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REMARKS ON GJMS OPERATOR OF ORDER SIX

XUEZHANG CHEN AND FE1 Hou

We study analysis aspects of the sixth-order GJMS operator Pg6. Under
conformal normal coordinates around a point, we present the expansions
of Green’s function of Pg6 with pole at this point. As a starting point of
the study of Pg6, we manage to give some existence results of the prescribed
(Q-curvature problem on Einstein manifolds. One among them is that for
n>10,let (M", g) be a closed Einstein manifold of positive scalar curvature
and f a smooth positive function in M. If the Weyl tensor is nonzero at a
maximum point of f and f satisfies a vanishing order condition at this
maximum point, then there exists a conformal metric g of g such that its
Q-curvature Q% equals f.

1. Introduction

Recently, some remarkable developments have been achieved in the existence theory
of the positive constant Q-curvature problem associated to the Paneitz—Branson
operator. One key ingredient in such works is that a strong maximum principle
for the fourth-order Paneitz—Branson operator is discovered under a hypothesis
on the positivity of some conformal invariants or Q-curvature of the background
metric. The readers are referred to [Gursky et al. 2016; Gursky and Malchiodi
2015; Hang and Yang 2016; Li and Xiong 2015] and the references therein. This
naturally stimulates us to study the GJIMS operator of order six and its associated Q-
curvature problem, the analogue to the Yamabe problem and Q-curvature problem
for the Paneitz—Branson operator. Except for the aforementioned cases, due to
the lack of a maximum principle for higher order elliptic equations in general, the
existence theory of such problems needs to be developed. Until an analogue of
Aubin’s result [1976] for the Yamabe problem is verified in Proposition 3.2 below,
by adapting some ideas for the Paneitz—Branson operator from [Esposito and Robert
2002; Djadli et al. 2000], we establish some existence results of the prescribed
Q-curvature problem on Einstein manifolds, in which case the sixth-order GIMS
operator has constant coefficients.

MSC2010: primary 53A30, 53C21, 58J05; secondary 35B50, 35J08, 35J35.
Keywords: sixth-order GIMS operator, prescribed Q-curvature problem, Green’s function, mountain
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The conformally covariant GIMS operators with principle part (—A g)k, keN
were discovered by Graham, Jenne, Mason and Sparling [Graham et al. 1992]. In
particular, the GJIMS operator of order six and the associated Q-curvature are given
as follows (see [Juhl 2013; Wiinsch 1986]): on manifolds (M", g) of dimension
n > 3 and n # 4, denote by o0} (Ag) the k-th elementary symmetric function of the
Schouten tensor

A= (R Ry )
= 2\ T 0 - l)gt/ :
Denote by
Cijk = VikAijj — VjAix, Bij = AgAj; — VijAik — AM Weiji = vkcijk - Alekijl

the Cotton tensor and Bach tensor, respectively. Let

8 . n?—4n+12
Ty =(n —2)01(Ay)g —8A; = ———=Ricy, +=——— R, g;
2=(n )o1(Ag)g —8A, n—2 1Cg+2(n_1)(n_2) &>
3n2—12n—4
Ty =— "7 01(Ag) g +4(n — D) Algg +8(n —2)01 (A A,
16
+(n—6)A401(Ag)g —48A; — ——1 B¢

1 1
v =— g3(4y) — 5

4(n—_4)<B, A)g

Then, the Q-curvature Qg is defined by

n+2
2

— 85(Agdo1(Ay)) + A2o1(Ay) — %al (Ag)Ago1(Ay)
(n—6)(n+6)
4

(1-1) Q8 = —312%0 — T2 A, (01(Ag)?) +4A,|AL2

—4(n—6)a1(A)IAl} + 01(Ag)’,

and the GJIMS operator of sixth-order P;’ is given by!

(1-2) —PS= A+ ASTrd+8Tod Ag+ %Ag(al (Ag)Ag)+8Tyd — ”;6 08,

where —dd = A,. The operator Pg6 is conformally covariant in the sense that if
g=u*""9g 0<ueC®M)withn>3andn #4,6,

n+6
(1-3) ui=6 P = PS(up),

and in dimension 6,

IThe definition of P differs from the formula (10.15) in [Juhl 2013] by a minus sign.
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forall p € C*°(M). When (M, g) is Einstein, f:gﬁ has constant coefficients; explicitly,

Qé_n4—20n2+64 3

8§ 32n2n—-13 ¢
b6 A3, —3n*46n+32 )
Pg _Ag+ dn(n—1) RgAg

3n*—12n° —52n%+128n+192
16n%2(n—1)2
Obviously, when n > 7, Qg is a positive constant whenever the scalar curvature R,
is positive. Through a direct computation, the GIMS operator Pg6 has the following
factorization:
6)(n+4) (n—4)(n+2) n—2

1) RO = (A I=OOED N (D ).
(-4 F et 4n(n—1) et 4n(n—1) ng4(n 1)

In general, as shown in [Fefferman and Graham 2012] and [Gover 2006], on
Einstein manifolds the GIMS operator of order 2k for all positive integers k satisfies
the above property as

6

2 n— 6
+ Redy =505,

k
_ H(—Ag n 4n(ff—f”_l)(n +2i—2)(n— 2i)).
i=1

In particular, choose M" = S§", g = gsn, then

6 n(n* —20n%+64)
QS" = 32 3
.2 4 19,3 2
P56n _ —Ain _ —=3n —z6n+32A§n _ 3n"—12n 5212 +128n+192 ot - an
_ <—A5n n (n—6)4(n—|—4)>(_Asn i (n—4)4(n—|—2))(_Asn n n(n4—2)>.

From now on, we set P, = Pg6 and Q, = Qg unless stated otherwise. Then, for any
¢ € H*(M, g), we get

fngMug
M

-2
= [ (vavR-2mva0.90) -5 2or A1 800
M

2) dpg.

As a starting point of the study on the sixth-order GJIMS operator, we obtain
some existence results of conformal metrics with positive Q-curvature candidates
on closed Einstein manifolds under some additional natural assumptions.

Theorem 1.1. Suppose (M", g) is a closed Einstein manifold of dimension n > 10
and has positive scalar curvature. Let f be a smooth positive function on M.
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Assume the Weyl tensor W, is nonzero at a maximum point p of f and f satisfies
the vanishing order condition at p:

{Agﬂp) =0 ifn =10,

a-5) k .
VEf(p)=0,k=2,3,4 ifn>11.

Then there exists a smooth solution to the Q-curvature equation

n+6 .
Pou = furn=6, u>0 in M.

We remark that the condition (1-5) imposed on the Q-curvature candidates f is
conformally invariant. The condition that (M, g) is Einstein is only used to seek a
positive solution. Theorem 1.1 is a special case of a generalized Theorem 3.3.

This paper is organized as follows. In Section 2, the expansions of Green’s
function for P, when n > 7 are presented under conformal normal coordinates
around a point. The technique used here is basically inspired by Lee and Parker
[1987]; see also [Hang and Yang 2016]. The complicated computations of the term
Pg(rf’_") are left to the Appendix, where r is the geodesic distance from this point.
In Section 3, we prove an analogue (cf., Proposition 3.2) of Aubin’s result for any
closed manifold of dimension # > 10, which is not locally conformally flat. Based on
this result, using the mountain pass lemma we state in Theorem 3.3 some results of
the prescribed Q-curvature problem associated to the sixth-order GJIMS operator on
Einstein manifolds. Then our main Theorem 1.1 directly follows from Theorem 3.3.

2. Expansion of Green’s function of Py

Based on the survey paper by Lee and Parker [1987] on the Yamabe problem, the
method of deriving expansions of Green’s function of F, is more or less standard
except for careful computations on some lower-order terms involved in F,. One may
also refer to [Hang and Yang 2016] for the Paneitz—Branson operator case. Green’s
functions of conformally covariant operators play an important role in the solvability
of the constant curvature problems, for instance, the Yamabe problem (see [Lee and
Parker 1987] etc.) and the constant Q-curvature problem for the Paneitz—Branson
operator (see [Djadli et al. 2000; Esposito and Robert 2002; Gursky et al. 2016;
Hang and Yang 2016], etc.). In particular, F. Hang and P. Yang [2016] set up a dual
variational method of the minimization for the Paneitz—Branson functional to seek
a positive maximizer of the dual functional; such a scheme heavily relies on the
positivity and expansion of its Green’s function. We expect that the expansion of
Green'’s function for Pg6 will be useful to some possible future applications.

