversely, any irreducible
Smale space which is totally disconnected is topologically conjugate to a shift of
finite type.

A factor map π between dynamical systems (Y, ψ) and (X, ϕ) is a continuous,
surjective map π : Y → X satisfying ϕ ◦π = π ◦ψ . A factor map π is finite-to-one
if there is an upper bound on the cardinality of the sets π−1

{x}, as x runs over X
[Putnam 2014]. It is almost one-to-one if #π−1

{x} = 1 for each x in some dense
Gδ subset of X .

A map π : (Y, ψ)→ (X, ϕ) between Smale spaces is called s-bijective (resp.
u-bijective) if the restriction of π to Y s(y) (resp. Y u(y)) is a bijection to X s(π(y))
(resp. Xu(π(y))) for any y ∈ Y . Every s-bijective (or u-bijective) map is finite-to-
one [Putnam 2014].

Definition 2.2 [Putnam 2014, Definition 2.6.2]. Let (X, ϕ) be a Smale space. Then

π = (Y, ψ, πs, Z , ζ, πu)

is an s/u-bijective pair for (X, ϕ) if

• (Y,ψ) and (Z ,ζ ) are Smale spaces,

• πs : (Y,ψ)→(X,ϕ) is s-bijective and Xu(y) is totally disconnected for every y∈Y,

• πu : (Z ,ζ )→(X,ϕ) is u-bijective and X s(y) is totally disconnected for every z∈Z .

Theorem 2.3 [Putnam 2014, Theorem 2.6.3]. Every irreducible Smale space (X, ϕ)
admits an s/u-bijective pair.

This result plays a crucial role in [Putnam 2014]. The homology is defined and
computed from such an object. While there may be many such s/u-bijective pairs
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for a given (X, ϕ), it is shown in Theorem 5.5.1 of that paper that the homology is
independent of the choice.

Our first contribution here is to improve this situation by proving the existence of
s/u-bijective pairs with certain advantageous extra features. These will be important
for our proofs later, but presumably, will have many other applications.

Theorem 2.4. Every irreducible Smale space (X, ϕ) admits an s/u-bijective pair
π = (Y, ψ, πs, Z , ζ, πu) such that the Smale spaces (Y, ψ), (Z , ζ ) are irreducible
and both maps πs and πu are almost one-to-one.

The proof is based on [Putnam 2005] and will be given in Section 4A.

Definition 2.5. For any Smale space (X, ϕ), we say that an s/u-bijective pair
(Y, ψ, πs, Z , ζ, πu) is irreducible if both (Y, ψ) and (Z , ζ ) are irreducible and both
maps πs and πu are almost one-to-one.

For a Smale space (X, ϕ) and s/u-bijective pair π = (Y, ψ, πs, Z , ζ, πu), for
each L ,M ≥ 0 we define

6L ,M(π)=
{
(y0, y1, . . . , yL , z0, z1, . . . , zM) ∈ Y L+1

× Z M+1
|

πs(yl)= πu(zm) for all 0≤ l ≤ L , 0≤ m ≤ M
}
.

If we let σ be the obvious map on 6L ,M(π) induced by ψ and ζ , (6L ,M(π), σ )

is a dynamical system. Indeed, it is also a Smale space with totally disconnected
stable and unstable sets, and so is a shift of finite type. In the special case that
L = M = 0, this is usually called the fibred product of (Y, ψ) and (Z , ζ ). On the
other hand, (6L ,M(π), σ ) has an obvious action of the group SL+1× SM+1, where
SN+1 denotes the permutation group of {0, 1, . . . , N } [Putnam 2014].

If the s/u-bijective pair is irreducible in the sense above, then the fibred product
is irreducible. By this we mean the shift of finite type 60,0(π), σ ) is irreducible.
The other 6L ,M(π), σ ) will not be, in general. The proof of this result is long and
will be given in Section 4B.

Theorem 2.6. Suppose (X, ϕ), (Y, ψ) and (Z , ζ ) are irreducible Smale spaces,

πs : (Y, ψ)→ (X, ϕ)

is an almost one-to-one, s-bijective factor map and

πu : (Z , ζ )→ (X, ϕ)

is an almost one-to-one, u-bijective factor map. Then the fibred product

Y ×X Z = {(y, z) ∈ Y × Z | πs(y)= πu(z)}

of maps πs and πu with ψ × ζ is an irreducible Smale space. In addition, if (X, ϕ)
is mixing then so is (Y×X Z , ψ×ζ ).
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Of course, one application of the theorem is to an irreducible s/u-bijective pair
for (X, ϕ), but the result is more general, since it makes no assumptions that the
local stable sets of Z or the local unstable sets of Y are totally disconnected.

For a shift of finite type, (6, σ ), Krieger introduced the dimension group in-
variants, denoted here by Ds(6, σ ) and Du(6, σ ). These are countable abelian
groups and, if the shift of finite type is presented as the edge shift of a finite directed
graph G, they may be computed directly as inductive limits from the adjacency
matrix of G. We discuss this more thoroughly in the next section.

The second author developed a homology theory for Smale spaces in [Putnam
2014]. Let us briefly review the construction here. First, one considers the dimension
groups Ds(6L ,M(π), σ ) of the system, over all L ,M ≥ 0. At each index, a quotient
of a certain subgroup is taken, denoted by Ds

Q,A(6L ,M(π), σ ), which takes into
account the action of the permutation groups [Putnam 2014, Section 5.1]. These
groups are assembled into a double complex, Cs

Q,A(π)L ,M = Ds
Q,A(6L ,M(π), σ ),

L ,M ≥ 0, whose homology is denoted by H s
∗
(π). There is an analogous con-

struction of H u
∗
(π), using the unstable dimension groups Du. In [Putnam 2014],

it is shown that the result is independent of the choice of π , and so is written as
H s
∗
(X, ϕ) or H u

∗
(X, ϕ) [Putnam 2014, Theorem 5.5.1].

For the remainder of this paper, we will concentrate on H s(X, ϕ). Analogous
results hold for H u(X, ϕ).

The above construction is analogous to computing the Čech cohomology of a
compact manifold by considering a ‘nice’, finite, open cover and the homology of its
nerve. Here, the s/u-bijective pair replaces the open cover. The shifts (6L ,M(π), σ )

evidently play the role of the nerve of the cover, keeping track of the multiplicities
of the cover. Finally, Krieger’s dimension group invariant replaces the homology of
the open balls in the ‘nice’ cover.

One of the most important features of Krieger’s invariant for a shift of finite type
is that it also carries a natural order structure. Moreover, this is also easily computed
from the corresponding directed graph. The aim of this paper is to define a natural
and canonical order structure on the homology groups H s

0 (X, ϕ) and H u
0 (X, ϕ).

Let us begin with the definition of an ordered abelian group.

Definition 2.7 [Blyth 2005]. A pair (G,G+) is called an ordered abelian group if
G is an abelian group with a positive cone G+, which is a subset of G satisfying

(1) G++G+ ⊆ G+,

(2) G+−G+ = G,

(3) G+ ∩−G+ = {0}.

The elements of G+ are called positive elements of G, and for g1, g2 in G we
write g1 ≥ g2 (or g2 ≤ g1) when g1− g2 ∈ G+.
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A homomorphism 0 :G→H of ordered groups is called positive if 0(G+)⊆H+.
An isomorphism 0 : G→ H of ordered groups is an order isomorphism if both 0
and 0−1 are positive homomorphisms (equivalently, if 0(G+)= H+). We remark
that the inverse of a positive isomorphism is not positive in general. For example,
consider the ordered group Z2 with the positive cone {(m, n) | m, n ≥ 0}. The
map α(m, n)= (m+ n, n) is a positive automorphism of Z2 whose inverse is not
positive.

The groups Ds(6L ,M(π)), L ,M ≥ 0, all carry canonical orders. Unfortunately,
these do not induce orders on the groups Ds

Q,A(6L ,M(π)) in our double complex,
except in the special case when L=M=0, where Ds

Q,A(60,0(π)) and Ds(60,0(π))

are equal. We intend to lift this order to the degree-zero group in our double complex,
namely on

⊕
L−M=0 C

s
Q,A(π)L ,M , by setting the positive cone to be those elements

whose entries in the summand L = M = 0 are strictly positive, together with the
zero element. In particular, the entries in the position L = M > 0 do not affect
positivity. The positive cone H s

0 (π)
+ in H s

0 (π) is then defined as those elements
which are represented by a positive cocycle in

⊕
L−M=0 C

s
Q,A(π)L ,M . The difficulty

is to show that this gives a well-defined and well-behaved order on the homology.

Definition 2.8. Let π = (Y, ψ, πs, Z , ζ, πu) be an s/u-bijective pair for the Smale
space (X, ϕ). Let (Cs

Q,A(π), ds
Q,A(π)) be the double complex associated with π

and H s
∗
(π) be the homology of this double complex. We define the corresponding

cones as follows:(⊕
L−M=0 C

s
Q,A(π)L ,M

)+
= {0} ∪ {a | 0 6= a0,0 ∈ Cs

Q,A(π)
+

0,0},

and

H s(π)+ =
{

a+ Im
(⊕

L−M=1 ds
Q,A(π)L ,M

) ∣∣
a ∈ Ker

(⊕
L−M=0 ds

Q,A(π)L ,M
)
∩
(⊕

L−M=0 C
s
Q,A(π)L ,M

)+}
.

Of course, both definitions are the obvious ones. The issue is now to show
that this provides good order structures, at least for irreducible Smale spaces. The
strategy is simple: we first assume that our s/u-bijective pair is irreducible. We
reduce to the case that the shift of finite type, (60,0(π), σ ), is mixing. It follows
that the order structure on its dimension group is completely determined by the state
which arises from its unique measure of maximal entropy, or the Parry measure;
see Theorem 3.4.

To take homology, we first pass to a subgroup (the cocycles) and then take a
quotient (by the coboundaries). The following rather elementary result summarizes
our task.

Theorem 2.9 [Blyth 2005]. Let (G,G+) be an ordered abelian group and let
H ⊆ G be a subgroup.
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(i) If G+ ∩ H = {0}, then with

(G/H)+ = {a+ H | a ∈ G+},

(G/H, (G/H)+) is an ordered abelian group.

(ii) If G+∩H generates H, that is, (G+∩H)−(G+∩H)= H , then (H,G+∩H)
is an ordered abelian group.

The conditions for the subgroup and quotient in the above theorem are com-
plementary and could not hold at the same time (except for trivial cases), but one
should note that these conditions are going to be applied to two separate cases with
distinct subgroups (the subgroup condition is applied to a “kernel” in the complex,
whereas the quotient condition is used for the preceding “image”).

Our first task is to show that

G = Ker
(⊕

L−M=0 ds
Q,A(π)L ,M

)
and H = Im

(⊕
L−M=1 ds

Q,A(π)L ,M
)

satisfy the hypotheses of the first part of Theorem 2.9.

Theorem 2.10. Let π = (Y, ψ, πs, Z , ζ, πu) be an irreducible s/u-bijective pair
for the irreducible Smale space (X, ϕ). We have(⊕

L−M=0 C
s
Q,A(π)L ,M

)+
∩ Im

(⊕
L−M=1 ds

Q,A(π)L ,M
)
= {0}.

Our second task is to show that

G =
⊕

L−M=0 C
s
Q,A(π)L ,M and H = Ker

(⊕
L−M=0 ds

Q,A(π)L ,M
)

satisfy the hypotheses of the second part of Theorem 2.9.

Theorem 2.11. Let π = (Y, ψ, πs, Z , ζ, πu) be an irreducible s/u-bijective pair
for the irreducible Smale space (X, ϕ). The subgroup generated by(⊕

L−M=0 C
s
Q,A(π)L ,M

)+
∩ Ker

(⊕
L−M=0 ds

Q,A(π)L ,M
)

is Ker
(⊕

L−M=0 ds
Q,A(π)L ,M

)
.

As an immediate consequence of Theorems 2.9, 2.10 and 2.11, we get our main
result as follows.

Theorem 2.12. If (X, ϕ) is an irreducible Smale space and π=(Y, ψ, πs, Z , ζ, πu)

is an irreducible s/u-bijective pair for (X, ϕ), then H s
0 (π) is an ordered abelian

group with the positive cone defined in Definition 2.8.

The next issue is to see that the resulting order is independent of the choice of π ,
in a suitable sense.
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Theorem 2.13. Suppose (X, ϕ) is an irreducible Smale space and

π = (Y, ψ, πs, Z , ζ, πu), π̃ = (Ỹ , ψ̃, π̃s, Z̃ , ζ̃, π̃u)

are s/u-bijective pairs for (X, ϕ). Assume that π is irreducible. Then

(1) H s
0(π̃) is an ordered abelian group with the positive cone given in Definition 2.8;

(2) there is an order isomorphism H from H s
0 (π) to H s

0 (π̃).

We also want to show that our order structure behaves well as a functor. Already
in [Putnam 2014], the functoriality for the groups alone is somewhat subtle; H s is
covariant for s-bijective factor maps and contravariant for u-bijective factor maps.
We will show that the maps induced at the level of groups from s-bijective factor
maps and u-bijective factor maps between the dynamical systems are positive group
homomorphisms.

Theorem 2.14. Suppose (X, ϕ) and (X ′, ϕ′) are irreducible Smale spaces.

(1) If ρ : (X, ϕ)→ (X ′, ϕ′) is an s-bijective factor map, then the group homomor-
phism ρs

0 : H
s
0 (X, ϕ)→ H s

0 (X
′, ϕ′) of [Putnam 2014] is positive; that is,

ρs
0(H

s
0 (X, ϕ)

+)⊆ H s
0 (X

′, ϕ′)+.

(2) If ρ : (X, ϕ)→ (X ′, ϕ′) is a u-bijective factor map, then the group homomor-
phism ρs∗

0 : H
s
0 (X

′, ϕ′)→ H s
0 (X, ϕ) of [Putnam 2014] is positive; that is,

ρs∗
0 (H

s
0 (X

′, ϕ′)+)⊆ H s
0 (X, ϕ)

+.

A couple of remarks are in order. All of our results are stated for irreducible Smale
spaces. They extend easily to Smale spaces in which every point is nonwandering,
since any such Smale space is the disjoint union of a finite number of irreducible
subsystems.

The ordered groups introduced by Krieger have a number of special features.
They are unperforated: if, for any element a, na is positive for some n ≥ 1, then
a itself is positive. They also satisfy the Riesz interpolation property (see [Effros
1981] for details). At this point, it is not clear exactly which nice properties our
ordered groups H s

0 (X, ϕ) may have. However, one may observe, using [Amini
et al. 2013], that they may have elements of finite order, which means that they
are not unperforated in general. It may be reasonable to expect them to be weakly
unperforated: if na > 0 for some n ≥ 1, then a > 0.

3. Dimension groups and the Perron–Frobenius theorem

3A. Shifts of finite type. Shifts of finite type are usually defined in terms of the
alphabets and (forbidden) words, but here we use an equivalent formulation in terms
of graphs, which is more suitable for our purposes.



ORDER ON THE HOMOLOGY GROUPS OF SMALE SPACES 265

A graph G consists of finite sets G0 and G1, consisting of vertices and edges,
respectively, and maps i, t : G1

→ G0, marking the initial and terminal points. The
graph is drawn by depicting each vertex as a dot and each edge e as an arrow from
i(e) to t (e).

A path of length k in G is a sequence (e1, . . . , ek), with ei ∈ G1 for 1 ≤ i ≤ k,
such that t (ei )= i(ei+1) for 1≤ i < k. Let Gk denote the set of all paths of length k.
For each k, Gk is a graph with vertices Gk−1 and edges Gk, and the initial and
terminal maps

i(e1, . . . , ek)= (e1, . . . , ek−1), t (e1, . . . , ek)= (e2, . . . , ek)

for (e1, . . . , ek) in Gk. To any graph G, a pair (6G, σ ) is associated, where

6G = {(en)n∈Z | en ∈ G1, t (en)= i(en+1), n ∈ Z},

σ :6G→6G, σ (e)n = en+1.

This is a dynamical system with the metric

d(e, f )= inf{1, 2−K−1
| K ≥ 0, e[1−K ,K ] = f[1−K ,K ]}

on the 6G , where e[K ,L] = (eK , eK+1, . . . , eL) for K ≤ L , and e[K+1,K ] = t (eK )=

i(eK+1). It is easy to see that (6G, σ ) is a Smale space with constants εX =λ=
1
2 and

[e, f ]k =
{

fk if k ≤ 0,
ek if k ≥ 1.

The system (6G, σ ) is called the shift of finite type associated to the graph G.

3B. Dimension groups. Krieger [1980] defined two ordered groups in terms of
the clopen sets for the shift of finite type, called the past and future dimension
groups.

Suppose (6, σ ) is a shift of finite type and 6s(e) is the stable equivalence class
of e ∈6. By Proposition 2.1.12 in [Putnam 2014], the set 6s(e) admits a topology
that is second countable and locally compact. This may be different from the
relative topology of 6. Let CO(6, σ ) be the set of nonempty, open and compact
subsets of 6s(e), over all e in 6, and ∼ be the smallest equivalence relation on
CO(6, σ ) such that E ∼ F if [E, F] = E and [F, E] = F and E ∼ F if and only
if σ(E)∼ σ(F), and let [E] denote the equivalence class of E .

Let Ds(6, σ ) be the free abelian group on ∼-equivalence classes of COs(6, σ )

and H be the subgroup generated by [E ∪ F]− [E]− [F], where E , F and E ∪ F
are in COs(6, σ ) and E and F are disjoint. The group Ds(6, σ ) is defined to be
Ds(6, σ )/H .
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The order is obtained by defining

Ds(6, σ )+ = {[E] | E ∈ COs(6, σ )},

and then
Ds(6, σ )+ = {a+ H | a ∈ Ds(6, σ )+}.

The ordered abelian group Du(6, σ ) is defined in a similar way, by replacing the
unstable equivalence classes 6u(e) by 6s(e). Krieger showed how this ordered
group could be computed from the underlying graph of the shift of finite type.

Before going into more detail, we need some notation. If A is a finite set, then the
free abelian group generated by A, ZA, is an ordered abelian group with the positive
cone {z1a1 + · · · + znan | z1, . . . , zn ∈ Z+ ∪ {0}, a1, . . . , an ∈ A, n ∈ N}. In our
notation, A is considered as a subset of ZA. If A, B are finite sets and τ : A→ B
is any function, then there is a unique positive homomorphism 0 : ZA → ZB
extending τ . For the finite set A, the integer-valued bilinear form 〈 , 〉 is defined on
ZA×ZA which is additive in each variable, and for each a, b ∈ A,

〈a, b〉 =
{

1 if a = b,
0 if a 6= b.

For two finite sets A, B and a homomorphism h : ZA→ ZB, there is a unique
homomorphism h∗ : ZB→ ZA such that

〈h(a), b〉 = 〈a, h∗(b)〉

for all a in ZA and b in ZB.
Let A = {a1, . . . , am} and B = {b1, . . . , bn}. We associate a matrix [hi j ]n×m to

the homomorphism h such that the entry hi j is equal to the coefficient bj in h(ai )

when h(ai ) is written in terms of the generating set B. We have

〈h(a), b〉 = 〈a, h∗(b)〉

for a in ZA and b in ZB, that is, [h∗i j ]m×n = ([hi j ]n×m)
T, where MT denotes the

transpose of a matrix M.
Now we compute the dimension group in terms of the underlying graph of the

shift of finite type. Let (G0,G1, i, t) be a graph and (6G, σ ) be the associated shift
of finite type. Suppose ZG0 is the free abelian group on the generating set G0, and
consider the homomorphism

γ s
G : ZG0

→ ZG0, γ s
G(v)=

∑
t (e)=v

i(v) (v ∈ G0).

The past dimension group Ds(G) is defined as the inductive limit of the system

ZG0 γ s
G−−→ZG0 γ s

G−−→· · · .
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Since ZG0 is an ordered group and γ s
G is a positive homomorphism, Ds(G) inherits

an order structure in a natural way. Let us give a brief and simple description of the
elements of Ds(G). Two points (a,m) and (b, n) in ZG0

×N are equivalent, denoted
(a,m)∼s (b, n), if there exists l ∈N∪{0} such that (γ s

G)
n+l(a)= (γ s

G)
m+l(b). The

equivalence class of (a,m) is denoted by [a,m]s and Ds(G) is the set of all
equivalence classes. The positive cone in this group consists of those elements
[a,m]s with (γ s

G)
l(a) ∈ (ZG0)+ for some l ∈ N.

The future dimension group for the graph (G0,G1, i, t) is defined in a similar
way, by replacing the homomorphism γ s

G : ZG0
→ ZG0 by γ u

G , where

γ u
G(v)=

∑
i(e)=v

t (v)

for all v in G0. Note that γ u
G = (γ

s
G)
∗.

It is worth noting that in some places in the computation of the homology, it is
necessary to use the graph Gk instead of G, which does not affect the answer. This
can be viewed as a consequence of the next theorem. The next two results appear
as Theorems 3.3.3 and 3.5.5 in [Putnam 2014], but without the order structure.

Theorem 3.1. Suppose G is a graph, (6G, σ ) is the associated shift of finite type
and k ≥ 1. The homomorphism 9 from Ds(6G, σ ) to Ds(Gk), defined on the
generating elements by 9([6s

G(e, 2− j )])= [e[1− j,k− j−1], j−k+1], e ∈6G , j ≥ k,
is an order isomorphism.

We recall some notation from Section 3.1 of [Putnam 2014], that if B is any
subset of A, Sum(B)=

∑
b∈B b ∈ ZA.

Theorem 3.2. Let G and H be graphs with a graph homomorphism π : H→G and
suppose that the associated map π : (6H , σ )→ (6G, σ ) is s-bijective, k≥ 1, and K
satisfies the conclusion of Lemma 2.7.1 in [Putnam 2014] for π . The induced map
π s
[a, j] = [π s,K (a), j] from Ds(H k) to Ds(Gk+K ) is a positive homomorphism,

where a ∈ ZH k−1, j ≥ 1 and π s,K (q)= Sum{π(q ′) | q ′ ∈ H k+K, t K (q ′)= q}.

3C. The Perron–Frobenius theorem. Let G be a finite directed graph. The ad-
jacency matrix, AG , is #G0

× #G0 and has entries that are the number of edges
between the different vertices of G. The shift of finite type (6G, σ ) is irreducible
if and only if the graph G is irreducible, in the sense that, for each ordered pair of
vertices u and v in G, there exists a path p in G starting at u and terminating at v.
This is also equivalent to the adjacency matrix being irreducible, in the sense that
for each ordered pair of indices i, j , there is some nonnegative integer n such that
(AG)

n
i, j > 0.

The shift of finite type (6G, σ ) is mixing if and only if there is a positive integer
n such that for every ordered pair of vertices u and v in G, there exists a path
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of length n in G starting at u and terminating at v. This is also equivalent to the
adjacency matrix being primitive; that is, there is some positive integer n such that
(AG)

n
i, j > 0 for all 1≤ i, j ≤ m. If this holds for some fixed n, it also holds for all

higher values of n [Lind and Marcus 1995].
Let us recall the Perron–Frobenius theorem [Lind and Marcus 1995, Theo-

rem 4.2.3]. If A is a nonnegative irreducible square matrix, then it has a positive
eigenvalue λA and a right positive eigenvector vA associated to λA, called the Perron
eigenvalue and the Perron eigenvector, respectively, such that |µ| ≤ λA for every
eigenvalue µ of A, and the corresponding eigenspace of λA is both geometrically
and algebraically simple.

Given our presentation using homomorphisms rather than matrices, we state this
in the following fashion. We apply this to both the adjacency matrix for the graph
and its transpose, but these share the same Perron eigenvalue. Assuming that the
graph G is irreducible, there are λG > 0 and vectors vs

G, v
u
G in R+G0 such that

γ s
G(v

s
G)= λGv

s
G, γ

u
G(v

u
G)= λGv

u
G .

We have extended the definition of γ s
G, γ

u
G in the obvious way. We remark that if

we replace G by Gk, for some k ≥ 1, we obtain a higher block presentation of the
shift (see Definition 1.4.1 of [Lind and Marcus 1995]). The Perron eigenvectors are
changed, but not the eigenvalue: λGk = λG .

The Perron eigenvalue in the above result is related to the notion of entropy as
the below result shows. This could be defined for a general dynamical system, but
here we only deal with the shifts of finite type. Let G be a graph and (6G, σ ) be
the corresponding shift of finite type. The entropy of (6G, σ ) is defined [Lind and
Marcus 1995, Definition 4.1.1] by

h(6G, σ )= lim
n→∞

1
n

log #Gn,

where #Gn is the number of paths of length n in G.

Theorem 3.3 [Lind and Marcus 1995, Theorem 4.4.4]. If G is a graph, then we
have h(6G, σ )= log λG .

The Perron–Frobenius theorem also has a nice application for the computation
of the order structure of Ds(6G, σ ), particularly in the mixing case. This follows
from Corollary 4.2 and Theorem 6.1 of [Effros 1981].

Theorem 3.4. Let G be a finite directed graph whose associated shift of finite type
is mixing. For any n ≥ 1 and a in ZG0, the element [a, n] is in Ds(G)+−{0} if and
only if 〈a, vu

G〉 is positive.

We end this section with a result which gives a sufficient condition for the
surjectivity of maps between shifts of finite type.
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Theorem 3.5 [Lind and Marcus 1995, Corollary 4.4.9]. Suppose G and H are
graphs and π : (6G, σ ) → (6H , σ ) is a finite-to-one map. If the graph H is
irreducible and h(6G, σ )= h(6H , σ ), then π is onto.

4. Irreducible s/u-bijective pairs and fibred products

4A. Irreducible bijective pairs. The proof of the existence of s/u-bijective pairs
comes from [Putnam 2005]. Our proof of the existence of irreducible ones must go
back to the same starting point to see how the results of that paper can be improved.

Suppose (X, ϕ) and (Y, ψ) are irreducible Smale spaces and π : (X, ϕ)→ (Y, ψ)
is an almost one-to-one map. In [Putnam 2005], it was shown that there exist
irreducible Smale spaces (X̃ , ϕ̃), (Ỹ , ψ̃) and factor maps α, β, π̃ such that the
following diagram is commutative:

(4-1)

(X̃ , ϕ̃) π̃
//

α

��

(Ỹ , ψ̃)

β

��

(X, ϕ) π
// (Y, ψ)

Moreover, the maps α, β are u-bijective and the map π̃ is s-bijective. Regrettably,
it was not shown that α, β, π̃ are almost one-to-one, which is what we undertake
now. In fact, it will be enough to consider β. (The space (X, ϕ) is appearing in a
somewhat unfortunate position as the domain, but we follow [Putnam 2005] for the
moment.)

The proof involves finding a periodic point y0 in Y with π−1
{y0} = {x0}, a

single point in X. Then W is the unstable set of the orbit of x0 and it is shown
that π(W ) is the unstable set of the orbit of y0. Let dX , dY be the metrics on X
and Y , respectively. We view X and Y as the completions of the spaces (W, dX )

and (π(W ), dY ). The proof of [Putnam 2005] involves introducing new metrics on
W and π(W ), δX and δY , respectively, so that X̃ and Ỹ are their completions. As
these new metrics are greater than or equal to the old ones, the factor maps α, β
appear automatically.

Here, we claim that β−1
{y0} = {x0}. (The references here will all be to [Putnam

2005].) To see this, it suffices to consider a sequence yn in π(W ) which is Cauchy
in δY and converges to y0 in dY and prove that it converges to y0 in δY . For n
sufficiently large, [y0, yn] is defined, and using part 4 of Lemma 2.18, we have

δY (y0, yn)≤ δY (y0, [y0, yn])+ δY ([y0, yn], yn)

≤ δY (y0, [y0, yn])+ (1− rλ)−1dY ([y0, yn], yn).

It suffices for us to show that [y0, yn] converges to y0 in δY . By replacing yn by
[y0, yn], we may assume that yn is in V s(y0, εY ). By part 2 of Proposition 2.12,
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we may assume that yn and y0 are ρ-compatible and then by Lemma 2.10, for all
k ≥ 0 there is Nk ≥ 1 such that g−k(y0) and g−k(yn) are ρ-compatible for n ≥ Nk .

Let ε>0 be given. From the definition of δ0
Y in Definition 2.14, it is bounded by D.

We may find K ≥ 1 such that
∑

k>K r k D < ε/2. Find N ≥max{Nk | 1≤ k ≤ K }
so that for n ≥ N and 0≤ k ≤ K we have

dY (g−k(y0), g−k(yn) <
ε

2(K + 1)
.

It follows from Definition 2.17 and part 4 of Lemma 2.15 that for such n,

δY (y0, yn)=

∞∑
k=0

r kδ0
Y (g
−k(y0), g−k(yn))

≤

K∑
k=0

dY (g−k(y0), g−k(yn)) +

∞∑
k=K+1

r k D

<

K∑
k=0

ε

2(K + 1)
+
ε

2

= ε.

Exactly as in [Putnam 2005], we apply this result as follows. We begin with our
irreducible Smale space (X, ϕ) and find an irreducible shift of finite type (6, σ )
and an almost one-to-one factor map π : (6, σ )→ (X, ϕ). The system which is
called (Ỹ , g̃) above, we denote by (Z , ζ ) and the map β by πu . The fact that Z
has totally disconnected stable sets follows from the facts that 6̃ is also a shift
of finite type and π̃ is s-bijective. Now, we also know that there is x0 in X with
#π−1

u {x0} = 1.
We next want to show that if there is a single point x with #π−1

{x} = 1, this
will also hold for all points with dense forward or backward orbit if we also assume
that π is s-bijective or u-bijective. Recall that the forward orbit of a point x is
{ϕn(x) | n ≥ 0}, while the backward orbit is {ϕn(x) | n ≤ 0}.

Lemma 4.1. Let (Y, ψ) and (X, ϕ) be Smale spaces and π : (Y, ψ) → (X, ϕ)
be an s-bijective (or u-bijective) factor map. Assume there is x0 in X such that
π−1
{x0} = 1. Then for any point x in X with a dense forward (backward) orbit, we

have #π−1
{x} = 1.

Proof. We prove the result in the case that π is s-bijective. List π−1
{x} =

{y1, . . . , yI }. Since the orbit of x is dense, we may find an increasing sequence of
positive integers nk such that ϕnk (x) converges to x0. Passing to a subsequence, we
may assume that for each 1≤ i ≤ I , the sequence ψnk (yi ) converges to some point
of Y , and by continuity, these points must all lie in π−1(x0). It remains to show
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that no two such sequences can have the same limit. If there is 1≤ i 6= j ≤ I , then
d(ψnk (yi ), ψ

nk (yj )) tends to zero as k goes to infinity. Then we have

π(ψnk (yi ))= ϕ
nk (π(yi ))= ϕ

nk (x)= ϕnk (π(yj ))= π(ψ
nk (yi )).

Using the fact that π is s-bijective, Proposition 2.5.2 in [Putnam 2014] implies that,
for k sufficiently large,

ψnk (yi ) ∈ Y u(ψnk (yj ), επ ),

which implies that

yi ∈ Y u(yj , λ
nkεπ ).

Since this is true for all k, we conclude yi = yj , and we are done. �

The set of points with a dense forward orbit is rather large in an irreducible system.
The following result is standard; see, for example, Theorem 5.9 of [Walters 1982].

Proposition 4.2. Let (X, ϕ) be a dynamical system, with X a compact metric space.
If (X, ϕ) is irreducible, then the set of all points x with dense forward orbit is a
dense Gδ subset of X.

It is probably worth noting that Lemma 4.1 and Proposition 4.2 together prove
the following.

Corollary 4.3. Let (Y, ψ) and (X, ϕ) be Smale spaces and π : (Y, ψ)→ (X, ϕ) be
an s-bijective (or u-bijective) factor map. Then π is almost one-to-one if and only
if there is a point x0 in X such that #π−1

{x0} = 1.

We have also now proved Theorem 2.3, that every irreducible Smale space has
an irreducible s/u-bijective pair.

4B. The fibred product of maps. Let π1 : (Y, ψ)→ (X, ϕ) and π2 : (Z , ζ )→
(X, ϕ) be maps between Smale spaces and

Y ×X Z = {(y, z) ∈ Y × Z | π1(y)= π2(z)}

be the fibred product of π1, π2, with the relative topology of Y × Z . By Theorem
2.4.2 in [Putnam 2014], Y×X Z is a Smale space, withψ×ζ(y, z)= (ψ(y), ζ(z)) for
(y, z)∈ Y×X Z . We note that there are natural maps ρ2 : (Y×X Z , ψ×ζ )→ (Z , ζ )
defined by ρ2(y, z)= z and ρ1 : (Y ×X Z , ψ×ζ )→ (Y, ψ) defined by ρ1(y, z)= y.
We also note that if π1 is s-bijective (or u-bijective), then so is ρ2.

The drawback is that the fibred product of maps on irreducible Smale spaces is
not irreducible in general. In this section, we prove the irreducibility of the fibred
product (Y×X Z , ψ×ζ ) under certain natural conditions.
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Proposition 4.4. Let π1 : (Y, ψ)→ (X, ϕ) and π2 : (Z , ζ )→ (X, ϕ) be either
s-bijective or u-bijective, almost one-to-one factor maps between irreducible Smale
spaces. Then the natural maps ρ1 and ρ2 from the fibred product to Y and Z ,
respectively, are also almost one-to-one.

Proof. The set of x in X with #π−1
1 {x} = 1 is a dense Gδ, as is the set of x

with #π−1
2 {x} = 1. It follows that their intersection is nonempty. If x is in this

intersection and π1(y)= x, π2(z)= x , it is a simple matter to see that

ρ−1
2 {z} = {(y, z)} = ρ−1

1 {y}.

We complete the proof by noting that ρ1 and ρ2 are also either s-bijective or
u-bijective and by recalling Corollary 4.3 �

We will need two technical results for the proof of Theorem 2.6. The first is a
characterization of irreducibility.

Lemma 4.5. Let (X, ϕ) be a Smale space. If there exists a point x in X whose
forward orbit clusters on every periodic point of X , then (X, ϕ) is irreducible.

Proof. Let y be an accumulation point of the backward orbit of x . It is clearly
nonwandering and so it is in the closure of the periodic points. It follows that y
is also a limit point of the forward orbit of x . By patching the forward orbit of x
that gets close to y with part of the backward orbit of x that begins close to y, we
can form pseudo-orbits from x to itself and conclude that x is in the nonwandering
set. The orbit of x will remain in the same irreducible component of the nonwan-
dering set. Hence all periodic points are in the same irreducible component. This
implies that there is only one irreducible component. If X contained a wandering
point, its forward orbit and backward orbits would limit on two distinct irreducible
components. As this is not possible, X has no wandering points. �

Lemma 4.6. Let πs : (Y, ψ)→ (X, ϕ) be an s-bijective almost one-to-one factor
map between irreducible Smale spaces. Let x0 be a periodic point of X with
π−1
{x0} = {y1, y2, . . . , yI }. For δ, ε > 0, put U = [Xu(x0, δ), X s(x0, δ)] and, for

1≤ i ≤ I , let

Vi = {x ∈U | π−1
{[x, x0]} ⊆ Y (yi , ε)},

where Y (yi , ε) denotes the open ball at yi of radius ε. Then there exist arbitrarily
small positive pairs δ, ε such that

(i) Vi is open,

(ii) Vi is nonempty,

(iii) [Vi ,U ] ⊂ Vi .
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Proof. First choose ε to be smaller than επ and also smaller than half of the distance
between yi and yj , over all 1≤ i 6= j ≤ I . Then choose δ > 0 so that Lemma 2.5.11
of [Putnam 2014] holds. It follows easily from the continuity of the bracket and
Lemma 2.5.9 of [Putnam 2014] that Vi is open for all i . Let us next fix i and prove
that Vi is nonempty. By hypothesis, there exists a point x ′ with dense forward orbit
and #π−1

{x ′} = 1. Notice that any point in the orbit of x ′ also has these properties,
as does any point stably equivalent to a point in the orbit of x ′. Let y′ in Y be the
unique point with π(y′) = x ′. Since (Y, ψ) is irreducible, the stable equivalence
class of the orbit of y′ is dense. So there exists y′′ stably equivalent to some point
in the orbit of y′ in Y u(yi , ε). Let us check that π(y′′) is in Vi . As ε < επ , we know
[π(y′′), x0]=π([y′′, yi ])=π(y′′) and hence π−1

{[π(y′′), x0]= {y′′}} is in Y (yi , ε).
Finally, we verify the last condition. Suppose that x is in Vi and x1 is in Xu(x0, δ)

and x2 in Xu(x0, δ). Since [x, [x1, x2]] = [x, x2] is in Vi , [[x, x2], x0] = [x, x0] and
the conclusion follows. �

We have most of the ingredients for the proof of Theorem 2.6, but for the last
statement, we need some convenient characterizations of mixing.

Lemma 4.7. Suppose (X, ϕ) is an irreducible Smale space. The following are
equivalent.

(1) (X, ϕ) is mixing.

(2) For any periodic point x in X , we have X s(x)∩ Xu(ϕ(x)) 6=∅ and Xu(x)∩
X s(ϕ(x)) 6=∅.

(3) For some periodic point x in X , we have X s(x)∩ Xu(ϕ(x)) 6=∅ and Xu(x)∩
X s(ϕ(x)) 6=∅.

Proof. This is a consequence of Smale’s spectral decomposition. Let∼ be the equiv-
alence relation on the periodic points of (X, ϕ) in Smale’s spectral decomposition,
that is, for two periodic points x, y ∈ X , x ∼ y if and only if X s(x)∩ Xu(y) 6=∅
and Xu(x)∩ X s(y) 6=∅. Then there are pairwise disjoint clopen sets X1, . . . , X N

whose union is X , ϕ(X i )= ϕ(X i+1) for 1≤ i ≤ N −1, ϕ(X N )= X1 and (X i , ϕ
N )

is a mixing Smale space, for every 1≤ i ≤ N . Moreover each X i is the closure of
an equivalence class of ∼ and these sets are unique up to relabeling.

If we assume that (X, ϕ) is mixing, then N above must equal 1 and the second
condition holds. The second part obviously implies the third. Finally, if x is a
periodic point, so is ϕ(x). Suppose x ∈ X i for some 1 ≤ i ≤ N − 1, X s(x) ∩
Xu(ϕ(x)) 6=∅ and Xu(x)∩ X s(ϕ(x)) 6=∅. Then x ∼ ϕ(x), thus ϕ(x) ∈ X i ∩ X i+1.
Since the X i are pairwise disjoint, X i = X i+1. The same argument shows that
X i = X i+1 = · · · = X N . Similarly, if x ∈ X N , then X N = X1 = · · · = X N−1.
Therefore, N = 1, hence X = X i and (X, ϕ) is a mixing space. �
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Proposition 4.8. If π : (Y, ψ)→ (X, ϕ) is an almost one-to-one factor map between
Smale spaces, (Y, ψ) is irreducible and (X, ϕ) is mixing, then (Y, ψ) is mixing also.

Proof. We will verify the condition of the last lemma. Suppose y is in Y and x is
in X such that π−1

{x} = {y}. Since (X, ϕ) is mixing, it is irreducible and hence
by Proposition 2.3 in [Putnam 2005], we can find a periodic point x0 ∈ X with
#π−1

{x0}=1. Let y0∈Y with π(y0)= x0. Since x0 is periodic and π is finite-to-one,
y0 is a periodic point. By the argument of the proof of Lemma 2.4 in [Putnam 2005],
π−1(X s(x0))=Y s(y0), π−1(X s(ϕ(x0)))=Y s(ψ(y0)), π−1(Xu(x0))=Y u(y0) and
π−1(Xu(ϕ(x0)))= Y u(ψ(y0)). Since (X, ϕ) is a mixing Smale space, we have

X s(x0)∩ Xu(ϕ(x0)) 6=∅, Xu(x0)∩ X s(ϕ(x0)) 6=∅,
which implies

Y s(y0)∩ Y u(ψ(y0))= π
−1(X s(x0))∩π

−1(Xu(ϕ(x0)))

= π−1(X s(x0)∩ Xu(ϕ(x0))
)
6=∅,

Y u(y0)∩ Y s(ψ(y0))= π
−1(Xu(x0))∩π

−1(X s(ϕ(x0)))

= π−1(Xu(x0)∩ X s(ϕ(x0))
)
6=∅.

Therefore, by Lemma 4.7, (Y, ψ) is mixing. �

Proof of Theorem 2.6. The sets of points of X with dense forward and backward
orbits are both dense Gδ’s and so their intersection is nonempty. Let x be a point
in X with a dense forward orbit and a dense backward orbit. Let y and z be its
unique preimages under πs and πu , respectively. By Lemma 4.5, it suffices to
prove that the forward orbit of (y, z) clusters on every periodic point. Let (y1, z1)

be a periodic point in the fibred product. Let x1 = πs(y1) = πu(z1). Enumerate
π−1

s {x1} = {y1, . . . , yI } and π−1
u {x1} = {z1, . . . , z J }.

For small δ, ε, let Vi , 1 ≤ i ≤ I , and Wj , 1 ≤ j ≤ J , be the result of applying
Lemma 4.6 to the maps πs and πu , respectively. Observe that since πu is u-bijective,
the last condition on Wj is [U,Wj ] ⊆Wj . We have

V1 ∩W1 ⊇ [V1,U ] ∩ [U,W1] ⊇ [V1,W1],

which is clearly nonempty. Also V1∩W1 is open. It follows that there is n ≥ 1 with
ϕn(x) ∈ V1 ∩W1. This implies that ψn(y) ∈ Y (y1, ε) and ζ n(z) ∈ Z(z1, ε). Since
ε was arbitrary, this completes the proof of the first part. The mixing case follows
from two applications of Proposition 4.8. �

5. Homology

In this section, we prove the main results on the homology of Smale spaces, stated
in the first section. If (X, ϕ) is a Smale space, then so is (X, ϕn), for any positive
integer n, and if π = (Y, ψ, πs, Z , ζ, πu) is an s/u-bijective pair for (X, ϕ), then
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πn = (Y, ψn, πs, Z , ζ n, πu) is an s/u-bijective pair for (X, ϕn). The results in
Chapters 4 and 5 of [Putnam 2014] show that (CQ,A(6(π)), dQ,A(6(π))) and
(CQ,A(6(πn)), dQ,A(6(πn))) admit the same cocycle and coboundaries. On the
other hand, by Smale’s spectral decomposition, for every irreducible Smale space
(X, ϕ), X can be written as a union of pairwise disjoint clopen subsets X1, . . . , X L

such that ϕL(X i ) = X i for each 1 ≤ i ≤ L , and the (X i , ϕ
L) are mixing Smale

spaces [Smale 1967]. Hence

H s
N (X, ϕ)∼= H s

N (X, ϕ
L)∼=

L⊕
i=1

H s
N (X i , ϕ

L)

for any positive integer N, and this along with Theorem 2.13 allows us to replace
an irreducible Smale space by a mixing one.

Under the assumption that (X, ϕ) is mixing, we find π , an irreducible s/u-
bijective pair for (X, ϕ). It follows at once from Propositions 4.8 and 4.4 and
from Theorem 2.6 that (60,0(π), σ )= (Y×X Z , ψ×ζ ) is mixing and ρs and ρu are
almost one-to-one.

We start with two lemmas that are simpler versions of Theorems 2.10 and 2.11.
Both of these consider the following situation: a shift of finite type (6, σ ), a Smale
space (Y, ψ) and a factor map ρ : (6, σ )→ (Y, ψ) which is either s-bijective or
u-bijective. In Chapter 4 of [Putnam 2014], a complex is formed from such a map.
It is a simpler object than the double complex associated to an s/u-bijective pair,
but its importance lies in the fact that the individual rows and columns of the double
complex all arise in this fashion. Applying this to our map ρs : (60,0(π), σ )→

(Y, ψ) yields the bottom row of our double complex. Similarly, applying this to
our map ρu : (60,0(π), σ )→ (Z , ζ ) yields the left column of our double complex.

To a factor map ρ as above, we let

6N (ρ)= {(x0, . . . , xN ) ∈6
N+1
| ρ(x0)= · · · = ρ(xN )} for all N ≥ 0.

There are obvious maps δn :6N (ρ)→6N−1(ρ) for 0≤ n ≤ N and N ≥ 1.

Lemma 5.1. Let (6, σ ) be a mixing shift of finite type, (Y, ψ) be a mixing Smale
space and ρs : (6, σ )→ (Y, ψ) be an s-bijective, almost one-to-one factor map.
Then Im(δs

0− δ
s
1)∩ Ds(60(ρs))

+
= {0}.

Proof. We begin by finding a graph G whose associated shift (6G, σ ) is conjugate
to (6, σ ). (We suppress the conjugacy in our notation.) From Theorem 4.2.8 in
[Putnam 2014], this G may be chosen so that the map ρs is regular. (The definition
of regular is given in Definition 2.3.3 of [Putnam 2014]. We will not really need it
here, but we will indicate where it is used shortly.)

If (x0, x1) is in 61(ρs), then x0 and x1 are bi-infinite paths in G and if we take
their 0-th entries we obtain a pair in G1

×G1. We let G1
1 be the set of all such pairs
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over all (x0, x1) in 61(ρs) and G0
1 be the image of this set under t× t . Then G1 is a

graph with obvious i, t maps. The significance of our choice that ρs is regular is that

6G1 =61(ρs).

(The elements of the set on the left are infinite sequences of pairs of edges of G,
while those on the right are pairs of infinite sequences of edges of G, but we feel
no confusion will arise from equating the two.)

It is clear from letting x0 = x1 that Gi
1 contains all pairs (a, a) where a is

in Gi. We denote this subgraph by G1
1 . As ρs is s-bijective, any edge in G1 which

terminates in G1
1 must actually be in G1

1 .
Let G ′1 consist of those vertices not in G1

1 and all edges whose initial vertex is
not in G1

1 . This is a graph and its infinite path space 6G ′1 maps to 6G by δ0. If this
map is surjective, then every point of Y has at least two distinct preimages under ρs ,
contrary to our hypothesis. Using Theorem 3.5, we conclude that

log λG ′1 = h(6G ′1, σ )= h(δ0(6G ′1, σ )) < h(6G, σ )= log λG .

It follows that there is a constant C such that #(G ′1)
j
≤ C(λG ′1)

j for all j ≥ 1.
Following the discussion prior to Theorem 4.2.13 of [Putnam 2014], for k ≥ 0

we choose Bk
1 to be a subset of Gk

1 which contains no paths of the form (p0, p1) if
p0= p1 and for p0 6= p1, it contains exactly one of (p0, p1) and (p1, p0). Following
Theorem 4.2.13 of [Putnam 2014], for any k ≥ 0, j ≥ 1, p in Bk

1 , we let

t∗A(p, j)= {(q, α) ∈ Gk+ j
1 × S2 | t j (q)= p, i j (q) ·α ∈ Bk

1 }.

The point here is that any path q with i j (q) = p ∈ Bk
1 ⊆ (G

′

1)
k must lie entirely

in G ′1. It is then clear that #t∗A(p, j) ≤ C(λG ′1)
j+k . The map γ s

Bk
1
: ZBk

1 → ZBk
1

is defined just before Theorem 4.2.13 of [Putnam 2014]. We conclude from the
first part of Theorem 4.2.13 of [Putnam 2014] that if η : ZBk−1

1 → R is any group
homomorphism and a is in ZBk−1

1 , then there is a constant D (depending on a)
such that η((γ s

B1
) j (a)) < D(λG ′1)

j for all j ≥ 1.
Consider the diagram

ZBk
1

γ s
Bk

1
//

Q
��

ZBk
1

Q
��

Q(Gk
1, S2)

γ s
Gk

1
//

δ
s,K
0 −δ

s,K
1
��

Q(Gk
1, S2)

δ
s,K
0 −δ

s,K
1

��

ZGk+K
γ s

Gk+K
// ZGk+K
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The second part of Theorem 4.2.13 of [Putnam 2014] tells us that the top square com-
mutes and that the vertical maps are isomorphisms. The bottom square commutes
by Theorem 4.2.3, Definition 4.2.4 and Theorem 4.2.5 of [Putnam 2014].

We consider η( · ) = 〈(δs,K
0 − δ

s,K
1 ) ◦ Q( · ), vu

Gk+K 〉, where vu
Gk+K is the Perron

eigenvector for γ u
Gk+K . It follows that for any a in ZBk

1 , there is a D such that

D(λG ′1)
j
≥ η((γ s

Bk
1
) j (a))

= 〈(δ
s,K
0 − δ

s,K
1 ) ◦ Q((γ s

Bk
1
) j (a)), vu

Gk+K 〉

= 〈(γ s
Gk+K )

j (δ
s,K
0 − δ

s,K
1 ) ◦ Q(a), vu

Gk+K 〉

= 〈(δ
s,K
0 − δ

s,K
1 ) ◦ Q(a), (γ u

Gk+K )
j (vu

Gk+K )〉

= λ
j
G〈(δ

s,K
0 − δ

s,K
1 ) ◦ Q(a), vu

Gk+K 〉.

As 0<λG ′1 <λG , we conclude that 〈(δs,K
0 −δ

s,K
1 )◦Q(a), vu

Gk+K 〉 is not positive. This
implies that (δs,K

0 −δ
s,K
1 )◦Q(a) is not in Ds(Gk)+−{0}. This holds for every a in

ZBk
1 , but as Q is an isomorphism, we also see that Im(δs,K

0 −δ
s,K
1 )∩Ds(Gk)+={0}.

The conclusion follows. �

Lemma 5.2. Let (6, σ ) be a mixing shift of finite type, (Z , ζ ) be a mixing Smale
space and ρu : (6, σ )→ (Z , ζ ) be a u-bijective, almost one-to-one factor map.
Then the subgroup generated by Ker(δs∗

0 − δ
s∗
1 )∩ Ds(60(ρu))

+ is Ker(δs∗
0 − δ

s∗
1 ).

Proof. First, suppose that we have a strictly positive element a in (ZGk+K )+ such
that (δs∗,K

0 −δ
s∗,K
1 )(a)= 0. Then [a, j] ∈Ker(δs∗

0 −δ
s∗
1 ) for every j in N. It follows

that every [b, j] in Ker(δs∗
0 − δ

s∗
1 ) can be written as the difference

[b, j] = [b+ na, j] − [na, j],

in which n ∈ N. It is a simple consequence of Theorem 3.4 that we may choose n
large enough that b+ na ∈ (ZGk+K

0,0 )+. This means Ker(δs∗
0 − δ

s∗
1 )∩ Ds(60(ρu))

+

generates Ker(δs∗
0 − δ

s∗
1 ).

In order to obtain the element a as above, let us return to the proof of Lemma 5.1,
using ρu and replacing s with u throughout. We now consider the diagram

ZBk
1

γ u
Bk

1
//

J
��

ZBk
1

J
��

A(Gk
1, S2)

γ u
Gk

1
//

δ
u,K
0 −δ

u,K
1
��

A(Gk
1, S2)

δ
u,K
0 −δ

u,K
1

��

ZGk+K
γ u

Gk+K
// ZGk+K
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The third part of Theorem 4.2.13 of [Putnam 2014] tells us that the top square com-
mutes and that the vertical maps are isomorphisms. The bottom square commutes
by Theorem 4.2.3, Definition 4.2.4 and Theorem 4.2.5 of [Putnam 2014].

The same argument as given earlier shows that 〈(δu,K
0 − δ

u,K
1 )(a), vs

Gk+K 〉 is not
positive, for every a in A(Gk

1, S2). But this also applies to −a and it follows that

0= 〈(δu,K
0 − δ

u,K
1 )(a), vs

Gk+K 〉

for every a. Then by Lemma 3.5.6 of [Putnam 2014] (where there is a typo,
switching s∗ and u∗), we get

0= 〈a, (δs∗,K
0 − δ

s∗,K
1 )(vs

Gk+K )〉

for every a. It follows that (δs∗,K
0 − δ

s∗,K
1 )(vs

Gk+K )= 0. If vs
Gk+K had integer entries,

we would be done.
If we view (δ

s∗,K
0 − δ

s∗,K
1 ) as a linear map, the condition above means that

it has a nontrivial kernel. That kernel has a basis and since the transformation
has matrix with integer entries, we can obtain a basis for the kernel consisting of
rational vectors. We know that vs

Gk+K is a positive vector and it also must be a linear
combination of the rational basis for the kernel. If we carefully choose rational
scalars, we may find a rational vector, also in the kernel, and sufficiently close to
vs

Gk+K that all its entries are positive. If we then multiply by a suitable integer, we
find a positive integer vector a ∈ ZGk+K in the kernel of (δs∗,K

0 − δ
s∗,K
1 ). �

Proof of Theorems 2.11 and 2.10. Consider the fibred product 60,0(π) of maps πs

and πu , and let G be a presentation of π . Since (X, ϕ) is mixing, so is 60,0(π), by
Theorem 2.6. From Theorem 5.1.4 of [Putnam 2014], the bottom row in our double
complex is the same as the complex for the map ρs while the first column is the
same as the complex for the map ρu . Now the two theorems follow from Lemmas
5.1 and 5.2, respectively. �

Suppose π and π̃ are the s/u-bijective pairs given in Theorem 2.13. It was
shown in [Putnam 2014] that the homology of Smale spaces is independent of the
corresponding s/u-bijective pair. This was done in Section 4.5 of that paper, where
an isomorphism was found between the homology of the rows of the complexes(⊕

L−M=N C s
Q,A(π)L ,M ,

⊕
L−M=N ds

Q,A(π)L ,M
)

and (⊕
L−M=N C s

Q,A(π̃)L ,M ,
⊕

L−M=N ds
Q,A(π̃)L ,M

)
,

and then using Theorem 3.9 of [McCleary 2001], it was extended to an isomorphism
between the homologies of the complexes(⊕

L−M=N C s
Q,A(π)L ,M ,

⊕
L−M=N ds

Q,A(π)L ,M
)
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and (⊕
L−M=N C s

Q,A(π̃)L ,M ,
⊕

L−M=N ds
Q,A(π̃)L ,M

)
.

We use these isomorphisms to show that H s
0 (π̃) is an ordered group with the

positive cone defined in Definition 2.8, and that these are indeed ordered isomor-
phisms.

Let us first remind the reader that there is a minor mistake in the statement of
Theorem 3.5.11 in [Putnam 2014], used to prove the independence and functorial
properties of the homology for Smale spaces (see Sections 5.4 and 5.5 in that paper).
Deeley and coauthors proved that the surjectivity condition in this theorem must be
replaced by the conjugacy condition [Deeley et al. 2016]. It follows that we also
need the conjugacy condition in Theorem 5.4.1 in [Putnam 2014]. Here we state
the correct versions of these results from [Deeley et al. 2016].

Theorem 5.3. Suppose that

(6, σ )
η1
//

η2
��

(61, σ )

π1
��

(62, σ )
π2
// (60, σ )

is a commutative diagram of nonwandering shifts of finite type, in which η1 and π2

are s-bijective factor maps, and η2 and π1 are u-bijective factor maps. If

η2× η1 : (6, σ )→ (62, σ ) π2×π1 (61, σ )

is a conjugacy, then

(5-1) ηs
1 ◦ η

s∗
2 = π

s∗
1 ◦π

s
2 : D

s(62, σ )→ Ds(61, σ ).

Theorem 5.4. Let π = (Y, ψ, πs, Z , ζ, πu) and π ′ = (Y ′, ψ ′, π ′s, Z ′, ζ ′, π ′u) be s/u-
bijective pairs for the Smale spaces (X, ϕ) and (X ′, ϕ′), respectively, and η =
(ηY , ηX , ηZ ) be a triple of factor maps such that the following diagram commutes:

(Y, ψ)
πs
//

ηY
��

(X, ϕ)

ηX
��

(Z , ζ )
πu
oo

ηZ
��

(Y ′, ψ ′)
π ′s
// (X ′, ϕ′) (Z ′, ζ ′)

π ′u
oo

(i) If η is a triple of s-bijective maps and

πu × ηZ : (Z , ζ )→ (X, ϕ) ηX
×π ′u (Z

′, ζ ′)
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is a conjugacy, then for L ≥ 0,M ≥ 1,

(6L ,M(π))
ηL ,M

//

δ,m

��

(6L ,M(π
′))

δ′,m
��

(6L ,M−1(π))
ηL ,M−1

// (6L ,M−1(π
′))

and for L ≥ 1,M ≥ 0,

(6L ,M(π))
ηL ,M

//

δl,

��

(6L ,M(π
′))

δ′l,
��

(6L−1,M(π))
ηL−1,M

// (6L−1,M(π
′))

are commutative diagrams and

ηL ,M × δ,m : (6L ,M(π))→ (6L ,M(π
′)) δ′,m×ηL ,M−1

(6L ,M−1(π))

is a conjugacy. Moreover, η induces chain maps between the complexes C s
Q,A(π)

and C s
Q,A(π

′), and hence group homomorphisms ηs∗
: H s

N (π)→ H s
N (π

′) for every
integer N.

(ii) If η is a triple of u-bijective maps and

πs × ηY : (Y, ψ)→ (X, ϕ) ηX
×π ′s (Y

′, ψ ′)

is a conjugacy, then for L ≥ 0,M ≥ 1,

(6L ,M(π))
ηL ,M

//

δ,m

��

(6L ,M(π
′))

δ′,m
��

(6L ,M−1(π))
ηL ,M−1

// (6L ,M−1(π
′))

and for L ≥ 1,M ≥ 0,

(6L ,M(π))
ηL ,M

//

δl,

��

(6L ,M(π
′))

δ′l,
��

(6L−1,M(π))
ηL−1,M

// (6L−1,M(π
′))

are commutative diagrams and

ηL ,M × δl, : (6L ,M(π))→ (6L ,M(π
′)) δ′l,×ηL−1,M

(6L−1,M(π))
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is a conjugacy. Moreover, η induces chain maps between the complexes C s
Q,A(π

′)

and C s
Q,A(π), and hence group homomorphisms ηs∗

: H s
N (π

′)→ H s
N (π) for every

integer N.

We remark that the results obtained in [Putnam 2014] (the independence and
functorial properties) are all correct, because the diagrams constructed there satisfy
the conjugacy condition.

By Theorem 3.2, both maps ηs
1 ◦η

s∗
2 and π s∗

1 ◦π
s
2 in (5-1) are positive homomor-

phisms.

Theorem 5.5. For graphs G, H , suppose θ : H → G is a left-covering graph
homomorphism, (X, ϕ) is a Smale space and ρ : (6G, σ )→ (X, ϕ) is a regular
s-bijective factor map. The map θ induces an isomorphism between the homologies
of the chain complexes (Ds(6∗(ρ ◦ θ)), ds(ρ ◦ θ)) and (Ds(6∗(ρ), ds(ρ)).

In fact, the map θ induces homomorphisms θ s
∗

at all levels of the complexes with
the commutative diagram

Ds(H k
N )

ds(ρ◦θ)N
//

θ s
N
��

Ds(H k+K
N−1 )

θ s
N−1
��

Ds(Gk
N )

ds(ρ)N
// Ds(Gk+K

N−1)

for each N ≥ 1 and k ≥ 0, where K ≥ 1 satisfies the conclusion of Lemma 2.7.2 in
[Putnam 2014] for the map ρ.

To show that the induced homomorphism on the homology of the above com-
plexes by θ s

∗
is an isomorphism, one could choose a lifting map λ : G0

→ H 0 with
θ ◦ λ= IdG0 . Then Lemma 4.5.4 in [Putnam 2014] shows that, for each N ≥ 0,

(5-2) ds,K (ρ ◦ θ)N ◦ λ= λ ◦ ds,K (ρ)N .

We claim that

θ s(Ker(ds(θ ◦ ρ)N )∩ (Ds(H k
N ))
+
)
= Ker(ds(ρ)N )∩ (Ds(Gk

N ))
+,

θ s(Im(ds(θ ◦ ρ)N+1)∩ (Ds(H k+K
N ))+

)
= Im(ds(ρ)N+1)∩ (Ds(Gk+K

N ))+.

By Theorem 3.2,

θ s(Ker(ds(θ ◦ ρ)N )∩ (Ds(H k
N ))
+
)
⊆ Ker(ds(ρ)N )∩ (Ds(Gk

N ))
+

and

θ s(Im(ds(θ ◦ ρ)N+1)∩ (Ds(H k+K
N ))+

)
⊆ Im(ds(ρ)N+1)∩ (Ds(Gk+K

N ))+.
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Suppose that b ∈ ZGk
N+1 and j ≥ 0, with ds(ρ)N+1([b, j]) in Ds(Gk+K

N )+. By
Theorem 4.2.3 in [Putnam 2014],

ds(ρ)N+1([b, j])= [ds,K (ρ)N+1(b), j] ∈ Ds(Gk+K
N )+,

which implies that, for some j ′ ≥ 0,

(γ s
G N
) j ′(ds,K (ρ)N+1(b)) ∈ (ZGk+K

N )+.

By Theorem 4.2.3 in [Putnam 2014],

(γ s
G N
) j ′(ds,K (ρ)N+1(b))= ds,K (ρ)N+1((γ

s
G N
) j ′(b)) ∈ (ZGk+K

N )+.

Let b1 = (γ
s
G N
) j ′(b) and j1 = j ′+ j . Then

[ds,K (ρ)N+1(b), j] = [ds,K (ρ)N+1(b1), j1],

and since λ((ZGk
N+1)

+)⊆ (ZH k
N+1)

+, it follows from (5-2) that

ds,K (ρ ◦ θ)N+1 ◦ λ(b1)= λ ◦ ds,K (ρ)N+1(b1) ∈ (ZH k+K
N )+.

Let a1 = λ(b1). Applying θ s,0
= θ to both sides of the above equality,

θ s,0(ds,K (ρ ◦ θ)N+1(a1))= θ
s,0(λ ◦ ds,K (ρ)N+1(b1))= ds,K (ρ)N+1(b1),

hence

[θ s,0(ds,K (ρ ◦ θ)N+1(a1)), j1] = [ds,K (ρ)N+1(b1), j1] = [ds,K (ρ)N+1(b), j],

and so

θ s(ds(ρ)N+1[a1, j1])= ds(ρ)N+1([b, j]).

Since b is an arbitrary element in ZGk
N+1 with

ds(ρ)N+1([b, j]) ∈ Ds(Gk+K
N )+,

the last equality implies

Im(ds(ρ)N+1)∩ (Ds(Gk+K ))+ ⊆ θ s(Im(ds(θ ◦ ρ)N+1)∩ (Ds(H k+K ))+
)
.

A similar argument shows that

Ker(ds(ρ)N )∩ (Ds(Gk))+ ⊆ θ s(Ker(ds(θ) ◦ ρ)N ∩ (Ds(H k))+
)
.

Combining Theorems 3.1 and 5.5 with Theorem 4.5.3 in [Putnam 2014], we get
the following result.
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Theorem 5.6. Suppose (X, ϕ) is a Smale space and (6, σ ), (6′, σ ) are shifts of
finite type with s-bijective maps ρ : (6, σ )→ (X, ϕ) and ρ ′ : (6′, σ )→ (X, ϕ).
Let (Y ′′, ψ ′′) be the fibred product of maps ρ : (6, σ )→ (X, ϕ) and ρ ′ : (6′, σ )→
(X, ϕ), and η, η′ be the natural s-bijective maps from (Y ′′, ψ ′′) to (Y, ψ) and
(Y ′, ψ ′), respectively. Then

(i) a chain map ηs from
(
Ds(6N (ρ ◦ η)), ds(ρ ◦ η)N

)
to
(
Ds(6N (ρ)), ds(ρ)N

)
exists such that

ηs(Ker(ds(ρ ◦ η)N )∩ Ds(6N (ρ ◦ η))
+
)
= Ker

(
ds(ρ)N ∩ Ds(6N (ρ))

+
)
,

ηs(Im(ds(ρ ◦ η)N )∩ Ds(6N (ρ ◦ η))
+
)
= Im

(
ds(ρ)N ∩ Ds(6N (ρ))

+
)
;

(ii) a chain map C ′ from
(
Ds(6N (ρ

′
◦η′)), ds(ρ ′◦η′)N

)
to
(
Ds(6N (ρ

′)), ds(ρ ′)N
)

exists such that

η′
s(Ker(ds(ρ ′ ◦ η′)N )∩ Ds(6N (ρ

′
◦ η′))+

)
= Ker

(
ds(ρ ′)N ∩ Ds(6N (ρ

′))+
)
,

η′
s(Im(ds(ρ ′ ◦ η′)N )∩ Ds(6N (ρ

′
◦ η′))+

)
= Im

(
ds(ρ ′)N ∩ Ds(6N (ρ

′))+
)
;

(iii) ηs and η′s induce isomorphisms at the level of the associated homologies of
the chain complexes.

As in Section 5.5 of [Putnam 2014], we prove Theorem 2.13 in the case Z = Z̃ ,
ζ = ζ̃ and πu = π̃u . The case Y = Ỹ , ψ = ψ̃ and πs = π̃s is proved in a similar
way, and the general result follows from these two special cases.

Let (Y ′, ψ ′) denote the fibred product of the maps πs : (Y, ψ)→ (X, ϕ) and
π̃s : (Ỹ , ψ̃)→ (X, ϕ), and η′, η̃′ denote the natural s-bijective maps from (Y ′, ψ ′)
to (Y, ψ) and (Ỹ , ψ̃), respectively. Then π ′ = (Y ′, ψ ′, πs ◦ η

′, Z , ζ, πu) is an s/u-
bijective pair for the Smale space (X, ϕ), and the following diagram is commutative:

(5-3)

(Y ′, ψ ′)
πs◦η

//

η′

��

(X, ϕ)

IdX
��

(Z , ζ )
πu
oo

IdZ
��

(Y, ψ)
πs
// (X, ϕ) (Z , ζ )

πu
oo

This diagram satisfies the conditions of the first part of Theorem 5.4, and the triple
of s-bijective η = (η′, IdX , IdZ ) induces a chain map on the double complexes
used to define H s

N (π
′) and H s

N (π), N ∈ Z. Since Ds
Q,A(6(π), σ )= Ds(6(π), σ ),

Ds
Q,A(6(π

′), σ ) = Ds(6(π ′), σ ), and ηs
L ,M , η

u∗
L ,M are positive homomorphisms,

by Theorem 3.2, we have

(5-4)
ηs

0,0
(
Ker(ds(π)0,0)∩ Ds(6(π), σ )+

)
⊆ Ker(ds(π ′)0,0)∩ Ds(6(π ′), σ )+

ηs
0,0
(
Im(ds(π)1,0)∩ Ds(6(π))+

)
⊆ Im(ds(π ′)1,0)∩ Ds(6(π ′), σ )+
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Let HN (η) be the induced homomorphism by the chain map ηs
∗,∗ at the level

of homologies from HN (π
′) to H s

N (π). This is known to be an isomorphism. We
claim that this is an ordered isomorphism after proving that HN (π

′) is an ordered
group. To prove that HN (π

′) is an ordered group, it suffices to show that the
inclusions in (5-4) are indeed equalities.

