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ON THE ASYMPTOTIC BEHAVIOR OF BERGMAN KERNELS
FOR POSITIVE LINE BUNDLES

TIEN-CUONG DINH, XIAONAN MA AND VIÊT-ANH NGUYÊN

Let L be a positive line bundle on a projective complex manifold. We study
the asymptotic behavior of Bergman kernels associated with the tensor pow-
ers Lp of L as p tends to infinity. The emphasis is the dependence of the uni-
form estimates on the positivity of the Chern form of the metric on L. This
situation appears naturally when we approximate a semipositive singular
metric by smooth positively curved metrics.

1. Introduction

Let L be an ample holomorphic line bundle over a projective manifold X of
dimension n. Fix a (reference) smooth Hermitian metric h0 on L whose first
Chern form ω0 is a Kähler form. Recall that ω0 = (

√
−1/2π)RL

0 , where RL
0 is the

curvature of the Chern connection on (L , h0).
Let hL be a semipositive singular metric on L . For various applications, one

needs to understand the asymptotic behavior of the Bergman kernel associated
with Lp and hL when p tends to infinity. A natural approach is to approximate the
considered metric by smooth positively curved metrics, and therefore, it is necessary
to understand the dependence of the Bergman kernels in terms of the positivity of
the curvature of the metric. See [Błocki and Kołodziej 2007; Demailly 1992; Dinh
et al. 2015] for the regularization of metrics. This method was already used in our
previous work on the speed of convergence of Fekete points, see [Berman et al.
2011; Dinh et al. 2015]. In §2.3 of the latter, inspired by [Berndtsson 2003], an
L1-estimate for Bergman kernels was obtained. Here, we investigate the uniform
estimate which can be useful for applications in geometry.

Fix a smooth Kähler form θ on X (one can take θ = ω0). Consider a metric
h= e−2φh0 on L with weight φ of class Cn+6 whose first Chern form ω :=ddcφ+ω0

(here dc
:= (
√
−1/2π)(∂ − ∂)) satisfies

(1-1) ω ≥ ζθ for some constant 0< ζ ≤ 1.
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Consider the natural metric on the space of smooth sections of Lp, induced by the
metric h on L and the volume form θn/n! on X , which is defined by

(1-2) ‖s‖2L2(pφ) :=

∫
X
|s(x)|2pφθ

n/n! .

Here, |s(x)|pφ stands for the norm of s(x) with respect to the metric h⊗p on Lp. Let
〈 · , · 〉pφ be the associated Hermitian product on C∞(X, Lp), the space of smooth
sections of Lp. Let Pp be the orthogonal projection from (C∞(X, Lp), 〈 · , · 〉pφ) onto
the subspace of holomorphic sections H 0(X, Lp). The Bergman kernel associated
with the above data is the kernel associated with the last projection where we use the
volume form θn/n! to integrate functions on X . This kernel is denoted by Pp(x, x ′),
with x, x ′ ∈ X . It is a section of the line bundle over X × X which is the tensor
product of two line bundles: the first one is the pullback to X× X of the line bundle
Lp over the first factor, and the second one is the pullback of the dual line bundle
(L∗)p of Lp over the second factor. In particular, its restriction to the diagonal of
X × X , i.e., Pp(x, x), can be identified to a positive-valued function on X . See
[Ma and Marinescu 2007] for details. In fact, if {sj } j is an orthonormal basis of
(H 0(X, Lp), 〈 · , · 〉), then

(1-3) Pp(x,x)=
∑

j

|sj (x)|2pφ=sup{|s(x)|2pφ,s∈H 0(X,Lp) with ‖s‖L2(pφ)=1}.

Here is the main result in this paper which gives us a uniform estimate of the
Bergman kernel in terms of φ, ω, p and ζ . This is a version of Tian’s theorem
[1990]. See [Berndtsson 2003; Boutet de Monvel and Sjöstrand 1976; Catlin 1999;
Coman and Marinescu 2016; Dai et al. 2006; Hsiao and Marinescu 2014; Ma and
Marinescu 2015; Xu 2012; Zelditch 1998] for various generalizations. We also
refer to [Ma and Marinescu 2007] for a comprehensive study of several analytic
and geometric aspects of Bergman kernels. The last reference is inspired by the
analytic localization technique in [Bismut and Lebeau 1991].

Theorem 1.1. Under the above assumptions, there exist δ > 0, c > 0 satisfying the
following condition: for any l ∈N∗, there is a constant cl > 0 such that for p ∈N∗,
pζ > δ, and x ∈ X , we have

(1-4)
∣∣∣p−n Pp(x, x)−

ω(x)n

θ(x)n

∣∣∣6 c|dφ|2n+8
n+5 |ω|

4n+20
0 |dφ|2n+2

n+2 ζ
−2n−10 p−1

+cl |ω|
2n+2
n (|dφ|2ζ−1)6n+6+3l p−l.

Note that | · |k stands for 1+ ‖ · ‖Ck . As a direct consequence, we infer the
following result by taking l = 1.
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Corollary 1.2. There exist δ > 0, c > 0 such that for any 0< ζ ≤ 1, any weight φ
of class Cn+6 with ddcφ+ω0 ≥ ζθ , and any p ∈ N∗ with ζ p > δ, we have

(1-5)
∣∣∣p−n Pp(x, x)−

ω(x)n

θ(x)n

∣∣∣≤ cζ−6n−9
|dφ|8n+30

n+5 p−1.

If φ ∈ Cn+2k+6, we can adapt easily the proof of Theorem 1.1 to get the estimate
for Ck-norm of the left-hand side of (1-4). Cf., Remark 3.9.

The article is organized as follows. In Section 2, we reduce the problem to
the local setting. In Section 3, we establish Theorem 1.1. We need an approach
different from previous ones which use the normal coordinates and the extension of
connections on L; see [Dai et al. 2006, §4.2] and [Ma and Marinescu 2007, §4.1.3].
Note that throughout the paper, the constants c, c′, cl, . . . may change from line to
line.

2. Localization of the problem

Recall that the complex structure on X is given by a smooth section J of the vector
bundle End(TX) such that −J 2 is the identity section. Here, TX denotes the real
tangent bundle of X . Denote also by T (1,0)X and T (0,1)X the holomorphic and
antiholomorphic tangent bundles of X . They are complex vector subbundles of
TX ⊗R C. The Kähler form θ induces a Riemannian metric gTX on X defined by
gTX
:= θ( · , J · ).