Throughout, we use the following notation: 2% = 2n/(n — 6), @, = vol(S", gg»)
and whenn > 6, ¢, =1/8(n —2)(n —4)(n —6)w,—1). Form e Z, let

P, := {homogeneous polynomials in R" of degree m}
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and

H,, := {harmonic polynomials in R" of degree m}.
Then P, has the following decomposition (see [Stein 1970], p. 68-70):

[m/2]
P = @ (”'Zk,Hm72k)-

k=0

Proposition 2.1. Assume n > 6 and ker P, = 0. Let G, (x) be the Green’s function
of the sixth-order GIMS operator at the pole p € M" with the property that P, G, =
¢y 0, in the sense of distributions. Then, under the conformal normal coordinates
around p with conformal metric g, G,(x) has the following expansions:

(a) Ifnis odd, then

Gy(x) = rﬁ—"(l +3 w) +A+ 0@,

k=1
where A is a constant and y € Py.
(b) Ifn is even, then

n n n

Gp(x) =ro" (1 + Z 1//k> + r6_”( Z <pk) logr + r6_”< Z go,é) log?r
k=1 k=n—4 k=n—4
n

+r6_”< Z >log r+g logtr + A+ 0(r),
k=n—2

where A is a constant and ., o, i, ©1» ¢4 € Pr.
Moreover, we may restate some of the above results in another way.
(c) Ifn="17,8,9 or M is conformally flat near p, then
Gp(x) = cyr®™" + A+ 0(r),
where A is a constant.

(d) If n =10, then

G,y(x) = _4+m|W(p)| logr + O(1).

(e) If n > 11, then

Gp(x) = Cnr6_n + w4r6_” + O(rll—n)’
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where V4 € Py and

1 - 2 .
Vi) = 35075 [kz;(w,-k,j (p)x'x7)? — nrﬂ gy((vvikls(l’) +Wins(p))x')?

s 2.4
T dmry TP

3n—20 . 3 -
7 )rZ[Z«WM(m Wi (' = WP
k,l,s

* 2710(n+4)(n—4)(n—38

5n% —66n +224 WP 57
T 1201 —8)(n—4) rz[al (A).ij (P)x'x" + 12n(:— 1)r2_
3n* —16n° — 164n> +400n + 2432
576(n+4)(n+2)n(n—1)
Before starting to derive the expansion of Green’s function of F,, we first need
to introduce some notation. For o € R, set

IW(p)I*r?.

Ay, = r2A0 +2ard, +a(a+n—2), Ay,= rzAg +2ard, +a(ox +n—2),

where Ay denotes the Euclidean Laplacian, and
d

B —
9

——aAa:278r+2a+n_2

For k € 7, a straightforward computation yields (also see [Hang and Yang 2016,
Lemma 2.4])
Aq (e logk r)=Aqp logk r+kByg logl‘*1 r+ktk—1)g logk*2 r.
From this, for a, 8, y € R we get
(2-1) A, ApAq(ploghr)
= A ApAeplog"r +k(ByAgAy+AyBgAg+A,AgBy)glog'r
+k(k—1)(AgAat+B,BgAa+B,ApBot A, BsByt+AyAu+ A, Ap)plog2r
+ktk— 1Dk —2)

(BgAg+ ApBy+ B,Ay+ ByBgBy+ B,Ag+ A, By + A, Bg)plog" r
+k(k—1)(k—2)(k —3)(Ag+ Ag+ A, + ByBg+ B, By + Bs By )plog" ~*r
+k(k — 1) (k —2)(k — 3)(k — 4)(By + Bg + B, )plogt=r
+ k(k — 1) (k — 2)(k — 3) (k — 4) (k — 5)¢plog" 57

A direct computation yields
Ao(r*p) =r*"? Agg. AFr @)= Do(r* T Agg) = r** Au_2 Aup.
AYre) =r Ay 4Au 2Aug.
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In particular,
AYr®"0) =1 " Apy Aa_n Agn@.

Define

My := A STod +8Tad Ay + %Ag(m (A)Ag) +8Tud,
then rewrite (1-2) as —F, = (Ag)3 + Mg, — (n—6)/20,. Notice that

Ay =Aa +17(Ag — Ag) = Ag +779:((87 — 87)3)),
—P,(r*¢) =r" "% (Ag—sAq—2A0p + Ka®),

where

(2-2) Kop =1*(Ag — A)Ag-2Ag@ + Ag_a(r*(Ag — Ap))Agg

_ —6
+ Ag-sAa—2(P (Ag = 80)p 1 My(rg) = 2521 Q.

We first state the expression of Pg(rG_”) and leave the complicated computations
to the Appendix.

Lemma 2.2. Under conformal normal coordinates around p with metric g, we

have
=—cpbp+m—6)r " { —64(n9—4)
o iy . , iN2 3 2 4
[?Wlkz,(p)x x7) —ml;«wkls(p)wvﬂks(p»x Py LA r}
16(3n—20) i 3
L T [;«vvms(p) + Wins(p)x')? == |W(p>|2r2}

— 4(5n* — 66n +224)r2[01 (A),5 (' + %ﬂ]

3n*—16n3 —164n2+400n+2432 9 4 Sn
+ 3(n+4) (n+2)n(n—1) IWCp)IPr™p + 00,

where W is the Weyl tensor of metric g and each term in square brackets on the
right-hand side of the identity is a harmonic polynomial.

Consequently, we rewrite the above equation in Lemma 2.2 as
P (r®™) = cabp +17"

with f = O(r%).
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Observe that fori =0, 1, ..., [m/2],
Aglpigy, o = (@+20)2m —2i+a+n—2)
and
By |2y, ,, =2m+2a+n—2.
Then
(2'3) A2—nA4—nA6—n|r2"7-Lm_2,-
=6—n+20)4—n+20)2—n+2i)Cm+4-2i)2Cm+2—-2i)2m —2i).

We start to find a formal asymptotic solution like G, (x) =r®~"(1+Y_}_, ¥)+¢
with ¥ € Py. If we can find ¢ =Y ;_, ¥ such that

2-4) As_nAs_nAsn¥ + KW + f = 00",

6,a

the regularity theory for elliptic equations gives that there exists a solution ¢ € C_.

foranyO0 <o <1to
Pg(gp) = —r_"(Az_nA4_nA6_n1ﬁ + K6—n1/_f +f)e Clocl)c'

Thus it only remains to seek ¥ satisfying (2-4) via induction. For any nonnegative
integer k, it is not hard to see from the definition (2-2) of K¢_, that K¢_,¢ € Pryo
when ¢ € Pr. We first set ¥; = v, = 3 = 0 by (2-4) and define

fr=f=00"h.
Case 1. n is odd.
If we have found v, ..., Yy for 3 <k <n — 1 with ¥ € P, and

k k
Jie=Ar-nAd—n Ao (Z w,-) + Ko (Z x/fi) + f = bt + O,

i=1 i=1
then it follows from (2-3) that Ay, A4—, Ag—, is invertible on Py for0 <k <n—1.
Thus there exists a unique ¥4; € P41 such that

Az-nA4—pnA6-nVi+1 + bry1 =0.

This implies that

kt1 kt1
Jier1 =A2-nAs—nAs—n <Z %’) + Ke—n (Z Wi) +f
i=1 i=1

=fi +ArnAs_nAs—nVit1 + Ko—nVit1
=0(r* ™).

This finishes the induction and assertion (a) follows.
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Case 2. n is even and not less than 10.