To prove that HN (η) is an isomorphism, for N ∈ Z, one needs to consider the
filtrations F pC s

Q,(π
′) and F pC s

Q,(π) for the differential graded abelian groups
(H s(π ′), ds

Q,A(π
′)) and (H s(π), ds

Q,A(π)), respectively, as in Section 5.5 of [Put-
nam 2014]. These filtrations satisfy the conditions of Theorem 3.9 in [McCleary
2001]. According to this theorem, every isomorphism 81 between E∗,∗1 terms of
the associated spectral sequences (of these filtration differential graded modules)
induces an isomorphism8∞ between E∞ terms of the associated spectral sequences
(roughly, 8∞(a)=81(a), when we regard a as an element of the associated E∗,∗1
term). The isomorphism HN (η) is then constructed using the isomorphisms between
the E∞ terms, for N ∈ N. The E∗,∗1 terms for each of these filtrations are the
homologies of the rows of the corresponding complexes, that is,

E p,q
1 (π)= Ker(d̃s(ρ,M)L)/ Im(d̂s(ρ,M)L+1),

and the same for π ′, where

d̃s(ρ,M)L = ds(ρ,M)L |
⊕

L≥2p+q,M=p Cs
Q,(π)

and
d̂s(ρ,M)L+1 = ds(ρ,M)L+1|

⊕
L≥2p+q+1,M=p Cs

Q,(π)
.

Since θ and ρu in6(π ′) θ
−→6(π)

ρu
−→(Z , ζ ) are s-bijective maps, where θ((y, ỹ), z)

= (y, z), by Theorem 5.6, we have a chain map θ s from (C s(π ′)∗,M , ds((ρu◦θ),M)∗)

to (C s(π)∗,M , ds((ρu),M)∗) that induces an isomorphism Hθ at the level of homolo-
gies of the complexes for fixed M ≥ 0, so that

θ s(Ker(ds(ρ,M)L)∩ (C s(π ′)L ,M)
+
)
= Ker(ds(ρ,M)L)∩ (C s(π)L ,M)

+

and

θ s(Im(ds(ρ,M)L+1)∩ (C s(π ′)L ,M)
+
)
= Im(ds(ρ,M)L+1)∩ (C s(π)L ,M)

+

for each L ≥ 0 and fixed M ≥ 0.
If one lifts Hθ at the level of homologies of the complexes

(C s
Q,(π

′)∗,M , ds
Q,((ρu ◦ θ),M)∗), (C s

Q,(π)∗,M , ds
Q,((ρu),M)∗),

by the first part of Theorem 4.3.1 in [Putnam 2014], for fixed M ≥ 0, since

C s
Q,(π

′)0,0 = C s(π ′)0,0 = Ds(60,0(π
′), σ )
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and
C s
Q,(π0)0,0 = C s(π)0,0 = Ds(60,0(π), σ ),

for
K s(π) := Ker(ds(ρ,0)0)∩ (Ds(60,0(π

′), σ ))+

and
I s(π) := Im(ds(ρ,0)0)∩ (Ds(60,0(π

′), σ ))+

we have
Cθ (K s(π ′))= K s(π), Cθ (I s(π ′))= I s(π ′).

In fact, Hθ is an isomorphism between the terms E∗,∗1 (π ′) and E∗,∗1 (π). Therefore,
Theorem 3.9 in [McCleary 2001] implies that there is an isomorphism Hθ at the level
of homologies of the complexes (C s

Q,(π
′), ds

Q,(π
′)) and (C s

Q,(π), ds
Q,(π)), which

is constructed by the induced isomorphism H∞ on E∗,∗
∞

terms with Hθ (roughly,
H∞(a) = Hθ (a) when we regard a ∈ E∗,∗

∞
as an element of E∗,∗1 ). Since the

isomorphism Hθ is directly defined by H∞ (or Hθ ), it is the same as the induced ho-
momorphism by the chain map ηs

Q,, where η= (η′, IdX , IdZ ) is the triple s-bijective
map in the diagram (5-3) and ηs

Q, exactly behaves like θ s, when θ s is considered as a
map on the domain of ηs

Q,. On the other hand, since the maps u and ū in the proof of
Theorem 3.9 in [McCleary 2001] are natural and Ds

Q,(60,0, σ )= Ds(60,0, σ ), for

K s
Q, (π) := Ker(ds

Q,(π
′)0,0)∩ (Ds(60,0(π

′), σ ))+

and
I s
Q, (π) := Im(ds

Q,(π
′)1,0)∩ (Ds(60,0(π

′), σ ))+

we have

(5-5) ηs
Q,(K

s
Q, (π

′))= K s
Q, (π), ηs

Q,(I
s
Q, (π

′))= I s
Q, (π).

Let J (π ′) and J (π) be the isomorphisms induced by the chain maps JQ(π ′)
and JQ(π), as in Theorem 5.3.2 in [Putnam 2014], respectively. Then H0(η) =

J (π) ◦Hθ ◦J (π ′)−1 and it is an isomorphism from H s
N (π

′) to H s
N (π), and since

Ds
Q,A(60,0, σ )= Ds(60,0, σ ), for

K s
Q,A(π) := Ker(ds

Q,A(π)0,0)∩ (D
s(60,0(π), σ ))

+

and
I s
Q,A(π) := Im(ds

Q,A(π)1,0)∩ (D
s(60,0(π), σ ))

+

we have

(5-6) JQ(π)(K s
Q,A(π

′))= K s
Q,(π), JQ(π)(I s

Q,A(π
′))= I s

Q,(π).

The equalities (5-5) and (5-6) show that Ker(ds
Q,A(π

′)0,0) contains positive elements
if and only if Ker(ds

Q,A(π)0,0) does so (and the same holds for Im(ds
Q,A(π

′)1,0) and
Im(ds

Q,A(π)1,0)). Since Im(ds
Q,A(π)1,0) does not contain any positive element, and
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Ker(ds
Q,A(π)0,0) contains at least one positive element, Im(ds

Q,A(π
′)1,0) could not

contain any positive element and Ker(ds
Q,A(π

′)0,0) contains at least one positive ele-
ment, and these imply that H s

0 (π
′) is an ordered group with the positive cone defined

as above. Also by (5-5) and (5-6), H(η) is an order isomorphism. Replacing (Ỹ , ψ̃)
by (Y, ψ) in (5-3), we get that H s

0 (π̃) is an ordered group with the positive cone
defined as in Definition 2.8 and H(η̃)= H s

N (π
′)→ H s

N (π̃) is an order isomorphism.
Finally, H0(η̃) ◦ H0(η)

−1 is an order isomorphism from H s
0 (π) to H s

0 (π̃).

Proof of Theorem 2.14. We only prove the first part. The other is proved in a
similar way. By Theorem 4.2 in [Deeley et al. 2016], we can find s/u-bijective pairs
π = (Y, ψ, πs, Z , ζ, πu) and π ′ = (Y ′, ψ ′, π ′s, Z ′, ζ ′, π ′u) for Smale spaces (X, ϕ)
and (X ′, ϕ′), respectively, and s-bijective maps ηY and ηZ , such that the diagram

(Y, ψ)
πs
//

ηY
��

(X, ϕ)

ρ

��

(Z , ζ )
πu
oo

ηZ
��

(Y ′, ψ ′)
π ′s
// (X ′, ϕ′) (Z ′, ζ ′)

π ′u
oo

commutes and πu×ηZ : (Z , ζ )→ (X, ϕ) ρ×π ′u (Z
′, ζ ′) is a conjugacy. Therefore, ρ

induces a positive homomorphism ρs
0 : H

s
0 (X, ϕ)→ H s

0 (X
′, ϕ′), by Theorems 5.4,

3.2 and 2.13, and the order structure is independent of the s/u-bijective pair. �
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CHARACTERIZATIONS OF IMMERSED GRADIENT
ALMOST RICCI SOLITONS

CÍCERO P. AQUINO, HENRIQUE F. DE LIMA AND JOSÉ N. V. GOMES

Our purpose is to study the geometry of gradient almost Ricci solitons iso-
metrically immersed either in the hyperbolic space Hn+1, in the de Sitter
space Sn+1

1 , or in the anti-de Sitter space Hn+1
1 . In each one of these ambi-

ent spaces we obtain extensions of a classical theorem due to Nomizu and
Smith. More precisely, we show that the totally umbilical hypersurfaces
are the only immersed hypersurfaces of such ambient spaces which admit a
structure of gradient almost Ricci soliton via the tangential component of a
certain fixed vector, and whose image of the Gauss mapping is also totally
umbilical. Furthermore, in the case that the structure of gradient almost
Ricci soliton is nontrivial, we conclude that such a hypersurface must be
isometric either to Hn, when the ambient space is Hn+1 or Hn+1

1 , or to Sn,
when the ambient space is Sn+1

1 .

1. Introduction

The concept of a Ricci soliton, introduced in the seminal paper [Hamilton 1982],
corresponds to a natural generalization of Einstein metrics. We recall that a Rie-
mannian manifold (Mn, g) is called a Ricci soliton if there exist a complete vector
field X and a constant λ satisfying the equation

(1-1) Ric+ 1
2 LX g = λg,

where Ric and L stand for the Ricci tensor and the Lie derivative on Mn.
Ricci solitons also correspond to selfsimilar solutions of Hamilton’s Ricci flow

[ibid.] and often arise as limits of dilations of singularities in the Ricci flow. They
can be viewed as fixed points of the Ricci flow, as a dynamical system, on the space
of Riemannian metrics modulo diffeomorphisms and scalings. For more details on
this subject, we recommend the survey [Cao 2010].

Pigola et al. [2011] extended the definition of Ricci solitons by adding the
condition that the parameter λ in (1-1) be a smooth real function on Mn; this

MSC2010: primary 53C42; secondary 53B30, 53C50, 53Z05, 83C99.
Keywords: almost Ricci solitons, hyperbolic space, de Sitter space, anti-de Sitter space, mean

curvature, Gauss mapping.
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attracted much attention in the mathematical community. Such solitons arise from
the Ricci–Bourguignon flow as shown recently in [Catino et al. 2016]. In this more
general setting, we refer to (1-1) as being the fundamental equation of an almost
Ricci soliton (Mn, g, X, λ). Following the terminology of Ricci solitons, an almost
Ricci soliton is called expanding or shrinking if λ < 0 or λ > 0, respectively. When
λ= 0 we have a steady Ricci soliton. Otherwise, it will be called indefinite.

When the vector field X is a gradient of a smooth function f : Mn
→ R, the

manifold will be called a gradient almost Ricci soliton. In this case, (1-1) becomes

(1-2) Ric+∇2 f = λg,

where ∇2 f stands for the Hessian of the potential function f . When either the
vector field X is trivial, or the potential f is constant, the almost Ricci soliton will
be called trivial, otherwise it will be a nontrivial almost Ricci soliton.

We notice that when n≥ 3 and X is a Killing vector field, an almost Ricci soliton
is a genuine a Ricci soliton. Indeed, in this case, (Mn, g) is an Einstein manifold and
we can apply Schur’s lemma to deduce that λ is constant. Conditions under which
a nontrivial almost Ricci soliton structure exists were first investigated in [Pigola
et al. 2011]. Subsequently, Barros and Ribeiro [2012] obtained some structural
equations and deduced corresponding rigidity theorems; jointly with Batista, they
also showed in [Barros et al. 2014b] that any compact nontrivial almost Ricci soliton
(Mn, g, X, λ) with constant scalar curvature is isometric to a Euclidean sphere Sn.
As a consequence, they concluded that every compact nontrivial almost Ricci soliton
with constant scalar curvature must be gradient.

Almost Ricci solitons that are realized as Einstein warped products, with a one-
dimensional base and Einstein fibers, were constructed in [Pigola et al. 2011]. By
using Lemma 1.1 of that paper, we can prove that the warped product M=R×ψ Hm

with metric g = dt2
+ψ2g0, has a structure of almost Ricci soliton (M, g,∇ f̃ , λ̃),

where g0 is the standard metric of Hm and the functions involved are the respective
lifts of f (t) = sinh t and λ(t) = sinh t − m, whereas the warping function is
ψ(t)= cosh t . More generally, a necessary and sufficient condition for a warped
product Einstein manifold to support a gradient almost Ricci soliton structure was
shown in [Feitosa et al. 2015].

Recall also that there exist manifolds that do not admit an almost Ricci soliton
structure. For instance, Pigola et al. [2011] proved that H2

×H2 has this property.
For a locally conformally flat gradient almost Ricci soliton, Catino [2012] proved
that, around any regular point of the potential f , such a manifold (Mn, g,∇ f, λ) is
locally a warped product with fibers of constant sectional curvature.

Jointly with Barros and Ribeiro, the third author studied in [Barros et al. 2011]
isometric immersions of an almost Ricci soliton (Mn, g, X, λ) into a Riemannian
manifold M̃n+p. In this context, they presented some obstruction results in order to
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obtain a minimal immersion under conditions on the sectional curvature of M̃n+p.
In particular, when M̃n+p has nonpositive sectional curvature, they proved that if
(Mn, g, X, λ) is a traditional Ricci soliton and X has integrable norm on Mn, then
Mn cannot be minimal. Moreover, they showed that if (Mn, g, X, λ) is a shrinking
Ricci soliton and X has bounded norm on Mn, then Mn must be compact. Hence,
when M̃n+p is a space-form of nonpositive sectional curvature, such an immersion
cannot be minimal. We refer to [Mastrolia et al. 2013] for further discussions.

On the other hand, it is well known that the study of the behavior of the Gauss
mapping gives deep information on the geometry of an isometric immersion. For
instance, Nomizu and Smyth [1969] showed that a compact connected orientable
manifold Mn immersed in the sphere Sn+1 with constant mean curvature is a
hypersphere if the Gauss image of Mn lies in a closed hemisphere of Sn+1. More
recently, the first and second authors jointly with Barros [Barros et al. 2014a]
showed that a constant mean curvature complete hypersurface of the hyperbolic
space Hn+1, whose image of the Gauss mapping lies in a totally umbilical spacelike
hypersurface of the de Sitter space Sn+1

1 , must be totally umbilical.
In the Lorentzian setting, Xin [1991] and Aiyama [1992], working independently,

characterized spacelike hyperplanes as the only complete constant mean curvature
spacelike hypersurfaces in the Lorentz–Minkowski space Rn+1

1 whose image of
the Gauss mapping is contained in a geodesic ball of Hn; see also [Palmer 1990]
for a weaker first version of this result. When the ambient space is Sn+1

1 , Aledo
and Alías [2002] showed that the spacelike geodesic round spheres are the only
complete constant mean curvature hypersurfaces in Sn+1

1 having the image of its
Gauss mapping contained in a geodesic ball of Hn+1. The first and second authors
[Aquino and de Lima 2014] established another rigidity results showing that a
complete spacelike hypersurface immersed with constant mean curvature either in
the de Sitter space Sn+1

1 or in the anti-de Sitter space Hn+1
1 must be totally umbilical,

provided that its Gauss mapping has some suitable behavior.
Here, motivated by the works previously described, we apply suitable formulas

for the covariant and Lie derivatives of the scalar curvature (see Lemmas 1 and 2,
respectively) in order to study the geometry of gradient almost Ricci solitons
isometrically immersed either in the hyperbolic space Hn+1 or in the de Sitter space
Sn+1

1 or in the anti-de Sitter space Hn+1
1 . In this setting, we show that the totally

umbilical hypersurfaces of such ambient spaces are the only immersed hypersurfaces
which admit a structure of gradient almost Ricci soliton via the tangential component
of a certain fixed vector, and whose image of the corresponding Gauss mapping
is also totally umbilical (see Theorems 4, 6, and 8). Furthermore, if in addition we
impose that the structure of gradient almost Ricci soliton must be nontrivial, then we
conclude that such a hypersurface is isometric either to Hn, when the ambient space is
Hn+1 or Hn+1

1 , or to Sn, when the ambient space is Sn+1
1 (see Corollaries 5, 7, and 9).
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To close this introductory section, we also observe that the existence of a Ricci
soliton structure on hypersurfaces of the Euclidean space whose potential vector is
given by the tangential component of the position vector was recently investigated
by Chen and Deshmukhin [2014].

2. Preliminaries

Let Rn+2
ν denote the (n+2)-dimensional semi-Euclidean space of index ν ≥ 1, that

is, the real vector space Rn+2 endowed with the semi-Riemannian metric

〈 · , · 〉 = −

ν∑
i=1

dx2
i +

n+2∑
j=ν+1

dx2
j ,

where x = (x1, . . . , xn+2) denote the usual coordinates in Rn+2. When ν = 1, Rn+2
1

is the so-called Lorentz–Minkowski space.
For a vector field X in Rn+2

ν , let εX = 〈X, X〉. We say that X is a unit vector
field if εX =±1, and timelike if εX =−1.

The (n+1)-dimensional hyperbolic space is the following hyperquadric of Rn+2
1

Hn+1
= {x ∈ Rn+2

1 ; 〈x, x〉 = −1, xn+2 ≥ 1}.

Let us consider a connected and oriented isometrically immersed hypersurface
ψ : 6n

→ Hn+1
⊂ Rn+2

1 and let us denote by A : X(6)→ X(6) the Weingarten
operator associated to the vector field N as well as H = 1

n tr(A) stands for mean
curvature of 6n.

Associated to A we have its traceless operator 8 : X(6)→ X(6) given by

8(X)= AX − H X,

for every X ∈ X(6). It is easily checked that the Hilbert–Schmidt norm of 8 (that
is, |8|2 = tr(8∗8), where 8∗ stands for the adjoint of 8) satisfies

|8|2 = |A|2− nH 2.

Consequently, we have that |8|2 = 0 if, and only, if 6n is a totally umbilical
hypersurface.

Recall that, if ∇0, ∇, and ∇ stands for the Levi–Civita connections in Rn+2
1 , Hn+1,

and 6n, respectively, then the Gauss and Weingarten formulas for a hypersurface
ψ :6n

→ Hn+1
⊂ Rn+2

1 are given by

(2-1) ∇X Y =∇X Y +〈AX, Y 〉N

and

(2-2) AX =−∇X N =−∇0
X N ,



CHARACTERIZATIONS OF IMMERSED GRADIENT ALMOST RICCI SOLITONS 293

for every tangent vector fields X, Y ∈ X(6). Consequently, from Gauss equations
we have that the Ricci curvature of 6n is given by

(2-3) Ric6(X, Y )= (1− n)〈X, Y 〉+ nH〈AX, Y 〉− 〈AX, AY 〉.

In addition, for a fixed arbitrary vector a ∈ Rn+2
1 , let us consider the height and

the angle functions, defined respectively by, la = 〈ψ, a〉 and fa = 〈N, a〉. A direct
computation allows us to conclude that the gradient of such functions are given by
∇la = a> and ∇ fa =−A(a>), where a> is the orthogonal projection of a onto the
tangent bundle T6, that this

(2-4) a> = a− fa N + laψ.

Taking into account that ∇0a = 0 and using the Gauss and Weingarten formulas
concerning a vector field X tangent to 6n,

(2-5) ∇X a> = fa AX + la X.

We use (2-5) and the Codazzi equation to deduce

(2-6) ∇X A(a>)= fa A2 X + la AX + (∇a> A)(X).

Thus, it follows from (2-5) and (2-6) that

(2-7) 1la = nH fa + nla

and

(2-8) 1 fa =−|A|2 fa − nHla − n〈∇H, a>〉.

See also [Rosenberg 1993].
Now, we deal with hypersurfaces isometrically immersed into two classes of

simply connected Lorentzian space-forms. The first one is the (n+ 1)-dimensional
de Sitter space

Sn+1
1 = {x ∈ Rn+2

1 ; 〈x, x〉 = 1},

a hyperquadric of Rn+2
1 with sectional curvature equal to 1. The second one is the

(n+ 1)-dimensional anti-de Sitter space

Hn+1
1 = {x ∈ Rn+2

2 ; 〈x, x〉 = −1},

a hyperquadric of Rn+2
2 with sectional curvature equal to −1. Topologically, Hn+1

1
is S1

×Rn and the semi-Euclidean metric on Rn+2
2 induces a Lorentzian metric

of constant sectional curvature −1 on Hn+1
1 . Moreover, the universal covering

manifold H̃n+1
1 of Hn+1

1 is topologically Rn+1 (that is, H̃n+1
1 is simply connected)

and is thus a Lorentzian analogue of the usual Riemannian hyperbolic space of
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negative curvature −1, which is called the universal anti-de Sitter spacetime; see,
for instance, [Beem et al. 1996, Section 5.3] or [O’Neill 1983, Section 8.6].

In order to simplify our notation, we will denote by Mn+1
c either the de Sitter

space or the anti-de Sitter space, according to whether c= 1 or c=−1, respectively.
In this setting, let ψ :6n

→Mn+1
c ⊂ Rn+2

ν be a connected spacelike hypersurface
immersed into Mn+1

c (that is, the induced metric via ψ is a Riemannian metric on
6n). Let us consider A :X(6)→X(6) the Weingarten operator of 6n with respect
to a choice of timelike orientation N for 6n. We will denote by ∇0, ∇, and ∇ the
Levi–Civita connections of Rn+2

ν , Mn+1
c , and 6n, respectively. Then, the Gauss and

Weingarten formulas corresponding to 6n are given, respectively, by

∇
0

X Y =∇X Y −〈AX, Y 〉N − c〈X, Y 〉ψ and AX =−∇X N =−∇0
X N,

for all tangent vector fields X, Y ∈ X(6). Thus, from Gauss equation we have that
the Ricci curvature of 6n is given by

(2-9) Ric6(X, Y )= c(n− 1)〈X, Y 〉+ nH〈AX, Y 〉+ 〈AX, AY 〉,

where H =− 1
n tr(A) is the mean curvature of 6n.

At this point, we observe that the choice of the sign in our definition of H
is motivated by the fact that in that case the mean curvature vector is given by
−→
H = H N. Hence, H(p) > 0 at a point p ∈6n if and only if

−→
H(p) is in the same

time-orientation as N (p) (in the sense that 〈
−→
H, N 〉p < 0).

As before, it is also convenient to consider the traceless operator associated to
the second fundamental form of 6n, 8 : X(6)→ X(6), which, in the Lorentzian
setting, is given by 8(X)= AX + H X, for all X ∈ X(6). It is easy to verify that
6n is a totally umbilical hypersurface if and only if 8 vanishes identically on 6n.

As in the case of immersions in the hyperbolic space, associated to a fixed
arbitrary vector a ∈ Rn+2

ν , let us consider the height function la = 〈ψ, a〉 and the
angle function fa = 〈N , a〉. A direct computation allows us to conclude that the
gradients of such functions are given by ∇la = a> and ∇ fa =−A(a>), where a>

is the orthogonal projection of a onto the tangent bundle T6, that is,

(2-10) a> = a+ fa N − c laψ.

Taking into account that ∇0a = 0 and using the Gauss and Weingarten formulas
concerning a vector field X tangent to 6n, it is not difficult to verify that

(2-11) ∇X∇la =− fa AX − cla X.

Now, we use (2-11) jointly with the Codazzi equation to deduce

(2-12) ∇X∇ fa = fa A2 X + cla AX − (∇a> A)(X).
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Then, it follows from (2-11) and (2-12) that

(2-13) 1la = nH fa − cnla

and

(2-14) 1 fa = |A|2 fa − cnHla + n〈∇H, a>〉.

To close this section, we will quote three key lemmas, which will be essential in
the proofs of our results. The first one corresponds to item (2) of Proposition 1 in
[Barros and Ribeiro 2012].

Lemma 1. If 6n is a gradient almost Ricci soliton with potential function f , then

(2-15) ∇R = 2 Ric6(∇ f )+ 2(n− 1)∇λ,

where R stands for the scalar curvature of 6n.

The second auxiliary lemma is a well known formula of the theory of conformal
vector fields in Riemannian geometry; see, for instance, Yano [1970].

Lemma 2. If X is a conformal vector field on a Riemannian manifold 6n with
metric g such that LX g = 2σg, then

(2-16) LX R =−2(n− 1)1σ − 2Rσ,

where R stands for the scalar curvature of 6n.

The third key lemma gives a suitable characterization of totally umbilical hyper-
surfaces in a semi-Riemannian space-form due to Kim et al. [2002], which can be
regarded as a converse of a theorem due to Sharma and Duggal [1985].

Lemma 3. Let 6n be a connected semi-Riemannian hypersurface immersion in a
semi-Riemannian space-form Mn+1

c . Suppose that Mn+1
c carries a conformal vector

field V whose tangential component V> on 6n becomes a conformal vector field.
Then, one of the following holds:

(a) 6n is a totally umbilical hypersurface;

(b) the restriction of V to 6n reduces to a tangent vector field on 6n.

3. Characterizing gradient almost Ricci solitons in Hn+1

We recall that the totally umbilical hypersurfaces of Lσ of Hn+1 can be realized in
the Lorentzian model as

Lσ = {x ∈ Hn+1
; 〈x, a〉 = σ },
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where a ∈ Rn+2
1 is a fixed vector, and σ 2

+ 〈a, a〉 > 0; see [López and Montiel
1999]. Furthermore, from a straightforward computation, we see that the Gauss
mapping of such hypersurfaces is given by

N(x)=
1√

σ 2+〈a, a〉
(a+ σ x) ∈ Sn+1

1 .

Consequently, from previous expression we obtain that the angle function fa of a
totally umbilical hypersurface of Hn+1 satisfies

fa = 〈N, a〉 =
√
σ 2+〈a, a〉 = τ = constant .

Hence, it follows from [Montiel 1988, Example 1] that N (Lσ ) is a totally umbilical
spacelike hypersurface of Sn+1

1 which is isometric to:

(1) an n-dimensional hyperbolic space of constant sectional curvature − 1
τ 2−1

,
when a is a unit spacelike vector;

(2) the n-dimensional Euclidean space, when a is a nonzero null vector; or

(3) an n-dimensional sphere of constant sectional curvature 1
τ 2+1

, when a is a
unit timelike vector.

On the other hand, given ψ :6n
→Hn+1

⊂Rn+2
1 , a totally umbilical hypersurface

and a ∈ Rn+2
1 a nonzero fixed vector, a straightforward computation yields that a>

is a conformal vector field on 6n. Indeed, after a choice of an orientation on 6n by
the unit vector field N, we use (2-5) to deduce that

(3-1) ∇
2la(X, Y )= (H fa + la)〈X, Y 〉.

Thus, from (2-7) and (3-1) we conclude that the Lie derivative of the Riemannian
metric g of 6n in the direction of a> satisfies

(3-2) La>g = 2
n
(1la)g.

On the other hand, since 6n is totally umbilical, we obtain from (2-3), that the
Ricci curvature of 6n satisfies

(3-3) Ric6(X, Y )= (1− n)(H 2
− 1)〈X, Y 〉.

Hence, from (3-2) and (3-3) we arrive at

(3-4) Ric6 + 1
2 La>g =

(
(1− n)(H 2

− 1)+ 1
n1la

)
g.

Therefore, from (3-4) we conclude that, with an appropriate choice of a nonzero
vector a ∈ Rn+2

1 , the vector field a> provides on 6n a nontrivial structure of a
gradient almost Ricci soliton.
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Motivated by the previous digression, we establish the following characterization
concerning gradient almost Ricci solitons immersed in the hyperbolic space, which
can also be regarded as a version of the rigidity theorem for hyperbolic hypersurfaces
in [Barros et al. 2014a].

Theorem 4. Let ψ : 6n
→ Hn+1 be a hypersurface immersed in Hn+1. Suppose

that for some nonzero vector a ∈ Rn+2
1 the vector field a> provides the structure of

a gradient almost Ricci soliton for 6n. If the image of the Gauss mapping of 6n

lies in a totally umbilical spacelike hypersurface of Sn+1
1 determined by a, then 6n

is a totally umbilical hypersurface of Hn+1.

Proof. Initially, we note that our hypothesis under the image of the Gauss mapping N
of 6n amounts to the fact that the angle function fa of 6n satisfies fa = 〈N , a〉 = τ
on 6n, for some constant τ satisfying τ 2 > 〈a, a〉. Now, since a> =∇la provides
the structure of a gradient almost Ricci soliton for 6n, from (1-2)

(3-5) Ric6(∇la)+∇
2la(∇la)= λ∇la,

for some smooth function λ :6n
→ R.

On the other hand, from (2-3) we have that

Ric6(X)= (1− n)X + nHAX − A2 X.

Hence, since fa is a constant function, we conclude from the above expression that

(3-6) Ric6(∇la)= (1− n)∇la.

Now, we use the (2-5), (3-5), and (3-6) to conclude that

(3-7) (1− n+ la − λ)∇la = 0,

on 6n. Observe that, from (2-4), we arrive at

(3-8) |∇la|
2
+ τ 2
− l2

a = 〈a, a〉.

Since τ 2 > 〈a, a〉, we obtain from (3-8) that the height function la has strict sign
on 6n. Moreover, from (3-7) we have that la − λ is constant on the open set where
∇la 6= 0 and, consequently,

(3-9) |∇la|
2
∇(la − λ)= 0,

on 6n. Hence, from (3-9) we deduce that

(3-10) 〈∇la,∇λ〉 = |∇la|
2.

From Lemma 1, we can use equations (3-6) and (3-10) to deduce that

(3-11) 〈∇R,∇la〉 = 0.
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Contracting (1-2), we have 1la = nλ− R; so,

(3-12)

〈∇1la,∇la〉 = n〈∇λ,∇la〉− 〈∇R,∇la〉

= n|∇la|
2.

On the other hand, from (2-7) we have that

(3-13) 〈∇1la,∇la〉 = nτ 〈∇H,∇la〉+ n|∇la|
2.

Thus, from (3-12) and (3-13) it follows immediately that 〈∇H,∇la〉 = 0, when
τ 6= 0. In this case, observing that a> =∇la , we have from formula (2-8) that

(3-14) |A|2 =−nH
τ

la.

Since the scalar curvature R of 6n is given by

(3-15) R = n(1− n)+ n2 H 2
− |A|2

and we have 〈∇H,∇la〉 = 〈∇R,∇la〉 = 0 on 6n, we obtain from (3-15) after a
simple computation that a>(|A|2)= 0 on 6n. Thus, from (3-14) we deduce

(3-16) H∇la = 0.

Hence, taking into account that 〈∇H,∇la〉 = 0, we can use once more formula
(2-7) jointly with (3-16) to obtain that

(3-17) nH 2
=−

nH
τ

la.

Therefore, the equations (3-14) and (3-17) allows us to conclude that |A|2 = nH 2

and this means that 6n is a totally umbilical hypersurface of Hn+1.
When τ = 0, it follows from (2-5) that the Hessian of the height function la

satisfies ∇2la = lag, where g stands for the Riemannian metric of 6n. Consequently,
we conclude that ∇la = a> is a conformal vector field on 6n. Thus, from Lemma 3
we have that either 6n is a totally umbilical hypersurface or a = a> on 6n. But,
since la has strict sign on 6n, from (2-4) we see that this last situation cannot occur.
Hence, we conclude that 6n is a totally umbilical hypersurface of Hn+1.

Moreover, from Lemma 2 we obtain that

L∇la R =−2(n− 1)1la − 2Rla,

Now, combining this latter with formula (2-7) and (3-11) we deduce that

(n(n− 1)+ R)la = 0.

By using once more that the height function la has strict sign, we conclude from the
previous equality that the scalar curvature of6n satisfies R=n(1−n). Consequently,
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since the umbilicity of 6n implies that |A|2 = nH 2, from (3-15) we get H = 0
on 6n. Therefore, 6n must be, in fact, a totally geodesic hypersurface of Hn+1. �

From the proof of Theorem 4 we also get the following:

Corollary 5. If 6n is a complete hypersurface of Hn+1 such that, for some nonzero
vector a ∈ Rn+2

1 , the vector field a> provides on it the nontrivial structure of a
gradient almost Ricci soliton and the image of its Gauss mapping lies in a totally
umbilical spacelike hypersurface of Sn+1

1 determined by a, then 6n is isometric
to Hn.

4. Characterizing gradient almost Ricci solitons in Sn+1
1 and Hn+1

1

We start by recalling the description of the totally umbilical hypersurfaces of
Mn+1

c ⊂Rn+2
ν ; see [Abe et al. 1987, Section 4], and also [Montiel 1988, Example 1;

Lucas and Ramírez-Ospina 2013, Example 2]. Let a ∈ Rn+2
ν be a fixed nonzero

vector with 〈a, a〉 ∈ {−1, 0, 1} and consider the smooth function ha :M
n+1
c → R

defined by ha(x)= 〈x, a〉. A straightforward computation allows us to conclude
that for every real number %, with 〈a, a〉− c%2

6= 0, the level set

L% = h−1
a (%)= {x ∈Mn+1

c : 〈x, a〉 = %},

is a totally umbilical hypersurface in Mn+1
c , with Gauss mapping

(4-1) N(x)=
1√

|〈a, a〉− c%2|
(a− c%x).

Consequently, the corresponding angle function fa of 6n satisfies

(4-2) | fa| = |〈N , a〉| =
√
|〈a, a〉− c%2|.

It follows from (4-1) that if 6n is a totally umbilical hypersurface in Mn+1
c ,

then the image of its Gauss mapping lies in a totally umbilical hypersurface of the
hyperbolic space, in the case c= 1, and in a totally umbilical spacelike hypersurface
of the anti-de Sitter space Hn+1

1 , in the case c =−1. Furthermore, from (4-2) we
conclude that fa must be a constant function on 6n and, consequently, we have the
following possibilities.

When c = 1:

(I.1) if a is a unit spacelike vector, then either |%| > 1 and L% is isometric to an
n-dimensional hyperbolic space of constant sectional curvature −1/(%2

− 1),
or |%|< 1 and L% is isometric to an n-dimensional de Sitter space of constant
sectional curvature 1/(1− %2);

(I.2) if a is a nonzero null vector, then % 6=0 and L% is isometric to an n-dimensional
Euclidean space;
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(I.3) if a is a unit timelike vector, then L% is isometric to an n-dimensional Euclidean
sphere of constant sectional curvature 1/(1+ %2).

When c =−1:

(II.1) if a is a unit spacelike vector, then L% is isometric to the n-dimensional
anti-de Sitter space of constant sectional curvature −1/(%2

+ 1);

(II.2) if a is a nonzero null vector, then % 6= 0 and L% is isometric to the n-
dimensional Lorentz–Minkowski space;

(II.3) if a is a unit timelike vector, then either |%| > 1 and L% is isometric to an
n-dimensional de Sitter space of constant sectional curvature 1/(%2

− 1), or
|%|< 1 and L% is isometric to an n-dimensional hyperbolic space of constant
sectional curvature −1/(1− %2).

On the other hand, reasoning as in Section 3, we can verify that if 6n is a
totally umbilical spacelike hypersurface of Mn+1

c , then for an arbitrary fixed vector
a ∈ Rn+2

ν we have

(4-3) Ric6 + 1
2 La>g =

(
(1− n)(H 2

+ c)+ 1
n1la

)
g,

where g stands for the Riemannian metric of 6n. Now (4-3) allows us to conclude
that, for a suitable choice of a fixed vector a ∈ Rn+2

ν , the vector field a> provides
on 6n the nontrivial structure of a gradient almost Ricci soliton.

In a similar way to that of Theorem 4, the previous discussion allows us to
establish the following characterization concerning gradient almost Ricci solitons
immersed in the de Sitter space:

Theorem 6. Let ψ : 6n
→ Sn+1

1 be a spacelike hypersurface immersed in Sn+1
1 .

Suppose that for some nonzero vector a ∈ Rn+2
1 the vector field a> provides the

structure of a gradient almost Ricci soliton for 6n. If the image of the Gauss
mapping of 6n lies in a totally umbilical hypersurface of Hn+1 determined by a,
then 6n is a totally umbilical hypersurface of Sn+1

1 .

Proof. Observe that the hypothesis on the image of the Gauss mapping N of 6n

implies that the angle function fa of 6n satisfies fa = 〈N , a〉 = τ on 6n, for some
constant τ , with τ 2

+〈a, a〉> 0. Since a>=∇la provides the structure of a gradient
almost Ricci soliton for 6n, from (1-2), the Ricci curvature of 6n satisfies

(4-4) Ric6(∇la)= λ∇la −∇
2la(∇la),

for some smooth function λ : 6n
→ R, where ∇2la stands for the Hessian of the

height function la = 〈ψ, a〉.
On the other hand, if we denote by A the Weingarten operator of 6n with respect

to the normal vector field N and taking into account that fa is a constant function
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on 6n, we have from Gauss equation that

(4-5) Ric6(∇la)= (n− 1)∇la.

Now, from the expression of the Hessian of the height function la = 〈ψ, a〉 and
using once more that fa is constant, we conclude from (4-4) and (4-5) that

(4-6) (n− 1− la − λ)∇la = 0.

From (4-6), la − λ is constant on the open set where ∇la 6= 0 and, consequently,

|∇la|
2
∇(la + λ)= 0.

This equality allows us to conclude that

(4-7) la〈∇la,∇(la + λ)〉 = 0.

We observe from (2-10) that the height function la can be sign changing on 6n,
since τ 2

+〈a, a〉> 0. However, (4-7) provides us the following identity:

(4-8) la〈∇la,∇λ〉 = −la |∇la|
2.

Now, from (4-4),

la〈∇1la,∇la〉 = nla〈∇λ,∇la〉− la〈∇R,∇la〉.

From Lemma 1 and (4-7) we conclude that la〈∇R,∇la〉 = 0 on 6n. Furthermore,
we use the (4-8) to rewrite the above expression as

(4-9) la〈∇1la,∇la〉 = −nla|∇la|
2.

On the other hand, since 1la = nHτ − nla , we deduce

(4-10) la〈∇1la,∇la〉 = nlaτ 〈∇H,∇la〉− nla|∇la|
2.

From (4-9) and (4-10) it follows that la〈∇H,∇la〉 = 0, when τ 6= 0. Thus, in this
case, we obtain from formula (2-14) that

(4-11) |A|2 = nH
τ

la.

Now, we recall that a> = ∇la and that the scalar curvature R of 6n is given by
R = n(n − 1)− n2 H 2

+ |A|2. Furthermore, since we have la〈∇H,∇la〉 = 0 and
la〈∇R,∇la〉 = 0 on 6n, it follows from (4-11) that

la a>(|A|2)= la〈∇|A|2,∇la〉 = la〈∇R,∇la〉+ 2n2 Hla〈∇H,∇la〉 = 0

on 6n. On the other hand, by using once more the Equation (4-11) we arrive at

laa>(|A|2)= nHla
τ
|∇la|

2.
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Hence, these previous identities allow us to conclude that

Hla∇la = 0.

Therefore, since 1la = nHτ − nla , we use the above equality to obtain

(4-12) nH 2l2
a =

nH
τ

l3
a .

From (4-11) and (4-12) it follows that |A|2l2
a = nH 2l2

a and hence,

(4-13) |8|2l2
a = 0.

Now, after a simple algebraic argument, we can write

(4-14) R = n(n− 1)(1− H 2)+ |8|2.

Thus, by using once more that la〈∇H,∇la〉 = 0 and la〈∇R,∇la〉 = 0 on 6n it
follows from (4-14) that

(4-15) la a>(|8|2)= 0.

On the other hand, from (4-13) we obtain that |8|2la = 0 and, consequently, we
deduce from (4-15) that

(4-16) |8|2|∇la|
2
= la a>(|8|2)+ |8|2a>(la)= a>(|8|2la)= 0.

Therefore, we obtain that |8|2|∇la|
2
= 0 on 6n. Thus, since we also have

|8|2l2
a = 0 on6n it follows from (2-10) that |8|2= 0 on6n, because τ 2

+〈a, a〉> 0.
This means that 6n is a totally umbilical hypersurface of Sn+1

1 .
When τ = 0, it follows from (2-11) that the Hessian of the height function la

satisfies ∇2la =−lag, where g is the Riemannian metric of 6n. Consequently, we
conclude that ∇ la = a> is a conformal vector field on 6n. Hence, from Lemma 3,
either 6n is a totally umbilical hypersurface or a = a> on 6n. From (2-10), we see
that this last situation implies that la = 0 on 6n. On the other hand, from (2-10),

(4-17) |∇ la|
2
+ l2

a = 〈a , a〉.

Thus, taking into account that a = a> implies that 〈a, a〉> 0, from (4-17) we reach
a contradiction. Hence, 6n is a totally umbilical hypersurface.

Now, from Lemma 2,

L∇la R =−2(n− 1)1la − 2Rla.

From (2-13) and using that la〈∇R,∇la〉 = 0 on 6n, we deduce from above that

(4-18) (n(n− 1)− R)l2
a = 0.
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We claim that we must have R = n(n− 1). Indeed, otherwise (4-18) implies that
la = 0 on 6n. But, as before, this cannot occur. Therefore, reasoning as in the last
part of the proof of Theorem 4, we conclude that 6n must be, in fact, a totally
geodesic hypersurface of Sn+1

1 . �

From the proof of Theorem 6, we also obtain the following result:

Corollary 7. If6n is a complete spacelike hypersurface of Sn+1
1 such that, for some

nonzero vector a ∈ Rn+2
1 , the vector field a> provides on it a nontrivial structure of

a gradient almost Ricci soliton and the image of its Gauss mapping lies in a totally
umbilical hypersurface of Hn+1 determined by a, then 6n is isometric to Sn.

Finally, we can reason in an analogous way to the proof of Theorem 6 in order
to establish corresponding versions of Theorem 6 and Corollary 7 for the case that
the ambient space is the anti-de Sitter space Hn+1

1 . More precisely:

Theorem 8. Let ψ : 6n
→ Hn+1

1 be a spacelike hypersurface immersed in Hn+1
1 .

Suppose that for some nonzero vector a ∈ Rn+2
2 the vector field a> provides the

structure of a gradient almost Ricci soliton for 6n. If the image of the Gauss
mapping of 6n lies in a totally umbilical hypersurface of Hn+1

1 determined by a,
then 6n is a totally umbilical hypersurface of Hn+1

1 .

Corollary 9. If 6n is a complete spacelike hypersurface of Hn+1
1 such that, for

some nonzero vector a∈Rn+2
2 , the vector field a>provides on it a nontrivial structure

of a gradient almost Ricci soliton and the image of its Gauss mapping lies in a
totally umbilical hypersurface of Hn+1

1 determined by a, then 6n is isometric to Hn.
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WEIGHTED SOBOLEV REGULARITY
OF THE BERGMAN PROJECTION

ON THE HARTOGS TRIANGLE

LIWEI CHEN

We prove a weighted Sobolev estimate of the Bergman projection on the
Hartogs triangle, where the weight is some power of the distance to the
singularity at the boundary. This method also applies to the n-dimensional
generalization of the Hartogs triangle.

1. Introduction

Setup and background. Let� be a domain in Cn. The set of square integrable holo-
morphic functions on �, denoted by A2(�), forms a closed subspace of the Hilbert
space L2(�). The Bergman projection associated to � is the orthogonal projection

B : L2(�)→ A2(�),

which has an integral representation

(1-1) B( f )(z)=
∫
�

B(z, ζ ) f (ζ ) d(ζ ),

for all f ∈ L2(�) and z ∈ �. Here the function B(z, ζ ) defined on �×� is the
Bergman kernel, and d(ζ )= dV (ζ ) is the usual Euclidean volume form.

The regularity of the Bergman projection B associated to � in L p(�), W k,p(�),
and Hölder spaces are of particular interest. When � is bounded, smooth, and pseu-
doconvex with additional geometric condition on the boundary (e.g., strongly pseu-
doconvex), the regularity of B in these spaces has been intensively studied in the liter-
ature. See, for example, [Lanzani and Stein 2012] and references therein for details.

When � is nonsmooth, there are relatively few results in regard to the regularity
of the Bergman projection. Even in L p(�), we cannot expect the regularity to hold
for all p ∈ (1,∞). If � is a simply connected planar domain, then the interval
of p for B to be L p-bounded highly depends on the geometry of the boundary; see
[Lanzani and Stein 2004]. If � is a nonsmooth worm domain, then the interval of p
depends on the winding of the domain; see [Krantz and Peloso 2008]. If � is an

MSC2010: 32A07, 32A25, 32A50.
Keywords: Hartogs triangle, Bergman projection, Sobolev regularity.
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inflation of the unit disc by the norm square of a nonvanishing holomorphic function,
then the interval of p depends on the boundary behavior of the holomorphic function
on the unit disc; see [Zeytuncu 2013].

Results. In this article, we consider the Sobolev regularity of the Bergman projec-
tion B on the Hartogs triangle H, where the Hartogs triangle is defined as

H= {(z1, z2) ∈ C2
| |z1|< |z2|< 1}.

The Hartogs triangle is a classical nonsmooth domain in C2. It is well known
that the boundary at (0, 0) is not even Lipschitz, and the topological closure of H

does not possess a Stein neighborhood basis. In [Chen 2017a], the L p regularity
of B on H was studied: the Bergman projection B is L p-bounded if and only if
p ∈

( 4
3 , 4

)
. On the other hand, we have z2 ∈W k,p(H) for all nonnegative integers k

and all p ∈ [1,∞], but B(z2)= c/z2 /∈W 1,p(H) for p≥ 2, where c is some nonzero
constant. So we cannot expect to obtain regularity in the ordinary Sobolev spaces,
nor for all p ∈ (1,∞).

A natural way to control the boundary behavior of singularities is the use of
weights which measure the distance from the points near the boundary to the
singularity at the boundary. Since on the Hartogs triangle we have |z2| < |z| <√

2|z2|, where z = (z1, z2) ∈ H, it is reasonable to consider a weight of the form
|z2|

s , for some s ∈ R. On the other hand, based on the L p mapping property of the
Bergman projection on H (see [Chakrabarti and Zeytuncu 2016]) and the Sobolev
regularity of the weighted canonical solution operator of the ∂-equation on H (see
[Chakrabarti and Shaw 2013]), it is also reasonable to put a weight of the form |z2|

s

on the target space. Therefore, we consider the following weighted Sobolev spaces:

Definition 1.1. On the Hartogs triangle H, for each k ∈ Z+ ∪ {0}, s ∈ R, and
p ∈ (1,∞), we define the weighted Sobolev space by

W k,p(H, δs)= { f ∈ L1
loc(H) | ‖ f ‖k,p,s <∞},

where δ(z)= |z2| ≈ |z|, and the norm is defined as

‖ f ‖k,p,s =
(∫

H

∑
|α|≤k

|Dα
z,z( f )(z)|p|z2|

s dz
)1/p

.

Here α = (α1, α2, α3, α4) is the multi-index running over all |α| ≤ k, and

Dα
z,z =

∂ |α|

∂zα1
1 ∂zα2

2 ∂zα3
1 ∂zα4

2
.
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We also denote the usual norm in the (unweighted) Sobolev space W k,p(H) by

‖ f ‖k,p =
(∫

H

∑
|α|≤k

|Dα
z,z( f )(z)|p dz

)1/p

.

With the definition above, we can state our main result:

Theorem 1.2. The Bergman projection B on the Hartogs triangle H maps continu-
ously from W k,p(H) to W k,p(H, δkp) for p ∈

( 4
3 , 4

)
.

That is, for each k ∈ Z+ ∪ {0} and p ∈
( 4

3 , 4
)
, there exists a constant Ck,p > 0,

such that
‖B( f )‖k,p,kp ≤ Ck,p‖ f ‖k,p for any f ∈W k,p(H).

Remark 1.3. It is clear that B doesn’t lose any derivatives away from the singular
point of the Hartogs triangle. If we put a suitable power of the weight δ around
the singularity on the target space, then there is no loss of differentiability of B( f )
around the singular point (see also the result in [Chakrabarti and Shaw 2013]).

Remark 1.4. Note that we have B(z2)= c/z2 /∈W k,p(H, δkp) for p ≥ 4, where c
is some nonzero constant. So we cannot obtain regularity for p ≥ 4, unless we use
more weights on the target space. Conversely, we can only obtain regularity for
fewer values of p, if we use less weights on the target space.

Organization and outline. The idea of the proof of the main result is the following.
In Section 2, we start with an idea from [Chakrabarti and Shaw 2013] to transfer H to
the product model D×D∗, as well as to transfer the differential operators Dα to the
ones in new variables. From this, we focus on the integration over the punctured disc
D∗ in Section 3. We then use an idea from [Straube 1986] to convert Dα acting on
the Bergman kernel in the holomorphic component to the ones acting on the kernel
in the antiholomorphic part. The resulting differential operators can be written as
a combination of tangential operators, and therefore, integration by parts applies to
the smooth functions. Finally, in Section 4, we apply the weighted L p estimates in
[Chen 2017b] to our integral, and the resulting integral is majorized by the weighted
L p norm of Dα( f ). To complete the proof, we approximate the weighted Sobolev
functions by smooth functions and transfer the product model back to H.

2. Transfer to the product model

Transfer H to D × D∗. In view of Definition 1.1, we adopt the following notation.

Definition 2.1. Let β = (β1, β2) be a multi-index, we use the notations below to
denote the differential operators

Dβ
z =

∂ |β|

∂zβ1
1 ∂zβ2

2

and Dβ

z j ,z j
=

∂ |β|

∂zβ1
j ∂zβ2

j

for j = 1, 2.
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From the result in [Chen 2017a], we see that B( f ) ∈ Ap(H) (the set of L p

functions that are holomorphic), whenever p ∈
( 4

3 , 4
)

and f ∈ L p(H). So we can
rewrite the weighted L p Sobolev norm of B( f ) as

(2-1) ‖B( f )‖p
k,p,kp =

∑
|β|≤k

∫
H

∣∣Dβ
z (B( f ))(z)

∣∣p
|z2|

kp dz,

where β and Dβ
z are as in Definition 2.1.

In order to transfer H to the product model, we first recall the transformation
formula for the Bergman kernels.

Proposition 2.2. Let �j be a domain in Cn and Bj be its Bergman kernel on
�j ×�j , j = 1, 2. Suppose 9 :�1→�2 is a biholomorphism, then for (w, η) ∈
�1×�1 we have

det JC9(w)B2(9(w),9(η)) det JC9(η)= B1(w, η).

Proof. See, for example, [Krantz 1992, Proposition 1.4.12]. �

Now let us consider the biholomorphism 8 : H → D × D∗ with its inverse
9 : D×D∗→ H, where

8(z1, z2)=
( z1

z2
, z2

)
and 9(w1, w2)= (w1w2, w2).

A simple computation shows det JC9(w) = w2, for w = (w1, w2) ∈ D × D∗.
Therefore, by the proposition above, we have

(2-2) B(9(w),9(η))=
1

w2η2
·

1
(1−w1η1)2

·
1

(1−w2η2)2
,

where B is the Bergman kernel on H×H as in (1-1) and (w, η) ∈D×D∗×D×D∗.

Transfer the differential operators. We next need to transfer the differential oper-
ators Dβ

z to the ones in the new variable w. We need a lemma.

Lemma 2.3. Under the biholomorphism 8(z)= w, for each β let m = |β|. Then

(2-3) Dβ
z =

∑
a+b≤m

pa,b,β(w1)

wm−b
2

·
∂a+b

∂wa
1∂w

b
2
,

where pa,b,β(w1) is a polynomial of degree at most m in variable w1. In addition,
if |β| ≤ k for some k ∈ Z+ ∪ {0}, then |pa,b,β(w1)| ≤ Ck on D uniformly in β, a,
and b, for some constant Ck > 0 depending only on k.

Proof. We prove (2-3) by induction on m = |β|. The case m = 0 is trivial. When
m = 1, a direct computation shows

∂

∂z1
=

1
w2
·
∂

∂w1
and ∂

∂z2
=−

w1
w2
·
∂

∂w1
+

∂

∂w2
.
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So both ∂/∂z1 and ∂/∂z2 are of the form in (2-3).
Suppose for all β with |β| = m, the Dβ

z are of the form in (2-3). We now check
the case |β ′| = m + 1. Note that Dβ ′

z = (∂/∂z1) ◦ Dβ
z or Dβ ′

z = (∂/∂z2) ◦ Dβ
z for

some β. By the inductive assumption, we have

∂

∂z1
◦ Dβ

z =
1
w2
·
∂

∂w1
◦

∑
a+b≤m

pa,b,β(w1)

wm−b
2

·
∂a+b

∂wa
1∂w

b
2

=

∑
a+b≤m

p′a,b,β(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
+

pa,b,β(w1)

wm+1−b
2

·
∂a+b+1

∂wa+1
1 ∂wb

2

=

∑
a+b≤m+1

pa,b,β ′(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
,

and

∂

∂z2
◦ Dβ

z =

(
−
w1

w2
·
∂

∂w1
+

∂

∂w2

)
◦

∑
a+b≤m

pa,b,β(w1)

wm−b
2

·
∂a+b

∂wa
1∂w

b
2

=

∑
a+b≤m

−w1 p′a,b,β(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
+
−w1 pa,b,β(w1)

wm+1−b
2

·
∂a+b+1

∂wa+1
1 ∂wb

2

+
(b−m)pa,b,β(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
+

pa,b,β(w1)

wm−b
2

·
∂a+b+1

∂wa
1∂w

b+1
2

=

∑
a+b≤m+1

pa,b,β ′(w1)

wm+1−b
2

·
∂a+b

∂wa
1∂w

b
2
.

We see that pa,b,β ′(w1) is a polynomial of degree at most m+ 1 and Dβ ′

z has the
form in (2-3).

When |β| ≤ k, all the possible combinations of derivatives in Dβ
z are finite. So

there are finitely many different coefficients in all of the pa,b,β(w1). Since |w1| ≤ 1
on D and a, b ≤ m ≤ k, we obtain |pa,b,β(w1)| ≤ Ck on D as desired. �

Now we can transfer H to the product model D×D∗ by the biholomorphism 8.
Combining (2-2) and (2-3), we see that the right hand side of (2-1) becomes

(2-4)
∑
|β|≤k

∫
D×D∗

∣∣∣∣ ∑
a+b≤|β|

∫
D×D∗

Ka,b,β(w, η) f (9(η))|η2|
2 dη

∣∣∣∣p

|w2|
kp+2 dw,

where

Ka,b,β(w, η)=
pa,b,β(w1)

w
|β|−b
2

·
∂a

∂wa
1

(
1

(1−w1η1)2

)
·
∂b

∂wb
2

(
1

w2η2
·

1
(1−w2η2)2

)
.
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3. Convert the differential operators on D∗

Convert to the antiholomorphic part. Since D∗ is a Reinhardt domain, by using
the idea in [Straube 1986], we can convert the differential operators as follows.

Lemma 3.1. As in (2-4), for the last factor in Ka,b,β(w, η), we have

(3-1)
∂b

∂wb
2

(
1

w2η2
·

1
(1−w2η2)2

)
=
ηb

2

wb
2
·
∂b

∂ηb
2

(
1

w2η2
·

1
(1−w2η2)2

)
.

Proof. The kernel in (3-1) is the weighted Bergman kernel associated to D∗ with
the weight |z|2; see [Chen 2017b]. It has the expansion

1
w2η2

·
1

(1−w2η2)2
=

∞∑
j=0

( j + 1)(w2η2)
j−1,

which converges uniformly on every compact subset K×K ⊂D∗×D∗. Differentiate
the series term by term, and we see that

wb
2 ·

∂b

∂wb
2

(
1

w2η2
·

1
(1−w2η2)2

)
=

∞∑
j=0

( j + 1)wb
2 ·

∂b

∂wb
2
(w2η2)

j−1

=

∞∑
j=0

( j + 1)ηb
2 ·

∂b

∂ηb
2
(w2η2)

j−1

= ηb
2 ·

∂b

∂ηb
2

(
1

w2η2
·

1
(1−w2η2)2

)
. �

Integration by parts. Now we focus on the integration over D∗ in (2-4). We first
define a “tangential” operator.

Definition 3.2. Let Sw =w(∂/∂w) be the complex normal differential operator on
a neighborhood of ∂D. We define the tangential operator by

Tw = =(Sw)=
1
2i

(
w
∂

∂w
−w

∂

∂w

)
.

Remark 3.3. Indeed, Tw is well defined on a neighborhood of D. Moreover, for
any disc Dρ = {|w|< ρ} of radius ρ < 1 with defining function rρ(w)= |w|2− ρ2,
we have

(3-2) Tw(rρ)= 0

on ∂Dρ . That is, Tw is tangential on ∂Dρ for all ρ < 1.

In order to make use of integration by parts, we need the following lemma:



WEIGHTED SOBOLEV REGULARITY OF THE BERGMAN PROJECTION 313

Lemma 3.4. Let Tw be as above. For b ∈ Z+ ∪ {0}, we have

(3-3) T b
w ≡

b∑
j=0

cjw
j ∂

j

∂w j

(
mod

∂

∂w

)
,

where the cj are constants, cb 6= 0, and T b
w is the composition of b copies of Tw.

Proof. We prove (3-3) by induction on b. The case b = 0 is trivial. When b = 1, it
is easy to see that

Tw ≡−
1
2i
w
∂

∂w

(
mod ∂

∂w

)
.

Suppose (3-3) holds for some b. Then we see that

T b
w =

b∑
j=0

cjw
j ∂

j

∂w j + A ◦ ∂

∂w
,

for some operator A. So for the case b+ 1, we have

Tw ◦ T b
w =

1
2i

(
w
∂

∂w
−w

∂

∂w

)
◦

( b∑
j=0

cjw
j ∂

j

∂w j + A ◦ ∂

∂w

)

=
1
2i

( b∑
j=0

cjww
j ∂

j

∂w j
∂

∂w
− jcjw

j ∂
j

∂w j − cjw
j+1 ∂

j+1

∂w j+1

)
+ Tw ◦ A ◦ ∂

∂w

=

b+1∑
j=0

c′jw
j ∂

j

∂w j + A′ ◦ ∂

∂w
,

for some constants c′j with c′b+1 =−(1/2i)cb 6= 0 and some operator A′. Therefore,
(3-3) holds for T b+1

w . �

Combine (3-1) and (3-3). Since the kernel in (3-1) is antiholomorphic in η2, the
inside integration over D∗ with regard to variable η2 in (2-4) denoted by I becomes

I =
∫

D∗

∂b

∂wb
2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2

=

∫
D∗

ηb
2

wb
2
·
∂b

∂ηb
2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2

=
1
wb

2

∫
D∗

b∑
j=0

cj T j
η2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2

=
1
wb

2

b∑
j=0

cj lim
ε→0+

∫
D−Dε

T j
η2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2.



314 LIWEI CHEN

Let us assume in addition for a moment that f (9(η)) belongs to C∞(D−{0})
in variable η2. Then by (3-2) we obtain

(3-4) I = 1
wb

2

b∑
j=0

cj lim
ε→0+

∫
D−Dε

T j
η2

(
1

w2η2
·

1
(1−w2η2)2

)
f (9(η))|η2|

2 dη2

=
1
wb

2

b∑
j=0

cj (−1) j lim
ε→0+

∫
D−Dε

1
w2η2

·
1

(1−w2η2)2
T j
η2

(
f (9(η))|η2|

2) dη2

=
1
wb

2

b∑
j=0

(−1) j cj

∫
D∗

1
w2η2

·
1

(1−w2η2)2
T j
η2

(
f (9(η))

)
|η2|

2 dη2,

where the last line follows from the fact that Tη2(|η2|
2)= 0.

Definition 3.5. We use the following notation:

Fj (η)=T j
η2

(
f (9(η))

)
·η2 and B1,a(g)(w1)=

∫
D

∂a

∂wa
1

(
1

(1−w1η1)2

)
g(η1) dη1,

for any g whenever the integral is well defined, and

B2(h)(w2)=

∫
D∗

h(η2)

(1−w2η2)2
dη2,

for any h whenever the integral is well defined.

By (3-4) and the notation above (Definition 3.5), we see that (2-4) becomes

(3-5)
∑
|β|≤k

∫
D×D∗

∣∣∣∣ ∑
a+b≤|β|

pa,b,β(w1)

w
|β|+1
2

b∑
j=0

(−1) j cjB1,a
(
B2(Fj )

)
(w)

∣∣∣∣p

|w2|
kp+2 dw.

4. Proof of the main theorem

L p boundedness. To finish the proof, we first need two lemmas.

Lemma 4.1. The operator B1,a defined as in Definition 3.5 is bounded from
W a,p(D) to L p(D) for p ∈ (1,∞).

Proof. This follows from the well-known result that the Bergman projection on D

is bounded from W k,p(D) to itself for p ∈ (1,∞) and all k ∈ Z+ ∪ {0}. �

Lemma 4.2. The integral operator B2 defined as in Definition 3.5 is bounded from
L p
(
D∗, |w|2−p

)
to itself for p ∈

( 4
3 , 4

)
, where L p

(
D∗, |w|2−p

)
is the weighted L p

space with w ∈ D∗.

Proof. This is equivalent to the statement that the weighted Bergman projection
associated to D∗ with the weight |w|2 is bounded from L p

(
D∗, |w|2

)
to itself for

p ∈
( 4

3 , 4
)
. For a proof, see [Chen 2017b]. �
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Proof under the additional assumption. With Lemma 4.1 and Lemma 4.2, we can
prove Theorem 1.2 under the additional assumption f (9(η)) ∈ C∞(D− {0}) in
variable η2.

Proof of Theorem 1.2 under the additional assumption. By (2-1), (2-4), (3-5) and
Lemma 2.3, we obtain

‖B( f )‖p
k,p,kp ≤

∑
|β|≤k

∑
a+b≤|β|

b∑
j=0

Ck,p

∫
D×D∗
|B1,a(B2(Fj ))(w)|

p
|w2|

kp+2−p(|β|+1) dw

≤ Ck,p

∑
a+b≤k

∫
D×D∗
|B1,a(B2(Fb))(w)|

p
|w2|

2−p dw.

By Lemma 4.1, for p ∈ (1,∞) we have

‖B( f )‖p
k,p,kp ≤ Ck,p

∑
a+b≤k

∫
D∗

(∫
D

∑
|β|≤a

|Dβ

w1,w1
(B2(Fb))(w)|

p dw1

)
|w2|

2−p dw2

≤ Ck,p

∑
|β|+b≤k

∫
D

(∫
D∗
|B2(D

β

w1,w1
(Fb))(w)|

p
|w2|

2−p dw2

)
dw1.

Similarly, by Lemma 4.2, for p ∈
( 4

3 , 4
)

we have

(4-1) ‖B( f )‖p
k,p,kp ≤ Ck,p

∑
|β|+b≤k

∫
D

(∫
D∗

∣∣Dβ

w1,w1
(Fb)(w)

∣∣p
|w2|

2−p dw2

)
dw1

= Ck,p

∑
|β|+b≤k

∫
D×D∗

∣∣Dβ

w1,w1
T b
w2

(
f (9(w))

)
·w2

∣∣p
|w2|

2−p dw

= Ck,p

∑
|β|+b≤k

∫
D×D∗

∣∣Dβ

w1,w1
T b
w2

(
f (9(w))

)∣∣p
|w2|

2 dw

≤ Ck,p

∑
|β|+|β ′|≤k

∫
D×D∗

∣∣Dβ

w1,w1
Dβ ′

w2,w2

(
f (9(w))

)∣∣p
|w2|

2 dw,

where the last line follows from Tw2 = (1/2i)(w2(∂/∂w2)−w2(∂/∂w2)), |w2|< 1
for w2 ∈ D∗, and a similar equation as (3-3).

By the biholomorphism 9(w)= z defined in Section 2, we have

∂

∂w1
= w2

∂

∂z1
and ∂

∂w1
= w2

∂

∂z1
,

and also
∂

∂w2
= w1

∂

∂z1
+

∂

∂z2
and ∂

∂w2
= w1

∂

∂z1
+

∂

∂z2
.
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Again, since (w1, w2) ∈ D×D∗, we have |w1|, |w2|< 1. Therefore, by (4-1) and
transferring D×D∗ back to H, we finally arrive at

‖B( f )‖p
k,p,kp ≤ Ck,p

∑
|α|≤k

∫
H

|Dα
z,z( f )(z)|p dz. �

Remove the additional assumption. To remove the additional assumption that
f (9(η)) ∈ C∞(D−{0}) in variable η2, we need the following lemma.

Lemma 4.3. The subspace C∞(D−{0})
⋂

W k,p(D∗,|w|2) is dense in W k,p(D∗,|w|2)

with regard to the weighted norm in W k,p(D∗,|w|2).

Proof. The argument is based on [Evans 1998, §5.3 Theorem 2 and Theorem 3].
Given any g ∈W k,p(D∗, |w|2), fix ε > 0. On V0 =D−D1/2, the weighted norm

W k,p(V0, |w|
2) is equivalent to the unweighted norm W k,p(V0). Arguing as in the

proof of [Evans 1998, §5.3 Theorem 3], we see that there is a g0 ∈C∞(V0) such that

‖g0− g‖W k,p(V0,|w|2) < ε.

Define Uj = Dρ−1/j −D1/j for some 1 > ρ > 1
2 and for j ∈ Z+ (U1 = ∅). Let

Vj = Uj+3 −Uj+1, then we see
⋃
∞

j=1Vj = Dρ − {0}. Arguing as in the proof of
[Evans 1998, §5.3 Theorem 2], we can find a smooth partition of unity {ψj }

∞

j=1
subordinate to {Vj }

∞

j=1, so that
∑
∞

j=1 ψj = 1 on Dρ − {0}. Moreover, for each j ,
the support of ψj g lies in Vj (so |w|> 1/( j+3)), and hence ψj g ∈W k,p(Dρ−{0}).
Therefore, we can find a smooth function g j with support in Uj+4−Uj such that

‖g j −ψj g‖W k,p(Dρ−{0}) ≤
ε

2 j ;

see [Evans 1998, §5.3 Theorem 2] for details. Write g̃0 =
∑
∞

j=1 g j . It is easy to
see that g̃0 ∈ C∞(Dρ −{0}) and

‖g̃0− g‖W k,p(Dρ−{0},|w|2) ≤ ‖g̃0− g‖W k,p(Dρ−{0}) ≤ ε,

since |w|< 1 on Dρ −{0}.
Let V ′0 be an open set such that ∂D ⊂ V ′0 and V ′0

⋂
D = V0, then V ′0

⋃
Dρ

cover D. Take a smooth partition of unity {ψ̃1, ψ̃2} on D subordinate to {V ′0,Dρ}.
Then h = ψ̃1g0+ ψ̃2g̃0 belongs to C∞(D−{0}), and

‖h− g‖W k,p(D∗,|w|2) ≤ C
(
‖g0− g‖W k,p(V0,|w|2)+‖g̃0− g‖W k,p(Dρ−{0},|w|2)

)
< 2Cε

as desired �

Now we are ready to remove the extra assumption and prove our main result.