Let ∂Lp
be the ∂-operator acting on Lp and ∂Lp,∗ its dual operator with respect

to the metric h = e−2φh0 on L and the Kähler form θ . Consider the Dirac and
Laplacian-type operators

(2-1) Dp :=
√

2
(
∂Lp
+ ∂Lp,∗

)
and �p :=

1
2 D2

p = ∂
Lp
∂Lp,∗

+ ∂Lp,∗∂Lp
.

They act on �0,•(X, Lp), the space of the forms of bidegree (0, · ) with values in Lp.
Let∇L be the Chern connection on (L , h=e−2φh0) and RL

= (∇L)2 its curvature
which is related to the first Chern form ω by

(2-2) ω =

√
−1

2π
RL .

Let ∇TX be the Levi-Civita connection on (TX, gTX ). It preserves T (1,0)X , T (0,1)X ,
and its restriction to T (1,0)X is the Chern connection ∇T (1,0)X . Let ∇3

0,•
be the

connection on 3(T ∗(0,1)X) induced by ∇T (1,0)X , and ∇3
0,•
⊗Lp

the connection on
3(T ∗(0,1)X)⊗ Lp induced by ∇3

0,•
and ∇L. For u ∈ T (1,0)X and v ∈ T (0,1)X , let

u∗ ∈ T ∗(0,1)X be the metric dual of u with respect to gTX, define the operator c( · )
depending linearly on a vector in T (1,0)X ⊕ T (0,1)X by setting

(2-3) c(u) :=
√

2u∗ ∧ and c(v) :=
√

2iv,
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where i denotes, as usual, the contraction operator. Then by [Ma and Marinescu
2007, p.31], for {ej } an orthonormal frame of (TX, gTX ), we have

(2-4) Dp =
∑

j

c(ej )∇
30,•
⊗Lp

ej
.

Denote by K ∗X the anticanonical bundle of X . The curvature of K ∗X with respect
to the above Riemannian metric is denoted by RK ∗X. Then

√
−1RK ∗X is the Ricci

curvature of (X, gTX ). Let {w j }
n
j=1 be a local orthonormal frame of T (1,0)X with

dual frame {w j
}

n
j=1. Set

(2-5) ωd := −
∑
l,m

RL(wl, wm)w
m
∧ iwl .

Recall that (
√
−1/2π)RL

= ω ≥ ζθ . Then ωd is a section of End(3(T ∗(0,1)X))
and RL acts as the derivative ωd on 3(T ∗(0,1)X). By [Ma and Marinescu 2007,
(1.4.63)] and using that 〈10,•s, s〉pφ ≥ 0, where 10,• is a holomorphic Kodaira type
Laplacian, we obtain for s ∈�0,•(X, Lp) that

(2-6) ‖Dps‖2L2(pφ) = 2〈�ps, s〉pφ

≥−2p〈ωds, s〉pφ + 2
∑
l,m

〈
RK ∗X (wl, wm)w

m
∧ iwl s, s

〉
pφ.

Now by (1-1), (2-2), (2-5) and some standard arguments (see the proof of [Ma and
Marinescu 2007, Theorem 1.5.5]) there exists δ > 0, depending only on the Ricci
curvature RK ∗X, such that if ζ p > δ, then the spectrum of D2

p satisfies

(2-7) Spec(D2
p)⊂ {0} ∪ [2πζ p,+∞[.

Let aX denote the injectivity radius of (X,θ). For 0<ε0<aX/4, let fε0 :R→[0,1]
be a smooth even function such that

(2-8) fε0(v)=

{
1 for |v|6 ε0/2,
0 for |v|> ε0.

Set

(2-9) Fε0(a) :=
(∫

+∞

−∞

fε0(v) dv
)−1 ∫ +∞

−∞

eivζa fε0(v) dv

=

(∫
+∞

−∞

fε0(ζ
−1v) dv

)−1 ∫ +∞
−∞

eiva fε0(ζ
−1v) dv.

Then Fε0(a) lies in Schwartz space S(R) and Fε0(0)= 1.
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Proposition 2.1. Let δ > 0 satisfy (2-7). Then, for all l ∈ N, 0 < ε0 < aX/4 and
Fε0 as above, there exists c > 0 such that for p ≥ 1, δ/p < ζ ≤ 1, x, x ′ ∈ X

(2-10) ‖Fε0(Dp)(x, x ′)− Pp(x, x ′)‖L∞(pφ) ≤ c|ω|2n+2
n ζ−6n−3l−6 p−l .

Proof. For a ∈ R, set

(2-11) φp(a) := 1[√ζ p,+∞[(|a|)Fε0(a).

By (2-7) and (2-11), for ζ p > δ, we get

(2-12) Fε0(Dp)− Pp = φp(Dp).

By (2-9), for any m ∈ N there exists c > 0 such that for all ζ ∈ ]0, 1[,

(2-13) sup
a∈R

|a|m |Fε0(a)| ≤ cζ−m .

Thus, for any m ∈ N and ζ p > δ, we have

(2-14) ‖(Dp)
m Fε0(Dp)‖

0,0
:= sup

s∈�0,•(X,Lp)\{0}

‖(Dp)
m Fε0(Dp)s‖L2(pφ)

‖s‖L2(pφ)
≤ cζ−m .

As X is compact, there exists a finite set of points ai , 1 ≤ i ≤ r , such that the
family of balls Ui := B X (ai , ε0) of center ai and radius ε0, is a covering of X .
We identify the ball BTai X (0, ε0) in the tangent space of X at ai with the ball
B X (ai , ε0) using the exponential map. We then identify (TX)Z ,3(T ∗(0,1)X)Z , Lp

Z
for Z ∈ BTai X (0, ε0)with Tai X,3(T ∗(0,1)X)ai , Lp

ai by parallel transport with respect
to the connections ∇TX, ∇3

0,•
, ∇Lp

along the curve γZ : [0, 1] 3 u 7→ expX
ai
(u Z).

Then (L , h)|Ui is identified as the trivial bundle (Lai , hai ).
Let {ej } j be an orthonormal basis of Tai X ' R2n. Let ẽj (Z) be the parallel

transport of e j with respect to ∇TX along the above curve. Let 0L , 03
0,•

be the
corresponding connection forms of ∇L and ∇3

0,•
with respect to any fixed frame

for L and 3(T ∗(0,1)X) which is parallel along the curve γZ under the trivialization
on Ui . Denote by ∇v the ordinary differentiation operator on Tai X in the direction v.
As we are working in the Kähler case, by [Ma and Marinescu 2007, Proposition
1.2.6, Theorem 1.4.5, Remark 1.4.8], we can write on Ui

(2-15) Dp =
∑

j

c(ẽj )
(
∇ẽj + p0L(ẽj )+0

30,•
(ẽj ))

)
.