Since Ay_,; As_n Ae—y is invertible on Py, for 0 <k <n—7, by the same induction

in Case 1, we may find v, ..., ¥, 7 such that
n—7 n—17

Jn-1= Az_"A4_”A6_”(Z¢")+K6—”(Z‘/fk> +f=0G""% :=b,_6+0">).
k=1 k=1

Let % =%, (x)+ Y (x) log r, where a ' (x) € P,_\r"OH and B, (x) €

n

r"~%7{,, then it follows from (2-1) that

0
Az nA4—nAg—n lﬁ,f_)G
= AZ—n A4—n A6—nar(l(),)6+(B2—n A4—n A6—n+A2—n B4y A6—n+A2—n A4—n B6—n),3,§(1)6 .

Notice that for 0 <i < (n — 8)/2, we have
Ay n A4y Aenliiz, o, 0
by (2-3) and

(BynA4—nAg—n+A2nBsnAgn+Ar_nAs—ynBop)lns3, = 8n—2)(n—4)(n—06)
£0.

Hence there exists a unique W,EO_)6 € Pn—6 + Pn—g logr such that
)
Ay nAgnA6-nV¥, ¢ +bu=0.
This indicates that

Foc6 =fo7+ ArnAs_nAsn¥ O + Ke_utr'”,
—0(" ) + (Ko_nBY) logr
=b,_s+ 0"~ 4)logr+0(r" Y.

Let 1/fr(lo_)5 = a,(lO)S —|—ﬁ(0) log r, where a s €Pus\r"” 694, and ﬂ( )5 e r" o,
Then we have

Ar nAsnAgn Klf,f%
= A2—n A4—n A6—n 05,(,0_)5+(32—n A4—n A6—n+A2—nB4—n A6—n+A2—n A4—n B6—n),8,g(i)5 .

By similar arguments, there exists a unique w( )5 € Pu_s+ "5 logr such that

A nAsnAs—n¥ys +bu-s=0.
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This implies that

fn S—fn 6+A2 nA4 nA6 nw,g )5+K —nw(O)
=0@0" Hlogr+ 0"
=bfll_)4 logr + 0"+ 0@¢" ) logr.

Choose ¢(1)4 = a(1)4 logr + ,B,(ll_)4 log2 r € Pp_gqlogr+ (r" My 4+ r" 4 H) log2 r.

n

Then (2-1) gives

Ay nAsnAs ¥y,
=[As_pAs_pAsnery’,
+2(Bo-nAs—nAz—n+ A6-nBs—nAr—n+ Ag—nAs—nBr- n),B 4llogr
+A2—nA4—nA6—n,B,El_)410g r+ 00" .

Since

(B6—nAa—nAz—n+A6—nBs—nAz—n+ A6—nAs—nBr—p) |r"—67-[2 =8(n+2)n(n—2)
#0;
(B6—nA4-—nAz-n+As-nBsnAzn+As—nAs_nBry) |r"*4HO =—4n(n—-2)(n—4)
#0
and Ay Ay—nAg—nly2igy, , ,, 70for 0 <i < (n—38)/2, there exists a unique W,§1_)4
such that
Ar_ Ay A6 na( )
+2(Bo-nAs-nArn+ AsnBsnArn+ AcnAsnBr By +bi, =0
and
fn(l)4 —fn 5+ A nAg As- nw,g )4 +K 7nw(])
=00 H+ 00" ) logr+ 0" ) log*r
=0, + 0" ) logr + 0" ) + 0" %) log* .

Choose 1//,50_)4 € Pu_a + (r" My +r""*Ho) log r to remove the term b’(10_) 4 and set

fn(0)4—fn(l4+A2 nA4 nA6 nl/f,g )4+K —nw(O)
=00 Hlogr+ 00" )+ 00" ) log?r.
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By similar arguments and (2-1), we get

vV e Py slogr + (- OHs + "4 H) log? r:

Y0 € Paca+ (" My + " Hy) log s

YO e Puslog r+ (" My + " Hy + "2 Ho) log H r, fori =0, 1,2;
w,?_)l € Pu_ilog' r+ (r"OHs +r"*Hs+r"*H ) log Ty, fori=0,1,2;
YD e Pylog r+ (" OMe + r" T My + 1" M) log fori =0, 1,2, 3.

Now we set

0 0 0 1 0 1
1ﬁn—6 = W,(,_)(,, 1;0n—5 = ,5_)5, Wn—4 = 1pn(_)4 + 1#,5_)4» 1;011—3 = 1ﬁn(_)3 + WYE_)3

and
2 2

3
Yaa=Y Ul Y= U Yw= Yl

i=0 i=0 i=0

Eventually, we obtain

n n
Jn=A2-nAs—nAs—n (Z Wk) + Ke—n (Z lﬂk) +f
k=1 k=1
= 0" ™Y (log® r +1log?r +logr +1)+ 0" ) log* r.

Hence, r " f,, € C* for any 0 < o < 1. This finishes the induction and we obtain
assertion (b) as desired.

Case 3. n =8.

Notice that
P(Gy(x) —car ™ =00 e P,

for some g < p < 2. Then it follows from the regularity theory of elliptic equations
that G, (x) — car 2 e Cf;;g/p. From this, we have G,(x) = cr 2+ A+0®).

Case 4. M is locally conformally flat.

One may choose g flat near p and P, = —AS. Hence, B, (G(x) — cr® =0
and then G, (x) — c,r%" is smooth near p.

Therefore, the assertion (c) follows from cases 1,3,4. In some special cases,
the leading term ¥4 can be computed with the help of Lemma 2.2. The proof of
Proposition 2.1 is complete.
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3. n > 10 and not locally conformally flat
Similar to the Yamabe constant, for n > 3 and n # 4, 6, we define

uPoud
veM = inp S
O<ueH3(M,g) (

2n n6’
Jgun= d:“g)

It follows from (1-3) that Y6+(M, g) is a conformal invariant. However, due to the
lack of a maximum principle for higher order elliptic equations in general, we first
study another conformally invariant quantity,

Sy P dpg

Ye(M, g) = inf

ue H3 (M, )\ (0} ( n=6’

2n
s n

S lul=6 s, )
In particular, we have Y5(S") = Y (8") = (n — 6)/2Q sy ". For w € CX(R"),
let

lwiipsz =Y 1D wll 2@y ~ IVAW| 2@,
|B1=3

and let D>2(R") denote the completion of C2°(R"™) under this norm. The equiv-
alence of the above last two norms can be easily deduced by the formula (3-4)
below. We first recall an optimal Euclidean Sobolev inequality (see [Lions 1985,
p-154-165], [Lieb 1983]).

Lemma 3.1. Forn > 17, the following sharp Sobolev embedding inequality holds:

2n n
Yé(sn)(/ |w|n—6dy) 5/ IVAw|?dy forall we D> R").
Rn Rn

The equality holds if and only if w(y) = (2/(1 + |y|*)"=9/2 up to any nonzero
constant multiple, as well as all translations and dilations.

Proposition 3.2. On a closed Riemannian manifold (M", g) of dimension n > 10,
if there exists p € M" such that the Weyl tensor Wy (p) # 0, then Yo(M") < Ye(S").

Proof. Recall the definition of F:

—Py = A} + ASTod +3Tod Ay + "—ngg(m(A)Ag) +0Tad - _n;6Qg'

Then for all ¢ € H3(M, g),
-2
/ ¢ Popdyiy = f IVAQlgdig—2 / To(Ve. VAQ)djtg—"5= / 01(A)(Ag) dpg
M M M M

-6
—/ T4(V¢,V<p)dug+"7/ Q9 dpiy.
M M
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Fix p > 0 small and choose test functions
_ . 2e % 0
o) =my @), w0 =(5rm) o €>0

where r = |x| =dg(x, p) and
n,eCr 0<n,<1, my=1 in B, and 1n,=0 in Bﬁp.

It is known from Lee and Parker [1987] that up to a conformal factor, under
conformal normal coordinates around p with metric g, for all N > 5, we have

W(p)I2

Ul(Ag)(P)ZO» gl(Ag)J-(p)zo, Agal(Ag)(p):_IZ(n—l)

and /detg =14+ 0@N).
Our purpose is to estimate [, ¢ Py djig and [, 9*"/=% dp,. A direct computa-
tion shows
2 2
;o r v €e—mn—-95r
ué - _(n - 6)”6 62 +r2’ ue - _(n - 6)”6 (62 +r2)2
and

Aoue = —(n —6) (ne® +4r?),

(€2 + 2)2

(Aoue) = (n—6)(n —4) ———[(n + 2)e + 4.