Proof of Theorem 1.2.
For any f ∈W k,p(H), we have f (9(w))∈W k,p(D∗, |w2|

2) in variable w2. Then
by Lemma 4.3, we can find a sequence {h j (w)} ⊂C∞(D−{0}) tending to f (9(w))
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in variable w2 with regard to the norm in W k,p(D∗, |w2|
2). We have already seen

that (4-1) holds for each h j (w) replacing f (9(w)). Indeed, if we focus on the
integration over D∗, by comparing with (2-4), we see that (4-1) is just the following:
for each b = 0, 1, . . . , k

(4-2)
∫

D∗

∣∣∣∣wb
2
∂b

∂wb
2
(B3(h j ))

∣∣∣∣p

|w2|
2 dw2 ≤ Ck,p‖h j‖W k,p(D∗,|w2|2),

where B3 is the weighted Bergman projection associated to D∗ with the weight |w2|
2.

Now letting j→∞, in view of the boundedness of B3 (Lemma 4.2), we see that
wb

2(∂
b/∂wb

2)(B3(h j )) indeed tends to wb
2(∂

b/∂wb
2)(B3( f (9))) in L p(D∗,|w2|

2) for
each b=0, 1, . . . , k. Therefore, (4-2) is valid for general f (9(w))∈W k,p(D∗,|w2|

2),
which completes the proof for any general f ∈W k,p(H). �

Remark 4.4. The method also applies to the n-dimensional generalization of the
Hartogs triangle, see [Chen 2017a]. To be precise, for j = 1, . . . , l, let �j be a
bounded smooth domain in Cm j with a biholomorphic mapping φj : �j → Bm j

between �j and the unit ball Bm j in Cm j. We use the notation z̃ j to denote the j-th
m j -tuple in z ∈ Cm1+···+ml, that is, z = (z̃1, . . . , z̃l). Let n = m1 + · · · +ml + n′,
n− n′ ≥ 1, and n′ ≥ 1, we define the n-dimensional Hartogs triangle by

Hn
φj
=

{
(z, z′) ∈ Cm1+···+ml+n′ | max

1≤ j≤l
|φj (z̃ j )|< |z′1|< |z

′

2|< · · ·< |z
′

n′ |< 1
}
.

Following the same idea, we see that the Bergman projection B on Hn
φj

is bounded
from W k,p(Hn

φj
) to W k,p(Hn

φj
, |z′1|

kp) for p ∈ (2n/(n+ 1), 2n/(n− 1)). However,
the weight |z′1| is no longer comparable to |(z, z′)|, the distance from points near
the boundary to the singularity at the boundary.
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KNOTS OF TUNNEL NUMBER ONE AND MERIDIONAL TORI

MARIO EUDAVE-MUÑOZ AND GRISSEL SANTIAGO-GONZÁLEZ

We give a characterization of knots of tunnel number 1 that admit an essen-
tial meridional torus with two boundary components. Let K be a knot in S 3,
S an essential meridional torus in the exterior of K with two boundary com-
ponents, and � an unknotting tunnel for K. We consider the intersections
between S and �. If the intersection is empty, we conclude that the knot K

is an iterate of a satellite knot of tunnel number 1 and one of its unknotting
tunnels, and then S is knotted as a nontrivial torus knot. If the intersection
is nonempty, we simplify it as much as possible, and conclude that the knot
K is a .1; 1/-knot; it follows from known results that in some cases the
torus S is knotted as a nontrivial torus knot, while in others cases the torus
S is unknotted.

1. Introduction

An important topic in knot theory is that of studying incompressible surfaces in the
exterior of knots. We first make a summary of known results for incompressible
surfaces for knots of tunnel number 1. There is a classification of satellite knots of
tunnel number 1 in S3, that is, knots that admit in their exterior an incompressible
non-@-parallel torus; this was given by K. Morimoto and M. Sakuma [1991]. Another
proof of this classification was given by M. Eudave-Muñoz [1994]. All these knots
are .1; 1/-knots, that is, knots of 1 bridge with respect to a standard torus in S3;
this is a special class of knots of tunnel number 1. Gordon and Reid [1995] proved
that knots of tunnel number 1 do not admit any essential planar meridional surface.
Regarding surfaces of higher genus, Eudave-Muñoz [1999; 2006] showed that
for any g � 2, there are infinitely many knots of tunnel number 1 whose exterior
contains a closed meridionally incompressible surface of genus g, and gave a
characterization of .1; 1/-knots that admit surfaces of this kind. In [Eudave-Muñoz
2000], he showed that for each pair of integers g � 1 and n � 1, there are knots
k of tunnel number 1 such that there is an essential meridional surface S in the
exterior of k, of genus g, and with 2n boundary components. Eudave-Muñoz and

MSC2010: 57M25.
Keywords: knot of tunnel number one, .1; 1/-knot, meridional torus, iterate knot.
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E. Ramírez-Losada [2009] have given a general construction and characterization
of .1; 1/-knots that admit essential meridional surfaces.

In this paper we give a characterization of knots of tunnel number 1 that admit
an essential meridional torus with two boundary components. Such knots are
either .1; 1/-knots, and then come from the construction of Eudave-Muñoz and
Ramírez-Losada, or are iterates of a satellite knot of tunnel number 1 and one of its
unknotting tunnels, i.e., they come from the construction of [Eudave-Muñoz 2000].

In Section 2 we give definitions and statements of the main results. In Section 3
we prove some general lemmas about unknotting tunnels, and in Section 4 we give
a proof of the main results.

2. Preliminaries

Let k be a knot in S3, and denote by E.k/ the exterior of k, that is, E.k/ D

S3� int N.k/, where N.k/ is a tubular neighborhood of k.

Definition. Let k be a knot in S3. A surface S properly embedded in E.k/ is
said to be meridional if @S consists of a nonempty collection of meridian curves
in @N.k/.

Definition. Let k be a knot in S3 and S a surface properly embedded in E.k/,
which is meridional or disjoint from @N.k/. We say that S is meridionally com-
pressible in .S3; k/ if there is a disc D � S3 such that D\S D @D, D intersects
k transversely in one point, and @D is essential in S , that is, @D does not bound a
disc in S and it is not parallel in S to a component of @S. The disc D is called a
meridional compression disc for S. We say that S is meridionally incompressible
in .S3; k/ if S is incompressible and not meridionally compressible in .S3; k/. We
say that a meridional surface S is essential if it is meridionally incompressible and
not @-parallel in E.k/.

A meridional surface can be seen as a closed surface S in S3 which a knot
intersects transversely in finitely many points. When we say that S is a meridional
essential surface that intersects a knot k in n points, this means that the surface
S D S \E.k/ is a meridional essential surface in E.k/ as detailed in the two
preceding definitions.

Definition. A knot k in S3 has tunnel number 1 if there exists an arc � embedded
in S3 with � \ k D @� , such that E.k [ �/ D S3 � int N.k [ �/ is a genus 2
handlebody. We call � an unknotting tunnel for k.

Sometimes it is convenient to express a tunnel � for a knot k as � D �1 [ �2,
where �1 is a simple closed curve in E.k/ and �2 is an arc in E.k/ connecting �1

and @N.k/; by sliding the tunnel we can pass from one expression to the other.
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Definition. A knot k in S3 is a .1; 1/-knot if there is a standard torus T in S3

such that k is a 1-bridge knot with respect to T , that is, k intersects T transversely
in two points which divide k into two arcs which are parallel to arcs lying on T .

It is not difficult to see that a .1; 1/-knot k is a knot of tunnel number 1. An
unknotting tunnel for k can be seen as � D �1[ �2, where �1 is the core of one of
the solid tori bounded by T , and �2 is a straight arc in that solid torus connecting
k and �1. Conversely, we have the following result. Though it is well known, we
include it for completeness.

Lemma 2.1. If k is a knot with an unknotting tunnel � D �1 [ �2, where �1 is a
trivial knot in S3, then k is a .1; 1/-knot.

Proof. Note that E.�1/ is a solid torus. Slide k over �2, until it is an arc k 0

properly embedded in E.�1/. The manifold E.�1/� int N.k 0/ Š E.k [ �/ has
compressible boundary, for it is a handlebody. If every compression disc for
E.�1/� int N.k 0/ intersects a meridian of k 0, then the manifold obtained by adding
a 2-handle along a meridian of k 0 would have incompressible boundary, by Jaco’s
addition lemma [1984]. But this is not possible, for the manifold obtained is E.�1/,
which is a solid torus. Then there is a compression disc disjoint from k 0. By
compressing along this disc, we get that k 0 is inside a 3-ball, and then it must
be parallel to an arc contained in @E.�1/. It follows that k can be expressed as
k D k 0 [ k 00, where k 0 is an arc properly embedded in E.�1/, and parallel to an
arc lying on @E.�1/, and k 00 is an arc contained in @E.�1/. It follows that k is a
1-bridge knot with respect to the torus @E.�1/. �

Morimoto and Sakuma’s construction [1991] of satellite tunnel number 1 knots
is as follows: Let T .p; q/ be a torus knot of type .p; q/ in S3, with jpj � 2, q � 2,
and let S.˛; ˇ/ be a 2-bridge link in S3 of type .˛; ˇ/, with ˛ � 4; that is, S.˛; ˇ/

is neither a trivial link nor a Hopf link. Identify @E.T .p; q// and a component
of @E.S.˛; ˇ//, in such a way that a meridian of E.S.˛; ˇ// is glued to a fiber
of the Seifert fibration of E.T .p; q//. The result is the exterior of a satellite knot
K.˛; ˇ Ip; q/ with companion a torus knot, which has tunnel number 1.

The knots K.˛; ˇ Ip; q/ can also be described in the following way; see [Eudave-
Muñoz 1994]. Let T be a standard torus in S3, and let Ap; q � T be an annulus so
that a component of @A is a curve of slope .p; q/ on T , jpj � 2, q � 2. We say
that a knot k belongs to the class of knots T if k has a 1-bridge presentation with
respect to some annulus Ap; q , that is, k is a 1-bridge knot with respect to T , such
that the intersection points of k with T lie in Ap; q , and the arcs of k are parallel to
arcs on Ap; q . If k is in T then k can be isotoped to lie in N.Ap; q/, for some Ap; q .
Let Sp; q D @N.Ap; q/. For any such k that is neither trivial nor the .p; q/-torus
knot, the torus S will be essential in the exterior of k. It can be seen that k belongs
to T if and only if it is one of the knots K.˛; ˇ Ip; q/.
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Now we describe the unknotting tunnels for a knot in T . The torus T divides
S3 into two solid tori R1 and R2. Let k be a knot in T , such that k has a 1-bridge
presentation with respect to an annulus Ap; q; so k �N.Ap; q/. Then k is divided
into two arcs k1 and k2, which are trivial arcs in R1 and R2, respectively. We can
consider R1 as foliated by concentric tori around the core of R1, and then k1 as an
arc that intersects each of the tori in two or zero points, except for one torus which is
tangent to k1, defining a maximum point in k1. Similarly we define a minimum of k2

in R2. By a straight arc in R1 or R2, we mean an arc that intersects each torus in the
foliation in at most one point. Take a straight arc �1 which goes from the maximum
of k1 to a point x on Sp; q . Similarly, take a straight arc �2 which goes from the
minimum of k2 to a point y on Sp; q . Let �3 be an arc in Sp; q joining x and y,
which crosses T in one point, and which is disjoint from a meridian of N.Ap; q/. Let
�x be the union of the core of the solid torus R1 and a straight arc joining the point
x and the core of R1. Similarly, let �y be the union of the core of the solid torus R2

and a straight arc joining the point y and the core of R2. Note that �x and �y are
unknotting tunnels for the exterior of N.Ap; q/, that is, for the torus knot T .p; q/.

Now define �.1;x/ D �x [ �1, �.2;x/ D �x [ �3 [ �2, �.2;y/ D �y [ �2,
�.1;y/D �y [ �3[ �1. It is not difficult to see that each of these 1-complexes is
an unknotting tunnel for k. Furthermore, it follows from [Morimoto and Sakuma
1991], that if � is an unknotting tunnel for k, then k is one of the tunnels �.1;x/,
�.2;x/, �.2;y/, �.1;y/, up to homeomorphism of E.k/. In the same paper, all
unknotting tunnels for k up to ambient isotopy of E.k/ are also classified. Here we
only need the classification up to homeomorphism of E.k/, because if two tunnels
are homeomorphic, though not isotopic, they will produce the same family of knots
when taking iterates of the knot and the tunnels.

Definition. Let k be a knot of tunnel number 1, and � an unknotting tunnel for k

which is an embedded arc with endpoints lying on @N.k/. Let k� be a knot formed
by the union of two arcs, k� D � [ 
 , such that 
 is contained in @N.k/. We say
that k� is an iterate of k and � .

The knot k� is also a knot with tunnel number 1, where the tunnel is given by
the union of k and a straight arc in N.k/ connecting k� and k.

Eudave-Muñoz [2000] showed that there are knots k of tunnel number 1 for
which there is an essential meridional torus S in the exterior of k, with two boundary
components. These are constructed by taking iterates of satellite knots of tunnel
number 1. Here, we recall this construction.

Let k be a satellite knot of tunnel number 1 in S3. Let S be the essential torus
lying in the exterior of k as defined above, so S is knotted as a torus knot. Let �
be any of the unknotting tunnels �.1;x/, �.2;x/, �.2;y/, �.1;y/ for k defined
above. Note that � can be expressed as � D �1 [ �2, where �1 is a simple closed
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curve, and �2 is an arc with endpoints in @N.k/ and �1, such that �1 is disjoint from
S and �2 intersects S transversely in one point. The torus S divides S3 into two
parts, denoted by M1 and M2, where, say, k lies in M2.

Note that M2 \N.�2/ is a cylinder R Š D2 � I, such that R \ S is a disc
D1DD2�f1g, and R\N.k/ is a disc D0DD2�f0g. Slide �1 over �2, to get an
arc � with both endpoints in D0� @N.k/, such that �\M2 consists of two straight
arcs contained in R, i.e., arcs which intersect each disc D2 � fxg transversely in
one point. The surface S and the arc � then intersect in two points.

Let k� be an iterate of k and � as in the previous definition. So k�D�[�, where �
is contained in @N.k/. The torus S and the knot k� then intersect in two points. Push
the interior of � into the interior of N.k/, such that now � is a properly embedded
arc in N.k/ whose endpoints lie in D0. Recall that the wrapping number of a knot
in a solid torus is defined as the minimal number of times that the knot intersects any
meridional disc of such a solid torus. We define the wrapping number of the arc �
in N.k/ as the wrapping number of the knot obtained by joining the endpoints of �
with an arc in D0, and then pushing it into the interior of N.k/. This is well defined.

Let D be the family of knots constructed as above and such that any one of the
following conditions is satisfied:

(1) k is not a cable knot, and the wrapping number of � in N.k/ is � 2.

(2) Suppose k is a cable knot. Let A be the annulus spanned by k and S ; that is,
A�M2, then one boundary component of A is in @N.k/ and the other is a
curve on S . We can assume that the part of � lying in M2 is contained in A.
Let B D @N.k/\N.A/; this is an annulus in @N.k/. Assume that D0 � B.
In this case we assume that the wrapping number of � in N.k/ is � 2, and
that the arc � cannot be isotoped, relative to D0, to an arc lying in B.

(3) The wrapping number of � in N.k/ is 1. Embed the solid torus N.k/ in S3

in a standard manner. Let y� be the knot obtained by joining the endpoints of �
with an arc lying in D0. The image of this knot in S3 is a .1; 1/-knot, in fact a
2-bridge knot. In the present case assume that y� is a nontrivial 2-bridge knot.

Note that if none of the above conditions is satisfied then the torus S will be
compressible in E.k�/.

Theorem 2.2. Let k� be a knot in the family D. Then k� is a knot of tunnel number
1 and S is an essential meridional torus which intersects k� in two points.

Proof. The knot k� has tunnel number 1 because it is an iterate of k and � . By
construction k� intersects S in two points. If conditions (1) or (2) are satisfied, then
S is essential by [Eudave-Muñoz 2000, Theorem 2.1]. If condition (3) is satisfied,
then note that k� is also a .1; 1/-knot, and then S is essential by [Eudave-Muñoz
and Ramírez-Losada 2009]. �
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Eudave-Muñoz and Ramírez-Losada [2009] have given a general construction of
.1; 1/-knots that admit essential meridional surfaces. In particular, there are three
families of knots, A, B, and C, that consist of .1; 1/-knots that admit an essential
meridional torus intersecting the knot in two points. For two of these families, A
and B, the essential torus is knotted as a torus knot, while for the family C, the
essential torus is unknotted. Furthermore, if a .1; 1/-knot k admits an essential
torus intersecting it in two points, then k belongs to one of these families.

In this paper we prove the following:

Theorem 2.3. Let k be a knot of tunnel number 1, S a meridional essential torus
which intersects the knot in two points, and � D �1[ �2 an unknotting tunnel for k.
Then one of the following happens:

(1) k is a .1; 1/-knot; or

(2) S \ � D∅, and

(a) S is knotted as a nontrivial torus knot,
(b) the knot �1 is a satellite knot of tunnel number 1, and
(c) k is an iterate of �1 and of an unknotting tunnel for �1.

From Theorem 2.3 and the results of [Eudave-Muñoz and Ramírez-Losada 2009]
we get:

Corollary 2.4. Let k � S3 be a knot of tunnel number 1, S a meridional essential
torus which intersects the knot in two points. Then k belongs to one of the families
A, B, C or D defined above.

3. Some unknotting lemmas

Let M be a compact, orientable, irreducible 3-manifold whose boundary is a torus T .
Suppose � is an unknotting tunnel for M , that is, � is an arc properly embedded in
M such that H DM � int N.�/ is a genus 2 handlebody.

Proposition 3.1. Suppose that � has been slid (over T and over itself ), in such a
way that � D �1[ �2, where �1 is a simple closed curve in the interior of M and �2

is an arc joining T and �1. Suppose that there is no compression disc for T disjoint
from � . Then �1 cannot be contained in a 3-ball B �M .

Proof. Suppose that �1 is contained in a 3-ball B �M . Let ˇ be a curve on @N.�/
which is a cocore of the arc �2, i.e., ˇ bounds a disc in N.�/ which intersects �2 in
one point. There are two cases, either there is a compression disc for @H disjoint
from ˇ, or any compression disc intersects ˇ.

Suppose first that D is a compression disc for @H disjoint from ˇ. By isotoping
D we can assume that @D lies in T or in @N.�1/. If @D lies in T , then either T

is compressible and there is a compression disc disjoint from � , or there exists a
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disc D0� T , with @D0D @D, such that D [D0 bounds a 3-ball in which � lies.
If this happens then by cutting H along D we should get two solid tori, as H is
a handlebody. But then M is a solid torus and there is a compression disc for T

disjoint from � . In both cases this establishes the proposition.
Hence, we may assume that @D lies on @N.�1/. Let F be a copy of @N.�/

slightly pushed into the interior of H ; this is a once-punctured torus properly
embedded in H, whose boundary bounds a disc D0� T , which is a neighborhood
of �2\T . We can assume that @D lies on F, and then by cutting F along D, we
get a disc D00 with @D00D @F D @D0. Note that D00 [D0 must bound a 3-ball in
which � lies. As before, this shows that there is a compression disc for T disjoint
from � .

Suppose now that any compression disc for @H must intersect ˇ. By [Jaco 1984]
or [Casson and Gordon 1987], it follows that by adding a 2-handle along ˇ, we get
an irreducible manifold with incompressible boundary. This is a contradiction, for
what we get is M � int N.�1/, which is reducible, for we are assuming that �1 lies
inside a 3-ball. This completes the proof. �

The next proposition is somehow natural, but it is not so easy to prove because of
certain phenomena. If t1 is a properly embedded arc in a product T �I, where T is
a torus, and T � I � int N.t1/ is a handlebody, then by a result of Frohman [1989],
t1 is isotopic to a straight arc in T � I. But if t1 and t2 are a pair of arcs properly
embedded in T � I such that T � I � int N.t1[ t2/ is a handlebody, then t1 and t2
may not be straight arcs simultaneously in T � I. Now, let t1 be an arc properly
embedded in A� I, with endpoints in A�f0g and A�f1g, where A is an annulus,
such that A�I � int N.t1/ is a handlebody. Then by Jaco’s addition lemma [1984],
t1 is parallel to an arc lying in @.A� I/, but it may not be a straight arc in A� I.

Proposition 3.2. Let M , T and � be as above, and assume that T is incompressible.
Let T 0 be a torus embedded in M which is parallel to T ; that is, T and T 0 cobound
a region homeomorphic to T � I. Suppose that � intersects T 0 in two points. Then
.T �I/\� consists of two straight arcs in T �I, that is, � can be isotoped, without
intersecting T 0 in more points, such that .T �I; .T �I/\�/D .T �I; fx;yg�I/,
where x;y 2 T.

Proof. Let M 0 D M � int T � I. Then M D M 0 [ .T � I/, where @M 0 D

M 0\.T �I/DT 0. We have that H DM� int N.�/ is a genus 2 handlebody. Note
that the arc � cannot be isotoped to be disjoint from T 0, for otherwise T 0 would be
an incompressible torus in the handlebody H, which is not possible. Suppose that
� is divided into 3 arcs � D k1[km[k2, such that k1; k2 � T � I, and km �M 0.
Let zT 0DT 0\H DT 0� int N.k1/[N.k2/; this is a twice punctured torus properly
embedded in H. Note that zT 0 is incompressible in H, for otherwise T 0 would be
compressible in M , or the arc � could be isotoped to be disjoint from T 0.
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Let D be a compression disc for H . Assume that D and zT 0 intersect transversely
and that this intersection is minimal. Label the endpoints of the arcs of intersec-
tion between D and zT 0 with 1 or 2, depending on whether the endpoint lies in
@N.k1/\ zT

0 or in @N.k2/\ zT
0. Let 
 be an outermost arc of intersection in D,

then it bounds a disc D0�D, with @D0D ˛[ 
 , where ˛ is an arc on @H , and the
interior of D0 is disjoint from zT 0.

There are several possibilities for the endpoints of the arc 
 .

(1) The endpoints of 
 are labeled 1 and 2, and ˛ lies in @N.km/. This implies
that the arc km is isotopic to an arc over T 0, and then � can be isotoped to be
disjoint from T 0, which is not possible.

(2) The endpoints of 
 are labeled 1 and 2 and D0 lies in T � I. Then ˛ is an
arc that goes over N.k1/, then over T , and then over N.k2/. This shows
that k1 and k2 is a pair of parallel arcs in T � I. As H is a handlebody, by
cutting H along the incompressible surface zT 0 we get a pair of handlebodies;
one of these is just T � I � int N.k1[ k2/. Note that the disc D0 is properly
embedded in T � I � int N.k1[ k2/. Then by cutting this handlebody with
D0 we get another handlebody, which is homeomorphic to T � I � int N.k1/,
for k1 and k2 are parallel in T � I. This shows that T � I � int N.k1/ is a
handlebody, and then by a result of Frohman [1989], k1 is isotopic to a straight
arc in T �I. As k1 and k2 are parallel, it follows that both are simultaneously
straight in T � I.

(3) The endpoints of 
 are labeled 1 and 1 (or 2 and 2), and D0 lies in T �I. Then
˛ is an arc that goes over N.k1/, then over T , and then again over N.k1/.
The arc ˛ cuts @N.k1/ into two discs, let F be either of them. Then D0[F is
an annulus, in T � I, with one boundary component in T and the other in T 0,
and we can assume that k1 is a spanning arc of the annulus. If 
 is a trivial
arc in zT 0, then it bounds a disc D00� zT 0, such that k 0

2
intersects D00. But this

would imply that k2 is an arc parallel to k1, and then, as in the previous case,
k1 and k2 are simultaneously straight in T � I. Therefore we can assume that
the annulus D0[F has to be isotopic to an annulus of the form ı�I, where ı
is an essential simple closed curve in T . This shows that k1 is a straight arc
in T � I.

If there is another outermost arc in D with endpoints labeled 2 and 2, then k2

would also be a straight arc in T �I, and because there would be two disjoint annuli
containing k1 and k2 respectively, it would follow that both arcs are simultaneously
straight arcs in T � I. We can assume then that all outermost arcs in D have
endpoints labeled 1 and 1, for otherwise we have finished.

Note that there is a pair of parallel arcs in D, one outermost with endpoints
labeled 1 and 1, and one next to it with endpoints labeled 2 and 2. This is because
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Figure 1. Constructing annuli disjoint from � .

any outermost arc has endpoints labeled 1 and 1, and next to any label 1 there is a
label 2. So assume that there are two arcs 
1 and 
2 in D, where 
1 determines a
disc D0, with @D0D ˛[ 
1, where ˛ is an arc that goes over N.k1/, then over T ,
and then again over N.k1/. Then 
1 is an arc on zT 0 which goes from N.k1/

to N.k1/, and 
2 is an arc on zT 0 which goes from N.k2/ to N.k2/. The arcs 
1

and 
2 determine a disc D00�D, such that @D00D 
1[ˇ1[
2[ˇ2, where ˇ1, ˇ2

are arcs on @N.km/. The arc ˛ cuts @N.k1/ into two discs, let F be either of them.
Then D0[F is an annulus A, in T � I, with one boundary component in T and
the other in T 0. Isotope A in T �I such that the arc k1 is a spanning arc of A. The
arcs ˇ1, ˇ2 cut @N.km/ into two discs, let F 0 be either of them. Then D00 [F 0

is an annulus B, properly embedded in M 0. Isotope B in M 0 such the arc km is a
spanning arc of B. The annulus B is then incompressible and @-incompressible,
for otherwise T 0 would be compressible or the arc km would be isotopic to an arc
on T 0. We can assume that A and B have a boundary component in common; then
A[B is an annulus, one of its boundaries components lies in T and the other in T 0.

Take a product neighborhood A� I of A, where A is identified with A�
˚

1
2

	
.

Consider the annulus C D .T 0 � @A � I/ [ .A � f0g/ [ .A � f1g/; note that C

is properly embedded in M , it is @-parallel in M and it intersects � in one point.
Note that A[B and C intersect in a simple closed curve, namely, the boundary
component of A[B lying in T 0. Now take a product neighborhood .A[B/� I

of A [ B, where A [ B is identified with .A [ B/ �
˚

1
2

	
, which intersects C

only in a neighborhood of the curve .A[B/\ C . Consider the pair of annuli
C0[C1D .C �@.A[B/�I/[..A[B/�f0g/[..A[B/�f1g/. Note that C0 and
C1 are in fact a pair of annuli properly embedded in M , which are parallel in M , i.e.,
they cobound a product region C0�I, where C0DC0�f0g and C1DC0�f1g, such
that � is disjoint from C0 and C1, but it lies inside the product region C0 � I (see
Figure 1). Note that C0 and C1 are incompressible and @-incompressible in M , for
these are just extensions of B via T � I to M . Then C0 and C1 are incompressible
annuli in H, but they are @-compressible in H, for H is a handlebody. Then there
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is a disc E in H, such that @E D �0[ �1, where �0 is a spanning arc of C0, say,
and �1 lies on @H , and furthermore, E\C0 D �0, E\C1 D∅. The disc E must
lie in H 0D C0 � I � int N.�/, for otherwise C0 would be @-compressible in M .
Note that H 0 is a handlebody, for it is one of the components obtained by cutting
H along C0[C1.

Take two parallel copies of E, and join them by the disc C0�N.E/, and push
the interior of the resulting disc into the interior of H 0. We get a disc E0, properly
embedded in H 0, whose boundary is disjoint from C0 [ C1. Note that @E0 is
a nontrivial curve in @H 0. Let �0 and �1 be the cores of the annuli C0 and C1

respectively. Note that E0 is a compression disc for @H 0 � �0 [ �1. Let J be a
cocore of � , that is, a curve in @N.�/ which bounds a disc in N.�/ intersecting �
in one point. Note that C0 � I is the manifold obtained by attaching a 2-handle
to H 0 along J. Then there is a compression disc E00 in C0 � I which intersects
�0[ �1 in two points, i.e., E00 is a 2-compression disc for @.C0 � I/ with respect
to �0 [ �1, as defined in [Wu 1992]. Then by Theorem 1 of that paper, there is a
compression disc G for H 0 disjoint from J , which intersects �0[ �1 in at most two
points. As @G is disjoint from J, we can assume that @G lies in @.C0 � I/. There
are two possibilities for G, either @G is a meridian of C0 � I intersecting each �i
once, or @G is a trivial curve in @.C0 � I/ intersecting �0 or �1 twice. In the latter
case @G bounds a disc G0 in @.C0 � I/ such that G [G0 is a sphere bounding a
3-ball which must contain � . Then there is another 2-compression disc for C0 � I

which is a meridian of C0 � I. In any case, it follows that there is a meridian disc
G of C0�I, disjoint from N.�/. By cutting H 0 along this disc we get a solid torus.
But by cutting C0 � I along G, we get a 3-ball containing � ; it follows that � is
an unknotted arc in the 3-ball. This shows that � is an arc parallel to an arc on C0,
and then that k1 and k2 are parallel straight arcs in T � I. �

4. Main proofs

In this section we give a proof of Theorem 2.3.

Proposition 4.1. Let k be a knot of tunnel number 1, S a meridional essential
torus which intersects the knot in two points, and � D �1[ �2 an unknotting tunnel
for k, where �1 is a simple closed curve and �2 is an arc connecting �1 and @N.k/.
Suppose that S and � cannot be made disjoint. Then one of the following happens:

(1) �1 is a trivial knot; or

(2) there is a meridional essential torus S 0 which intersects the knot in two points,
such that S 0\ � D∅, and such that S 0 bounds a solid torus with �1 as its core.

Let k be a knot of tunnel number 1 and S a meridional essential torus which
intersects k in two points. So S D S \E.k/ is a meridional essential surface in
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E.k/ whose boundary consists of two meridians of k. Let � be an unknotting
tunnel for k, so that � may have been slid over itself so that it can be expressed
as � D �1 [ �2, where �1 is a simple closed curve and �2 is an arc connecting �1

and @N.k/. Let � be the intersection point between �1 and �2.
Assume that S has been isotoped such that it intersects � transversely in a finite

number of points, say, S meets �1 in n points and �2 in m points, nCm> 0, and
that this intersection is minimal.

Denote by ˛1; ˛2; : : : ; ˛n the discs of intersection between S and N.�1/, num-
bered in order along �1 as they intersect S , starting at � with an arbitrary choice of
direction. Denote by ˇ1; ˇ2; : : : ; ˇm the discs of intersection between S and N.�2/,
numbered in order along �2 as they intersect S , starting at �, going from � to @N.k/.
Denote by s1 and s2 the boundary components of S (or rather, the discs of intersec-
tion of N.k/ with S ).

Let M D S3� int N.k [ �/, so M is a genus 2 handlebody. Let zS D S \M .

Lemma 4.2. zS is incompressible in M .

Proof. Suppose that zS is compressible. Then there exists a compression disc E

for zS , so that @E bounds a disc E0 in S , because S is incompressible in E.k/, and
E0 must intersect � . If we exchange E0 by E we obtain a surface S 0 isotopic to S

but with fewer intersections with � , which cannot happen because the intersection
of S and � is minimal. �

Let D be a compression disc of M . Assume D has been isotoped to intersect
zS transversely and that it has minimal intersection with zS among all compression
discs for M . If D\ zS contains a simple closed curve, an innermost disc argument
can eliminate it, for zS is incompressible. So we may assume that D\ zS consists
of a collection of arcs. Note that any such arc of intersection is not @-parallel
in zS , for otherwise, if an arc ı in zS is @-parallel, then by cutting D with the disc
determined by ı in zS , we get a compression disc of M with fewer intersections
with zS , a contradiction.

Label the endpoints of the arcs of intersection in D with the labels of the discs
of S \N.�/ or the component of @S in which the points lie. Parts of the proof
of the following lemma are similar to that of Proposition 2.3 in [Eudave-Muñoz
1994]; we include here a proof for completeness.

Lemma 4.3. The number n is 0. Further, if ı is any arc of intersection between D

and zS , which is outermost in D, then both ends of ı have labels ˇ1, and the arc 

of @D determined by such an outermost arc wraps at least once around N.�1/.

Proof. Let ı be an outermost arc on D. Then ı cuts a disc D0�D with D0\ zS D ı

and @D0D ı[ 
 , where 
 is an arc on @N.k [ �/.
There are several possible cases for ı:
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Case 1. One endpoint of ı has label ˛i , and the other ˛iC1, 1 � i < n (or ǰ

and ǰC1, 1� j <m), and 
 is disjoint from N.�/ and from @N.k/.

In this case the surface S can be pushed along D0 to eliminate ˛i and ˛iC1.

Case 2. One endpoint of ı has label ˛1, and the other ˛n, n¤ 1.

Suppose that 
 meets either @N.k/ or N.�/, for otherwise this would be a special
case of Case 1, when nD 2. If m¤ 0, push S along D0. With this move ˛1 and ˛n

convert into a new ˇ1, reducing mC n.
If mD0 and 
 does not meet @N.k/, then push S as before, creating a new ˇ1. If


 meets @N.k/, slide �1 over �2, then slide �1 over @N.k/ and then again slide over
�2 following 
 , without introducing new intersections with S. So D0 is transformed
into a disc as in the previous case, where mD 0 and @D0\ @N.k/D∅.

Case 3. Both endpoints of ı are labeled ˛1 (or both are labeled ˛n).

Note that both endpoints of 
 are in the same side of ˛1, since zS is a 2-sided
surface. Suppose first that m¤ 0. We can isotope 
 to be completely contained
in N.�1/. If 
 does not meet N.�/, then the intersection between @D and zS is not
minimal.

If 
 meets N.�/, then we find a disc E in N.�1 [ �2/ such that E meets �1

once and does not intersect �2; and @E D 
 [˛0
1
, where ˛0

1
is a subarc of @˛1. Let

E0D E [D0, then E0 \ S D @E0D ı [ ˛0
1
. As E0 is contained in E.k/ and S

is incompressible, @E0 bounds a disc E00 in S. There are two cases, depending
whether ˛1 is contained in E00 or it is not. In any case, there must be at least one
intersection of � with E00, other than ˛1, for otherwise the arc ı in zS would be
@-parallel. By exchanging E0 by E00 we obtain a surface S 0 isotopic to S. Suppose
first that the disc ˛1 is not contained in E00. As E0 intersects � once, and E00

intersects � at least once, the new surface has at most as many intersections with
� as S. Note that S 0 \N.�/ contains the disc E [ ˛1, which intersects � in two
points. Then by isotoping S 0, the disc E [ ˛1 becomes a new ˇ1, intersecting �
just once. Then S 0 has fewer intersections with � than S , which is a contradiction.
Suppose now that the disc ˛1 is contained in E00. In this case, E00 intersects � in
at least two points, and E0 intersects � just once. So, S 0 has fewer intersections
with � than S. Note that in this case the intersection of S 0 with N.�/ contains the
disc E. So, we are eliminating ˛1 and some other ˛i or ǰ , and getting a new ˛n.

Suppose now that mD 0. If we can isotope 
 such that it is contained in @N.�/,
then the proof is identical to the previous case. In the other case, a subarc of 

is contained in @N.k/ and does not intersect @S. Slide �1 over �2, such that �
is a properly embedded arc in E.k/. This can be done following 
 such that no
new intersections between zS and D are created. There is a disc E contained in
N.k [ �/, @E D 
 [ ˛1, where ˛0

1
is a subarc of @˛1, and such that E meets k
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once. Let E0DE [D0, then E0\S D @E0D ı[˛1. Since E0 meets k once and
S is meridionally incompressible, @E0 bounds a disc F in S which intersects k

in one point, say it intersects N.k/ in s1. Then E0[F is a sphere which bounds
a ball that intersects k in an unknotted spanning arc, for k is a prime knot. Let
S 0 D .S � F / [ E0; this is a surface intersecting k in two points, so that the
corresponding meridional surface S 0D S 0 \E.k/ is isotopic to S. By slightly
isotoping the tunnel � , we see that S 0 has fewer intersections with � than S , since
at least we eliminated ˛1, which is a contradiction.

Case 4. Both endpoints of ı are labeled ˇm (and if mD 1, suppose that 
 is on
the side of ˇ1 closest to @N.k/).

If 
 can be isotoped on @M such that it is contained in @N.�/, then the intersection
between @D and zS is not minimal. Otherwise, a subarc of 
 is contained in @N.k/
and does not meet @S. Now the proof is identical to that of Case 3 when mD 0,
with ˇm in place of ˛1.

Case 5. One endpoint of ı is labeled ˛1, ˛n or ˇm, and the other si , i D 1; 2.

Suppose first that one endpoint of ı is labeled ˛1 (or ˛n); note that in this
case mD 0. Slide �1 over �2, following 
 , without introducing new intersections
between S and � , until � is an arc properly embedded in E.k/. Now pushing �
along D0, the disc of intersection ˛1 is eliminated. If one endpoint of ı is labeled ˇm,
then push � as before to eliminate ˇm.

Case 6. One endpoint of ı is labeled s1, and the other s2.

As mC n¤ 0, 
 can be made disjoint from @N.�/, by sliding � if necessary.
This implies that S is @-compressible, a contradiction.

Case 7. Both endpoints of ı are labeled si , i D 1; 2.

Again, we can assume that 
 does not intersect @N.�/. As S is @-incompressible,
ı cuts a disc E from S , which may contain some ˛i or ǰ . Note that @E D ı[ s0i ,
where s0i is a subarc of si . Then D0[E, glued along ı, is a disc whose boundary
is in N.k/, and because @N.k/ is incompressible in E.k/, it bounds a disc E0

in @N.k/. Note that E0 must intersect � , for otherwise D can be isotoped along E0,
to reduce the number of intersections between @D and S , which is not possible.
So, D0[E[E0 bounds a 3-ball in E.k/. As � intersects E0, it must also intersect
E in at least one point. Now exchange E with D0, to get an essential surface S 0

isotopic to S in E.k/, with fewer intersections with � . Note that one boundary
component of S 0 is 
 [ s00i , where s00i is the other subarc of si , and that, in fact,

 [ s00i is a meridian of N.k/.

Case 8. One endpoint of ı is labeled ˇ1, and the other ˛1 (or ˛n/.
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Figure 2. Outermost arcs in D.

Pushing S along D0, ˛1 and ˇ1 convert into a curve parallel to ˛n, and this
reduces nCm.

Case 9. Both endpoints of ı are labeled ˇ1, and the arc ı can be isotoped into
N.�2/[N.�/.

If 
 is disjoint from N.�/, then the intersection between @D and zS is not minimal.
If 
 meets N.�/, then it can be arranged such that 
 intersects N.�2/ in two arcs.
There exists a disc E contained in N.�/ such that @E D 
 [ ˇ0

1
, where ˇ0

1
is a

subarc of ˇ1. Let E0DD0[E, then @E0D ı[ˇ0
1

is contained in S , and because
of the incompressibility of S , it bounds a disc D00 in S. We can choose the discs E

and D00 such that �2 meets D00 in a point corresponding to ˇ1, and � intersects E0

once. The disc D00 necessarily intersects � in more points, for otherwise the arc
ı would be @-parallel in zS. Exchanging D00 with E0 we get a surface S 0 isotopic
to S , with m0C n0 <mC n.

With this we have already considered all the possible cases for the arc ı, except
if the ends of ı are in ˇ1 and the arc 
 cannot be isotoped to N.�2/[N.�/, i.e.,

 is wrapped one or more times around N.�1/, but this is possible only if nD 0,
that is, S intersects � only in the arc �2. �

Lemma 4.4. There is a collection of m arcs, say ı1; ı2; : : : ; ım in D \ zS , which
are parallel in D and ı1 is an outermost arc in D.

Proof. D \ zS consists of a collection of arcs in D. We construct a tree in D as
follows: assign a vertex for each region of D� zS , then connect two vertices if their
respective regions are adjacent, that is, they have an arc of D\ zS common. The
resultant graph G is a tree, because D is a disc. The ends of the tree, (that is, the
vertices of degree 1), correspond to the outermost regions of D.
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Figure 3. Curves in @N.�/.

A branch of G is a trajectory that begins at an end of G and finishes in a
vertex of degree > 2, such that the intermediate vertices of the branch are all of
degree 2. If all the vertices of G are of degree 1 or 2, then all the arcs are parallel,
and there are at least 2m such arcs. Otherwise, let G0 be the graph obtained by
eliminating the branches, that is, by clearing the vertices of degree 1 and 2 of
branches and the corresponding edges. Let V be a vertex of degree 1 of G0 (if
vertices of degree 1 do not exist, let V be the unique vertex of G0). Then at least
two branches arrive at V , say r1 and r2 are two adjacent branches that arrive at V .
Let �1 and �2 be the outermost arcs corresponding to r1 and r2, respectively. The
endpoints of �1 and �2 are labeled ˇ1 and ˇ1, by Lemma 4.3. Let � be an arc of
@D that goes from one endpoint of �1 to one endpoint of �2. Then � must cross
labels ˇ1; ˇ2; : : : ; ˇm; ˇm; ˇm�1; : : : ; ˇ2; ˇ1, and perhaps more labels between ˇm

and ˇm. Any arc of intersection that leaves these labels corresponds to an edge of
r1 or r2, by the selection of the branches. This implies that r1[ r2 has at least 2m

edges, and then at least one of the branches has m or more edges corresponding to
m parallel arcs. �

Label with i the endpoints of ıi for 1� i �m. Call E1 �D the disc determined
by ı1. Let ˇ0 be a disc in N.�/ which intersects � just in the point �, such that
@ˇ0 is a curve on @N.�2/ parallel to @ˇ1. E1 \ @N.�/ can be isotoped so that it
intersects ˇ0 in two points which divide E1 \ @N.�/ into three arcs, say 
1; �1

and ı0, where 
1; �1 are in @N.�2/ and ı0 is in @N.�1/ (see Figure 2).
Denote by 
i and �i the arcs in @D with endpoints i � 1 and i . Call Ei � D

the disc determined by ıi ; ıi�1; �i and 
i , for 2 � i �m. The arcs 
i and �i are
contained in @N.�2/ and decompose @ˇi into two arcs, call them ˇ1

i and ˇ2
i , for

0� i �m. Note that ˇ1
i ; ˇ

1
i�1
; 
i and �i , for 1� i �m, determine a disc in @N.�2/,

call it Ci , and ˇ2
i ; ˇ

2
i�1
; 
i and �i also determine a disc, call it C 0i (see Figure 3).

Lemma 4.5. There is an annulus A with interior disjoint from S, such that one of
the boundary components is ı1[ˇ1

1
� S , and the other is ı0[ˇ1

0
� @N.�1/ with

some slope p=q, where q � 2.
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Proof. Note that E1[C1 is an annulus A, where one of its boundary components
is ı1[ˇ1

1
� S , and the other boundary component is ı0[ˇ1

0
, which is contained

in @N.�1/, with some slope p=q. If q D 1, that is, ı0 [ ˇ1
0

only turns once
around N.�1/, then �1 is isotopic to ı1 [ ˇ1

1
on S , so we can push the tunnel

through S , using the annulus A, eliminating one intersection with S corresponding
to ˇ1. Thus q � 2. �

Since S is a torus in S3, it is boundary of a solid torus R. We have two cases,
depending whether �1 is contained in R or not.

Case 1. Suppose that �1 is not contained in R.

In this case the interior of the annulus A is disjoint from R. One boundary
component of A lies in @N.�/, and the other in @RD S .

Lemma 4.6. The core of R is a cable around �1 and @A is a longitude of R, or the
core of R and �1 form a Hopf link.

Proof. The component of @A in N.�1/ is a curve with slope p=q and q � 2 by
Lemma 4.5. If the component of @A in R is a curve with slope r=s and s � 2, then
the unique possibility is that �1 and the core of R form a Hopf link, by [Eudave-
Muñoz and Uchida 1996, Theorem 1(iv)]. Otherwise, the slope of @A in R is
longitudinal, in which case the core of R is a cable around �1. �

If the core of R and �1 form a Hopf link, then �1 is a trivial knot and we are
done. So, we suppose now that the core of R is a cable around �1 and @A is a
longitude of R.

Lemma 4.7. The number of points of intersection, m, is 1.

Proof. Suppose that m� 2, and consider the annulus F DE2[C2, where E2 and
C2 are glued along 
2 and �2, with its boundary lying on S. We have that F �R,
and @F consists of two longitudes of R, so one of these boundary components
is ı1[ˇ1, which is contained in @A. The annulus F divides R into two solid tori,
only one of which intersects the knot, and we can push the arc �2 along the other
solid torus to eliminate at least two intersections with it, which is a contradiction. �

Suppose then that S \ �2 is one point. Let N.A/ be a neighborhood of A such
that z1 D N.A/\R is a neighborhood of ı1 [ ˇ1

1
in S , and N.A/\N.�1/ is a

neighborhood of ı0[ˇ1
0

in @N.�1/. We can assume that N.A/ and k are disjoint.
Let W D R[N.A/[N.�1/. Then W is a solid torus and �1 is a core of W .

Let T1 D @W . The surface T1 is a torus which intersects k in two points.

Lemma 4.8. Either the punctured surface T1� k is incompressible in S3� k, or
�1 is a trivial knot.
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Figure 4. Constructing parallel annuli.

Proof. We prove first that T1 � k is incompressible in W � k. Note that z1 is an
annulus properly embedded in W , with slope p=q, which does not meet k. Suppose
Q is a compression disc for T1� k. Then Q\ z1 consists of simple closed curves
and arcs, and the simple closed curves can be eliminated, because z1 is essential
in W . Now we take an outermost arc � in Q. If � is trivial in z1, then we can
isotope Q to eliminate intersections with this annulus. If � is essential in z1, then
the outermost disc determined by z1 in Q is contained in R, since q � 2. This
implies that S is compressible in R� k, which is not possible.

If T1�k is compressible in S3� int W , we have two cases, either the boundary
of a compression disc Q is essential in the torus T1, or is trivial in that torus. If the
curve @Q is essential in T1, we have that the solid torus W is unknotted and then
�1 is a trivial knot.

If the curve @Q is trivial in T1, then it bounds a disc Q0� T1, which meets
k in two points. If W is unknotted, then �1 is a trivial knot. Suppose that W is
knotted; exchanging Q0 for Q, we have a bigger torus T 0

1
, parallel to T1, which

does not touch the knot. The torus T 0
1

is incompressible in S3� int N.k[�/, since
it bounds a knotted solid torus and �1 is a core of W , but this cannot happen because
S3� int N.k [ �/ is a handlebody. �

In this case we concluded that either �1 is a trivial knot, or that there is another
meridional essential torus which intersects k in two points that is disjoint from � ,
and such that �1 is a core of the solid torus bounded by T1.

Case 2. Suppose that �1 is contained in R. In this case �1 is a core of R.

Lemma 4.9. Either mD 1, or �1 is a trivial knot.

Proof. Suppose that m � 2. Let F2 be defined as before, F2 D E2 [C2, where
E2 and C2 are glued along 
2 and �2, with its boundary lying on S. Now F2 is
not contained in R. Note that @F2 consists of two curves in @R, with slope p=q

and q � 2. That is, F2 is an annulus in the exterior of R, and F2 is parallel to an
annulus G2 � @R, since the slope of its boundary is not integral. If k is not in the
region bounded by F2[G2, we can eliminate two intersections with � , by pushing
�2 through the solid torus with boundary F2[G2. Suppose then that k is in such a
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ˇ
1

ˇ
1
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1

ˇ
1

ˇ
1

ˇ
1

Figure 5. Outermost arcs in D when mD 1.

region. Consider any other of the annuli Fi defined as before, Fi DEi [Ci , where
Ei and Ci are glued along 
i and �i , with its boundary lying on S. Suppose that
Fi is not contained in R. Again, Fi is parallel to an annulus Gi � @R and k must
be contained in the region bounded by Fi [Gi . This shows that F2 and Fi must
be parallel (see Figure 4).

Let Fj be the annulus not contained in R, bounding a maximal parallel region
between Fj and Gj . Let T D .@R�Gj /[Fj . By slightly pushing T , we have that
T \ � D ∅, and T \ k D ∅. The torus T bounds a solid torus R0 with �1 as its
core. If �1 is not the trivial knot, then T is incompressible in S3�N.k[�/, which
is not possible, for S3�N.k [ �/ is a handlebody. Then �1 is a trivial knot. �

Suppose now that m D 1. Remember that D denotes a meridian disc of
S3� int N.k [ �/. By Lemma 4.3 we have that nD 0, and we can suppose that
the intersections of the disc D with S consist of collections of arcs in D, where the
outermost arcs have ends in ˇ1.

We construct a tree in D as in the proof of Lemma 4.4. Consider the graph
obtained by cutting the outermost vertices, and choose one of the outermost vertices
in the new graph. Now we consider the region F associated with this vertex. This
disc is bordered by intersection arcs where all the arcs are outermost arcs except at
most one, which we denote by �.

The outermost arcs have endpoints in ˇ1, and the endpoints fa; bg of the arc �
are one of the pairs from the set ffs1; s2g; fsi ; sig; fsi ; ˇ1g; fˇ1; ˇ1gg, with i D 1

or 2 (see Figure 5).

Case 1. The arc � in the region F has its endpoints in {s1; s2}. The arc � connects
s1 with s2. Let 
 be an arc in @N.k/, lying in the part of N.k/ which is in the solid
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torus R, so that @
 D @�. Let L the link formed by �1 and 
 [�. Note that �� @R,
and that the interior of 
 is inside R. We will show that L has an unknotting tunnel.

Let k 0 be the arc of k lying in the exterior or R. Let ki be an arc in @N.k 0/ that
connects si and the point �2 \N.k 0/, i D 1; 2. Assume that k1 \ k2 is just the
point �2\N.k 0/. Suppose that N.k 0/DN.k1/[N.k2/. An unknotting tunnel O�
for L is formed by the union of �2 and k1. Let F 0 be the disc in D cut by � and
which contains F. Note that @F 0D �[ �, where � is an arc in N.k 0/[N.�/, and
furthermore � D �1 [ �2 [ �3, where �1 � @N.k1/ and �3 � @N.k2/. We slide
� along O� , following �, by first sliding � over N.k1/, then sliding � over N.�2/,
then sliding � over N.�1/, and so on. We do this according to @F 0, until we get
to the point �2 \ �3. Now we push the previous arc (equivalent to �[ �1 [ �2)
through F 0, deforming it into �3. We see that a neighborhood of the complex

L[ O� D �[ 
 [ k1[ �2[ �1

is deformed into a neighborhood of the complex

k2[ k1[ 
 [ �2[ �1 D k [ �:

This proves that O� is a tunnel for L.
We can isotope the link L into R, since �� @R and the interior of 
 is inside R.

This link has a tunnel number 1 and does not meet S . By the classification [Eudave-
Muñoz and Uchida 1996] of links which have tunnel number 1 and contain an
incompressible torus in their exteriors, this cannot happen unless �1 is the trivial
knot, and in this case we have the first assertion of Proposition 4.1.

In what follows, suppose that the arc �2 is very short, that is, isotope �2 until it
is almost contained in the boundary of the solid torus R. Let R0 be the solid torus
R0D R[N.�2/, and let S 0D @R0. Note that S 0 intersects k in four points, and
then there are two arcs of k in the complement of R0, say k1 and k2, where ki is
the arc with one endpoint in si , i D 1; 2.

Case 2. The arc � in the region F has its ends in {si ; si}, i D 1; 2.
Suppose without loss of generality that the arc � in S connects s1 with s1. In S

we have a collection of arcs with ends in ˇ1, which correspond to the outermost arcs
determined by F. These arcs are parallel in S , since each outermost disc determines
an annulus with boundary in S and @N.�1/, like in Lemma 4.5. Furthermore the
boundary of each of these annuli in S is a curve with slope p=q, with q � 2. Since
the arc � is disjoint from these curves, there are two possibilities for this arc. Either
it bounds a disc or punctured disc D0 in S , or with a subarc of s1 is a curve of slope
p=q in S.

If � bounds such a disc D0, then there is an intersection arc between S and D,
which is trivial and outermost in S. This is clear if s2 is not contained in D00. If s2

is contained in D00, then there is a trivial arc with endpoints in s2, as @D intersects
s1 and s2 in the same number of points. This is not possible.
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Then we have that � with a subarc of s1 is a curve of slope p=q in S. We can
consider F as a disc whose boundary consists of the arc �, two arcs �1 and �2

in N.k1/, plus one arc �0 in S 0. Note that �1 and �2 are parallel in N.k1/; that
is, there is a disc G in @N.k1/, such that F \G D �1 [ �2. Let H D F [G.
This is an annulus whose boundary is contained in S 0, and each of these curves
has slope p=q. Then H is an annulus properly embedded in the exterior of R0 and
its boundary consists of curves with nonintegral slope. Then H is parallel to an
annulus H 0 contained in S 0, that is, H and H 0 bound a solid torus. Let

T DH [ .S 0�H 0 /;

and push this torus slightly such that the arc k1 is contained in the interior of the
solid torus bounded by H and H 0.

We have two possibilities: 1) T is disjoint from k and � . This case is not
possible if R is knotted, for T would be an incompressible torus in the handlebody
S3�N.k[ �/, which is not possible. So, �1 must be a trivial knot. 2) The torus T

intersects k in two points and does not meet � . We claim that T is incompressible
in E.k/ or that �1 is a trivial knot. Note that T and S cobound a product region,
and each of these tori intersects k in two points. So T must be incompressible
in the region containing R. Suppose that there is a compression disc E lying in
the region not containing R. Let 
 D @E. Then we have two cases: 
 is essential
in T or 
 is trivial in T (without considering the intersections with k). If 
 is
essential in T , then T is not knotted, so �1 is a trivial knot. If 
 is trivial in T ,
then it bounds a disc E0� T . Since 
 is essential in T �N.k/, E0 must contain
the intersection points between k and T , then the arc of k is contained in the ball
bounded by E [E0. Now,

T 0D .T �E0/[E

is a torus which intersects neither k nor � . If T 0 is incompressible in S3�N.k[�/,
then there would be an incompressible torus in S3�N.k[�/, which cannot happen.
If T 0 is compressible, then it is not knotted, so �1 is a trivial knot.

We conclude that either �1 is a trivial knot, or that there is another torus T

intersecting k in two points, incompressible in E.k/, disjoint from � , but such that
�1 is a core of the solid torus bounded by T .

Case 3. The arc � in the region F has its ends in {si ; ˇ1}, i D 1; 2. Suppose
without loss of generality that the arc � connects s1 with ˇ1. We can suppose that
@F consist of the arc �, an arc �1 in N.k1/, plus an arc in S 0. Push the arc k1,
using the disc F, until it is in a neighborhood of R0. We can take a bigger torus T ,
which does not intersect the tunnel and meets k twice.

We claim that T is incompressible in E.k/ or that �1 is a trivial knot. The proof
is similar to the proof in the previous case.
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Case 4. The arc � in the region F has the ends in {ˇ1; ˇ1}. In this case all the arcs
have the ends in ˇ1. We can assume that @F lies in the torus S 0. If the boundary
of the disc F is nontrivial in S 0, the torus R0 cannot be knotted and then �1 is a
trivial knot. If the boundary of F is trivial in S 0, then for homological reasons, the
arc � must be parallel in S 0 to the other arcs with ends in ˇ1, and there are in total
an even number of arcs with ends in ˇ1. It follows that F bounds a disc E in S 0,
which contains the two points of intersection of k with @N.�2/. Then both arcs
k1 and k2 are inside the 3-ball bounded by F [E, and by exchanging F for E,
we find a bigger torus which does not intersect k nor � . As before, the torus is
unknotted, i.e., �1 is a trivial knot.

This completes the proof of Proposition 4.1. �
Let k be a knot of tunnel number 1 and S a meridional essential torus for .S3; k/,

which intersects the knot in two points. As before, let SDS\E.k/. Let �D �1[�2

be an unknotting tunnel for k such that S \ � D ∅. The surface S divides S3

in two parts S3 D V [W , and one of them is a solid torus. Suppose that � is
contained in V . Let M D S3 � int N.k [ �/. Then M is a handlebody, and S

divides M in two handlebodies, say M D V 0[W 0, where V 0D V � int N.k [ �/

and W 0DW � int N.k/.

Lemma 4.10. V is a solid torus and W is not a solid torus.

Proof. Suppose that W is a solid torus. As W 0 is a handlebody, @W 0 is compressible.
Let c be the boundary of a meridian disc of k which is in W . Note that @W 0� c is
incompressible in W 0, for otherwise S would be compressible. Applying Jaco’s
addition lemma [1984], we have that W 0Œc� has incompressible boundary (where
W 0Œc� denotes W 0 with a 2-handle attached along the curve c). On the other hand
W 0Œc�DW which has compressible boundary, and this is not possible. Therefore
W cannot be a solid torus, and then V is a solid torus. �

This implies that V is knotted in S3. As V is a solid torus, we have 3 cases:

(a) �1 is inside a 3-ball in V ;

(b) �1 is a core of V ; or

(c) �1 is essential in V (that is, cases (a) and (b) do not happen).

Lemma 4.11. Case (b) cannot happen, and if case (a) happens, �1 is a trivial knot.

Proof. Suppose that case (a) happens; that is, �1 is inside a 3-ball B contained
in V . Then k \V consists of an arc k 0 properly embedded in V . Let k 0D k1[ k2,
where k1 and k2 are arcs such that k1 \ k2 D k \ �2. Let D be a compression
disc for M . The intersection between S and D consists of simple closed curves
and arcs, and the simple closed curves can be deleted as usual, because S \M

is incompressible in M. Let 
 be an outermost arc in D, so 
 cuts a disc F. If
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F were contained in W 0, it would be a @-compression disc for S , which is not
possible. Then F � V 0. Note that @F D 
 [ˇ, 
 � S and ˇ � N.k [ �/. Then
ˇDˇ1[ˇ2[ˇ3, where ˇ1 is contained in @N.ki/, ˇ2 is contained in @N.�2[�1/

and ˇ3 is contained in @N.kj /. Suppose first that i ¤ j . Shrink �2 into �1, such that
k1 and k2 can be seen as arcs with one endpoint in @N.�1/. Then the arc ˇ can be
seen as ˇDˇ1[ˇ2[ˇ3, where ˇ1 and ˇ3 are as before and ˇ2 is an arc on @N.�1/.
By sliding k1 along @N.�1/ following ˇ2, we see that k1 and k2 are parallel arcs;
that is, there is a disc F 0 in V 0 such that @F 0D 
 [ˇ1[ˇ

0
2
[ˇ3, where ˇ0

2
is an arc

in N.�/, disjoint from a meridian of �1. Cut V 0 along F, to get a handlebody V 00,
which is homeomorphic to V �N.�1[ k 00/, where k 00 is an arc with endpoints on
S and �1 (it can be considered as k1). This is not possible by Proposition 3.1.

Suppose now that ˇ1 and ˇ3 are both contained in @N.k1/. Shrink �2 into �1

again, such that k1 and k2 can be seen as arcs each with one endpoint in @N.�1/.
There is a disc C � @N.k1/ such that C [ F is an annulus with one boundary
component, say C1, lying on S , and the other boundary component, C2, lying
on @N.�1/. The closed curve C2 is either trivial in @N.�1/ or it is essential. Suppose
first that C2 is trivial in @N.�1/. Then it bounds a disc E � @N.�1/ which contains
an endpoint of k2. If C1 is trivial on S , then k2 must be an arc parallel to k1, and we
proceed as in the previous case. If C1 is nontrivial on S , then it must be a meridian
of S , for C[F[E is a disc in V with boundary C1. By taking a copy of C[F[E

and pushing it to be disjoint from k1[�1, we get a disc whose boundary is a meridian
of S and which intersects k2 in one point, and then it is a meridian disc that intersects
k in one point. This is not possible because S is meridionally incompressible.

Suppose now that C2 is essential in @N.�1/. Assume that the annulus C [F and
the sphere @B intersect transversely, and note that @.C [F / is disjoint from @B. Let
˛ be an innermost curve of intersection on @B. If ˛ is a trivial curve in C[F, we can
find another 3-ball containing �1 whose boundary has fewer intersections with C[F.
If ˛ is essential in C [F, then by cutting C [F with the disc in @B bounded by ˛
we get an embedded disc whose boundary is C1. If C1 is not a longitudinal curve in
@N.�1/, this implies that there is a punctured lens space embedded in V , which is
impossible. So, C1 must be a longitude of @N.�1/, and then �1 must be a trivial knot.

Suppose now that case (b) happens; that is, �1 is a core of V . As above, let k 0 be
the arc k\V , such that k 0Dk1[k2, where k1 and k2 are arcs with k1\k2Dk\�2.
Slide k2 over �2, getting two arcs, k 0

1
and k 0

2
, each with one endpoint on S and

one in �1. By Proposition 3.2, it follows that k 0
1

and k 0
2

are a pair of simultaneously
straight arcs in the space product V �N.�1/. By sliding back k 0

2
over k 0

1
, we see

that k 0 is an arc in V that is isotopic to an arc contained in @V . This implies that
T is compressible in S3� k, a contradiction. �
Proof of Theorem 2.3. Let k be a knot of tunnel number 1, S a meridional essential
torus which intersects the knot in two points and � D �1[ �2 an unknotting tunnel
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for k. Suppose first that � cannot be made disjoint from S . Then by Proposition 4.1,
either �1 is a trivial knot, or there is another essential meridional torus S 0, which
intersects k in two points, is disjoint from � , and such that �1 is a core of the
solid torus bounded by S 0. However, the existence of such a torus contradicts
Lemma 4.11, so this case is not possible. Therefore, �1 is a trivial knot, and by
Lemma 2.1, k is a .1; 1/-knot.

Suppose now that � and S are disjoint. By Lemma 4.10, S bounds a solid torus
V in which � lies. Then by Lemma 4.11, either �1 is a trivial knot, and then k is a
.1; 1/-knot, or we have case (c), that is, �1 is an essential curve in V . So, suppose
that case (c) happens. Then S is essential in S3� �1 and �2[ k is a tunnel for �1.
Then �1 is a satellite knot with tunnel number 1, and this implies that S is knotted
as a torus knot, by the result of Morimoto and Sakuma [1991]. Slide k over �2 until
it becomes an arc k 0 with endpoints on �1. Then k 0 has to be one of the unknotting
tunnels for �1 as classified by Morimoto and Sakuma [1991]; that is, by sliding k 0

over @N.�1/ we get an arc � which is one of the tunnels �.1;x/, �.2;x/, �.2;y/
or �.1;y/ for �1, as defined in Section 2. To get k from �, we have to slide �
over @N.�1/ and then over itself, but this is equivalent to taking an arc on @N.�1/

joining the endpoints of �, in fact the arc 
 determined by the sliding of � over
@N.�1/, and then taking the iterate of � and �1 using the arc 
 .

This completes the proof of Theorem 2.3. �
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ON BISECTIONAL NONPOSITIVELY CURVED COMPACT
KÄHLER–EINSTEIN SURFACES

DANIEL GUAN

We prove a conjecture on the pinching of the bisectional curvature of non-
positively curved Kähler–Einstein surfaces. We also prove that any compact
Kähler–Einstein surface M is a quotient of the complex two-dimensional
unit ball or the complex two-dimensional plane if M has nonpositive Ein-
stein constant and, at each point, the average holomorphic sectional curva-
ture is closer to the minimum than to the maximum.

1. Introduction

In [Siu and Yang 1981] the authors conjectured that any compact Kähler surface
with negative bisectional curvature is a quotient of the complex two-dimensional
unit ball. They proved that there is a number a ∈

( 1
3 ,

2
3

)
such that if, at every

point P , Kav − Kmin ≤ a[Kmax − Kmin] then M is a quotient of the complex
ball. Here Kmin, Kmax and Kav is the minimal, maximal and average value of the
holomorphic sectional curvature, respectively. The number a they obtained was
a< 2/

(
3
[
1+

√
6
11

])
< 0.38 (see [Polombo 1992, p. 398]). In [Hong et al. 1988], Yi

Hong pointed out that this is also true if a≤ 2/
(
3
[
1+

√
1
6

])
< 0.476. We observed in

[Hong et al. 1988, Theorem 2] that if a ≤ 1
2 , then there is a ball-like point P . That

is Kmax = Kmin at P . We notice here that
√

1
6 >

1
3 . Therefore, we conjectured in

[Hong et al. 1988] that M is a quotient of the complex ball if a = 1
2 . In general,

we believe that we might not get a quotient of the complex ball if a > 1
2 . Around

1992 Hong Cang Yang almost proved this conjecture except for some technical
difficulties, see the argument of Theorem 1.2 in [Chen et al. 2011]. Polombo [1988;
1992] used a different method and proved that a can be (3+ (4

√
3)/3)/11< 0.48

(according to [Chen et al. 2011, p. 2628 right before Theorem 1.2]), see [Polombo
1988, p. 669] or [Polombo 1992, p. 398]. In [Chen et al. 2011], the authors improved
the constant to a < 1

2 which gave a proof of a weaker version of the conjecture.
We first notice that in the proof of Theorem 2 in [Hong et al. 1988] (for which

this author was responsible) we proved that if Kav− Kmin =
1
2 [Kmax− Kmin] at P ,

MSC2010: 32M15, 32Q20, 53C21, 53C55.
Keywords: Kähler–Einstein metrics, compact complex surfaces, bisectional curvature, pinching of

the curvatures.
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then P must be a ball-like point (for this part, any negativity of the curvature is not
needed except to use the result from [Siu and Yang 1981] when A = B). See the
remark after the Theorem 1 in [Hong et al. 1988]. According to [Siu and Yang 1981,
p. 485, Proposition 4] the subset of ball-like points is either the whole manifold
or a real codimension two analytic subvariety. Since the function considered in
Theorem 1.2 of [Chen et al. 2011] is bounded, it can be extended to all of M , is a
constant and must be zero. Notice that we only need that the bisectional curvature
is nonpositive. With this in mind, we also have the possibility of the flat case. That
is, the manifold could also be a quotient of C2 if the Einstein constant is zero. This
case should also be included in the main theorem of [Siu and Yang 1981, p. 472]
and Theorems A and 1 of [Hong et al. 1988].

Since [Hong et al. 1988] was only written in Chinese, we provide a mostly self
contained account here. Also, Polombo [1988; 1992] had something more general
than stated above. Therefore, we generalized our result to the case of nonpositive
Einstein constant.

Theorem. Let M be a connected compact Kähler–Einstein surface with nonpositive
scalar curvature, if we have

Kav− Kmin ≤
1
2 [Kmax− Kmin]

at every point, then M is a compact quotient of either the complex two-dimensional
unit ball or the two-complex-dimensional plane.