In fact, the last identity is a consequence of (2-4). Consider the radial vector field
R=

∑
j Z j ej . By [Ma and Marinescu 2007, (1.2.32)], the Lie derivative LR0

L is
equal to iRRL. Therefore, we get the identity

(2-16) 0L
Z =

∫ 1

0
(iRRL)t Z dt,
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which allows us to bound 0L.
Let {ϕi } be a partition of unity subordinate to {Ui }. For m ∈ N, we define a

Sobolev norm on the m-th Sobolev space H m(X,3(T ∗(0,1)X)⊗ Lp) by

(2-17) ‖s‖2Hm =

r∑
i=1

m∑
k=0

2n∑
j1,..., jk=1

‖∇ej1
· · · ∇ejk

(ϕi s)‖2L2 .

Note that here we trivialize the line bundle L using a unitary section; so the section s
above is identified with a function. Therefore, we drop the subscript pφ since this
weight is already taken into account.

By (2-15), (2-16) and [Ma and Marinescu 2007, (1.6.9)], for P a differential
operator of order m ∈ N with scalar principal symbol and with compact support in
Ui , we get

(2-18) ‖Ps‖H1 6 c(‖Dp Ps‖L2 + p|ω|0‖Ps‖L2)

6 c′
(
‖P Dps‖L2 + p

m∑
k=0

|ω|k‖s‖Hm−k

)
,

for some constants c, c′ > 0. From (2-18), we get by induction for (other) suitable
constants c, c′ > 0

(2-19) ‖s‖Hm+1 ≤ c
m+1∑
k=0

pm+1−k
‖Dk

ps‖L2

∏
∑
(kr+1)=m−k+1

|ω|kr

≤ c′
m+1∑
k=0

pm+1−k
‖Dk

ps‖L2 |ω|m−k+1
m−k .

Note that for k = m+ 1 we set |ω|m−k+1
m−k = 1.

Let Q be a differential operator of order m′ ∈N with scalar principal symbol and
with compact support in Uj . We deduce from (2-19) with suitable sections instead
of s that

(2-20) ‖Q∗φp(Dp)Dks‖L2 ≤ c
m′∑

k′=0

pm′−k′
‖Dk′

p φp(Dp)Dk
ps‖L2 |ω|m

′
−k′

m′−k′−1

= c
m′∑

k′=0

pm′−k′
‖Dk+k′

p φp(Dp)s‖L2 |ω|m
′
−k′

m′−k′−1.

Note that the operators, considered in the last two lines, commute. Thanks to (2-7),
(2-11), (2-12) and then (2-14), if 0 < ζ ≤ 1 and ζ p ≥ δ, for any q ∈ N, the main
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factor in the last line can be bounded using

(2-21)
‖Dk+k′

p φp(Dp)s‖L2 ≤ (ζ p)−q/2
‖Dk+k′+q

p φp(Dp)s‖L2

≤ c(ζ p)−q/2ζ−k−k′−q
‖s‖L2 .

Take any l > 0 and choose q := 2(m +m′ − k − k ′ + l) in (2-21). Using the
identity 〈

Dk
pφp(Dp)Qs, s ′

〉
=
〈
s, Q∗φp(Dp)Dk

ps ′
〉
,

then by (2-19)-(2-21), there exists cl > 0 such that for 0< ζ ≤ 1, ζ p ≥ δ, we have

(2-22) ‖Pφp(Dp)Qs‖L2

≤ c
m∑

k=0

m′∑
k′=0

pm+m′−k−k′(ζ p)−q/2ζ−k−q−k′
|ω|m−k

m−k−1|ω|
m′−k′
m′−k′−1‖s‖L2

≤ clζ
−3m−3m′−3l p−l

|ω|mm−1|ω|
m′
m′−1‖s‖L2 .

Finally, on Ui ×Uj , by using the standard Sobolev’s inequality and (2-12), we get
(2-10). Proposition 2.1 follows. �

Remark 2.2. By (2-9) and the finite propagation speed of solutions of hyperbolic
equations [Ma and Marinescu 2007, Theorem D.2.1], Fε0(Dp)(x, x ′) only depends
on the restriction of Dp to B X (x, ε0ζ ), and

(2-23) Fε0(Dp)(x, x ′)= 0 when dist(x, x ′)> ε0ζ.

To get the uniform estimate of the Bergman kernels in terms of ζ, p, we need
an approach different from the use of the normal coordinates and the extension of
connections on L in [Dai et al. 2006, §4.2] and [Ma and Marinescu 2007, §4.1.3].
Let ψ : X ⊃U → V ⊂ Cn be a holomorphic local chart such that 0 ∈ V and V is
convex (by abuse of notation, we sometimes identify U with V and x with ψ(x)).
Then, for any x ∈ 1

2 V := {y ∈Cn
: 2y ∈ V }, we will use the holomorphic coordinates

induced by ψ and let 0< ε0 ≤ 1 be such that B(x, 4ε0)⊂ V for any x ∈ 1
2 V. We

choose ε0 smaller than aX/4 in order to use the estimates given in the proof of
Proposition 2.1. Consider the holomorphic family of holomorphic local coordinates
ψx : ψ

−1(B(x, 4ε0))→ B(0, 4ε0) for x ∈ 1
2 V given by ψx(y) := ψ(y)− x .

Let σ be a holomorphic frame of L on U and define the function ϕ(Z) on U by
|σ |2φ(Z)=: e

−2ϕ(Z). Consider the holomorphic family of holomorphic trivializations
of L associated with the coordinates ψx and the frame σ . These trivializations are
given by 9x : L|ψ−1(B(x,4ε0))→ B(0, 4ε0)×C with 9x(y, v) := (ψx(y), v/σ (y))
for v a vector in the fiber of L over the point y.