( 2 2)3

We start with [y, |VA@[; du, and divide its integral into two parts: [y, = fp + [y, 7 -
Compute

f IVAQIG disg
By

= / g7 (Ap) i(Ap) jdug
B

0

7+ 0 (Aop + 0NN i (Agp + 0N ) ;1 + 0(N)) dx
By

= f [(VA)op|* dx + / (Aop) (0" D'+ 0N 1) dx
B, B,

and

2.2
/ |(VA)0¢|2dx=(n—6)2(n—4)2/ %[(ﬂ—i—Z)e + 4722 dx
R”\E, R"\B (E )

o0
< c/ o> "do = 0(e"°).
p/e
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Similarly, we estimate fM\Ep |VA<p|§, dpg = O (€"~%). Thus, we obtain

/|VA<p|§dug =/ |VAgue |*dx + O (e"°).
M R~

Secondly, we compute

/ 01(A)(Ap)? dug

B/’
=/ (%m (A4),5(p)x'x! + 0(r3))(A0<p + 00" e (1+ 0@N)) dx
BP
1 u?
= fB ﬁAm(A)(pan(Aow)de fB pO(”S)m(n€2+4r2)2dx

-6 2 w 2 P 2 4 252 9] 3y,,2
__ (=07 |W(p)| wn_lf (n62+ ;4) ufr”+1dr+/ 2(r )bztez N
24n(n —1) o (e2471?) B, (€~ +7r?)

and for some large enough N

/ _o1(A)(Ap) duy < C / Ao+ 0N e (1 + 0 N)) dx
sz\Bp sz\Bp

<c / (o) + 0PN/ P dx
sz\Bj)

<C / (UeDonp+2Vue- V41, Aoue)? dx + 0 (€"7°)
Bz,,\Bp
/*2)0 (nEZ + 4r2)2 uz
p (E24rH)* ¢
— 2p/e 242 n—1
a5 /eCEZ/ (n+4o 2) 0'2
p/€ (I+o0°)"=

r"~tdr+ 0"

A

do + 0(e"™%)

8—n
< cé(f) + 0@ %) = 0" ).

Observe that

3,2 0 (e*) if n = 10,

u

(3-1) /Bmdx: O(loge|) ifn=11,
0

0(€) ifn>12.
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Hence,

-2 f o1(A)(Ag)? disg
M
_ =6’ =W /,, (ne> +4r2)% 5 i1
- 48n(n — 1) " (€2 e
0 (e*) if n =10,
+1{ 0(|loge|) ifn=11,
0(€) if n>12.

Thirdly, we compute [,, T>(Ve, VA@) dig.

J

0

T (Vo, VAp) dug = / [(n —2)01(A)(Vp, VAp) —8A;i0,i(Ap) jl1du,.
B,
Observe that u. ; = (x' /r)u. and (Aouc) ; = (x'/r)(Aouc). Then we get

(n—2) /B 01 (A) (Yo, VAQ) ditg

1 L.
=(n—2) / (501 (A);; (p)x‘x/+ 0(r3)>g"’<o,k<A<p>,z dig
BP

1 .
=(n—2) | (501 (A),;; (p)x'x/+ 0<r3>) "+ 0N pr(Dop + OGN N dpg

=21

=" / ~ Aci(A) (PP (Do), dx + / 0)1¢/|I(Aop)| dx
B, B,

__ = DWpF _2)|W(p)|2/{—(n 6P - [+ + 47} ax

24n(n—1) Jp (€2 +r2)*
0(1’3)u€2
+ pr(ez ) dx
_(n—2)(n—4)(n—6)> ) o, 2,42
= ae-n "W »[3,,(624‘—7”2)4”6[(” FHeTArld

O(r®)u?
— € _dx,
+/Bp(€2+72)2 x
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and

—8/ Aijo.i(Ag), jdug
B

0

1 /
= / (A,-,-,k(p)xk + EAij,kl(p)x"xl + 0(”3)>§0,i(A0§0 + 0NN du,
B,

0

2
:—4/ Aij,kl(p)xkxlx’x [ (n—4)(n— 6)2u—erz)4[(n+2)62+4r2]] dx

5, (€2
4 /BPO(F3)|<P/||(A0<P)/|dX
=4(n—4)(n—6) / ———Z(szj(p)x x/)? — 1<A)’Z(f);ixjr2}
ﬁ [(n+2)e>+4r] dx + Bp% x
R g(i)inz; 6)2/p;(Wli (D)Wt (p)x'x/x’x )( e 5y [(n+2)e*+4r?] dx
—4(n;(1)£n2;6)2 /B AZZ(A)(;;T 2(n+2)E + 42 dx + Bp%
((Z—T)):Z _f);) W1 IW(p)| f ,,( nf 22) ———[(n+2)e*+4r ] dr+ /B p% dx,

where the last identity follows from

u?

W[(ﬂ+2)€ —|—4r ]dx

ZWli (P)Wskzz(P)/ xxlxx

2

m (n+2)€ +4I" ]dr

§ : o o
= VVzli(p)WSkh(p)L lst&-]gssl‘ dﬂgn—l/(; I"n+3
k,l e

P n+3 2
(2+ 2)4
2

2+ 2)4

Wp—1

— 2 2
=T 2) [(n4+2)e“+4r~] dr

ZWM, (P)Wakts ()87 8,1481 8811855 /

(W) P+ Wikt (9) Wi (p)] / [(n+2)e>+4r2] dr

n(n +2)

2
|W(p)|2/0 Pt ((n42)e+ 42 ar.

T 2n(n+2) (€2+r2)
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Then we have

—2/7&(V¢,VA¢)dug
BP

(n*> —28)(n —4)(n — 6)?
 12ntn—DH(n+2)

2

|W( )|2a) prl’l+3 I/l
P On=1 | (€2 112y

[(n+2)e> +4r*]dr

O (r?)u?
e 4
+/Bp(€2 Fr2e

By a similar argument, one has

f | Ty(Vp, VAp)| < cf VollVAg| dig

Bap\B, B>,\B

< Cf _ull1(Aue) | dx 4+ O(€"%) = 0" ).
sz\ 4

Fourthly, we compute fM T4(Vo, Vo) du,.

(n—6) /B A\ ANVl ity = (n—6) /B (Ao ) (p) + 0N (9 + 0Dl dx

e WO [l +f 0wz
12(n —1)Jp (€2+7r2)? B,(€2412)?

Using (A-5), we get

16
il 4 Bijp.ip,jdu,

0

16 BjixixJ
- _ _622 1 dx
n—4/( : (2 )2

16(n — 6)* 2
S /B[ o Z[(Wk,s<p)+vv1ks<p>>x 5

2
22 3 Ue
o=y VPP ol(A) i (Px'xd + oG )]( Ty

_ _lem—6)>1 2 1 Tn—8
- n—4 [ 3n(ni—2) T 20— 2xn—1)+12m 2xn—1m]

O (r)u?
W) /( A +/Bp—(62+r2)2dx

19) 3y,,2
:/ Z(r )12462 dx,
B, (€2 +717)
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where the second identity follows from

D Waas(p) + Waaks (P))* = 2iWP)* +2 D Watas () Wirks (p) = 3|W(p) %,
i,k,l,s i,k,l,s

in view of
0 = Whts(Whtes+Wiksi+Wisik) = WikasWitks +Wikts Whiest + Wikas Wsie = 2WatsWhis — W

at p. Also we have

f _Tu(Vg, V@)dﬂgicf Vol; dig = O(€"™).
By,\B, sz\B

Hence, collecting the above terms together with (3-1), we obtain

- / T4 (Vo, Vo) dig
M

16 _
=—(n—6)/ Acn(A)IVwa,dMngmeijw,iw,jdung0(6” %)
B, —4Js,

0 (€Y if n = 10,
3 [W(p)|? ulr? s :
=(n—06) dx + 3 O(|loge|) ifn=11,
12(n — 1) Jp, (€2 +712)? 5 .
O(e’) if n>12.