This note is written in such a way that experts who are familiar with [Hong
et al. 1988; Chen et al. 2011] will be able to understand the proof of the conjecture
stated in those works from the present introduction. For those only familiar with the
second of those references, the present Section 2 should be enough to understand
the proof of the conjecture. Notice that we do not need the nonpositivity of the
bisectional curvature except to apply the result of [Siu and Yang 1981] or [Chen
et al. 2011] to the case A = B. We shall give a complete proof of the conjecture in
Section 3, with a simpler explanation than that of [Chen et al. 2011] for the last
step, that also explains away the mystery of the negativity. In Section 4, we apply
these methods to prove our theorem.

To the author, the conjecture in [Siu and Yang 1981] is very important to complex
geometry. This work is heavily dependent on earlier works in this subject. Although
we are able to prove the conjecture from [Hong et al. 1988; Chen et al. 2011] and
our main theorem, there is more work which needs to be done in the direction
of compact complex surfaces with negative holomorphic bisectional, or even real,
sectional curvatures. Therefore, the author thinks that it is proper to write this paper
with an emphasis on the nonpositive holomorphic bisectional curvature case instead
of the case of our main theorem.
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2. Existence of ball-like points

Here, we repeat the argument in the proof of Theorem 2 in [Hong et al. 1988].

Proposition 1 [Hong et al. 1988, p. 597–599]. Suppose that

Kav− Kmin ≤
1
2 [Kmax− Kmin]

for every point on the compact Kähler–Einstein surface with nonpositive holomor-
phic bisectional curvatures. There is at least one ball-like point.

Proof. Throughout this paper, as in [Siu and Yang 1981; Chen et al. 2011], we
assume that {e1, e2} is a unitary basis at a given point P with

R1111 = R2222 = Kmin,

R1112 = R2221 = 0,

A = 2R1122− R1111 ≥ 0,

B = |R1212|.

As in [Siu and Yang 1981], we always have A≥ |B| and we assume that B = R1212
(i.e., the latter is nonnegative).

If P is not a ball-like point, according to [Siu and Yang 1981], we can do as
above for a neighborhood U (P) of P whenever A > B (Case 1 in [Siu and Yang
1981], page 475). We should handle the case in which A = B at the end of this
proof. We write

α = e1 =
∑

ai∂i ,

β = e2 =
∑

bi∂i ,

S1111 = R(e1, e1, e1, e1)=
∑

Ri jklai a j akal,

and so on. In particular, we have

S1111 = S2222 = Kmin, S1112 = S2221 = 0.

According to [Siu and Yang 1981], we have

Kmax = Kmin+
1
2(A+ B),

Kav = Kmin+
1
3 A,

1
3 [Kmax− Kmin] ≤ Kav− Kmin ≤

2
3 [Kmax− Kmin].

Our condition in Proposition 1 is therefore equivalent to A≤ 3B. As in [Hong et al.
1988], we let 81 = |B|2/A2

= τ 2.
If there is no ball-like point, since 1

3 ≤ τ ≤ 1, there is a minimal point.
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We shall calculate the Laplacian of 81 at a minimal point, which is not ball-like.
For example, when A = 3B, the minimum 81 =

1
9 , is achieved. The Laplacian at

that point should be nonnegative.
We let

xi =∇i81 = 2 τ
A
[Re∇i S1212+ 3τ∇i S1111].

As we pointed out earlier, we first assume that A does not equal B, then we can
apply the argument in case 1 of [Siu and Yang 1981, p. 475] at the minimal point
since A > B.

As in [Siu and Yang 1981; Hong et al. 1988; Chen et al. 2011], we have

1R1111 =−AR1122+ B2, 1R1212 = 3(R1122− A)B.

At P we have a1 = b2 = 1, a2 = b1 = 0, ∇a1 = ∇b2 = 0 and ∇a2 +∇b1 = 0.
Therefore, we write yi1 =∇i a2 and yi2 =∇i a2. We also have

1(a1+ a1)=−|∇a2|
2, 1(a2+ b2)= 0, ∇i R1112 =−Ayi1− Byi2,

since

0=∇S1112 =∇R1112+ 2R2112∇a2+ B∇a2+ R1111∇b1,

i.e.,

∇R1112 =−A∇a2− B∇a2.

This also gives a similar formula for ∇i R1112. Similarly,

∇S1111 =∇R1111,

∇S1212 =∇R1212,

1S1111 =−2A
∑
|y|2− 4B Re

∑
yi1 yi2− AR1122+ B2,

Re1S1212 = 4A
∑

Re yi1 yi2+ 2B
∑
|y|2+ 3(R1122− A)B.,

∇1S1212 =−Ay22− B y21,

∇2S1212 = Ay11+ By12,

∇1S1212 =−A(6τ 2
− 1)y22− 5Aτ y21+ x1,

∇2S1212 = 5Aτ y12+ A(6τ 2
− 1)y11+ x2.
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As in [Hong et al. 1988, p. 598] at P we have

181 =
2τ1B

A
+

6τ 2

A
1S1111+

1
A2

∑(
|∇S1212|

2
+ |∇S1212|

2)
+

54τ 2

A2

∑
|∇S1111|

2
+

12τ
A2

∑
Re
(
∇i S1111(∇i (S1212+ S2121))

)
= 2τ

[
3Aτ(τ 2

− 1)− 4τ
∑
|y|2+ 4(1− 3τ 2)

∑
Re(yi1 yi2)

]
+ |y22+ τ y21|

2
+ |y11+ τ y12|

2

+
1
A2

[∣∣x1+ A[(1− 6τ 2)y22− 5τ y21]
∣∣2

+
∣∣x2+ A

[
(6τ 2
− 1)y11+ 5τ y12

]∣∣2]
− 18τ 2[

|y12+ τ y11|
2
+ |y21+ τ y22|

2]
+

12τ
A
[
Re[(y21+ τ y22)x1] −Re[(y21+ τ y11)x2]

]
Here we notice that 181 has two general terms. The first term is constant with

respect to x and y, and is always nonpositive since 1
3 ≤ τ ≤ 1.

The second term can be regarded as a hermitian form h in x and y. We can
separate x and y into two groups: x1, y2 j in one group and x2, y1 j in the other.
These two groups of variables are orthogonal to each other with respect to this
hermitian form. That is, h = h1+ h2 where h1 and h2 depend only on the first and
second group of variables, respectively.

We need to check the nonpositivity for each term.
For x2, y11, y12, the corresponding matrix of h2 is 1/A2

−1/A −τ/A
−1/A 2(9τ 2

− 1)(τ 2
− 1) 0

−τ/A 0 0

 ,
and the matrix for h1 of x1, y21, y22 is1/A2 τ/A 1/A

τ/A 0 0
1/A 0 2(9τ 2

− 1)(τ 2
− 1)

 .
When P is a critical point of 81, then x1 = x2 = 0. The matrix for y is clearly

seminegative. Therefore, if there is no ball-like point, then we have, at the minimal
point of 81, that τ 2

= 1 or A = 0 since τ ≥ 1
3 .

If A = 0, then we have a ball-like point, and we are done.
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On the other hand,1 if τ =1, we have A= B at P . Since P is a minimal point, this
implies that A= B on the whole manifold. According to [Siu and Yang 1981, p. 475,
case 2], we have smooth coordinates with Kmax = R1111. (Fortunately, this works
whenever A= B. In general, the original argument might not always work since one
might not have A = B in a neighborhood. However, as was pointed out in [Siu and
Yang 1981, case 1], under our condition the directions for Kmax are always isolated.
Therefore, it might be better to choose Kmax instead of Kmin from the very beginning.
But this is not in the scope of this paper.) Using this new coordinate, we can define
similar functions A1 and B1. In general, B1 =

1
2(A− B) and A1 = −

1
2(A+ 3B).

In our case, B1 = 0 and A1 = −2A. Using this new coordinate, one can do the
calculation for any of the functions in [Siu and Yang 1981; Polombo 1988; 1992;
Chen et al. 2011] that the set of ball-like points is the whole manifold. If one
does not like Polombo’s function 8α [1992, p. 418] with α =− 8

7 , then one might
simply use the function with α =−1 (in [Polombo 1988; Polombo 1992], not the
vector we mentioned in this paper earlier), i.e., the new function is proportional to
82= (3B− A)A. In our case, this is just 2A2. We can apply81/3

2 . This is relatively
easy and is left to the reader. We can also use the argument in [Siu and Yang 1981,
case 1], in which the minimal vectors are not isolated but they are points in a smooth
circle bundle over the manifold so we could choose a smooth section instead.

Also, the preceding paragraph is not needed in Corollary 2 and Lemma 3 since,
in those two propositions, we already have A= 3B. With A= B, one could readily
get that A = B = 0.

If A = 0, Kmax = Kmin and P is a ball-like point, then we have a contradiction.
Therefore, the set of ball-like points is not empty. �

Observe that if A= 3B at P , then81 achieves the minimal value at P and A 6= B
unless P is a ball-like point. That is the first part of the proof of Proposition 1 goes
through. That is, P must be a ball-like point.

Corollary 2. Assume the above, if Kav− Kmin =
1
2 [Kmax− Kmin] at P , then P is a

ball-like point.

Therefore, we have:

Lemma 3. If Kav−Kmin≤
1
2 [Kmax−Kmin] on M , then Kav−Kmin<

1
2 [Kmax−Kmin]

on M − N , where N is the subset of all the ball-like points.

Therefore, we can apply the argument of [Chen et al. 2011]. To do that one
needs the following proposition:

Proposition 4 (see [Siu and Yang 1981] and [Hong et al. 1988, Theorem 3]).
If N 6= M , then N is a real analytic subvariety and codim N ≥ 2.

1This paragraph is not needed for the proofs of Corollary 2 and Lemma 3. Also, in this special
case, the original frame in [Siu and Yang 1981] works. So, one could apply [Siu and Yang 1981].
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As in [Siu and Yang 1981], Proposition 4 gives us a way to the conjecture
by finding a superharmonic function on M which was obtained by Hong Cang
Yang around 1992. In [Siu and Yang 1981; Hong et al. 1988], the authors used
8= 6B2

− A2. Polombo [1992, p. 417, Lemma] used (11A−3B)(B− A)+16AB.
One might ask why do we need another function, why do we not use 81? The
answer is that by a power of 81 we can only correct the Laplacian by |∇81|

2. But
that could only change the upper left coefficients of our matrices as it only provides
|x |2 terms. In the case of 81, it does not work since τ/A 6= 0 but the coefficients
of |y12|

2 and |y21|
2 are zeros. Therefore, we need another function, which was

provided by Hong Cang Yang.

Remark 5. Whenever there is a bounded continuous nonnegative function f on
M such that f (N )= 0, f is real analytic on M − N and 1 f ≤ 0 on M − N , then
f = 0. Here N could be just a codimension two subset. This is in general true
for extending continuous superharmonic functions over a codimension two subset,
see [Siu and Yang 1981; Hong et al. 1988; Chen et al. 2011]. Here, we would
like to give our own reasons why this is true in these special cases. If we define
Ms = {x ∈ M |dist(x,N )≥s} and hs = ∂Ms , then the measure of hs is smaller than
O(s) when s tends to zero. Therefore,

0≥ ln 2
∫

M2δ

1 f ωn
≥

∫ 2δ

δ

[∫
Ms

1 f ωn
]

s−1 ds =
∫ 2δ

δ

[∫
hs

∂ f
∂n

dτ
]

s−1 ds.

But, by applying an integration by parts to the single variable integral, the last term
is about (δ)−1

∫
h2δ
( f −g) dτ→ 0, since f is bounded and f −g tends to 0 near N ,

where g is the f value of the corresponding point on hδ. For example, if f = ra

with a > 0, then

∂ f
∂n
= ara−1

= asa−1 and
∫

hs

∂ f
∂n

dτ = O(sa)→ 0.

Therefore, 1 f = 0 on M − N . Hence f extends over N as a harmonic function.
This implies that f = 0 on M .

Now, let f = (3B − A)a , this is natural after the proof of Proposition 1, we
will show in the next section that 1 f ≤ 0 for a ≤ 1

3 (see the proof in [Chen et al.
2011]). Therefore, A = 3B always. By Corollary 2, we have A = B = 0. This
function is also related to the functions in [Polombo 1992, p. 417] with a1 = a3 = 0.
Polombo had to pick up functions with a1 = a2 to avoid a complication of the
singularities. See page 406 and the first paragraph in page 418 in [Polombo 1992]
and the last paragraph of page 668 in [Polombo 1988]. We shall completely resolve
the difficulty in the next section.
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3. Hong Cang Yang’s function

Let 9 = 3B− A. Around 1992 Hong Cang Yang considered f =91/3.

Lemma 6 [Chen et al. 2011, p. 2630 (13)]. We have

1(3B−A)=3
[
9R1122+B(B−3A)

]
+

3
B |∇(Im R1212)|

2
+6(B−A)

∑
|yi1−yi2|

2.

Let zi =∇i9, then

z1 =∇1(3B− A)= 3
2∇1(R1212+ R2121+ 2R1111),

√
−1∇1(Im R1212)=

1
2∇1(R1212− R2121)

=
1
3 z1−∇1 R2121−∇1 R1111

=
1
3 z1−∇2 R1112+∇2 R1112

=
1
3 z1+ (A− B)y22+ (B− A)y21,

z2 =∇2(3B− A)= 3
2∇2(R2121+ R1212+ 2R1111),

√
−1∇2(Im R1212)=

1
2∇2(R1212− R2121)

=−
1
3 z2+∇2 R1111+∇2 R1212

=−
1
3 z2+∇1 R2111−∇1 R1112

=−
1
3 z2+ (B− A)y12+ (A− B)y11.

We can write the formula in the Lemma 6 as

19 = 3
[
9R1122+ B(B− 3A)

]
− 3 A−B

B
9
∑
|yi1− yi2|

2

+ 2 A−B
B

Re
[
(y12− y11)z2+ (y22− y21)z1

]
+

∑ 1
3B
|z|2.

As in the last section, we have two general terms, the first is negative as is the
constant term of z with respect to y. The second is a hermitian form in z and y. We
can actually let wi = yi∗1− yi∗2 with i∗ 6= i . Then the second term is a sum of two
hermitian forms. One of them is on w1, z1 and the other is on w2, z2. We notice
that the second term is also nonpositive on y (or nonpositive on w, if we assume
that z = 0). We can modify the coefficient of |z|2 (only) by taking the power of 9.
More precisely, if we let g=9a , to make sure that 1g< 0, after taking out a factor
3(A− B)/B we need ∣∣∣∣∣ −9

1
3

1
3

1−39−1(1−a)B
9(A−B)

∣∣∣∣∣≥ 0.

That is,
A− 3B+ 3(1− a)B− A+ B = (3(1− a)− 2)B ≥ 0.
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We have 1− 3a ≥ 0. So, a ≤ 1
3 .

Therefore, we have:

Lemma 7. 1g < 0 for a ≤ 1
3 on M − N.

This is exactly the same as in [Chen et al. 2011]. Actually, the number 1
6 was

already in [Siu and Yang 1981; Hong et al. 1988; Polombo 1988; 1992] for those
quadratic functions.

So, finally we have:

Theorem 8. If Kav− Kmin ≤
1
2 [Kmax− Kmin], then M has a constant holomorphic

sectional curvature.

Remark 9. The reason we did not get this earlier was that there was a difficulty
when A = B. In that case, the argument in [Siu and Yang 1981, p. 475, case 2]
seems not to work. Polombo resolved the problem by using a function which is
symmetric about λ1 = −A/3 and λ2 = A− 3B/6 (see [Polombo 1992] the first
paragraph of page 418 and the end of page 397). However, Hong Cang Yang’s
function 9 is only −6λ2 and therefore is not symmetric after all. To overcome this
difficulty, we let �= {x ∈ M |A=B}. Then according to [Siu and Yang 1981], all our
calculation are good on M −� since N ⊂�. In [Chen et al. 2011, p. 2632] there
was a suggestion on how to prove that codim�≤ 2, although it was not very well
explained. By doing this, everything went through. The relation was that if we use
the argument in [Siu and Yang 1981, p. 475, case 2] using the maximum instead of
the minimum, and we let B1= |R1212| then 2B1= A−B. That is�={x ∈M |B1=0}.
The argument goes as follows:

Case 1: If � is a closed region, we have

0≥
∫

M−�
1g = a

∫
−∂�

9a−1 ∂(−A1−3B1)

∂n

≥ a
∫
−∂�

(2A)a−1 ∂(−A1)

∂n
=−

∫
�

1F1 ≥ 0,

where F1 can be chosen from one of the functions in [Polombo 1992] which satisfy
the symmetric condition on M , e.g., a power of 82 from the proof of Proposition 1,
or one of our functions with a calculation using the new smooth coordinate in [Siu
and Yang 1981, p. 475] with R1111 = Kmax. Actually, A1 itself is proportional to
the λ2 in [Polombo 1992] and is symmetric in the sense of Polombo. On �, F1 is
just our g since B1 = 0. We notice that there is a sign difference for the Laplacian
operator in [Polombo 1992]. Again, on �, since A = B on a neighborhood, the set
of minimum directions is an S1 bundle over �, therefore one can choose a smooth
section of it locally such that the calculation of [Siu and Yang 1981] still works in
our case. That is, one could simply choose F1 to be g.
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Case 2: If � is a hypersurface then the same argument goes through except that∫
∂(M−�)

(A)a−1 ∂A
∂n
= 0,

since A 6= 0 outside a codimension one subset and on�1={x ∈�|A 6=0}, the integral
is integrated from both sides.

Therefore, � is a subset of codimension two and we can apply Remark 5. By the
calculation in Remark 5, we see that g is harmonic on M −�. Now, by Lemma 6,
that implies that B(B− 3A)= 0 and hence A = B = 0 by our assumptions.

4. The generalization

Actually, in the first section of [Siu and Yang 1981], the authors did not require
any negativity. We also see that in Section 2, we do not really need any negativity
except when we apply the formula from Lemma 6 in the Section 3.

In the first section of [Siu and Yang 1981], they also consider the coordinate in
which R1111 achieves the maximum instead of the minimum. We let C = R1122 from
the earlier sections and C1 be the bisectional curvature for the maximal case. Then

Kmin+C = Kmax+C1

is the Einstein constant Q,

C1−C = Kmin− Kmax =−
1
2(A+ B)

and

C1 = C − 1
2(A+ B)= 1

2(R1111− B)= 1
2

(
Q−C1−

1
2(A+ B)− B

)
.

Therefore
3C1 = Q− 1

2(A+ B)− B ≤ 0,

always. Also, C1 = 0 implies that A = B = Q = 0.
The constant term in Lemma 6 is

3
[
(3B− A)C − B(3A− B)

]
= 3

[
(3B− A)

(
C1+

1
2(A+ B)

)
− B(3A− B)

]
=

3
2 [29C1− (A− B)(A+ 5B)]

≤ 0,

always. Therefore, we have the same result only if Q ≤ 0, unless C1 = 0. As
above if C1 = 0 we have A= B = 0, then C = 0 and therefore Kmin = Q = 0. The
manifold is flat.

Thus we conclude the general case. One might conjecture that our theorem is
also true in the higher dimensional cases.
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Remark 10. Notice that this generalization basically covers the results in [Polombo
1988; Polombo 1992] for the Kähler–Einstein case (see Corollary on page 398 of
[Polombo 1992]). See also [Derdziński 1983, p. 415, Proposition 2] for the W+

for a Kähler surface. One might ask whether our result could be generalized to the
Riemannian manifolds with closed half Weyl curvature tensors. This is out of the
scope of this paper although a similar result is true, i.e., λ2 ≤ 1 at every point. To
make the relation between this paper and [Polombo 1988; Polombo 1992] clearer
to the reader, we mention that any one of the half Weyl tensors is harmonic if and
only if it is closed since the tensor is dual to either itself or the negative of itself.
Remark (i) in [Polombo 1992, p. 397] notes that if M is Riemannian–Einstein, then
the second Bianchi identity says that the half Weyl tensors are closed (see also
[Derdziński 1983] page 408 formula (9) and page 411 Remark 1).

Acknowledgements

I thank the referee for useful comments and encouragements, Professors Poon,
Wong and the Department of Mathematics, University of California at Riverside for
their support. I thank Professor Hong Cang Yang for showing me his work when I
was a graduate student in Berkeley. I also thank Professor Paul Yang for telling me
of the article [Polombo 1988].

References

[Chen et al. 2011] D. Chen, Y. Hong, and H. Yang, “Kähler–Einstein surface and symmetric space”,
Sci. China Math. 54:12 (2011), 2627–2634. MR Zbl
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EFFECTIVE LOWER BOUNDS FOR L(1, χ)
VIA EISENSTEIN SERIES

PETER HUMPHRIES

We give effective lower bounds for L(1, χ) via Eisenstein series on 00(q)\ H.
The proof uses the Maass–Selberg relation for truncated Eisenstein series
and sieve theory in the form of the Brun–Titchmarsh inequality. The method
follows closely the work of Sarnak in using Eisenstein series to find effective
lower bounds for ζ(1 + i t).

1. Introduction

Let q be a positive integer, let χ be a Dirichlet character modulo q, and let

L(s, χ) :=
∞∑

n=1

χ(n)
ns

be the associated Dirichlet L-function, which converges absolutely for <(s)> 1 and
extends holomorphically to the entire complex plane except when χ is principal, in
which case there is a simple pole at s = 1. It is well known that Dirichlet’s theorem
on the infinitude of primes in arithmetic progressions is equivalent to showing
that L(1, χ) 6= 0 for every Dirichlet character χ modulo q. Of further interest is
obtaining lower bounds for L(1, χ) in terms of q. By complex analytic means
[Montgomery and Vaughan 2007, Theorems 11.4 and 11.11], one can show that if
χ is complex, then

|L(1, χ)| � 1
log q

,

while
L(1, χ)� 1

√
q

if χ is quadratic. In both cases, the implicit constants are effective. For quadratic
characters, the Landau–Siegel theorem states that

L(1, χ)�ε q−ε
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for all ε > 0 [Montgomery and Vaughan 2007, Theorem 11.14], though this estimate
is ineffective due to the possible existence of a Landau–Siegel zero of L(s, χ).

In this article, we give a novel proof of effective lower bounds for L(1, χ), albeit
in slightly weaker forms.

Theorem 1.1. Let q ≥ 2 be a positive integer, and let χ be a primitive character
modulo q. If χ is complex, then

|L(1, χ)| � 1
(log q)3

,

while

L(1, χ)� 1
√

q(log q)2

if χ is quadratic. In both cases, the implicit constants are effective.

Our proof of Theorem 1.1 makes use of the fact that L(s, χ) appears in the
Fourier expansion of an Eisenstein series associated to χ on 00(q) \H, together
with sieve theory — specifically the Brun–Titchmarsh inequality — to find these
lower bounds. As is well-known, improving the constant in the Brun–Titchmarsh
inequality is essentially equivalent the nonexistence of Landau–Siegel zeroes; it is
for this same reason that the lower bounds in Theorem 1.1 are weak for quadratic
characters, as we discuss in Remark 4.7.

That one can use Eisenstein series to prove nonvanishing of L-functions is well
known, first appearing in unpublished work of Selberg, but such methods were not
shown to give good effective lower bounds for L-functions on the line <(s) = 1
until the work of Sarnak [2004]. He showed that

|ζ(1+ i t)| � 1
(log |t |)3

for |t |> 1 by exploiting the inhomogeneous form of the Maass–Selberg relation
for the Eisenstein series E(z, s) for the group SL2(Z).

More precisely, for t > 1, Sarnak studied the integral

I :=
∫
∞

1/t

∫ 1

0
|ζ(1+ 2i t)|2

∣∣∣∣3t
(

z,
1
2
+ i t

)∣∣∣∣2 dx dy
y2 ,

involving a truncated Eisenstein series 3T E(z, s) and found an upper bound up to
a scalar multiple for this integral of the form

t (log t)2|ζ(1+ 2i t)|



EFFECTIVE LOWER BOUNDS FOR L(1, χ) VIA EISENSTEIN SERIES 357

via the Maass–Selberg relation, and a lower bound up to a scalar multiple of the
form

1
t

∑
t2

8 ≤m≤ t2

4

|σ−2i t(m)|2

via Parseval’s identity, where

σ−2i t(m) :=
∑
d|m

d−2i t .

By restricting the summation over m to primes, Sarnak was able to use sieve theory
to show that ∑

t2

8 ≤p≤ t2

4

|σ−2i t(p)|2�
t2

log t
,

from which the result follows. Indeed, the use of sieve theory to prove lower bounds
for ζ(1+ i t) (and also L(1+ i t, χ)) has its roots in work of Balasubramanian and
Ramachandra [1976].

The chief novelty of Sarnak’s work is to use the Maass–Selberg relation to
obtain effective lower bounds for ζ(1+ i t); more precisely, it is the inhomogeneous
nature of the Fourier expansion of the Eisenstein series E(z, s), whose constant
term involves ζ(2s− 1)/ζ(2s) and whose nonconstant terms involve 1/ζ(2s). This
method has been generalized by Gelbart and Lapid [2006] to determine effective
lower bounds on the line <(s) = 1 for L-functions associated to automorphic
representations on arbitrary reductive groups over number fields, albeit with the
lower bound being in the weaker form C |t |−n for some constants C , n depending on
the L-function, for Gelbart and Lapid make no use of sieve theory in this generalized
setting. More recently, Goldfeld and Li [2016] have succeeded in generalizing
Sarnak’s method to show that

|L(1+ i t, π × π̃)| �π
1

(log |t |)3

for any cuspidal automorphic representation π of GLn(AQ) that is unramified and
tempered at every place, with the implicit constant in the lower bound dependent
on π .

All three of these results give lower bounds for L-functions on the line <(s)= 1
in the height aspect, namely in terms of t . In this article, we give the first example
of Sarnak’s method being used to give lower bounds for L-functions on the line
<(s)= 1 in the level aspect, namely in terms of q.
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2. Eisenstein series

We introduce Eisenstein series for the group 00(q) associated to a primitive Dirichlet
character χ modulo q . Standard references for this material are [Deshouillers and
Iwaniec 1982], [Duke et al. 2002], and [Iwaniec 2002].

Cusps. Let H be the upper half plane, upon which SL2(R) acts via Möbius trans-
formations γ z = (az+ b)/(cz+ d) for γ =

(a
c

b
d

)
∈ SL2(R) and z ∈ H. Let q be a

positive integer, and let a be a cusp of 00(q) \H, where

00(q) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod q)

}
,

and we denote the stabilizer of a by 0a := {γ ∈ 00(q) : γ a= a}. This subgroup of
00(q) is generated by two parabolic elements ±γa, where

γa := σa

(
1 1
0 1

)
σ−1
a ,

and the scaling matrix σa ∈ SL2(R) is such that

σa∞= a, σ−1
a 0∞σa = 0∞,

where

0∞ :=

{
±

(
1 n
0 1

)
∈ 00(q) : n ∈ Z

}
is the stabilizer of the cusp at infinity. The scaling matrix is unique up to translation
on the right.

Let χ be a primitive character modulo q. A cusp a of 00(q) \H is said to be
singular with respect to χ if χ(γa)= 1, where χ(γ ) := χ(d) for γ =

(a
c

b
d

)
∈ 00(q).

As χ is primitive, any singular cusp is equivalent to 1/v for a single unique divisor
v of q satisfying vw = q and (v,w)= 1, where w is the width of the cusp; when
v = q , this cusp is equivalent to the cusp at infinity, while when v = 1, the cusp is
equivalent to the cusp at zero. Note that if q = 1, so that χ is the trivial character,
there is merely a single equivalence class of cusps, namely the cusp at infinity.

The scaling matrix σa ∈ SL2(R) for a singular cusp a ∼ 1/v, v 6= q, can be
chosen to be

σa :=

( √
w 0

v
√
w 1/

√
w

)
,

while for the cusp at infinity, we simply take σ∞ to be the identity.
The Bruhat decomposition for σ−1

a 00(q)σb [Iwaniec 2002, Theorem 2.7] states
that

σ−1
a 00(q)σb = δab�∞ t

⊔
c>0

⊔
d (mod c)

�d/c,
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where δab = 1 if a∼ b and 0 otherwise, and

�∞ := 0∞ω∞, ω∞ =

(
1 ∗
0 1

)
∈ σ−1

a 00(q)σb,

�d/c := 0∞ωd/c0∞, ωd/c =

(
∗ ∗

c d

)
∈ σ−1

a 00(q)σb with c > 0,

and c, d run over all real numbers such that σ−1
a 00(q)σb contains

(
∗

c
∗

d

)
. In particular,

for the cusp at infinity we have the Bruhat decomposition

σ−1
∞
00(q)σ∞ = 0∞ t

∞⊔
c=1

c≡0 (mod q)

⊔
d (mod c)
(c,d)=1

0∞

(
∗ ∗

c d

)
0∞.

For a∼∞ and b∼ 1/v a nonequivalent singular cusp with 1≤ v < q , v dividing q ,
vw = q , and (v,w)= 1, and for any γ =

(a
c

b
d

)
∈ 00(q), we have that

σ−1
∞
γ σb =

(
(a+ bv)

√
w b/

√
w

(c+ dv)
√
w d/

√
w

)
,

and so

(2.1) σ−1
∞
00(q)σb =

{(
a
√
w b/

√
w

c
√
w d/

√
w

)
∈ SL2(R) :

(
a b
c d

)
∈ SL2(Z),

c ≡ 0 (mod v), d ≡ c/v (mod w), (c, d)= 1, (c, w)= 1

}
.

So the Bruhat decomposition in this case can be explicitly written in the form

(2.2) σ−1
∞
00(q)σb =

∞⊔
c=1

(c,w)=1
c≡0 (mod v)

⊔
d (mod cw)
(cw,d)=1

d≡c/v (mod w)

0∞

(
∗ ∗

c
√
w d/

√
w

)
0∞.

Eisenstein series. Given a primitive Dirichlet character χ modulo q and a singular
cusp a of 00(q) \ H, we define the Eisenstein series Ea(z, s, χ) for z ∈ H and
<(s) > 1 by

Ea(z, s, χ) :=
∑

γ∈0a\00(q)

χ(γ ) jσ−1
a γ (z)

−κ
=(σ−1

a γ z)s,

where κ ∈ {0, 1} is such that χ(−1)= (−1)κ, and for γ =
(a

c
b
d

)
∈ SL2(R),

jγ (z) :=
cz+d
|cz+d|

= ei arg(cz+d).
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The Eisenstein series associated to a singular cusp a is independent of the choice
of representative of a and of the scaling matrix σa. For fixed z ∈ H, the Eisenstein
series Ea(z, s, χ) converges absolutely for <(s) > 1 and extends meromorphically
to the entire complex plane with no poles on the closed right half-plane <(s)≥ 1

2
except at s = 1 when q = 1, so that χ is the trivial character.

For any z ∈ H and γ1, γ2 ∈ SL2(R), the j-factor satisfies the cocycle relation

(2.3) jγ1γ2(z)= jγ2(z) jγ1(γ2z),

while the Eisenstein series satisfies the automorphy condition

(2.4) Ea(γ z, s, χ)= χ(γ ) jγ (z)κEa(z, s, χ)

for any γ ∈ 00(q).
For any singular cusps a, b of 00(q), one can show using the Bruhat decomposi-

tion that there exists a function ϕab(s, χ) such that the constant term in the Fourier
expansion for the function jσb(z)

−κEa(σbz, s, χ) is

cab(z, s, χ) :=
∫ 1

0
jσb(z)

−κEa(σbz, s, χ) dx = δabys
+ϕab(s, χ)y1−s .

The functions ϕab(s, χ) are the entries of the scattering matrix associated to χ . We
will calculate ϕab(s, χ) when a ∼∞ for each nonsingular cusp b of 00(q) with
respect to χ , and also find the rest of the Fourier coefficients of E∞(z, s, χ).

Fourier expansion of E∞(z, s, χ).

Lemma 2.5. Let χ be a primitive character modulo q. For m 6= 0 and c ≡ 0
(mod q),∑

d (mod c)
(c,d)=1

χ(d)e
(md

c

)
= χ(sgn(m))τ (χ)

∑
d|
(
|m|, c

q
) dχ

(
|m|
d

)
χ
( c

dq

)
µ
( c

dq

)
.

Here, as usual, we define e(x) := e2π i x for x ∈ R.

Proof. For m positive, this is [Miyake 1989, Lemma 3.1.3]. The result for m negative
follows by replacing m with |m| and χ with χ , then taking complex conjugates of
both sides and using the fact that τ(χ)= χ(−1)τ (χ). �

Proposition 2.6 (cf. [Iwaniec 2002, Theorem 3.4]). The Eisenstein series associated
to the cusp at infinity has the Fourier expansion

E∞(z,s,χ)= ys
+ ϕ∞∞(s,χ)y1−s

+

∞∑
m=−∞

m 6=0

ρ∞(m,s,χ)Wsgn(m) κ2 ,s−
1
2
(4π |m|y)e(mx),
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where Wα,ν(y) is the Whittaker function,

ϕ∞∞(s, χ)=


√
π
0
(
s− 1

2

)
0(s)

ζ(2s− 1)
ζ(2s)

if q = 1,

0 if q ≥ 2,

and for m 6= 0,

ρ∞(m, s, χ)=
χ(sgn(m))i−κτ(χ)π s

|m|s−1

q2s0
(
s+ sgn(m) κ2

)
L(2s, χ)

σ1−2s(|m|, χ),

where τ(χ) is the Gauss sum of χ and

σs(m, χ) :=
∑
d|m

dsχ
(m

d

)
.

Note in particular that if κ = 0, so that χ is even, the Whittaker function is simply

W0,s−1
2
(4π |m|y)=

√
4|m|yKs− 1

2
(2π |m|y),

where Kν(y) is the K -Bessel function. On the other hand, if κ = 1, so that χ is
odd, and we set s = 1

2 , then

Wsgn(m) κ2 ,0
(4π |m|y)=

{√
4π |m|ye−2π |m|y if m > 0,
√

4π |m|ye2π |m|y
∫
∞

4π |m|y e−u/u du if m < 0.

Proof. Via the Bruhat decomposition (2.2), E∞(z, s, χ) is equal to

ys
+

∞∑
c=1

c≡0 (mod q)

∑
d (mod c)
(c,d)=1

χ(d)
∞∑

n=−∞

(
c(z+ n)+ d
|c(z+ n)+ d|

)−κ ys

|c(z+ n)+ d|2s .

So if m = 0, the zeroth Fourier coefficient of E∞(z, s, χ) is

ys
+

∞∑
c=1

c≡0 (mod q)

∑
d (mod c)
(c,d)=1

χ(d)
∫
∞

−∞

(
cz+ d
|cz+ d|

)−κ ys

|cz+ d|2s dx

= ys
+ y1−s

∫
∞

−∞

(
t + i
|t + i |

)−κ 1
|t + i |2s dt

∞∑
c=1

c≡0 (mod q)

1
c2s

∑
d (mod c)
(c,d)=1

χ(d)

by the change of variables x 7→ yt − d/c. From [Gradshteyn and Ryzhik 2007,
(8.381.1)], we have that∫

∞

−∞

(
t + i
|t + i |

)−κ 1
|t + i |2s dt = i−κ

√
π
0
(1

2(2s− 1+ κ)
)

0
( 1

2(2s+ κ)
) ,
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while for c ≡ 0 (mod q), the fact that χ is primitive implies that

∞∑
c=1

c≡0 (mod q)

1
c2s

∑
d (mod c)
(c,d)=1

χ(d)=


∞∑

c=1

ϕ(c)
c2s =

ζ(2s− 1)
ζ(2s)

if q = 1,

0 if q ≥ 2.

If m 6= 0, on the other hand, then the m-th Fourier coefficient is

∞∑
c=1

c≡0 (mod q)

∑
d (mod c)
(c,d)=1

χ(d)
∫
∞

−∞

(
cz+ d
|cz+ d|

)−κ ys

|cz+ d|2s e(−mx) dx

= y1−s
∫
∞

−∞

(
t + i
|t + i |

)−κ e(−myt)
|t + i |2s dt

∞∑
c=1

c≡0 (mod q)

1
c2s

∑
d (mod c)
(c,d)=1

χ(d)e
(

md
c

)

again by the change of variables x 7→ yt−d/c. Moreover, [Gradshteyn and Ryzhik
2007, (3.384.9)] implies that∫

∞

−∞

(
t + i
|t + i |

)−κ e(−myt)
|t + i |2s dt =

i−κπ s
|m|s−1 ys−1

0
(
s+ sgn(m) κ2

) Wsgn(m) κ2 ,s−
1
2
(4π |m|y),

and via Lemma 2.5,

∞∑
c=1

c≡0 (mod q)

1
c2s

∑
d (mod c)
(c,d)=1

χ(d)e
(md

c

)

= χ(sgn(m))τ (χ)
∑
d||m|

dχ
(
|m|
d

) ∞∑
c=1

c≡0 (mod dq)

χ
( c

dq

)
µ
( c

dq

)
c2s

= χ(sgn(m))
τ (χ)

q2s

∑
d||m|

d1−2sχ
(
|m|
d

) ∞∑
n=1

χ(n)µ(n)
n2s

= χ(sgn(m))
τ (χ)

q2s L(2s, χ)
σ1−2s(|m|, χ)

where we have let c = dqn. We thereby obtain the desired identity. �

Proposition 2.7. Suppose that q ≥ 2. Then ϕ∞b(s, χ) vanishes unless b ∼ 1, in
which case

(2.8) ϕ∞1(s, χ)=
τ(χ)

qs

3(2− 2s, χ)
3(2s, χ)

,
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where

(2.9) 3(s, χ) :=
(
π

q

)− s+κ
2
0
(s+κ

2

)
L(s, χ),

is the completed Dirichlet L-function. In particular,

(2.10)
∣∣ϕ∞1

(1
2 + i t, χ

)∣∣= 1.

Proof. The fact that ϕ∞b(s, χ) = 0 when b is the cusp at infinity follows from
Proposition 2.6. For the entries of the scattering matrix at other cusps, we use (2.3)
to write

Ea(σbz, s, χ)= jσb(z)
κ

∑
γ∈0∞\σ

−1
a 00(q)σb

χ(σaγ σ
−1
b ) jγ (z)−κ=(γ z)s .

The singular cusp b is equivalent to 1/v for some divisor v of q with v < q , vw= q ,
and (v,w)= 1. Given a matrix

γ =

(
a
√
w b/

√
w

c
√
w d/

√
w

)
in σ−1
∞
00(q)σb as in (2.1), we have that

σ∞γ σ
−1
b =

(
a− bv b
c− dv d

)
,

and so as d ≡ c/v (mod w),

χ(σ∞γ σ
−1
b )= χv(d)χw

( c
v

)
,

where we have decomposed the primitive character χ modulo q into the product of
primitive characters χv modulo v and χw modulo w. From this and (2.2), we see
that jσb(z)

−κE∞(σbz, s, χ) is equal to

∞∑
c=1

(c,w)=1
c≡0 (mod v)

χw

( c
v

) ∑
d (mod cw)
(cw,d)=1

d≡c/v (mod w)

χv(d)

×

∞∑
n=−∞

(
c(z+ n)

√
w+ d/

√
w

|c(z+ n)
√
w+ d/

√
w|

)−κ ys

|c(z+ n)
√
w+ d/

√
w|2s

,
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and so integrating from 0 to 1 with respect to x , making the change of variables
x 7→ yt − d/(cw), and dividing by y1−s yields

ϕ∞b(s, χ)=
1
ws

∫
∞

−∞

(
t + i
|t + i |

)−κ 1
|t + i |2s dt

∞∑
c=1

(c,w)=1
c≡0 (mod v)

χw(c/v)
c2s

∑
d (mod cw)
(cw,d)=1

d≡c/v (mod w)

χv(d).

From [Gradshteyn and Ryzhik 2007, (8.381.1)], the integral is equal to

i−κ
√
π
0
( 1

2(2s− 1+ κ)
)

0
( 1

2(2s+ κ)
) .

To evaluate the sum over d, we write d = vc+wd ′, where vv ≡ 1 (mod w) and
(d ′, c)= 1. This allows us to replace the sum over d with a sum over d ′ modulo c
with (c, d ′)= 1, so that ∑

d (mod cw)
(cw,d)=1

d≡c/v (mod w)

χv(d)= χv(w)
∑

d ′ (mod c)
(c,d ′)=1

χv(d ′)

by the fact that c ≡ 0 (mod v).
If χv is nonprincipal, this sum vanishes, and as χ is a primitive character, χv can

only be the principal character if v = 1; consequently, ϕ∞b(s, χ) vanishes if b is
inequivalent to the cusp at 1.

If b∼ 1, so that v = 1 and w = q , then this sum over d ′ is merely ϕ(c), and so

∞∑
c=1

(c,w)=1
c≡0 (mod v)

χw(c/v)
c2s

∑
d (mod cw)
(cw,d)=1

d≡c/v (mod w)

χv(d)=
∞∑

c=1

ϕ(c)χ(c)
c2s =

L(2s− 1, χ)
L(2s, χ)

.

Using the definition of the completed Dirichlet L-function together with the fact
that it satisfies the functional equation

3(s, χ)=
τ(χ)

iκ
√

q
3(1− s, χ),

we see that we may write

ϕ∞1(s, χ)=
i−κ

qs− 1
2

3(2s− 1, χ)
3(2s, χ)

=
τ(χ)

qs

3(2− 2s, χ)
3(2s, χ)

.

As 3(s, χ)=3(s, χ) and |τ(χ)| =
√

q , the result follows. �
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3. Maass–Selberg relation

For z ∈ H and T ≥ 1, we define the truncated Eisenstein series

(3.1) 3TEa(z,s,χ):=Ea(z,s,χ)−
∑
c

∑
γ∈0c\00(q)
=(σ−1

c γ z)>T

χ(γ ) jσ−1
c γ(z)

−κcac(σ−1
c γ z,s,χ),

where the summation over c is over all singular cusps of 00(q)\H. It is not difficult
to see that 3T Ea(z, s, χ) satisfies the automorphy condition

(3.2) 3T Ea(γ z, s, χ)= χ(γ ) jγ (z)κ3T Ea(z, s, χ)

for any γ ∈00(q). We will show that, unlike Ea(z, s, χ), the function3T Ea(z, s, χ)
is square-integrable on 00(q) \H, and give an explicit expression for the resulting
integral.

Lemma 3.3. Let b and c be singular cusps of 00(q) \H, and let γ ∈ σ−1
c 00(q)σb.

Then for any z= x+ iy ∈H, we have that =(z)=(γ z)≤ 1 if b and c are inequivalent
or if b and c are equivalent but γ /∈0∞ω∞. If b and c are equivalent and γ ∈0∞ω∞,
then =(γ z)= =(z).

Proof. We deal with the cases where neither b nor c are equivalent to the cusp at
infinity; when b∼∞ or c∼∞, the proof is similar but simpler. Let b∼ 1/v and
c ∼ 1/v′, 1 ≤ v, v′ < q, with w, w′ such that vw = v′w′ = q. For

(a
c

b
d

)
∈ 00(q),

we have that

σ−1
c

(
a b
c d

)
σb =

(
(a+ bv)

√
w/w′ b/

√
w′w

(c− av′+ dv− bv′v)
√
w′w (d − bv′)

√
w′/w

)
.

So for

γ =

(
∗ ∗

C
√
w′w D

√
w′/w

)
∈ σ−1

c 00(q)σb,

where C = c− av′+ dv− bv′v and D = d − bv′ are integers, we have that

=(γ z)=
1
w′w

y
(Cx + Dw−1)2+C2 y2 .

By the Bruhat decomposition, if b and c are inequivalent, then C
√
w′w must be

nonzero, and so C2
≥ 1. In particular, if b and c are inequivalent, then

=(z)=(γ z)≤ 1
w′w
≤ 1.

If b and c are equivalent and γ /∈ 0∞ω∞, then again C
√
w′w 6= 0, and the same

result holds. Finally, if b and c are equivalent and γ ∈ 0∞ω∞, then it is clear that
=(γ z)= =(z). �
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Corollary 3.4. If =(z) > T ≥ 1, then for any singular cusp b, we have that

3T Ea(σbz, s, χ)= Ea(σbz, s, χ)− jσb(z)
κcab(z, s, χ).

Proof. From the definition of 3T Ea(z, s, χ) and (2.3), we must show that for any
singular cusp c and γ ∈0c\00(q) that the inequalities=(z)>T and=(σ−1

c γ σbz)>T
are simultaneously satisfied only when c ∼ b and γ = ω∞. This is equivalent to
showing that if γ ∈ 0∞ \ σ−1

c 00(q)σb is such that =(z) > T and =(γ z) > T, then
c∼ b and γ = ω∞, which follows immediately from Lemma 3.3. �

With these results in hand, we can prove the following Maass–Selberg relation.

Proposition 3.5. For any two singular cusps a, b, T ≥ 1, and s 6= r , s+ r 6= 1,∫
00(q)\H

3T Ea(z, s, χ)3T Eb(z, r, χ) dµ(z)

= ϕba(r, χ)
T s−r

s−r
+ϕab(s, χ)

T r−s

r−s
+ δab

T s+r−1

s+r−1

+

∑
c

ϕac(s, χ)ϕbc(r, χ)
T 1−s−r

1−s−r
,

where the sum is over singular cusps c. Here dµ(z) = dx dy/y2 is the SL2(R)-
invariant measure on H.

Proof. We initially assume that <(s),<(r) > 1 with <(s)−<(r) > 1; the identity
then extends to all s, r ∈ C with s 6= r and s+ r 6= 1 by analytic continuation.

We first show that∫
00(q)\H

3T Ea(z, s, χ)
(
3T Eb(z, r, χ)− Eb(z, r, χ)

)
dµ(z)= 0.

Indeed, the left-hand side is equal to∑
c

∫
00(q)\H

3T Ea(z, s, χ)
∑

γ∈0c\00(q)
=(σ−1

c γ z)>T

χ(γ ) jσ−1
c γ (z)

−κcbc(σ−1
c γ z, r, χ) dµ(z),

which, by (2.3) and (3.2), is equal to

−

∑
c

∫
00(q)\H

∑
γ∈0c\00(q)
=(σ−1

c γ z)>T

cbc(σ−1
c γ z, r, χ) jσc(σ

−1
c γ z)−κ3T Ea(γ z, s, χ) dµ(z),

and this integral can be unfolded to yield

−

∑
c

∫
∞

T

∫ 1

0
cbc(z, r, χ) jσc(z)

−κ3T Ea(σcz, s, χ)
dx dy

y2 .
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But cbc(z, r, χ) is independent of x , while for =(z) > T ≥ 1, the zeroth Fourier
coefficient of the function jσc(z)

−κ3T Ea(σcz, s, χ) vanishes via Corollary 3.4, and
so this vanishes. Consequently,∫
00(q)\H

3T Ea(z,s,χ)3T Eb(z,r,χ)dµ(z)=
∫
00(q)\H

3T Ea(z,s,χ)Eb(z,r,χ)dµ(z).

The right-hand side can be written as∫
00(q)\H

( ∑
γ∈0a\00(q)

χ(γ ) jσ−1
a γ (z)

−κ
=(σ−1

a γ z)s Eb(z,r,χ)

−

∑
c

∑
γ∈0c\00(q)
=(σ−1

c γ z)>T

χ(γ ) jσ−1
c γ (z)

−κcac(σ−1
c γ z,s,χ)Eb(z,r,χ)

)
dµ(z)

=

∫
00(q)\H

∑
γ∈0a\00(q)
=(σ−1

a γ z)≤T

χ(γ ) jσ−1
a γ (z)

−κ
=(σ−1

a γ z)s Eb(z,r,χ)dµ(z)

+

∫
00(q)\H

∑
γ∈0a\00(q)
=(σ−1

a γ z)>T

χ(γ ) jσ−1
a γ (z)

−κϕaa(s,χ)=(σ−1
a γ z)1−s Eb(z,r,χ)dµ(z)

−

∑
c6=a

∫
00(q)\H

∑
γ∈0c\00(q)
=(σ−1

c γ z)>T

χ(γ ) jσ−1
c γ (z)

−κcac(σ−1
c γ z,s,χ)Eb(z,r,χ)dµ(z).

By (2.3) and (2.4), the first term is∫
00(q)\H

∑
γ∈0a\00(q)
=(σ−1

a γ z)≤T

=(σ−1
a γ z)s jσa(σ

−1
a γ z)−κEb(γ z, r, χ) dµ(z),

and upon unfolding the integral, this becomes∫ T

0

∫ 1

0
ys jσa(z)−κEb(σaz, r, χ)

dx dy
y2 =

∫ T

0
yscba(z, r, χ)

dy
y2

= δab
T s+r−1

s+ r − 1
+ϕba(r, χ)

T s−r

s− r
.

Similarly, the second term is∫
∞

T
ϕaa(s,χ)y1−scba(z,s,χ)

dy
y2 =δabϕab(s,χ)

T r−s

r − s
+ϕaa(s,χ)ϕba(r,χ)

T 1−s−r

1− s− r
,
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and the third term is

−

∑
c6=a

∫
∞

T
cac(z, s, χ)cbc(z, r, χ)

dy
y2

= (1− δab)ϕab(s, χ)
T r−s

r − s
+

∑
c6=a

ϕac(s, χ)ϕbc(r, χ)
T 1−s−r

1− s− r
.

Combining these identities yields the result. �

Corollary 3.6. For T ≥ 1 and t ∈ R, we have that∫
00(q)\H

∣∣3T E∞
(
z, 1

2 + i t, χ
)∣∣2 dµ(z)= 2 log T −<

(
ϕ′
∞1

ϕ∞1

(
1
2
+ i t, χ

))
.

Proof. We take a∼ b∼∞ and s = r = 1
2 + i t+ ε with ε > 0 in the Maass–Selberg

relation to obtain∫
00(q)\H

∣∣∣3T E∞
(

z, 1
2
+ i t + ε, χ

)∣∣∣2 dµ(z)= T 2ε

2ε
−

∣∣∣ϕ∞1

(1
2
+ i t + ε, χ

)∣∣∣2 T−2ε

2ε
.

The result then follows by taking the limit as ε tends to zero and using the Taylor
expansions

T 2ε
= 1+ 2ε log T + O(ε2),

ϕ∞1
( 1

2 + i t + ε, χ
)
= ϕ∞1

( 1
2 + i t, χ

)
+ εϕ′

∞1
( 1

2 + i t, χ
)
+ O(ε2).

together with (2.10). �

Remark 3.7. This proof of the Maass–Selberg relation is via unfolding as in
Section 4 of [Arthur 1980], and makes use of the Arthur truncation 3T Ea(z, s, χ)
of the Eisenstein series Ea(z, s, χ) given by (3.1); compare Section 1 of the same
work. One can instead prove the Maass–Selberg relation without recourse to the
automorphy of the truncated Eisenstein series by only defining3T Ea(z, s, χ) within
a fundamental domain of 00(q) \H. Let

F ⊃ {z ∈ H : 0< <(z) < 1, =(z)≥ 1}

be the usual fundamental domain of 00(q) \H, and for each singular cusp a, we
define the cuspidal zone

Fa(T ) := {z ∈ F : 0< <(σ−1
a z) < 1, =(σ−1

a z)≥ T }

for T ≥ 1; note that any two cuspidal zones will be disjoint provided that T is
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sufficiently large. Then from Lemma 3.3, we have that for T ≥ 1,

3TEa(z,s,χ)

=


Ea(z,s,χ) if z∈F \

⋃
c
Fc(T ),

Ea(z,s,χ)
−
∑
c∈A

jσ−1
c
(z)−κ(δac=(σ−1

c z)s+ϕac(s,χ)=(σ−1
c z)1−s) if z∈

⋂
c∈A

Fc(T ),

where A is any subset of the set of singular cusps. The Maass–Selberg relation may
then be proved using Green’s theorem along the same lines as the proof of [Iwaniec
2002, Proposition 6.8].

4. Upper bounds and lower bounds for the integral I

For η ≤ 1, we consider the integral

I = I(χ, η, T ) :=
∫
∞

η

∫ 1

0

∣∣∣∣3T E∞

(
z,

1
2
, χ

)∣∣∣∣2 dx dy
y2 .

Our goal is to find upper and lower bounds for this integral: upper bounds via
the Maass–Selberg relation and lower bounds via Parseval’s identity and the Brun–
Titchmarsh inequality. Combining these bounds will yield lower bounds for L(1, χ).

Upper bounds for I .

Proposition 4.1. For η� 1/q and T ≥ 1, we have that

I�
log q log qT
qη|L(1, χ)|

.

Proof. By folding the integral, one can write

I =
∫
00(q)\H

Nq(z, η)
∣∣3T E∞

(
z, 1

2 , χ
)∣∣2 dµ(z),

where for η ≤ 1,

Nq(z, η) := #{γ ∈ 0∞ \00(q) : =(γ z) > η}.

The Maass–Selberg relation then implies the upper bound

I ≤ sup
z∈00(q)\H

Nq(z, η)
(

2 log T −<
(
ϕ′
∞1

ϕ∞1

(
1
2
, χ

)))
.

From [Iwaniec 2002, Lemma 2.10], we have the bound

Nq(z, η) < 1+
10
qη
.
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By taking logarithmic derivatives of (2.8),

ϕ′
∞1

ϕ∞1
(s, χ)=− log q − 2

3′

3
(2− 2s, χ)− 2

3′

3
(2s, χ).

Taking logarithmic derivatives of (2.9) and letting s = 1
2 then shows that

ϕ′
∞1

ϕ∞1

(1
2
, χ
)
=−4<

(L ′

L
(1, χ)

)
− 2 log q + log 8π + γ0+ (−1)κ π

2
,

where γ0 denotes the Euler–Mascheroni constant, and we have used the fact that

0′

0

(1+κ
2

)
=− log 8− γ0− (−1)κ π

2
.

So if η� 1/q ,

I�
(|L(1, χ)| log qT + |L ′(1, χ)|)

qη|L(1, χ)|
.

The desired upper bound then follows from the bounds

|L(1, χ)| � log q, |L ′(1, χ)| � (log q)2,

which are both easily shown via partial summation. See, for example, [Montgomery
and Vaughan 2007, Lemma 10.15] for the former estimate; the latter follows by a
similar argument. �

Lower bounds for I .

Proposition 4.2. If T ≥ 1 and η = 1/T, we have the lower bound

I� 1
q|L(1, χ)|2

∑
T≤m≤2T

|σ0(m, χ)|2.

Proof. If η = 1/T, then Lemma 3.3 implies that

3T E∞(z, s, χ)=
{

E∞(z, s, χ) if 1/T < =(z)≤ T,
E∞(z, s, χ)− c∞∞(z, s, χ) if =(z) > T .

It follows that the nonzero Fourier coefficients of 3T E∞(z, s, χ) coincide with
those of E∞(z, s, χ) for =(z) > 1/T. So by Parseval’s identity, using the fact that
|τ(χ)| =

√
q, and making the change of variables y 7→ y/|m| in the integral, we

have that

I�


1

q|L(1, χ)|2

∞∑
m=1

|σ0(m, χ)|2
∫
∞

m/T
|K0(2πy)|2

dy
y

if κ = 0,

1
q|L(1, χ)|2

∞∑
m=1

|σ0(m, χ)|2
∫
∞

m/T
e−4πy dy

y
if κ = 1.
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If we simply consider the contribution of the positive integers m for which m/T � 1
— say T ≤ m ≤ 2T — then we find that

I� 1
q|L(1, χ)|2

∑
T≤m≤2T

|σ0(m, χ)|2,

as desired. �

Combining the upper and lower bounds for I, we derive the following inequality
for L(1, χ):

Corollary 4.3. For all T ≥ q , we have that

|L(1, χ)| � 1
T (log T )2

∑
T≤m≤2T

|σ0(m, χ)|2.

So to obtain lower bounds for |L(1, χ)|, we must find lower bounds for

(4.4)
∑

T≤m≤2T

|σ0(m, χ)|2.

Sieve methods. For quadratic characters, lower bounds for (4.4) follow by restrict-
ing the sum to perfect squares.

Lemma 4.5. If χ is a quadratic character, then∑
T≤m≤2T

|σ0(m, χ)|2 ≥ (
√

2− 1)
√

T .

Proof. We restrict the sum over m to perfect squares and use the fact that σ0(m, χ)≥1
whenever m is a perfect square in order to find that∑

T≤m≤2T

|σ0(m, χ)|2 ≥
∑

T≤m2≤2T

|σ0(m2, χ)|2 ≥ (
√

2− 1)
√

T . �

For complex characters, we instead restrict the sum in (4.4) to primes and use
the Brun–Titchmarsh inequality to show that there are sufficiently many primes
for which χ(p) is not close to −1, so that |σ0(p, χ)|2 is not small. This is a result
of Balasubramanian and Ramachandra [1976, Lemma 4], who combine it with an
identity of Ramanujan together with a complex analytic argument to obtain lower
bounds for L(1+ i t, χ), and consequently derive zero-free regions for L(s, χ). We
reproduce a proof of this result here for the sake of completeness.

Lemma 4.6 [Balasubramanian and Ramachandra 1976, Lemma 4]. There exists a
large constant K ≥ 2 such that for all complex characters χ modulo q with q ≥ 2
and for T = q K, ∑

T≤m≤2T

|σ0(m, χ)|2�K
T

log T
.
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Proof. We restrict the sum over m to primes p in order to find that∑
T≤m≤2T

|σ0(m, χ)|2 ≥
∑

T≤p≤2T

|1+χ(p)|2

= 2
∑

a∈(Z/qZ)×

(1+<(χ(a)))(π(2T ; q, a)−π(T ; q, a)),

where π(x; q, a) := #{p ≤ x : p ≡ a (mod q)}.
Let Q be the order of the Dirichlet character χ ; this divides ϕ(q), and as χ is

complex, Q ≥ 3. For any integer M between 0 and bQ/2c, we have that∑
T≤m≤2T

|σ0(m, χ)|2 ≥ 2
(

1+ cos 2πM
Q

)
(π(2T )−π(T ))

−2
(

1+ cos 2πM
Q

) ∑
a∈(Z/qZ)×

<(χ(a))<cos 2πM
Q

(π(2T ; q, a)−π(T ; q, a)).

For the former sum, we have that for fixed δ > 0 to be chosen,

π(2T )−π(T )≥ (1− δ) T
log T

for all sufficiently large T dependent on δ. See, for example, [Diamond and Erdős
1980]; in particular, this does not require the full strength of the prime number
theorem.

For the latter sum, we first observe that there are ϕ(q)/Q reduced residue
classes a modulo Q for which χ(a) = e2π im/Q for each integer m between 0
and Q − 1, and so the number of reduced residue classes modulo q for which
<(χ(a)) < cos(2πM/Q) is

ϕ(q)
Q

#{M < m < Q−M} = ϕ(q)
Q− 2M − 1

Q
.

To find an upper bound for π(2T ; q, a)−π(T ; q, a), we use the Brun–Titchmarsh
inequality, which states that for (q, a)= 1, x ≥ 2, and y ≥ 2q ,

π(x + y; q, a)−π(x; q, a)≤
2y

ϕ(q) log y/q

(
1+

8
log y/q

)
.

We take x = y = T, assuming that T ≥ 2q, in order to obtain∑
a∈(Z/qZ)×

<(χ(a))<cos 2πM
Q

(π(2T ;q,a)−π(T ;q,a))≤
2(Q− 2M − 1)

Q
T

logT/q

(
1+

8
logT/q

)
.
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We take T = q K with K ≥ 2 sufficiently large and dependent on δ but not on q,
such that

1
log T/q

(
1+ 8

log T/q

)
≤ (1+ δ) 1

log T
.

Combined, these estimates imply that for T = q K with K ≥ 2 a sufficiently large
constant,∑

T≤m≤2T

|σ0(m, χ)|2 ≥ 2(1− cosπX)
(

1− δ− 2(1+ δ)X + 2(1+δ)
Q

) T
log T

for X = (Q− 2M)/Q.
For Q ≥ 3, we may choose

δ =
1
10
, M =

⌊ 1+4δ
2(1+δ)

Q
2
+

1
2

⌋
,

so that
X = 1−2δ

2(1+δ)
−

1
Q
+

2
Q

{ 1+4δ
2(1+δ)

Q
2
+

1
2

}
,

and hence

1− δ− 2(1+ δ)X + 2(1+δ)
Q

= δ+
4(1+δ)

Q

(
1−

{ 1+4δ
2(1+δ)

Q
2
+

1
2

})
≥ δ.

Moreover, the fact that δ = 1
10 and Q ≥ 3 implies that 1 ≤ M ≤ bQ/2c and

1
33 ≤ X ≤ 23

33 . So ∑
T≤m≤2T

|σ0(m, χ)|2�K
T

log T
. �

Remark 4.7. If χ is quadratic, so that the order of χ is Q = 2, then∑
T≤m≤2T

|σ0(m, χ)|2 ≥ 2(π(2T )−π(T ))− 2
∑

a∈(Z/qZ)×

χ(a)=−1

(π(2T ; q, a)−π(T ; q, a)).

The Brun–Titchmarsh inequality is insufficient to show that the first term on the right-
hand side dominates the second term; in its place, we would require a strengthening
of the Brun–Titchmarsh inequality of the form

(4.8) π(x + y; q, a)−π(x; q, a)≤
(2− δ)y

ϕ(q) log y/q
(1+ o(1))

for some δ > 0. With this in hand, we would then be able to show that∑
T≤m≤2T

|σ0(m, χ)|2�
T

log T
,

so that
L(1, χ)� 1

(log q)3
,
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which would imply the nonexistence of a Landau–Siegel zero for L(1, χ). Of
course, the fact that the strengthened Brun–Titchmarsh inequality (4.8) implies (and
is in fact equivalent to) the nonexistence of Landau–Siegel zeroes is well known.

5. Proof of Theorem 1.1

With these upper and lower bounds established, we are in a position to prove
Theorem 1.1.

Proof of Theorem 1.1. If χ is quadratic, we have via Corollary 4.3 and Lemma 4.5
that for T ≥ q ,

L(1, χ)� 1
√

T (log T )2
,

and so taking T = q yields the desired lower bound.
If χ is complex, we have via Corollary 4.3 and Lemma 4.6 that for T = q K,

|L(1, χ)| �K
1

(log T )3
�K

1
(log q)3

. �
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ASYMPTOTIC ORDER-OF-VANISHING FUNCTIONS
ON THE PSEUDOEFFECTIVE CONE

SHIN-YAO JOW

Let v be a discrete valuation on the function field of a normal projective
variety X . Ein, Lazarsfeld, Mustat,ă, Nakamaye, and Popa showed
that v induces a nonnegative real-valued continuous function on the
big cone of X , which they called the asymptotic order of vanishing
along v. The case where v is given by the order of vanishing along
a prime divisor was studied earlier by Nakayama, who extended the
domain of the function to the pseudoeffective cone and investigated
the continuity of the extended function.

Here we generalize Nakayama’s results to any discrete valuation v,
using an approach inspired by Lazarsfeld and Mustat,ă’s construction
of the global Okounkov body, which has a quite different flavor from
the arguments employed by Nakayama.

A corollary is that the asymptotic order-of-vanishing function can
be extended continuously to the pseudoeffective cone PE(X) of X if
PE(X) is polyhedral (note that we do not require PE(X) to be rational
polyhedral).

Let X be a normal projective variety over an algebraically closed field k, and let
K (X) be the function field of X . Let v be a discrete valuation of K (X) over k, and
let Z be the center of v on X . Ein, Lazarsfeld, Mustat,ă, Nakamaye, and Popa gave
the following definitions:

Definition 1 [Ein et al. 2006]. Let D be an effective big Cartier divisor on X . We
establish the following notation:

(i) v(D)= v( f ), where f is a local equation of D at the generic point of Z .

(ii) v(|D|)=min{v(D′) : D′ ∈ |D|} = v(D′) for general D′ ∈ |D|.

(iii) v(‖D‖) = limm→∞ v(|m D|)/m. This is called the asymptotic order of
vanishing of D along v.

MSC2010: 14C20.
Keywords: asymptotic order of vanishing, pseudoeffective cone, global Okounkov body, Nakayama’s
σ -decomposition.
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By taking m to be sufficiently divisible, the definition of v(‖D‖) can also be
extended to big Q-divisors D. It is proved in [Ein et al. 2006, Theorem A] that
v(‖D‖) depends only on the numerical equivalence class of D, so it induces a
function on the set of numerical equivalence classes of big Q-divisors. Moreover,
this function extends uniquely to a continuous function on the cone Big(X) of
numerical equivalence classes of big R-divisors. In view of this result, it is natural
to ask whether this function can be extended continuously to the pseudoeffective
cone PE(X), the closure of the big cone Big(X) in the Néron–Severi space N 1(X)R.

The case where v is a divisorial valuation was investigated earlier by Nakayama
[2004] during his study of Zariski decomposition in higher dimensions. More
precisely, let 0 be a prime divisor on a smooth projective variety X , and let v be the
discrete valuation of K (X) given by the order of vanishing at the generic point of 0.
Nakayama used the notation σ0(D) to denote the asymptotic order of vanishing
v(‖D‖) of a big divisor class D ∈Big(X). If D ∈ PE(X) is a pseudoeffective class,
he defined σ0(D) by picking an arbitrary ample class A ∈ N 1(X)R and setting
σ0(D) to be the limit

σ0(D)= lim
ε→0+

σ0(D+ εA),

after establishing that this limit does not depend on the choice of A, in [Nakayama
2004, III.1.5]. In III.1.7 of the same work, Nakayama showed that the function
σ0 : PE(X)→ R≥0 is lower semicontinuous, and he gave an example where it
is not continuous in IV.2.8. It is interesting to note that in his example PE(X) is
not polyhedral. The goal of this short note is to generalize Nakayama’s results to
any discrete valuation v of K (X)/k, using an approach inspired by Lazarsfeld and
Mustat,ă’s construction [2009] of the global Okounkov body, which has a quite
different flavor from the arguments employed by Nakayama. In addition, we will
see that the function v(‖ · ‖) : Big(X)→ R≥0 can be extended continuously to
PE(X) if PE(X) is polyhedral.

Theorem 2. Let X be a normal projective variety over an algebraically closed
field k, and let v be a discrete valuation of K (X) over k. If D ∈ PE(X) is a
pseudoeffective class, then for any ample class A∈ N 1(X)R, limε→0+ v(‖D+εA‖)
does not depend on the choice of A. Moreover, if we denote this limit by σv(D),
then the function

σv : PE(X)→ R≥0 ∪ {+∞}

is lower semicontinuous, and is continuous at every point where PE(X) is locally
polyhedral.

A subset S of Rn is said to be locally polyhedral at a point x ∈ S if there exist a
polytope P ⊂Rn and an open subset U of Rn containing x such that U ∩S=U ∩P .
It follows from Theorem 2 that the function v(‖·‖) : Big(X)→R≥0 can be extended
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continuously to PE(X) if PE(X) is polyhedral, which is the case, for example, when
the Picard number of X is 2. Note that we do not require PE(X) to be rational
polyhedral (cf. [Ein et al. 2006, Theorem D]).