Consider a point x0 ∈
1
2 V. Denote by ϕx0 := ϕ ◦ψ

−1
x0

the function ϕ in local
coordinates ψx0 . Denote also by ϕ[1]x0

and ϕ[2]x0
the first and second order Taylor
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expansions of ϕx0 , i.e.,

(2-24)

ϕ[1]x0
(Z) :=

n∑
j=1

( ∂ϕ
∂z j

(x0)z j +
∂ϕ

∂z j
(x0)z j

)
,

ϕ[2]x0
(Z) := Re

n∑
j,k=1

( ∂2ϕ

∂z j∂zk
(x0)z j zk +

∂2ϕ

∂z j∂zk
(x0)z j zk

)
,

where we write z = (z1, . . . , zn) the complex coordinates of Z .
Let ρ : R→ [0, 1] be a smooth even function such that

(2-25) ρ(t)= 1 if |t |< 2; ρ(t)= 0 if |t |> 4.

We denote in the sequel X0=R2n
' Tx0 X and equip X0 with the metric gTX0(Z) :=

gTX (ρ(ε−1
0 |Z |)Z). Now let 0< ε < ε0 and define

(2-26) ϕε(Z) := ρ(ε−1
|Z|)ϕx0(Z)+

(
1−ρ(ε−1

|Z|)
)(
ϕ(x0)+ϕ

[1]
x0
(Z)+ϕ[2]x0

(Z)
)
.

Let hL0
ε be the metric on L0 = X0×C defined by

(2-27) |1|2
h

L0
ε

(Z) := e−2ϕε(Z).

Here, as above, subscript ε implies the use of the weight ϕε . Let ∇L0
ε be the Chern

connection on (L0, hL0
ε ) and RL0

ε be the curvature of ∇L0
ε .

Then there exists a constant A with c|dφ|−1
2 < A < 1 for c > 0 such that when

ε ≤ Aζ , the following estimate holds for every x0 ∈U :

(2-28) inf
{√
−1RL0

ε,Z (u, Ju)/|u|2gTX0 : u ∈ TZ X0 and Z ∈ X0
}
> 4

5ζ ;

because there exists C > 0 such that for |Z | ≤ 4ε, 0≤ j ≤ 2, we have

(2-29)
∣∣ϕx0(Z)−

(
ϕ(x0)+ϕ

[1]
x0
(Z)+ϕ[2]x0

(Z)
)∣∣

C j ≤ C |dφ|2|Z |3− j .

From now on, we take

(2-30) ε := ε0 Aζ.

Let Sx0 be the unitary section of (L0, hL0
ε ) which is parallel with respect to ∇L0

ε

along the curve [0, 1] 3 u→ u Z for any Z ∈ X0. We can write it as Sx0 = e−τ1
with τ(x0)= ϕ(x0), then

(2-31) ∇
L0
Z Sx0 = iZ (−dτ − 2∂ϕε)Sx0 = 0,

and hence the function τ is given by

(2-32) τ(Z)= ϕ(x0)− 2
∫ 1

0
(iZ∂ϕε)t Z dt.
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Let

(2-33) DX0
p =
√

2(∂L p
0 + ∂

L p
0 ∗

pϕε )

be the Dolbeault operator on X0 associated with the above data, i.e., ∂
L p

0 ∗
pϕε is the

adjoint of ∂L p
0 with respect to the metrics gTX0 and hL0

ε . Over the ball B(x0, 2ε), Dp

is just the restriction of DX0
p . Now by [Ma and Marinescu 2007, Theorem 1.4.7], and

the observation that the tensors associated with gTX0 do not depend on ζ and ε, as
in (2-7), we get from (2-28) the existence of a constant δ > 0 such that for ζ p > δ,

(2-34) Spec(DX0
p )2 ⊂ {0} ∪ [ζ p,+∞[.

Using Sx0 , we get an isometry L p
0 ' C. Let P0

p be the orthogonal projection
from C∞(X0, Lp

0)' C∞(X0,C) on Ker(DX0
p ). Let P0

p (x, x ′) be the smooth kernel
of P0

p with respect to the volume form dvX0(x
′) induced by the metric gTX0. We

have the following result:

Proposition 2.3. For all l∈N, there exists c>0 such that for ζp>δ, x,x ′∈ B(x0,ε),

(2-35) ‖(P0
p − Pp)(x, x ′)‖C0 ≤ c(|dφ|−1

2 ζ )−6n−3l−6 p−l
|ω|2n+2

n .

Proof. First, we replace fε0(v) in (2-8) by fε0(v/A). By Remark 2.2 and (2-30), for
x, x ′ ∈ B(x0, ε), we have Fε(Dp)(x, x ′)= Fε(D0

p)(x, x ′). Now we have a version
of Proposition 2.1 for P0

p with Aζ instead of ζ . Estimate (2-35) follows. �

3. Uniform estimate of the Bergman kernels

We continue to use the notations introduced at the end of the last section. By
Proposition 2.3, in order to study the kernel Pp, it suffices to study the kernel P0

p .
For this purpose, we will rescale the operator (DX0

p )2. Let dvTX be the Riemannian
volume form of (Tx0 X, gTx0 X ). Let κ(Z) be the smooth positive function defined
by the equation

(3-1) dvX0(Z)= κ(Z)dvTX (Z),

with κ(0)= 1.
Let {ej }

2n
j=1 be an oriented orthonormal basis of Tx0 X , and let {e j

}
2n
j=1 be its dual

basis. They allow us to identify X0=Cn with R2n and we write Z = (Z1, . . . , Z2n).
If α = (α1, . . . , α2n) is a multi-index, set Zα := Zα1

1 · · · Z
α2n
2n . Denote by ∇U the

ordinary differentiation operator on Tx0 X in the direction U, and set ∂ j := ∇ej . Set
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t := p−1/2. For s ∈ C∞(R2n,C) and Z ∈ R2n, define

(3-2)
(St s)(Z) :=s(Z/t), ∇t :=t S−1

t κ1/2
∇

Lp
0κ−1/2St ,

Lt :=S−1
t t2κ1/2(DX0

p )2κ−1/2St .

Once we have done the trivialization of L0 on X0, (3-2) is well defined for any
p ∈ R, p ≥ 1.

The notations 〈 · , · 〉0 and ‖ · ‖0 mean respectively the inner product and the
L2-norm on C∞(X0,C) induced by gTX0. For s ∈ C∞0 (X0,C), set

(3-3)

‖s‖2t,0 := ‖s‖
2
0 =

∫
R2n
|s(Z)|2 dvTX (Z),

‖s‖2t,m :=
m∑

l=0

2n∑
j1,··· , jl=1

‖∇t,e j1
· · · ∇t,e jl

s‖2t,0.