Finally, we compute ((n — 6)/2) fM Qg<p2 dug. By the definition (1-1) of Qg,
integration by parts gives

O (r3)u?

n—=6 2 2 n—6
:T/MA A it + | O

n 2

—6 e
= 5 /AO’](A)A(,O d/,Lg /de-'-O(G 6)

(n—6)*|W(p)|* P uZrn!
T T2m—n Y @l
0 (e*) if n = 10,
+ 1 0(|loge|) ifn=11,
0(ed) if n > 12,

n— 10)r2 — nez] dr
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by (3-1), where the last identity follows from

n—

6
f Aoi(A)Ag® dug
BP

N=1y(¢?)) dx

O (r)u?

n—=6
:TAGI(A)(p)/ 2(pAog + [ Volp) der/ 5 dx
B, B, € +71
(n—6)*|W(p)|? Pourn! s, f 0 (r)u?
- Wy ——[(n—10)r" — d — 2 °d
20—1) Wn—1 ; (62+r2)2[(n yre —ne”ldr + €2+r2 x

and the first identity follows from

/ _ Qg (pZ dﬂg
B>y \B,

Therefore collecting all the above terms together, we obtain

< C/ Culdx = 0("0).
B>y \B,

/ pPpdu, = / |VAoUe|? dx + A p.e|W(P) 2wyt + O (e™M=63)),
M R~

where A, , ¢ is a constant given by

-2 p 2 4 272 -6 p ,2,.n+1

(€2 4r2)4 12(n —1) Jy (€2 +r2)2
1 P u2rn 1
12(n —DJy 2+ 2)2 [(n —10)r?> — ne?)dr
(P =28)(n—4) s
oG D12 o | @ gt DE ]dr>
(n - 6)2 —_ ,0/6 (n +4O‘2)2 o )
612(”_ 1y 4( 4n _/0 (1 o2)4 (1+03)~ 96" 4o

p/e
+(n—6) / 2)2 ————= (140" " %" do

/€
_/(;/O m(1+02) (n— 6) n— 1[( _10)0_2_n]do-

(n —28)(n—4) [rle gnt3
n(n+2) o (I4+02)*

(140>~ "9(n+2) +407] dcr),
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where r = eo. When n = 10, we claim that the leading term of the constant in the
parentheses on the right-hand side of the above identity:

1/9/5(40_2+10)2 p/e 1
0

(1+o) 4o do + +0) 4o +10)0° do

—(1
5 (14+02)4 0 (1+a2)2(
18 (7€ 1 2N—d 4 2 13
- —(1+62)4(1 +0°) "do“+12)0 7 do
0

is a negative constant multiple of |log €|. To see this, notice it is obviously true for
the third term, and the first two terms equal

p/e
%f (02[(462+10)>—180% (46> +12)]+5(40c > +10)(1+06>)*}(14+02) 867 do
0

1

p/e
=§/ (—360° —460* +22002 4+ 50)(1 +0%) 867 do,
0

whose leading term is also a negative constant multiple of |loge|. For n > 11, let
t = 0% The limit of the coefficient of |W(p)|*w,—1 as € — 0 is

2 00 2 a
on=7_(n1=6) 4{n—2 (nt+4n?® &

12(n—1) 4n 0 (1+Z)”_2
o0 0
1 n (n—10)t—n 2y
-6 ——— 12 dt — ~ 2 dt
o )/0 G ) (0
_?=28)(n—4) [T (4244t np1
nn+2)  Jo (I+1)"2 -

With the help of the Beta function:

o) a—1 r r
/x_dsz(a,ﬂ)zw,
o (I4+x)eth F'(a+8)
for Re(a) > 0, Re(B) > 0, we have
n—2 [ (n+41)? 2
I Jy (o2t
_n—Z/OO(n—4)2+8(n—4)(1+t)+16(1+t)2 n
— 12dt
4n 0 (1+t)n_2
_n=27 _ a2p(h " _ gt nooqn_
=L [(n 4) B(2+1,2 3)+8(n 4)3(2+1,2 4)—|—16B(2—|—1,2 5)]
o 1 n n ln 5
_ - 47 — —6)B(= °_
(n 6)/0 et =0-6) (2+ 5-5),
o0
_ [ m=10)t—n 51, _ noqn_ non_
e = 1008(5 +1.5=5) +nB(5.5 - 4),
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and

_ (n*=28)(n—4) (n+2)+4t aay
nn+2) o (1412
_(0?=28)(n—4) [T4(1+1)*+(n=6)(1+1)—(n=2) 4

nn+2)  J (1+41)m2
_ 4n*-28)(n— 4 g n (n>—28)(n—4)(n— 6 g n
n(n+2) (2 +13 _5> n(n+2) <2 +13 _4>

(n*—28)(n—4)(n—2) ,(n n_
+ n(n12) B(3+1.5-3).

Hence, the above limit of the coefficient of |W(p)|?w,—_, is rewritten as

R e

n rn—2 ,  (n*—=28)(n—4)(n—2)
+B< L3 3)- gy T n(n+2) ]

2m—2)(n—4) (n*—=28)(n—4)(n—6)
L n B nn+2) ]

Iy __5>"4(n—2) _4(n2—28)(n—4)]}

+B( +1, ——4)

- 10 -6
L n nA 10+ nn+2)

+B<
7 (n—6)*

=2 e (2“2 5)
(n=2)(5-4H(5—5)

2_ J—
I+ )3y o 120

64{(n—10)+

ﬁ(—rﬁ 1 8n2 4+ 281 — 176)
nn+2)
4

+ nn+2)

(=1 + 6n2 + 301 — 116)},

where we have used some elementary identities

noon N _TGFOIG-3 G -HGE-5 m n_
B<2+1’2 3)‘ I'(n—2) _(n—3)(n—4)B<2+1’2 5)’
(2+1,%—4) 141,0-5),
nn _ F(E)F(§—4) _n—lO n n
B(5.5-4) = T4 n B(5+1.5-9)
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The constant in the last brace of (3-2) when n > 11 is

!
T 6n(12)(n—3)

+8(n —3)[(n — 10)(—n> + 81 +28n — 176) + 8(—n> + 6n> +30n — 116)]}
o 1 a5 4 3 2 _
=n—10+ 16n(n+2)(n—3)[ 3n° +2n" 4+ 228n° — 264n 1760n — 768]

—3n5 +18n*+52n% — 20012 —800n — 768 -

16n(n+2)(n—3)

n—10 {(n —2)(n —8)(n — 10)(5n° — 2n — 120)

0.

On the other hand, we have

2n_ 2n, 2n_ 2n,
f@n—ﬁ dung ul=° dug+/ _pn=6 dung ul =S dx + O (e").
M B, B,\B, "

Therefore, putting these facts together, we conclude by Lemma 3.1 that

O(e* if n = 10,
JuoPep disg . > ( 5) :
o =6 =Ye(S )+An,p,e|W(p)| wp—1+ 40 (€ |10g€|) if n =11,
(qu)m dﬂg) " 0(e) if n > 12,
[ Y6(S™) = CulW(p)*e*lloge| + O(e*)  if n =10,
—Y6(8™) = CalW(p)|2e* + o(e*) ifn>11,

for some positive constant C,, > 0. Consequently, choosing € sufficiently small, we
obtain Ys(M") < Y6(S™). This finishes the proof. O

Given a smooth positive function f on M", we define a “free” energy functional
by

1 1 :
Ef[u]:i/u%udug—ﬁff|u|2 ditg.
M M

Let u ; or V;u denote the covariant derivatives of # with respect to the metric g and
Rfjk be the Riemannian curvature tensor of metric g. Notice that

ViViViu =V, V;Viu + R Veu = V;V'Viu — R\ V.

We have

(3-3) /MWAM@dMg :mevju—R’;vku@dug.
Under g-normal coordinates around a point, one gets

S IVul}

= |V2ul} + (VAViu, VV ) g +u i (RGu i+ Rhu iy + Rl s + R ).
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Integrating the above identity over M gives

(3-4) /M |AVul} dpg
:/M|V3u|§dug+/Mo(|Rm||v2u|g+|VRm||Vu|g)|v2u|gdug.