Remark 3. If v is divisorial, the limit limε→0+ v(‖D+εA‖) in Theorem 2 is finite
[Nakayama 2004, III.1.5]. We do not know if this is true for all discrete valuations v,
which is why we include +∞ in the target of σv . In case the value of σv is +∞ at
a point of PE(X), the (semi)continuity of σv should be interpreted with respect to
the usual order topology on R≥0 ∪ {+∞}.

Let us introduce some notions from convex analysis which will be useful in the
proof of Theorem 2. Let f : S→ R∪ {+∞} be a function on a convex subset S
of Rn . We say that f is convex if

f
(
λx1+ (1− λ)x2

)
≤ λ f (x1)+ (1− λ) f (x2)

for all x1, x2 ∈ S and all 0≤ λ≤ 1. The epigraph of f is the set

{(x, y) ∈ S×R : y ≥ f (x)}.

A convex function f is said to be closed if its epigraph is a closed subset of Rn+1.
It is not difficult to show that if f is a closed convex function, then f is lower
semicontinuous.

Proof of Theorem 2. As mentioned earlier, our approach is inspired by the con-
struction of the global Okounkov body due to [Lazarsfeld and Mustat,ă 2009]. The
strategy is to construct the epigraph of the asymptotic order-of-vanishing function
as the closed convex cone spanned by a certain lattice semigroup. To see how this
works for one big divisor D, let N denote the set of nonnegative integers, and let

S(D)= {(m, y) ∈ N2
: y ≥ v(|m D|)},

which is a subsemigroup of N2. Let C(D)= cone(S(D)) be the closed convex cone
spanned by S(D) in R2. Then C(D) is the epigraph of the function x 7→ v(‖x D‖).
In order to get the epigraph of the function v(‖ ·‖) : Big(X)→R≥0, pick a Z-basis
D1, . . . , Dn for N 1(X) such that, after identifying N 1(X)R with Rn by this basis,
we have PE(X)⊆ Rn

≥0. Let

S(X)= {(m1, . . . ,mn, y) ∈ Nn
×N : y ≥ v(|m1 D1+ · · ·+mn Dn|)},

and let
C(X)= cone(S(X))⊆ Rn

≥0×R≥0

be the closed convex cone spanned by S(X). Let

f : PE(X)→ R≥0 ∪ {+∞}
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be the function whose epigraph is C(X). Then f is a closed convex function since
C(X) is a closed convex cone. Moreover, on the big cone Big(X), f coincides
with the function v(‖ · ‖) by [Lazarsfeld and Mustat,ă 2009, Proposition 4.9].

To see what f (D) is if D is on the boundary of PE(X), we invoke a theorem of
Gale, Klee, and Rockafellar, which states that a closed convex function is continuous
at every point where its domain is locally polyhedral ([Gale et al. 1968, Theorem 2];
see also the introduction of [Ernst 2013]). It follows that for any ample A∈ N 1(X)R,
the restriction of f to the half-line D+R≥0 A is continuous. Hence

f (D)= lim
ε→0+

f (D+ εA)= lim
ε→0+

v(‖D+ εA‖).

This shows that the limit on the right does not depend on the choice of A, and that
in fact f = σv. Since σv is a closed convex function, it is lower semicontinuous,
and is continuous at every point where PE(X) is locally polyhedral by the theorem
of Gale, Klee and Rockafellar. �
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AUGMENTATIONS AND RULINGS
OF LEGENDRIAN LINKS IN #k.S 1 � S 2/

CAITLIN LEVERSON

Given a Legendrian link in #k
.S 1 � S 2/, we extend the definition of a nor-

mal ruling from J 1.S 1/ given by Lavrov and Rutherford and show that
the existence of an augmentation to any field of the Chekanov–Eliashberg
differential graded algebra over ZŒt; t�1� is equivalent to the existence of a
normal ruling of the front diagram. For Legendrian knots, we also show
that any even graded augmentation must send t to �1. We use the cor-
respondence to give nonvanishing results for the symplectic homology of
certain Weinstein 4-manifolds. We show a similar correspondence for the
related case of Legendrian links in J 1.S 1/, the solid torus.

1. Introduction

Augmentations and normal rulings are important tools in the study of Legendrian
knot theory, especially in the study of Legendrian knots in R3. Here, augmenta-
tions are augmentations of the Chekanov–Eliashberg differential graded algebra
introduced by Chekanov [2002] and Eliashberg [1998]. Chekanov describes the
noncommutative differential graded algebra (DGA) over Z=2 associated to a La-
grangian diagram of a Legendrian link in .R3; �std/ combinatorially: The DGA
is generated by crossings of the link; the differential is determined by a count of
immersed polygons whose corners lie at crossings of the link and whose edges lie
on the link. This is called the Chekanov–Eliashberg DGA and Chekanov showed
that the homology of this DGA is invariant under Legendrian isotopy. Etnyre, Ng,
and Sabloff [Etnyre et al. 2002] defined a lift of the Chekanov–Eliashberg DGA
to a DGA over ZŒt; t�1� in. Following ideas introduced by Eliashberg [1987] and
motivated by generating families (functions whose critical values generate front
diagrams of Legendrian knots), Fuchs [2003] and Chekanov and Pushkar [2005]
gave invariants of Legendrian knots in R3. Fuchs looked at decompositions of these
generating families, generally called “normal rulings.”

These two invariants are very closely related; Fuchs [2003], Fuchs and Ishkhanov
[2004], and Sabloff [2005] showed that the existence of a normal ruling is equivalent

MSC2010: primary 57R17; secondary 53D42, 57M27.
Keywords: Legendrian knot, Legendrian submanifold, contact manifold, normal ruling.
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to the existence of an augmentation to Z=2 of the Chekanov–Eliashberg DGA A for
Legendrian knots in R3. Here, given a unital ring S, an augmentation of A is a ring
map � WA!S such that �ı@D0 and �.1/D1. One of the main results of [Leverson
2016] is that the equivalence remains true when one looks at augmentations to a
field of the lift of the Chekanov–Eliashberg DGA from [Etnyre et al. 2002] to the
DGA over ZŒt; t�1� for Legendrian knots in R3. We extend the result to Legendrian
links in R3 to prove the main result of this paper.

Theorem 1.1. Letƒ be an s-component Legendrian link in R3. Given a field F, the
Chekanov–Eliashberg DGA .A; @/ over ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmenta-
tion � W A! F if and only if a front diagram of ƒ has a �-graded normal ruling.
Furthermore, if � is even, then �.t1 � � � ts/D .�1/s.

The final statement tells us that for all even graded augmentations � W A! F,
�.t1 � � � ts/D .�1/s. In particular, if ƒ is a knot, then any even graded augmentation
sends t to �1.

For k � 0, an analogous correspondence can be shown for Legendrian links
in #k.S1 � S2/. A Legendrian link in #k.S1 � S2/ with the standard contact
structure is an embedding ƒ W

`
s S1! #k.S1�S2/ which is everywhere tangent

to the contact planes. We will think of them as Gompf [1998] does. For an
example, see Figure 2. In this paper, we extend the definition of normal ruling of a
Legendrian link in R3 to a Legendrian link in #k.S1 �S2/. We then define the
ruling polynomial for a Legendrian link in #k.S1 �S2/ and show that the ruling
polynomial is invariant under Legendrian isotopy. Note that Lavrov and Rutherford
[2013] did this previously in the case where k D 1.

Theorem 1.2. The �-graded ruling polynomial R
�
.ƒ;m/ with respect to the Maslov

potential m (which changes under Legendrian isotopy) is a Legendrian isotopy
invariant.

Ekholm and Ng [2015] extend the definition of the Chekanov–Eliashberg DGA
over ZŒt; t�1� to Legendrian links in #k.S1 � S2/. The main result of this pa-
per uses Theorem 1.1 to extend the correspondence between normal rulings and
augmentations to a correspondence for Legendrian links in #k.S1 �S2/.

Theorem 1.3. Let ƒ be an s-component Legendrian link in #k.S1 � S2/ for
some k � 0. Given a field F, the Chekanov–Eliashberg DGA .A.ƒ/; @/ over
ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmentation � WA.ƒ/! F if and only if a front
diagram of ƒ has a �-graded normal ruling. Furthermore, if � is even, then
�.t1 � � � ts/D .�1/s.

Notice that one can consider Legendrian links in R3 as being Legendrian links
in #0.S1 �S2/. In this way, this result is a generalization of the correspondence
in [Leverson 2016] and Theorem 1.1. An immediate corollary is the following:
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Corollary 1.4. If ƒ is a Legendrian link in #k.S1 �S2/ and there exists ` such
that N` is odd, then there does not exist a �-graded augmentation of the DGA A.ƒ/
for any �.

In other words, if ƒ has a 1-handle with an odd number of strands going through
it, then there does not exist a �-graded augmentation of the DGA A.ƒ/ for any �.
This follows from the fact that every involution of a set with an odd number of
elements has a fixed-point.

Along with the work of Bourgeois, Ekholm, and Eliashberg [Bourgeois et al.
2012], Theorem 1.3 gives nonvanishing results for Weinstein (Stein) 4-manifolds.
(Note that proofs of the results in [loc. cit.] have not appeared yet.) In particular:

Corollary 1.5. If X is the Weinstein 4-manifold obtained from attaching 2-handles
along a Legendrian linkƒ to #k.S1�S2/ andƒ has a graded normal ruling, then
the full symplectic homology SH.X / is nonzero.

This follows from Theorem 1.3 as the existence of a normal ruling implies the
existence of an augmentation to Q, which, by [Bourgeois et al. 2012], is a sufficient
condition for the full symplectic homology to be nonzero.

We show a correspondence for Legendrian links in the 1-jet space of the circle
J1.S1/. Ng and Traynor [2004] extend the definition of the Chekanov–Eliashberg
DGA to Legendrian links in J1.S1/. Lavrov and Rutherford [2012] extend the
definition of normal ruling to a “generalized normal ruling” of Legendrian links in
J1.S1/ and show that the existence of a generalized normal ruling is equivalent to the
existence of an augmentation to Z=2 of the Chekanov–Eliashberg DGA over Z=2 of a
Legendrian link in J1.S1/. In Section 6, we show that this correspondence holds for
augmentations to any field of the Chekanov–Eliashberg DGA over ZŒt˙1

1
; : : : ; t˙1

s �.

Theorem 1.6. Suppose that ƒ is a Legendrian link in J1.S1/. Given a field F, the
Chekanov–Eliashberg DGA .A; @/ over ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmen-
tation � W A! F if and only if a front diagram of ƒ has a �-graded generalized
normal ruling.

1A. Outline of the article. In Section 2, we recall background on Legendrian links
in #k.S1�S2/ and R3. We give definitions of the Chekanov–Eliashberg DGA over
ZŒt; t�1�, with sign conventions, and augmentations of the DGA in both #k.S1�S2/

and R3. We also define normal rulings for links in #k.S1 � S2/ and show that
the ruling polynomial is invariant under Legendrian isotopy, proving Theorem 1.2.
In Section 3, we prove Theorem 1.1. In Section 4, given an augmentation, we
construct a normal ruling proving one direction of Theorem 1.3. In Section 5, given
a normal ruling, we construct an augmentation, finishing the proof of Theorem 1.3.
In Section 6, we prove Theorem 1.6. In the Appendix, we give the nonvanishing
symplectic homology result.
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2. Background material

2A. Legendrian links in #k.S 1 � S 2/. In this section we will briefly discuss
necessary concepts of Legendrian links in #k.S1 � S2/. We will follow the
notation in [Ekholm and Ng 2015].

Definition 2.1. Let A;M > 0 be fixed. A tangle in Œ0;A�� Œ�M;M �� Œ�M;M �

is Legendrian if it is everywhere tangent to the standard contact structure dz�ydx.
Informally, a Legendrian tangle T in Œ0;A�� Œ�M;M �� Œ�M;M � is in normal
form if

� T meets xD 0 and xDA in k groups of strands, where the groups are of size
N1; : : : ;Nk , from top to bottom in both the xy- and xz-projections,

� and within the `-th group, we label the strands by 1; : : : ;N` from top to bottom
at x D 0 in both the xy- and xz-projections and x DA in the xz-projection,
and from bottom to top at x DA in the xy-projection.

Every Legendrian tangle in normal form gives a Legendrian link in #k.S1�S2/

by attaching k 1-handles which join parts of the xz projection of the tangle at xD 0

to the parts at x DA. In particular, the `-th 1-handle joins the `-th group at x D 0

to the `-th group at x D A and connects the strands in this group with the same
label at x D 0 and x DA through the 1-handle. See Figure 2.

Every Legendrian link in #k.S1 � S2/ has an xz-diagram of the form given
by Gompf [1998], which we will call Gompf standard form. The left diagram of
Figure 2 is an example of a link in Gompf standard form. Any link in Gompf
standard form can be isotoped to a link whose xy-projection is obtained from the
xz-diagram by resolution. The resolution of an xz-diagram of a link is obtained by
the replacements given in Figure 1. For an example, see Figure 2. By [Ekholm and
Ng 2015], an xy-diagram obtained by the resolution of an xz-diagram of a link in
Gompf standard form is in normal form. Thus, we can assume that the xy-diagram
of any Legendrian link is in normal form.

1
2
3
4

4
3
2
1

b34

b24

b14

b23

b13

b12

Figure 1. Resolutions of an xz-diagram in Gompf standard form.
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Figure 2. A Legendrian xz-diagram of a link in #2.S1 �S2/ in
Gompf standard form (top), and the resolution of the Legendrian
link to an xy-diagram of a Legendrian isotopic link (bottom).

2B. Definition of the DGA and augmentations in #k.S 1 � S 2/. This section
contains an overview of the differential graded algebra over the ring ZŒt˙1

1
; : : : ; t˙1

s �

presented by Ekholm and Ng [2015]. Let ƒDƒ1 t � � � tƒn be a Legendrian link
in #k.S1 �S2/ in normal form, where the ƒi denote the components of ƒ and
n� s. On each link component ƒi , label a point by �i (corresponding to ti) within
the tangle (away from crossings). We will discuss the case where there is more than
one basepoint on a given component in Section 2K. Let Ni � 1 be the number of
strands of ƒ which go through the i -th 1-handle with N D

P
Ni the total number

of strands at x D 0.

2C. Internal DGA. We will define the internal DGA for a Legendrian link in
S1�S2, but one can easily extend the definition to the internal DGA for a Legendrian
link in #k.S1 �S2/ by defining the internal DGA as follows for each 1-handle
separately.
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Let .r1; : : : ; rn/ 2 Zn be the n-tuple where ri is the rotation number of the i-th
component ƒi , let r D gcd.r1; : : : ; rn/, and let .m.1/; : : : ;m.N // 2 .Z=2r/N be
the N -tuple of a choice of Maslov potential for each strand passing through the
1-handle (see Section 2E).

Let .AN ; @N / denote the DGA defined as follows. Let A be the tensor algebra
over RDZŒt˙1

1
; : : : ; t˙1

s � generated by c0
ij for 1� i<j �N and c

p
ij for 1� i; j �N

and p � 1. Set jti j D �2ri , jt�1
i j D 2ri , and

jc
p
ij j D 2p� 1Cm.i/�m.j /

for all i; j ;p. Define the differential @N on the generators by

@N .c
0
ij /D

j�1X
`DiC1

.�1/jc
0
i`
jC1c0

i`c
0
j̀ ;

@N .c
1
ij /D ıij C

NX
`DiC1

.�1/jc
0
i`
jC1c0

i`c
1
j̀ C

j�1X
`D1

.�1/jc
1
i`
jC1c1

i`c
0
j̀ ;

@N .c
p
ij /D

pX
`D0

NX
mD1

.�1/jc
`
im
jC1c`imc

p�`
mj ;

where p � 2, ıij is the Kronecker delta function, and we set c0
ij D 0 for i � j.

Extend @N to AN by the Leibniz rule

@N .xy/D .@N x/yC .�1/jxjx.@N y/:

From [Ekholm and Ng 2015], we know @N has degree �1, @2
N
D 0, and .A

N
; @

N
/

is infinitely generated as an algebra, but is a filtered DGA, where c
p
ij is a generator

of the `-th component of the filtration if p � `.
Given a Legendrian link ƒ� #k.S1�S2/, we can associate a DGA .ANi

; @Ni
/

to each of the 1-handles. We then call the DGA generated by the collection of
generators of Ai for 1� i � k with differential induced by @Ni

, the internal DGA
of ƒ.

2D. Algebra. Suppose we have a Legendrian linkƒDƒ1t� � �tƒn�#k.S1�S2/

in normal form with exactly one point labeled �i within the tangle (away from
crossings) on each link component ƒi of ƒ (corresponding to ti). We will discuss
the case where there is more than one basepoint on a given component in Section 2K.

Notation 2.2. Let Qa1; : : : ; Qam denote the crossings of the xy tangle diagram in
normal form. Label the k 1-handles in the diagram by 1; : : : ; k from top to bottom.
Recall that Ni denotes the number of strands of the tangle going through the i-th
1-handle. For each i , label the strands going through the i-th 1-handle on the left
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side of the diagram 1; : : : ;Ni from top to bottom and from bottom to top on the
right side, as in Figure 2.

Let A.ƒ/ be the tensor algebra over RD ZŒt˙1
1
; : : : ; t˙1

s � generated by

� Qa1; : : : ; Qam;

� c0
ij I`

for 1� `� k and 1� i < j �N`;

� c
p

ij I`
for 1� `� k, p � 1, and 1� i; j �N`.

(In general, we will drop the index ` when the 1-handle is clear.)

2E. Grading. The following are a few preliminary definitions which will allow us
to define the grading on the generators of A.ƒ/.

Definition 2.3. A path in �xy.ƒ/ is a path that traverses part (or all) of �xy.ƒ/

which is connected except for where it enters a 1-handle, meaning, where it ap-
proaches x D 0 (respectively x DA) along a labeled strand and exits the 1-handle
along the strand with the same label from x DA (respectively x D 0). Note that
the tangent vector in R2 to the path varies continuously as we traverse a path as the
strands entering and exiting 1-handles are horizontal.

The rotation number r.
 / of a path 
 is the number of counterclockwise revo-
lutions around S1 made by the tangent vector 
 0.t/=j
 0.t/j to 
 as we traverse 
 .
Generally this will be a real number, but will be an integer if and only if 
 is smooth
and closed.

Thus, the rotation number ri D r.ƒi/ is the rotation number of the path in
�xy.ƒ/ which begins at the basepoint �i on the link component ƒi and traverses
the link component, following the orientation of the component. In the case where
ƒ is a link with components ƒ1; : : : ; ƒn, we define

r.ƒ/D gcd.r1; : : : ; rn/:

Define

jti j D �2r.ƒi/:

If �xy.ƒ/ is the resolution of an xz-diagram of an n-component link in Gompf
standard form, then the method assigning gradings follows: Choose a Maslov
potential m that associates an integer modulo 2r.ƒ/ to each strand in the tangle T

associated to ƒ, minus cusps and basepoints, such that the following conditions
hold:

(1) For all 1 � ` � k and all 1 � i �N`, the strand labeled i going through the
`-th 1-handle at x D 0 and the x DA must have the same Maslov potential.
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(2) If a strand is oriented to the right, meaning it enters the 1-handle at x DA and
exits at xD 0, then the Maslov potential of the strand must be even. Otherwise
the Maslov potential of the strand must be odd.

(3) At a cusp, the upper strand (strand with higher z-coordinate) has Maslov
potential one more than the lower strand.

The Maslov potential is well-defined up to an overall shift by an even integer for
knots. (Ekholm and Ng [2015] give another method for defining the gradings using
the rotation numbers of specified paths.)

Set jti j D �2r.ƒi/ and jcp
ij I`j D 2p� 1Cm.i/�m.j /, where m.i/ means the

Maslov potential of the strand with label i going through the `-th 1-handle. It
remains to define the grading on crossings in the tangle, crossings resulting from
resolving right cusps, and crossings from the half-twists in the resolution. If a is a
crossing in the tangle T, then define

jaj Dm.So/�m.Su/;

where So is the strand which crosses over the strand Su at a in the xy-projection
of ƒ. If a is a right cusp, define jaj D 1 (assuming there is not a basepoint in the
loop). If a is a crossing in one of the half-twists in the resolution where strand i

crosses over strand j (i < j ), then

jaj Dm.i/�m.j /:

2F. Differential. It suffices to define the differential @ on generators and extend
by the Leibniz rule. Define @.ZŒt˙1

1
; : : : ; t˙1

s �/ D 0. Set @ D @N`
on AN`

as in
Section 2C.

In [Ekholm and Ng 2015], the DGA on crossings ai is defined by looking for
immersed disks in the xy-diagrams of Legendrian links, (see the left diagram in
Figure 3). However, Ekholm and Ng note that it is equivalent to look for immersed
disks in dip versions of the diagram, (see the right diagram in Figure 3). See
Figure 4 for the labeling of the crossings in Figure 3.

Definition 2.4. Let a; b1; : : : ; b` be generators. Define �.aI b1; : : : ; b`/ to be the
set of orientation-preserving maps

f WD2
! R2

(up to smooth reparametrization) that map @D2 to the dip version of ƒ such that

(1) f is a smooth immersion except at a; b1; : : : ; b`,

(2) a; b1; : : : ; b` are encountered as one traverses f .@D2/ counterclockwise,

(3) near a; b1; : : : ; b`, f .D2/ covers exactly one quadrant, specifically, a quadrant
with positive Reeb sign near a and a quadrant with negative Reeb sign near
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Figure 3. A Legendrian xy-diagram of a link in #2.S1 � S2/

which has resulted from the resolution of a link in Gompf standard
form (top) and the dipped version of the link where the half of a
dip on the left side of the dipped version is identified with the right
half of the dip on the right side. See Figure 4 for the labeling of
the crossings in the dips (bottom).

4

3

2

1

b14

b13

b12

b24

b23

b34 c0
14

c0
13

c0
12

c0
24

c0
23

c0
34

Figure 4. This is the dip at the right of the bottom figure in Figure 3
with strands and crossings labeled. The labels of the partial dip at
the left of the bottom figure in Figure 3 are the same as the right
half of the dip depicted.
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�

�

CC
C

C

�

�

Figure 5. The signs in the figure give the Reeb signs of the quad-
rants around the crossings. The orientation signs are C1 for all
quadrants of crossings of odd degree. For crossings of even degree,
we use the convention indicated in the left figure if the crossing
comes from the xz-projection and the convention in the right figure
if the crossing is in a dip, which will be discussed in Section 2J,
where the shaded quadrants have orientation sign �1 and the other
quadrants have orientation sign C1.

b1; : : : ; b`, where the Reeb sign of a quadrant near a crossing is defined as in
Figure 5.

To each immersed disk, we can assign a word in A.ƒ/ by starting with the
first corner where the quadrant covered has negative Reeb sign, b1, and listing the
crossing labels of all negative corners as encountered while following the boundary
of the immersed polygon counterclockwise, b1 � � � b`. We associate an orientation
sign ıQ;a to each quadrant Q in the neighborhood of a crossing a, defined in
Figure 5, and use these to define the sign of a disk f .D2/ to be the product of the
orientation signs over all the corners of the disk. We denote this sign by ı.f /. In
many cases there is a unique disk with positive corner at a (with respect to Reeb
sign) and negative corners at b1; : : : ; b` and in these we define ı.aI b1; : : : ; b`/ to
be the sign of the unique disk. (In exceptional cases there may be more than one
disk with positive corner at a and negative corners at b1; : : : ; b`.)

Define n�i
.f / or n�i

.aI b1; : : : ; b`/ to be the signed count of the number of times
one encounters the basepoint �i while following f .@D2/ counterclockwise, where
the sign is positive if we encounter the basepoint while following the orientation of
the link component and negative if we encounter the basepoint while going against
the orientation.

We define

@.ai/D
X
`�0

X
.b1;:::;b`/

X
f 2�.ai Ib1;:::;b`/

ı.f / t
n�1

.f /

1
� � � t

n�s.f /
s b1 � � � b`

and extend to A.ƒ/ by the Leibniz rule.
Ekholm and Ng [2015] prove that the map @ has degree �1 and is a differential,

i.e., @2 D 0.
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a7
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Figure 6. A Legendrian xz-diagram in #2.S1 �S2/ in Gompf
standard form (top) and the dip form of the normal form (bottom).
Recall the labels on the crossings in the dips from Figure 4 for the
top 1-handle and label the left crossing b12 and the right c12 in the
dip of the bottom 1-handle.

Example 2.5. The following is the definition of the DGA .A.ƒ/; @/ for the Leg-
endrian link ƒ in Figure 6. Here A.ƒ/ is generated by a1; : : : ; a9; bij ; c

p
ij over

ZŒt˙1
1
; t˙1

2
; t˙1

3
�. We set jti jD 2r.ƒi/D 0 for i D 1; 2; 3. Define a Maslov potential

m on the strands near x D 0 by

i 1 2 3 4 1 2

m.i/ 2 1 0 �1 0 �1

Then we have the following gradings:

ja1j D ja2j D ja3j D ja7j D ja8j D 0; ja4j D ja5j D ja9j D 1; ja6j D �1;
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ij 12 13 14 23 24 34 12

jbij j 1 2 3 2 2 1 1

jc0
ij j 0 1 2 0 1 0 0

j

jc1
ij j 1 2 3 4

i

1 1 2 3 4

2 0 1 2 3

3 �1 0 1 2

4 �2 �1 0 1

j

jc2
ij j 1 2 3 4

i

1 3 4 5 6

2 2 3 4 5

3 1 2 3 4

4 0 1 2 3

where 12 is the crossing of the strands in the bottom 1-handle. Since jcp
ij j D

2p� 1Cm.i/�m.j /, we know jcp
ij j> 0 for p > 2.

For ease of notation, we will use c
p
12

to denote c
p

12
. We then have the following

differentials:

@a1 D @a2 D @a3 D @a6 D 0

@a4 D .1C a2a1/a3� t�1
1 a2c0

12

@a5 D 1� a1a3C t�1
1 c0

12

@a7 D t�1
2 t�1

3 c0
34a6

@a8 D a6c0
12

@a9 D t�1
2 t�1

3 c0
34a8� a7c0

12

@b12 D 1C a2a1� c0
12

@b13 D .1C a2a1/b23C a4.t2c0
23a7C t�1

3 c0
24a6/

� t�1
1 a2.t2c0

13a7C t�1
3 c0

14a6/� c0
13C b12c0

23

@b14 D .1C a2a1/b24

�
�
a4.t2c0

23a7C t�1
3 c0

24a6/� t�1
1 a2.t2c0

13a7C t�1
3 c0

14a6/
�
b34

C .a4c0
23� t�1

1 a2c0
13/t2a9C .a4c0

24� t�1
1 a2c0

14/t
�1
3 a8

� c0
14C b12c0

24� b13c0
34

@b23 D�a3.t2c0
23a7C t�1

3 c0
24a6/� c0

23

@b24 D�a3.t2c0
23a7C t�1

3 c0
24a6/b34� t�1

3 a3c0
24a8

� c0
24C b23c0

34� t2a3c0
23a9

@b34 D c0
12� c0

34
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@b12 D t�1
2 t�1

3 c0
34� c0

12

@c
p
ij D ıijı1pC

pX
`D0

4X
mD1

.�1/jc
`
im
jC1 c`im c

p�`
mj

@c
p
ij D ıijı1pC

pX
`D0

2X
mD1

.�1/jc
`
im
jC1 c`im c

p�`
mj

Definition 2.6. Let .A; @/ be a semifree DGA over R generated by fai ji 2 Ig.
Let J be a countable (possibly finite) index set. A stabilization of .A; @/ is the
semifree DGA .S.A/; @/, where S.A/ is the tensor algebra over R generated by
fai j i 2 Ig [ f j̨ j j 2 J g [ f ǰ jj 2 J g and the grading on ai is inherited from
A and j j̨ j D j ǰ j C 1 for all j 2 J. Let the differential on S.A/ agree with the
differential on A� S.A/, define

@. j̨ /D ǰ and @. ǰ /D 0

for all j 2 J, and extend by the Leibniz rule.

Definition 2.7 [Ekholm and Ng 2015]. Two semifree DGAs .A; @/ and .A0; @0/ are
stable tame isomorphic if some stabilization of .A; @/ is tamely isomorphic to some
stabilization of .A0; @0/.

Theorem 2.8 [op. cit., Theorem 2.18]. Let ƒ and ƒ0 be Legendrian isotopic Leg-
endrian links in #k.S1 � S2/ in normal form. Let .A.ƒ/; @/ and .A.ƒ0/; @0/ be
the semifree DGAs over RD ZŒt˙1

1
; : : : ; t˙1

s � associated to the diagrams �xy.ƒ/

and �xy.ƒ
0/, which are in normal form. Then .A.ƒ/; @/ and .A.ƒ0/; @0/ are stable

tame isomorphic.

Definition 2.9. Let F be a field. An augmentation of .A.ƒ/; @/ to F is a ring map
� W A.ƒ/! F such that � ı @D 0 and �.1/D 1. If � j 2r.ƒ/ and � is supported
on generators of degree divisible by �, then � is �-graded. In particular, if �D 0,
we say it is graded and if � D 1, we say if is ungraded. We call a generator a

augmented if �.a/¤ 0.

Example 2.10. Recalling the DGA associated with the Legendrian link in Figure 6
of Example 2.5, given a field F, one can check that any graded augmentation �
to F satisfies: �.t1/D�1, �.t3/D �.t2/�1 where �.t2/¤ 0, �.bij /D �.b12/D 0,
and for a; b; c; d; e; f 2 F such that 1C ab; d; e ¤ 0,

i 1 2 3 4 5 6 7 8 9

�.ai/ a b �b 0 0 0 c c 0

ij 12 13 14 23 24 34 12

�.c0
ij / 1C ab 0 0 0 0 d d
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j

jc1
ij j 1 2 3 4

i

1 0 0 0 0

2 e 0 0 0

3 0 f 0 0

4 0 0 .1C ab/d�1e 0

j

jc2
ij j 1 2 3 4

i

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 �.1C ab/d�1f 0 0 0

Note that any augmentation of a stabilization S.A/ restricts to an augmentation
of the smaller algebra A and any augmentation of the algebra A extends to an
augmentation of the stabilization S.A/ where the augmentation sends ǰ to 0 and

j̨ to an arbitrary element of F if � divides j j̨ j and 0 otherwise for all j 2 J.

2G. Normal rulings in #k.S 1 � S 2/. In this section, we extend the definition of
a normal ruling from Legendrian links in R3 to Legendrian links in #k.S1 �S2/.
We formulate the definition similarly to how Lavrov and Rutherford [2012] define
normal rulings in the case of Legendrian links in the solid torus.

Consider the tangle portion of the �xz.ƒ/ diagram in normal form of a Leg-
endrian link ƒ � #k.S1 � S2/. A normal ruling can be viewed locally as a
decomposition of �xz.ƒ/ into pairs of paths.

Let C � S1 be the set of x-coordinates of crossings and cusps of �xz.ƒ/ where
S1 D Œ0;A�=f0DAg. We can write

S1
nC D

Ma
`D1

I`

where I` is an open interval (or all of S1) for each `. We use the convention that
I0DIM and the I` are ordered I0; : : : ; IM from xD0 to xDA (from left to right in
the xz-diagram) so that I`�1 appears to the left of (has lower x-coordinates than) I`.
Note that .I` � Œ�M;M �/\�xz.ƒ/ consists of some number of nonintersecting
components which project homeomorphically onto I`. We call these components
strands of �xz.ƒ/ and number them from top to bottom by 1; : : : ;N.`/. For each `,
choose a point x` 2 I`.

Definition 2.11. A normal ruling of �xz.ƒ/ is a sequence of involutions � D
.�1; : : : ; �M /,

�m W f1; : : : ;N.m/g ! f1; : : : ;N.m/g; .�m/
2
D id;

satisfying:

(1) Each �m is fixed-point-free.
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(2) If the strands above Im labeled ` and `C 1 meet at a left cusp in the interval
.xm�1;xm/, then

�m.i/D

8<:
`C 1 if i D `;

J.�m�1.i// if i < `;

J.�m�1.i � 2// if i > `C 1;

where

J.i/D

�
i; i < `;

i C 2; i � `;

and a similar condition at right cusps.

(3) If strands above Im labeled ` and `C 1 meet at a crossing on the interval
.xm�1;xm/, then �m�1.`/¤ `C 1 and either
� �m D .` `C 1/ ı �m�1 ı .` `C 1/, where .` `C 1/ denotes transposition

or
� �m D �m�1.

When the second case occurs, we call the crossing switched.

(4) (Normality condition) If there is a switched crossing on the interval .xm�1;xm/,
then one of the following holds:
� �m.`C 1/ < �m.`/ < ` < `C 1,
� �m.`/ < ` < `C 1< �m.`/,
� ` < `C 1< �m.`C 1/ < �m.`/.

(5) Near x D 0 and x DA, both the strand with label ` and the strand with label
�0.`/ must go through the same 1-handle; in other words, there exists p such
that

Pp�1
iD1

Ni < `; �0.`/�
Pp

iD1
Ni .

The final condition is the only condition which is different from how normal
rulings are defined in [Lavrov and Rutherford 2012] for the case of solid torus knots.
This condition ensures the ruling “behaves well” with the 1-handles.

Remark 2.12. As in [loc. cit.], one can equivalently see normal rulings as pairings
of strands in the xz-diagram with certain conditions. Here we think of strands i

and j being paired for xm�1 � x � xm if �m.i/D j. In this way, we can cover the
xz-diagram with pairs of paths which have monotonically increasing x-coordinate.
Note that if a path goes all the way from x D 0 to x D A, it may end up on a
different strand than it started, but strand i is paired with strand j at x D 0 if
and only if they are paired at x D A. Condition (5) also specifies that the paired
strands must go through the same 1-handle. The conditions mentioned above are as
follows: Paired paths can only meet at a cusp. This also means that at a crossing,
the crossings strands must be paired with other strands. These companion strands
can either lie above or below the crossing. Conditions (3) and (4) specify that near
a crossing the pairings must be one of those depicted in Figure 7.
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.a/ .b/ .c/

.d/ .e/ .f /

Figure 7. These configurations, along with vertical reflections of
(d), (e), and (f), are all possible configurations of a normal ruling
near a crossing. The top row contains all possible configurations
for switched crossings in a normal ruling. (This figure is taken
from [Leverson 2016].)

Figure 8. These are the two normal rulings of the Legendrian link
of Example 2.5 seen in Figure 6.

Example 2.13. Figure 8 gives the normal rulings of the Legendrian link from
Example 2.5.

Definition 2.14. Given � such that � j 2r.ƒ/ and an Z=�-valued Maslov potential
on ƒ, a normal ruling is �-graded with respect to the Z=�-valued Maslov potential
if whenever two strands are paired by one of the �m, the upper strand (strand with
lower label) has Maslov potential one higher than the lower strand (strand with
higher label).

Remark 2.15. Note that the condition for being a �-graded normal ruling of a
Legendrian link in #k.S1�S2/ implies that �

ˇ̌
jcj if the normal ruling is switched

at a crossing c. Further, any Legendrian link in R3 is also a Legendrian link in
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4 W ƒ ƒ

5 W ƒ ƒ

6 W ƒ ƒ

Figure 9. Gompf moves 4, 5, and 6.

#k.S1 �S2/ for any k (no strands of this link go through any of the 1-handles).
We then see that the definition of a �-graded normal ruling for the Legendrian link
in #k.S1 �S2/ is equivalent to the definition of a �-graded normal ruling for the
Legendrian link in R3.

Similarly to R3, we can define a �-graded ruling polynomial.

Definition 2.16. If m is a Z=�-valued Maslov potential for a Legendrian link ƒ,
then the �-graded ruling polynomial of ƒ with respect to m is

R
�
.ƒ;m/ D

X
�

zj.�/;

where the sum is over all �-graded normal rulings of ƒ and

j .�/D # switches� # right cusps:

Note that in the case where ƒ is a knot, the ruling polynomial does not depend
on the Maslov potential. Restated from the introduction:

Theorem 1.2. The �-graded ruling polynomial R
�
.ƒ;m/ with respect to the Maslov

potential m (which changes under Legendrian isotopy) is a Legendrian isotopy
invariant.

Proof. By Gompf [1998], any Legendrian link in #k.S1 �S2/ can be represented
by an xz-diagram in Gompf standard form and two such xz-diagrams represent
links that are Legendrian isotopic if and only if they are related by a sequence
of Legendrian Reidemeister moves of the xz-diagram of the tangle inside the
rectangle Œ0;A�� Œ�M;M � and three additional moves, which we will, following
the nomenclature of [Ekholm and Ng 2015], call Gompf moves 4, 5, and 6 (see
Figure 9). By [Pushkar and Chekanov 2005], we know the ruling polynomial is
invariant under Legendrian isotopy of the tangle, so we need only show it is invariant
under Gompf moves 4, 5, and 6.
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Gompf moves 4 and 5 clearly do not change the ruling polynomial. For Gompf
move 6, note that any normal ruling cannot pair a strand going through the 1-handle
with one of the strands incident to the cusp. Instead, the ruling must pair the two
strands incident to the left cusp and not have any switches in the portion of the
diagram depicted in Figure 9, thus the ruling polynomial does not change. �

Example 2.17. The normal rulings for the Legendrian link from Example 2.5 are
given in Figure 8. Thus the ruling polynomial is

Rƒ D z�1
C z:

2H. Legendrian links in R3. The classical invariants for Legendrian isotopy classes
of knots in R3 are: topological knot type, Thurston–Bennequin number, and rotation
number; see [Etnyre 2005]. The Thurston–Bennequin number of a knot measures
the self-linking of a Legendrian knot ƒ. Given a push off ƒ0 of ƒ in a direction
tangent to the contact structure, then tb.ƒ/ is the linking number of ƒ and ƒ0.
Given the xz-projection of ƒ,

tb.ƒ/D writhe.ƒ/� 1
2
.# cusps/:

The rotation number r.ƒ/ of an oriented Legendrian knot ƒ is the rotation of
its tangent vector field with respect to any global trivialization. (This definition
agrees with the definition of the rotation number of a path given earlier.) Given the
xz-projection of ƒ,

r.ƒ/D 1
2
.# down cusps� # up cusps/:

Given a Legendrian linkƒDƒ1t� � �tƒn, we define tbi D tb.ƒi/ and ri D r.ƒi/

for 1� i � n, and define

r.ƒ/D gcd.r1; : : : ; rn/:

2I. Satellites, the DGA, and augmentations in R3. This section gives the results
and notation for Legendrian links in R3 necessary to prove Theorem 1.3.

We will first extend the idea of satelliting a knot in J1.S1/ to an unknot (see
[Ng and Rutherford 2013]) to satelliting each 1-handle of a knot in #k.S1 �S2/

around a twice stabilized unknot.

Definition 2.18. Given the xy- or xz-diagram for a Legendrian link ƒ in #k.S1�

S2/, satellitedƒ is denoted S.ƒ/, the xy-diagram of which is depicted in Figure 10
and the xz-diagram of a Legendrian isotopic link of which is depicted in Figure 12
for the Legendrian link from Figure 6. Label the crossings as indicated, where
i � j and label the basepoints in S.ƒ/ as they are labeled in ƒ. Note that the xy-
or xz-diagram of ƒ defines S.ƒ/ up to Legendrian isotopy.
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1
2
3
4

1
2

1
2
3
4

1
2

t1

t2

t3

a1 a2

a3

a4

a5

a6
a7
a8

a9 bij cij

b12
c12

dji

eij

fjigij

hji

qij

Ndji

Ne12

NfjiNg12

Nhji

Nq12

Figure 10. The xy-projection of the satellited link S.ƒ/. The
crossings in the cij -, bij -, cij , and bij -lattices are labeled as in
Figure 4. The crossings in the d; e; f;g; h; q-lattices are labeled
according to Figure 11.

1 2 3 4

1234

1234

1 2 3 4

e12

e13

e14e23

e24

e34

d11

d21

d31

d41

d22

d32

d42 d33

d43

d44

Figure 11. The labels for the crossings in the e- and d -lattices of
the satellited link S.ƒ/ as seen in Figure 10. The f - and h-lattices
are analogous to the d -lattice. The g- and q-lattices are analogous
to the e-lattice.
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123
4

10
20

123
4

10
20

a1
a2

a3

a4 a5

a6
a7
a8

a9

dji

eij

fjigij

hji

qij

d 0ji

e0ij

f 0ji
g0ij

h0ji

q0ij

Figure 12. The xz-projection of a link which is Legendrian iso-
topic to the satellited link S.ƒ/.

Remark 2.19. The Chekanov–Eliashberg DGA was originally defined on Legen-
drian links in .R3; dz�ydx/; see [Chekanov 2002; Sabloff 2005]. Note that the
same DGA results from defining the DGA as we did in #k.S1�S2/ where k D 0.

2J. Dips. Dips will be defined analogously to those defined in [Leverson 2016].
Given a diagram �xy.ƒ/ in normal form which is the result of resolution, we

construct a dip in the vertical slice of the diagram between two crossings, a crossing
and a cusp, or two cusps, by a sequence of Reidemeister II moves, as seen in
Figure 13 in the xz-projection and xy-projection. From the xz-projection, it is
clear that the diagram with the dip is Legendrian isotopic to the original diagram.
To construct a dip, number the N strands from top to bottom. Using a type II
Reidemeister move, push strand N �1 over strand N, then strand N �2 over strand
N � 1, then strand N � 2 over strand N, and so on. In this way, strand i is pushed
over strand j in antilexicographic order.

Given an xy-diagram for a link ƒ�R3 in normal form, where all crossings and
resolutions of left cusps having distinct x-coordinates, the dipped diagram D.ƒ/

is the result of adding a dip between each pair of crossings or resolution of a cusp
and crossing. For each Reidemeister II move, we have two new generators. Call
the left crossing bij and the right crossing cij if strands i < j cross. One can check
that jbij j Dm.j /�m.i/ and since @ lowers degree by 1, we know jcij j D jbij j�1.

While dipped diagrams have many more crossings than the original link diagram,
the differential @ on A.D.ƒ// is generally much simpler. In fact, a totally augmented
disk (a disk from the definition of the differential of the DGA where all crossings
at corners are augmented), cannot “go through” or “span” more than one dip.
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4

3

2

1

b14

b13

b12

b24

b23

b34 c14

c13

c12

c24

c23

c34

Figure 13. The modification of the xz-diagram when creating a
dip (left) and the modification of the xy-diagram (right). (This
figure is taken from [Leverson 2016].)

2K. Augmentations before and after basepoints and type II moves. In certain
cases, we will find that adding basepoints will simplify the signs. For Legendrian
links in R3, Ng and Rutherford [2013] give the DGA homomorphisms induced by
adding a basepoint to a diagram and by moving a basepoint around a link. One can
easily extend their results to #k.S1 �S2/.

The following theorem is the analog of [op. cit, Theorem 2.21]:

Theorem 2.20. Let �1; : : : ;�k and �0
1
; : : : ;�0

k
denote two collections of base-

points on the Lagrangian resolution of the front diagram of a Legendrian knot ƒ,
each of which is cyclically ordered along ƒ, and let .A.ƒ;�1; : : : ;�k/; @/ and
A.ƒ;�0

1
; : : : ;�0

k
/; @0/ denote the corresponding multipointed DGAs. Then there is

a DGA isomorphism ‰ W .A.ƒ;�1; : : : ;�k/; @/! .A.ƒ;�0
1
; : : : ;�0

k
/; @0/ such that

‰.ti/D ti for all i .

In the proof of the theorem, ‰ is defined so that ‰.c/ D c if no basepoint
is moved over or under the crossing c. However, if the basepoint �i is moved
over the crossing c, then ‰.c/ D t˙1

i c, where the sign depends on whether the
basepoint is moved along the knot following the orientation of the knot or against
the orientation of the knot. If, instead, the basepoint is moved under the crossing c,
then ‰.c/D ct˙1

i , where the sign, again, depends on the orientation of the knot.
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Thus, If �0 is an augmentation of the DGA of the diagram after moving the
basepoint �i over the crossing c, then �D �0 ı‰ is an augmentation of the DGA of
the diagram before moving the basepoint.

The following theorem is the analog of [Ng and Rutherford 2013, Theorem 2.22]:

Theorem 2.21. Let �1; : : : ;�k be a cyclically ordered collection of basepoints
alongƒ, and let � be a single basepoint onƒ. Then there is a DGA homomorphism
� W .A.ƒ;�/; @/! .A.ƒ;�1; : : : ;�k/; @/ such that �ı@D @ı� and �.t/D t1 � � � tk .

Remark 2.22. In summary, if we have an augmentation � WA!F with �.ti/D�1,
then moving the basepoint �i through a crossing c only changes the augmentation
by changing the sign of the augmentation on the crossing c. Suppose we have a
diagram with a basepoint � corresponding to t and the same diagram with basepoints
�1; : : : ;�s associated to t1; : : : ; ts on the same component of the link and we move
all of the basepoints �1; : : : ;�s to the location of �. By the above results, if � is an
augmentation to F of the multiple basepoint diagram, there exists an augmentation
�0 to F of the single basepoint diagram such that for all crossings c there exists
xc 2 F such that �0.c/D xc�.c/ and

�0.t/D �.t1 � � � ts/D

sY
iD1

�.ti/:

Etnyre, Ng, and Sabloff [Etnyre et al. 2002] give a DGA isomorphism relating
the DGA of a diagram of a Legendrian knot in R3 before and after a Reidemeister II
move. One can easily extend this to a similar result for #k.S1�S2/, which gives a
way to extend an augmentation of the diagram before a Reidemeister II move to an
augmentation of the diagram after the move; see [Leverson 2016] for the analogous
result in R3.

3. Correspondence between augmentations
and normal rulings for links in R3

We have the following result for knots in R3:

Theorem 3.1 [Leverson 2016, Theorem 1.1]. Let ƒ be a Legendrian knot in R3.
Given a field F, .A; @/ has a �-graded augmentation � WA! F if and only if any
front diagram of ƒ has a �-graded normal ruling. Furthermore, if � is even, then
�.t/D�1.

This result is proven by construction. Using the same method we can prove an
analogous result for links in R3. Restating from the introduction:

Theorem 1.1. Letƒ be an n-component Legendrian link in R3 with s basepoints (at
least one basepoint on each component). Given a field F, the Chekanov–Eliashberg
DGA .A; @/ over ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmentation � W A! F if and
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only if a front diagram of ƒ has a �-graded normal ruling. Furthermore, if � is
even, then �.t1 � � � ts/D .�1/s.

The following result will be necessary for the proof of Theorem 1.1. Analogous to
the knot case in R3, we have the following extension of [Leverson 2016, Lemma 3.2]:

Lemma 3.2. If c gives the number of right cusps, sw is the number of switches in
the ruling, a� is the number of �(a) crossings, and n is the number of components,
then

cC swC a� � n mod 2:

Proof. As in the knot case, one can easily show each of the following statements:
nX

iD1

tbi C

nX
iD1

ri � n mod 2(1)

nX
iD1

tbi � cC cr mod 2(2)

cr � sw mod 2(3)
nX

iD1

ri � a� mod 2(4)

where ri is the rotation number of ƒi and cr is the number of crossings. Note that
if we add these four equations together, we get that

cC swC a� � n mod 2

as desired. �
Proof of Theorem 1.1. After a series of Legendrian isotopies, we can assume
the front diagram of ƒ has the following form where from left to right (lowest
x-coordinate to highest x-coordinate) we have: all left cusps have the same x-
coordinate, no two crossings of ƒ have the same x-coordinate, and all right cusps
have the same x-coordinate (in [Leverson 2016], this is called plat position). Label
the crossings in the right cusps by q1; : : : ; qm from top to bottom and label the
other crossings by c1; : : : ; c` from left to right.

Augmentation to ruling: Beginning with a �-graded augmentation of the Chekanov–
Eliashberg DGA of the resolution of �xz.ƒ/ to a Lagrangian diagram, define a
�-graded normal ruling of �xz.ƒ/ by simultaneously defining a �-graded augmen-
tation of the dipped diagram D.ƒ/ as in the knot case, using Figure 14.

Ruling to augmentation: Given a �-graded normal ruling of �xz.ƒ/, define a
�-graded augmentation of the dipped diagram D.ƒ/with basepoints where specified
in Figure 14 and at each right cusps as in the knot case, using Figure 14.
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Using Lemma 3.2 and the methods in the proof of [Leverson 2016, Theorem 3.1],
one can show the final statement of Theorem 1.1. Given a �-graded augmentation
� WA! F, consider the associated �-graded normal ruling. If � is even, then the
ruling is only switched at crossings ck with �

ˇ̌
jck j and so 2

ˇ̌
jck j. Thus, any

strands paired by the ruling must have opposite orientation. As in the case of knots,
this implies that near a crossing where the ruling is switched the crossing must be a
positive crossing. Thus each ruling path is an oriented unknot.

If we consider the dipped diagram of the link, by induction we can show thatY
�.bk

ij /
˙1
D 1;

where the product is taken over all paired strands i and j in the ruling between ck

and ckC1 and the sign is determined by the orientation of the paired strands as in
[op. cit.]. By considering @qk , we see that

�.t1 � � � ts/D .�1/s�m
mY

kD1

�
��.b`2k;2k�1/

˙1
�

D .�1/s
Y

i<j paired

�.b`ij /
˙1
D .�1/s D .�1/n

by Lemma 3.2 and the fact that the number of basepoints s� cCswCa� mod 2. �

4. Augmentation to ruling

In this section, we will show that a quotient of the DGA of the satellited version
of any Legendrian link ƒ in #k.S1 � S2/ is a subalgebra of the DGA of ƒ in
#k.S1 �S2/ and use the construction from Theorem 1.1 to construct a ruling of
the satellited link in R3 to then give a normal ruling of ƒ in #k.S1 �S2/. This
shows the forward direction of Theorem 1.3.

Given an xy-diagram for the Legendrian link ƒ in #k.S1 �S2/ which results
from the resolution of an xz-diagram in normal form with basepoints indicated. We
can construct an xy-diagram for S.ƒ/, satellitedƒ, (see Figure 10) with basepoints
in the same location as they were for ƒ.

We will use the notation for Legendrian links in #k.S1 �S2/ with tildes added
for the Legendrian link ƒ in #k.S1 �S2/:

A.ƒ/D ZŒQt˙1
1 ; : : : ; Qt˙1

s �h Qai ;
Qbij I`; Qc

p
ij I`i

with differential Q@, where 1� `� k, i < j for all Qbij I` and i < j for Qcp
ij I` if p D 1.

We will use the notation for Legendrian links from Figure 10 for S.ƒ/:

A.S.ƒ//D ZŒt˙1
1 ; : : : ; t˙1

s �hai ; bij I`; cij I`; djiI`; eij I`; fjiI`;gij I`; hjiI`; qij I`i
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with differential @, where 1� `� k, 1� i �m for ai , i < j for bij I`, cij I`, eij I`,
gij I`, and qij I`, and i � j for djiI`, fjiI`, and hjiI`.

Suppose we have a Legendrian link ƒ in #k.S1 �S2/ with associated DGA
.A.ƒ/; @/. If .A.S.ƒ//; @/ is the DGA associated to satellited ƒ, then let � W
A.S.ƒ//!A.S.ƒ//=B be the quotient algebra homomorphism where B is the
ideal in A.S.ƒ// generated by

fcij I` �gij I`; cij I` � qij I`; cij I` � .�1/jeij I`jC1eij I`;

hjiI` � .�1/jfj iI`jC1fjiI`; hjiI` � .�1/jdj iI`jC1djiI`g:

Define 
 WA.S.ƒ//=B!A.ƒ/ by


 W A.S.ƒ//=B �! A.ƒ/

Œai � 7�! Qai

Œbij I`� 7�! Qbij I`

Œcij I`� 7�! Qc0
ij I`

ŒhjiI`� 7�! Qc1
jiI`

Œti � 7�! Qti

Proposition 4.1. If �D 
 ı� , then � is a graded algebra homomorphism such that
Q@�.c/D˙�@.c/ for all c 2 fai ; bij I`; cij I`; djiI`; eij I`; fjiI`;gij I`; hjiI`; qij I`g.

Proof. Grading: We will first show that � and 
 (and thus �) are graded algebra
homomorphisms. First, let m be the Maslov potential used to assign the gradings
of the crossings of ƒ in #k.S1 �S2/. We will use m to define a Maslov potential
� on S.ƒ/ in R3 as follows: Define � on T � S.ƒ/ the same as m is defined on
T �ƒ and extend � to the rest of S.ƒ/. Notice that there is only one way to do
this which keeps � of the upper strand (higher z-coordinate) entering a cusp one
higher than � of the lower strand (lower z-coordinate) entering a cusp. The fact
that @ has degree �1 and properties of the Maslov potential immediately give us
that in the p-th 1-handle:

j Qc1
ji j D jdji j D jfji j D jhji j; i � j(5)

j Qc0
ij j D jcij j D jeij j D jgij j D jqij j; i < j

�jdji j D jeij j; i < j

jbij j D jcij jC 1; i < j

Thus, � and 
 are graded algebra homomorphisms and so � is as well.
Q@�.c/D˙�@.c/: From the definition of their gradings, in the p-th 1-handle:

(6) j Qc0
ij j � j Qc

0
i`jC j Qc

0
j̀ j mod 2 and j Qc1

ji j � j Qc
1
j`jC j Qc

1
`i j mod 2
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With (5), we have analogous statements for bij ; cij ; dji ; eij ; fji ; gij ; hji , and qij .
By considering the disks which contribute terms to @ai and Q@ Qai (and analogously

@bij and Q@ Qbij in the p-th 1-handle for i < j ), it is clear that

Q@�.ai/Q@. Qai/D �@.ai/ and Q@�.bij /Q@. Qbij /D �@.bij /:

Given 1� p � k and 1� i < j �Np. In the p-th 1-handle:

Q@�cij D
Q@ Qc0

ij

D

X
i<`<j

.�1/jQc
0
i`
jC1
Qc0
i` Qc

0
j̀

D �

 X
i<`<j

.�1/jcij jC1ci`c j̀

!
by (5)

D �@cij ;

Q@�dii D @.�1/jdi i jC1
Qc1
ii

D .�1/jdi i jC1

 
1C

X
i<`�Np

.�1/jQc
0
i`
jC1
Qc0
i` Qc

1
`i C

X
1�`<i

.�1/jQc
1
i`
jC1
Qc1
i` Qc

0
`i

!

D 1C
X

i<`�Np

.�1/jQc
0
i`
jCjd`i j�.ci`d`i/

C

X
1�`<i

.�1/jQc
1
i`
jCjdi`jCje`i jC1�.di`e`i/ since jdii j D 1

D 1C
X

i<`�Np

�.ci`d`i/C
X

1�`<i

.�1/jdi`jC1�.di`e`i/ by (5)

D �@dii ;

Q@�dji D
Q@.�1/jdji jC1

Qc1
ji

D .�1/jdji jC1

 
0C

X
j<`�Np

.�1/jQc
0
j `
jC1
Qc0
j` Qc

1
`i C

X
1�`<i

.�1/jQc
1
j `
jC1
Qc1
j`c

0
`i

!

D �

 
.�1/jdji jC1

 
0C

X
j<`�Np

.�1/jQc
0
j `
jCjd`i jcj`d`i

C

X
1�`<i

.�1/jQc
1
j `
jCjdj `jCje`i jC1dj`e`i

!!
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D �

 
.�1/jdji jC1

 
0C .�1/jdji j

X
j<`�Np

cj`d`i

C .�1/jdji j
X

1�`<i

.�1/jdj `jC1dj`e`i

!!
by (5) and (6)

D��

 
0C

X
j<`�Np

cj`d`i C

X
1�`<i

.�1/jdj `jC1dj`e`i

!
D��@dji

One can similarly show that for i < j

Q@�eij D �@eij ;

Q@�fii D �@fii ; Q@�fji D��@fji ;

Q@�gij D �@gij ; Q@�hii D �@hii ;

Q@�hji D �@hji ;

Q@�qij D �@qij : �

Given a field F and a �-graded augmentation Q� WA.ƒ/! F, we will construct a
�-graded augmentation � WA.S.ƒ//!F. Define �D Q�ı�. Thus, on the generators
of A.S.ƒ// in the p-th 1-handle,

�.c/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Q�. Qai/ if c D ai

Q�. Qbij / if c D bij

Q�. Qc0
ij / if c 2 fcij ;gij ; qij g

.�1/jQc
0
ij
jC1
Q�. Qc0

ij / if c D eij

Q�. Qc1
ji/ if c D hji

.�1/jQc
1
ji
jC1
Q�. Qc1

ji/ if c 2 fdji ; fjig

Q�.Qti/ if c D ti :

We see that � is an augmentation because on any generator c of A.S.ƒ//,

�@.c/D Q��@.c/

D˙Q� Q@�.c/ by Proposition 4.1

D 0;

since �0 is an augmentation. And, since �0 is a �-graded augmentation and � is a
graded algebra homomorphism, � is a �-graded augmentation.

Thus an augmentation Q� WA.ƒ/!F of the DGA of ƒ in #k.S1�S2/ gives an
augmentation � W A.S.ƒ//! F of the DGA of S.ƒ/ in R3. By [Leverson 2016,
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Theorem 1.1], the augmentation � gives an augmentation of the DGA of S.ƒ/ with
dips in R3, which gives a normal ruling of S.ƒ/ with no dips in R3. We must check
that if two strands are paired in this normal ruling, then they go through the same
1-handle. Clearly this normal ruling must be thin, meaning outside of the tangle T

associated to ƒ the ruling only has switches at crossings where the crossing strands
go through the same 1-handle. By restricting the �-graded normal ruling of S.ƒ/

in R3 to a �-graded normal ruling of T, we get a �-graded normal ruling of ƒ in
#k.S1 �S2/.

5. Ruling to augmentation

Let F be a field. We will now prove the existence of a �-graded normal ruling implies
the existence of a �-graded augmentation, the backward direction of Theorem 1.3,
by constructing a �-graded augmentation � W A.D.ƒ// ! F given a �-graded
normal ruling of ƒ in #k.S1 �S2/.

Given an xz-diagram of a Legendrian link ƒ in #k.S1 �S2/ in normal form,
we will consider the resolution to an xy-diagram of a Legendrian isotopic link.
Using Legendrian isotopy, we can ensure all crossings, left cusps, and right cusps
have different x coordinates and all right cusps occur “above” (have higher y or z

coordinate than) the remaining strands of the tangle at that x coordinate. Place a
basepoint on every strand at xD 0 and one in every loop coming from the resolution
of a right cusp.

Define the augmentation � WA.D.ƒ//! F of the DGA for the dipped diagram
D.ƒ/ on generators as follows: If the ruling is switched at a crossing a`, then
set �.a`/ D 1. If not, set �.a`/ D 0. (Note that we can augment the switched
crossings to any nonzero element of F and still get an augmentation. But in the case
where ƒ is a knot, by augmenting the switched crossing to 1, we will be able to
ensure �.t/D�1.) Add basepoints and augment the crossings in the dips following
Figure 14. On the remaining generators, set

�.c`ij /D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1 if `D 0 and strands i < j are paired in the normal ruling
and go through the p-th 1-handle

.�1/jc
`
ij
j if `D 1; i > j, and strands i; j are paired in the normal

ruling and go through the p-th 1-handle
0 otherwise:

Augment all basepoints to �1.
By considering Figure 14, it is involved but straightforward to check that � is an

augmentation on the a` and the crossings in the dips.

Notation 5.1. c`fijg D c`min.i;j/;max.i;j/
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�.a/

a1

a2

a

a�1

aa1

aa2

C.a/

a1

a2

a

a�1

aa1

aa2

�.b/

a1

a2

a

a�1a
1
a�1

2

a�1

a�1a1

aa2

C.b/

a1

a2

a

a�1a
1
a�1

2

a�1

a�1a1

aa2

�.c/, product of signs of a
j�1

Li
and a

j�1

iC1;K
isC1

C.c/, product of signs of a
j�1

Li
and a

j�1

iC1;K
is �1

a1

a2

a

a�1a
1
a�1

2

a�1

a�1a1

aa2

�.c/, product of signs of a
j�1

Li
and a

j�1

iC1;K
is �1

C.c/, product of signs of a
j�1

Li
and a

j�1

iC1;K
isC1

a1

a2

a

a�1a
1
a�1

2

a�1

a�1a1

aa2

Figure 14. In the diagrams, � denotes a basepoint. A dot denotes
the specified crossing is augmented and the augmentation sends
the crossing to the labeled value. For example, in the left dip of
the �.a/ configuration, �.c12/ D a1 and �.c34/ D a2. All other
crossings are sent to 0 by the augmentation. Here �=C.a/ denotes
a negative/positive crossing where the ruling has configuration .a/
and the rest are defined analogously. See Figure 15 for config-
urations .d/, .e/, and .f/. (This figure is taken from [Leverson
2016].)

We will now check that � is an augmentation on the c`ij generators from the p-th
1-handle.

�@c0
ij D 0: For any ruling, at the left end of the diagram, each strand is paired

with another strand going through the same 1-handle. So for each strand i going
through the p-th 1-handle, there exists a strand j ¤ i such that strand i and j are
paired and 1 � i; j � Np. So if i < j, then �.c0

ij /D 1, �.c0
fi`g/D 0 for all `¤ j,

and �.c0
fj`g/D 0 for all `¤ i . Suppose i < r < `. Then �.c0

ir /D 0 if r ¤ j and
�.c0

r`/D 0 if r D j. Thus �.c0
ir c0

r`/D 0 for all i < r < ` and so for i < `,

�@c0
i` D

X
i<r<`

.�1/jc
0
ir jC1�.c0

ir c0
r`/D 0:
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.d/

a1

a2

a

a1

a2

�.e/

a1

a2

a

aa�1
1

a
2

a2

a1

C.e/

a1

a2

a

aa�1
1

a
2

a2

a1

�.f/, product of signs of a
j�1

L;iC1
and a

j�1

iK
isC1

C.f/, product of signs of a
j�1

L;iC1
and a

j�1

iK
is �1

a1

a2

a

aa
1
a�1

2

a1

a2

�.f/, product of signs of a
j�1

L;iC1
and a

j�1

iK
is �1

C.f/, product of signs of a
j�1

L;iC1
and a

j�1

iK
isC1

a1

a2

a

aa
1
a�1

2

a1

a2

Figure 15. A continuation of Figure 14. (This figure is taken from
[Leverson 2016].)

�@c1
ij D 0: Recall that in the p-th 1-handle

@c1
ij D ıij C

X
i<`�Np

.�1/jc
0
i`
jC1c0

i`c
1
j̀ C

X
1�`<j

.�1/jc
1
i`
jC1c1

i`c
0
j̀ :

If i ¤ j, then �.c0
i`c

1
j̀ /D 0 and �.c1

i`c
0
j̀ /D 0 for all ` since it is not possible for

strand i to be paired with strand ` and for strand ` to be paired with strand j when
i ¤ j. Thus

�@c1
ij D

X
i<`�Np

.�1/jc
0
i`
jC1�.c0

i`c
1
j̀ /C

X
1�`<j

.�1/jc
1
i`
jC1�.c1

i`c
0
j̀ /D 0:

To show �@c1
ii D 0, suppose strand i is paired with strand ` through the p-th

1-handle. Then by (5),

�@c1
ii D

�
1C .�1/jc

0
i`
jC1�.c0

i`
c1
`i
/; i < `;

1C .�1/jc
1
i`
jC1�.c1

i`
c0
`i
/; i > `;

D

�
1C .�1/jc

0
i`
jC1.�1/jc

1
`i
j; i < `;

1C .�1/jc
1
i`
jC1.�1/jc

1
i`
j; i > `;

D 0:
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�@c`ij D 0 for 1< `: Recall

@c`ij D
X̀
rD0

NpX
sD1

.�1/jc
r
is
jC1cr

isc`�r
sj

for 1< `, 1� p � k, and 1� i; j �Np. We will show that

�.cr
isc`�r

sj /D 0;

which implies that �@c`ij D 0. If ` > 2, then for all 0 � r � `, either r > 1 or
` � r > 1, so �.cr

isc`�r
sj / D 0 for all i; j ; s. If ` D 2, then r > 1, ` � r > 1, or

r D 1D `� r . The first and second case clearly imply �.cr
isc`�r

sj /D 0. In the final
case, this is also clearly true, unless i D j and strands i and s are paired in the
ruling. In this case, either i < s or s < i D j, so either �.c1

is/D 0 or �.c1
sj /D 0. So

�@c`ii D

X̀
rD0

NpX
sD1

.�1/jc
r
is
jC1�.cr

isc`�r
si /D 0

for all 1� p � k, 1� i �Np, and ` > 1. So for 1< `

�@c`ij D 0:

Grading: From the definition, ai is augmented only if the �-graded normal ruling
is switched at ai and thus �

ˇ̌
jai j. Since jai j D j Qai j, we have �

ˇ̌
jai j. By definition,

if c`ij Ip is augmented, then either `D 0, i < j, and strands i and j are paired by
the normal ruling and go through the p-th 1-handle or `D 1, i > j, and strands i

and j are paired in the normal ruling and go through the p-th 1-handle. In the first
case, �.i/� �.j /C 1 mod � and so

jc0
ij Ipj D 2.0/� 1C�.i/��.j /� 0 mod �:

In the second case, �.j /� �.i/C 1 mod � and so

jc1
ij Ipj D 2.1/� 1C�.i/��.j /� 0 mod �:

Following arguments similar to those in [Leverson 2016], one can also check that
if a crossing c in a dip is augmented then �

ˇ̌
jcj.

Proposition 5.2. If ƒ � #k.S1 �S2/ is an n-component link, � j 2r.ƒ/ is even,
andƒ has a �-graded normal ruling, then the �-graded augmentation � WA.ƒ/!F

constructed above sends t1 � � � ts to .�1/n.