We then, for convenience, denote by 〈s, s ′〉t,0 the inner product on C∞(X0, L⊗p
x0 )

corresponding to the norm ‖ · ‖t,0. Let H m
t be the Sobolev space of order m with

norm ‖·‖t,m . Let H−1
t be the Sobolev space of order−1 and let ‖·‖t,−1 be the norm

on H−1
t defined by ‖s‖t,−1 := sup06=s′∈H1

t
|〈s, s ′〉t,0|/‖s ′‖t,1. If B : H m

t → H m′
t is

a bounded linear operator for m,m′ ∈ Z, denote by ‖B‖m,m
′

t the norm of B with
respect to the norms ‖ · ‖t,m and ‖ · ‖t,m′ .

Theorems 3.1, 3.2, 3.4 and Proposition 3.3 below are the analogues of [Ma
and Marinescu 2007, Theorem 4.1.9–4.1.14] (cf., also [Dai et al. 2006, Theorem
4.7–4.10]). The emphasis here is the precise dependence of the involved constants
on the curvature form ω.

Theorem 3.1. There exist c1, c2, c3 > 0 such that for t ∈ ]0, 1], ζ ∈ ]0, 1], and
s, s ′ ∈ C∞0 (R

2n,C),

(3-4)
〈Lt s, s〉t,0 > c1‖s‖2t,1− c2|ω|0‖s‖2t,0,

|〈Lt s, s ′〉t,0|6 c3|ω|0‖s‖t,1‖s ′‖t,1.

Proof. By using the Lichnerowicz formula [Ma and Marinescu 2007, (4.1.33)], the
same arguments as in (4.1.38)–(4.1.39) of the same work give the result. �

Let δζ be the counterclockwise oriented circle in C of center 0 and radius ζ/2.

Theorem 3.2. There exists δ > 0 such that the resolvent (λ−Lt)
−1 exists for all

λ ∈ δζ and t ∈ ]0,
√
ζ/δ]. There exists c > 0 such that for all t ∈ ]0,

√
ζ/δ], λ ∈ δζ ,

we have

(3-5) ‖(λ−Lt)
−1
‖

0,0
t 6 2ζ−1, ‖(λ−Lt)

−1
‖
−1,1
t 6 c|ω|20ζ

−1.
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Proof. By (2-34) and (3-2), we have

(3-6) Spec(Lt)⊂ {0} ∪ [ζ,+∞[.

Thus, the resolvent (λ−Lt)
−1 exists for λ ∈ δζ and t ∈ ]0,

√
ζ/δ], and we get the

first inequality of (3-5).
By (3-4), (λ0−Lt)

−1 exists for λ0 ∈ R, λ0 6−2c2|ω|0. Moreover, as

c1‖s‖2t,1 ≤−〈(λ0−Lt)s, s〉t,0 ≤ ‖(λ0−Lt)s‖t,−1‖s‖t,1,

we have

(3-7) ‖(λ0−Lt)
−1
‖
−1,1
t 6 1

c1
·

On the other hand, we have

(3-8) (λ−Lt)
−1
= (λ0−Lt)

−1
− (λ− λ0)(λ−Lt)

−1(λ0−Lt)
−1.

Therefore, for λ ∈ δζ , from the first estimate in (3-5) and (3-8), we get

(3-9) ‖(λ−Lt)
−1
‖
−1,0
t ≤

1
c1
(1+ 2|λ− λ0|ζ

−1).

In (3-8), we can interchange the last two factors. Then, applying (3-7) and (3-9)
gives

(3-10) ‖(λ−Lt)
−1
‖
−1,1
t 6

1
c1
+
|λ− λ0|

c12 (1+ 2|λ− λ0|ζ
−1)6 c|ω|20ζ

−1.

The theorem follows. �

Proposition 3.3. Take m ∈N∗. There is a c> 0 such that for t ∈ ]0,1], Q1,...,Qm∈

{∇t,ej ,Z j }
2n
j=1 and s, s ′ ∈ C∞0 (X0,C),

(3-11)
∣∣〈[Q1, [Q2, . . . [Qm,Lt ] . . .]]s, s ′

〉
t,0

∣∣6 c|dφ|min(2,m)
m+1 ‖s‖t,1‖s ′‖t,1.

Proof. By [Ma and Marinescu 2007, (1.6.31)] and as in the proof of Proposition
1.6.9 of the same work, we know that [Q1, [Q2, . . . [Qm,Lt ] . . .]] has the same
structure as Lt for t ∈ [0, 1]. More precisely, it has the form

(3-12)
∑
i, j

ai j (t, t Z)∇t,ei∇t,ej +

∑
j

d j (t, t Z)∇t,ej + c(t, t Z),

where ai j (t, Z) and its derivatives in Z are uniformly bounded, d j (t, Z), c(t, Z) and
their first derivatives in Z are bounded by c|dφ|min(2,m)

m+1 for Z ∈ R2n and t ∈ [0, 1]
and a constant c > 0. We then get estimate (3-11). �
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Theorem 3.4. For Q1, . . . , Qm ∈ {∇t,ej , Z j }
2n
j=1, there exists c > 0 such that we

have for t ∈ ]0,
√
ζ/δ], λ ∈ δζ and s ∈ C∞0 (X0,C),

(3-13) ‖Q1 · · · Qm(λ−Lt)
−1s‖t,1

6 c
m∑

k=0

∑
1≤ j1<···< jk≤m

|dφ|m−k
m−k+1(|ω|

2
0ζ
−1)m−k+1

‖Q j1 · · · Q jk s‖t,0.

Proof. For Q1, . . . , Qm ∈ {∇t,ej , Z j }
2n
j=1, we can express Q1 · · · Qm(λ−Lt)

−1 as
the sum of (λ−Lt)

−1 Q1 · · · Qm with a linear combination of operators of the type

(3-14) [Q j1, [Q j2, . . . [Q jm1
, (λ−Lt)

−1
] . . .]]Q jm1+1 · · · Q jm ,

with j1 < j2 · · ·< jm1 , jm1+1 < · · ·< jm . The coefficients of this combination are
bounded when m is bounded. Let St be the family of operators

[Q j1, [Q j2, . . . [Q jl ,Lt ] . . .]] = −[Q j1, [Q j2, . . . [Q jl , λ−Lt ] . . .]].