From (3-3) and (3-4), it yields that the following two norms are equivalent:
172
el 3 :=(/M<|VAM|§dug +V2ulg + [ Vulg +u?) dug)

12
%(/(|V3u|§ dug + |V2u|§ + IVulé +u?) dpcg> . ueH(M, 2).
M

Let || - ||, denote the norm of LP(M, g) for 1 < p < o0.

A sequence {u} in H 3(M, g) is called a Palais—Smale (P-S)g sequence for E
if Ef[ug] — B € Rand DEf[ui] — 0 as k — oo. The energy Ey satisfies the
(P-S)g condition if any Palais—Smale sequence of E has a strongly convergent
subsequence. We call F, is coercive if there exists a constant p(g) > 0 such that

[ ot dig =) [ g, oral v e 1.0

Remark. If (M, g) is Einstein and of positive constant scalar curvature, from the
factorization (1-4) of F,, the coercivity of F, is automatically satisfied.

As an application, we adapt some arguments in Esposito and Robert [2002] to
show some existence results of the prescribed Q-curvature equation, whose solution
may change signs due to the lack of maximum principles (in general).

Theorem 3.3. Let (M", g) be a smooth closed manifold of dimension n > 10 and
[ be a smooth positive function in M". Suppose the Weyl tensor W, is nonzero at
a maximum point of f and f satisfies the vanishing order condition (1-5) at this
maximum point. If P, is coercive, then there exists a nontrivial COrO0<p<1)
solution to

(3-5) Pu=flul*2u in M.

In addition, if (M, g) is Einstein and of positive scalar curvature, then there exists a
smooth solution to the Q-curvature equation

o)}

n+6
(3-6) Pu=fur6,u>0 in M.
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Proof. By the assumptions, there exists p € M such that f(p) = max,cp f(x),
W, (p) # 0 and the vanishing order condition (1-5) of f is true at p. Let

Y
I f17% @]l

where ¢ = n,u. is the test function chosen in Proposition 3.2. By choosing 7 large
enough, we get E[y(t9)] < 0. Let

Ve(t) =1

r= C([0. to]. H}(M. 2)): v (0) =0, - ——fL—w.
{y(r)e (0. fol. HA(M, £0: 7 (0) = 0.y 1) =ty

From the coercivity of P, and the Sobolev embedding theorem, we have

7 1 fyoPodu, 1 1 1
12 BRI R T ST

It suffices to only estimate the term:

o0 4 o
/ fon=bdu, =f [f(p) + Z%ai.---ikf(p)xll x4 O(IXIS)]M?d)C + O0(e")
M k=2

B,

2n 4 :
- O™ ifn=10,
n—6
= d
Fp) | ue x+{m&) ifn>11,

where the second equality follows from the vanishing order condition (1-5) of f at p.
From this and some existing estimates in the proof of Proposition 3.2, we conclude
that there exist some sufficiently small € > 0 and a constant C;, > 0 such that

supEr[ye ()] =E¢[ye ()

t>0
tt g_
_§<fM‘/’Pg§0dng)2/(2 ?
n\ I f Y%l

3 &on n\g / 2.4 4
E(mﬁxf) 6 Ye(S")6 —C |W(p)|“€e*|loge| 4+ O(e”) if n =10,

A

3 S omE _ v 2.4 4 i
r—l(m;[le) Ys(§")6 — C |W(p)|“e™ +o(e™) ifn>11,

f

where t* = ([, 0 By dug/||f‘/2ﬁ<p||§:)”(2 ® Then it follows from the mountain
pass lemma (see [Ambrosetti and Rabinowitz 1973] or [Esposito and Robert 2002,
Proposition 1]) that

p=inf sup Eyly(0)] < sup Erly. (0] < 2 Yo(8")  (max /)5

Yel o<t<i, >0

is a critical value of E; and there exists a (P-S)g sequence {uy} of E; in H 3(M, g)-
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Next we claim that E; satisfies the (P-S)g condition. For the above (P-S)g
sequence {uy} satisfying E¢[uy] — B and DEs[uy] — 0 as k — oo, we have

2B +o(llurllgs) =2Ef[ux] — (DEg[ugl, u /flukl ditg.
Together with the coercivity of F,, one has
1@l = 2B ] + 2 /Mﬂukm dag = €+ olllugll ).
From this, we get {u;} is bounded in H 3(M, g). Then up to a subsequence, as
k — oo, ux — uin H>(M, g) and uy — u in L?(M, g) for 1 < p < 2% Tt is easy

to verify that u is a weak solution to (3-5), that is, for all ¢ € H3(M, 2),

B
/WPgMd,U«g=/f|“|2 2uy dug.
M M

Choosing ¥ = u, one has
o
[ wpawdis, = [ fu du.
M M

3
B =2 [ ful dug 0.
M

whence

Applying the Brezis-Lieb lemma to
| V8w ding = [ 1VauE dise+ | 198G =00 dig + 000,

[ P e = [ dig [ = dg + o),
M M M
we have
Efluy] — Ef[u]l = fIVA(u i)l 2ﬁ/flu dug+o(1)
= Erlu —ur]+o(1).
Since DEf[ux] — 0in (H3(M, g))', we have

o(1) =(ux —u, DE¢[ui])
=(ur —u, DE¢[ux] — DEy[ul])

= [ 198G dig ~ [ f i di + 001,
M M
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Thus, we obtain
2 [ 198G =) ditg+0(1) = s =
= Eflur] — Ef[u] +o(1) < Ef[ug] +o(1) — B,
as k — oo, which yields
(7 | 198G =0 dis, < 3+ 0.

Mimicking a cut-and-paste argument as in [Djadli et al. 2000], we obtain that given
€ > 0, there exists a constant B, > 0 such that

228
( /M |1/f|2“dug) s<1+e)Y6(S">—1/M<|VAz/f|§+|v2vf|§+|wf|§)dug+Be/M e

for all € H3(M, g). Choosing ¥ = uy — u and k sufficiently large, we get

22
</M|u—uk|z” dug) s(1+e)Y6<S">—1/M|VA<u—uk>|§dug+o<1).
Hence we have

o(1) =/ |VA(u—uk)|§dug—fflu—uk|2” disg
M M

z/ | VA —u)l; dpg
M

roox =
[1 — (max f)(1+€) Z ¥o(5") 2 (/ | VA (u —w)lidug) ]
M

From (3-7) and B8 < (3/n)Y6(S”)”/6(maXM f)(6_”)/6, choosing € sufficiently small,
we get

o) = C [ 198G~ )
M

Combining the above inequality and the coercivity of P, to show that uy — u
in H3(M, g). Using the regularity result in Lemma 3.4 below, we know that
ue COM(M) forany 0 < pu < 1.

In addition, assume (M, g) is Einstein and has positive constant scalar curvature.
We define the modified energy in H3(M, g) by

| 1 2t
Ef [u]—i Mngud,ug—ﬁ bet+ dpg,

where u, = max{u, 0}. Using the above similar arguments associated with the
mountain pass lemma and mimicking what we did in Lemma 3.4 below for E,
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we get that there exists a nontrivial C%-solution u to

n+6
(3-8) Pu=fu™® in M.

Since F, is coercive by the remark on page 57, testing equation (3-8) with
u_ = minf{u, 0} we conclude that u > 0 in M. Together with R, being a positive
constant and the factorization (1-4) of GJMS operator:

<_Ag+%le )(_Aﬁ%R)( Ay +4( 1) ) =0

and 4 # 0 in M, we employ the maximum principle twice and strong maximum
principle once for elliptic equations of second-order to show that u is a positive
solution to the equation (3-6). From this and Schauder estimates for elliptic equa-
tions, we conclude that u € C*°(M). This completes the proof. ]

We are now concerned with the regularity of mountain pass critical points for E.

Lemma 3.4. Let (M, g) be a smooth closed Riemannian manifold of dimension
n>7. Assume u € H3(M, g) is a weak solution of equation (3-5). Thenu € CO™(M)
forany 0 < u < 1.