Proof. Given a �-graded ruling of ƒ in #k.S1 � S2/, there is a unique way to
extend it to a normal ruling of S.ƒ/ by switching at dji ; eij ; fji ; gij ; hji ; qij if and
only if strands i < j are paired in the ruling ofƒ. Let Q� WA.ƒ/!F be the �-graded
augmentation resulting from the �-graded normal ruling and let � WA.S.ƒ//! F
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be the �-graded augmentation resulting from the �-graded normal ruling of S.ƒ/

as constructed in [Leverson 2016] in R3. Note that

�.t1 � � � ts/

Q�.Qt1 � � � Qtr /
D

 Y
1�p�k

.�1/3Np

! Y
i;j paired

.�1/6:

If strands i < j are paired near x D 0 in the ruling of ƒ, then the ruling of S.ƒ/

must be switched at dji ; eij ; fji ; gij ; hji , and qij with configuration C(a) since the
ruling is �-graded and � is even. So there is one additional basepoint augmented
to �1 per crossing. Thus, there are six additional basepoints augmented to �1 for
each pair of strands. Each right cusp contributes one extra basepoint augmented
to �1 and there are three additional right cusps for each strand. However, Np is
even for all 1� p � k by Corollary 1.4 and �.t1 � � � ts/D .�1/n by Theorem 1.1, so

.�1/n

Q�.Qt1 � � � Qtr /
D 1

and so Q�.Qt1 � � � Qtr /D .�1/n. �
All that remains to be proven is the final statement of Theorem 1.3, which says:

Proposition 5.3. Given a field F, if ƒ is an n component link in #k.S1 � S2/,
�.t/D .�1/n for all even-graded augmentations � WA.ƒ/! F.

Proof. Suppose that Q� W A.ƒ/ ! F is an even-graded augmentation (�-graded
augmentation where 2 j �). As in Section 4, we construct a �-graded augmentation
� WA.S.�//! F. By definition, �.ti/D Q�.Qti/ for all 1� i � s and so

Q�.Qt1 � � � Qts/D �.t1 � � � ts/D .�1/n;

where the final equality follows from Theorem 1.1. �

6. Correspondence for links in J1.S1/

Recall that the 1-jet space of the circle, J1.S1/, is diffeomorphic to the solid torus
S1

x � R2
y;z with contact structure given by � D ker.dz � ydx/. As in [Ng and

Traynor 2004], by viewing S1 as a quotient of the unit interval, S1D Œ0; 1�=.0� 1/,
we can see Legendrian links in J1.S1/ as quotients of arcs in I �R2 with boundary
conditions which are everywhere tangent to the contact planes. Given a Legendrian
link ƒ� J1.S1/ we will use the methods of Lavrov and Rutherford [2012] to show
the following theorem, restated from the introduction:

Theorem 1.6. Suppose ƒ is a Legendrian link in J1.S1/. Given a field F, the
Chekanov–Eliashberg DGA .A; @/ over ZŒt˙1

1
; : : : ; t˙1

s � has a �-graded augmen-
tation � W A!F if and only if a front diagram of ƒ has a �-graded generalized
normal ruling.
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.g/ .h/

Figure 16. These figures give the configuration of a generalized
normal ruling near a switched crossing involving exactly one self-
paired strand. With the top row of configurations in Figure 7, these
are all possible configurations of a generalized normal ruling near
a switched crossing.

We recall the definition of generalized normal ruling.

Definition 6.1 [Lavrov and Rutherford 2012]. A generalized normal ruling is a
sequence of involutions � D .�1; : : : ; �M / as in Definition 2.11 with the following
differences:

(1) Remove the requirement that �m is fixed-point-free and the condition about
1-handles.

(2) If strands ` and `C 1 cross in the interval .xm�1;xm/ above Im�1, where
exactly one of the crossing strands is a fixed point of �m, then the crossing is
a switch if �m satisfies the conditions in (3) of Definition 2.11. If crossing is a
switch, then we require an additional normality condition:

�m.`/D ` < `C 1< �m.`C 1/ or �m.`/ < ` < `C 1D �m.`C 1/:

A strictly generalized normal ruling is a generalized normal ruling which is not
a normal ruling, in other words, a generalized normal ruling with at least one fixed
point.

Thus, near a crossing, a generalized normal ruling looks like the crossings in
Figure 7 or Figure 16.

Remark 6.2. (1) If a crossing involving strands ` and `C 1 occurs in the interval
.xm�1;xm/ and both crossing strands are fixed by the ruling, self-paired, in
other words, �m�1.`/D ` and �m�1.`C 1/D `C 1, then �m D .` `C 1/ ı

�m�1 ı .` `C 1/ and so we will not consider such crossings to be switched.

(2) Note that the number of generalized normal rulings of a Legendrian link is not
invariant under Legendrian isotopy.

The definition of the Chekanov–Eliashberg DGA of a Legendrian link in R3 can
be extended to Legendrian links in J1.S1/. (One can find the full definition of the
Chekanov–Eliashberg DGA of a Legendrian link in J1.S1/ in [Ng and Traynor
2004].) Note that given an augmentation of the Chekanov–Eliashberg DGA over
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ZŒt; t�1� of a Legendrian link in S1 �S2, one can define an augmentation of the
DGA of the analogous link (where if a strand goes through the 1-handle with yDy0

at x D 0, then it is paired with the strand going through the 1-handle with y D y0

at x DA) in J1.S1/ and similarly for normal rulings. (The resulting normal ruling
of the link in J1.S1/ will not have any self-paired strands.) However, there is no
reason to think the converse is true.

6A. Matrix definition of the DGA in J1.S1/. Ng and Traynor [2004] define a
version of the Chekanov–Eliashberg DGA A over R D ZŒt; t�1� in. For ease of
definition, note that we can assume all left and right cusps involve the two strands
with lowest z-coordinate (and thus highest labels) and that there is one basepoint at
x D 0 on each strand with the basepoint on strand i corresponding to ti , and one
basepoint in each loop resulting from the resolution of a right cusp. We give the
definition of the DGA for the dipped versionƒ, D.ƒ/ as in [Lavrov and Rutherford
2012] with an extra dip immediately to the right of the basepoints at x D 0. Label
the dips as in Figure 13 with bm

ij and cm
ij in the dip at xm. Place these generators in

upper triangular matrices

Bm D .b
m
ij / and Cm D .c

m
ij /:

Note that since the x-coordinate is S1-valued, we need to add the convention that
B0 D BM and C0 D CM . We then see that

@Cm D .†mCm/
2;

@B1 D T C0T �1.I CB1/�†1.I CB1/†1C1;

@Bm D
zCm�1.I CBm/�†m.I CBm/†mCm;

where †m is the diagonal matrix with .�1/�m.i/ the i -th entry on the diagonal for
Maslov potential �m at x D xm, T is the diagonal matrix with t

o1.i/
i the i -th entry

on the diagonal where

om.i/D

�
�1 if strand i is oriented to the right at x D xm;

1 otherwise;

and I is the appropriately sized identity matrix. The form of zCm will depend on
the tangle appearing in the interval .xm�1;xm/.

If .xm�1;xm/ contains a crossing am of strands k and kC 1, then

@am D cm�1
k;kC1;

zCm�1 D Uk;kC1
yCm�1Vk;kC1;
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where Uk;kC1 and Vk;kC1 are the identity matrix with the 2� 2 block in rows k

and kC 1 and columns k and kC 1 replaced with�
0 1

1 .�1/jamjC1am

�
for Uk;kC1 and �

am 1

1 0

�
for Vk;kC1, and yCm�1 is Cm�1 with 0 replacing the entry cm�1

k;kC1
.

If .xm�1;xm/ contains a left cusp, by assumption strands N.m/� 1 and N.m/

are incident to the cusp. In this case,

zCm�1 D JCm�1J T
CW ;

where J is the N.m�1/�N.m�1/ identity matrix with two rows of zeroes added
to the bottom and W is N.m/�N.m/ matrix where the .N.m/� 1;N.m//-entry
is 1 and all other entries are zero.

Finally, if .xm�1;xm/ contains a right cusp am with basepoint �˛ corresponding
to t˛ in the loop, by assumption strands N.m/� 1 and N.m/ are incident to the
cusp. In this case

@am D tom�1.N.m�1/�1/
˛ C cm�1

N.m�1/�1;N.m�1/;

zCm�1 DKCm�1KT;

where K is the N.m� 1/�N.m� 1/ identity matrix with two columns of zeroes
added to the right.

6B. Proof of correspondence. We will use the methods of [Lavrov and Rutherford
2012] to prove Theorem 1.3. Given an involution � of f1; : : : ;N g, �2 D id, we
define A� D .aij / the N �N matrix with entries

aij D

�
1 if i < �.i/D j ;

0 otherwise:

Ruling to augmentation: Given a generalized normal ruling � D .�1; : : : ; �M /, we
will define a �-graded augmentation � WA.D.ƒ//! F satisfying Property (R) (as
in [Sabloff 2005]) by defining � on the crossings in the dip involving crossings
b0

ij and c0
ij and extending to the right.

Property (R): In any dip, the generator cm
rs is augmented (to 1)

if and only if �m.r/D s:
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.g/

c

a

a�1

ac
1 2

.h/

c

a

a�1

ac

Figure 17. In the diagrams, �i denotes the basepoint associated
to ti . A dot denotes the specified crossing is augmented and the
augmentation sends the crossing to the label. In configuration .g/,
�.t1/D .�1/jajC1 and �.t2/D .�1/jci;iC1jC1. In configuration .h/,
�.t/D�1.

Add a basepoint to the loop in each resolution of a right cusp. Augment all
basepoints to �1. Given a crossing a, set

�.a/D

(
1 if the ruling is switched at a;

0 otherwise:

Define �.B0/D 0 and �.C0/DA�0
. We will now extend � to the right. Suppose

� is defined on all crossings in the interval .0;xm�1/. If .xm�1;xm/ contains a
crossing, define � on crossings bm

ij and cm
ij and add basepoints as in Figure 14 and

Figure 17. If .xm�1;xm/ contains a left cusp, set

�.Bm/D J�.Bm�1/J
T
CW:

If .xm�1;xm/ contains a right cusp, set

�.Bm/DK�.Bm�1/K
T:

It is easy to check that by our definition the augmentation satisfies Property (R),
which tells us �.B0/ D �.BM / and �.C0/ D �.CM /, and our augmentation is a
�-graded augmentation.

Augmentation to ruling: This direction of the proof follows that of the Z=2 case
in [Lavrov and Rutherford 2012] and is based on canonical form results from linear
algebra due to Barannikov [1994].

Definition 6.3. An M-complex .V;B; d/ is a vector space V over a field F with
an ordered basis B D fv1; : : : ; vN g and a differential d W V ! V of the form
dvi D

PN
jDiC1 aijvj satisfying d2 D 0.

The following two propositions are essentially in [Lavrov and Rutherford 2012,
Propositions 5.4 and 5.6] and [Barannikov 1994, Lemmas 2 and 4].

Proposition 6.4. Suppose that .V;B; d/ is an M -complex, then there exists a
triangular change of basis f Qv1; : : : ; QvN g with Qvi D

PN
jDi aijvj and an involution
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� W f1; : : : ;N g ! f1; : : : ;N g such that

d Qvi D

�
Qvj ; if i < �.i/D j;

0; otherwise:

Moreover, the involution � is unique.

Remark 6.5. We have the following properties of the involution:

(1) If the basis elements vi have been assigned degrees jvi j 2 Z=� such that V is
Z=�-graded and d has degree �1, then it can be assumed that the change of
basis preserves degree. Thus, if i < �.i/D j, then jvi j D jvj jC 1.

(2) The set fŒ Qvi � W �.i/D ig forms a basis for the homology H.V ; d/.

(3) In matrix formulation, according to Proposition 6.4, there is a unique function
D 7! �.D/ which assigns an involution � D �.D/ to each strictly upper triangu-
lar matrix D with D2D0 and there is an invertible upper triangular matrix P so
that PDP�1DA� . The uniqueness statement tells us that �.QDQ�1/D �.D/

if Q is a nonsingular upper triangular matrix.

Proposition 6.6. Suppose .V;B; d/ is an M-complex and k 2 f1; : : : ;N g such that
dvkD

PN
jDkC2 akjvj so the triple .V ;B0; d/ with B0Dfv1; : : : ; vkC1; vk ; : : : ; vN g

is also an M-complex. Then the associated involutions � and � 0 from Proposition 6.4
are related as follows:

(1) If

�.kC 1/ < �.k/ < k < kC 1;

�.k/ < k < kC 1< �.kC 1/;

k < kC 1< �.kC 1/ < �.k/;

�.k/ < k < kC 1D �.kC 1/;

�.k/D k < kC 1< �.kC 1/;

then either � 0 D � or � 0 D .k kC 1/ ı � ı .k kC 1/.

(2) Otherwise � 0 D .k kC 1/ ı � ı .k kC 1/.

Augmentation to ruling: This part of the proof is the same as the analogous state-
ment in [Lavrov and Rutherford 2012] with †m�1�.Cm�1/ replacing �.Ym�1/.

Suppose � WA.D.ƒ//! F is a �-graded augmentation. Then for all m, �.Cm/

is an N.m/�N.m/ strictly upper triangular matrix such that

0D �@Cm D .†m�.Cm//
2:

As in Remark 6.5, we can set �m D �.†mCm/ and obtain the sequence � D
f�0; : : : ; �M g of involutions where �m is an involution of f1; : : : ;N.m/g. We
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will show that � satisfies the requirements of a generalized normal ruling (see
Definition 6.1).

We also have N.m/ �N.m/ strictly upper triangular matrices �.Bm/ which
satisfy

0D �@B1 D T�.C0/T
�1.I C �.B1//�†1.I C �.B1//†1�.C1/;

0D �@Bm D �. zCm�1/.I C �.Bm//�†m.I C �.Bm//†m�.Cm/:

In the case where mD 1, this tells us

†1�.C1/D .I C �.B1//
�1†1T�.C0/T

�1.I C �.B1//

D .I C �.B1//
�1T†1�.C0/T

�1.I C �.B1//

since T and †1 are diagonal matrices. So Remark 6.5 tells us

�1 D �.†1�.C1//D �..I C �.B1//
�1T†1�.C0/T

�1.I C �.B1///

D �.†1�.C0//D �.†0�.C0//D �0

since †1D†0 and T �1.IC�.B1// is a nonsingular upper triangular matrix. Thus
�1 satisfies the definition of generalized normal ruling since �0 does.

More generally, for m> 1, we have

†m�.Cm/D .I C �.Bm//
�1†m�. zCm�1/.I C �.Bm//:

So Remark 6.5 tells us

�m D �.†m�.Cm//D �.†m�. zCm�1//:

Recall that zCm�1 depends on whether the interval .xm�1;xm/ contains a left cusp,
right cusp, or crossing.

Crossing: In the case where the interval .xm�1;xm/ contains a crossing am of
strands k and kC 1, recall that 0D �@.am/D �.c

m�1
k;kC1/. In this case,

zCm�1 D Uk;kC1
yCm�1Vk;kC1;

where yCm�1 is Cm�1 with 0 replacing the entry cm�1
k;kC1. Thus �. yCm�1/D �.Cm�1/.

So �. zCm�1/ D �.Uk;kC1Cm�1Vk;kC1/. Note that �m�1.k/ D �m.k C 1/ and
�m�1.kC 1/D �m.k/, so †m�1 D Pk;kC1†mPk;kC1. We also see that

†mUk;kC1 D†mPk;kC1.I C .�1/jamjC1�.am/Ek;kC1/

D Pk;kC1.I � �.am/Ek;kC1/Pk;kC1†mPk;kC1

D Pk;kC1.I � �.am/Ek;kC1/†m�1;

Vk;kC1 D .I C �.am/Ek;kC1/Pk;kC1;
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where Ek;kC1 is a matrix with a single nonzero entry of 1 in the .k; kC1/ position.
Thus

†m�. zCm�1/

D Pk;kC1.I � �.am/Ek;kC1/†m�1�.Cm�1/.I C �.am/Ek;kC1/Pk;kC1:

Since the .k; kC1/-entry of .I��.am/Ek;kC1/†m�1�.Cm�1/.IC�.am/Ek;kC1/

is 0 no matter the value of �.am/, the matrix†m�. zCm�1/ is strictly upper triangular.
Therefore

�m D �.†m�.Cm//D �.†m�. zCm�1//

and

�..I � �.am/Ek;kC1/†m�1�.Cm�1/.I C �.am/Ek;kC1//

D �.†m�1�.Cm�1//D �m�1

are related as in Proposition 6.6. So, as �m�1 satisfies the conditions of a generalized
normal ruling, so does �m. The left and right cusp cases follow similarly.

As in Remark 6.5, †m�.Cm/ denotes the matrix of an M-complex with basis
v1; : : : ; vN.m/ corresponding to the strands of ƒ at xm. If � is �-graded with
respect to �, then we can assign the gradings jvi j D �m.i/ and the differential
will have degree �1. So .1/ of Remark 6.5 tells us that the resulting involution
�m D �.†m�.Cm// is �-graded and thus � is �-graded.

6C. Corollary. The following proposition uses certain techniques from the proof
of Theorem 1.6 to show that

Aug�.ƒ/D Fn0

for any field F and any � if ƒ has a strictly generalized normal ruling.

Proposition 6.7. Given a field F and a Legendrian link ƒ� J1.S1/ with n com-
ponents and a strictly generalized normal ruling, for all 0¤ x 2 F there exists an
augmentation � WA! F such that

�.t1 � � � ts/D x:

Proof. Fix 0¤ x 2 F. Given a generalized normal ruling � D .�1; : : : ; �M / for ƒ
with a self-paired strand, we will construct an augmentation � W A.D.ƒ//! F

such that �.t1 � � � ts/D x.
Suppose k is the label at x D 0 of a self-paired strand of the generalized normal

ruling �, in other words, �0.k/D k. We can assume that D.ƒ/ has one basepoint
corresponding to ti on strand i at x D 0 and one basepoint in the loop in the
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resolution of each right cusp, and no other basepoints. Define

�.ti/D

�
.�1/NCc�1x if i D k;

�1 otherwise;

where c is the number of right cusps and N is the number of strands at x D 0.
Define � on all crossings as in the proof of ruling to augmentation in Theorem 1.6.

Note that tk does not appear on the boundary of any totally augmented disks and
so � is still an augmentation, but now

�.t1 � � � ts/D x

as desired. �

Remark 6.8. For any link ƒ � J1.S1/, one can consider the analogous link
ƒ0 � S1 � S2. Note that A.ƒ/! A.ƒ0/ where the map is inclusion. Thus, any
augmentation �0 Wƒ0! F gives an augmentation � Wƒ! F. As one would expect
from Theorems 1.3 and 1.6, it is also clear that any normal ruling of ƒ0 � S1 �S2

gives a generalized normal ruling of ƒ� J1.S1/.

Appendix

The appendix will address Corollary 1.5 which follows from

(1) Theorem 1.3 over Q, and

(2) the result that if a graded augmentation to the rationals exists then the full
symplectic homology is nonzero.

The second result is known to experts; assumes the results of [Bourgeois et al.
2012]. We will outline the proof here for completeness. Statement (2) is a straight
forward consequence of work of Bourgeois, Ekholm, and Eliashberg [Bourgeois
et al. 2012] and has previously been observed in [Lidman and Sivek 2016].

Every connected Weinstein (Stein) 4-manifold X can be decomposed into 1- and
2-handle attachments to D4 along @D4D S3. Thus, for each such 4-manifold there
exists a Legendrian link ƒ in #k.S1 �S2/ so that attaching 2-handles along ƒ to
#k.S1 �S2/ results in X.

Results of Bourgeois, Ekholm, and Eliashberg (using their notation) tell us the
following:

Proposition A.1 [Bourgeois et al. 2012, Corollary 5.7].

SH.X /DLHHo.ƒ/;

where LHHo.ƒ/ is the homology of the Hochschild complex associated to the
Chekanov–Eliashberg differential graded algebra over Q.
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Therefore, if the DGA for ƒ has a graded augmentation to Q, then SH.X / is
nonzero. By Theorem 1.3, we know that the DGA for ƒ has a graded augmen-
tation to Q if and only if ƒ has a graded normal ruling. Thus, restated from the
introduction:

Corollary 1.5. If X is the Weinstein 4-manifold that results from attaching 2-
handles along a Legendrian link ƒ to #k.S1 �S2/ and ƒ has a graded normal
ruling, then the full symplectic homology SH.X / is nonzero.

For completeness, we give an outline of the proof of statement (2). Recall that
full symplectic homology is a symplectic invariant of Weinstein 4-manifolds which
coincides with the Floer–Hofer symplectic homology.

We will show that given a graded augmentation �0 of the Chekanov–Eliashberg
DGA of a Legendrian link ƒ over ZŒt; t�1� to Q, one can define a graded augmen-
tation � WLH Ho.ƒ/!Q, where the homology of LH Ho.ƒ/ is LHHo.ƒ/. Recall
that

LH Ho.ƒ/DRLHOC.ƒ/˚Qh�1; : : : ; �ni˚
2LHOC.ƒ/

is generated by elements of the form Lw, �i , and Ov, wherew; v2LHO.ƒ/�LHA.ƒ/
and n is the number of components of the link. Define

� WLH Ho.ƒ/!Q

by Lw 7! �0.w/; �i 7! 1; Ov 7! 0: Let us check that this gives an augmentation. It
suffices to check the generators. Clearly � ı dHo.�i/D 0 for all i . If dLHOC.w/DPr

jD1wj , then we recall that

dHo. Lw/D dHoC. Lw/C ıHo. Lw/D LdLHOC. Lw/C ıHo. Lw/:

Let w be a chord in LHOC.ƒ/. Then, there exists i such that w 2 Ci and

dHo. Lw/D

rX
jD1

Lwj C˛wi�i ;

where ˛wi is the algebraic number of components of the 1-dimensional moduli
space of holomorphic disks with one positive and no negative boundary punctures.
Thus

� ı dHo. Lw/D

rX
jD1

�0.wj /C

nX
iD1

˛wi D �
0
ı dLHO.w/D 0;

since ˛wi is exactly the constant term of dLHA.w/, �0 is an augmentation of LHA.ƒ/,
LHO.ƒ/ � LHA.ƒ/, and dLHO D dLHAjLHO. If w 2 LHOC.ƒ/ is a linearly
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composable monomial which is not a chord, then

dHo. Lw/D

rX
jD1

Lwj

and so

� ı dHo. Lw/D

rX
jD1

�0.wj /D �
0
ı dLHO.w/D 0

since dLHO.w/ does not have a constant term.
If v D c1 � � � c` 2 LHOC.ƒ/, then we recall that

dHo. Ov/D dHoC. Ov/C ıHo. Ov/D dM HoC. Ov/C
OdLHOC. Ov/C 0

D Lc1c2 � � � c` � c1 � � � c`�1 Lc`C OdLHOC. Ov/

D Lc1c2 � � � c` � .�1/jc`j.jc1jC���Cjc`�1j/ Lc`c1 � � � c`�1C
OdLHOC. Ov/:

Thus

� ı dHo. Ov/

D �0.c1 � � � c`/� .�1/jc`j.jc1jC���Cjc`�1j/�0.c`c1 � � � c`�1/C �
0
ı OdLHOC. Ov/

D �0.c1 � � � c`/� .�1/jc`j.jc1jC���Cjc`�1j/�0.c`c1 � � � c`�1/C 0

D 0

since �0 is a graded augmentation of LHA.ƒ/ so if �.c1 � � � c`/¤ 0, then �.ci/¤ 0

for all i and thus jci j D 0 for all i .
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THE FABER–KRAHN INEQUALITY FOR THE FIRST
EIGENVALUE OF THE FRACTIONAL DIRICHLET

p-LAPLACIAN FOR TRIANGLES AND QUADRILATERALS

FRANCO OLIVARES CONTADOR

We prove the Faber–Krahn inequality for the first eigenvalue of the frac-
tional Dirichlet p-Laplacian for triangles and quadrilaterals of a given
area. The proof is based on a nonlocal Pólya–Szegő inequality under
Steiner symmetrization and the continuity of the first eigenvalue of the
fractional Dirichlet p-Laplacian with respect to the convergence, in the
Hausdorff distance, of convex domains.

1. Introduction and main result

The classical isoperimetric problem reads as follows: “among all domains in Rn of
a given volume with rectifiable boundary, the sphere has the minimum perimeter.”

In line with this, various isoperimetric problems have been studied (see [Os-
serman 1978]). For example, the Faber–Krahn inequality, originally conjectured
in [Rayleigh 1894, 339–340], can be stated as follows: “among all open sets of
a given volume in Euclidean space the ball minimizes the first eigenvalue of the
Dirichlet Laplacian.”

The Faber–Krahn inequality for variants of the Laplacian or by restriction to
special classes of domains have generated interest in recent years. In fact, inspired
by the Faber–Krahn inequality, Pólya and Szegő [1951] conjectured that among
all polygons with n sides of fixed area, the regular n-polygon of the same area
minimizes the first eigenvalue of the Dirichlet Laplacian. This conjecture is known
to hold for n = 3 and n = 4, but for n-gons with n ≥ 5 it still remains a conjecture.
On the other hand, the Faber–Krahn inequality has been generalized, for example,
to the case of the Dirichlet p-Laplacian [Bhattacharya 1999; Ly 2005; Chorwadwala
et al. 2015; Toledo Oñate 2012].
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Recently, partial differential equations involving nonlocal versions of the Lapla-
cian and in particular eigenvalue problems involving such operators have generated
a lot of interest and have been studied (see [Di Nezza et al. 2012; Lindgren and
Lindqvist 2014; Frank et al. 2008; Brasco et al. 2014]).

The first eigenvalue of fractional Dirichlet p-Laplacian is defined as follows:

Definition. Let n ≥ 1, 0< s < 1 and 1< p <∞. Given an open and bounded set
�⊂ Rn we define

(1-1) λs
1,p(�)= inf

{∫
Rn

∫
Rn
|u(x)−u(y)|p
|x−y|n+ps dx dy∫

Rn |u(x)|p dx
: u ∈ W̃ s,p

0 (�) and u 6≡ 0
}
,

where W̃ s,p
0 (�) is the closure of C∞0 (�) with respect to the norm

(1-2) u 7→ [u]W s,p(Rn)+‖u‖p

where [u]W s,p(Rn) is defined in (2-1).

Inspired by the nonlocal Faber–Krahn inequality proved in [Brasco et al. 2014]
for the fractional Dirichlet p-Laplacian and the Pólya–Szegő conjecture for the
usual Laplacian for polygonal domains, we prove a Faber–Krahn inequality for
the fractional Dirichlet p-Laplacian in the class of polygonal domains. This is our
main result.

Theorem 1.1. The equilateral triangle has the least first eigenvalue for the frac-
tional Dirichlet p-Laplacian among all triangles of given area. The square has the
least first eigenvalue for the fractional Dirichlet p-Laplacian among all quadrilater-
als of given area. Moreover, the equilateral triangle and the square are the unique
minimizers in the above problems.

For proving this result we shall study the effect of Steiner symmetrization in
nonlocal functionals and the continuity properties of the first eigenvalue of the
fractional Dirichlet p-Laplacian with respect to the Hausdorff convergence of convex
domains. In particular we will prove the following two results which will be used
in the proof of Theorem 1.1:

Proposition 1.2 (nonlocal Pólya–Szegő inequality). Let n ≥ 1, 0< s < 1, 1≤ p ≤
n/s and u ∈ W̃ s,p

0 (�). Then

(1-3)
∫

Rn

∫
Rn

|u?(x)− u?(y)|p

|x − y|n+ps dx dy ≤
∫

Rn

∫
Rn

|u(x)− u(y)|p

|x − y|n+ps dx dy,

where u? is the Steiner symmetrization of u with respect to a given hyperplane. If
p> 1, then equality holds if and only if u is proportional to a translate of a function
which is symmetric with respect to the hyperplane.
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Proposition 1.3. Let B be a fixed compact set in Rn and �n be a family of convex
open subsets of B which converges, for the Hausdorff distance, to a set �. Further-
more, assume that there exist r > 0 such that B(0, r)⊂�n and B(0, r)⊂�. Then
λs

1,p(�)= limn→∞ λ
s
1,p(�n).

The basic definitions, notions and results which will be used in this paper are to
be given in the next section.

2. Tools

Fractional Sobolev spaces and the first eigenvalue. Let p ∈ [1,∞) and s ∈ (0, 1).
Then

(2-1) [u]W s,p(Rn) =

(∫
Rn

∫
Rn

|u(x)− u(y)|p

|x − y|n+ps dx dy
)1/p

denotes the (s, p)-Gagliardo seminorm in Rn of a measurable function u. The
Gagliardo seminorm satisfies the following Poincaré-type inequality:

Proposition 2.1 (Poincaré-type inequality). Let 1 ≤ p <∞ y s ∈ (0, 1), �⊂ Rn

be an open and bounded set. There then exists a constant Cn,s,p, depending only on
n, s, p and �, so that, for every function u ∈ C∞0 (�) we have

‖u‖p
p ≤ Cn,s,p(�)[u]

p
W s,p(Rn)

Proof. See Lemma 2.4, [Brasco et al. 2014]. �

Proposition 2.1 shows that for an open and bounded set � ⊂ Rn the space
W̃ s,p

0 (�) can be equivalently defined as the closure of C∞0 (�) with respect to the
Gagliardo seminorm. The space W̃ s,p

0 (�) is a reflexive Banach space for 1< p<∞.

Theorem 2.2 (Rellich–Kondrachov theorem). Let p ∈ [1,∞) and s ∈ (0, 1),
�⊂Rn be a open and bounded set. Let {un}

∞

n=1⊂ W̃ s,p
0 (�) be a bounded sequence.

Then there exists a subsequence {unk }
∞

k=1 of {un}
∞

n=1 which converges strongly in
L p(�) to a function u. Moreover, if p > 1 then u ∈ W̃ s,p

0 (�).

Proof. See Theorem 2.7, [Brasco et al. 2014]. �

Remark 1. Following Theorem 2.2, it can be shown that the infimum in (1-1) is a
minimum and by the homogeneity of the Rayleigh quotient, the expression (1-1)
can be written as

(2-2) λs
1,p(�)=min

{
‖u‖p

W̃ s,p
0 (�)

: u ∈ W̃ s,p
0 (�), ‖u‖p = 1

}
.

Observe also that λs
1,p(�) equals the inverse of the best constant in the Poincaré

inequality (Proposition 2.1).
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The minimizer in (1-1) satisfies the following Euler–Lagrange equation

(2-3)
∫

Rn

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)−φ(y))
|x − y|n+ps dx dy

= λs
1,p(�)

∫
Rn
|u(x)|p−2u(x)φ(x) dx,

for all φ ∈ W̃ s,p
0 (�) (see Theorem 5, [Lindgren and Lindqvist 2014]).

One can easily check that the following properties hold:

Proposition 2.3. Let �⊂ Rn be an open and bounded set.

(1) (Homothety law) λs
1,p(t�)= t−spλs

1,p(�) for t > 0.

(2) (Translation invariance) λs
1,p(�)= λ

s
1,p(�+ x) for all x ∈ Rn.

(3) (Invariance under orthonormal transformations) λs
1,p(�) = λ

s
1,p(T (�)) for

every orthonormal transformation T.

(4) (Domain monotony) If A ⊂ B are open sets, then λs
1,p(B)≤ λ

s
1,p(A).

Steiner symmetrizations of sets and functions. Let n ≥ 2 and � ⊂ Rn be a mea-
surable set. We denote by �′ the projection of � in the xn-direction:

�′ := {x ′ ∈ Rn−1
: there exists xn such that (x ′, xn) ∈�},

and, for x ′ ∈ Rn−1, we denote by �(x ′) the section of � in x ′:

�(x ′) := {xn ∈ R : (x ′, xn) ∈�}, x ′ ∈�′.

Definition. Let �⊂ Rn be a measurable set. The set

(2-4) �? :=
{

x = (x ′, xn) : −
1
2 |�(x

′)|< xn <
1
2 |�(x

′)|, x ′ ∈�′
}

is the Steiner symmetrization of � with respect to the hyperplane xn = 0. In the
above, |�(x ′)| denotes the one-dimensional Lebesgue measure of �(x ′).

The Steiner symmetrization of a convex set with respect to a given hyperplane
can be similarly defined.

A convex body is a compact convex set. For a convex body A in Rn, the inradius
r(A) is the maximum of the radii of balls contained in A and the circumradius
R(A) is the minimum of the radii of balls containing A.

The Steiner symmetrization of sets has the following properties:

Proposition 2.4. Let A, B be convex bodies. Then

(1) A? ⊆ B? for A ⊆ B.

(2) r(A)≤ r(A?).

(3) R(A?)≤ R(A).

(4) V (A)= V (A?) where V (A) denotes the volume of A.
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Proof. See Proposition 9.1, page 169–171 of [Gruber 2007]. �

Definition. Let f be a nonnegative measurable function defined on �, which van-
ishes on ∂�. The Steiner symmetrization of f is the function f ? defined on �? by

(2-5) f ?(x)= sup{c : x ∈ {y ∈� : f (y)≥ c}?}.

The Steiner symmetrization of functions has the following properties.

Proposition 2.5. (1) The definitions of A? and f ? are consistent, i.e.,

χA? = (χA)
? and {x : f (x)≥ t}? = {x : f ?(x)≥ t}.

(2) Let f and g be two nonnegative measurable functions such that f (x)≤ g(x).
Then f ?(x)≤ g?(x).

(3) Let 8 : R+→ R+ be a nondecreasing function. Then (8 ◦ f )? =8 ◦ f ?.

(4) Let f be a nonnegative measurable function defined on � vanishing on ∂�.
Let F : R+→ R be a measurable function. Then,∫

�

F( f (x)) dx =
∫
�?

F( f ?(x)) dx .

(5) Let f , g and h be nonnegative measurable functions on Rn . Then with
I ( f, g, h)=

∫
Rn

∫
Rn f (x)g(x − y)h(y) dx dy, we have

(2-6) I ( f, g, h)≤ I ( f ?, g?, h?).

Moreover, if g is strictly symmetric decreasing, then there is equality in (2-6)
if only if f (x)= f ?(x − y) and h(x)= h?(x − y) almost everywhere for some
y ∈ Rn.

Proof. The proof of (1)–(4) is straightforward. For the proof of (5), we refer to
Theorem 3.7, page 87 and Theorem 3.9, page 93 of [Lieb and Loss 2001] and
[Brascamp et al. 1974] . �

For J a nonnegative, convex function on R with J (0)= 0 and k a nonnegative
measurable function on Rn, we let

E[u] =
∫

Rn

∫
Rn

J (u(x)− u(y))k(x − y) dx dy.

Following the same ideas given in Lemma A.2. of [Frank and Seiringer 2008],
using principally part (5) of Proposition 2.5 for Steiner symmetrization instead of
symmetric decreasing rearrangement, we get the following lemma:

Lemma 2.6. Let J be a nonnegative, convex function on R with J (0)= 0 and let
k ∈ L1(Rn) be a nonnegative function which is symmetric and decreasing. Then for
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all nonnegative measurable u with E[u] and |{u > τ }| finite for all τ > 0 one has

E[u] ≥ E[u?],

with u? the Steiner symmetrization of u with respect a hyperplane. If , in addition, J
is strictly convex and k is strictly decreasing, then equality holds if and only if u is
a translate of a function which is symmetric with respect to the hyperplane.

Hausdorff distance.

Definition. Let K1 and K2 be two nonempty compact sets in Rn. Taking d(x, K2) :=

inf{|y− x | : y ∈ K2} for x ∈ Rn, we set

ρ(K1, K2) := sup{d(x, K2) : x ∈ K1}.

Let Cn be the family of compact subsets of Rn. It is a metric space when equipped
with the Hausdorff distance

(2-7) d H (K1, K2) :=max(ρ(K1, K2), ρ(K2, K1)).

For open sets inside a fixed compact set, we define the Hausdorff distance through
their complement.

Definition. Let O1, O2 be two open sets of a compact set B. Then their Hausdorff
distance is defined by

(2-8) dH (O1, O2)= d H (B \ O1, B \ O2).

The Minkowski addition and Minkowski difference.

Definition. The Minkowski addition of two sets A, B ⊂ Rn can be defined by

(2-9) A⊕ B :=
⋃
b∈B

(A+ b).

Definition. The Minkowski difference of two sets A, B ⊂ Rn can be defined by

(2-10) A	 B :=
⋂
b∈B

(A− b).

Clearly, we may also write A	 B := {x ∈ Rn
: B+ x ⊂ A}. If B =−B, then

A	 B :=
⋂
b∈B

(A+ b).

The following proposition can be obtained without much difficulty using the above
definition:

Proposition 2.7. Let A, B and C be subsets of Rn such that B =−B, A ⊂ C and
B ⊂ C. Then

A	 B ⊆ C \ ((C \ A)⊕ B).
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Recall that, K 	 B(0, ε) is the inner parallel body of K at distance ε. The main
tool in the proof of Proposition 1.2 is the following lemma, which states that a
suitable contraction of a convex body is contained in the inner parallel body of the
convex body.

Lemma 2.8. Let K be a convex body in Rn, with B(0, r)⊂ K ⊂ B(0, R) for some
numbers r > 0 and R > 0. If 0< ε < r2/4R, then

(2-11)
(

1− 4 Rε
r2

)
K ⊂ K 	 B(0, ε)⊂ K .

Proof. See Lemma 2.3.6, page 93 of [Schneider 2014]. �

3. Proofs

The proof of Proposition 1.2 is given in Theorem A.1 of [Frank and Seiringer 2008]
for the symmetric decreasing rearrangement. We sketch the proof of the adaptation
to the case of Steiner symmetrization for the sake of completeness.

Proof of Proposition 1.2. Since u?(x) is nonnegative and
∣∣|u(x)| − |u(y)|∣∣ ≤

|u(x) − u(y)|, it suffices to prove the theorem for nonnegative functions. By
definition of the Gamma function and following a change of variables we obtain

(3-1)
1

0(
n+ps

2 )

∫
∞

0
α

n+ps
2 −1e−α|x−y|2 dα =

1
|x − y|n+ps .

Using (3-1) and Tonelli’s theorem for nonnegative integrands and we have∫
Rn

∫
Rn

|u(x)−u(y)|p

|x − y|n+ps dx dy = C
∫

Rn

∫
Rn

∫
∞

0
α

n+ps
2 −1e−α|x−y|2

|u(x)−u(y)|pdα dx dy

= C
∫
∞

0
Iα[u]α

n+ps
2 −1 dα

with

Iα[u] :=
∫

Rn

∫
Rn
|u(x)− u(y)|pe−α|x−y|2 dx dy and C =

1
0(

n+ps
2 )

.

The function J :R→R, x 7→ |x |p is strictly convex and nonnegative with J (0)= 0.
The function k : Rn

→ R, x 7→ e−|x |
2

is a strictly decreasing symmetric function
and k ∈ L1(R

n). Applying Lemma 2.6 to the functional Iα we obtain the desired
result. �

Proof of Proposition 1.3. Since by hypothesis the sequence of sets {�n}
∞

n=1 con-
verges in the Hausdorff distance to �, then for any ε > 0 there exist nε such that

(3-2) B \�n ⊂ (B \�)⊕ B(0, ε) for all n ≥ nε
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and

(3-3) B \�⊂ (B \�n)⊕ B(0, ε) for all n ≥ nε .

By Proposition 2.7, we have

(3-4) �	 B(0, ε)⊆ B \ ((B \�)⊕ B(0, ε)).

It is clear that

(3-5) �	 B(0, ε)=�	 B(0, ε).

By using (3-2) (after taking the complement), (3-4), and (3-5) we obtain

(3-6) �	 B(0, ε)⊆ B \ ((B \�)⊕ B(0, ε))⊂�n.

Using Lemma 2.8 and (3-6) we get

(3-7)
(

1− 4 Rε
r2

)
�⊂

(
1− 4 Rε

r2

)
�⊂�	 B(0, ε)⊂�n.

Then applying parts (1) and (4) of Proposition 2.3 to (3-7) we obtain:

(3-8)
(

1− 4 Rε
r2

)sp
λs

1,p(�n)≤ λ
s
1,p(�).

Taking the upper limit in (3-8) gives:

(3-9)
(

1− 4 Rε
r2

)sp
lim

n→∞
λs

1,p(�n)≤ λ
s
1,p(�).

Now, taking the limit as ε goes to 0 in (3-9) we get

(3-10) lim
n→∞

λs
1,p(�n)≤ λ

s
1,p(�).

Similarly, applying (3-4) and (3-5) in (3-3), and arguing as above, we can get

(3-11) λs
1,p(�)≤ lim

n→∞
λs

1,p(�n).

The result follows immediately from (3-10) and (3-11). �

Proof of Theorem 1.1. Since λs
1,p is translation and rotation invariant (see parts (2)

and (3) of Proposition 2.3), to prove Theorem 1.1 for triangles, it is sufficient to
find one equilateral triangle T ′ such that λs

1,p(T
′)≤ λs

1,p(T ).
Let T1 be an arbitrary triangle. We define recursively Tn+1 to be the Steiner

symmetrization of Tn with respect to the perpendicular bisector of one side (a side
with respect to which there is no symmetry). Let un be a normalized function for
the fractional Dirichlet p-Laplacian on Tn . Then, by Proposition 1.2 we have,

λs
1,p(Tn)=

∫
Rn

∫
Rn

|un(x)− un(y)|p

|x − y|n+ps dx dy ≥
∫

Rn

∫
Rn

|u?n(x)− u?n(y)|
p

|x − y|n+ps dx dy,
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and by part (4) of Proposition 2.5 we have ‖un‖p = ‖u?n‖p = 1. Therefore, using
the definition on page 426, we obtain

(3-12) λs
1,p(Tn+1)≤ λ

s
1,p(Tn) for each n.

Now, recall the fact that the sequence of Steiner symmetrizations Tn of the arbi-
trary initial triangle T1 converges to an equilateral triangle T with respect to the
Hausdorff distance (see page 158 of [Pólya and Szegő 1951]). Then, using part
(2) of Proposition 2.4, and if necessary a translation, we can show that there is a
fixed ball contained in all the triangles Tn . Using part (3) of Proposition 2.4 we
also conclude that all the triangles Tn are contained in a fixed ball. This allows us
to apply Proposition 1.3, and we get

λs
1,p(T )= lim

n→∞
λs

1,p(Tn)≤ λ
s
1,p(T1) .

In the case of quadrilaterals, a similar argument can be used. In fact, a sequence
of Steiner symmetrizations of a given quadrilateral, done alternatingly, with respect
to the perpendicular bisector of a side and the diagonal, converges in the Hausdorff
distance to a square (see page 158–159 of [Pólya and Szegő 1951]). This fact
together with a reasoning as in the case of triangles leads to the Faber–Krahn
inequality for quadrilaterals.

We now turn to the question of uniqueness. Suppose that T is any triangle for
which the minimum is attained in the Faber–Krahn inequality. We can assume
without loss of generality that T is not an equilateral triangle. Then T is not
symmetric respect to the perpendicular bisector L to at least one side l. Let T ? the
Steiner symmetrization of T respect to L . Let u be a normalized eigenfunction of
λs

1,p(T ). Applying Proposition 1.2 and ‖u‖p = ‖u?‖p = 1, we get

λs
1,p(T

?)≤

∫
Rn

∫
Rn

|u?(x)− u?(y)|p

|x − y|n+ps dx dy≤
∫

Rn

∫
Rn

|u(x)− u(y)|p

|x − y|n+ps dx dy=λs
1,p(T ).

Since, λs
1,p(T ) is minimum, we obtain λs

1,p(T
?)= λs

1,p(T ). This means that there
is equality in the nonlocal Pólya–Szegő inequality and so, by the uniqueness part
of Proposition 1.2, we get that u is a translate of u?. This is possible only if the
triangles T and T ? are translates of each other. However, T ? is symmetric with
respect to the L and T and T ? being translates of each other, T would have to be
symmetric with respect to L . This gives a contradiction. So, the only minimizers
are equilateral triangles.

The uniqueness in the case of quadrilaterals is completely analogous to case of
the triangles. �
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TOPOLOGICAL INVARIANCE OF
QUANTUM QUATERNION SPHERES

BIPUL SAURABH

The C∗-algebra of continuous functions on the quantum quaternion sphere
H2n

q can be identified with the quotient algebra C(SPq(2n)/SPq(2n−2)). In
the commutative case, i.e., for q=1, the topological space SP(2n)/SP(2n−2)

is homeomorphic to the odd-dimensional sphere S 4n−1. In this paper, we
prove the noncommutative analogue of this result. Using homogeneous C∗-
extension theory, we prove that the C∗-algebra C(H2n

q ) is isomorphic to the
C∗-algebra C(S4n−1

q ). This further implies that for different values of q
in [0, 1), the C∗-algebras underlying the noncommutative spaces H2n

q are
isomorphic.

1. Introduction

Quantization of Lie groups and their homogeneous spaces has played an impor-
tant role in linking the theory of compact quantum groups with noncommutative
geometry. Many authors (see [Vaksman and Soibelman 1990; Podkolzin and
Vainerman 1999; Chakraborty and Pal 2008; Pal and Sundar 2010]) have studied
different aspects of the theory of quantum homogeneous spaces. However, in these
papers, the main examples have been the quotient spaces of the compact quantum
group SUq(n). Neshveyev and Tuset [2012] studied quantum homogeneous spaces
in a more general setup and gave a complete classification of the irreducible repre-
sentations of the C∗-algebra C(Gq/Hq) where Gq is the q-deformation of a simply
connected semisimple compact Lie group and Hq is the q-deformation of a closed
Poisson–Lie subgroup H of G. Moreover, Neshveyev and Tuset [2012] proved
that C(Gq/Hq) is KK-equivalent to the classical counterpart C(G/H). In [Saurabh
2017], we studied the quantum symplectic group SPq(2n) and its homogeneous
space SPq(2n)/SPq(2n− 2), and obtained K -groups of C(SPq(2n)/SPq(2n− 2))
with explicit generators.

The C∗-algebra C(H 2n
q ) of continuous functions on the quantum quaternion

sphere is defined as the universal C∗-algebra given by a finite set of generators
and relations; see [Saurabh 2017]. In the same paper, the isomorphism between
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the quotient algebra C(SPq(2n)/SPq(2n− 2)) and C(H 2n
q ) was established. Now

several questions arise about this noncommutative space H 2n
q :

(1) Topologically, is H 2n
q the same as S4n−1

q , i.e., are the C∗-algebras C(H 2n
q ) and

C(S4n−1
q ) isomorphic?

(2) Are the C∗-algebras C(H 2n
q ) isomorphic for different values of q?

(3) Does the quantum quaternion sphere admit a good spectral triple equivariant
under the SPq(2n)-group action?

We attempt the first two questions in this paper. In the commutative case, that is,
for q = 1, the quotient space SP(2n)/SP(2n− 2) can be realized as the quaternion
sphere H 2n . It can be easily verified that the quaternion sphere H 2n is homeomor-
phic to the odd-dimensional sphere S 4n−1. One can now expect the quotient algebra
C(SPq(2n)/SPq(2n−2)), or equivalently, the C∗-algebra C(H 2n

q ), to be isomorphic
to the C∗-algebra underlying the odd-dimensional quantum sphere S4n−1

q . Using
homogeneous C∗-extension theory, we show that this is indeed the case.

The remarkable work done by L. G. Brown, R. G. Douglas and P. A. Fillmore
[Brown et al. 1977] on extensions of commutative C∗-algebras by compact operators
has led many authors to extend this theory further in order to provide a tool for
analyzing the structure of C∗-algebras. For a nuclear, separable C∗-algebra A and
a separable C∗-algebra B, G. G. Kasparov [1979] constructed the group Ext(A, B)
consisting of stable equivalence classes of C∗-algebra extensions of the form

0→ B⊗K→ E→ A→ 0.

Here E will be called the middle C∗-algebra. One of the important features of
this construction is that the group Ext(A, B) coincides with the group KK1(A, B).
Another important aspect is that it does not demand much. It does not require
the extensions to be unital or essential. But at the same time, it does not provide
much information about the middle C∗-algebras. Since elements of the group
Ext(A, B) are stable equivalence classes and not strongly unitary equivalence
classes of extensions, two elements in the same class may have nonisomorphic
middle C∗-algebras. For a nuclear C∗-algebra A and a finite-dimensional compact
metric space Y (i.e., a closed subset of Sn for some n ∈ N), M. Pimsner, S. Popa
and D. Voiculescu [Pimsner et al. 1979] constructed another group ExtPPV(Y, A)
consisting of strongly unitary equivalence classes of unital homogeneous extensions
of A by C(Y )⊗K. For y0 ∈ Y, the subgroup ExtPPV(Y, y0, A) consists of those
elements of ExtPPV(Y, A) that split at y0. For a commutative C∗-algebra A, the
group ExtPPV(Y, A) was computed by Schochet [1980]. Further, Rosenberg and
Schochet [1981] showed that

ExtPPV(Y, A+)= Ext(A,C(Y )) and ExtPPV(Y+,+, A+)= Ext(A,C(Y )),
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where Y is a finite-dimensional locally compact Hausdorff space, + is the point at
infinity and A+ is the C∗-algebra obtained by adjoining unity to A.

To prove the claim, our idea is to exhibit two short exact sequences of C∗-algebras
in the same equivalence class in the group ExtPPV(T,C(S4n−3

0 )) with C(S4n−1
q ) and

C(H 2n
q ) as middle C∗-algebras and then to compare their middle C∗-algebras. First,

we prove an isomorphism between groups ExtPPV(Y, y0, A) and ExtPPV(Y, y0, 6
2 A)

under certain assumptions on the topological space Y where 62 A is the quantum
double suspension of A and y0 ∈Y. Using this, we describe all elements of the group
ExtPPV(T,C(S2`+1

0 )) explicitly. We compute K -groups of all middle C∗-algebras
that occur in all the extensions of the group ExtPPV(T,C(S2`+1

0 )). Then using the
ideal structure of C(H 2n

q ), we show that the extension

0→ C(T)⊗K→ C(H 2n
q )→ C(S4n−3

0 )→ 0

is unital and homogeneous. Now by comparing the K -groups of middle C∗-algebras,
we prove that the above extension is strongly unitarily equivalent to either the
extension

0→ C(T)⊗K→ C(S4n−1
0 )→ C(S4n−3

0 )→ 0,

or its inverse in the group ExtPPV(T,C(S2`+1
0 )), having C(S4n−1

0 ) as a middle
C∗-algebra. This proves that the C∗-algebras C(H 2n

q ) and C(S4n−1
0 ) are isomorphic;

see [Blackadar 1998, page 147]. For q = 0, it follows immediately as the defining
relations of C(H 2n

0 ) (see [Saurabh 2017]) are exactly the same as those of C(S4n−1
0 ).

In [Hong and Szymański 2002], it was proved that for different values of q in [0, 1),
the C∗-algebras C(S4n−1

q ) are isomorphic. As a consequence, the C∗-algebras
C(H 2n

q ) and C(S4n−1
q ) are isomorphic for all q in [0, 1). Also, this establishes the

q-invariance of the quantum quaternion spheres, as it shows that the C∗-algebras
C(H 2n

q ) are isomorphic for different values of q . Here we must point out that to the
best of our knowledge, the group ExtPPV(Y, A) has not been used before to show
that two C∗-algebras are isomorphic. In that sense, our idea can be considered as
the first of its kind.

We now set up some notation. The standard basis of the Hilbert space L2(N)

will be denoted by {en : n ∈ N}. We denote the left shift operator on L2(N) and
L2(Z) by the same notation S. For m < 0, (S∗)m denotes the operator S−m . Let
pi be the rank-1 projection sending ei to ei . The operator p0 will be denoted
by p. We write L(H) and K(H) for the sets of all bounded linear operators and
compact operators on H, respectively. We denote by K the C∗-algebra of compact
operators. For a C∗-algebra A, 62 A and M(A) are used to denote the quantum
double suspension (see [Hong and Szymański 2002; 2008]) of A and multiplier
algebra of A, respectively. The map π will denote the canonical homomorphism
from M(A) to Q(A) := M(A)/A and for a ∈ M(A), [a] stands for the image of a
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under the map π . For a locally compact Hausdorff space Y, we write Y+ to denote
one-point compactification of Y. For a C∗-algebra A, A+ is the C∗-algebra obtained
by adjoining unity to A. The symbol Sn will be reserved for the n-dimensional
sphere. However, sometimes we will use T in place of S1 to denote the circle.
Unless otherwise stated, q will denote a real number in the interval (0, 1).

2. C∗-algebra extensions

In this section, we briefly recall some notions related to C∗-extension theory. For
a detailed treatment, we refer the reader to [Blackadar 1998]. Let A be a unital
separable nuclear C∗-algebra. Let B be a stable C∗-algebra. An extension of A by
B is a short exact sequence

0→ B i
−→ E j

−→ A→ 0.

In such cases there exists a unique homomorphism σ : E → M(B) such that
σ(i(b)) = b for all b ∈ B. We can now define the Busby invariant for the exten-
sion 0→ B i

−→E j
−→A→ 0 by the homomorphism τ : A→ M(B)/B given by

τ(a)= π ◦σ(e), where e is a preimage of a and π is the quotient map from M(B)
to M(B)/B. It is easy to see that τ is well-defined. Up to strong isomorphism,
an extension can be identified with its Busby invariant. In this paper, we will not
distinguish between an extension and its Busby invariant, as all the equivalence
relations given here are weaker than the strong isomorphism relation.

An extension τ : A→M(B)/B is called essential if τ is injective or, equivalently,
the image of B is an essential ideal of E . We call an extension unital if it is a
unital homomorphism or, equivalently, E is a unital C∗-algebra. An extension τ is
called a trivial (or split) extension if there exists a homomorphism λ : A→ M(B)
such that τ = π ◦ λ. Extensions τ1 and τ2 are said to be unitarily equivalent if
there exists a unitary u in Q(B) such that uτ1(a)u∗ = τ2(a) for all a ∈ A. The two
extensions are said to be strongly unitarily equivalent if there exists a unitary U
in M(B) such that π(U )τ1(a)π(U∗)= τ2(a) for all a ∈ A. We denote a strongly
unitary equivalence relation by ∼su. Let Ext∼su(A, B) denote the set of strongly
unitary equivalence classes of extensions of A by B. One can put a binary operation
+ on Ext∼su(A, B) as follows. Since M(B) is a stable C∗-algebra, we can get
two isometries ν1 and ν2 in M(B) such that ν1ν

∗

1 + ν2ν
∗

2 = 1. Let [τ1]su and [τ2]su

be two elements in Ext∼su(A, B). Define the extension τ1 + τ2 : A→ Q(B) by
(τ1+ τ2)(a) := π(ν1)τ1(a)π(ν∗1 )+ π(ν2)τ2(a)π(ν∗2 ). The binary operation + on
Ext∼su(A, B) can now be defined as

(2-1) [τ1]su+ [τ2]su := [τ1+ τ2]su.

This makes Ext∼su(A, B) a commutative semigroup. Moreover, the set of trivial
extensions forms a subsemigroup of Ext∼su(A, B). We denote the quotient of
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Ext∼su(A, B)with the set of trivial extensions by Ext(A, B). For a separable nuclear
C∗-algebra A, the set Ext(A, B) under the operation + is a group; see [Blackadar
1998]. Two extensions τ1 and τ2 represent the same element in Ext(A, B) if there
exist two trivial extensions φ1 and φ2 such that τ1 + φ1 ∼su τ2 + φ2. We denote
an equivalent class in the group Ext(A, B) of an extension τ by [τ ]s . One can
show that for a stable C∗-algebra B, Ext(A, B) = Ext(A, B ⊗ K). Now for an
arbitrary C∗-algebra B, define Ext(A, B) := Ext(A, B ⊗ K). For B = C, we
denote the group Ext(A,C) by Ext(A). Note that in this case, two unital essential
extensions τ1 and τ2 are in the same equivalence class (i.e., [τ1]s = [τ2]s) if and
only if they are strongly unitarily equivalent. Suppose that Y is a finite-dimensional
compact metric space, i.e., a closed subset of Sn for some n ∈ N. Let M(Y ),
Q(Y ) and Q be the C∗-algebras M(C(Y )⊗ K), M(C(Y )⊗ K)/C(Y )⊗ K and
L(H)/K(H) (Calkin algebra) respectively. One can easily see that M(Y ) is the set
of all ∗-strong continuous functions from Y to L(H). We call an extension τ of A
by C(Y )⊗K homogeneous if for all y ∈ Y, the map evy ◦ τ : A→ Q is injective
where evy : Q(Y )→ Q is the evaluation map at y. Let ExtPPV(Y, A) be the set
of strongly unitary equivalence classes of unital homogeneous extensions of A by
C(Y )⊗K. For a nuclear C∗-algebra A, Pimsner, Popa and Voiculescu [Pimsner et al.
1979] showed that ExtPPV(Y, A) is a group with the additive operation defined as
in (2-1). We denote the equivalence class in the group ExtPPV(Y, A) of an extension
τ by [τ ]su. For y0 ∈ Y, define the set

ExtPPV(Y, y0, A)=
{
[τ ]su ∈ ExtPPV(Y, A) : evy0 ◦ τ is split

}
.

The set ExtPPV(Y, y0, A) is a subgroup of ExtPPV(Y, A).

The groups ExtPPV(Y, A) and ExtPPV(Y, 62 A). Here we will show that for a
separable nuclear C∗-algebra A and a finite-dimensional compact metric space Y
such that K -groups of C(Y ) are finitely generated, the groups ExtPPV(Y, A) and
ExtPPV(Y, 62 A) are isomorphic. Let us recall some definitions. We say that two
elements a and b in Q(B) are strongly unitarily equivalent if there exists a unitary
U ∈ M(B) such that [U ]a[U∗] = b. Two elements a and b in Q(B) are said to
be unitarily equivalent if there exists unitary u ∈ Q(B) such that uau∗ = b. We
call an element a in a C∗-algebra B norm-full if it is not contained in any proper
closed ideal in B. Suppose that A and B are separable C∗-algebras. An extension
τ : A→ Q(B⊗K) is said to be norm-full if for every nonzero element a ∈ A, τ(a)
is norm-full element of Q(B⊗K).

Definition 2.1 [Lin 2009]. Let B be a separable σ -unital C∗-algebra. We say
Q(B⊗K) has property (P) if for any norm-full element b ∈ Q(B⊗K), there exist
x, y ∈ Q(B⊗K) such that xby = 1.
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Definition 2.2 [Kucerovsky and Ng 2006]. Let B be a separable C∗-algebra. Then
B⊗K is said to have the corona factorization property if every norm-full projection
in M(B⊗K) is Murray–von Neumann equivalent to the unit element of M(B⊗K).

One can show that in a C∗-algebra B⊗K with the corona factorization property,
any norm-full projection in Q(B⊗K) is Murray–von Neumann equivalent to the
unit element of Q(B⊗K); see [Kucerovsky and Ng 2006]. Also note that the fact
that Q(B⊗K) has property (P) implies that B⊗K has the corona factorization
property. It is proved in [Lin 2007] that for a finite-dimensional compact metric
space Y, Q(C(Y )⊗ K) has property (P) and hence C(Y )⊗ K has the corona
factorization property. We will see that these properties play important roles in
proving the isomorphism between the groups ExtPPV(Y, A) and ExtPPV(Y, 62 A).
But for that, we need the following proposition that says that for a C∗-algebra
with certain properties, the group ExtPPV(Y, A) can be viewed as a subgroup of the
group KK1(A,C(Y )).

Proposition 2.3. Let A be a unital separable nuclear C∗-algebra which satisfies
the universal coefficient theorem. Assume that K0(A)= G⊕Z with [1A] = (0, 1).
Suppose that Y is a finite-dimensional compact metric space. Then the map

i : ExtPPV(Y, A)→ KK1(A,C(Y )), [τ ]su 7→ [τ ]s

is an injective homomorphism.

Proof. Since strongly unitary equivalence implies stable equivalence, the map i is
well-defined. Any unital homogeneous extension is a purely large extension and
hence a norm-full extension; see [Elliott and Kucerovsky 2001, page 19]. Therefore,
from [Lin 2009, Theorem 2.4 and Corollary 3.9], it follows that i is injective. �

From now on, without loss of generality, we will assume that the Hilbert space H
is L2(N). Let τ be a unital homogeneous extension of A by C(Y )⊗K(H). Define
τ̃ : A→ Q

(
C(Y )⊗K(H)⊗K(H)

)
by τ̃ (a)= [τa ⊗ p] where [τa] = τ(a). By the

universal property of quantum double suspension (see [Hong and Szymański 2008,
Proposition 2.2]), there exists a unique homomorphism

(2-2) 62τ :62 A→ Q
(
C(Y )⊗K(H)⊗K(H)

)
such that 62τ(a⊗ p) = τ̃ (a) = [τa ⊗ p] and 62τ(1⊗ S) = [1⊗ 1⊗ S]. Clearly
62τ is a unital extension. Since τ is homogeneous, the map evy ◦ τ is injective
for all y ∈ Y. Therefore the map evy ◦6

2τ is injective on the C∗-algebra A⊗ p
as evy ◦6

2τ(a⊗ p) = [(evy ◦ τ)a ⊗ p] where [(evy ◦ τ)a] = evy ◦ τ(a). Making
use of the fact that (1⊗ p)A⊗K(1⊗ p) = A⊗ p, one can prove that the map
evy ◦ 6

2τ is injective on A ⊗ K. Since A ⊗ K is an essential ideal of 62 A,
we conclude that the map evy ◦ 6

2τ is injective on 62 A and hence 62τ is a
homogeneous extension. Moreover, if τ1 and τ2 are strongly unitarily equivalent
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by a unitary U ∈ M
(
C(Y )⊗ K(H)

)
then so are 62τ1 and 62τ2 by the unitary

U ⊗ 1 ∈ M(C(Y )⊗K(H)⊗K(H)). This gives a well-defined map:

(2-3) β : ExtPPV(Y, A)→ ExtPPV(Y, 62 A), [τ ]su 7→ [6
2τ ]su.

Proposition 2.4. The map β : ExtPPV(Y, A)→ ExtPPV(Y, 62 A) given above is an
injective group homomorphism.

Proof. Let τ be a unital homogeneous extension of A by C(Y )⊗K such that 62τ

is a split extension. In this case, there exists a homomorphism λ :62 A→ M(Y )
such that π ◦λ=62τ . Define α : A→ M(Y ) by α(a) := λ(a⊗ p) for a ∈ A. It is
easy to check that π ◦α = τ which implies that τ is a split extension. This proves
that the map β is injective. �

To get surjectivity of the map β, we need to put certain assumptions on the
topological space Y.

Proposition 2.5. Let Y be a finite-dimensional compact metric space. Assume
that K0(C(Y )) and K1(C(Y )) are finitely generated abelian groups. Then, letting
V ∈ Q

(
C(Y )⊗K(H)⊗K(H)

)
be an isometry such that V V ∗ and 1− V V ∗ both

are norm-full projections, V is unitarily equivalent to [1⊗ 1⊗ S∗].

Proof. Let Gn := ExtPPV(Y, 62nC(T)). Since

KK1(62nC(T),C(Y ))≡ K0(C(Y ))⊕ K1(C(Y )),

one can consider the groups Gn as subgroups of K0(C(Y ))⊕ K1(C(Y )) thanks
to Proposition 2.3. This implies that the Gn are finitely generated abelian groups.
For n ∈ N, define the map

(2-4) βn :ExtPPV(Y, 62nC(T))→ExtPPV(Y, 62n+2C(T)), [τ ]su 7→ [6
2τ ]su,

where 62τ is as in (2-2). From Proposition 2.4, it follows that the maps βn are
injective homomorphisms. Assume that V is not unitarily equivalent to [1⊗1⊗ S∗].
For each n ∈N, the isometry V will induce an isometry Vn ∈ Q(C(Y )⊗K(H)⊗n+1)

(where ⊗k means the tensor product of k copies) such that VnV ∗n and 1− VnV ∗n
both are norm-full projections and Vn is not unitarily equivalent to [1⊗n+1

⊗ S∗].
Since C(Y )⊗K has the corona factorization property, it follows that VnV ∗n and
1− VnV ∗n both are Murray–von Neumann equivalent to [1]. Also, one can easily
verify that [1⊗n+1

⊗ p] and [1− 1⊗n+1
⊗ p] = [1⊗n+1

⊗ (1− p)] are Murray–
von Neumann equivalent to [1]. This implies that VnV ∗n is unitarily equivalent
to 1− [1⊗n+1

⊗ p]. So, without loss of generality, we can assume that Vn has
final projection 1− [1⊗n+1

⊗ p]. Take a split unital homogeneous extension τ of
C(T) by C(Y )⊗K(H). Clearly 62nτ is a split unital homogeneous extension of
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62nC(T) by C(Y )⊗K(H)⊗n+1. Let62
V (6

2nτ) be a unital homogeneous extension
of 62n+2C(T) by C(Y )⊗K(H)⊗n+2 given by

62
V (6

2nτ)(a⊗ p)= [62nτa ⊗ p] and 62
V (6

2nτ)(1⊗ S∗)= Vn+1,

where [62nτa] =6
2nτ(a). From [Lin 2009, Corollary 3.8] and the fact that Vn+1

is not unitarily equivalent to [1⊗n+2
⊗ S∗], it follows that [62

V (6
2nτ)]su is not in

the image of the map βn defined as in (2-4). Let m[62
V (6

2nτ)]su = βn([φ]su) for
some m ∈ Z−{0} and for some unital homogeneous extension φ of 62nC(T) by
C(Y )⊗K. It is easy to see that φ must be split and in that case m[62

V (6
2nτ)]

is the class of split extensions. This shows that for all n ∈ N, the group Gn+1

has either one more free generator or one more element of finite order than the
group Gn . Since K0(C(Y ))⊕ K1(C(Y )) is a finitely generated group for all n ∈N,
Gn ⊂ K0(C(Y ))⊕ K1(C(Y )), and we reach a contradiction. This proves that V is
unitarily equivalent to [1⊗ 1⊗ S∗]. �

Remark 2.6. Here we should point out that the above proposition may hold for a
more general finite-dimensional compact metric space Y. But since we could not
find any general result along this direction in literature, we prove the proposition
under certain assumptions on Y.

Corollary 2.7. Let Y and V be as in the above proposition. Then V is strongly
unitarily equivalent to [1⊗ 1⊗ S∗].

Proof. Consider the unital extension62
V τ constructed in Proposition 2.5 where τ is a

split unital homogeneous extension of C(T) by C(Y )⊗K(H). Using Proposition 2.5,
one can show that62

V τ is unitarily equivalent to62τ defined in (2-2) with A=C(T).
Therefore, by [Lin 2009, Corollary 3.10], it follows that 62

V τ is strongly unitarily
equivalent to 62τ . Hence V is strongly unitarily equivalent to [1⊗ 1⊗ S∗]. �

Lemma 2.8 establishes the isomorphism between the groups ExtPPV(Y, A) and
ExtPPV(Y, 62 A) under certain assumptions on the space Y.

Lemma 2.8. Let Y be a finite-dimensional compact metric space. Assume that the
groups K0(C(Y )) and K1(C(Y )) are finitely generated abelian groups. Then the
map β : ExtPPV(Y, A)→ ExtPPV(Y, 62 A) given above is an isomorphism.