Note that

[Q,(λ−Lt)
−1
]=−(λ−Lt)

−1
[Q,λ−Lt ](λ−Lt)

−1
=(λ−Lt)

−1
[Q,Lt ](λ−Lt)

−1,

thus by the recurrence on m1 we know that every commutator

[Q j1, [Q j2, . . . [Q jm1
, (λ−Lt)

−1
] . . .]]

is a linear combination of operators of the form

(3-15) (λ−Lt)
−1S1(λ−Lt)

−1S2 · · · Sm2(λ−Lt)
−1

with S1, . . . , Sm2 ∈ St and m2 ≤ m1. The coefficients of this combination are
bounded when m1 is bounded.

From Proposition 3.3 we deduce that the ‖ · ‖1,−1
t norms of the operators

[Q j1, [Q j2, . . . [Q jl ,Lt ] . . .]] are uniformly bounded from above by a constant
times |dφ|ll+1. Hence, by Theorem 3.2, the ‖ · ‖0,1t norm of the operator (3-15) is
bounded by a constant times

ζ−m2−1
|ω|

2m2+2
0

∑
l1+···+lm2=m1

l1,...,lm2≥1

m2∏
j=1

|dφ|l j
l j+1.

The theorem follows. �

Let Pt : (C∞(X0,C), ‖ · ‖0)→Ker(Lt) be the orthogonal projection correspond-
ing to the norm ‖ · ‖t,0 given in (3-3). Let Pt(Z , Z ′), (with Z , Z ′ ∈ X0) be the
smooth kernel of Pt with respect to dvTX (Z ′). Note that Lt is a family of differential
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operators on Tx0 X with coefficients in C. Let π : TX ×X TX→ X be the natural
projection from the fiberwise product of TX with itself on X . We can view Pt(Z , Z ′)
as smooth functions over TX×X TX by identifying a section F ∈C∞(TX×X TX,C)

with the family (Fx0)x0∈X , where Fx0 := F |π−1(x0). In the following result we adapt
[Ma and Marinescu 2007, Theorem 4.1.24] to the present situation.

Theorem 3.5. For any r ∈N, σ > 0, there exists c> 0, such that for t ∈ ]0,
√
ζ/δ]

and Z , Z ′ ∈ Tx0 X with |Z |, |Z ′|6 σ ,

(3-16)
∥∥∥ ∂r

∂tr Pt(Z , Z ′)
∥∥∥
C0(X)

6 cζ−2n−4r−2
|dφ|4r+2n

2r+n+1|ω|
8r+4n+4
0 |dφ|2n+2

n+2 .

Proof. By (3-6), for every k ∈ N∗,

(3-17) Pt =
1

2π
√
−1

∫
δζ

λk−1(λ−Lt)
−kdλ.

For m ∈ N, let Qm be the set of operators ∇t,ei1
· · · ∇t,ei j

with j 6 m. We apply
Theorem 3.4 to m− 1 operators Q2, . . . , Qm instead of m operators. We deduce
that for l,m ∈ N∗ with l ≥ m, and Q = Q1 · · · Qm ∈ Qm, there are c, c′ > 0 such
that for t ∈ ]0,

√
ζ/δ], ζ ∈ [0, 1], s ∈ C∞0 (X0,C) and λ ∈ δζ

(3-18) ‖Q1 ···Qm(λ−Lt)
−ls‖t,0

6 c‖Q2 ···Qm(λ−Lt)
−ls‖t,1

6 c′
m−1∑
k=0

∑
1<i1<···<ik≤m

|dφ|m−k−1
m−k (|ω|20ζ

−1)m−k
‖Qi1 ···Qik(λ−Lt)

−l+1s‖t,0.

Then, by induction and using (3-5), we get

(3-19) ‖Q1 · · · Qm(λ−Lt)
−ls‖t,0 6 cζ−m−l+1

|dφ|m−1
m |ω|2m

0 ‖s‖t,0.

As Lt is symmetric, we can consider the adjoint of the operator in (3-19) and get
for Q′ = Q′1 · · · Q

′

m′ ∈Q
m′,

(3-20) ‖(λ−Lt)
−l Q′1 · · · Q

′

m′s‖t,0 6 cζ−m′−l+1
|dφ|m

′
−1

m′ |ω|
2m′
0 ‖s‖t,0.

Note that for m = 0 and l ∈N we also have ‖(λ−Lt)
−ls‖t,0 ≤ cζ−l

‖s‖t,0. Thus,
for Q ∈Qm, Q′ ∈Qm′ with m,m′ > 0, by taking k = m+m′, we get

(3-21) ‖QPt Q′‖0,0t 6
1

2π

∫
δζ

|λ|m+m′−1
‖Q(λ−Lt)

−m−m′Q′‖0,0t |dλ|

6 c|dφ|m−1
m |ω|2m

0 |dφ|
m′−1
m′ |ω|

2m′
0 ζ−2m−2m′+2ζm+m′

= c|dφ|m−1
m |ω|2m

0 |dφ|
m′−1
m′ |ω|

2m′
0 ζ−m−m′+2.
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By [Ma and Marinescu 2007, Lemma 1.2.4], (2-31), (2-32) and (3-2), on
BTx0 X (0, ε/t),

(3-22) ∇t,ei |Z =∇ei +
1
2 RL

x0
(Z , ei )+ O(t |Z |2)|dφ|2.

Let | · |(σ ),m denote the usual Sobolev norm on C∞(BTx0 X (0, σ + 1),C) induced
by the volume form dvTX (Z) as in (3-3). Observe that by (3-3), (3-22), for m > 0,
there exists c > 0 such that for s ∈ C∞(X0,C) with supp(s)⊂ B(0, σ + 1),

(3-23)
1

c|dφ|mm+1
‖s‖t,m 6 |s|(σ ),m 6 c|dφ|mm+1‖s‖t,m .

Now, we want to estimate Q Z Q′Z ′Pt(Z , Z ′) using the standard Sobolev’s in-
equality for Q ∈ Qm and Q′ ∈ Qm′. If we define S := QPt Q′ then we have for
|Z |, |Z ′| ≤ σ

(3-24) |Q Z Q′Z ′Pt(Z , Z ′)| ≤ c sup
{∥∥∥ ∂ |α|
∂Zα

S ∂
|α′|s
∂Z ′α

′

∥∥∥
(σ ),n+1

, ‖s‖L2 = 1,

supp(s)⊂ B(0, σ + 1), |α|, |α′| ≤ n+ 1
}
.