Proof. Rewrite P, = (—A)* — My + (n —6)/2Q, by (1-2). Letu € H3(M, g) be
a weak solution of equation (3-5) and rewrite this equation as

(—Ag+ DPu =Mgu+3A2u —3A,u+ (1= 500 )u+ flu* >
(3-9) =b+ flul*?

where b € H~'(M, g). By the Sobolev embedding theorem we have u € L2 (M, g)
and |u|2'_2 € L"%(M, g). Given € > 0, there exist a K. > 0 and a decomposition
of f|u|211 = he +ne With ||hclln6 < €, [INellooc < Ke. Inspired by the arguments

in [Esposito and Robert 2002, Proposition 3], for s > 1 we define an operator
Ho:ve L (M, g) — (—Ag+ 1) (hev) € LY (M, g).

Indeed, from the Sobolev embedding theorem, the standard W2 ?-regularity theory
of the elliptic operator —A, + 1 and Holder’s inequality, we have

IHevlls < Cll(=Ag + D7 (hev)l| g ns <Cllhev|l ns_
W n+6s n+6s
=Cliaclnlvlls = Celvlls,

where the constant C is independent of u. If we choose € > 0 small enough, then
the norm of H, on the space L®(M, g) satisfies

| Hellps—1 < Ce < 3.
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With the help of the operator H,, we rewrite equation (3-9) as
(Id —Hou = (—=Ag + D7 (b +new),

then it is easy to show Id —H, : L* — L* is bounded and invertible. We intend to
prove u € H%(M, g). To see this, notice that (—A, + 1) 73 (b + neu) € H>(M, g)
since b+neu € H~' (M, g). In the following, we first show u € H*(M, g). Apply the
Sobolev embedding theorem and the L*-boundedness of the operator (Id —H,)~! to
show thatif n <10, u € LP(M, g) forall p > 1, and if n > 10, u € L>/®=10 (M, g).
In the latter case we have |u|? ~2u € L21(1=0)/(1+0)@=10) (A7 o) From equation
(3-9), we get

(—Ag+ D= (=Ag+ 1) 'b+ (A + D7 (Fluf® 2u).

From (_Ag + 1)*1(|u|2n72u) c W2,2n(n76)/((n+6)(n,10))(M’ g) — LZ(M, g) and
(—Ag + D7'b e L2(M, g), we have u € H*(M, g) in both cases. Repeat the
above step with u € H 4(M, g)and b € L*(M, g) in this situation. Notice that
(—Ag + D73 b+ neu) € HS(M, g), similar arguments in the above step show that
ifn<12, ue LP(M, g) forall p> 1 andifn > 12, u € L*/*~12(M, g). In the
latter case, we get |u|* ~2u € L%(M, g) due to 2n(n — 6)/((n + 6)(n — 12)) > 2.
Hence we obtain u € H%(M, g).

Finally we start with the classical bootstrap. We now construct a nondecreasing
sequence s; € RU {400} such that u € WO (M, g) for all k € N.. Set 59 = 2, and
find k > 0 such that u € W% (M, g). Next we will define s;, by induction. The
Sobolev embedding theorem yields

nsg
beLn2x(M,g),

with the convention that ns/(n — 2sy) = 400 if s > n/2, and

nsi(n—>6)

|u|2ﬁ_2u c LW(M, g)’

with the convention that ns;/(n — 6s;) = 400 if sy > n/6. In view of equation
(3-9), we have

nsy nsy(n —6) }

€ WO+ (M. ith s, = min{ ,
" (M. 8) With Sty n—2s; (n—06s)(n+06)

If s; € R for all k € N, it must hold that sy — +o00. Then we have u € W®?(M, g)
forall 1 < p < 4o00. If 53 = 400 for all k > ko + 1, then sz, > n/6, whence
be LM, g) and |u|* ~2u € LY(M, g) for all 1 < ¢ < +o0. The equation (3-9)
leads to u € W®"/#(M). Repeating the argument twice, we obtain u € W7 (M, g)
for all 1 < p < 4o00. From this and the Sobolev embedding theorem, we have
u € C>V(M) for all 0 < v < 1. By the regularity theory for the classical solution
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of the elliptic operator —A, + 1, we get u € C%*(M) for some 0 < 1 < 1. This
completes the proof. U

Appendix: proof of Lemma 2.2

As in Proposition 3.2, one may employ all computations under conformal normal
coordinates of the metric g around a point in M. From Lee and Parker [1987] that
up to a conformal factor, under g-conformal normal coordinates around this point,

for all N > 5 we have
W
o1 (Ag) =0, o (Ag),i =0, AgUl (Ag) = —m

at this point and \/detg = 1 + O(r") near this point.
To simplify the notation, we will omit the subscript g. Notice that

220t

n

PO =[ A0+ 80T d + STodA+ T2 AN (AIA) + 8Tud —

6

Next, we begin to estimate all terms /;—/¢.
For I, let u = u(r) be a radial function. We have

Au(r) =Aogu(r) + 0N u';
Au(r) =Ao(Aou(r) + 0N ) + 0V (Agu(r) + 0N Hu'y
=Agu(r) + 0" "+ 0N P + 0N s
Nu(r) =Agu(r) + 0 Hu® + 0" @ + o0V "
+O00" "+ 0" .
Hence we obtain
LL=A0"" =—c,8, + 00N ™).
To estimate I, notice that
L=A8Tod(r"") =—A[(T2)y (r*™") j1i=—Al(T2)yi (r*™) j+(T2)y ) jil.
Using
(r6_")’j = (6—n)r*"x/,
(A1) (™) ji= @G =) (6 —n)r "X xd + (6 —n)r* "8 + 0 (),
one has

(12)ij.: (r®™)j = (n — 10)01(A) ; (6 — n)r*"x7 = (n — 10)(6 — n)oy (A) jx/r™"
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and

(1) (r8™™) ji = [(n —2)01(A)gij —8A;j1(6 — m)[(4 — n)r*xixd + 74718, + O(r6~™)]
= (6—n)[4(n—4o1(A)r*™" =84 —n)Ayx'x/r* "]+ 0@r"™").

Hence, we obtain

L=—(6—n)A[(n—10)01(A) jx/r* " +4(n—4)o1 (A)r* " —8(4—n) A;x x/r*™"]

= (n —6){(n — 10)[4(4 — n)o1(A) jx/r*™" +2(4 —n)oy (A) jxx! x*r?™"
+01(A) jux r " +2A01 (A "+ 0 ()
+4(n—H[Aci (A)r* " +2(4— mai(A), WXKr2 7 4 2(4 — n)oy (A)r? "]

+8(n — )42 —n)Ayx'x r " + AA X xI 2"
+401(A) ix'r*7" 4201 (A)r* "]}
= (n—6){—4(n —4)(3n —26)01(A) jx/r* " +6(n — 6) Aoy (A)r*™"
—2(n — 10)(n — 401 (A) jpx! xkr2™"

+ (1 —10)01(A) jux/r* ™" + 0 (r>™™) — 8(n — 6)(n — 4)o1 (A)r*™"
—32(n—4)(n —2)A;x xIr " + 8(n - 4)AA,-jxixf 2

= (1= 6) [ =401 = )3 = 26001 (4) (P’ x> — SO WP

2( 1)
—2(n—10)(n —4)o1(A) ;i (p)x"x-’r2 "
—4(n—6)(n — 401 (A) ;5 (p)x'x/r> ™"
—16(n —4)(n — 2) Ajj 1 (p)x'xI x*xlr "