Proof. We only need to show that β is surjective thanks to Proposition 2.4. Let
φ be a unital homogeneous extension of 62 A by C(Y ) ⊗ K(H) ⊗ K(H). Let
φ(1⊗ S∗)= V . Since φ is a unital homogeneous extension and hence a norm-full
extension, it follows that V V ∗ and 1− V V ∗ are norm-full projections. Therefore,
by Corollary 2.7, there exists a unitary U ∈ M(C(Y )⊗K(H)⊗K(H)) such that
[U ]V [U∗] = [1⊗ 1⊗ S∗]. So without loss of generality, we can assume that φ
maps 1⊗ S∗ to [1⊗ 1⊗ S∗]. This implies that φ(1⊗ p)= [1⊗ 1⊗ p]. But then
φ(A⊗ p)⊂ (1⊗1⊗ p)φ(A⊗ p)(1⊗1⊗ p)⊂ Q(C(Y )⊗K(H))⊗ p which induces
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a map τ : A→ Q(C(Y )⊗K(H)) by omitting the projection p. Therefore, we get
a unital homogeneous extension τ of A such that β([τ ]u)= [φ]u . This proves that
the map β is surjective. �

Corollary 2.9. For y0 ∈ Y, the map

β|ExtPPV(Y,y0,A) : ExtPPV(Y, y0, A)→ ExtPPV(Y, y0, 6
2 A)

is an isomorphism.

Proof. It is easy to check that if evy0 ◦ τ is split then so is evy0 ◦6
2τ and vice versa.

Now the claim will follow from Lemma 2.8. �

3. Elements of ExtPPV
(
T, C

(
S2`+1

0
))

In this section, we will write down all elements of the groups Ext(C(S2`+1
0 )) and

ExtPPV(T,C(S2`+1
0 )) explicitly in terms of their Busby invariants. We start with the

definition of C(S2`+1
0 ). The C∗-algebra C(S2`+1

0 ) is defined as the C∗-subalgebra
of L

(
L2(N)

⊗`
)
⊗C(T) generated by the following operators:

S∗⊗ 1⊗ · · ·⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1,
...

p⊗ p⊗ · · ·⊗ p⊗ S∗⊗ 1,

p⊗ p⊗ · · ·⊗ p⊗ p⊗ t.

Hong and Szymański [2002] showed that for q ∈ (0, 1), the C∗-algebra C(S2`+1
q ) of

continuous functions on the odd-dimensional quantum sphere S2`+1
q is isomorphic

to the C∗-algebra C(S2`+1
0 ). Since for calculation purposes, the generators of

C(S2`+1
0 ) given above are easier to deal with in comparison to those of C(S2`+1

q ),
we will, without loss of generality, take the C∗-algebra C(S2`+1

0 ). Define the
∗-homomorphisms ϕm as follows:

ϕm : C(S2`+1
0 )→ Q

(
K
(
L2(N)

⊗`+1)),
S∗⊗ 1⊗ · · ·⊗ 1 7→ S∗⊗ 1⊗ · · ·⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1 7→ p⊗ S∗⊗ 1⊗ · · ·⊗ 1,
...

p⊗ p⊗ · · ·⊗ p⊗ S∗⊗ 1 7→ p⊗ p⊗ · · ·⊗ S∗⊗ 1,

p⊗ p⊗ · · ·⊗ t 7→ p⊗ p⊗ · · ·⊗ p⊗ (S∗)m .

The following proposition says that for each m ∈ Z, the homomorphism [ϕm]s is an
element of the group Ext(C(S2`+1

0 )).
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Proposition 3.1. For each m ∈ Z, the extension ϕm is an essential unital extension
of C(S2`+1

0 ) by compact operators.

Proof. Clearly the ϕm are unital extensions of C(S2`+1
0 ) by compact operators. We

need to show that the ϕm are injective homomorphisms. Let Ct(T) be the set of
all continuous functions on T vanishing at t . Using irreducible representations of
C(S2`+1

0 ), it is easy to see that

(1) {K(L2(N))
⊗`
⊗Ct(T)}t∈T are primitive ideals of C(S2`+1

0 ),

(2) all other primitive ideals contain p⊗p⊗· · ·⊗p⊗p⊗t and K(L2(N))
⊗`
⊗Ct(T)

for all t ∈ T.

Since kerϕm is the intersection of all primitive ideals that contain kerϕm and since
p ⊗ p ⊗ · · · ⊗ t /∈ kerϕm , we conclude that kerϕm = K(L2(N))

⊗`
⊗ CF (T) for

some closed subset F of T where CF (T) is the set of all continuous functions on
T vanishing on F. Consider the function χ : C(T)→ Q such that χ(t)= [(S∗)m].
Since [(S∗)m] is unitary in Q with spectrum equal to T, it follows that the map χ
is injective. This shows that for any nonzero continuous complex valued function
f on T, ϕm(p⊗ p⊗ · · ·⊗ f (t)) 6= 0. Hence F = T and kerϕm = {0}. �

We shall show that each element in the group Ext(C(S2`+1
0 )) is of the form [ϕm]s

for some m ∈ Z. Let H0 be the Hilbert space L2(N)
⊗`
⊗ L2(Z). For m ∈ Z, let ϑm

be the representation of C(S2`+1
0 ) given by

ϑm : C(S2`+1
0 )→ L(H0),

S∗⊗ 1⊗ · · ·⊗ 1 7→ S∗⊗ 1⊗ · · ·⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1 7→ p⊗ S∗⊗ 1⊗ · · ·⊗ 1,
...

p⊗ p⊗ · · ·⊗ p⊗ S∗⊗ 1 7→ p⊗ p⊗ · · ·⊗ S∗⊗ 1,

p⊗ p⊗ · · ·⊗ t 7→ p⊗ p⊗ · · ·⊗ p⊗ (S∗)m .

Let P be the self-adjoint projection in L(H0) on the subspace spanned by the
basis elements {en1 ⊗ · · · ⊗ en`+1 : ni ∈ N for all i ∈ {1, 2, . . . , ` + 1}}. One
can check that Fm :=

(
C(S2`+1

0 ),H0, 2P − 1
)

with the underlying representation
ϑm is a Fredholm module. By [Blackadar 1998, Proposition 17.6.5, page 157],
the group Ext(C(S2`+1

0 )) is isomorphic to the group K 1(C(S2`+1
0 )). Under this

identification, one can easily show that the equivalence class of the Fredholm
module Fm corresponds to the equivalence class [ϕm]s .

Proposition 3.2. For ` ∈ N, one has

Ext
(
C(S2`+1

0 )
)
=
{
[ϕm]s : m ∈ Z

}
.
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Proof. To prove the claim, we will use the index pairing between the groups
K1(C(S2`+1

0 )) and K 1(C(S2`+1
0 )) which is given by the Kasparov product. The

group K1(C(S2`+1
0 )) is generated by the unitary u := p⊗` ⊗ t + 1 − p⊗` ⊗ 1.

For m ∈ Z, let Rm : PH0→ PH0 be the operator Pϑm(u)P. Hence we get

〈u,Fm〉 = Index(Rm)= m. �

To describe all elements of ExtPPV(T,C(S2`+1
0 )), define the ∗-homomorphisms φm :

φm : C(S2`+1
0 )→ Q

(
K
(
L2(N)

⊗`+1)
⊗C(T)

)
,

S∗⊗ 1⊗ · · ·⊗ 1 7→ S∗⊗ 1⊗ · · ·⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1 7→ p⊗ S∗⊗ 1⊗ · · ·⊗ 1,
...

p⊗ p⊗ · · ·⊗ p⊗ S∗⊗ 1 7→ p⊗ p⊗ · · ·⊗ S∗⊗ 1⊗ 1,

p⊗ p⊗ · · ·⊗ t 7→ p⊗ p⊗ · · ·⊗ p⊗ (S∗)m ⊗ 1.

It follows from Proposition 3.1 that the φm are essential unital extensions. Since
the last component is 1, these extensions are homogeneous. Let Am be the
C∗-subalgebra of C(S2`+3

0 ) generated by the operators

S∗⊗ 1⊗ · · ·⊗ 1⊗ 1,

p⊗ S∗⊗ 1⊗ · · ·⊗ 1⊗ 1,
...

p⊗ p⊗ · · ·⊗ S∗⊗ 1⊗ 1,

p⊗ p⊗ · · ·⊗ p⊗ (S∗)m ⊗ 1

and K
(
L2(N)

⊗`+1
)
⊗C(T). Then for each m ∈ Z, we have the exact sequence

0→ K
(
L2(N)

⊗`+1)
⊗C(T)→ Am→ C(S2`+1

0 )→ 0

with the Busby invariant φm . By using the six-term exact sequence, one can show

(3-1) K0(Am)= Z⊕Z/mZ, K1(Am)= Z.

Lemma 3.3. For ` ∈ N and t0 ∈ T, one has

ExtPPV
(
T, t0,C(S2`+1

0 )
)
= {0}, ExtPPV

(
T,C(S2`+1

0 )
)
= Z.

Proof. It follows from Theorem 1.5 in [Rosenberg and Schochet 1981] that

ExtPPV
(
T, t0,C(T)

)
= ExtPPV

(
R+, t0,C0(R)

+
)
= Ext

(
C0(R),C0(R)

)
= {0}.

The C∗-algebra C(S2`+1
0 ) can be obtained by applying quantum double suspension

on C(T) repeatedly; see [Hong and Szymański 2002]. Therefore, from Corollary 2.9,
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we have
ExtPPV

(
T, t0,C(S2`+1

0 )
)
= ExtPPV

(
T, t0,C(T)

)
= {0}.

Further, from Theorem 1.4 in [Rosenberg and Schochet 1981], we get

ExtPPV
(
T,C(T)

)
= ExtPPV

(
T,C0(R)

+
)
= Ext

(
C0(R),C(T)

)
= Z.

Hence by applying Lemma 2.8, we get the claim. �

The following lemma says that each element of the group ExtPPV
(
T,C(S2`+1

0 )
)

is of the form [φm]su for some m ∈ Z.

Lemma 3.4. For ` ∈ N, one has

ExtPPV
(
T,C(S2`+1

0 )
)
=
{
[φm]su : m ∈ Z

}
.

Proof. Fix t0 ∈ T. Define a homomorphism 9 as follows:

9 : ExtPPV
(
T,C(S2`+1

0 )
)
→ Ext

(
C(S2`+1

0 )
)
, [τ ]su 7→ [evt0 ◦ τ ]s .

Clearly ker9 = ExtPPV
(
T, t0,C(S2`+1

0 )
)
= {0}. Therefore, 9 is an injective group

homomorphism. Since evt0 ◦φm = ϕm , for all m ∈ Z, it follows that the homomor-
phism 9 is surjective. This proves the claim. �

4. Quantum quaternion sphere

We first recall the definition and representation theory of the C∗-algebra C(H 2n
q ) of

continuous functions on the quantum quaternion sphere. Then we prove our main
result that the C∗-algebra C(H 2n

q ) is isomorphic to the C∗-algebra C(S4n−1
q ).

Definition 4.1. Let i ′= 2n+1−i . The C∗-algebra C(H 2n
q ) of continuous functions

on the quantum quaternion sphere is defined as the universal C∗-algebra generated
by elements z1, z2, . . . , z2n satisfying the following relations:

zi z j = qz j zi for i > j, i + j 6= 2n+ 1,(4-1)

zi zi ′ = q2zi ′zi − (1− q2)
∑
k>i

q i−kzkzk′ for i > n,(4-2)

z∗i zi ′ = q2zi ′z∗i(4-3)

z∗i z j = qz j z∗i for i + j > 2n+ 1, i 6= j,(4-4)

z∗i z j = qz j z∗i + (1− q2)εiε j qρi+ρ j zi ′z∗j ′ for i + j < 2n+ 1, i 6= j,(4-5)

z∗i zi = zi z∗i + (1− q2)
∑
k>i

zkz∗k for i > n,(4-6)

z∗i zi = zi z∗i + (1− q2)
(

q2ρi zi ′z∗i ′ +
∑
k>i

zkz∗k
)

for i ≤ n,(4-7)

2n∑
i=1

zi z∗i = 1.(4-8)
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In [Saurabh 2017], we showed that the C∗-algebra C(H 2n
q ) is isomorphic to

the quotient algebra C(SPq(2n)/SPq(2n − 2)) that can also be described as the
C∗-subalgebra of C(SPq(2n)) generated by {u1

m, u2n
m :m ∈ {1, 2, . . . , 2n}}, i.e., ele-

ments of the first and last row of the fundamental matrix of the quantum symplectic
group SPq(2n). Here we briefly describe all irreducible representations of C(H 2n

q ).
For a detailed treatment on this, we refer the reader to [Saurabh 2017]. Let N be
the number operator given by N : en 7→ nen and S be the shift operator given by
S : en 7→ en−1 on L2(N). We denote by T the Toeplitz algebra. Let Ei, j ∈ Mn(R)

be the n× n matrix with the only nonzero entry at the i j-th place and equal to 1.
Define

si = I − Ei,i − Ei+1,i+1+ Ei,i+1+ Ei+1,i , for i = 1, 2, . . . , n− 1,

sn = I − 2En,n, for i = n.

One can prove that the Weyl group Wn of sp2n is isomorphic to a subgroup of
GL(n,R) generated by s1, s2, . . . , sn . We refer the reader to [Fulton and Harris
1991] for a proof of this fact. For i = 1, 2, . . . , n− 1, let πsi denote the following
representation of C(SPq(2n)),

πsi (u
k
l )=



√
1− q2N+2S if (k, l)= (i, i) or (2n− i, 2n− i),

S∗
√

1− q2N+2 if (k, l)= (i + 1, i + 1) or (2n− i + 1, 2n− i + 1),

−q N+1 if (k, l)= (i, i + 1),

q N if (k, l)= (i + 1, i),

q N+1 if (k, l)= (2n− i, 2n− i + 1),

−q N if (k, l)= (2n− i + 1, 2n− i),

δkl otherwise.

For i = n,

πsn (u
k
l )=



√
1− q4N+4S if (k, l)= (n, n),

S∗
√

1− q4N+4 if (k, l)= (n+ 1, n+ 1),

−q2N+2 if (k, l)= (n, n+ 1),

q2N if (k, l)= (n+ 1, n),

δkl otherwise.

Each πsi is an irreducible representation and is called an elementary representation
of C(SPq(2n)). For any two representations ϕ and ψ of C(SPq(2n)), define ϕ ∗ψ
to be (ϕ ⊗ψ) ◦1, where 1 is the comultiplication map of C(SPq(2n)). Let ϑ
be an element of Wn such that si1si2 · · · sik is a reduced expression for ϑ . Then
πϑ = πsi1

∗ πsi2
∗ · · · ∗ πsik

is an irreducible representation which is independent
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of the reduced expression. Now for t = (t1, t2, . . . , tn) ∈ Tn , define the map
τt : C(SPq(2n)→ C by

τt(ui
j )=

{
tiδi j if i ≤ n,

t2n+1−iδi j if i > n.

Then τt is a ∗-algebra homomorphism. For t ∈Tn, ϑ ∈W, let πt,ϑ = τt ∗πϑ . Define
the representation ηt,ϑ of C(H 2n

q ) as the representation πt,ϑ restricted to C(H 2n
q ).

Denote by ωk the following reduced word of Weyl group of sp2n ,

ωk =


I if k = 1,
s1s2 · · · sk−1 if 2≤ k ≤ n,
s1s2 · · · sn−1snsn−1 · · · s2n−k+1 if n < k ≤ 2n.

For k=1, define ηt,I :C(H 2n
q )→C such that ηt,I (z j )= tδ1 j . The set {ηt,I : t ∈T }

gives all one-dimensional irreducible representations of C(H 2n
q ).

Theorem 4.2 [Saurabh 2017]. The set {ηt,ωk : 1≤ k ≤ 2n, t ∈ T} gives a complete
list of irreducible representations of C(H 2n

q ).

Define
ηωk : C(H

2n
q )→ C(T)⊗T ⊗k−1

such that ηωk (a)(t)=ηt,ωk (a) for all a∈C(H 2n
q ). Let C2n

1 =C(T) and for 2≤k≤2n,
C2n

k = ηωk (C(H
2n
q )).

Corollary 4.3. The set {ηt,ωl : 1≤ l ≤ k, t ∈ T} gives a complete list of irreducible
representations of C2n

k .

By Corollary 4.3, one can find all primitive ideals, i.e., kernels of irreducible
representations of C2n

k . Define yk
l := ηωk (zl) and I k

t, l := ker(ηt,ωl ) for 1 ≤ l ≤ k
and t ∈ T. Then

(4-9)
{

I k
t,k = Ct(T)⊗K(L2(N))

⊗(k−1)}
t∈T
,
{

I k
t,k−1

}
t∈T
, . . . ,

{
I k
t,1
}

t∈T

is a complete list of primitive ideals of C2n
k . Moreover for t, t ′ ∈T and 1≤ l ≤ k−1,

we have Ct(T)⊗K(L2(N))
⊗(k−1)

⊂ I k
t ′, l and yk

k ∈ I k
t ′, l . In Lemma 5.1 of [Saurabh

2017], we established the exact sequence

0→ C(T)⊗K(L2(N))
⊗(k)
→ C2n

k+1
σk+1
−−→C2n

k → 0,

where σk+1 is the restriction of 1⊗1⊗(k−1)
⊗σ to C2n

k+1 and the map σ : T → C is
the homomorphism such that σ(S)= 1. The following lemma says that this exact
sequence is a unital homogeneous extension of C2n

k by C(T)⊗K:

Lemma 4.4. For 1≤ k ≤ 2n, the exact sequence

0→ C(T)⊗K(L2(N))
⊗(k)
→ C2n

k+1
σk+1
−−→C2n

k → 0

is a unital homogeneous extension of C2n
k by C(T)⊗K.



TOPOLOGICAL INVARIANCE OF QUANTUM QUATERNION SPHERES 449

Proof. Since C2n
k+1 is unital, the given extension is unital. Let τ : C2n

k → Q(T) be
the Busby invariant corresponding to this extension. For t0 ∈ T, let τt0 : C

2n
k → Q

be the map evt0 ◦ τ where evt0 : Q(T)→ Q is the evaluation map at t0. Assume
that Jt0 = ker(τt0). To show that the given short exact sequence is a homogeneous
extension, we need to prove that Jt0 = {0} for all t0 ∈ T.

Case 1: n < k < 2n. We have

(4-10) τt0(y
k
k )= τt0

(
t ⊗ q N⊗(n−1)

⊗ q2N
⊗ q N⊗(k−n−1))

= t0
[
q N⊗(n−1)

⊗ q2N
⊗ q N⊗(k−n−1)

⊗
√

1− q2N S∗
]
6= 0.

This shows yk
k /∈ Jt0 . Since Jt0 is the intersection of all primitive ideals that contain Jt0 ,

and yk
k ∈ I k

t ′,l and Ct(T)⊗K(L2(N))
⊗(k−1)

⊂ I k
t ′,l for t, t ′ ∈T and 1≤ l ≤ k−1, we

conclude that Jt0 is equal to CF (T)⊗K for some closed subset F of T where CF (T)

is the set of all continuous functions on T vanishing on F. From (4-10), we get

τt0((y
k
k )(y

k
k )
∗)=

[
q2N⊗(n−1)

⊗ q4N
⊗ q2N⊗(k−n−1)

⊗ (1− q2N )
]

=
[
q2N⊗(n−1)

⊗ q4N
⊗ q2N⊗(k−n−1)

⊗ 1
]
.

Therefore,

τt0
(
1⊗ p⊗(k−1))

=
[

p⊗(k−1)
⊗ 1

]
.

Hence,
τt0(t ⊗ p⊗(k−1))= t0

[
p⊗(k−1)

⊗
√

1− q2N S∗
]

= t0
[

p⊗(k−1)
⊗ S∗

]
.

Since the function χ :C(T)→Q such that χ(t)=[S∗] is an injective homomorphism
as shown in Proposition 3.1, it follows that for any nonzero continuous function
f on T,

τt0
(

f (t)⊗ p⊗(k−1))
6= 0.

This proves that F = T and Jt0 = {0}.

Case 2: 1≤ k ≤ n. For k = n,

τt0(y
n
n )= t0

[
q N⊗(n−1)

⊗
√

1− q4N S∗
]
.

For 1≤ k < n,

τt0(y
k
k )= t0

[
q N⊗(k−1)

⊗
√

1− q2N S∗
]
.

Similar calculations to those in Case 1 show that Jt0 ={0}. This proves the claim. �

We now state the main result of this paper.
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Theorem 4.5. For all n≥2 and 1≤ k≤2n, the C∗-algebra C2n
k is isomorphic to the

C∗-algebra C(S2k−1
0 ) of continuous functions on odd-dimensional quantum spheres.

In particular, C(H 2n
q ) is isomorphic to C(S4n−1

0 ) or, equivalently, to C(S4n−1
q ).

Proof. Fix n. To prove the theorem, we use induction on k. For k = 1, C2n
1 =C(T).

So the claim is true for k = 1. Assume that the claim is true for k, i.e., C2n
k is

isomorphic to C(S2k−1
0 ). From Lemma 4.4, it follows that the short exact sequence

(4-11) 0→ C(T)⊗K→ C2n
k+1→ C2n

k → 0

is a unital homogeneous extension. Therefore, it can be viewed as an element of the
group ExtPPV(T,C(S2k−1

0 )). It follows from Lemma 3.4 that it is strongly unitarily
equivalent to φm or, equivalently, to the following exact sequence

0→ C(T)⊗K→ Am→ C(S2k−1
0 )→ 0,

for some m ∈ Z. From Theorem 5.3 in [Saurabh 2017] and equation (3-1), we have

K0(C2n
k+1)= Z, K0(Am)= Z⊕Z/mZ.

Since strongly unitary equivalence gives an isomorphism of the middle C∗ algebras
and hence an isomorphism of the K -groups of middle C∗-algebras, it follows that
the exact sequence (4-11) is strongly unitarily equivalent to φ1 or φ−1. This implies
that C2n

k+1 is isomorphic to A1 or A−1. Since A1 = A−1 = C(S2k+1
0 ), it follows that

C2n
k+1 is isomorphic to C(S2k+1

0 ). Hence by induction, it follows that C(H 2n
q ) is

isomorphic to C(S4n−1
0 ). From Theorem 4.4 in [Hong and Szymański 2002], it

follows that the C∗-algebra C(S4n−1
q ) is isomorphic to C(S4n−1

0 ), for q ∈ (0, 1).
This proves that C(H 2n

q ) is isomorphic to C(S4n−1
q ). �

Remark 4.6. In the case where q = 0, we need to be slightly careful to get the
defining relations of C(H 2n

0 ). In the relation (4-2), we first start with i = 2n. This
gives the relation z2nz1 = 0. Then we take i = 2n − 1 and so on and get the
relation zi zi ′ = 0 for i < n. Further, in the relation (4-5), it is easy to check that for
i + j < 2n+ 1, ρi + ρ j > 0. Now by putting q = 0 into the relations (4-3), (4-4)
and (4-4), we get z∗i z j = 0 for i 6= j. The other relations are obtained by putting
q = 0 in the remaining relations. By looking at the relations, one can see that the
defining relations of C(H 2n

0 ) are exactly the same as those of C(S4n−1
0 ). These

facts together with Theorem 4.5 prove that for different values of q ∈ [0, 1), the
C∗-algebras C(H 2n

q ) are isomorphic.
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GAP THEOREMS FOR COMPLETE λ-HYPERSURFACES

HUIJUAN WANG, HONGWEI XU AND ENTAO ZHAO

An n-dimensional λ-hypersurface X : M → Rn+1 is the critical point of
the weighted area functional

∫
M e−

1
4 |X|

2
dµ for weighted volume-preserving

variations, which is also a generalization of the self-shrinking solution of
the mean curvature flow. We first prove that if the Ln-norm of the second
fundamental form of the λ-hypersurface X : M → Rn+1 with n ≥ 3 is less
than an explicit positive constant K (n, λ), then M is a hyperplane. Secondly,
we show that if the Ln-norm of the trace-free second fundamental form of
M with n≥ 3 is less than an explicit positive constant D(n, λ) and the mean
curvature is suitably bounded, then M is a hyperplane. We also obtain
similar results for λ-surfaces in R3 under L4-curvature pinching conditions.

1. Introduction

Let X :M→Rn+1 be an n-dimensional immersed smooth hypersurface in the (n+1)-
dimensional Euclidean space Rn+1. We call the hypersurface a λ-hypersurface if it
satisfies

H + 1
2〈X, N 〉 = λ,

where λ is a constant, H is the mean curvature and N is the unit inward normal
vector of X : M→ Rn+1.

McGonagle and Ross [2015] studied λ-hypersurfaces from the viewpoint of
variation. Let Aµ(M) be the functional defined by Aµ(M)=

∫
M e−

1
4 |X |

2
dµ. They

showed that the critical points of δAµ(u)= 0 for u ∈ C∞0 satisfying∫
M

e−
1
4 |X |

2
u dµ= 0

are λ-hypersurfaces. Cheng and Wei [2014a] also introduced λ-hypersurfaces in a
different way by investigating the weighted volume-preserving mean curvature flow.
Obviously, when λ= 0, a λ-hypersurface is a self-shrinker of the mean curvature
flow. It is well known that self-shrinkers play an important role in the study of mean

Research supported by the National Natural Science Foundation of China, Grant Nos. 11531012,
11371315, 11201416.
MSC2010: 53C42, 53C44.
Keywords: gap theorem, lambda-hypersurfaces, integral curvature pinching.
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curvature flow because they describe the singularity models of the mean curvature
flow and they arise as tangent flows of mean curvature flow at singularities; see, for
example, [Colding and Minicozzi 2012; Huisken 1990; Ilmanen 1995; White 1997].

The rigidity phenomena of self-shrinkers has been studied extensively [Cheng and
Peng 2015; Cheng and Wei 2015; Colding et al. 2015; Colding and Minicozzi 2012;
Ding and Xin 2013; 2014; Huisken 1990; Le and Sesum 2011]. For example, Le and
Sesum [2011] proved that a smooth self-shrinker with polynomial volume growth
and satisfying |A|2< 1

2 is a hyperplane. Here A denotes the second fundamental form
of the immersion. Cao and Li [2013] generalized this result to arbitrary codimension
and proved that any smooth complete self-shrinker with polynomial volume growth
and |A|2 ≤ 1

2 is a generalized cylinder. On the other hand, Ding and Xin [2014]
showed that a smooth complete self-shrinker satisfying

(∫
M |A|

n dµ
)
1/n < C for a

certain positive constant C is a linear space. For more curvature pinching theorems
for self-shrinkers, see [Cao et al. 2014; Li and Wei 2014; Lin 2016].

The geometric properties of λ-hypersurfaces were recently investigated by
Cheng, Wei, Ogata, Guang [Cheng and Wei 2014a; Cheng et al. 2016; Guang
2014]. As generalizations of self-shrinkers of the mean curvature flow, complete
λ-hypersurfaces with polynomial area growth and H − λ ≥ 0 were classified by
Cheng and Wei [2014a]. They also defined an F-functional and studied F-stability
of λ-hypersurfaces. Cheng, Ogata and Wei [Cheng et al. 2016] proved some gap
and rigidity theorems for complete λ-hypersurfaces. See [Cheng and Wei 2014b;
Guang 2014; Ogata 2015] for more results on the rigidity of λ-hypersurfaces.

We study the integral curvature pinching theorems for λ-hypersurfaces. We first
prove the following Ln-pinching theorem of the second fundamental form.

Theorem 1. Let X : Mn
→ Rn+1 (n ≥ 3) be an n-dimensional complete λ-

hypersurface in the Euclidean space Rn+1. If(∫
M
|A|n dµ

)1/n

< K (n, λ),

where K (n, λ) is an explicit positive constant depending only on n and λ, then
|A| ≡ 0 and M is a hyperplane.

Remark. It is easy to see from the expression of K (n, λ) that limλ→0 K (n, λ)= Kn

for a positive constant Kn depending only on n. Hence if λ= 0, Theorem 1 reduces
to the Ln-pinching theorem for self-shrinkers due to Ding and Xin [2014].

Let Å denote the trace-free second fundamental form, which is defined by
Å = A − (H/n)g with g denoting the induced metric on M . We prove an Ln-
pinching theorem of the trace-free second fundamental form for λ-hypersurfaces
provided that the mean curvature is suitably bounded.
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Theorem 2. Let X : Mn
→ Rn+1 (n ≥ 3) be an n-dimensional complete λ-

hypersurface in the Euclidean space Rn+1. Suppose the mean curvature satisfies

|H | ≤
√

1
3 n+ λ2− |λ|.

If (∫
M
| Å|n dµ

)1/n

< D(n, λ),

where D(n, λ) is an explicit positive constant depending on n and λ, then M is a
hyperplane.

For the case n = 2, we obtain the following results.

Theorem 3. Let X : M2
→ R3 be a 2-dimensional complete λ-hypersurface in the

Euclidean space R3. If (∫
M
|A|4 dµ

)1/2

< K (λ),

where K (λ) is an explicit positive constant depending only on λ, then |A| ≡ 0 and
M is a hyperplane.

Theorem 4. Let X : M2
→ R3 be a 2-dimensional complete λ-hypersurface in the

Euclidean space R3. Suppose the mean curvature satisfies

|H | ≤
√

2
3 + λ

2− |λ|.

If (∫
M
| Å|4 dµ

)1/2

< D(λ),

where D(λ) is an explicit positive constant depending on λ, then M is a hyperplane.

The rest of our paper is organized as follows. Some notation and several lemmas
are prepared in Section 2. In Section 3, we prove Theorems 1 and 2. Theorems 3
and 4 will be proved in Section 4.

2. Preliminaries

Let X : Mn
→ Rn+1 be an n-dimensional connected hypersurface. Denote by g

and dµ the induced metric and the volume form on M , respectively. We shall make
use of the following convention on the range of indices:

1≤ A, B,C, . . .≤ n+ 1, 1≤ i, j, k, . . .≤ n.

Choose local orthonormal frame fields {eA} in Rn+1 such that, restricted to M ,
the ei are tangent to M . Let {ωA} and {ωAB} be the dual frame fields and the
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connection 1-forms of Rn+1, respectively. Then we have the following structure
equations:

d X =
∑

i

ωi ei , dei =
∑

j

ωi j e j +
∑

j

hi jω j en+1,

and
den+1 =−

∑
i, j

hi jω j ei .

Restricting these forms to M , we have

ωn+1i =
∑

j

hi jω j , hi j = h j i ,

where hi j denotes the components of the second fundamental form of M . H =∑
i hi i is the mean curvature and A =

∑
i, j hi jωi ⊗ω j is the second fundamental

form of X : Mn
→ Rn+1. The trace-free second fundamental form is defined by

Å = A− (H/n)g.
Let hi jk =∇khi j , hi jkl =∇l∇khi j , where ∇ is the Levi-Civita connection on M .

Gauss equations, Codazzi equations and Ricci formulas are given by

Ri jkl = hikh jl − hilh jk, hi jk = hik j ,

hi jkl − hi jlk =

n∑
m=1

him Rmjkl +

n∑
m=1

hmj Rmikl .

For λ-hypersurfaces, an elliptic operator L is given by

L=1− 1
2〈X,∇( · )〉 = e

1
4 |X |

2
div
(
e−

1
4 |X |

2
∇( · )

)
,

where 1 and div denote the Laplacian and divergence on the λ-hypersurface,
respectively. The L operator was introduced by Colding and Minicozzi [2012]
when they investigated self-shrinkers. They showed that L is self-adjoint with
respect to the measure e−

1
4 |X |

2
dµ. We set ρ = e−

1
4 |X |

2
and the volume form dµ

might be omitted in the integrations for notational simplicity.
The following lemma, which was proved in [Cheng and Wei 2014a], is needed

in order to prove our results. For convenience, we also include the proof here.

Lemma 5. Let X : M → Rn+1 be a λ-hypersurface satisfying H + 1
2〈X, N 〉 = λ.

Then

1
2LH 2

= |∇H |2+ 1
2 H 2
+ |A|2(λ− H)H,(1)

1
2L|A|

2
= |∇A|2+

( 1
2 − |A|

2)
|A|2+ λ f3,(2)

where f3 =
∑

i, j,k hi j h jkhki .
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Proof. Since H + 1
2〈X, N 〉 = λ, one has

∇i H = 1
2

∑
j

hi j 〈X, e j 〉,

and
∇k∇i H = 1

2

∑
j

hi jk〈X, e j 〉+
1
2 hik +

∑
j

hi j h jk(λ− H).

Hence,

1H =
∑

i

∇i∇i H = 1
2

∑
i

∇i H〈X, ei 〉+
1
2 H + |A|2(λ− H),

and
LH =1H − 1

2

∑
i

∇i H〈X, ei 〉 =
1
2 H + |A|2(λ− H).

Therefore, we obtain

1
2LH 2

=
1
21H 2

−
1
4

∑
i

∇i H 2
〈X, ei 〉 = |∇H |2+ 1

2 H 2
+ |A|2(λ− H)H.

By using the Ricci formulas, the Gauss equations and the Codazzi equations, we have

Lhi j =1hi j −
1
2

∑
k

〈X, ek〉hi jk

=

∑
k

hi jkk −
1
2

∑
k

〈X, ek〉hi jk

=
( 1

2 − |A|
2)hi j + λ

∑
k

hikhk j .

Then it follows that

1
2L|A|

2
=

1
21

(∑
i j

h2
i j

)
−

1
4

∑
k

〈X, ek〉∇k

(∑
i j

h2
i j

)
=

∑
i, j,k

h2
i jk +

( 1
2 − |A|

2)∑
i j

h2
i j + λ

∑
i, j,k

hikhk j h j i

= |∇A|2+
( 1

2 − |A|
2)
|A|2+ λ f3,

where f3 =
∑

i, j,k hi j h jkhki . �

We need the following Sobolev inequality for submanifolds in the Euclidean
space.

Lemma 6 [Xu and Gu 2007a; Hoffman and Spruck 1974]. Let Mn (n ≥ 3) be
an n-dimensional complete submanifold in the Euclidean space Rn+p. Let f be a
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nonnegative C1 function with compact support. Then we have

‖ f ‖22n/(n−2) ≤ D2(n)
[

4(n− 1)2(1+ s)
(n− 2)2

‖∇ f ‖22+
(

1+
1
s

)
1
n2

∥∥|H | f ∥∥2
2

]
,

where

D(n)= 2n(1+ n)(n+1)/n(n− 1)−1σ−1/n
n ,

and σn denotes the volume of the unit ball in Rn .

3. Gap theorems for λ-hypersurfaces

Proof of Theorem 1. It follows from (2) and the inequality |∇A|2 ≥
∣∣∇|A|∣∣2, which

is an easy consequence of the Schwartz inequality, that

L|A|2 = 2|∇A|2+ 2
( 1

2 − |A|
2)
|A|2+ 2λ f3

≥ 2
∣∣∇|A|∣∣2+ 2

( 1
2 − |A|

2)
|A|2− 2|λ||A|3.

Let η be a smooth function with compact support on M . Multiplying η2
|A|n−2

on both sides of the inequality above and integrating by parts with respect to the
measure ρ dµ on M yields that for any τ > 0

0≥ 2
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ+

∫
M
|A|nη2ρ− 2

∫
M
|A|n+2η2ρ

− 2|λ|
∫

M
|A|n+1η2ρ−

∫
M
η2
|A|n−2ρL|A|2

= 2
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ+

∫
M
|A|nη2ρ− 2

∫
M
|A|n+2η2ρ

− 2|λ|
∫

M
|A|n+1η2ρ+ 2

∫
M
ρ|A|∇|A| · ∇(|A|n−2η2)

= 2(n− 1)
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ+

∫
M
|A|nη2ρ− 2

∫
M
|A|n+2η2ρ

− 2|λ|
∫

M
|A|n+1η2ρ+ 4

∫
M
(∇|A| · ∇η)|A|n−1ηρ

≥ 2(n− 1)
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ+

∫
M
|A|nη2ρ− 2

∫
M
|A|n+2η2ρ

− 2|λ|
(
τ

2

∫
M
|A|nη2ρ+

1
2τ

∫
M
|A|n+2η2ρ

)
+ 4

∫
M
(∇|A| · ∇η)|A|n−1ηρ.
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By the Cauchy inequality, for any ε > 0, we have

(3)
(
|λ|

τ
+ 2

)∫
M
|A|n+2η2ρ+ (|λ|τ − 1)

∫
M
|A|nη2ρ+

2
ε

∫
M
|A|n|∇η|2ρ

≥ 2(n− 1− ε)
∫

M

∣∣∇|A|∣∣2|A|n−2η2ρ.

Set f = |A|n/2ρ1/2η. Integrating by parts, we obtain

(4)
∫

M
|∇ f |2 =

∫
M

∣∣∇(|A|n/2η)∣∣2ρ+ ∫
M
|A|n η2

|∇ρ1/2
|
2
+

1
2

∫
M
∇(|A|nη2)∇ρ

=

∫
M

∣∣∇(|A|n/2η)∣∣2ρ+ 1
16

∫
M
|A|n η2

|X T
|
2ρ−

1
2

∫
M
|A|nη21ρ.

Since

1|X |2 = 2|∇X |2+ 2〈X,1X〉 = 2n+ 2H〈X, N 〉 = 2n+ 2λ〈X, N 〉− |X N
|
2,

where X N is the normal part of X , we have

1ρ =− 1
4ρ1|X |

2
+

1
16ρ

∣∣∇|X |2∣∣2 =− 1
4ρ
(
2n+ 2λ〈X, N 〉− |X N

|
2)
+

1
4ρ|X

T
|
2

=−
1
2 nρ− 1

2λρ〈X, N 〉+ 1
4ρ|X |

2.

From (4), we get

(5)
∫

M
|∇ f |2 =

∫
M

∣∣∇(|A|n/2η)∣∣2ρ− 1
16

∫
M
|A|nη2

|X T
|
2ρ−

1
8

∫
M
|A|nη2

|X N
|
2ρ

+
n
4

∫
M
|A|nη2ρ+

1
4

∫
M
|A|nη2λ〈X, N 〉ρ.

Combining the Sobolev inequality in Lemma 6 and (5), we have(∫
M
| f |

2n
n−2

)n−2
n

≤ D2(n) ·
[

4(n− 1)2(1+ s)
(n− 2)2

∫
M
|∇ f |2+

(
1+

1
s

)
·

1
n2

∫
M

H 2 f 2
]

=
4D2(n)(n− 1)2(1+ s)

(n− 2)2

[∫
M

∣∣∇(|A|n/2η)∣∣2ρ− 1
16

∫
M
|A|nη2

|X T
|
2ρ

−
1
8

∫
M
|A|nη2

|X N
|
2ρ+

n
4

∫
M
|A|nη2ρ

+
1
4

∫
M
|A|nη2λ〈X, N 〉ρ

]
+ D2(n)

(
1+

1
s

)
·

1
n2

∫
M
|A|nη2(λ− 1

2〈X, N 〉
)2
ρ.
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We choose

s =
(n− 2)2

2n2(n− 1)2
∈ R+

such that

4(n− 1)2(1+ s)
(n− 2)2

·
1
8
=

1
4

(
1+

1
s

)
·

1
n2 .

Hence

(∫
M
| f |

2n
n−2

)n−2
n

≤
2D2(n)[(n−2)2+2n2(n−1)2]

n2(n−2)2

[∫
M

∣∣∇(|A|n/2η)∣∣2ρ
+

n
4

∫
M
|A|nη2ρ+

1
4

∫
M
|A|nη2λ〈X, N 〉ρ

]
+

D2(n)[(n−2)2+2n2(n−1)2]
n2(n−2)2

[∫
M
λ2
|A|nη2ρ−

∫
M
|A|nη2λ〈X, N 〉ρ

]
.

Now we put

κ =
2D2(n)[(n− 2)2+ 2n2(n− 1)2]

n2(n− 2)2
.

It follows from the inequality above that

(6) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤

∫
M

∣∣∇(|A|n/2η)∣∣2ρ+ n
4

∫
M
|A|nη2ρ+

1
4

∫
M
|A|nη2λ〈X, N 〉ρ

+
1
2

(∫
M
λ2
|A|nη2ρ−

∫
M
|A|nη2λ〈X, N 〉ρ

)
=

∫
M

∣∣∇(|A|n/2η)∣∣2ρ+(n+ 2λ2

4

)∫
M
|A|nη2ρ−

1
4

∫
M
|A|nη2λ〈X, N 〉ρ

=

∫
M

(
n2

4

∣∣∇|A|∣∣2|A|n−2η2
+ n|A|n−1η∇|A| · ∇η+ |A|n|∇η|2

)
ρ

+

(
n+ 2λ2

4

)∫
M
|A|nη2ρ−

1
4

∫
M
|A|nη2λ〈X, N 〉ρ.



GAP THEOREMS FOR COMPLETE λ-HYPERSURFACES 461

On the other hand, for any θ > 0, we have

(7) −
1
2

∫
M
|A|nη2λ〈X, N 〉ρ =−

∫
M
|A|nη2λ(λ− H)ρ

=−

∫
M
|A|nη2λ2ρ+

∫
M
|A|nη2λHρ

≤−λ2
∫

M
|A|nη2ρ+ |λ|

∫
M
|A|nη2

(
θ

2
H 2
+

1
2θ

)
ρ

≤

(
|λ|

2θ
− λ2

)∫
M
|A|nη2ρ+

|λ|θ

2

∫
M
|A|nη2 H 2ρ

≤

(
|λ|

2θ
− λ2

)∫
M
|A|nη2ρ+

n|λ|θ
2

∫
M
|A|n+2η2ρ.

Combining (6) and (7), we get

(8) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤

∫
M

(
n2

4

∣∣∇|A|∣∣2|A|n−2η2
+ n|A|n−1η∇|A| · ∇η+ |A|n |∇η|2

)
ρ

+

(
|λ|

4θ
+

n
4

)∫
M
|A|nη2ρ+

nθ |λ|
4

∫
M
|A|n+2η2ρ.

Combining the Cauchy inequality, (3) and (8), we have for any δ > 0

κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤ (1+δ)
n2

4

∫
M

∣∣∇|A|∣∣2|A|n−2η2ρ+

(
1+

1
δ

)∫
M
|A|n |∇η|2ρ

+

(
|λ|

4θ
+

n
4

)∫
M
|A|nη2ρ+

nθ |λ|
4

∫
M
|A|n+2η2ρ

≤
(1+δ)n2

8(n−1−ε)

[(
|λ|

τ
+2

)∫
M
|A|n+2η2ρ

+(|λ|τ−1)
∫

M
|A|nη2ρ+

2
ε

∫
M
|A|n |∇η|2ρ

]
+

(
1+

1
δ

)∫
M
|A|n |∇η|2ρ+

(
|λ|

4θ
+

n
4

)∫
M
|A|nη2ρ+

nθ |λ|
4

∫
M
|A|n+2η2ρ.

Put

δ =
2(|λ| + nθ)(n− 1+ ε)

(1− |λ|τ)θn2 − 1> 0,
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where ε, θ, τ are positive constants such that |λ|τ − 1< 0. Then

(9) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤

[
nθ + |λ|

4θ(1− |λ|τ)
·

(
|λ|

τ
+ 2

)
n− 1+ ε
n− 1− ε

+
nθ |λ|

4

] ∫
M
|A|n+2η2ρ

+

[
nθ + |λ|

2θε(1− |λ|τ)
n− 1+ ε
n− 1− ε

+ 1+
1
δ

] ∫
M
|A|n |∇η|2ρ

≤
(nθ + |λ|)(|λ| + 2τ)+ nτθ2(1− |λ|τ)|λ|

4τθ(1− |λ|τ)
·

n− 1+ ε
n− 1− ε

×

(∫
M
|A|2·

n
2

)2
n
·

(∫
M
(|A|nη2ρ)

n
n−2

)n−2
n

+

(
nθ + |λ|

2θε(1− |λ|τ)
·

n− 1+ ε
n− 1− ε

+ 1+
1
δ

)∫
M
|A|n |∇η|2ρ.

Set

K (n, λ, θ, τ )=

√
4τθ(1− |λ|τ)[

(nθ + |λ|)(|λ| + 2τ)+ nτθ2(1− |λ|τ)|λ|
]
κ
.

By a direct computation, K (n, λ, θ, τ ) achieves its maximum

K (n, λ)=

√√√√ 2(
√
λ2+ 2− |λ|)(

n|λ| + 2
√

n|λ| + n
√
λ2+ 2

)
κ

when

τ = 1
2

(√
λ2+ 2− |λ|

)
, θ =

√
|λ| + 2τ

nτ − n|λ|τ 2 =
2

√
n
(√
λ2+ 2− |λ|

) = 1
√

nτ
.

Since (∫
M
|A|n dµ

)1/n

< K (n, λ),

we have from (9) that there exists 0< ε0 < 1 such that

κ−1
(∫

M
| f |

2n
n−2

)n−2
n
≤

n−1+ ε
n−1− ε

·
1− ε0

κ

(∫
M
| f |

2n
n−2

)n−2
n
+C(ε, λ)

∫
M
|A|n |∇η|2ρ,

namely,

(10)
(n− 1+ ε)ε0− 2ε
(n− 1− ε)κ

(∫
M
| f |

2n
n−2

)n−2
n
≤ C(ε, λ)

∫
M
|A|n |∇η|2ρ.
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Let η(X)= ηr (X)= φ(|X |/r) for any r > 0, where φ is a nonnegative function on
[0,+∞) satisfying

φ(x)=
{

1 if x ∈ [0, 1),
0 if x ∈ [2,+∞),

and |φ′| ≤C for some absolute constant. Let ε= 1
2ε0. Since

∫
M |A|

n dµ is bounded,
the right-hand side of (10) approaches zero as r →+∞, which implies |A| ≡ 0.
Hence M is a hyperplane of Rn+1. This completes the proof of Theorem 1. �

Setting Å =
∑

i, j h̊i jωi ⊗ω j , we have h̊i j = hi j − (H/n)gi j . Choose {ei } such
that hi j = λiδi j at a point p. Then h̊i j = λ̊iδi j , where λ̊i = λi − H/n, and

f3 =
∑

i

λ3
i =

∑
i

(
λ̊i +

H
n

)3

= B3+
3
n

H | Å|2+
1
n2 H 3,

where | Å|2=
∑

i λ̊
2
i =|A|

2
−H 2/n and B3=

∑
i λ̊

3
i . Thus, from (1) and (2) we have

1
2L| Å|

2
=

1
2L|A|

2
−

1
2L
(H 2

n

)
= |∇A|2− 1

n
|∇H |2+

( 1
2 − |A|

2)
|A|2+ λ f3−

H 2

2n
− |A|2(λ− H)H

n

= |∇Å|2+
( 1

2 − | Å|
2)
| Å|2− 1

n
H 2
| Å|2+ λB3+

2
n
λH | Å|2.

By using an algebraic inequality in [Okumura 1974], we have

|B3| ≤
n− 2
√

n(n− 1)
| Å|3,

and the equality holds if and only if at least n− 1 of the λ̊i are equal. Then we get

(11)
1
2L| Å|

2
≥ |∇Å|2+

( 1
2 − | Å|

2)
| Å|2−

1
n

H 2
| Å|2− |λ|

n− 2
√

n(n− 1)
| Å|3+

2
n
λH | Å|2

≥
∣∣∇| Å|∣∣2+ ( 1

2 − | Å|
2)
| Å|2−

1
n

(
λ− 1

2〈X, N 〉
)2
| Å|2

− |λ|
n− 2
√

n(n− 1)
| Å|3+

2
n
λ
(
λ− 1

2〈X, N 〉
)
| Å|2

=
∣∣∇| Å|∣∣2+(1

2
+
λ2

n

)
| Å|2−

1
4n
| Å|2|X N

|
2
− |λ|

n− 2
√

n(n− 1)
| Å|3− | Å|4.

By using (11), we give the proof of Theorem 2 as follows.

Proof of Theorem 2. Let η be a smooth function with compact support on M .
Multiplying | Å|n−2η2 on both sides of the inequality (11) above and integrating by
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parts with respect to the measure ρ dµ on M yields

0≥ 2
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

(
1+

2λ2

n

)∫
M
| Å|nη2ρ−

1
2n

∫
M
| Å|n|X N

|
2η2ρ

− 2|λ|
n− 2
√

n(n− 1)

∫
M
| Å|n+1η2ρ− 2

∫
M
| Å|n+2η2ρ−

∫
M
| Å|n−2η2L| Å|2ρ

= 2
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

(
1+

2λ2

n

)∫
M
| Å|nη2ρ−

1
2n

∫
M
| Å|n|X N

|
2η2ρ

− 2|λ|
n− 2
√

n(n− 1)

∫
M
| Å|n+1η2ρ− 2

∫
M
| Å|n+2η2ρ

+ 2
∫

M
ρ| Å|∇| Å| · ∇(| Å|n−2η2)

≥ 2(n− 1)
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

[(
1+

2λ2

n

)
− |λ|ζ

n− 2
√

n(n− 1)

] ∫
M
| Å|nη2ρ

−

(
2+
|λ|

ζ

n− 2
√

n(n− 1)

)∫
M
| Å|n+2η2ρ−

1
2n

∫
M
| Å|n|X N

|
2η2ρ

+ 4
∫

M
(∇| Å| · ∇η)| Å|n−1ηρ

with constant ζ > 0.
From the assumption |H | ≤

√
1
3 n+ λ2− |λ|, C , we have∫

M
| Å|n|X N

|
2η2ρ = 4

∫
M
| Å|n(λ− H)2η2ρ ≤ 4(λ2

+C2
+ 2C |λ|)

∫
M
| Å|nη2ρ.

This implies

0≥ 2(n− 1)
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ

+

[(
1+

2λ2

n

)
− |λ|ζ

n− 2
√

n(n− 1)
−

2
n
(λ2
+C2

+ 2C |λ|)
] ∫

M
| Å|nη2ρ

−

(
2+
|λ|

ζ

n− 2
√

n(n− 1)

)∫
M
| Å|n+2η2ρ+ 4

∫
M
(∇| Å| · ∇η)| Å|n−1ηρ.

By using the Cauchy inequality, for any ε > 0 we obtain

(12)
(
|λ|

ζ

n− 2
√

n(n− 1)
+ 2

)∫
M
| Å|n+2η2ρ

+

[
|λ|ζ

n− 2
√

n(n− 1)
+

2
n
(C2
+2C |λ|)−1

] ∫
M
| Å|nη2ρ+

2
ε

∫
M
| Å|n |∇η|2ρ

≥ 2(n− 1− ε)
∫

M

∣∣∇| Å|∣∣2| Å|n−2η2ρ.
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Set f = | Å|n/2ρ1/2η. Using the same argument as in the proof of Theorem 1, for
any δ > 0 we get

(13) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤ (1+ δ)
n2

4

∫
M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

(
1+

1
δ

)∫
M
| Å|n |∇η|2ρ

+
n+ 2λ2

4

∫
M
| Å|nη2ρ−

1
4

∫
M
| Å|nη2λ〈X, N 〉ρ.

It is easy to see that

(14) −

∫
M
| Å|nη2λ〈X, N 〉ρ =−2

∫
M
| Å|nη2λ(λ− H)ρ

=−2
∫

M
| Å|nη2λ2ρ+ 2

∫
M
| Å|nη2λHρ

≤ 2(C |λ| − λ2)

∫
M
| Å|nη2ρ.

Combining (12), (13) and (14), we have

κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤ (1+ δ)
n2

4

∫
M

∣∣∇| Å|∣∣2| Å|n−2η2ρ+

(
1+

1
δ

)∫
M
| Å|n |∇η|2ρ

+
n+ 2C |λ|

4

∫
M
| Å|nη2ρ

≤
(1+ δ)n2

8(n− 1− ε)

{(
|λ|

ζ

n− 2
√

n(n− 1)
+ 2

)∫
M
| Å|n+2η2ρ

+

[
|λ|ζ

n− 2
√

n(n− 1)
+

2
n
(C2
+ 2C |λ|)− 1

] ∫
M
| Å|nη2ρ

+
2
ε

∫
M
| Å|n |∇η|2ρ

}
+

(
1+

1
δ

)∫
M
| Å|n |∇η|2ρ+

n+ 2C |λ|
4

∫
M
| Å|nη2ρ.

Let

|λ|ζ
n− 2
√

n(n− 1)
+

2
n
(C2
+ 2C |λ|)− 1< 0,

i.e.,

0< ζ <

[
n− 2(C2

+ 2C |λ|)
]√

n(n− 1)
n(n− 2)|λ|

.
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Putting

δ =
2(n+ 2C |λ|)

√
n− 1 · (n− 1+ ε)

n
[
n
√

n− 1− (n− 2)
√

n |λ|ζ − 2
√

n− 1(C2+ 2C |λ|)
] − 1> 0

for some ε > 0 to be defined later, we have

(15) κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤

{ √
n(n+2C |λ|)[(n−2)|λ|+2ζ

√
n(n−1)]

4ζ [n
√

n−1−(n−2)
√

n|λ|ζ −2
√

n−1(C2+2C |λ|)]

}
×

n−1+ε
n−1−ε

∫
M
| Å|n+2η2ρ

+

{
n(n+2C |λ|)

√
n−1 ·(n−1+ε)

2ε[n
√

n−1−(n−2)
√

n|λ|ζ −2
√

n−1(C2+2C |λ|)]
+1+

1
δ

}
×

∫
M
| Å|n |∇η|2ρ

≤

{ √
n(n+2C |λ|)[(n−2)|λ|+2ζ

√
n(n−1)]

4ζ [n
√

n−1−(n−2)
√

n|λ|ζ −2
√

n−1(C2+2C |λ|)]

}
×

n−1+ε
n−1−ε

·

(∫
M
| Å|2·

n
2

)2
n
(∫

M
(| Å|nη2ρ)

n
n−2

)n−2
n

+ C̃(ε, λ, n, ζ,C)
∫

M
| Å|n |∇η|2ρ.

Set

D(n, λ, ζ,C)=

√
4ζ
[
n
√

n− 1− (n− 2)
√

n|λ|ζ − 2
√

n− 1(C2+ 2C |λ|)
]

√
n(n+ 2C |λ|)

[
(n− 2)|λ| + 2ζ

√
n(n− 1)

]
κ

.

We choose

ζ =

√
(n− 2)2λ2+ 2(n− 1)

[
n− 2(C2+ 2C |λ|)

]
− (n− 2)|λ|

2
√

n(n− 1)

such that D(n, λ, ζ,C) achieves its maximum D(n, λ) with

D(n, λ)=

√
(n− 2)2λ2+ 2(n− 1)

[
n− 2(C2+ 2C |λ|)

]
− (n− 2)|λ|

√
n(n− 1)(n+ 2C |λ|)κ

=

√
(n− 2)2λ2+ 2

3 n(n− 1)− (n− 2)|λ|√
n(n− 1)

(
n+ 2|λ|

√
1
3 n+ λ2− 2λ2

)
κ

.
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Combining the assumption(∫
M
| Å|n dµ

)1/n

< D(n, λ)

and (15) implies that there exists 0< ε0 < 1 such that

κ−1
(∫

M
| f |

2n
n−2

)n−2
n

≤
n− 1+ ε
n− 1− ε

·
1− ε0

κ

(∫
M
| f |

2n
n−2

)n−2
n
+ C̃(ε, λ, n)

∫
M
| Å|n |∇η|2ρ,

namely,

(n− 1+ ε)ε0− 2ε
(n− 1− ε)κ

(∫
M
| f |

2n
n−2

)n−2
n
≤ C̃(ε, λ, n)

∫
M
| Å|n |∇η|2ρ.

Let ε = 1
2ε0 and choose η as in the proof of Theorem 1. Since

∫
M | Å|

n dµ is
bounded, by using a similar argument we obtain Å ≡ 0. Therefore, M is totally
umbilical, i.e., M is Sn(

√
λ2+ 2n− λ) or Rn . Since we have assumed that

|H | ≤
√

1
3 n+ λ2− |λ|,

the first case is excluded. This completes the proof of Theorem 2. �

Remark. In fact, we can prove that if supM |H |<
√

1
2 n+ λ2− |λ| and if(∫

M
| Å|n dµ

)1/n

< D(n, λ, supM |H |),

then M is a hyperplane. Here D(n, λ, supM |H |) is a positive constant depending
on n, λ and supM |H |.

Remark. In particular, if λ= 0, Theorem 2 reduces to the rigidity result for self-
shrinkers in [Lin 2016]. For the higher codimension case, Cao, Xu and Zhao [Cao
et al. 2014] proved some Ln-pinching theorems of Å for self-shrinkers.

4. Gap theorems in dimension 2

We need another Sobolev-type inequality in dimension 2, which was proved by Xu
and Gu [2007b]:

(16) c̃−1
(∫

f 4 dµ
)1/2

≤
1
t

∫
|∇ f |2 dµ+ t

∫
f 2 dµ+ 1

2

∫
|H | f 2 dµ

for all f ∈ C∞c (M) and for all t ∈ R+, where c̃ = 12
√

3π/π .
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Proof of Theorem 3. As in the proof of Theorem 1, for any 0< ε < 1, we have

(17)
(
|λ|

τ
+ 2

)∫
M
|A|4η2ρ+ (|λ|τ − 1)

∫
M
|A|2η2ρ+

2
ε

∫
M
|A|2 |∇η|2ρ

≥ 2(1− ε)
∫

M

∣∣∇|A|∣∣2η2ρ.

Setting f = |A|ηρ1/2, we get

(18)
∫

M
|∇ f |2 =

∫
M

∣∣∇(|A|η)∣∣2ρ− 1
16

∫
M
|A|2η2

|X T
|
2ρ−

1
8

∫
M
|A|2η2

|X N
|
2ρ

+
1
2

∫
M
|A|2η2ρ+

1
4

∫
M
|A|2η2λ〈X, N 〉ρ.

Combining the Sobolev-type inequality (16) and (18), we have

c̃−1
(∫

M
| f |4

)1/2

≤
1
t

[∫
M

∣∣∇(|A|η)∣∣2ρ− 1
16

∫
M
|A|2η2

|X T
|
2ρ

−
1
8

∫
M
|A|2η2

|X N
|
2ρ+

1
2

∫
M
|A|2η2ρ+

1
4

∫
M
|A|2η2λ〈X, N 〉ρ

]
+ t

∫
M
|A|2η2ρ+

1
2

∫
|H ||A|2η2ρ

≤
1
t

[∫
M

∣∣∇(|A|η)∣∣2ρ+ 1
2

∫
M
|A|2η2ρ+

λ2

8

∫
M
|A|2η2ρ

]
+ t

∫
M
|A|2η2ρ+

1
2

∫
|H ||A|2η2ρ.

By the Cauchy inequality, for any θ > 0, we get

(19) c̃−1
(∫

M
| f |4

)1/2

≤
1
t

[∫
M

∣∣∇(|A|η)∣∣2ρ+ 1
2

∫
M
|A|2η2ρ+

λ2

8

∫
M
|A|2η2ρ

]
+ t

∫
M
|A|2η2ρ+

1
2

∫ (
θ

2
H 2
+

1
2θ

)
|A|2η2ρ

≤
1
t

[∫
M

∣∣∇(|A|η)∣∣2ρ+ 1
2

∫
M
|A|2η2ρ+

λ2

8

∫
M
|A|2η2ρ

]
+ t

∫
M
|A|2η2ρ+

1
2

∫ (
θ |A|2+

1
2θ

)
|A|2η2ρ
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=
1
t

∫
M

(∣∣∇|A|∣∣2η2
+ 2|A|η∇|A| · ∇η+ |A|2 |∇η|2

)
ρ

+

(
t +

1
4θ
+

1
2t
+
λ2

8t

)∫
|A|2η2ρ+

θ

2

∫
|A|4η2ρ

≤
1
t

[
(1+ δ)

∫
M

∣∣∇|A|∣∣2η2ρ+

(
1+

1
δ

)∫
M
|A|2 |∇η|2ρ

]
+

(
t +

1
4θ
+

1
2t
+
λ2

8t

)∫
|A|2η2ρ+

θ

2

∫
|A|4η2ρ.

Combining (17) and (19), we have

c̃−1
(∫

M
|A|4η4ρ2

)1/2

≤
1
t
(1+δ) ·

1
2(1−ε)

[(
|λ|

τ
+2

)∫
M
|A|4η2ρ+(|λ|τ−1)

∫
M
|A|2η2ρ

+
2
ε

∫
M
|A|2 |∇η|2ρ

]
+

1
t

(
1+

1
δ

)∫
M
|A|2 |∇η|2ρ+

(
t+

1
4θ
+

1
2t
+
λ2

8t

)∫
|A|2η2ρ+

θ

2

∫
|A|4η2ρ.

Put

δ =
(4θ + 2t + 8θ t2

+ θλ2)(1+ ε)
4θ(1− |λ|τ)

− 1> 0,

where ε, θ, τ, t are positive constants such that |λ|τ − 1< 0. Then

(20) c̃−1
(∫

M
|A|4η4ρ2

)1/2

≤

[
1
t
·
(1+ ε)
2(1− ε)

·
(4θ + 2t + 8θ t2

+ θλ2)

4θ(1− |λ|τ)
·

(
|λ|

τ
+ 2

)
+
θ

2

] ∫
M
|A|4η2ρ

+
1
t

[
(1+ δ)
ε(1− ε)

+

(
1+

1
δ

)]∫
M
|A|2 |∇η|2ρ

≤
(4θ + 2t + 8θ t2

+ θλ2)(|λ| + 2τ)+ 4θ2tτ(1− |λ|τ)
8θ tτ(1− |λ|τ)

·
1+ ε
1− ε

×

(∫
M
|A|4η4ρ2

)1/2

·

(∫
M
|A|4

)1/2

+
1
t

[
(1+ δ)
ε(1− ε)

+

(
1+

1
δ

)]∫
M
|A|2 |∇η|2ρ.
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Set

K (t, λ, θ, τ )=
8θ tτ(1− |λ|τ)[

(4θ + 2t + 8θ t2+ θλ2)(|λ| + 2τ)+ 4θ2tτ(1− |λ|τ)
]
c̃
,

where c̃= 12
√

3π/π . By a direct computation, K (t, λ, θ, τ ) achieves its maximum

K (λ)=

√
2
(
λ2
+ 1−

√
λ2+ 2|λ|

)(
2
√

4+ λ2+
√
λ2+ 2− |λ|

)
c̃

when

t =
√

1
8(4+ λ

2), τ = 1
2

(√
λ2+ 2− |λ|

)
, θ =

√
|λ| + 2τ

2τ(1− |λ|τ)
=

1
√

2τ
.

Since (∫
M
|A|4

)1/2

< K (λ),

we have from (20) that there exists 0< ε0 < 1 such that

c̃−1
(∫

M
|A|4η4ρ2

)1/2

≤
1+ ε
1− ε

·
1− ε0

c̃

(∫
M
|A|4η4ρ2

)1/2

+C(ε, λ)
∫

M
|A|2 |∇η|2ρ.

Let ε= 1
2ε0. Since

∫
M |A|

4 dµ is bounded, we choose η as in the proof of Theorem 1
and a similar argument implies |A| ≡ 0. �

Using a similar argument, we give the proof of Theorem 4.

Proof of Theorem 4. For n = 2, we have

1
2L| Å|

2
≥
∣∣∇| Å|∣∣2+ 1+ λ2

2
| Å|2− 1

8 | Å|
2
|X N
|
2
− | Å|4,

and

(21) 2
∫

M
| Å|4η2ρ+ (C2

+ 2C |λ| − 1)
∫

M
| Å|2η2ρ+

2
ε

∫
M
| Å|2 |∇η|2ρ

≥ 2(1− ε)
∫

M

∣∣∇| Å|∣∣2η2ρ

with 0< ε < 1.
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Set f = | Å|ρ1/2η. By (16) and the hypothesis |H | ≤
√

2
3 + λ

2−|λ|,C , we have

(22) c̃−1
(∫

M
| f |4

)1/2

≤
1
t

[∫
M

∣∣∇(| Å|η)∣∣2ρ+ 1
2

∫
M
| Å|2η2ρ+

λ2

8

∫
M
| Å|2η2ρ

]
+ t

∫
M
| Å|2η2ρ+

1
2

∫
|H || Å|2η2ρ

≤
1
t

∫
M

(∣∣∇| Å|∣∣2η2
+ 2| Å|η∇| Å| · ∇η+ | Å|2 |∇η|2

)
ρ

+

(
t +

C
2
+

1
2t
+
λ2

8t

)∫
M
| Å|2η2ρ.

Combining the Cauchy inequality, (21) and (22), we have for any δ > 0

c̃−1
(∫

M
| f |4

)1/2

≤
1
t

[
(1+δ)

∫
M

∣∣∇| Å|∣∣2η2ρ+

(
1+

1
δ

)∫
M
| Å|2 |∇η|2ρ

]
+

(
t+

C
2
+

1
2t
+
λ2

8t

)∫
M
| Å|2η2ρ

≤
1+δ

t
1

2(1−ε)

[
2
∫

M
| Å|4η2ρ+(C2

+2C |λ|−1)
∫

M
| Å|2η2ρ

+
2
ε

∫
M
| Å|2 |∇η|2ρ

]
+

1
t

(
1+

1
δ

)∫
M
| Å|2 |∇η|2ρ+

(
t+

C
2
+

1
2t
+
λ2

8t

)∫
M
| Å|2η2ρ.

Put

δ =
(4+ λ2

+ 8t2
+ 4tC)(1+ ε)

4[1− (C2+ 2C |λ|)]
− 1> 0.

Then we get

(23) c̃−1
(∫

M
| f |4

)1/2

≤
1
t
·

4+ λ2
+ 8t2

+ 4tC
4[1− (C2+ 2C |λ|)]

·
1+ ε
1− ε

·

∫
M
| Å|4η2ρ

+
1
t

[
1+ δ
ε(1− ε)

+ 1+
1
δ

] ∫
M
| Å|2 |∇η|2ρ

≤
1
t
·

4+ λ2
+ 8t2

+ 4tC
4[1− (C2+ 2C |λ|)]

·
1+ ε
1− ε

·

(∫
M
| f |4

)1/2

·

(∫
M
| Å|4

)1/2

+
1
t

[
1+ δ
ε(1− ε)

+ 1+
1
δ

] ∫
M
| Å|2 |∇η|2ρ.
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Set

D(λ,C, t)=
4t[1− (C2

+ 2C |λ|)]
(4+ λ2+ 8t2+ 4tC)c̃

.

We choose t =
√

1
8(4+ λ

2) such that D(λ,C, t) achieves its maximum

D(λ)=
1

3
(√

8+ 2λ2+

√
2
3 + λ

2− |λ|
)

c̃
.

Since (∫
M
| Å|4

)1/2

< D(λ),

we have from (23) that there exists 0< ε0 < 1 such that

c̃−1
(∫

M
| f |4

)1/2

≤
1+ ε
1− ε

·
1− ε0

c̃
·

(∫
M
| f |4

)1/2

+C(ε, λ)
∫

M
| Å|2 |∇η|2ρ.