Hence, by (3-23), applied twice to n+ 1 instead of m, and also (3-21), applied to
m+ n+ 1,m′+ n+ 1 instead of m,m′, we get

(3-25) sup
|Z |,|Z ′|6σ

|Q Z Q′Z ′Pt(Z , Z ′)|

6 c′|dφ|m+n
m+n+1|ω|

2m+2n+2
0 |dφ|m

′
+n

m′+n+1|ω|
2m′+2n+2
0 |dφ|2n+2

n+2 ζ
−m−m′−2n.

By (3-22) and (3-25) for m = m′ = 0, estimate (3-16) holds for r = 0.
Consider now r ≥ 1. Set

(3-26) Ik,r :=

{
(k, r)={(ki , ri )}

j
i=0 :

j∑
i=0

ki = k+ j,
j∑

i=1

ri = r, ki , ri ∈N∗
}
.

Then there exist ak
r ∈ R such that

(3-27)

Ak
r (λ, t)= (λ−Lt)

−k0 ∂
r1Lt
∂tr1

(λ−Lt)
−k1 · · ·

∂rj Lt
∂trj

(λ−Lt)
−k j ,

∂r

∂tr (λ−Lt)
−k
=

∑
(k,r)∈Ik,r

ak
r Ak

r (λ, t).

Set gi j (Z) := 〈∂/∂Zi , ∂/∂Z j 〉Z , and (gi j ) the inverse matrix of (gi j ). Note that
(∂u/∂tu)(gi j (t Z)), (∂u/∂tu)(∇t,ei − (1/t)0L0

ε (t Z)) are functions which do not de-
pend on ζ , and (∂u/∂tu)RL0

ε (t Z), (∂u/∂tu)0L0
ε (t Z) are functions of type d ′(t Z)Zβ,

and ∇e j1
· · · ∇e jl

d ′(t Z) is uniformly controlled by |dφ|l+u+1.
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We handle now the operator Ak
r (λ, t)Q′. We will move first all the terms Zβ

in d ′(t Z)Zβ (defined above) to the right-hand side of this operator. To do so,
we always use the commutator trick as in the proof of [Ma and Marinescu 2007,
Theorem 1.6.10], i.e., each time, we perform only the commutation with Zi (not
directly with Zβ with |β|> 1). Then Ak

r (λ, t)Q′ is as the form
∑
|β|62r Lβ,t Q′′β Zβ,

and Q′′β is obtained from Q′ and its commutation with Zβ. Observe that [Zi ,Lt ]

is a first order differential operator and [Z j1, [Z j2,Lt ]] = g j1 j2(t Z) is a bounded
function. Therefore, Lβ,t is a linear combination of operators of the form

(3-28) (λ−Lt)
−k′0 S1(λ−Lt)

−k′1 S2 · · · Sl ′(λ−Lt)
−k′l′ ,

with Si ∈ {a(t Z)∇t,e j1
∇t,e j2

, d j1(t Z)∇t,e j1
, d ′(t Z)} and the number of ∇t,e j1

in all
{Si }i is less than

∑
i ri + 2 j = r + 2 j . As k > 2(r + 1)+m+m′, we can split the

above operator into two parts as in [Ma and Marinescu 2007, (4.1.51)] and use the
fact that the term ∇t,ej (λ−Lt)

−l1 will contribute ζ−l1. Similarly to (3-18), we get
that Ak

r (λ, t) is well defined and for m,m′ ∈ N, k > 2(r + 1)+m+m′, Q ∈Qm,
Q′ ∈Qm′, there exists c > 0 such that for λ ∈ δζ and t ∈ ]0,

√
ζ/δ],

(3-29) ‖QAk
r (λ, t)Q′s‖t,0

6 c|dφ|m+2r−1
m+2r |ω|

2m+4r
0 |dφ|m

′
+2r−1

m′+2r |ω|
2m′+4r
0 ζ

−

j∑
i=0

ki−m−m′−3r ∑
|β|62r

‖Zβs‖t,0

≤ c|dφ|m+2r−1
m+2r |ω|

2m+4r
0 |dφ|m

′
+2r−1

m′+2r |ω|
2m′+4r
0 ζ−k−m−m′−4r

∑
|β|62r

‖Zβs‖t,0.

By (3-17), (3-27) and (3-29), as in (3-21), for m, r ∈ N, Q ∈Qm and Q′ ∈Qm′,
there exists c > 0 such that for t ∈ ]0,

√
ζ/δ] and s ∈ C∞0 (X0,C),

(3-30)
∥∥∥Q ∂r

∂tr Pt Q′s
∥∥∥

t,0

6 c|dφ|m+2r−1
m+2r |dφ|

m′+2r−1
m′+2r |ω|

2m+2m′+8r
0 ζ−m−m′−4r

∑
|β|62r

‖Zβs‖t,0.

Finally, equations (3-23) and (3-30) together with Sobolev’s inequalities imply
for |Z |, |Z ′|6 σ ,

(3-31) sup
|Z |,|Z ′|6σ

∣∣∣ ∂r

∂tr Pt(Z , Z ′)
∣∣∣6 c|dφ|2n+4r

2r+n+1|ω|
2(2n+2+4r)
0 |dφ|2n+2

n+2 ζ
−2n−4r−2.

This ends the proof of the theorem. �
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Note that by (3-22), the operator Lt has a limit when t→ 0 which we denote
by L0. For k big enough, set

(3-32) Fr :=
1

2π
√
−1 r !

∫
δζ

λk−1
∑

(k,r)∈Ik,r

ak
r Ak

r (λ, 0)dλ.

Let Fr (Z , Z ′) ∈ C∞(TX ×X TX,C) be the smooth kernel of Fr with respect
to dvTX (Z ′).

Theorem 3.6. For all j ∈ N, σ > 0, there exists c > 0 such that for t ∈ ]0,
√
ζ/δ]

and Z , Z ′ ∈ Tx0 X , |Z |, |Z ′|6 σ , we have

(3-33)
∥∥∥∥(Pt −

j∑
r=0

Fr tr
)
(Z,Z ′)

∥∥∥∥
C0(X)

6 c|dφ|2(2 j+n+2)
2 j+n+3 |ω|

2(4 j+2n+6)
0 |dφ|2n+2

n+2 ζ
−4 j−2n−6t j+1.

Proof. By [Ma and Marinescu 2007, (4.1.69)], we have

(3-34) 1
r !
∂r

∂tr Pt

∣∣∣
t=0
= Fr .