+8(n — 4)AA,-jxfxf rH} OGS

= (1= 6) [ =201 = 9O = 7401 (4) (P’ x> — SO WP

2( 1)
—16(n —4)(n — 2) Ay (p)x x7 xFxlr
+8(n — 4)AAijxixjr2_"} +0@>™).
To estimate
L=38Tod A(r®™") =—[(T2) (Ar®™) j1i=—(T2)iji (Ar®™) j—(T2) (Ar®™") ji.
Recall that T, = (n — 2)o;(A)g — 8A. Then
(T12)ij,i = (n—10)o01(A) ;.
Observe that
AreT" =46 —n)r* " + 0N T,
(Ar®™) ;=46 —n)(4 —nm)x/r* "+ 0N T,
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and
(Ar®™) ;i =46 —n) (4 —n)[Q —n)x'x/r " +r7 81+ 0 ("),
Then we have
(T2)i; (AF®™) i
=4(n —6)(n —H[(n—2)01(A)gij — 8A;IQ2 —m)xx/r "+ 1278 + O(r*™)]
=4(n —6)(n —H[—(n —2)*01 (A r* "+ n(n — 2)oy (A)r>™"
+8(n—2)r "A;;x'x) — 801 (A)r* "+ 0"
=4(n —6)(n —H[2(0n — 6)o1 (A)r* "+ 8(n —2)r "A;ixx 1+ 0>
= 4(n—6)(n —H)[(n — 6)01(A) 1 (P)x'x r* "+ 4(n — 2)r " (A (p)x'x/x"x)]
+0(°™.
Hence, we obtain
I =—4(n—6)(n—4)[(n —6)01(A) ;;(P)x'x/r* " +4(n —2)r ~"(Ajr(p)x'x/x*xh)]
—4(n—6)(n—4)(n—10)r*"o1(A) ;i x' + O (>™)
= —8(n—8)(n—6)(n—H)01(A) ;(p)x'xr*™"
— 16(n —6)(n —4)(n —2)r "(Ajju(p)x'xx*) + 0 (™).
We now compute

n—
2
= 2(}’1 — 2)(6 — n)A(Ul(A)r4—n) + 0(]"N+4_n)

=2(n —2)(6 — W)r* "[Aci(A)r* +2(4 —n)oy(A) ;x' +2(4 —n)o1(A)]
+ 0(rN+2—n)

L ="22 A0y (A)AGS™)

1
12(n—1)

=201 - 2)(n - 6)r*"| W) 431 = 4 (A) i (x|

+0(°™.
For I5, from (A-1) we have

Is =8Tyd (r®™")
=—((T)jr®™" j)i
= — (Tw)ij.i (r*™) j — (T (™) i
=(n — O (Ty)jix) — (n = Hr* " (Ty)yx' s+ r* " te(Ty)]
. (5) (5) (5)
=m—-6)[I,"+1L" + 1]
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Also from [Lee and Parker 1987], we have
Sym(Ry,;j + %Rnklm Ruijm)(p) =0 and R;(p)=0

then

l l

Ry Jij (P)x X xkx = _Z nklm(p)‘/Vme(p)x X xk

Thus we have

2

1 o A) iyJp2
(A 2) Akl U(p)xx xk l____ZZ(W/iklj(p)xlxj)Z_Gl( ),lj(p)x x’'r .
k.l

n—2

9n

To estimate 13(5). From the definition of 74, one gets

3n3—12n2—36n+64
4
n(n—o6)

_ 2
=~ WP+ 00).

tr(Ty) = — o1(A) >+ 4(n* —4n — 12)|AP+ n(n — 6) Acy(A)

Thus one obtains

5 _ _nn-==6) 2,.4-n 5-n
L= (=1 )IW(p)I + 0.

For the term [ 1(5), it is easy to see
5
LY = (T = 007,
It remains to estimate the term 12(5). One has

(A-3) (T);jx' x7 = (n — 6) Aoy (A)r? — n%B,,x"xf +0@").

Notice that
Byx'x! = [Cijix — AuWeijilx'x7 = [(Ayjx — Aik,j) k — At Weija1x" x
=[AA; — A jx + O(r)]x'x/
and
A(Ayx'xTy = (A px'x7 4 A (x'8j5 +x7811)) &
= (AANX X+ 245 k(X 8j5 +x78i1) +201(A) + O(r?)
= (AA)X' x! +401(A) ix" +201(A) + O ().
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By (A-2), one gets

(AAxx = A(Ayx'x)) — 4oy (A) ;x' —201(A)+0(r?)

1 L. ..
= Al Aju (P)x'xix*x+ O(rS)} —4o1(A) ;i (P)x'x I+ 0 ()]

—01(A) ;; ()X x4+ 0 ()

1
9

=A

1 o 01(A) 5 (p)xxir?
P s i 2 _ WM T
— kEI (Wikij (p)x'x’) 22 }
—501(A) ;; (P)x' X+ 0 ()

2 1

= —Z——) [(Wins(p) + Wi () X1
On— 2k T~

(A-4) W(p)I*r* — 62—:;01 (A);(px' I+ 0@,

+um—mm—n
where the last identity follows from the following two estimates:
A(01(A) 4 (p)x'x7r?)
= A(01(A) ;;(p)x x))r? +2V(01(A) ;; (p)x xT)Vir? 4 (01(A) 4 (p)x'x)) Ar?
=2A01(A)(p)r? +801(A) jj(p)x'x7 4+ 2n01(A) ;i (p)x'x! + O ()

B ‘ﬁwpnzﬂ +2(n 4401 (A) i (P)x'x! + 0G)

and
AN Waaj(p)x'x?)? =2 Wt (D) (6 842 8i)1 =2 " [(Wiras(p) +Woars(P)x'T
k,l k,l,s ks
which follows from
A[Z(vv,-kz,- (p)x"xf)z} =2 “[(Waaaj (P)x' %)) AWaas (p)x*x") +| V(Wi (p)x'xcT) ]
k.l k.l
and AW (p)x*x") = (Warar (p) (x*8ir + x8i5)).i = 2Weir (p)8se = 0. Using
Aik, jk = Aik,kj + R,lj,'kAlk + R/l(jkAil = 01(A) ij + Rijjx Aix + Rij A, one has
A jkx'x? = 01(A) ;jx'x7 + Rijx Apx'x? + Ryj Ajpx'x?
= (01(A),;(p) + O(r))x'x’
+ (Wi (p) + O ) (A m ()X + O(r*))x'x ! + O(r*)
= 01(A) ;j (p)x'x! + 0.
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Thus, one obtains

(A-5) Byxini=—2-L Z[(Wus(p)w,ks(p))x P

22
By VeI

In ‘2 o1(A) 5 (Px'x! + 00,

Inserting the above equations into (A-3), one gets

= g ~ . i2
(Ty)ijx'x! = 12( )|W<p)| S %{(ka(pwws(p))x]
4 2.2
T 3n—Hm—m—n Wl
16(7n—8 o
%"1 (A)ij(p)x'x) + 0@,
whence

®) _ 2-n| (n=6)(n—4) 22 32 : : iN2
5 [WU’V( ) 5m—2) ];((Wzkzs(l?) + Wiks(p))x")
4

22 16(7Tn—38)
T3P

5 9 (A),ij (p)xixj] +005™).

Combining all the terms together, one has

. n>—8n+8 2 4-n
15—|:—m| W(p)|°r

32 . . iN2,.2—n
~5=3) g;((w,m (P) + Wiaks (P)x')r

_16(7n—8)
n

—5 o1(A) (p)x"xfrz‘"] (n—6)+ 0> ™).

Finally, from the definition of Q, in (1-1), it is not difficult to show that
Is=—(n—6)/2Q,r%"=00"™").

Therefore, collecting all the terms I1—Ig together with (A-2) and (A-4), we
conclude that

—P,(r®") = —cu8, + (n — 6) [__Z((szs(l’) + Was(p)x' ) r> "
k,l,s

2(” — 8) _n 64(n — 4) o .
- 3(n_1)|W(p)|2r4 +T;(Wkl;(P)x x])Zr

—4(5n% — 66n +224)01 (A) ;; (p)x'x/ r? i|+0(r5 ")
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64(n — 4 .
= —Cubp + (1 — 6)r " { % [Z(Wikl,-(mx’xwz
k.l

2
d i
a ;«xmzs(p) + Wars (p))x')?

2 4
HE TR A }

. 3
2 (Wikts(p) + Wik (p))x)? = = |W<p)|2r2}

16(3n — 20) 2[
r
k,l,s

O(n+4)

2
—4(5n* — 66n +224)r [“l (A)jj(p)x'x) + S LT 2 2]

2n(n—1)
3n* — 16n° — 164n* + 400n + 2432
3n+4)(n+2)n(n—1)
where each term in square brackets on the right-hand side of the last identity is a
harmonic polynomial. This finishes the proof of Lemma 2.2.

|W<p>|2r“} + 0™,
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