Let ε= 1
2ε0. Since

∫
M | Å|

4 dµ is bounded, we choose η as above and a similar argu-
ment implies Å ≡ 0. Therefore, M is totally umbilical, i.e., M is S2(

√
λ2+ 4− λ)

or R2. Since we have assumed that

|H | ≤
√

2
3 + λ

2− |λ|,

the first case is excluded. This completes the proof of Theorem 4. �

Remark. Similarly, it is seen from the proof of Theorem 4 that we can prove that
if supM |H | <

√
1+ λ2 − |λ| and if

(∫
M | Å|

4 dµ
)
1/2 < D(λ, supM |H |), then M

is a hyperplane. Here D(λ, supM |H |) is a positive constant depending on λ and
supM |H |.
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BACH-FLAT h-ALMOST GRADIENT RICCI SOLITONS

GABJIN YUN, JINSEOK CO AND SEUNGSU HWANG

On an n-dimensional complete manifold M, consider an h-almost gradient
Ricci soliton, which is a generalization of a gradient Ricci soliton. We prove
that if the manifold is Bach-flat and dh/du > 0, then the manifold M is
either Einstein or rigid. In particular, such a manifold has harmonic Weyl
curvature. Moreover, if the dimension of M is four, the metric g is locally
conformally flat.

1. Introduction

The notion of an h-almost Ricci soliton was introduced by Gomes, Wang, and Xia
[Gomes et al. 2015]. Such a soliton is a generalization of an almost Ricci soliton
presented in [Barros and Ribeiro 2012; Pigola et al. 2011]. An h-almost Ricci
soliton is a complete Riemannian manifold (Mn, g) with a vector field X on M ,
a soliton function λ : M → R and a signal function h : M → R+ satisfying the
equation

rg +
1
2 hLX g = λg,

where rg is the Ricci curvature of g. A function is called signal if it has only one
sign; in other words, it is either positive or negative on M . Let (M, g, X, h, λ)
denote an h-almost Ricci soliton. In particular, (M, g,∇u, h, λ) for some smooth
function u : M → R is called an h-almost gradient Ricci soliton with potential
function u. In this case, we have

(1-1) rg + h Dg du = λg.

Here, Dg du denotes the Hessian of u. Note that if we take u=e− f/m and h=−m/u,
then (1-1) becomes

Ricm
f = rg + Dg d f − 1

m
d f ⊗ d f = λg.

Yun was supported by the Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-
0007465). Hwang (corresponding author) was supported by the Ministry of Education (NRF-
2015R1D1A1A01057661).
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In other words, the (λ, n+m)-Einstein equation is a special case of (1-1). Here,
Ricm

f is called the m-Bakry–Emery tensor. For further details about h-almost Ricci
solitons, see [Gomes et al. 2015].

In this paper we consider Bach-flat h-almost gradient Ricci solitons. The Bach
tensor was introduced by R. Bach, and this notion plays an important role in
conformal relativity. On any n-dimensional Riemannian manifold (M, g), n ≥ 4,
the Bach tensor is defined by

B =
1

n− 3
δD δW +

1
n− 2

W̊z,

where W is the Weyl tensor, z is the traceless Ricci tensor, and W̊z is defined by

W̊z(X, Y )=
n∑

i=1

z(W(X, Ei )Y, Ei )

for some orthonormal basis {Ei }
n
i=1. It is easy to see that if (M, g) is either locally

conformally flat or Einstein, then it is Bach-flat: B = 0. When n = 4, it is well
known that Bach-flat metrics on a compact manifold M are critical points of the
functional

g 7→
∫

M
|W|2 dvg.

It is clear that when h = 1 and λ is a positive constant, an h-almost gradient Ricci
soliton reduces to a gradient shrinking Ricci soliton. Cao and Chen [2013] proved
that a complete Bach-flat gradient shrinking Ricci soliton is either Einstein or rigid.
On the other hand, Qing and Yuan [2013] classified Bach-flat static spaces.

Our main result is as follows, which can be considered as a generalization of
[Cao and Chen 2013].

Theorem 1.1. Let (M, g,∇u, h, λ) be an n-dimensional Bach-flat h-almost gra-
dient Ricci soliton with potential function u. Assume that each level set of u is
compact and h is a function of u only. Then (M, g,∇u, h, λ) is either

(1) Einstein with constant functions u and h, or

(2) locally isometric to a warped product with (n−1)-dimensional Einstein fibers
if dh/du > 0 on M.

For example, when m > 0, h=−m/u< 0 satisfies the condition of Theorem 1.1,
since

dh
du
=

m
u2 > 0.

This recovers the result of [Chen and He 2013]. It will be interesting if one can
weaken the condition of Theorem 1.1.
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In the case of (2) in Theorem 1.1, a warped product metric has vanishing Cotton
tensor (see (2-4) below) since its fiber is Einstein. Thus, as a consequence of
Theorem 1.1, we have the following.

Corollary 1.2. Let (M, g,∇u, h, λ) be an n-dimensional Bach-flat h-almost gra-
dient Ricci soliton with potential function u. Assume that each level set of u is
compact and h is a function of u only. If dh/du > 0 on M , then (M, g) has
harmonic Weyl curvature.

In particular, when n = 4, the Einstein fibers in Theorem 1.1 have constant
curvature. A computation shows that such a metric is locally conformally flat,
which proves the following theorem.

Theorem 1.3. Let (M, g,∇u, h, λ) be a 4-dimensional Bach-flat h-almost gradient
Ricci soliton with potential function u. Assume each level set of u is compact and h
is a function of u only with dh/du > 0. Then (M, g) is locally conformally flat.

As in [Chen and He 2013], Theorem 1.1, Corollary 1.2, and Theorem 1.3 can be
extended to the case in which M has a nonempty boundary.

2. Preliminaries

In this section, we derive several useful identities containing various curvatures and
the Cotton tensor.

We start with basic definitions of differential operators acting on tensors. Let us
denote by C∞(S2 M) the space of sections of symmetric 2-tensors on a Riemannian
manifold M . Let D be the Levi-Civita connection of (M, g). Then the differential
operator d D from C∞(S2 M) into C∞(32 M ⊗ T ∗M) is defined as

d Dω(X, Y, Z)= (DXω)(Y, Z)− (DYω)(X, Z)

for ω ∈C∞(S2 M) and vectors X , Y , and Z . Let us denote by δD the formal adjoint
operator of d D.

For a function f ∈ C∞(M) and ω ∈ C∞(S2 M), d f ∧ω is defined as

(d f ∧ω)(X, Y, Z)= d f (X)ω(Y, Z)− d f (Y )ω(X, Z).

Here, d f denotes the usual total differential of f . We also denote by δ the negative
divergence operator such that 1 f =−δ d f .

Taking the trace of (1-1) gives

sg + h1u = nλ.

Thus,
dsg +1u dh+ h d1u = n dλ.
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By taking the divergence of (1-1), we have

−
1
2 dsg − Dg du(∇h, · )− hrg(∇u, · )− h d1u =−dλ.

By adding the previous two equations, we have

(2-1) 1
2 dsg − Dg du(∇h, · )− hrg(∇u, · )+1u dh = (n− 1) dλ.

Note that

(2-2) δ(hrg(∇u, · ))=−rg(∇u,∇h)− 1
2 h〈∇sg,∇u〉+ |rg|

2
− λsg.

Therefore, we have the following equality.

Proposition 2.1. On M we have

(n− 1)1λ= 1
21sg + |rg|

2
− λsg −

1
2 h〈∇sg,∇u〉

+

(
1u−

λ

h

)
1h+

1
h
〈rg, Dg dh〉− 2rg(∇u,∇h).

On the other hand, by applying d D to (1-1), we have

(2-3) d Drg −
1
h

dh ∧ rg + h ı̃∇u R = dλ∧ g−
λ

h
dh ∧ g.

Here, an interior product ı̃ of the final factor is defined by

ı̃ξ R(X, Y, Z)= R(X, Y, Z , ξ),

and we used the identity
d DD du = ı̃∇u R.

Hereafter, we denote sg, rg, and Dg du by s, r , and D du, respectively. From
the curvature decomposition, we can compute that

ı̃∇u R = ı̃∇uW −
1

n− 2
i∇ur ∧ g+

s
(n− 1)(n− 2)

du ∧ g−
1

n− 2
du ∧ r,

where i∇ur denotes the interior product defined by

i∇ur(X)= r(∇u, X).

The Cotton tensor C is defined by

(2-4) C = d Dr −
1

2(n− 1)
ds ∧ g.

Then, by (2-1) and (2-3) as well as the fact that

s+ h1u = nλ,
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we have

(2-5) C + h ı̃∇uW = h D+
h

n− 1
i∇ur ∧ g+ dλ∧ g−

1
2(n− 1)

ds ∧ g

+
1
h

dh ∧ r −
λ

h
dh ∧ g

= h D+ H,

where D is defined (as usual) by

(2-6) (n− 2)D = du ∧ r +
1

n− 1
i∇ur ∧ g−

s
n− 1

du ∧ g,

and H is defined by

H =−
1

n− 1
i∇h D du ∧ g+ dh ∧

(
1
h

r +
1u

n− 1
g−

λ

h
g
)

= db∧ r +
1

n− 1
i∇br ∧ g−

s
n− 1

db∧ g.

Here, b = log |h| with ∇b =∇h/h. In particular, gik Hi jk =−gik H j ik = 0.

Proposition 2.2. Let (M, g,∇u, h, λ) be an h-almost gradient Ricci soliton with
potential function u. Then

C + h ı̃∇uW = h D+ H.

In particular, if h is constant or dh/du = 0, then H ≡ 0.

3. Bach-flat metrics

In this section, we assume that g is Bach-flat. Note that

δW =−
n− 3
n− 2

C.

Recall that the Bach tensor is given by

B =
1

n− 3
δDδW +

1
n− 2

W̊z =
1

n− 2
(−δC + W̊z).

Since

δ(h ı̃∇uW)(X, Y )

=−W(∇h, X, Y,∇u)+ h δW(X, Y,∇u)+ hW(X, Ei , Y, DEi du)

= lW(X,∇h, Y,∇u)−
n− 3
n− 2

h C(Y,∇u, X)− W̊z,
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by taking the divergence of (2-5) we have

−(n− 2)B(X, Y )=−W(X,∇h, Y,∇u)+
n− 3
n− 2

h C(Y,∇u, X)− i∇h D(X, Y )

+ h δD(X, Y )+ δH(X, Y ).

Hence,

−(n− 2)B(∇u,∇u)=−D(∇h,∇u,∇u)+ h δD(∇u,∇u)+ δH(∇u,∇u).

As a result, from the assumption that B = 0 and h is a function of u only,

0=
1
h

D(∇h,∇u,∇u)= δD(∇u,∇u)+
1
h
δH(∇u,∇u).

Let {Ei }
n
i=1 be a normal geodesic frame. Note that, since

h D(Ei , DEi du,∇u)=−D(Ei , Ek,∇u)rik = 0,

we have

div(D( · ,∇u,∇u))=−δD(∇u,∇u)+ D(Ei ,∇u, DEi du).

Furthermore,

|D|2 =
1

n− 2

(
du(Ei )r(E j , Ek)− du(E j )r(Ei , Ek)

)
Di jk

=−
2

n− 2
D(Ei ,∇u, Ek)rik

=
2h

n− 2
D(Ei ,∇u, DEi du).

Similarly, since

h H(Ei , DEi du,∇u)=−H(Ei , Ek,∇u)rik = 0

and h is a function of u only, we have

div
(

1
h

H( · ,∇u,∇u)
)
=−

1
h
δH(∇u,∇u)+

1
h

H(Ei ,∇u, DEi du).

Moreover,

|H |2 =−
2
h

H(Ei ,∇h, Ek)rik

=−
2
h

dh
du

H(Ei ,∇u, Ek)rik

= 2
dh
du

H(Ei ,∇u, DEi du).
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Thus,

0=
∫

t1≤u≤t2
δD(∇u,∇u)+

1
h
δH(∇u,∇u)

=
n− 2

2

∫
t1≤u≤t2

|D|2

h
+

1
2

∫
t1≤u≤t2

|H |2

h dh
du

.

Since h is signal, h is either positive or negative. For each case, we derive D=H =0
when dh/du > 0. Therefore we have the following result.

Lemma 3.1. Let (M, g,∇u, h, λ) be a Bach-flat h-almost gradient Ricci soliton
with potential function u. Assume that each level set of u is compact and h is a
function of u only. If dh/du > 0 on M , then on M we have

D = H = 0.

Now, since D = H = 0, by (2-4) and (2-5)

(3-1) C =−h ı̃∇uW.

By taking the divergence of (3-1), we have

W(X,∇h, Y,∇u)=
n− 3
n− 2

h C(Y,∇u, X).

By combining these equations,

n− 3
n− 2

h2 C(Y,∇u, X)=−C(X,∇h, Y ),

and

W(X,∇h, Y,∇u)=−
n− 3
n− 2

h2W(X,∇u, Y,∇u).

Therefore, we have the following.

Corollary 3.2. When D = H = 0, we have

(3-2) W( · ,∇u, · ,∇u)= C(· ,∇u, · )= 0,

unless
dh
du
=−

(
n− 3
n− 2

)
h2.

For example, when h =−m/u, (3-2) holds if m 6= 0 or −(n− 2)/(n− 3). Note
that (3-2) also holds if h is constant.

Moreover, we have the following result.

Lemma 3.3. Suppose that dh/du > 0. Then, for X orthogonal to ∇u,

(3-3) r(X,∇u)= 0.
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In particular,
i∇ur = α du,

where α = r(N , N ) with N =∇u/|∇u|.

Proof. By Lemma 3.1, D = H = 0. From (2-3), if X is orthogonal to ∇u,

d Dr(X, Y,∇u)=−
1
h

dh(Y )r(X,∇u)+ dλ(X) du(Y ).

Since C(X, Y,∇u)=−hW(X, Y,∇u,∇u)= 0 by (3-1), by (2-4) we have

d Dr(X, Y,∇u)=
1

2(n− 1)
ds(X) du(Y ).

Thus, by (2-1)

1
h

dh
du

r(X,∇u)= dλ(X)−
1

2(n− 1)
ds(X)

=
1

(n− 1)h

(
dh
du
− h2

)
r(X,∇u),

which implies that (
(n− 2)

dh
du
+ h2

)
r(X,∇u)= 0. �

Note that Lemma 3.3 holds with the assumptions that D = H = 0 and

(3-4)
dh
du
6= −

1
n− 2

h2

without dh/du > 0. For example, in the case of the m-Bakry–Emery tensor,
h =−m/u satisfies (3-4) if m 6= 2− n.

4. Level sets of u

In this section, we investigate the structure of regular level sets of the potential
function u. For a regular value c, we denote the level set u−1(u) by Lc. On Lc,
let {Ei }, 1≤ i ≤ n, be an orthonormal frame with En = N =∇u/|∇u|.

Furthermore, throughout the section we assume that D = H = 0 with

dh
du
6= −

(
n− 3
n− 2

)
h2 and

dh
du
6= −

1
n− 2

h2.

Then, by Corollary 3.2, (3-2) and (3-3) hold. Furthermore, for X orthogonal to ∇u,
by the proof of Lemma 3.3,

dλ(X)=
1

2(n− 1)
ds(X).
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Thus, s+ 2(1− n)λ is constant on each level set of u. Furthermore,

1
2 X (|∇u|2)= 〈DX du,∇u〉 =

1
h

(
λ du(X)− r(X,∇u)

)
= 0,

which implies that |∇u|2 is constant on each level set of u. Therefore, we have the
following.

Lemma 4.1. |∇u|2 and s+ 2(1− n)λ are constant on each regular level set of u.

For further investigation, we need the following key lemma.

Lemma 4.2.

0=
ns− (n− 1)2λ−α

(n− 1)h
r − D∇ur −

r ◦ r
h
+

n− 3
2(n− 1)

du⊗ ds

+
1

n− 1

(
ds(u)−〈∇u,∇α〉

)
g+

s+ (1− n)λ
(n− 1)h

(α− s)g+
1

n− 1
du⊗ dα.

Proof. To find δD, by (2-6), we first compute

δ(du ∧ r)=
s− (n− 1)λ

h
r − D∇ur −

r ◦ r
h
+

1
2 du⊗ ds.

By Lemma 3.3, i∇ur = α du. Thus,

δ(i∇ur ∧ g)=−〈∇u,∇α〉g+
s+ (1− n)λ

h
αg+ du⊗ dα−

α

h
r.

Similarly,

−δ(s du ∧ g)= ds(u)g−
s2
+ (1− n)sλ

h
g− du⊗ ds+

s
h

r.

Hence, by (2-6) together with (3-3), we have

(n− 2)δD =
ns− (n− 1)2λ−α

(n− 1)h
r − D∇ur −

r ◦ r
h

+
n− 3

2(n− 1)
du⊗ ds+

1
n− 1

du⊗ dα

+
1

n− 1

(
ds(u)−〈∇u,∇α〉+

s+ (1− n)λ
h

(α− s)
)

g.

Since D = δD = 0, the proof follows. �

Thus, we have the following.

Corollary 4.3. (n− 3)s+ 2α is constant on each regular level set of u.

Proof. Let X be a vector orthogonal to ∇u. By putting (X,∇u) in the equation in
Lemma 4.2,

(4-1) D∇ur(X,∇u)= 0.
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Now, by putting (∇u, X) in the equation in Lemma 4.2 again, we have

0=
n− 3

2(n− 1)
|∇u|2 ds(X)+

1
n− 1

|∇u|2 dα(X),

since r(X,∇u)= 0 and

D∇ur(∇u, X)= D∇ur(X,∇u). �

Lemma 4.4. sg + 2(1− n)α is constant on each regular level set of u.

Proof. For X orthogonal to ∇u, by (3-2) and (4-1)

0= C(X,∇u,∇u)

= DXr(∇u,∇u)−
1

2(n− 1)
ds(X)|∇u|2.

Thus,

X (α)=
1
|∇u|2

X (r(∇u,∇u))

=
1
|∇u|2

(
DXr(∇u,∇u)+ 2r(DX du,∇u)

)
=

1
2(n− 1)

ds(X),

since

r(DX du,∇u)=
1
h
(λr(X,∇u)− r ◦ r(X,∇u))= 0. �

By combining Lemma 4.1, Corollary 4.3, and Lemma 4.4, we have the following.

Theorem 4.5. Let (M, g,∇u, h, λ) be a Bach-flat h-almost gradient Ricci soliton
with potential function u. Assume that each level set of u is compact and h is
a function of u only with dh/du > 0. Then sg, α, and λ are constant on each
regular level set of u. In particular, if h is constant, the condition on dh/du is not
necessary.

When D = 0, the Ricci tensor has the following characterization.

Lemma 4.6. Suppose that D = 0. Then the Ricci curvature tensor has at most two
eigenvalues.

Proof. Let {Ei }, 1 ≤ i ≤ n, be an orthonormal frame with En = N = ∇u/|∇u|.
Then

(4-2) I Ii j =
1

h |∇u|
(λgi j − ri j ),

and

m = tr I I =
n− 1
h |∇u|

(
λ+

α− s
n− 1

)
.
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Thus, m is constant on each level set of u, and∣∣∣∣ I I −
m

n− 1
g
∣∣∣∣2 = |I I |2−

m2

n− 1

=
1

h2|∇u|2

(
|r |2−α2

−
(s−α)2

n− 1

)
=

1
h2|∇u|2

(
|r |2−

n
n− 1

α2
+

2sα
n− 1

−
s2

n− 1

)
.

Since r ◦ r(∇u,∇u)= α2
|∇u|2, from the identity

n− 2
2
|D|2 = |r |2 |∇u|2−

n
n− 1

r ◦ r(∇u,∇u)+
2s

n− 1
r(∇u,∇u)−

s2

n− 1
|∇u|2,

we have

|D|2 =
2

n− 2
h2
|∇u|4

∣∣∣∣ I I −
m

n− 1
g
∣∣∣∣2.

Since D = 0, we have

(4-3) I Ii j =
m

n− 1
gi j ,

which implies that

(4-4) ri j =
s−α
n− 1

gi j

for i = 1, . . . , n− 1 by (4-2). �

As an immediate consequence, on an open set {x ∈ M | ∇u(x) 6= 0}, the Ricci
tensor may be written as

rg = β du⊗ du+
(

s−α
n− 1

)
g,

where
β =

nα− s
(n− 1)|∇u|2

.

Thus, by (1-1) we have

Dg du =
1
h

(
λ+

α− s
n− 1

)
g−

β

h
du⊗ du.

Now, we are ready to prove Corollary 1.2, which shows the relationship between
Bach-flat metrics and harmonic Weyl metrics.

Proof of Corollary 1.2. Note that, by (3-1) and (3-2)

C( · , · ,∇u)= C( · ,∇u, · )= 0.
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On the other hand, by the Codazzi equation,

〈R(X, Y )Z , N 〉 = DY I I (X, Z)− DX I I (Y, Z).

Thus, for 1≤ i, j, k ≤ n− 1, by (4-3)

〈R(Ei , E j )Ek, N 〉 = E j (I I (Ei , Ek))− I I (DE j Ei , Ek)− I I (Ei , DE j Ek)

− Ei (I I (E j , Ek))+ I I (DEi E j , Ek)+ I I (E j , DEi Ek)

= 0.

Therefore, by (2-3)
d Dr(Ei , E j , Ek)= 0,

which implies that

C(Ei , E j , Ek)= d Dr(Ei , E j , Ek)−
1

2(n− 1)
ds ∧ g(Ei , E j , Ek)= 0.

Hence, C is identically zero, and so is δW . �

The following is a restatement of Theorem 1.1.

Theorem 4.7. Let (M, g,∇u, h, λ) be a Bach-flat h-almost gradient Ricci soliton
with potential function u. Assume that each level set of u is compact with dh/du>0
on M. Then, either g is Einstein with constant function u or the metric can be
written as

g = dt2
+ψ2(t) ĝE ,

where ĝE is the Einstein metric on the level set E = Lc0 for some c0.

Proof. Assume that u is not constant. By Lemma 3.1, D = H = 0. Since |∇u|2

depends only on u by Lemma 4.6, as shown in the proof of Theorem 7.9 of [He
et al. 2012] with Remark 3.2 of [Cao and Chen 2013], the metric can be locally
written as

g = dt2
+ ĝc.

Here, ĝc denotes the induced metric on the level set Lc = u−1(c) for each regular
value c. Furthermore, (Lc, ĝc) is necessarily Einstein; by the Gauss equation

R̂i j i j = Ri j i j + I Ii i I I j j − I I 2
i j = Ri j i j +

m2

(n− 1)2
.

Thus,

r̂i i = ri i − R(N , Ei , N , Ei )+
m2

n− 1
.

By (3-2) and (4-4), we have

R(Ei , N , Ei , N )=
1

n− 2
(ri i +α)−

s
(n− 1)(n− 2)

=
α

n− 1
.
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Hence, it follows that

r̂i i = ri i +
m2
−α

n− 1
=

1
n− 1

(s− 2α+m2)= λ̂0.

Since s, α, and m are constant along Lc, this proves that (Lc, ĝc) has constant Ricci
curvature. As a result, by a suitable change of variable, the metric g can be written
as in the statement of Theorem 4.7. �
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A SHARP HEIGHT ESTIMATE FOR THE SPACELIKE
CONSTANT MEAN CURVATURE GRAPH IN THE

LORENTZ–MINKOWSKI SPACE

JINGYONG ZHU

Based on the local comparison principle of Chen and Huang (1982), we
study the local behavior of the difference of two spacelike graphs in a neigh-
borhood of a second contact point. Then we apply it to the spacelike con-
stant mean curvature graph in 3-dimensional Lorentz–Minkowski space L3,
which can be viewed as a solution to the constant mean curvature equation
over a convex domain � ⊂ R2. We get the uniqueness of critical points
for such a solution, which is an analogue of a result of Sakaguchi (1988).
Last, by this uniqueness, we obtain a minimum principle for a functional
depending on the solution and its gradient. This gives us a sharp gradient
estimate for the solution, which leads to a sharp height estimate.

1. Introduction

Spacelike hypersurfaces of constant mean curvature (CMC) and CMC foliations
play an important role in general relativity. Such surfaces are important because they
provide Riemannian submanifolds with properties reflecting those of the spacetime.
For example, if the weak energy condition is satisfied, a maximal hypersurface has
positive scalar curvature. So the geometric properties of such hypersurfaces are
worth researching, and finding conditions for their existence is a fundamental prob-
lem. Under the graph setting and some assumptions, Robert Bartnik and Leon Simon
[1982] got a sufficient and necessary condition for the existence of a solution to

(1-1)

div Du
√

1−|Du|2
= H(x, u), |Du|< 1 in �⊂ Rn,

u = φ on ∂�,

where div stands for the divergence operator in the Euclidean plane Rn and

(1-2) Du = (u1, . . . , un), ui =
∂u
∂xi

.
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In particular, the Theorem 3.6 in [Bartnik and Simon 1982] gives us a solution
u ∈ C∞(�) to

(1-3)

div Du
√

1−|Du|2
= nH, |Du|< 1 in �,

u = 0 on ∂�,

over a bounded C2,α domain � with H being a positive constant. In this case, they
pointed out that νn+1 = 1/

√

1− |Du|2 satisfies following elliptic equation

(1-4) 1Mνn+1 = νn+1‖A‖2,

where 1M and A denote the Laplace operator and the second fundamental form
of the graph M = {(x, u(x)) : x ∈ Rn, u ∈ C∞(Rn)}, respectively. The boundary
gradient estimate is the most important step leading to the existence of u. To do
so, they used the following spherically symmetric barrier functions:

(1-5) w± = w±(ξ)±

∫
|x−ξ |

0

K − Htn√
t2n−2+ (K − Htn)2

dt,

where K is a positive constant. From the proof of their Proposition 3.1, one can
get following boundary gradient estimate:

(1-6) max
∂�
|Du| ≤

1− Hεn+1√
ε2n + (1− Hεn+1)2

,

where ε = ε(�) is a sufficiently small constant. Obviously, this bound is not sharp.
Also, the dependence of ε on � is not specific. Since the graph is spacelike, they
roughly used the diameter of the domain � to control the C0 norm of the solution u.
So the question is, can we give a sharp C0 or C1 estimate for the solution in terms
of the boundary geometry?

Early in 1979, Lawrence E. Payne and Gérard A. Philippin [1979] have used
so-called P-functions to derive sharp C0 and C1 upper bounds for the solution of
the Dirichlet problem

(1-7)

div Du
√

1+|Du|2
=−2H in �,

u = 0 on ∂�,

over a strictly convex domain �⊂ R2 with H being a positive constant. The key is
a maximum principle for the P-function

(1-8) 8(x, α)=
∫ q2

0

g(ξ + 2ξg′(ξ))
ρ

dξ +α
∫ u

0
f (η) dη,
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where u, g, ρ, f, q satisfy

(1-9) (g(q2)ui )i + ρ(q2) f (u)= 0, g(ξ)+ 2ξg′(ξ) > 0, for all ξ ≥ 0,

ρ > 0, g > 0, q2
= |Du|2 =

∑
u2

i .

In the same year, by the uniqueness of critical points for a solution and the strict
convexity of the domain, G. A. Philippin [1979] also got a minimum principle for
8(x, α) provided α > 1 and used it to derive lower bounds for C0 and C1 norms
of the solution. But he did not assert the sharpness of the estimates, since he did
not have a similar minimum principle for 8(x, 1) at that time. In 2000, Xi-Nan
Ma [2000] solved this issue through uniqueness of critical points and analyticity of
the solution. He did a long computation to show that all the derivatives of 8(x, 1)
vanish at the unique critical point if 8(x, 1) takes its minimum value at that point.
By the strong unique continuation of analytic function, 8(x, 1) is a constant. Once
one has this minimum principle, the sharpness is easy to derive.

For our question, the maximum principle in [Payne and Philippin 1979] still
works. So the upper bound of the gradient estimate and the lower bound of the
minimum value are easy to derive, which we will do later in this paper. However,
the minimum principle is not available any more. In this paper, we want to prove a
minimum principle for 8(x, 1) when u is a spacelike CMC graph solving

(1-10)

div
Du

√

1− |Du|2
= 2H, |Du|< 1 in �,

u = 0 on ∂�,

and use it to derive sharp C0 and C1 bounds for the solution to (1-10).
Not only is the uniqueness of critical point the important ingredient to get the

sharpness of the a priori estimate, but is itself worth study. Together with the
convexity [Caffarelli and Friedman 1985; Guan and Ma 2003; Chen 2014] and
curvature estimates [Ma and Zhang 2013] for level sets, they are the most important
geometric properties of solutions to elliptic or parabolic equations. G. A. Philippin
[1979] showed that the solution to (1-7) has only one critical point when � is
strictly convex. His method of proof is based on an idea of L. E. Payne [1973].
Jin-Tzu Chen [1984] proved the uniqueness of the critical point for a solution to

(1-11)


div Du
√

1+|Du|2
= 2H in �,

Du
√

1+|Du|2
· ν = 1 on ∂�,

where �⊂ R2 is a bounded convex domain with outer normal ν on the boundary
∂� and H is a positive constant. His proof is based on a nice comparison technique
and the result in [Chen and Huang 1982] and the method of continuity with respect
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to the contact angle. Later, Shigeru Sakaguchi [1989] showed that the solution to

(1-12)

div Du
√

1+|Du|2
= 2H in �,

u = 0, on ∂�,
or

(1-13)


div Du
√

1+|Du|2
= 2H in �,

Du√
1+|Du|2

· ν = cos γ, γ ∈
(
0, π2

)
on ∂�,

has only one critical point under the hypothesis of the existence of the solution over
a bounded convex domain �⊂ R2.

Another motivation for studying uniqueness of critical points for solutions to
(1-10) is from a recent paper [Albujer et al. 2015]. As we know, CMC spacelike
hypersurfaces are very different from those in Euclidean space. For example,
Corollary 12.1.8 in [López 2013] tells us any compact spacelike surface immersed
in L3 spanning a plane simple closed curve is a graph over a spacelike plane, which
is not true in R3. Therefore, up to an isometry, we only need to consider the solution
to the Dirichlet problem (1-10). Recently, Alma L. Albujer, Magdalena Caballero
and Rafael López proved the following interesting theorem on the convexity of the
solutions to (1-10):

Theorem A [Albujer et al. 2015]. Let 6 be a spacelike compact surface in L3 with
constant mean curvature H 6= 0 (H-surface for short), such that its boundary is a
planar curve which is pseudoelliptic. Then 6 has negative Gaussian curvature at
all its interior points. In particular, 6 is a convex surface.

In their paper, they also proved that pseudoelliptic curves are convex and provided
an example that shows the assumption on the boundary can not be replaced by
convex curves, but they did not show whether there is a critical point of the solution
to (1-10) with nonnegative Gaussian curvature over a convex domain, which is a
so-called saddle point. In this paper, we will show that the nonexistence of such
saddle points is equivalent to the uniqueness of the critical point. Notice that the
Gaussian curvature in [Sakaguchi 1989] is different from that in the Theorem A,
which is defined in the next section.

Theorem 1.1. Any solution to (1-10) in a convex domain for H 6= 0 has only one
critical point.

The proof of this theorem is based on the idea of [Sakaguchi 1989], which mainly
relies on the comparison of a cylinder with the given surface and the continuity
method. In the present result, our comparison surface is a connected component of
a hyperbolic cylinder, which is an entire graph over R2 and, in contrast with the
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Euclidean case, the existence of the solution for any bounded domain is assured by
the necessary and sufficient conditions given in [Bartnik and Simon 1982].

As we said before, Theorem 1.1 can be used to derive sharp C0 and C1 bounds
for the solution to (1-10).

Theorem 1.2. Let u ∈C∞(�) be a solution to (1-10) over a strictly convex domain
� for H > 0 and K be the curvature of the boundary ∂� with respect to the inner
normal direction. Then

(1-14)

max
�

|Du|2 =max
∂�
|Du|2≤

H 2

H 2+ K 2
min
,

−
1
H

(√
H 2
+ K 2

min
Kmin

− 1
)
≤ min

�
u ≤−

1
H

(√
H 2+ K 2

max

Kmax
− 1

)
where Kmin = min∂� K, Kmax = max∂� K, and one of the equality signs holds if
and only if the boundary ∂� is a circle.

At this point, we should give a remark. When H 6= 0 and � is a round disc of
radius R (which is centered at the origin), then

(1-15) u(x, y)=

√
x2+ y2+

1
H 2 −

√
R2+

1
H 2 ,

whose graph is a so-called hyperbolic cap [López 2013].
This article is organized as follows. In Section 3, we will investigate the local

behavior of the difference of two spacelike graphs in a neighborhood of a second
contact point. In Section 4, we will prove a necessary and sufficient condition for
the uniqueness of the minimal point of the solution to (1-10), which is a key step
in the proof of Theorem 1.1 in Section 5. In the end, based on the uniqueness of
the critical point, we will prove a minimum principle and use it to get the sharp
estimates in Theorem 1.2.

2. Notions and local comparison technique

For easier reading, let us recall some background knowledge of Lorentzian geometry.
More details can be found in [López 2013]. Let L3 be the 3-dimensional Lorentz–
Minkowski space, that is R3 endowed with the flat Lorentzian metric

ds2
= dx2

1 + dx2
2 − dx2

3 ,

where (x1, x2, x3) are the canonical coordinates in Rn. The nondegenerate metric
of index one classifies the vectors of R3 into three types.

Definition 2.1 [López 2013]. A vector v ∈ L3 is said to be:

(1) spacelike if 〈v, v〉> 0 or v = 0;
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(2) timelike if 〈v, v〉< 0;

(3) lightlike if 〈v, v〉 = 0 and v 6= 0.

The modulus of v is |v| =
√
|〈v, v〉|.

Definition 2.2 [López 2013]. An immersed surface 6 in L3 is called spacelike if
the induced metric on 6 is positive definite.

Given a spacelike immersed surface 6, by Proposition 12.1.5 in [López 2013], 6
is orientable. We can choose 6 to be future-oriented, which means the unit normal
vector field N satisfies 〈N , e3〉 > 0. Here e3 = (0, 0, 1). Let ∇ and ∇ denote the
Levi-Civita connection in L3 and 6, respectively. If X, Y ∈ X(6), the Gauss and
Weingarten formulae are

(2-1) ∇X Y =∇X Y + σ(X, Y )=∇X Y −〈AX, Y 〉N and AX =−∇X N ,

respectively, where σ is the second fundamental form and A :X(6)→X(6) stands
for the shape operator of 6 with respect to N. The mean curvature and the Gaussian
curvature are defined by

(2-2) H =− 1
2 trace(A)=− 1

2(κ1+ κ2) and K =− det(A)=−κ1κ2.

Let u ∈C2(�) be a function defined on a domain�∈R2 and consider the surface
6u = (x, y, u(x, y)). The coefficients of the first fundamental form are

(2-3) E = 1− u2
x , F =−ux u y and G = 1− u2

y .

Thus EG − F2
= 1− u2

x − u2
y = 1− |∇u|2 and since the immersion is spacelike,

|∇u|2 < 1 on �. The future-directed normal is given by

(2-4) N (x, y, u(x, y))=
(ux , u y, 1)√

1− |∇u|2
=

(∇u, 1)√
1− |∇u|2

.

With this normal, the mean curvature H and Gaussian curvature K satisfy

(2-5) div
∇u√

1− |∇u|2
= 2H and K =−

uxx u yy − u2
xy

(1− |∇u|2)2
,

respectively, where div is the Euclidean divergence in R2.
As mentioned previously, every compact spacelike surface 6 in L3 with simple

closed boundary contained in a hyperplane can be regarded as the graph of a solution
u(x, y) to (1-10). There are more interesting facts on compact spacelike surfaces
in L3 with constant mean curvature spanning a given boundary curve (see [López
2013]).

From now on, we assume u to be a solution to (1-10) with H > 0 in a convex
domain �. For H < 0, we can consider −u and our theorem still holds. By the
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maximum principle, u has a interior minimal point, which is a point of nonpositive
Gaussian curvature.

In the rest of this section, based on the local comparison technique found in
[Chen and Huang 1982], we will investigate the local behavior of the difference of
two spacelike graphs in a neighborhood of the point where they have the second
contact.

Lemma 2.3. Let u(x, y), v(x, y) satisfy the same spacelike constant mean curva-
ture equation (the first equations in (1-10) or (2-5)). Without loss of generality,
we assume that u, v have a second order contact at P0 = (x0, y0, u(x0, y0)) with
(x0, y0)= (0, 0). Then by changing coordinates from (x, y) to (ξ, η) linearly, the
difference u− v around (ξ, η)= (0, 0)= (x, y) is given by

(2-6) u− v = Re(λ · (ξ + ηi)n + o(ξ 2
+ η2)

n
2 ),

where n ≥ 3, λ is a complex number and ξ + ηi is the complex coordinate.

Proof. Let w = u − v. Since u and v solve the same constant mean curvature
equation, we have

0= (1− u2
x − u2

y)(uxx + u yy)+ (u2
x uxx + u2

yu yy + 2ux u yuxy)(2-7)

− 2H(
√

1− |Du|2)3

= (1− u2
y)uxx + (1− u2

x)u yy + 2ux u yuxy − 2H
(√

1− u2
x − u2

y
)3
,

0= (1− v2
y)vxx + (1− v2

x)vyy + 2vxvyvxy − 2H
(√

1− v2
x − v

2
y
)3
.(2-8)

Define r(τ ), s(τ ), t (τ ), p(τ ), q(τ ) for 0≤ τ ≤ 1 by

(2-9)

r(τ )= (1− τ)vxx + τuxx , s(τ )= (1− τ)vxy + τuxy,

t (τ )= (1− τ)vyy + τu yy, p(τ )= (1− τ)vx + τux ,

q(τ )= (1− τ)vy + τu y,

and consider the function

(2-10) F = F(τ )= (1− q2)r + 2pqs+ (1− p2)t − 2H
(√

1− p2
− q2)3

.

Then we get

(2-11) 0= F(1)− F(0)=
∫ 1

0

∂F
∂τ

dτ

= a11wxx + 2a12wxy + a22wyy + b1wx + b2wy,
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with

(2-12) a11 =

∫ 1

0
(1− q2) dτ, a12 =

∫ 1

0
pq dτ, a22 =

∫ 1

0
(1− p2) dτ,

b1 =−2
∫ 1

0

[
(pt − qs)− 3H

√
1− p2

− q2 p
]

dτ,

b2 =−2
∫ 1

0

[
(qr − ps)− 3H

√
1− p2

− q2q
]

dτ.

Since Dw = 0 at (0, 0), there exists a neighborhood, say O(0, 0), such that (p, q)
stays in the unit ball, i.e., p2

+ q2 < 1 over O(0, 0). Therefore, we have

(2-13) a2
12 =

(∫ 1

0
pq dτ

)2

≤

∫ 1

0
(p2) dτ

∫ 1

0
(q2) dτ

<

∫ 1

0
(p2) dτ

∫ 1

0
(1− p2) dτ

<

∫ 1

0
(1− q2) dτ

∫ 1

0
(1− p2) dτ = a11a22.

Hence, w satisfies a homogeneous elliptic equation

(2-14) Lw = a11wxx + 2a12wxy + a22wyy + b1wx + b2wy,

in O(0, 0).
Now, we transform (x, y) into (ξ, η) such that ξ(0, 0)= 0 and η(0, 0)= 0 and

at (0, 0)

(2-15) Lw =
(
∂2

∂ξ 2 +
∂2

∂η2 + b′1
∂

∂ξ
+ b′2

∂

∂η

)
w.

Since the coefficient of Lw and w itself are analytic in (x, y) as well as in (ξ, η),
we have the expansion around (ξ, η)= (0, 0) as follows,

Lw =
{
(1+α11ξ +β11η+ O(ξ 2

+ η2))
∂2

∂ξ 2 + 2(α12ξ +β12η+ O(ξ 2
+ η2))

∂2

∂ξ∂η

+(1+α22ξ +β22η+ O(ξ 2
+ η2))

∂2

∂η2 + (γ1+ δ1ξ + λ1η+ O(ξ 2
+ η2))

∂

∂ξ

+(γ2+ δ2ξ + λ2η+ O(ξ 2
+ η2))

∂

∂η

}
w.

By Theorem I in [Bers 1955], we know

(2-16) w = w(ξ, η)= Pn(ξ, η)+ o(ξ 2
+ η2)n/2,

where Pn(ξ, η) is a nonzero harmonic homogeneous polynomial in (ξ, η) of degree n.
We know n ≥ 3, as u and v have a second contact at (0, 0). Thus the argument in
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page 82 of [Axler et al. 2001] tells us

(2-17) Pn(ξ, η)= Re(λ · (ξ + ηi)n),

where λ is a complex number. This, together with the expansion above, completes
the proof. �

Let u− v to be defined on D ∈ R2 and Z be the zero set of u− v extended to
the closure D of D. By Lemma 2.3, Z divides a neighborhood U of (0, 0) into at
least six components on which the sign of u− v alternate. However, Lemma 2.3
does not tell us that Z ∩U is a union of smooth arcs intersecting at (0, 0). We do
not know if Z may contain cusps at (0, 0). To exclude such irregular possibilities,
we need a lemma from Chen and Huang:

Lemma 2.4 [Chen and Huang 1982, Lemma 2]. Let f = f (x, y) be a nonconstant
solution of a homogeneous quasilinear elliptic equation of the form

(2-18) L f = a11 fxx + 2a12 fxy + a22 fyy + b1 fx + b2 fy = 0

in � having analytic coefficients the ai j and bk in x , y and involving no zero order
term. Then every interior critical point of f is an isolated critical point.

Using the previous two lemmas as well as the implicit function theorem, we see
that the zero set Z ∩U of u− v consists of at least three smooth arcs intersecting
at (0, 0) and dividing U into at least six sectors. Furthermore, the zero set Z is
globally a union of smooth arcs.

3. Nonuniqueness of the minimal point

In this section, by using Lemmas 2.3 and 2.4, we will prove a sufficient and necessary
condition for the nonuniqueness of minimal points of the solutions vt (t ∈ [0, 1]) to

(3-1)

div Dv
√

1−t2
|Dv|2

= 2H, t |Dv|< 1 in �,

v = 0, on ∂�.

Let ut = tvt for t > 0. Then ut satisfies

(3-2)

div Du
√

1−|Du|2
= 2t H, |Du|< 1 in �,

u = 0, on ∂�.

Proposition 3.1. There always exists a unique solution vt to (3-1) satisfying

(3-3) t |Dvt | ≤ 1− θ0 < 1, in �, ‖vt‖C2,α(�) ≤ C, for all t ∈ [0, 1],

where C , θ0, α are positive constants independent of t .
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Proof. By Theorem 3.6 in [Bartnik and Simon 1982], Theorem 13.8 in [Gilbarg and
Trudinger 1983] and Theorem 12.2.2 in [López 2013], there is a unique solution
ut ∈ C2,α(�) to the problem (3-2) with

(3-4) |Dut |< 1− θ0 < 1 in � and ‖ut‖C2,α(�) ≤ C,

where C , θ0, α are positive constants independent of t .
Put vt = t−1ut . Then vt satisfies (3-1). By putting

(3-5) b(x)= (1− |Dut |
2)−1/2,

we regard vt as a unique solution to the linear elliptic Dirichlet problem:

(3-6)
{

div(b(x)Dvt)= 2H in �,
vt = 0 on ∂�.

In view of (3-4), using the Schauder global estimate (see Theorem 6.6 in [Gilbarg
and Trudinger 1983]), we get

(3-7) ‖vt‖C2,α(�) ≤ C(sup
�

|vt | + 2H).

Also, it follows from their Theorem 3.7 that

(3-8) sup
�

|vt | ≤ C.

Therefore, we get (3-3) for t ∈ (0, 1]. When t = 0, (3-1) is a linear problem. Hence
there exists a unique solution v0 ∈ C∞(�) to (3-1). This completes the proof. �

Before proving the sufficient and necessary condition for nonuniqueness of the
minimal point of vt , we need the following lemmas.

Lemma 3.2. Let t belong to (0, 1]. If Dvt = 0 at some point p ∈ �, then the
Gaussian curvature Kt(p) of the graph 6vt = (x, y, vt(x, y)) at p does not vanish.

Proof. Since t is positive, it suffices to show this for ut = tvt . Recall that graph of
ut has constant mean curvature t H. Let p be a critical point of ut with Kt(p)= 0.

Consider the upper connected component of a hyperbolic cylinder in L3, S, with
radius r = 1/(2t H), tangent to6ut at p and such that the line generators are parallel
to the zero principal curvature direction of 6ut at p. Recall that each connected
component of a hyperbolic cylinder is an entire graph over R2 with constant mean
curvature |H | = 1/(2r) and zero Gaussian curvature.

In general, the intersection of S and R2 should be a branch of a hyperbola or two
parallel lines. In our case, it should be the latter one, as S touches ut at its critical
point p. Hence, S ∩R2 divides R2 into three domains, and suppose that the piece
of S with negative height is the graph of a function v ∈ C∞(�′), v < 0.
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Define D =�∩�′. On the one hand, by the convexity of �, we see ∂(�∩�′)
consists of at most four arcs, each of which belongs to ∂� or ∂�′ alternatively.
Consider A = {(x, y) ∈ � ∩�′ | ut(x, y) > v(x, y)}. Since ut = 0 on ∂� and
v = 0 on ∂�′, there are at most two components of A, each of which meets the
boundary �∩�′. On the other hand, by the previous construction, ut and v have
a second order contact at p. Lemma 2.3 and Lemma 2.4 tell us A has at least
three components, each of which meets �∩�′. Thus we get a contradiction. This
completes the proof. �

Now, we see that there is no critical point of vt with Gaussian curvature vanishing
for t ∈ (0, 1]. What about the case of t = 0?

Lemma 3.3. Every critical point p of v0 is a minimal point, i.e., the Gaussian
curvature K0(p) of the graph 6v0 is negative at p.

Proof. Let p be a critical point of v0. Then K0(p) = −((v0)xx(v0)yy − (v0)
2
xy)

by the second equation of (2-5). Suppose that K0(p) ≥ 0. For simplicity, by
translation and rotation of the coordinates, we may assume that p = (0, 0) and
[Di jv0] = diag[λ1, λ2], where λ1 + λ2 = 2H > 0, λ1 > 0 and λ2 ≤ 0. Then
v0(x, y) = w(x, y) + P(x, y), where w(x, y) = v0(0, 0) + 1

2λ1x2
+

1
2λ2 y2 and

P(x, y) is a harmonic function in �. Consider

(3-9) A = {(x, y) ∈� | P(x, y) > 0}, B = {(x, y) ∈� | P(x, y) < 0}.

Since P(x, y) vanishes up to second order derivatives at (0, 0) and P(x, y) is real
analytic, it follows from Lemma 2.3 and Lemma 2.4 that both A and B have at
least three components, each of which meets the boundary ∂�. Put

(3-10) �′ = {(x, y) ∈ R2
| w(x, y) < 0}.

Since � is convex and w is a quadratic function with λ1 > 0 and λ2 ≤ 0, we see
that ∂(�∩�′) consists of at most four arcs each of which belongs to ∂� or ∂�′

alternatively. Let A′ = {(x, y) ∈ �∩�′ | P(x, y) > 0}. Since v0 = 0 on ∂� and
w = 0 on ∂�′, there are at most two components of A′ each of which meets the
boundary ∂(�∩�′). This contradicts the fact that both A and B have at least three
components which meet the boundary of ∂�. This completes the proof. �

Now, we can prove the sufficient and necessary condition for nonuniqueness of
the minimal point of vt .

Theorem 3.4. Let t belong to [0, 1]. The solution vt has more than two minimal
points if and only if there exists a saddle point p∈�, i.e., Dvt(p)=0 and Kt(p)>0.

Proof. It follows from Hopf’s boundary point lemma that Dvt · ν is positive on ∂�.
There vt does not have minimal point on the boundary ∂�.
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“If” part: Let p ∈� be a point with Dvt(p)= 0 and Kt(p) > 0. Then there exists
an open neighborhood U of p in which the zero set of ṽt = vt − vt(p) consists of
two smooth arcs intersecting at p and divides U into four sections. Consider the
open set E = {(x, y) ∈ � | ṽt > 0}. It follows from the maximum principle that
each component of E has to meet the boundary ∂�. Accordingly, we see that the
open set G = {(x, y) ∈� | ṽt < 0} has more than two components. This shows that
vt has more than two minimal points.

“Only if” part: Suppose that vt has more than two minimal points and there is no
point p with Dvt(p)= 0 and Kt(p) > 0. By Lemma 3.2 and Lemma 3.3, we see
that each critical point of vt is a minimal point. Since Dvt does not vanish on ∂�,
then Lemma 3.2 and Lemma 3.3 imply that every critical point of vt is isolated and
the number of critical (minimal) points is finite, say {P1, . . . , PN }. Hence, we have

(3-11) Dvt(x, y) 6= 0, for all (x, y) ∈�−{P1, . . . , PN }.

Put m0 = max{vt(Pj ) | 1 ≤ j ≤ N }. Consider the level set Lm = {(x, y) ∈ � |
vt(x, y) < m} for m0 < m < 0. It follows from (3-11) and Theorem 3.1 in [Milnor
1963] that the boundary ∂Lm is a smooth manifold for m0 < m < 0 and {∂Lm} are
diffeomorphic to each other. Since Kt(Pj ) is negative, if m is near m0, Lm has
more than two components. On the other hand, if m is near 0, ∂Lm is diffeomorphic
to ∂� and Lm is connected. This is a contradiction, so the proof is complete. �

Now, Lemma 3.2, Lemma 3.3 and Theorem 3.4 tell us the nonexistence of the
critical point described in the first question of the first section is equivalent to the
uniqueness for the critical point of the solution to (1-10), which will be proved in
the next section.

4. Proof of Theorem 1.1

In view of Lemma 3.2, Lemma 3.3 and Theorem 3.4, it suffices to show that the set
of minimal points of the solution consists of only one point. Put I = [0, 1]. Divide
I into two sets I1 and I2 as follows:

(4-1)
I1 = {t ∈ I | vt has only one minimal point in �},

I2 = {t ∈ I | vt has more than two minimal points in �}.

Then I = I1+ I2 and I1 ∩ I2 =∅. Lemma 3.3 and Theorem 3.4 imply that 0 ∈ I1,
so I1 is not empty.

On the one hand, I2 is open in I. That is, for any t0 ∈ I2, there exists a constant
ε>0 such that (t0−ε, t0+ε)⊂ I2. If it were not so, we can assume that there exists a
sequence of solutions {vtn } with only one minimal point and tn ∈ (t0−1/n, t0+1/n)
for some positive t0 ∈ I2. By Lemma 3.2 and Theorem 3.4, vtn has only one critical
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point. By compactness and Lemma 3.2, we can take a subsequence of vtn such that

(4-2) pn→ p, Dvtn (pn)= 0, Ktn (pn) < 0, Dvt0(p)= 0, Kt0(p) < 0.

Since t0 ∈ I2, there exists another point q ∈U (q)⊆� such that

(4-3) qn→ q, Dvtn (qn)→ Dvt0(q)= 0.

By uniqueness of the critical point of vtn , we can take a subsequence of {vtn } such
that vtn are all monotone in the line l(pn, qn). Then there exists a sequence of points
{sn | sn ∈ l(pn, qn)} such that

(4-4) |Dvtn (sn)| ≤ |Dvtn (qn)| → 0, |Ktn (sn)| =
|Dvtn (qn)|

|pn − qn|
→ 0.

Therefore, there should be a point s ∈ l(p, q) which satisfies

(4-5) Dvt0(s)= 0, Kt0(s)= 0.

This is a contradiction with Lemma 3.2.
On the other hand, I2 is closed in I. In fact, let {tj } be a sequence of points in I2

such that tj converges to t0 as j goes to∞. Theorem 3.4 and the compactness imply
that there exists a subsequence {tk}, a sequence {pk} and a point p ∈� such that

(4-6) pk→ p as k→∞, Dvtk (pk)= 0, and Ktk (pk) > 0.

By continuity, we have

(4-7) Dvt0(p)= 0, and Kt0(p)≥ 0.

Since Dvt0 6= 0 on ∂�, p∈�. Therefore it follows from Lemma 3.2 and Lemma 3.3,
Theorem 3.4 and (4-7) that t0 ∈ I2. This shows that I2 is closed in I.

Hence, I2 must be ∅ or I. Since I1 is not ∅, I1 = I. This completes the proof.

5. Sharp C0 and C1 estimates

In [Payne and Philippin 1979], the authors derived a maximum principle for a
function 8(x;α) defined by

(5-1) 8(x;α)=
∫ q2

0

g(ξ)+ 2ξg′(ξ)
ρ(ξ)

dξ +α
∫ u

0
f (η) dη,

where g > 0, ρ > 0, f are functions and u satisfies the following elliptic equation:

(5-2)
∑

i

(g(q2)ui )i + ρ(q2) f (u)= 0, q2
=

∑
i

ui ui = |Du|2.



502 JINGYONG ZHU

In our case, we can take g(ξ)= (1− ξ)−1/2, ρ = 1, f =−2H. Then

(5-3) 8(x;α)= 2
(

1√
1− |Du|2

− 1−αHu
)
.

In particular, 8 :=8(x; 1)= 2(1/
√

1− |Du|2− 1− Hu).
Theorem 4 in [Payne and Philippin 1979] gives us

(5-4)
∑
i, j

(
δi j +

ui u j

1− |Du|2

)
8i j +

∑
k

Wk8k ≥ 0,

where Wks are just the components of a vector function uniformly bounded in �.
It follows that 8(x; 1) takes its maximum value on ∂�. Together with (5-1), we
know 8(x; 1) takes its maximum value where |Du|2 = max∂� |Du|2. It follows
that, at any point x ∈�, we have

(5-5) −Hu ≤
1

√

1−max∂� |Du|2
−

1
√

1− |Du|2
.

So, at the critical point, we get

(5-6) −Humin ≤
1√

1− q2
max

− 1,

where umin =min� u and qmax =max∂� |Du|.
Now, we want to derive the upper bound for |Du|2max. Suppose 8(x;α) attains

its maximum at p ∈ ∂�. Then |Du|(p) = qmax. On the one hand, by the strong
maximum principle, we have at p,

(5-7)
∂8(x;α)
∂ν

= 2
g+ 2q2g′

ρ
uνuνν + f uν ≥ 0,

where ∂/∂ν or a subscript ν denotes the outward directed normal derivative on ∂�
and the equality holds if and only if8(x;α)= constant. On the other hand, making
use of (5-2) evaluated on ∂�, we have

(5-8) (g+ 2q2g′)uνν + gK uν + ρ f = 0.

Together with (5-7), this leads to

(5-9)
∂8(x;α)
∂ν

=−(2K gu2
ν + f uν)≥ 0.

Applying to our case, we get

(5-10)
qmax√

1− q2
max

≤
H

K (p)
≤

H
Kmin

.
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So

(5-11) q2
max ≤

H 2

H 2+ K 2
min
.

Therefore, the left inequality in (1-14) follows from (5-6) and (5-11). And the
equality holds if and only if the boundary is a circle. In fact, if the equality holds,
then 8(x; 1)= constant on ∂� from the strong maximum principle. From (5-1),
uν = constant on ∂�. So ∂� is a circle according to Theorem 2 and Remark 1 in
[Serrin 1971]. Conversely, if ∂� is a circle, then the solution u is radially symmetric.
So uν = constant on ∂�, and then the equality in (5-11) follows from the divergence
theorem.

To derive the upper bound of umin in the same way above, we need a minimum
principle for 8(x; 1). First, we need the following lemma.

Lemma 5.1 [Payne and Philippin 1979].

(5-12)
∑
i, j

(
δi j +

ui u j

1− |Du|2

)
8i j (x, α)+

∑
k

Ŵk8k(x, α)

= 4H 2(α− 1)(α− 2)
1√

1− |Du|2
,

where Ŵks are the components of a vector function which is singular at the critical
point of u.

From Lemma 5.1 and the Hopf maximum principle, we conclude that 8(x;α)
takes its minimum value either on the boundary ∂�, or at the unique critical point
of u in � when α ∈ [1, 2]. What if the second alternative happens? We answer
this in the following theorem whose Euclidean version was proved by Xi-Nan Ma
[2000]:

Theorem 5.2. Let u ∈ C∞(�) be a solution to (1-10). If 8(x; 1) attains its
minimum at the unique critical point in �, then 8(x; 1) is a constant on �.

By Theorem 5.2, we assume 8(x; 1) takes its minimum at p′ ∈ ∂�, then
|Du|(p′)= qmin =min∂� |Du| and

(5-13) −Humin ≥
1

√

1− q2
min

− 1,

and

(5-14)
∂8

∂ν
(p′; 1)≤ 0,
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where the equality holds if and only if 8(x; 1)= constant. As before, one can also
get

(5-15)
qmin

√

1− q2
min

≥
H

K (p′)
≥

H
Kmax

.

So

(5-16) q2
min ≥

H 2

H 2+ K 2
max

,

where the equality holds if and only if the boundary is a circle. Therefore, the right
inequality in (1-14) follows from (5-13) and (5-16).

For completeness, we will prove Theorem 5.2 to end this paper. Our proof is
similar to that in [Ma 2000] except for the different signs in some places.

Proof of Theorem 5.2. The proof consists of four steps. Assume the unique critical
point to be P ∈�.

Step 1: Derivatives of 8 up to the second order vanish at P. From the proof of
Theorem 1.1, we can choose the coordinates at P such that

(5-17) u1(P)= u2(P)= 0, u11 > 0, u22 > 0, u12 = 0.

By direct computation, we have

81 = 2v−
3
2 ui ui1− 2Hu1 = 0,(5-18)

82 = 2v−
3
2 ui ui2− 2Hu2 = 0,(5-19)

811 =
3
2v
−

5
2 (2ui ui1)(2u j u j1)+ 2v−

3
2 u2

i1+ 2v−
3
2 ui ui11− 2Hu11(5-20)

= 2u2
11− 2Hu11,

812 =
3
2v
−

5
2 (2ui ui1)(2u j u j2)+ 2v−

3
2 ui1ui2+ 2v−

3
2 ui ui12− 2Hu12(5-21)

= 0,

822 =
3
2v
−

5
2 (2ui ui2)(2u j u j2)+ 2v−

3
2 u2

i2+ 2v−
3
2 ui ui22− 2Hu22(5-22)

= 2u2
22− 2Hu22,

where v = 1− |Du|2. Since 8 attains its minimum at P, we get

(5-23) 811(P)822(P)−812(P)≥ 0.

Together with (5-17), we know

(5-24) u11(P)= u22(P)= H,
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and

(5-25) 811(P)=822(P)= 0.

Step 2: Derivatives of 8 up to the fifth order vanish at P. First we claim

(5-26) 8xk
1 x3−k

2
(P)= 0, k = 0, 1, 2, 3.

By (5-17), (5-24) and direct calculations, we have

(5-27)
8x3

1
(P)= 4Hux3

1
, 8x2

1 x2
(P)= 4Hux2

1 x2
,

8x1x2
2
(P)= 4Hux1x2

2
, 8x3

2
(P)= 4Hux3

2
.

Now, by differentiating (1-10), we obtain

(5-28) ux3
1
=−ux2

1 x2
and ux1x2

2
=−ux3

2
.

Together with (5-18), (5-19), (5-21) and (5-25), we can expand8 in a neighborhood
of P:

(5-29) 8(x1,x2;1)−8(P;1)=
r3

3!
(8x3

1
(P)cos(3φ)+8x2

1 x2
(P)sin(3φ))+O(r4),

where (r, φ) are polar coordinates. Suppose

(5-30)
√
(8x3

1
(P))2+ (8x2

1 x2
(P))2 6= 0.

Then (5-29) becomes

(5-31) 8(x1, x2; 1)−8(P; 1)= A3(P) cos[3φ−β3]r3
+ O(r4),

with

(5-32) A3(P)=

√
(8x3

1
(P))2+(8x2

1 x2
(P))2

3!
, cosβ3 =

8x3
1
(P)√

(8x3
1
(P))2+(8x2

1 x2
(P))2

,

sinβ3 =
8x2

1 x2
(P)√

(8x3
1
(P))2+(8x2

1 x2
(P))2

.

From (5-31) we conclude that 8 has at least three nodal lines forming equal angles
at P, but Lemma 5.1 tells us that 8 takes its minimum value only on ∂� or at P,
which is a contradiction. Thus A3(P)= 0. That is,

(5-33) 8xk
1 x3−k

2
(P)= 0, k = 0, 1, 2, 3,

and

(5-34) uxk
1 x3−k

2
(P)= 0, k = 0, 1, 2, 3.
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Using a similar argument we can show

0=8x4
1
(P)= 6H(ux4

1
(P)+ 3H 3)(5-35)

=−8x2
1 x2

2
(P)= 6H(ux2

1 x2
2
(P)+ H 3)

=8x4
2
(P)= 6H(ux4

2
(P)+ 3H 3),

0=8x3
1 x2
(P)= 6Hux3

1 x2
(P)=−8x1x3

2
(P)= 6Hux1x3

2
(P),(5-36)

ux4
1
(P)= ux4

2
(P)=−3H 3, ux3

1 x2
(P)= ux1x3

2
(P)= 0,(5-37)

ux2
1 x2

2
(P)=−H 3,

8xk
1 x5−k

2
(P)= uxk

1 x5−k
2
(P)= 0, k = 0, 1, 2, 3,(5-38)

and

(5-39) 8x5
1
(P)=−8x3

1 x2
2
(P)=8x1x4

2
(P), 8x4

1 x2
(P)=−8x2

1 x3
2
(P)=8x5

2
(P).

Step 3: Now we assume all derivatives of 8 up to the n-th order vanish at P, where
n ≥ 5. Using the same argument as in the previous step, we have the following
relations.

If n = 2l, l ≥ 3. Then

uxm
1 xk−m

2
(P)= uxk−m

1 xm
2
(P) for any m = 0, 1, 2, . . . , k,(5-40)

if k = 5, 6, 8, . . . , 2l,

uxm
1 xk−m

2
(P)= 0 for any m = 0, 1, 2, . . . , k,(5-41)

if k = 5, 7, 9, . . . , 2l − 1,

uxm
1 x2p−m

2
(P)= 0 for any m = 1, 3, 5, . . . , 2p− 1,(5-42)

if p = 3, 4, 5, . . . , l,

and

(5-43) ux2p
1
(P)= (−1)p+1(2p− 1)[(2p− 3)(2p− 5) · · · 1]2 H 2p−1

for any p = 3, 4, 5, . . . , l. When l is even, we have for any p = 4, 6, 8, . . . , l

(5-44)
ux2p

1

ux2p−2
1 x2

2

(P)= 2p− 1,
ux2p−2

1 x2
2

ux2p−4
1 x4

2

(P)=
2p− 3

3
,··· ,

ux p+2
1 x p−2

2

ux p
1 x p

2

(P)=
p+ 1
p− 1

,

and for any p = 3, 5, 7, . . . , l − 1, we have

(5-45)
ux2p

1

ux2p−2
1 x2

2

(P)= 2p− 1,
ux2p−2

1 x2
2

ux2p−4
1 x4

2

(P)=
2p− 3

3
,··· ,

ux p+3
1 x p−3

2

ux p+1
1 x p−1

2

(P)=
p+ 2
p− 2

.

When l is odd, we have similar relations to (5-44) and (5-45).
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If n = 2l + 1, l ≥ 2, by a similar argument we have (5-40)–(5-45) and

(5-46) uxm
1 x2l+1−m

2
(P)= 0, for any m = 0, 1, 2, . . . , 2l + 1.

Step 4: Derivatives of 8 of order n+1 vanish at P. We divide this step into two
parts according to whether n is odd or even.

Case A: If n = 2l, l ≥ 3. By the inductive assumption, we have

(5-47) vxm
1 xk−m

2
(P)= 0 for any m = 0, 1, 2, . . . , k, if k = 1, 3, 5, . . . , n−1.

Then for any m = 0, 1, 2, . . . , n+ 1,

(5-48) (2v−
1
2 )xm

1 xn+1−m
2

(P)=−v
3
2 vxm

1 xn+1−m
2

(P)

= 2v−
3
2 ((n+ 1−m)Huxm

1 xn+1−m
2
+m Huxm

1 xn+1−m
2

)

= 2(n+ 1)Huxm
1 xn+1−m

2
.

So

(5-49) 8xm
1 xn+1−m

2
(P)= 2nHuxm

1 xn+1−m
2

(P).

Now, by differentiating (1-10), we obtain

(5-50) uxm
1 xn+1−m

2
(P)=−uxm+2

1 xn−1−m
2

(P), for m = 0, 1, 2, . . . , n+ 1.

Then

(5-51) 8xm
1 xn+1−m

2
(P)=−8xm+2

1 xn−1−m
2

(P), for m = 0, 1, 2, . . . , n+ 1.

Using Taylor expansion as in Step 2, we can conclude that the derivatives of 8 of
order n+ 1 vanish at P.

Case B: If n=2l+1, l≥2, so n+1=2(l+1) is even. We first look for the relations
among 8xm

1 xn+1−m
2

(P), where m = 0, 2, 4, . . . , n + 1. Through computations, we
have

(5-52) 8xn+1
1
(P)= 2nH(uxn+1

1
+ (−1)l+1(2l+1)[(2l−1)(2l−3) · · · 1]2 H 2l+1),

and

(5-53) 8xn−1
1 x2

2
(P)= 2nH(uxn−1

1 x2
2
+ (−1)l+1

[(2l − 1)(2l − 3) · · · 1]2 H 2l+1).

Now, by differentiating (1-10), we get

(5-54) (1u+ ui u j ui jv
−1)xn−1

1
(P)= (2Hv 1

2
)xn−1

1
(P).

Together with the relations in Step 3, this leads to

(5-55) uxn+1
1
+ uxn−1

1 x2
2
= (n+ 1)(−1)l[(2l − 1)(2l − 3) · · · 1]2 H 2l+1.
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So

(5-56) 8xn+1
1
(P)=−8xn−1

1 x2
2
(P).

By a similar argument, it follows that

(5-57) 8xm
1 xn+1−m

2
(P)=−8xm+2

1 xn−1−m
2

(P), for m = 0, 2, 4, . . . , n+ 1.

Then, using the same argument, we have

(5-58) 8xm
1 xn+1−m

2
(P)=−8xm+2

1 xn−1−m
2

(P), for m = 0, 1, 2, . . . , n+ 1.

Now, as in Case A, we can show the derivatives of 8 of order n+ 1 vanish at P.
By the unique continuation of analytic functions, we know if 8 attains its

minimum at P, then it must be a constant. This completes the proof. �
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