Recall that the Taylor expansion with integral rest of a function G ∈ C j+1([0, 1]) is

(3-35) G(t)−
j∑

r=0

1
r !
∂r G
∂tr (0)t

r
=

1
j !

∫ t

0
(t − t0) j ∂

j+1G
∂t j+1 (t0)dt0, t ∈ [0, 1].

Theorem 3.5 and (3-34) show estimate (3-16) holds if we replace (1/r !)(∂r/∂tr )Pt

with Fr . Using this new estimate together with (3-35) and (3-16), we get (3-33). �

Let P be the orthogonal projection from L2(X0,C) onto Ker(L0), and let
P(Z , Z ′) be the smooth kernel of P with respect to dvTX (Z ′). Then P(Z , Z ′) is the
Bergman kernel of L0. By [Ma and Marinescu 2007, (4.1.84)], if we choose {w j } to
be an orthonormal basis of T (1,0)

x0 X such that ṘL
x0
=diag(a1, . . . , an)∈End(T (1,0)

x0 X)
with 〈ṘL

x0
W, Y 〉 = RL(W, Y ) for W, Y ∈ T (1,0)

x0 X , then

(3-36) P(Z , Z ′)=
n∏

i=1

ai

2π
exp

(
−

1
4

∑
i

ai
(
|zi |

2
+ |z′i |

2
− 2zi z′i

))
.

The following result was established in [Ma and Marinescu 2007, Theorem 4.1.21]:

Theorem 3.7. There exist polynomials Jr (Z , Z ′) in Z , Z ′ with the same parity as r
and deg Jr (Z , Z ′)6 3r , whose coefficients are polynomials in RTX (resp. RL ) and
their derivatives of order6 r−2 (resp.6 r ), and reciprocals of linear combinations
of eigenvalues of RL at x0, such that

(3-37) Fr (Z , Z ′)= Jr (Z , Z ′)P(Z , Z ′).
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Moreover, we have

(3-38) J0 = 1 and F0 = P.

Owing to (3-1), (3-2), as in [Ma and Marinescu 2007, (4.1.96)], we have

(3-39) P0
p (Z,Z

′)= t−2nκ−1/2(Z)Pt(Z/t,Z ′/t)κ−1/2(Z ′), for all Z,Z ′∈ R2n.

From Theorems 3.6 and 3.7 and (3-39), we get the following near-diagonal
expansion of the Bergman kernels. Recall that we are working with t = p−1/2.

Theorem 3.8. For every j ∈ N, there exists c > 0 such that the estimate

(3-40)
( 1

pn P0
p (Z , Z ′)−

j∑
r=0

Fr (
√

pZ ,
√

pZ ′)κ−1/2(Z)κ−1/2(Z ′)p−r/2
)

6 c|dφ|2(2 j+n+2)
2 j+n+3 |ω|

2(2n+4 j+6)
0 |dφ|2n+2

n+2 p−( j+1)/2ζ−2n−4 j−6

holds for all 0< ζ ≤ 1, ζ p > δ, and all Z , Z ′ ∈ Tx0 X with |Z |, |Z ′| ≤ σ/
√

p.

End of the proof of Theorem 1.1. We apply Theorem 3.8 to Z = Z ′ = 0 and
j = 1. Note that F1(0, 0)= 0 because the function F1 is odd. By equation (3-36),
P(0, 0)= ω(x0)

n/θ(x0)
n. So from (3-40), we get

(3-41)
∥∥∥ 1

pn P0
p (0, 0)−

ω(x0)
n

θ(x0)n

∥∥∥
C0(X)

6 c|dφ|2n+8
n+5 |ω|

4n+20
0 |dφ|2n+2

n+2 ζ
−2n−10 p−1.

We then deduce the result form Propositions 2.1, 2.3 and (3-41). �

Remark 3.9. Assume now φ ∈ Cn+2k+6. Then by the usual Ck-norm on each Uj

and Sobolev embedding theorem, from (2-22), we get

(3-42) ‖Fε0(Dp)(x, x ′)− Pp(x, x ′)‖Ck ≤ c|ω|2n+2+2k
n+k ζ−6n−3l−6−3k p−l .

Note that ∇Lp
= d+ p0L (cf., (2-15)), thus if we use the Ck-norm induced by ∇Lp

,
then we get

(3-43) ‖Fε0(Dp)(x, x ′)− Pp(x, x ′)‖Ck(X×X)

≤ c
k∑

r=0

|ω|2n+2+2r
n+r ζ−6n−3(k−r+1)−6−3k p−k+r−1

|ω|k−r
k−r pk−r

≤ c|ω|2n+2+2k
n+k ζ−6n−9−3k p−1.

In the same way as (2-35) and above, we get

(3-44) ‖(P0
p − Pp)(x, x ′)‖Ck(X×X) ≤ c(|dφ|−1

2 ζ )−6n−3k−9 p−1
|ω|2n+2+2k

n+k .
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Combining [Ma and Marinescu 2007, (4.1.64)] and the argument for (3-16), we get

(3-45)
∥∥∥∥ ∂r

∂tr Pt(Z,Z ′)
∥∥∥∥
Cm′
6 cζ−2n−4(r+m′)−2

|dφ|4(r+m′)+2n
2(r+m′)+n+1|ω|

8(r+m′)+4n+4
0 |dφ|2n+2

n+2 ;

here Cm′ is the usual Cm′-norm for the parameter x0.
Thus we get an extension of (1-4):

(3-46)
∥∥∥∥p−nPp(x,x)−

ω(x)n

θ(x)n

∥∥∥∥
Ck
6c|dφ|2n+4k+8

n+2k+5 |ω|
4n+8k+20
0 |dφ|2n+2

n+2 ζ
−2n−4k−10p−1

+ c|ω|2n+2k+2
n+k (|dφ|2ζ−1)6n+9+3kp−1.

Remark 3.10. Let φ be a function of class Cα, with 0 < α ≤ 1, which is ω0-
plurisubharmonic, i.e., ddcφ+ω0 ≥ 0. For each 0< ζ ≤ 1, we can find a smooth
ω0-plurisubharmonic function φζ such that ‖φζ‖Ck ≤ cζ−k+α and ddcφζ+ω0≥ ζω0,
see [Dinh et al. 2015]. As mentioned in Section 1, we can study φ by applying our
results to φζ . Some steps in the proof of our estimates can be strengthened using
‖φζ‖Ck ≤ cζ−k+α for each 0≤ k ≤ n+ 6 instead of using only the Cn+6-norm.
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